An Architecture for High Data Rate Very Low Frequency Communication

Abstract

Very low frequency (VLF) communication is used for long range shore-to-ship broadcasting applications. This paper proposes an architecture for high data rate VLF communication using Gaussian minimum shift keying (GMSK) modulation and low delay parity check (LDPC) channel coding. Non-data aided techniques are designed and used for carrier phase synchronization, symbol timing recovery, and LDPC code frame synchronization. These require the estimation of the operative Eb/N0 for which a kurtosis based algorithm is used. Also, a method for modeling the probability density function of the received signal under the bit condition is presented in this regard. The modeling of atmospheric radio noise (ARN) that corrupts VLF signals is described and an algorithm for signal enhancement in the presence of ARN in given. The BER performance of the communication system is evaluated for bit rates of 400 bps, 600 bps, and 800 bps for communication bandwidth of ~200 Hz.Defence Science Journal, 2013, 63(1), pp.25-33, DOI:http://dx.doi.org/10.14429/dsj.63.376

    Similar works