
This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

Diversity analysis, code design, and tight error rate lower bound for binary joint
network-channel coding

EURASIP Journal on Wireless Communications and Networking 2012,
2012:350 doi:10.1186/1687-1499-2012-350

Dieter Duyck (dduyck@telin.ugent.be)
Michael Heindlmaier (michael.heindlmaier@tum.de)

Daniele Capirone (capirone.polito@gmail.com)
Marc Moeneclaey (mm@telin.ugent.be)

ISSN 1687-1499

Article type Research

Submission date 10 February 2012

Acceptance date 21 September 2012

Publication date 21 November 2012

Article URL http://jwcn.eurasipjournals.com/content/2012/1/350

This peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see
copyright notice below).

For information about publishing your research in EURASIP WCN go to

http://jwcn.eurasipjournals.com/authors/instructions/

For information about other SpringerOpen publications go to

http://www.springeropen.com

EURASIP Journal on Wireless
Communications and
Networking

© 2012 Duyck et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55801490?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dduyck@telin.ugent.be
mailto:michael.heindlmaier@tum.de
mailto:capirone.polito@gmail.com
mailto:mm@telin.ugent.be
http://jwcn.eurasipjournals.com/content/2012/1/350
http://jwcn.eurasipjournals.com/authors/instructions/
http://www.springeropen.com
http://creativecommons.org/licenses/by/2.0


Diversity analysis, code design, and tight error rate
lower bound for binary joint network-channel
coding

Dieter Duyck1∗
∗Corresponding author
Email: dduyck@telin.ugent.be

Michael Heindlmaier2

Email: michael.heindlmaier@tum.de

Daniele Capirone3

Email: capirone.polito@gmail.com

Marc Moeneclaey1

Email: mm@telin.ugent.be

1Department of Telecommunications and Information processing, Ghent
University, St-Pietersnieuwstraat 41, B-9000 Gent, Belgium

2Technische Universität München, München, Germany
3Politecnico di Torino, Torino, Italy

Abstract

Joint network-channel codes (JNCC) can improve the performance of communication in
wireless networks, by combining, at the physical layer, the channel codes and the network
code as an overall error-correcting code. JNCC is increasingly proposed as an alternative to
a standard layered construction, such as the OSI-model. The main performance metrics for
JNCCs are scalability to larger networks and error rate. The diversity order is one of the
most important parameters determining the error rate. The literature on JNCC is growing,
but a rigorous diversity analysis is lacking, mainly because of the many degrees of freedom
in wireless networks, which makes it very hard to prove general statements on the diversity
order. In this article, we consider a network with slowly varying fading point-to-point links,
where all sources also act as relay and additional non-source relays may be present. We
propose a general structure for JNCCs to be applied in such network. In the relay phase,
each relay transmits a linear transform of a set of source codewords. Our main contributions
are the proposition of an upper and lower bound on the diversity order, a scalable code
design and a new lower bound on the word error rate to assess the performance of the
network code. The lower bound on the diversity order is only valid for JNCCs where the
relays transform only two source codewords. We then validate this analysis with an example
which compares the JNCC performance to that of a standard layered construction. Our
numerical results suggest that as networks grow, it is difficult to perform significantly better
than a standard layered construction, both on a fundamental level, expressed by the outage
probability, as on a practical level, expressed by the word error rate.
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Introduction

Point-to-point communication has revealed many of its secrets. Driven by new applications,
research in wireless communication is now focusing more on the optimization of
communication in wireless networks. For example, the joint operation of multiple network
layers can be optimized, denoted as cross-layer design [1,2], thereby leaving the classical
layered architectures, such as the seven-layer open systems interconnect (OSI) model ( [3], p.
20). Another example of network optimization is cooperative communication, where multiple
nodes in the network cooperate to improve their error performance. Cooperation may occur in
many forms at different layers, e.g., cooperative channel coding at the physical layer and
network coding at the network layer. Network coding refers to the case where the intermediate
nodes in the network are allowed to perform encoding operations over multiple received
streams from different sources. In a standard layered construction, the decoding of the
network code is performed at the network layer, after the point-to-point transmissions have
been decoded at the physical layer. Channel coding refers to the case where nodes perform
coding over one point-to-point wireless link only. Cooperative channel coding is achieved by
letting one or more relays transmit redundant bits for one source at a time. Usually, channel
coding and network coding are studied separately (e.g., [4–6] for cooperative channel coding
and [7–11] for network coding).

Standard linear network coding consists of taking linear combinations of several source
packets. In general, non-binary coefficients are used in the linear combinations. In JNCC,
cooperative channel coding (e.g., decode and forward [12]) and cross-layer design are
combined, by using the network code for decoding at the physical layer. The rationale behind
JNCC is to improve the joint error rate performance (i.e., the average error rate performance
over all users participating in the network) by letting the redundancy of the network code help
to decode the noisy channel output [13]. In that case, a joint optimization of the network and
channel code is useful. For example, one can opt to let the network and channel code be
represented by one parity-check matrix of a binary code, referred to as joint network-channel
coding (JNCC). Hence, the coefficients multiplying the packets in the case of standard linear
network coding are replaced by matrices in the case of JNCC.

Mostly, the two most important performance metrics are (R, Pe), where R is the information
rate and Pe is the error rate. Here, we consider a fixed information rate R, so that the aim is to
minimize Pe for a given point-to-point channel quality, expressed by γ , the signal-to-noise
ratio (SNR) per symbol. Expressing the asymptotic (for large γ ) error rate as Pe = 1

gγ d , where
g and d are defined as the coding gain and the diversity order, respectively, improving the
performance refers to maximizing first d and then g (because d has the larger impact). Next to
minimizing the error rate, scalability of the code design (e.g., to larger networks) is also an
important criterion often recurring in the literature. JNCC is increasingly proposed as an
alternative to a standard layered construction, such as the OSI model. However, it must be



verified that important metrics, such as the diversity order d and the scalability to large
networks, are not negatively affected.

Binary JNCC received much attention in the last years. Pioneering articles [14,15] designed
turbo codes and LDPC codes, respectively, for the multiple access relay channel (MARC) and
for the two-way relay channel [16]. However, the code design was not immediately scalable to
general large networks and did not contain the required structure to achieve full diversity. The
study of Hausl et al. [14–16] was followed by the interesting study of Bao et al. [17],
presenting a JNCC that is scalable to large networks. However, this JNCC was not structured
to achieve full diversity and has weak points from a coding point of view [18]. A deficiency in
the literature, for general networks with a number of sources and relays, is the lack of a
detailed diversity analysis in the case that the sources can act as a relay (which is for example
the model assumed by [17]). The effect of the parameters of the JNCC on the diversity order
is in general not known, because of the many degrees of freedom in such networks. Related to
this, we mention [19,20], where the authors designed a JNCC for the case where the sources
cannot act as a relay, but other nodes play the role of relay to communicate to one destination.
As the source nodes are excluded to act as a relay node in this model, the diversity analysis
in [19,20] is different from ours.

In this article, we consider a JNCC where the network code forms an integral part of the
overall error-correcting code, that is used at the destination to decode the information from the
sources. The rest of the article is organized as follows. In Section ‘Diversity analysis of
JNCC’, we perform a diversity analysis, leading to an upper bound on the diversity order of
any linear binary JNCC following our system model, and to a lower bound on the diversity
order for a particular subset of linear binary JNCCs. The upper and lower bound depend on
the parameters of the JNCC and can be used to verify whether a particular JNCC has the
potential to achieve full diversity on a certain network. Second, in Section ‘Practical JNCC for
nur = 2’, a specific JNCC of the LDPC-type is proposed that achieves full diversity for a well
identified set of wireless networks. The scalability of this specific JNCC to large networks is
discussed. The coding gain c is not considered in the body of the article and the parameters of
our proposed code may be further optimized by applying techniques such as in [19], to
maximize c. To assess the performance of the proposed JNCC, we determine the outage
probability, a well known lower bound of the word error rate, in Section ‘Lower bound for the
WER’. We also present a tighter word error rate lower bound in Section ‘Calculation of a
tighter lower bound on WER’, that takes into account the particular structure of the JNCC. In
Section ‘Numerical results’, the numerical results corroborate the established theory. We also
briefly comment on the coding gain achieved by the proposed JNCC and conclusions are
drawn for different classes of large networks.

The main contribution of this article is to indicate the effect of the parameters of the JNCC on
the diversity order, for networks that fit our channel model. More specifically, we propose an
upper and lower bound on the diversity order, a scalable code design and a new lower bound
on the word error rate that is tighter than the outage probability and thus better suited to assess
the performance of the overall error-correcting code. The main contributions are summarized
in the lemmas, propositions and corollaries. These can be a guide for any coding theorist
designing JNCCs. Further, our numerical results suggest that as networks grow, it is difficult to
perform significantly better than a standard layered construction, both on a fundamental level,



expressed by the outage probability, as on a practical level, expressed by the word error rate.
This conjecture is important, because one will now need to clearly motivate the use of JNCC
instead of a standard layered construction, given the extra efforts that are required for JNCC.

This article extends the study, published in [18], by also considering non-perfect source-relay
channels, by considerably extending the diversity analysis, by providing an achievability proof
for the diversity order of the proposed JNCC, by clearly indicating the set of wireless
networks where the proposed JNCC is diversity-optimal, by providing a tighter lower bound
on the word error rate, and by providing more numerical results.

Joint network-channel coding

We first illustrate joint network-channel coding by means of a simple example. Consider two
sources orthogonally broadcasting a vector of symbols, mapped from the binary vectors s1 and
s2, respectively, to a relay and a destination. This channel is denoted as a multiple access relay
channel (MARC) in the literature. Supposing that the relay is able to decode the received
symbols, the relay computes a binary vector r1, which is mapped to symbols and transmitted
to the destination. The relation between all bits is expressed by the JNCC, whose parity-check
matrix has the following general form,

H =

s1 s2 r1
Hp 0 0
0 Hp 0
0 0 Hp

H1
1 H1

2 H1

 . (1)

The matrix Hp represents the parity-check matrix for the point-to-point channel code. Each of
the binary vectors s1, s2, and r1, can be separately decoded using this code. The bottom part
of H represents the GLNC, which we denote as HGLNC =[ H1

1 H1
2 H1]. It expresses the

relation between r1, s1, and s2. More specifically, we have

H1r1 = H1
1s1 + H1

2s2. (2)

Note that GLNC includes standard network codes used in an OSI communication model as a
special case. In the latter case, the matrices Hi

j and Hi (considering more than one relay in
general) are identity matrices or all-zero matrices, so that the network code simplifies to the
relay packet being a linear combination of source packets, also expressed as XORing of
packets or symbol-wise addition of packets.

Ideally, the overall matrix H conforms optimized degree distributions that specify the LDPC
code. When the channels between sources and relay are perfect, we can drop the first three
sets of rows and only keep the GLNC, represented by HGLNC; in this case the information bits
of the code are s1 and s2, and r1 contains the parity bits. This is still a JNCC as the
redundancy in the network code is used to decode the received symbols on the physical layer
at the destination. In [21,22], it is proved that the matrices Hp do not affect the diversity order
in the case of the MARC.



System model

We consider wireless networks with ms sources directly communicating to a common
destination (e.g., cellphones communicating to a base station). Two time-orthogonal phases
are distinguished. In the source phase, the sources orthogonally broadcast their respective
source packet. In the following relay phase, the relays orthogonally broadcast their respective
packet. All considered sources overhear each other during the source phase, and act as relay in
the relay phase. Other nodes, not acting as a source, might be present in the network (i.e.,
overhearing the sources) and also act as relay. Hence, we consider a total of mr relays, where
mr ≥ ms. This general network model, which is practically relevant as it fits many
applications, is adopted in, e.g., [17]. Take for example any large network and consider a
volume in space (cf. picocells or femtocells) where all nodes can overhear each other. These
nodes form sub-networks and can be modeled by our proposed model. Note that in the
literature, sometimes other models are assumed, such as the M − N − 1 model [19,20], where
M sources are helped by N relays (the relays are nodes different from the sources) to
communicate to one destination.

All devices have one antenna, are half-duplex and transmit orthogonally using BPSK
modulation. The K information bits of each source are encoded via point-to-point channel
codes into a systematic codeword, denoted as source codeword, of length L, expressed by the
column vector sus for user us, us ∈[ 1, . . . , ms]. The parity-check matrix of dimension
(L − K) × L of this point-to-point codeword is denoted by Hp, which is the same for each user
us, so that Hpsus = 0 for all us. In the relay phase, each relay ur, ur ∈[ 1, . . . , mr], transmits a
point-to-point codeword rur of length L to the destination, also satisfying Hprur = 0. Hence,
all slots have equal duration, the coding rate of the point-to-point channels is Rc,p = K

L , and
the overall coding rate is Rc = msK

(ms+mr)L
= Rc,p

ms
ms+mr

. We define the fraction of source
transmissions in the total number of transmissions as the network coding rate Rn = ms

ms+mr
, so

that Rc = Rc,pRn. The overall codeword of length (ms + mr)L is expressed by the column
vector

x =[ sT
1 . . . sT

ms
rT

1 . . . rT
ms

. . . rT
mr

]T . (3)

The destination declares a word error if it can not perfectly retrieve all msK information bits,
and the overall word error rate is denoted by Pew.

All relevant channels between differenta pairs of network nodes are assumed independent,
memoryless, with real additive white Gaussian noise and multiplicative real fading (Rayleigh
distributed with expected squared value equal to one). The fading coefficient of a wireless link
is only known at the receiver side of that link. We consider a slow fading environment with a
finite coherence time that is longer than the duration of the source phase and the relay phase,
so that the fading gain between two network nodes takes the same value during both phases.
We denote the fading gain from node u to the destination as αu, with E[ α2

u] = 1. All
point-to-point channels have the same average signal-to-noise ratio (SNR), denoted by γ .
Differences in average SNR between the channels would not alter the diversity analysis, on
the condition that the large SNR behavior inherent to a diversity analysis refers to allb SNRs
being large. Denoting the received symbol vector at the destinationc in timeslot i as yi, the



channel equation is {
yus = αuss′

us
+ nus , us = 1, . . . , ms

yms+ur = αurr′
ur

+ nms+ur , ur = 1, . . . , mr,
(4)

where ni ∼ CN (0, 1
γ

I) is the noise vector in timeslot i, s′
us

= 2sus − 1 and r′
ur

= 2rur − 1
(BPSK modulation).

Hence, at the destination, each of the ms independent fading gains between the sources and the
destination affects 2L bits (L bits in the source phase and L bits in the relay phase) and each of
mr − ms fading gains between the non-source relays and the destination affects L bits,
assuming that all mr relays could decode the messages received from the sources. Hence,
from the point of view of the destination, the overall codeword is transmitted on a block
fading (BF) channel with mr blocks, each affected by its own fading gain, where ms blocks
have length 2L and mr − ms blocks have length L. This notion will be essential in the
subsequent diversity analysis (Section ‘Diversity analysis of JNCC’).

In the source phase, relay ur attempts to decode the received symbols from sources belonging
to the decoding set S(ur). The users that are successfully decoded at relay ur are added to its
retrieval set, denoted by R(ur), R(ur) ⊂ S(ur), with cardinality lur . Next, in the relay phase,
relay ur transmits a relay packet, which is a linear transformation of nur source codewordsd

originated by the sources from the transmission set T (ur) = {u1, . . . , unur
} of relay ur, with

T (ur) ⊂ R(ur). If lur < nur , then relay ur does not transmit anything. In Section ‘Diversity
analysis of JNCC’, we show that nur is an important parameter that strongly affects the
diversity order.

For example, user 3 attempts to decode the messages from users 1, 2, and 5, and succeeds in
decoding the messages from users 1 and 5 from which a linear transformation is computed.
Hence, S(3) = {1, 2, 5}, R(3) = T (3) = {1, 5}, l3 = n3 = 2. Because the channel between
a node and the destination remains constant during both source and relay phases, a relay has
no interest in including its own source message in S(ur).

Using the transmission set for each relay, the GLNC in Equation (2) generalizes to

Hurrur =
⊕

us∈T (ur)

Hur
us

sus , (5)

where the matrices Hur and Hur
us

are of dimension K × L. Hence, each transmitted relay
codeword rur is a linear transformation of nur source codewords. The superscript ur in Hur

us
indicates that the vector sus is in general not transformed by the same matrix for all relays ur
where us ∈ T (ur). The overall parity-check matrix H is thus expressed as

H =
[

Hc
HGLNC

]
, (6)



where Hc is block diagonal with Hp on its diagonal, representing the channel code, and

HGLNC =


H1

1 . . . H1
ms

H1 0 . . . 0
H2

1 . . . H2
ms

0 H2 . . . 0
...

...
...

...
... . . . ...

Hmr
1 . . . Hmr

ms
0 0 . . . Hmr

 (7)

represents the GLNC.

Table 1 provides an overview of the notation presented in the system model.

Table 1 Overview of notation for JNCC for larger networks
ms Number of sources
mr Number of relays
Rn Network coding rate, Rn = ms

ms+mr
u, ur, us user indices to indicate a user in general, a relay, and a source, respectively
T (ur) Transmission set of relay ur
nur |T (ur)|, i.e., the number of sources helped by relay ur
sus , rur Point-to-point codeword transmitted by source us and relay ur, respectively
L Code length of all point-to-point codewords
Hp Parity-check matrix of point-to-point codewords, e.g., Hpsus = 0
Rc,p Coding rate of point-to-point codewords
c Overall codeword, that is, the concatenation of all point-to-point codewords
H Parity-check matrix of overall codeword
Rc Coding rate of overall codeword, Rc = Rc,pRn
HGLNC The part of H that relates the relay codewords rur to the source codewords sus

Hur
us

Matrix to transform sus in the relation with rur in HGLNC

Diversity analysis of JNCC

Before passing to the actual diversity analysis, we provide the well-known formal definition of
the diversity order ( [23], Chap. 3).

Definition 1. The diversity order attained by a code C is defined as

d = − lim
γ→∞

log Pew

log γ
,

where γ is the signal-to-noise ratio.

In other words, Pew ∝ γ −d, where ∝ denotes proportional to.

In the proofs of propositions in this article, we will often use the diversity equivalence
between a BF channel and a block binary erasure channel (block BEC), which was proved
in [24,25]. A block BEC channel is obtained by restricting the fading gains in our model to
belong to the set {0, ∞}, so that a point-to-point channel is either erased or perfect. Denoting
the erasure probability Pr[ αur = 0] by ϵ, a diversity order d is achieved if Pew ∝ ϵd for small



ϵ [26]. A diversity order of d is thus achievable if there exists no combination of d − 1 erased
point-to-point channels leading to a word error. On the other hand, a diversity order of d is not
achievable if there exists at least one combination of d − 1 erased channels leading to word
error.

In this section, we present the relation between the diversity order d and the parameters
{nur , ur = 1, . . . , mr}, as well as between d and the choice of {T (ur), ur = 1, . . . , mr}. This
guides the code design and furthermore, the potential, of a linear binary JNCC satisfying some
conditions, to achieve full diversity, can be verified without performing Monte Carlo
simulations.

We first prove that the diversity order is a function of only the network coding rate Rn (Section
‘Diversity as a function of the network coding rate’). We then determine in Section ‘Space
diversity by cooperation’ the relation between the diversity order d and the set
{nur , ur = 1, . . . , mr}, for any linear binary JNCC expressed as in Equations (6) and (7). The
set {nur , ur = 1, . . . , mr} actually determines the maximal spatial diversity that can be
achieved by cooperation, leading to an upper bound on the diversity order. In Section ‘A lower
bound based on {T (ur)} for nur = 2’, we propose a lower bound on the diversity order in the
case that nur = n = 2, which depends on all transmission sets {T (ur), ur = 1, . . . , mr}. In
Section ‘Diversity order with interuser failures’, we discuss how the diversity order is affected
by interuser failures. Finally, in Section ‘Diversity order in a layered construction’, we briefly
comment on the diversity order in a layered construction, such as the OSI model.

Diversity as a function of the network coding rate

We denote the maximum achievable diversity order by dmax. We will determine dmax in this
section and show that it only depends on the network coding rate Rn = ms

ms+mr
.

Proposition 1. Under ML decoding, the maximum diversity order dmax that can be achieved
by any linear JNCC is

dmax =
{ ⌈1+mr

2 ⌉ , if mr ≤ 2ms
1 + mr − ms , if mr > 2ms

. (8)

Proof. See Appendix 1.

Note that the maximal diversity order does not depend on L. It can actually be reformulated in
the following way:

dmax =
{ ⌈1+(1−Rn)(mr+ms)

2 ⌉ , if mr ≤ 2ms
1 + mr − (ms + mr)Rn , if mr > 2ms

, (9)

which for mr = ms = m reduces to the maximum diversity order for a standard BF channele

with m blocks and coding rate Rn [27–29].



Hence, the maximum diversity order does not change when the point-to-point channel coding
rate Rc,p changes. This corresponds with our intuition as the parity bits of the point-to-point
codes only provide redundancy within one block forming a point-to-point codeword, hence
these parity bits cannot combat erasures which affect the complete point-to-point codeword.
Another consequence is that the maximal diversity order of JNCC cannot be larger than in a
layered approach, with the same network coding rate.

In the remainder of the article, full diversity refers to the diversity order being equal to the
maximal diversity order, d = dmax, from (8).

Space diversity by cooperation

We denote the word error rate for each source us by Pew,us , which is the fraction of packets
where at least 1 of the K information bits from source us is erroneously decoded at the
destination. Associated to Pew,us , we define dus , so that Pew,us ∝ 1

γ dus
for large γ . We have that

maxu Pew,us ≤ Pew ≤ ∑
us

Pew,us . From Definition 1, it follows that

d = min
us

dus . (10)

Denote tus , us ∈ {1, . . . , ms}, as the number of times that source us is included in the
transmission set of a relay: tus = ∑

ur ̸=us
11 (us ∈ T (ur)), where 11 (.) is the indicator function,

which equals one when its argument is true and zero otherwise. Some simple measures can be

determined: tmin = minus tus and tav =
∑mr

ur=1 nur
ms

. We will show that dus depends on tus and
thus, by Equation (10), d depends on tmin. We denote 1 + tmin by dR, which we call the space
diversity order, as it is the minimal number of channels that convey a source message to the
destination.

Proposition 2. For any linear JNCC, applied in our system model, the diversity order d is
upper bounded as

d ≤ dR = 1 + tmin.

Proof. We use the diversity equivalence between a BF channel and block BEC [24,25].
Assume that the channel between source us and the destination is erased. Source us is
included in at most tus transmission sets. Assume that all tus channels between the relays, that
include source us in their transmission set, and the destination are also erased. Then the
destination does not receive any information on source us so that it can never retrieve its
message. The probability of occurrence of this event is ϵ1+tus , so that Pew,us ≥ ϵ1+tus , hence
dus ≤ 1 + tus . Using Equation (10), we obtain Proposition 2.

Note that the proof of Proposition 2 is based on the assumption that relay ur only considers
packets transmitted in the source phase for inclusion in S(ur). In the case that relay ur
computes its relay packet also based on packets transmitted by other relays during the relay
phase, the diversity order becomes more difficult to analyze.



In Corollary 1, we propose the conditions on tmin so that the space diversity order dR is not
smaller than the maximum achievable diversity order.

Corollary 1. For any linear JNCC, applied in our system model, full diversity can be
achieved only if tmin ≥ q, where

q =
{ ⌊mr

2

⌋
, if mr ≤ 2ms

mr − ms , if mr > 2ms

Proof. The proof follows directly from Propositions 1 and 2.

Given a GLNC, and thus a choice of T (ur), one can verify whether the condition in Corollary
1 holds. In the disaffirmative case, full diversity cannot be achieved. To get more insight for
the code design, we consider the simplest case of a network code where the cardinality of the
transmission set is constant (nur = n).

Corollary 2. For any linear JNCC, applied in our system model, with constant nur = n, full
diversity can be achieved only if

n ≥ ⌊m
2

⌋
, if mr = ms = m

n ≥ ⌈ms
2

⌉
, if 2ms ≥ mr > ms

n ≥ ms −
⌊

m2
s

mr

⌋
, if mr > 2ms

(11)

Proof. It always holds that tmin ≤ ⌊tav⌋ and if nur = n, then tav = mrn
ms

. From Corollary 1, full

diversity can be achieved only if
⌊

mrn
ms

⌋
≥ q. Because mrn

ms
≥

⌊
mrn
ms

⌋
, we have the necessary

condition that n ≥ qms
mr

. As n is an integer, this bound can be tightened, yielding n ≥
⌈

ms
mr

q
⌉

.
Filling in q from Corollary 1 yields Corollary 2.

Table 2 illustrates Corollary 2, showing the set of networks in which a certain parameter n is
diversity-optimal, which means that the choice of n does not prevent the code to achieve full
diversity. In Section ‘Practical JNCC for nur = 2’, we propose a JNCC for n = 2, where
taking n = 2 is diversity-optimal in all networks corresponding to bold elements in Table 2.

Table 2 Minimal value n for a JNCC with constant nur = n to maintain its capability to
achieve full diversity
mr\ms 1 2 3 4 5 6 7
1 0
2 1 1
3 1 1 1
4 1 1 2 2
5 1 2 2 2 2
6 1 2 2 2 3 3
7 1 2 2 2 3 3 3
8 1 2 2 2 3 3 4



A lower bound based on {T (ur)} for nur = 2

A certain relay does not help one source only, but a combination of sources, expressed by the
transmission set T (ur) for each relay ur. In this section, we provide a lower bound on the
diversity order, based on the choice of {T (ur), ur = 1, . . . , mr}. If this lower bound and the
upper bound in the previous section are tight, the exact diversity order of JNCCs can so be
determined, as will be illustrated in Section ‘Practical JNCC for nur = 2’.

Based on T (ur), ms and mr, we construct the (ms + mr) × ms coding matrix M, where
Mus,us = 1 for us = 1, . . . , ms
Mur+ms,us = 1 if us ∈ T (ur), ∀ us, ur
Mi,us = 0 otherwise

(12)

The matrix M expresses the presence of a source-codeword in each transmission, i.e.,
Mi,us = 1 if sus is considered in transmission i (i = 1, . . . , ms and i = ms + 1, . . . , ms + mr
correspond to the source and relay transmission phases, respectively). Therefore, the upper
part of M is an identity matrix as each source us transmits its own codeword sus in the source
phase. The matrix M represents what is often called the “coding header” or “the global coding
coefficients” in the network coding literature (see e.g., [30]).

Consider a block BEC channel where e of the mr blocks have been erased. The indices of the
fading gains corresponding to the erased blocks are collected in the set
E = {E1, . . . , Ee}, Ei ∈ {1, . . . , mr}). Based on E , we construct ME which corresponds to the
subset of transmissions that are not erased, i.e., all rows Ei (if Ei ≤ ms) and ms + Ei, for
i = 1, . . . , e, in M are dropped. We denote the rank of ME as rME . The set M(e) collects all
possible matrices ME which can be constructed from M if |E | = e.

Consider an example for ms = mr = 3. Assume that T (1) = {2, 3}, T (2) = {1, 3}, and
T (3) = {1, 2}, so that

M =


1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0

 (13)

Next, assume that E = {1}. Hence, the channel between user 1 and the destination is erased,
so that rows 1 and 4 from M are dropped:

ME =


0 1 0
0 0 1
1 0 1
1 1 0

 , (14)

and rME = 3. It can be verified that all matrices ME ∈ M(1) have rank rME = 3. However,
there exist matrices ME ∈ M(2) having rank rME < 3.



We can now define a metric that depends on {T (ur)}.
Definition 2. We define dM = e∗ + 1, where e∗ is the maximal cardinality of E such that
rME = ms for each ME ∈ M(e).

A simple computer program can compute dM, given T (ur), ms and mr.

Lemma 1. In a JNCC following the form of Equation (6) with ms = mr and constant
nur = n = 2, the metric dM is at most three.

Proof. If ms = mr and n = 2, then the minimum column weight of M is smaller than or equal
to three. Erasing the three rows where Mi,us = 1, for a certain us corresponding to the
minimum column weight, leads to ME having at least one zero column, and thus rME < ms.
By Definition 2, dM < 4.

In the next proposition, we provide a lower bound on the diversity order under ML decoding
or Belief Propagation (BP) decoding [31]. We denote

Hur
us

=
[

Hp
Hur

us

]
, Hur =

[
Hp
Hur

]
, (15)

which are square matrices of dimension L.

Proposition 3. Using ML decoding, the diversity order of a JNCC following the form of
Equation (6) with constant nur = n = 2, is lower bounded as

d ≥ dM,

if the matrices Hur
us

, us ∈ T (ur), ur ∈ {1, . . . , ms}, have full rank.

Using BP-decoding, the diversity order of a JNCC following the form of Equation (6) with
constant nur = n = 2, is lower bounded as

d ≥ dM,

if, for each ur, the set of L equations

Hurrur =
⊕

us∈T (ur)

Hur
us

sus , (16)

can be solved with BP in the case of only one unknown source-codeword vector.

Proof. See Appendix 2.

We can simplify the condition for BP decoding, stated in Proposition 3, when we assume that
the parity bits of point-to-point codes do not have a support in HGLNC, or said differently,



when the L − K right most columns of the matrices Hur and Hur
us

are zeroes. In that case, one
iteration in the backward substitution, mentioned in Appendix 2, corresponds to solving the K
unknown information bits of su via the set of K equations

Hur
u su =

⊕
us∈T (ur)

us ̸=u

Hur
us

sus + Huryms+ur . (17)

In Section ‘Practical JNCC for nur = 2’, we propose a JNCC where the parity bits of
point-to-point codes do not have a support in HGLNC, so that we take (17) instead of (16) as
condition for BP decoding in the remainder of the article.

Diversity order with interuser failures

It is often easier to prove that a particular diversity order is achieved assuming perfect
interuser channels (see for example in Section ‘Practical JNCC for nur = 2’). Here, we
discuss how this diversity order is affected by interuser failures.

Lemma 2. In the case of non-reciprocal interuser channels, any JNCC achieves the same
diversity order with or without interuser channel failures.

Proof. See Appendix 3.

In the case of reciprocal interuser channels, the achieved diversity order with interuser failures
depends on the transmission sets {T (ur), ur = 1, . . . , mr}. We propose an algorithm to
construct {T (ur)} in Section ‘Practical JNCC for nur = 2’ and we will then discuss the
diversity order with reciprocal interuser channels.

Diversity order in a layered construction

In a layered construction, such as the standard OSI model, the destination first attempts to
decode the point-to-point transmissions. If it can not successfully retrieve the transmitted
point-to-point codeword for a particular node-to-destination channel, then it declares a block
erasure, where a block refers to one point-to-point codeword. Denoting this block erasure
probability by ϵ, we have that ϵ ∝ 1

γ
( [23], Equation (3.157)). If for example e blocks of

length L are erased, then the decoding corresponds to solving a set of equations with eL
unknowns.

Standard linear network coding consists of taking linear combinations of several source
packets. In general, non-binary coefficients are used in the linear combinations. Hence,
packets are treated symbol-wise, which is shown to be capacity achieving for the layered
construction [8]. A consequence of this symbol-wise treatment is that the effective block
length of the network code reduces to ms + mr and the set of equations, that are available at
the destination for decoding, is expressed by the coding matrix ME . At this block length, ML
decoding (which is equivalent to Gaussian elimination at the network layer) has low
complexity. Under ML decoding, a sufficient condition for successful decoding is rME = ms.



Also, for ML decoding, the maximum number of erasures e∗ = dM − 1 (Definition 2), so that
the condition rME = ms is satisfied, is equal to the minimum distance of the non-binary code
minus one. The minimal distance is, for a given coding rate, maximum for maximum distance
separable (MDS) codes, so that dM is maximum for MDS codes as well. Also note that
random linear network codes are MDS codes with high probability for a sufficiently large field
size [32].

Table 3 provides an overview of the notation presented in this diversity analysis.

Table 3 Overview of notation introduced in the diversity analysis
dmax Maximum diversity order that can be achieved by any code C for a fixed ms and mr

tmin Minimum number of times that a source is included in the transmission set of any relay
dR An upper bound on the diversity order d, dR = 1 + tmin

n Is equal to nur in the case that nur is fixed by the protocol and thus constant
m Represents ms and mr when mr = ms

M Coding header indicating the presence of the source codewords in all transmissions; depends on {T (ur)}
E Set, collecting the indices of the blocks that are erased in the case of the BBEC
ME Reduced coding header obtained from M where all erased transmissions have been removed
M(e) Collection of all possible matrices ME when |E | = e
rME Rank of ME
dM In some cases, dM, which depends on M, is an upper bound on the diversity order d

Tables 1 and 3 indicate the complexity of the analysis of JNCC for large networks.

Practical JNCC for nur = 2

In the literature, a detailed diversity analysis is most often lacking. Codes were proposed and
corresponding numerical results suggested that a certain diversity order was achieved on a
specific network. It is sometimes not clear why this diversity order is achieved, and how it
would vary if the network or some parameters change. In the previous section, we made a
detailed diversity analysis of a JNCC following the form of Equation (6). However, the utility
of for example Proposition 3 is limited to JNCCs following the form of Equation (6) with a
constant nur = 2, which suggests that it is very hard to rigorously prove diversity claims in
general. However, the modest analysis made in Section ‘Diversity analysis of JNCC’ can be
applied in some cases and we will show its utility through an example.

We consider networks with ms = mr = m ≥ 4 and a JNCC following the form of Equation (6)
with nur = n = 2 for ur = 1, . . . , m. We will rigorously prove that a diversity order of three is
achieved, using the propositions of Section ‘Diversity analysis of JNCC’. From Table 2, it can
be seen that this JNCC is diversity-optimal for m = 4 and m = 5. In Section ‘Numerical
results’, we provide numerical results for m = 5.

From Table 2, it is clear that restricting n to two is not diversity-optimal in larger networks.
However, it also has some advantages. If n = 2, then every relay just needs to decode 2 users,
and encoding is restricted to taking a linear transformation of only two source packets.
Furthermore, taking n = 2 does not impose infeasible constraints on the number of sources in
the vicinity of a relay in the case that spatial neighborhoods are taken into account. Next, the



theoretical analysis is simpler in the case n = 2. Finally, taking n = 2 allows to reuse strong
codes designed for the multiple access relay channel, e.g., in [21,22].

Besides the diversity order, we indicated in Section ‘Introduction’ that scalability is also very
important. The JNCC proposed here is scalable to any large network without requiring a
redesign of the code. This means that we provide an on the fly construction method. The latter
is particularly important for self regulating networks. As a node adds itself to the network, it
can seamlessly integrate to the network. Together with the new symbols sent by the new node,
a new JNCC code is formed which still possesses all desirable properties. Finally, note that
due to the large block length of JNCC, ML decoding is too complex and low-complexity
techniques, such as BP decoding, must be used.

Hence, two properties are claimed: scalability to large networks and a diversity order of three
(which is full diversity in some cases) under BP decoding. The JNCC code is presented in two
steps. First, we present the design of {T (ur)} and thus the coding matrix M. In a second step
(Equation (20)), we specify the matrices Hur and Hur

us
and we will prove that the scalability

and the diversity order of three are achieved.

First step: design of T (ur)

The transmission sets {T (ur)} have a large impact on the diversity order. For example, in [18],
a random construction was studied (each relay chooses n = 2 sources at random) and it was
shown that E[ tus] = 2, but Var[ tus] = 2 as well, so that most probably tmin < 2 and dR < 3
(Proposition 2). So we need a more intelligent construction.

We present an algorithm to determine {T (ur)}, given ms and mr, and we subsequently
determine the corresponding metrics tmin and dM. We define the function
fms(x) = ((x − 1) mod ms) + 1 which adapts the modulo operation to the range
1 ≤ fms(x) ≤ ms.

Algorithm 1 Choose transmission set T (ur).

for each relay ur = 1 → mr

Set u1 = fms(ur + 1)

Set u2 = fms(ur + 2)

Set S(ur) = {u1, u2}
if {u1, u2} ⊂ R(ur) then

T (ur) = {u1, u2}
else

T (ur) = {}: relay stays silent
end if

end for



The transmission set T (ur) is expressed via the bottom part of M. An example of such a
matrix M is given in Equation (18) for ms = mr = 5.

M =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0


(18)

If a node is added as a source node, it adopts the largest source index, ms + 1, and relay-only
nodes, with indices larger than or equal to ms + 1, increment their index by one. The function
fms(x) is updated to the new ms. Note that the algorithm corresponds to a deterministic
cooperation strategy, which avoids extra signalling to the destination regarding the code
design.

We first consider the case of perfect interuser channels and prove that Algorithm 1 yields
d = 3 (Corollary 3). We then consider interuser failures and prove that the diversity order is
not affected (Lemma 3).

Corollary 3. Having perfect links from sources to relays, the diversity order of a JNCC, with
ms = mr and with transmission set constructed via Algorithm 1, achieves a diversity order
d = 3 using BP-decoding, if, for each ur, Equation (17) can be solved with BP in the case of
only one unknown source-codeword vector.

Proof. Because the links between sources and relays are perfect, the relays will never stay
silent. In the case that mr = ms and nur = 2, we have that tmin = tav = 2 and so dR = 3.

Next, we show that dM = 3 (and thus, according to Lemma 1, dM is maximized if n = 2).
Consider |E | = 2. Without loss of generality, consider that E = {1, 2}. Consider the set of
equations MEz = c. Variables z3, . . . , zms can be recovered via the top ms − 2 rows of ME . The
two relays u1 and u2 having source us in their transmission set (T (u1) and T (u2),
respectively) are

u1 = fms(us − 1), u2 = fms(us − 2).

Hence, source 1 is included in T (m − 1) and T (m), and source 2 is included in T (m) and
T (1). Hence, relay transmission m − 1 can be used to retrieve source 1 and relay transmission
m can be used to retrieve source 2, as long as m ≥ 4. Hence, ME has full rank. The
generalization to any set E satisfying |E | = 2, is straightforward. Therefore, we have that
dM = 3.

As dR = dM = 3, the proof follows immediately from Propositions 2 and 3.



Next, it can be proved that a JNCC applied in our system model has a diversity order of three,
if it has a diversity order of three when all interuser channels are perfect. This is proved in
general for non-reciprocal interuser channels in Lemma 2, and here, we consider reciprocal
interuser channels.

Lemma 3. A JNCC, with transmission set constructed via Algorithm 1, achieves the same
diversity order with or without interuser channel failures when ms > 4 or when
ms = mr = m ≤ 4.

Proof. See Appendix 4.

For conciseness, we do not consider the other cases, mr > ms ≤ 4.

Second step: JNCC of LDPC-type

In the first step, we specified {T (ur)} and proved that dR = dM = 3 if mr = ms = m > 3.
According to Corollary 3, a diversity order of three is achieved under BP decoding if, for each
ur, Equation (17) can be solved with BP in the case of only one unknown source-codeword
vector. In the second step, we specify the sub matrices Hur , Hur

us
, ∀ur, us, to satisfy this

condition, given that {T (ur)} is constructed according to Algorithm 1.

A simple solution is to replace the K left most columns in all K × L sub matrices Hur , Hur
us

,
∀ur, us, by identity matrices. In this case, the joint network channel coding essentially reduces
to a layered solution: the source-codewords are decoded at the relays and simply added
according to Equation (5). If the network code is used at the physical layer, it has to deal with
noise and a more advanced code might be required.

In the literature, a full-diversity close-to-outage performing JNCC for the Multiple Access
Relay Channel (MARC) has been proposed [21,22], which is a code in the form of
Equation (1). These codes are such that the set of equations

H1
1s1 + H1

2s2 + H1r1 = 0

can be decoded via BP if only one coding vector s1, s2 or r1 is erased and the other coding
vectors are perfectly known. We denote this JNCC by MARC-JNCC. The matrix
HGLNC, MARC of the MARC-JNCC is given by Equation (A.7) in [21]f:

1i1 2i1 1i2 2i2 r1

HGLNC, MARC =
[

I R1 0 I
0 I I R2

R3

]
(19)

where sj =[ 1ij 2ij pj] is the codeword from source j, with [ 1ij 2ij] and pj denoting the
information bits and the parity bits, respectively (j = 1, 2); 1ij and 2ij each contain K

2
information bits. However, the parity bits pj are not involved in HGLNC, MARC. The matrices
Ri, with i = 1, 2, 3, are random matrices, chosen according to the required degree distributions



of the LDPC code. To facilitate future notation, we denote

H1 =
[

I R1 0
0 I 0

]
, H′

1 =
[

R1 I 0
I 0 0

]
,

H2 =
[

0 I 0
I R2 0

]
, H′

2 =
[

I 0 0
R2 I 0

]
.

and H3 = R3, so that HGLNC =[ H̄1 H̄2 H3], where H̄i = Hi or H′
i (it will become clear

hereunder which one has to be chosen at each relay). In H̄1 and H̄2, the first two block
columns each consist of K/2 columns (corresponding to information bits) and the last block
column consists of L − K columns (corresponding to parity bits from the point-to-point
codes). The zero block columns indicate that parity bits from point-to-point codes have no
support in these matrices. Now replace all sub matrices Hur , Hur

us
by these matrices, for each

relay ur, so that in each block column corresponding to information bits, we have a random
matrix Ri; this is required to conform any preferred degree distribution of the LDPC code. For
example, HGLNC can be given by

s1 s2 s3 s4 s5 r1 r2 r3 r4 r5

HGLNC =


0 H1 H2 0 0 H3 0 0 0 0
0 0 H′

1 H′
2 0 0 H3 0 0 0

0 0 0 H1 H2 0 0 H3 0 0
H′

2 0 0 0 H′
1 0 0 0 H3 0

H1 H′
2 0 0 0 0 0 0 0 H3

 (20)

Each set of rows and each set of columns in H will have at least one random matrix, so that
any LDPC code degree distribution can be conformed. We denote this JNCC by the
SMARC-JNCC, where S stands for scalable.

Proposition 4. In a network following the system model proposed in Section ‘System model’
and using BP, the SMARC-JNCC achieves a diversity order d = 3.

Proof. Consider the set of K equations

H3rur = H̄1su1 + H̄2su2 , {u1, u2} ∈ T (ur). (21)

In [21], it is proved that this set of K equations can be solved using the matrices proposed
above. We provide another more simple proof here. Consider a block BEC. Because H̄1 and
H̄2 are upper- or lower-triangular, with ones on the diagonal, the unknown K information bits
can be retrieved using backward substitution, hence it can be retrieved with BP as well.

By Corollary 3 and Lemma 3, the SMARC-JNCC achieves a diversity order d = 3.

Note that the information bits of a source need to be split in two parts: bits of the type 1i and
2i. This allows the introduction of the matrices R1 and R2 in Equation 19, so that all
information bits have a random matrix in their corresponding block column in the
parity-check matrix. Now, the LDPC code can conform any degree distribution.



Lower bound for the WER

To assess the performance of the SMARC-JNCC we need to compare it with the outage
probability limit (Section “Calculation of the outage probability”). We show that the outage
probability limit is not always tight and we propose a tighter lower bound, which is presented
in Section “Calculation of a tighter lower bound on WER”.

Calculation of the outage probability

The outage probability limit is the probability that the instantaneous mutual information
between the sources and sinks of the network is less than the transmitted rate. The outage
probability is an achievable (using a random codebook) lower bound of the average WER of
coded systems in the limit of large block length [27,33,34].

For a multi-user environment, two types of mutual information are considered. First, it is
verified whether the sum-rate, Rc in this case, is smaller than the instantaneous mutual
information between all the sources and the sink. Then, it is verified whether each individual
source rate, Rc

ms
in this case, is smaller than the instantaneous mutual information between the

nodes, transmitting information for this source, and the destination. The outage probability for
the MARC was determined in [21,35] using the method described above.

The outage probability is
Pout = P

(
Eout),

where Eout is denoted as an outage event. Similarly as in [21,35], an outage event is given by

Eout =
{ [

Rc ≥
∑ms

us=1 I(Sus ; D) + ∑mr
ur=1 BurI(Rur ; D)

ms + mr

]

∪ms
us=1

[
Rc

ms
≥ I(Sus ; D) + ∑

j|us∈T (j) BjI(Rj; D)

ms + mr

]}
,

where
Bj =

∏
i∈T (j)

11
[
I(Si; Rj) > Rc,p

]
.

The terms I(Si; D), I(Ri; D), and I(Si; Rj) are the instantaneous mutual informations of the
corresponding point-to-point channels with input x ∈ {−1, 1}, received signal y = αix + w
with w ∼ CN (0, 1

γ
), conditioned on the channel realization αi, which are determined by

applying the formula for mutual information [36,37]:

I(X; Y|αi) = 1 − EY|{x=1,αi}
{
log2 (1 + exp [−4yαiγ ])

}
,

where EY|{x=1,αi} is the mathematical expectation over Y given x = 1 and αi.

We now consider the outage probability of a layered construction, such as the standard OSI
model, where the destination first decodes the point-to-point transmissions, declaring a block
erasure if decoding is not successful. For the network code, we assume a maximum distance



separable (MDS) code, which is outage-achieving over the (noiseless) block-erasure
channel [26]. That is, any ms correctly received packets suffice for decoding. Accordingly, an
outage event for the layered construction, denoted as Eout,l is given by

Eout,l =
{  ms∑

us=1

Es,us +
mr∑

ur=1

Er,ur > mr


∪ms

us=1

1 − Es,us +
∑

j|us∈T (j)

(1 − Er,j) = 0

}
,

where
Es,us = 11

[
I(Sus ; D) < Rc,p

]
and

Er,ur = 1 − Bur 11
[
I(Rj; D) > Rc,p

]
The outage probability for JNCC and a layered construction are compared in Figure 1 for
ms = mr = 5, coding matrixg M given in Equation (18) and Rc,p = 6/7. The overall spectral
efficiency is R = 3/7 bpcu, so that Eb/N0 = 7γ

3 .

Figure 1 The outage probabilities of JNCC and a layered construction are compared.
The spectral efficiency is R = 3/7 bpcu

The main conclusion is that the difference between both outage probabilities is only 1 dB.
Hence, on a fundamental level, the achievable coding gain by JNCC with respect to a standard
layered construction is small for the adopted system model.

Calculation of a tighter lower bound on WER

According to information theory, the outage probability is achievable, where the proof relies
on using random codebooks. However, the nature of the JNCC protocol largely deviates from
a random code. For example, the parity bits corresponding to the point-to-point codes are
forced in a block diagonal structure in Hc (see Equation 6), which is not taken into account in
the outage probability limit. In fact, in Proposition 1, it was proved that the maximal diversity
order does not depend on Rc but on Rn, which is not taken into account in the outage
probability limit. Therefore, we argue that the outage probability limit is in general not
achievable by a JNCC, which is illustrated by means of an example.

Consider a network with ms = mr = 3. The adopted point-to-point codes have coding rate
Rc,p = 0.5, so that Rc = 0.25. We take nu = 2 and adopt the coding matrix M, given in
Equation (13). Because of the small coding rate Rc, the outage probability achieves a diversity
order of three (Figure 2). However, it follows from Proposition 1 that dmax = 2. We therefore
propose a new lower bound, which takes into account the point-to-point codes.



Figure 2 The conventional and tighter outage probability of JNCC are compared

A bit node is essentially protected by two codes: a point-to-point code (Hc) and a network
code (HGLNC), which is illustrated on the factor graph [38] representation (a Tanner
notation [39] is adopted)h of the decoder (Figure 3).

Figure 3 The depicted part of the factor graph (using a Tanner notation) illustrates that
a bit node (bit i on the figure) is essentially connected to two sets of check nodes,
corresponding with Hc and HGLNC, respectively. A set of check nodes is denoted as CND
for check node decoder. The LLR-value coming from the CND corresponding with Hc is
denoted as Lc. The LLR-value corresponding with the channel observation is denoted as Lobs,i

Usually, both codes are characterized by separate degree distributions, denoted as
(λc(x), ρc(x)) and (λGLNC(x), ρGLNC(x)) for Hc and HGLNC, respectively.

The new lower bound assumes a concatenated decoding scheme. At the destination, first the
point-to-point codes are decoded and then soft information is passed to the network decoder.
This is illustrated in Figure 4, where the soft information is denoted by the log-likelihood ratio
(LLR) Lobs′,i. Note that the bit node of bit i is duplicated to be able to clearly indicate Lobs′,i.
Applying the sum-product algorithm (SPA) on this factor graph or the original factor graph
(without node duplication) is equivalent. This follows immediately from the sum-product rule
for variable nodes (( [40]see Section 4.4)) and ( [38], Equation (5)).

Figure 4 The bit node in Figure 3 can be duplicated with a single edge between both
nodes as shown in this figure. The LLR Lobs′,i is the sum of all incoming LLR-values from
the left, and contains the soft information which is passed to the network code decoder in a
concatenated coding scheme

The LLR Lobs′,i can be viewed as a new channel observation as it remains fixed during the
iterative decoding of the network code (HGLNC). The maximum rate that can be achieved by
the network code is given by

1
ms + mr

 ms∑
us=1

I(Sus; Lobs′) +
mr∑

ur=1

BurI(Rur ; Lobs′)

 .

The terms I(Su; Lobs′) and I(Ru; Lobs′) are the mutual informations between the channel input
x ∈ {−1, 1} and the associated random variable Lobs′ , conditioned on the channel realization
αu, determined by applying the formula for mutual information [36,37], i.e., I(X; Lobs′|αu) is

1 − ELobs′ |{x=1,αu}
{

log2

(
1 + pLobs′ (l|x = −1, αu)

pLobs′ (l|x = 1, αu)

)}
,



The density of the random variable Lobs′ can be obtained by means of density evolution [41],
given the degree distributions of the point-to-point code, or by means of Monte Carlo
simulations, given the actual factor graph of the point-to-point code. Both approaches yield to
the same results in our simulations.

Similarly to the conventional case, an outage event, denoted as Eout,2 is given by

Eout,2 =
{[

Rn ≥
∑ms

us=1 I(Sus ;Lobs′)+
∑mr

ur=1 Bur I(Rur ;Lobs′)
ms+mr

]
∪ms

us=1

[
Rn
ms

≥ I(Sus ;Lobs′)+
∑

j:us∈T (j) BjI(Rj;Lobs′)
ms+mr

] }
.

Note that the network coding rate is used instead of the overall rate Rc, which corresponds to
Proposition 1.

The tight lower bound presented here is a valid lower bound if the point-to-point codes are first
decoded, followed by the network code, without iterating back to the point-to-point codes.

Let us now go back to the small network example with ms = mr = 3, considered in the
beginning of this section. Figure 2 compares the conventional outage probability (Section
‘Calculation of the outage probability’) with the tighter lower bound proposed here. As
mentioned before, the conventional outage probability has a larger diversity order than what is
achievable, while the tighter lower bound only achieves a diversity order of two.

We are seeing a 3 dB difference at an outage probability of 10−4. To assess the performance of
the network code only, given a certain point-to-point code, the WER of the SMARC-JNCC
should be compared with the tight lower bound presented here. In the subsequent sections, we
always include both lower bounds.

Numerical results

In this section, we provide numerical results for the SMARC-JNCC. We will clarify the
proposed techniques on an illustrating network example, where ms = mr = 5 (Figure 5). We
use the same network example as in [17,18] so that a comparison is possible.

Figure 5 The network example that will be used in this document is illustrated. The solid
lines represent interuser channels, the dashed line is the channel to the destination. Only the
channels from the perspective of user 1 are shown for clarity, but all other users see equivalent
channels

For simplicity, we assume non-reciprocal interuser channel in the simulation results. Note that
in the case that ms > 4 and Algorithm 1 is used to construct {T (ur), ur = 1, . . . , mr},
reciprocity is irrelevant for our proposed code, as it applies that i /∈ T (j) if j ∈ T (i).



We compare the error rate performance of the SMARC-JNCC with the outage probability
limit and the tighter lower bound, which are presented in Section ‘Lower bound for the WER’,
and with standard network coding techniques (using identity matrices in HGLNC) and a layered
network construction (also using identity matrices in HGLNC, and where, at the destination, the
network code is only decoded after decoding all point-to-point codewords separately and
taking a hard decision).

The point-to-point code used in the simulations is an irregular LDPC code [41] characterized
by the standard polynomials λ(x) and ρ(x) [41]:

λ(x) =
db∑

i=2

λixi−1, ρ(x) =
dc∑

i=2

ρixi−1.

where λ(x) and ρ(x) are the left and right degree distributions from an edge perspective. The
coefficients λi and ρi are the fraction of edges connected to a bit node and check node,
respectively, of degree i. The adopted point-to-point code is fetched from [42], has coding rate
Rc,p = 6/7 and conforms the following degree distributions:

λ2 = 0.173, λ3 = 0.223, λ4 = 0.095, λ5 = 0.51
ρ24 = 0.96, ρ25 = 0.04.

Perfect source-relay links

We start by assessing the performance of HGLNC, the bottom part of Equation (20), which
determines the diversity order. Therefore, we assume perfect links between sources and
relays. Hence, the channel model is the same as described in Section ‘System model’, with the
exception of the interuser channels, which are assumed to be perfect (no fading and no noise).
The parameters used for the simulation are K = L = 900, ms = mr = 5 (so that
N = 10 K = 9000), where N is the block length of the overall codeword. The overall spectral
efficiency is R = 0.5 bpcu, so that Eb/N0 = 2γ .

Figure 6 shows that a diversity order of 3 is achieved for SMARC-JNCC, which corroborates
Corollary 3. It performs at 2.5 dB from the outage probability (because no point-to-point
codes are considered, only the conventional outage probability is shown), which may be
improved by optimizing the degree distributions. We also show a JNCC, where all
submatrices Hur , Hur

us
, ∀ur, us are replaced by identity matrices, denoted as the I-JNCC.



Finally, we show an I-JNCC with irregular {nur}, with coding matrix M, given by

M =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 1 1 0
0 1 1 0 1
1 0 1 1 1
1 1 1 1 1
0 1 0 1 0


. (22)

It is clear that, even without optimizing the SMARC-JNCC, there is a benefit in terms of
coding gain compared to the I-JNCC.

Figure 6 The word error rate of the SMARC-JNCC is compared to that of the I-JNCC,
assuming perfect source-relay channels

Rayleigh faded source-relay links

Now, we assess the performance of the complete parity-check matrix H of the
SMARC-JNCC. We use the channel model as described in Section ‘System model’. Hence,
all links have the same statistical model and the average SNR is the same for all channels. The
parameters used for the simulation are K = 606, Rc,p = 6/7, L = 707, ms = mr = 5 (so that
N = 10L = 7070). The overall spectral efficiency is R = 3/7 bpcu, so that Eb/N0 = 7γ /3.
Because the simulation time would be very large if every point-to-point source-relay link had
to be decoded separately, we made an approximation. The word error rate of the
point-to-point code when transmitted on a channel with fading gain α is smaller than 10−4

when α2γ = 5.5 dB. Therefore, we assumed that a relay had correctly decoded the
source-codeword if α2γ > 5.5 dB and not otherwise. We also add the performance of the
SMARC-JNCC from Section ‘Perfect source-relay links’, corresponding to perfect
source-relay links and R = 0.5 bpcu, as a reference curve (note that the reference curve
corresponds to a larger spectral efficiency—the coding rate Rc is larger—than for the other
curves, which slightly disadvantages the reference curve in terms of error performance).

Figure 7 shows that a diversity order of 3 is still achieved, which corroborates Proposition 4.
In addition, two main conclusions can be made. First of all, the coding gain loss due to
interuser failures is 6.5 dB, which is very large. Second, the benefit in terms of coding gain of
the SMARC-JNCC compared to the I-JNCC is considerably decreased, compared to Section
‘Perfect source-relay links’, which corresponds to the small horizontal SNR-gap between the
outage probabilities of a layered and joint construction. Also note that the tighter lower bound
using density evolution, is close to the conventional lower bound in this case (probably due to
the larger coding rate Rc,p). Finally, the WER performance of a layered construction is shown,
which coincides with that of the I-JNCC.



Figure 7 The word error rate of the SMARC-JNCC is compared to that of the I-JNCC
and a layered construction, assuming Rayleigh faded source-relay channels. The
reference curve is the performance of the SMARC-JNCC assuming perfect source-relay
channels (Section ‘Perfect source-relay links’)

Gaussian source-relay links

We test again the complete parity-check matrix H of the SMARC-JNCC, now assuming that
the source-relay links are Gaussian, having additive white Gaussian noise only, without
fading; fading occurs on the source-destination and relay-destination links only. We assume
that the average SNR is the same for all channels. The parameters used for the simulation are
the same as in Section ‘Rayleigh faded source-relay links’.

Figure 8 The word error rate of the SMARC-JNCC is compared to that of the I-JNCC,
assuming Gaussian source-relay channels. The reference curve is the performance of the
SMARC-JNCC assuming perfect source-relay channels (Section ‘Perfect source-relay links’)

Figure 8 shows that in the case of Gaussian interuser channels, the loss compared to perfect
interuser channels is very small. Furthermore, the performance of the I-JNCC has improved a
lot in comparison with Section ‘Perfect source-relay links’, where HGLNC only was used. The
degree distributions causing the poor coding gain of the I-JNCC in Section ‘Perfect
source-relay links’, have changed considerably through the point-to-point codes, significantly
improving the coding gain.

Conclusion

We put forward a general form of joint network-channel codes (JNCCs) for a wireless
communication network where sources also act as relay. The influence of important
parameters of the JNCC on the diversity order is studied and an upper and lower bound on the
diversity order are proposed. The lower bound is only valid for the case where the number of
sources is equal to the number of relays, and where each relay only helps two sources.

We then proposed a practical JNCC that is scalable to large networks. Using the diversity
analysis, we managed to rigorously prove its achieved diversity order, which is optimal in a
well identified set of wireless networks. We verified the performance of a regular LDPC code
via numerical simulations, which suggest that as networks grow, it is difficult to perform
significantly better than a standard layered construction.

Endnotes

aUnless mentioned otherwise, we assume that channels are reciprocal, i.e., the channel from
u1 to u2 is the same as the channel from u2 to u1.



bIn practice, increasing the SNR value can be achieved by increasing the transmission power
of a node, so that both the SNR of the node-to-destination channels and channels between
non-destination nodes increase.
cFor conciseness, we do not formulate the equation for channels between non-destination
nodes.
dNote that relays u are not allowed to consider relay codewords rur for inclusion in S(u). As a
consequence, the right part of HGLNC is diagonal in Equation (7). This restriction was not
always applied in the literature (e.g., [17]), but it simplifies the theoretical analysis and code
design.
eA standard BF channel is a channel with B blocks of length L, where each block is affected
by an independent fading gain. The maximal achievable diversity order on this channel is
given by 1 + ⌊B(1 − Rc)⌋, where Rc is the coding rate [27–29].
fThe attentive reader will notice that the first two block rows in Equation (A.7) in [21] are not
used here. These block rows are only necessary if a source is helped by one relay only and no
point-to-point codes are available, which is not the case here.
gThe coding matrix expresses the transmission sets for each relay, which is required to
determine the outage probability.
hFor a specific instance, the parity-check matrix can be graphically represented by a bipartite
graph, denoted as a Tanner graph. The graphical Tanner graph representation is equivalent to
the factor graph, which can be used for decoding.
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Appendix 1

Proof of Proposition 1

The maximal diversity order can be derived using the diversity equivalence between a block
BEC and a BF channel [24,25]. Assume a block BEC, so that a block sus or rur is completely
erased or perfectly known. Consider the case that e1 blocks of length 2L and e2 blocks of
length L have been erased, where e = e1 + e2 is the total number of erasures, e1 ≤ ms and
e2 ≤ mr − ms. Hence, the number of unknown bits is equal to e12L + e2L. Considering the
structure of H from (6) containing the block-diagonal matrix Hc, it follows that the
e12L + e2L erased bits appear in only (2e1 + e2)(L − K) + mrK of the available
(ms + mr)L − msK parity equations, i.e., (2e1 + e2)(L − K) equations involving Hc and all
mrK equations involving HGLNC. Hence, the unknown bits can be retrieved only if there are



sufficient linearly independent useful equations. This yields the necessary condition:

mr ≥ 2e1 + e2. (23)

Denoting by e = e1 + e2 the total number of erased blocks, the largest value emax of e for
which e1 and e2 satisfy (23) for all e1 ≤ ms and e2 ≤ mr − ms is given by

emax =
{ ⌊mr

2

⌋
mr ≤ 2ms

mr − ms mr > 2ms
(24)

Hence, dmax = emax + 1, yielding Proposition 1.

Appendix 2

Proof of Proposition 3

Before we present the actual proof, we first propose two lemmas.

Lemma 4. Any binary a × b matrix S, a ≥ b, where all rows have weight 2 cannot have full
rank b.

Proof. If a matrix has full rank, there is no vector z ̸= 0 such that Sz = 0. However, if S has
row weight 2, then S1 = 0, where 1 corresponds to a column vector with each entry equal
to 1.

Consider now a column vector of b unknown variables z and a set of constraints on these
variables, which are stacked in S so that Sz = c, where c is a column vector of known
constants. In general, solving S for z corresponds to performing Gaussian elimination of S.
However, under some conditions, this simplifies to backward substitution.

Lemma 5. If a binary a × b matrix S, a ≥ b, has full rank b and maximal row weight of 2,
Gaussian elimination simplifies to backward substitution.

Proof. Without loss of generality, we eliminate all redundant (linearly dependent) rows in S to
obtain a square matrix of size b. By Lemma 4, there must be at least one row in S with unit
weight to have full rank. Starting from this known variable, we can solve for a further variable
in z at each step as the row weight is smaller than or equal to 2.

Assume that this backward substitution procedure cannot be continued until all variables are
known. That is, after successive decoding, there are k rows consisting of a combination of
zik + zjk where neither zik nor zjk are known. We split the matrix S into two parts:
Sunknown ∈ {0, 1}k×ms and Sknown ∈ {0, 1}ms−k×ms . The former comprises the rows involving
only unknown variables (note that the weight of each row of Sunknown is 2). The latter consists
of the rows involving only known variables. If the number of unknown variables is equal to k,
then the rank of Sunknown must be equal to k which is impossible by Lemma 4. So, the matrix S



was not full rank which contradicts our assumption. If the number of unknown variables is
smaller than k, then there were redundant (linearly dependent) rows in Sknown which
contradicts the assumptions again. We conclude that the procedure only fails if S does not
have full rank.

To prove Proposition 3, we use the diversity equivalence between a block BEC and the BF
channel. In a block BEC, the channel Equation (4) simplifies to{

yus = ϵuss′
us

, us = 1, . . . , ms
yms+ur = ϵurr′

ur
, ur = 1, . . . , mr,

(25)

where ϵi = 0 when the channel is erased and ϵi = 1 otherwise. Hence, ϵi = 0 if i ∈ E and
ϵi = 1 if i ∈ Ē , where Ē is the complement of E .

Source-codewords si can be retrieved from the transmissions in the source phase if ϵi = 0.
Decoding the other source-codewords at the destination is performed through the parity-check
matrix H (Equation (6)). We split H in two parts:

H = [
Hleft Hright

]
, (26)

where Hleft and Hright have msL and mrL columns, respectively. We also define
s =[ sT

1 . . . sT
ms

]T and r =[ rT
1 . . . rT

mr
]T . As Hx = 0, we have that

Hlefts = Hrightr. (27)

As we consider a block BEC, some transmissions are perfect. As in Appendix 1, consider the
case that e1 blocks of length 2L and e2 blocks of length L have been erased, where
e = e1 + e2 = |E | is the total number of erasures, e1 ≤ ms and e2 ≤ mr − ms. Considering the
structure of H from (6) containing the block-diagonal matrix Hc, it follows that the
e12L + e2L erased bits appear in only (2e1 + e2)(L − K) + mrK of the available
(ms + mr)L − msK parity equations, i.e., (2e1 + e2)(L − K) equations involving Hc and all
mrK equations involving HGLNC. Next, (e1 + e2)K from the mrK equations involving HGLNC
cannot be used to solve erased bits in s as these equations always have at least two unknowns.
The overall set of equations to decode s thus becomes

sus = y′
us

∀ us ∈ Ē
Hpy′

us
= 0 ∀ us ∈ E⊕

us∈T (ur)
Hur

us
sus = Hury′

ms+ur
∀ ur ∈ Ē ,

(28)

or, using the notation from (15),{
sus = y′

us
∀ us ∈ Ē⊕

us∈T (ur)
Hur

us
sus = Hury′

ms+ur
∀ ur ∈ Ē ,

(29)

where y′
i = 1+yi

2 (BPSK modulation). We can stack the coefficients of all elements in s in a



matrix Hs. For example, if ms = mr = 3, E = {1}, T (2) = {1, 3} and T (3) = {1, 2}, then

Hs =

s1 s2 s3
0 I 0
0 0 I

H2
1

0
H2

3

H3
1 H3

2

0

 (30)

It is now easy to see that ME , as defined in Section ‘A lower bound based on {T (ur)} for
nur = 2’, is closely related to Hs: [ ME ]i,j = 1 if [ Hs](i−1)L+1...iL,(j−1)L+1...jL ̸= 0 and
[ ME ]i,j = 0 if [ Hs](i−1)L+1...iL,(j−1)L+1...jL = 0.

If |E | ≤ dM − 1, then ME has full rank, according to Definition 2. As established in Lemma 5,
the set of equations represented by ME can be solved using backward substitution. This means
that at each iteration, there is an equation with only one unknown. Consider a particular
iteration and denote the index of the unknown by u. In Hs, this corresponds to an equation
with an unknown source-codeword vector su of the type{

Hpsu = 0
Hur

u su = ⊕
us∈T (ur)

us ̸=u
Hur

us
sus + Hury′

ms+ur
. (31)

or of the type su = y′
u.

Under ML decoding, we obtain what was claimed if the matrices Hur
us

,
us ∈ T (ur), ur ∈ {1, . . . , mr} have full rank. Under BP decoding, we obtain what was claimed
if, for each ur, the set of L Equation (31) can be solved with BP in the case of only one
unknown source-codeword vector su.

Appendix 3

Proof of Lemma 2

A relay may not succeed in successfully decoding the message from a source, denoted as a
failure. There are m2 − m interuser channels, which all have a probability of failure. Hence,

there exist
∑m2−m

i=0

(
m2 − m

i

)
different cases, where each case corresponds to a

combination of failures and successes. We denote the case where all interuser channels are
successful as case 1.

Using Bayes’ law, the error rate can be split:

Pew =
∑

i

P(case i)P(ew|case i). (32)

Defining the diversity order corresponding to each case as



dc,i = − limγ→∞ log P(case i)P(ew|case i)
log γ

, it follows that the overall diversity order is
d = mini dc,i.

The probability of f failures on independent interuser channels is proportional to 1
γ f

( [23],Equation (3.157)) so that for this case i,

dc,i = − lim
γ→∞

log P(case i)
log γ

− lim
γ→∞

log P(ew|case i)
log γ

(33)

= f − lim
γ→∞

P(ew|case i)
log γ

(34)

The diversity order in the case of perfect interuser channels (f = 0) is dc,1. That is, the
error-correcting code can bear dc,1 − 1 erasures on node-destination links. Hence, dc,i ≥ dc,1
only if P(ew|case i) ≤ c

γ
dc,1−f , or, all information can still be retrieved at the destination, given

that f interuser channels and dc,1 − f − 1 node-destination channels are erased. Let us check
whether this is true for all f .

A relay stays silent if it cannot decode all source codewords corresponding to its transmission
set. If there are f interuser failures, there are at most f relays which stay silent in the relay
phase. This corresponds to at most f additional node-destination erasures adding to the
assumed dc,1 − f − 1 already erased node-destination channels, yielding a total of at most
dc,1 − 1 erased node-destination channels, which can be supported by the code, by the
definition of dc,1.

Appendix 4

Proof of Lemma 3

In the case that ms > 4 and Algorithm 1 is used to construct {T (ur), ur = 1, . . . , mr},
reciprocity is irrelevant for our proposed code, as it applies that i /∈ T (j) if j ∈ T (i). Hence, if
ms > 4, the proof given in Appendix 3 is always valid.

Now consider the case that dc,1 = 2, which corresponds to ms = mr = m < 4 (see Proposition
1). In the case of f = 1 interuser channel, dc,i is always larger than one, because
P(ew|case i) ≤ c

γ
as at least one channel, the source-destination channel, needs to fail to loose

the corresponding information bits.

Finally, consider the case that ms = mr = m = 4 and thus dc,1 = 3. Hence, in the case of no
interuser failures, the code can support two node-destination failures, corresponding to four
erased transmissions from two nodes, in the source phase and in the relay phase. Reciprocity
is relevant as i ∈ T (j) if j ∈ T (i) for (i, j) is (1, 3) and (2, 4). Because P(ew|case i) ≤ c

γ
, we

only have to consider the case that f = 1, denoted as case i in general. Hence, in the case that
the interuser channel between sources one and three or two and four have been erased, relays
one and three or two and four, respectively, stay silent. Note that the transmission sets from
the remaining active relays are disjoint when Algorithm 1 is used, and because n = 2, they



support all sources us = 1, . . . , 4. If one node-destination channel is consequently erased,
which corresponds to at most two transmissions, the destination has to recover the information
bits from the erased source-codeword. Because relay ur cannot have ur in their own
transmission set T (ur), the erased relay codeword does not contain any information on the
erased source-codeword, which implies that the information is in the remaining relay
codeword. Hence, we have that P(ew|case i) ≤ c

γ 2 or by (34), dc,i ≥ 3. In other words,
interuser failures do not decrease the diversity order.
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