88 research outputs found

    Capacity -based parameter optimization of bandwidth constrained CPM

    Get PDF
    Continuous phase modulation (CPM) is an attractive modulation choice for bandwidth limited systems due to its small side lobes, fast spectral decay and the ability to be noncoherently detected. Furthermore, the constant envelope property of CPM permits highly power efficient amplification. The design of bit-interleaved coded continuous phase modulation is characterized by the code rate, modulation order, modulation index, and pulse shape. This dissertation outlines a methodology for determining the optimal values of these parameters under bandwidth and receiver complexity constraints. The cost function used to drive the optimization is the information-theoretic minimum ratio of energy-per-bit to noise-spectral density found by evaluating the constrained channel capacity. The capacity can be reliably estimated using Monte Carlo integration. A search for optimal parameters is conducted over a range of coded CPM parameters, bandwidth efficiencies, and channels. Results are presented for a system employing a trellis-based coherent detector. To constrain complexity and allow any modulation index to be considered, a soft output differential phase detector has also been developed.;Building upon the capacity results, extrinsic information transfer (EXIT) charts are used to analyze a system that iterates between demodulation and decoding. Convergence thresholds are determined for the iterative system for different outer convolutional codes, alphabet sizes, modulation indices and constellation mappings. These are used to identify the code and modulation parameters with the best energy efficiency at different spectral efficiencies for the AWGN channel. Finally, bit error rate curves are presented to corroborate the capacity and EXIT chart designs

    An Architecture for High Data Rate Very Low Frequency Communication

    Get PDF
    Very low frequency (VLF) communication is used for long range shore-to-ship broadcasting applications. This paper proposes an architecture for high data rate VLF communication using Gaussian minimum shift keying (GMSK) modulation and low delay parity check (LDPC) channel coding. Non-data aided techniques are designed and used for carrier phase synchronization, symbol timing recovery, and LDPC code frame synchronization. These require the estimation of the operative Eb/N0 for which a kurtosis based algorithm is used. Also, a method for modeling the probability density function of the received signal under the bit condition is presented in this regard. The modeling of atmospheric radio noise (ARN) that corrupts VLF signals is described and an algorithm for signal enhancement in the presence of ARN in given. The BER performance of the communication system is evaluated for bit rates of 400 bps, 600 bps, and 800 bps for communication bandwidth of ~200 Hz.Defence Science Journal, 2013, 63(1), pp.25-33, DOI:http://dx.doi.org/10.14429/dsj.63.376

    Diversity analysis, code design, and tight error rate lower bound for binary joint network-channel coding

    Get PDF
    Joint network-channel codes (JNCC) can improve the performance of communication in wireless networks, by combining, at the physical layer, the channel codes and the network code as an overall error-correcting code. JNCC is increasingly proposed as an alternative to a standard layered construction, such as the OSI-model. The main performance metrics for JNCCs are scalability to larger networks and error rate. The diversity order is one of the most important parameters determining the error rate. The literature on JNCC is growing, but a rigorous diversity analysis is lacking, mainly because of the many degrees of freedom in wireless networks, which makes it very hard to prove general statements on the diversity order. In this article, we consider a network with slowly varying fading point-to-point links, where all sources also act as relay and additional non-source relays may be present. We propose a general structure for JNCCs to be applied in such network. In the relay phase, each relay transmits a linear transform of a set of source codewords. Our main contributions are the proposition of an upper and lower bound on the diversity order, a scalable code design and a new lower bound on the word error rate to assess the performance of the network code. The lower bound on the diversity order is only valid for JNCCs where the relays transform only two source codewords. We then validate this analysis with an example which compares the JNCC performance to that of a standard layered construction. Our numerical results suggest that as networks grow, it is difficult to perform significantly better than a standard layered construction, both on a fundamental level, expressed by the outage probability, as on a practical level, expressed by the word error rate

    Windowed Decoding of Protograph-based LDPC Convolutional Codes over Erasure Channels

    Full text link
    We consider a windowed decoding scheme for LDPC convolutional codes that is based on the belief-propagation (BP) algorithm. We discuss the advantages of this decoding scheme and identify certain characteristics of LDPC convolutional code ensembles that exhibit good performance with the windowed decoder. We will consider the performance of these ensembles and codes over erasure channels with and without memory. We show that the structure of LDPC convolutional code ensembles is suitable to obtain performance close to the theoretical limits over the memoryless erasure channel, both for the BP decoder and windowed decoding. However, the same structure imposes limitations on the performance over erasure channels with memory.Comment: 18 pages, 9 figures, accepted for publication in the IEEE Transactions on Information Theor

    Asymptotic Analysis and Design of LDPC Codes for Laurent-based Optimal and Suboptimal CPM Receivers

    Get PDF
    International audienceIn this paper, we derive an asymptotic analysis for a capacity approaching design of serially concatenated turbo schemes with low density parity check (LDPC) codes and continuous phase modulation (CPM) based on Laurent decomposition. The proposed design is based on extrinsic mutual information evolution and Gaussian approximation. By inserting partial interleavers between LDPC and CPM and allowing degree-1 variable nodes under a certain constraint we show that designed rates are very close to the maximum achievable rates. Furthermore, we discuss the selection of low complexity receivers that works with the same optimized profiles

    Design of Unstructured and Protograph-Based LDPC Coded Continuous Phase Modulation

    Get PDF
    In this paper, we derive an asymptotic analysis and optimization of coded CPM systems using both unstructured and protograph-based LDPC codes ensembles. First, we present a simple yet effective approach to design unstructured LDPC codes : by inserting partial interleavers between LDPC and CPM, and allowing degree-1 and degree-2 variable nodes in a controlled pattern, we show that designed codes perform that can operate very close to the maximum achievable rates. Finally, the extension to protograph based codes is discussed. We provide some simple rules to design good protograph codes with good threshold properties

    Sparse graph-based coding schemes for continuous phase modulations

    Get PDF
    The use of the continuous phase modulation (CPM) is interesting when the channel represents a strong non-linearity and in the case of limited spectral support; particularly for the uplink, where the satellite holds an amplifier per carrier, and for downlinks where the terminal equipment works very close to the saturation region. Numerous studies have been conducted on this issue but the proposed solutions use iterative CPM demodulation/decoding concatenated with convolutional or block error correcting codes. The use of LDPC codes has not yet been introduced. Particularly, no works, to our knowledge, have been done on the optimization of sparse graph-based codes adapted for the context described here. In this study, we propose to perform the asymptotic analysis and the design of turbo-CPM systems based on the optimization of sparse graph-based codes. Moreover, an analysis on the corresponding receiver will be done
    corecore