2,307 research outputs found

    Molecular dynamics modelling of skin and hair proteins

    Get PDF
    The binding free energy is one of the most important and desired thermodynamic properties in simulations of biological systems. The propensity of small molecules binding to macromolecules of human bio-substrates regulates their sub-cellular disposition. This subject is fundamental in transdermal permeation and hair absorption of cosmetic actives. Biomechanical and biophysical properties of hair and skin are related to keratin as their major constituent. A key challenge lies in predicting molecular and thermodynamic basis as the result of small molecules interacting with alpha helical keratin at the molecular level. In addition, elastic properties of human skin which are directly related to the interactions of keratin intermediate filaments remain a challenging subject. Molecular dynamics (MD) simulations provide a possibility of observing biological processes within atomistic resolution providing more detailed insight into experimental results. However, MD simulations are limited in terms of the achievable time scales. Hence, in this thesis MD simulations were employed in order to provide better understanding of the experimental results conducted in parallel and to overcome the main limiting factor of MD – the simulation time. For this purpose, thermodynamic and detailed structural basis have been delivered for small molecules interacting with keratin explaining and validating experimental data. On the top of this the fast free energy prediction tool has been built within all-atom force field by a use of steered molecular dynamics alone. Within the coarse grain approach, the force field was developed for the application of elastic properties of human skin enabling orders of magnitude faster than all-atom force fields simulations. The application of the coarser representation enabled assessing the influence of the natural moisturizing factor composed of small molecules on the elastic properties of the outermost human skin layer. In this work, MD results reached excellent agreement with the experimental data.Open Acces

    CHARMM-GUI Ligand Binder for Absolute Binding Free Energy Calculations and Its Application

    Get PDF
    Advanced free energy perturbation molecular dynamics (FEP/MD) simulation methods are available to accurately calculate absolute binding free energies of protein-ligand complexes. However, these methods rely on several sophisticated command scripts implementing various biasing energy restraints to enhance the convergence of the FEP/MD calculations, which must all be handled properly to yield correct results. Here, we present a user-friendly web interface, CHARMM-GUI Ligand Binder (http://www.charmm-gui.org/input/gbinding), to provide standardized CHARMM input files for calculations of absolute binding free energies using the FEP/MD simulations. A number of features are implemented to conveniently setup the FEP/MD simulations in highly customizable manners, thereby permitting an accelerated throughput of this important class of computations while decreasing the possibility of human errors. The interface and a series of input files generated by the interface are tested with illustrative calculations of absolute binding free energies of three non-polar aromatic ligands to the L99A mutant of T4 lysozyme and three FK506-related ligands to FKBP12. Statistical errors within individual calculations are found to be small (~1 kcal/mol), and the calculated binding free energies generally agree well with the experimental measurements and the previous computational studies (within ~2 kcal/mol). CHARMM-GUI Ligand Binder provides a convenient and reliable way to setup the ligand binding free energy calculations and can be applicable to pharmaceutically important protein-ligand systems

    Molecular models of hydration in methanol-water mixtures

    Get PDF

    Electronic excitation energies in solution at equation of motion CCSD level within a state specific polarizable continuum model approach

    Get PDF
    We present a study of excitation energies in solution at the equation of motioncoupled cluster singles and doubles (EOM-CCSD) level of theory. The solvent effect is introduced with a state specific polarizable continuum model (PCM), where the solute-solvent interaction is specific for the state of interest. Three definitions of the excited state one-particle density matrix (1PDM) are tested in order to gain information for the development of an integrated EOM-CCSD/PCM method. The calculations show the accuracy of this approach for the computation of such property in solution. Solvent shifts between nonpolar and polar solvents are in good agreement with experiment for the test cases. The completely unrelaxed 1PDM is shown to be a balanced choice between computational effort and accuracy for vertical excitation energies, whereas the response of the ground state CCSD amplitudes and of the molecular orbitals is important for other properties, as for instance the dipole moment

    Advances in Computational Solvation Thermodynamics

    Get PDF
    The aim of this thesis is to develop improved methods for calculating the free energy, entropy and enthalpy of solvation from molecular simulations. Solvation thermodynamics of model compounds provides quantitative measurements used to analyze the stability of protein conformations in aqueous milieus. Solvation free energies govern the favorability of the solvation process, while entropy and enthalpy decompositions give insight into the molecular mechanisms by which the process occurs. Computationally, a coupling parameter λ modulates solute-solvent interactions to simulate an insertion process, and multiple lengthy simulations at a fixed λ value are typically required for free energy calculations to converge; entropy and enthalpy decompositions generally take 10-100 times longer. This thesis presents three advances which accelerate the convergence of such calculations: 1) Development of entropy and enthalpy estimators which combine data from multiple simulations; 2) Optimization of λ schedules, or the set of parameter values associated with each simulation; 3) Validation of Hamiltonian replica exchange, a technique which swaps λ values between two otherwise independent simulations. Taken together, these techniques promise to increase the accuracy and precision of free energy, entropy and enthalpy calculations. Improved estimates, in turn, can be used to investigate the validity and limits of existing solvation models and refine force field parameters, with the goal of understanding better the collapse transition and aggregation behavior of polypeptides

    Protein-protein interactions: impact of solvent and effects of fluorination

    Get PDF
    Proteins have an indispensable role in the cell. They carry out a wide variety of structural, catalytic and signaling functions in all known biological systems. To perform their biological functions, proteins establish interactions with other bioorganic molecules including other proteins. Therefore, protein-protein interactions is one of the central topics in molecular biology. My thesis is devoted to three different topics in the field of protein-protein interactions. The first one focuses on solvent contribution to protein interfaces as it is an important component of protein complexes. The second topic discloses the structural and functional potential of fluorine's unique properties, which are attractive for protein design and engineering not feasible within the scope of canonical amino acids. The last part of this thesis is a study of the impact of charged amino acid residues within the hydrophobic interface of a coiled-coil system, which is one of the well-established model systems for protein-protein interactions studies. I. The majority of proteins interact in vivo in solution, thus studies of solvent impact on protein-protein interactions could be crucial for understanding many processes in the cell. However, though solvent is known to be very important for protein-protein interactions in terms of structure, dynamics and energetics, its effects are often disregarded in computational studies because a detailed solvent description requires complex and computationally demanding approaches. As a consequence, many protein residues, which establish water-mediated interactions, are neither considered in an interface definition. In the previous work carried out in our group the protein interfaces database (SCOWLP) has been developed. This database takes into account interfacial solvent and based on this classifies all interfacial protein residues of the PDB into three classes based on their interacting properties: dry (direct interaction), dual (direct and water-mediated interactions), and wet spots (residues interacting only through one water molecule). To define an interaction SCOWLP considers a donor–acceptor distance for hydrogen bonds of 3.2 Å, for salt bridges of 4 Å, and for van der Waals contacts the sum of the van der Waals radii of the interacting atoms. In previous studies of the group, statistical analysis of a non-redundant protein structure dataset showed that 40.1% of the interfacial residues participate in water-mediated interactions, and that 14.5% of the total residues in interfaces are wet spots. Moreover, wet spots have been shown to display similar characteristics to residues contacting water molecules in cores or cavities of proteins. The goals of this part of the thesis were: 1. to characterize the impact of solvent in protein-protein interactions 2. to elucidate possible effects of solvent inclusion into the correlated mutations approach for protein contacts prediction To study solvent impact on protein interfaces a molecular dynamics (MD) approach has been used. This part of the work is elaborated in section 2.1 of this thesis. We have characterized properties of water-mediated protein interactions at residue and solvent level. For this purpose, an MD analysis of 17 representative complexes from SH3 and immunoglobulin protein families has been performed. We have shown that the interfacial residues interacting through a single water molecule (wet spots) are energetically and dynamically very similar to other interfacial residues. At the same time, water molecules mediating protein interactions have been found to be significantly less mobile than surface solvent in terms of residence time. Calculated free energies indicate that these water molecules should significantly affect formation and stability of a protein-protein complex. The results obtained in this part of the work also suggest that water molecules in protein interfaces contribute to the conservation of protein interactions by allowing more sequence variability in the interacting partners, which has important implications for the use of the correlated mutations concept in protein interactions studies. This concept is based on the assumption that interacting protein residues co-evolve, so that a mutation in one of the interacting counterparts is compensated by a mutation in the other. The study presented in section 2.2 has been carried out to prove that an explicit introduction of solvent into the correlated mutations concept indeed yields qualitative improvement of existing approaches. For this, we have used the data on interfacial solvent obtained from the SCOWLP database (the whole PDB) to construct a “wet” similarity matrix. This matrix has been used for prediction of protein contacts together with a well-established “dry” matrix. We have analyzed two datasets containing 50 domains and 10 domain pairs, and have compared the results obtained by using several combinations of both “dry” and “wet” matrices. We have found that for predictions for both intra- and interdomain contacts the introduction of a combination of a “dry” and a “wet” similarity matrix improves the predictions in comparison to the “dry” one alone. Our analysis opens up the idea that the consideration of water may have an impact on the improvement of the contact predictions obtained by correlated mutations approaches. There are two principally novel aspects in this study in the context of the used correlated mutations methodology : i) the first introduction of solvent explicitly into the correlated mutations approach; ii) the use of the definition of protein-protein interfaces, which is essentially different from many other works in the field because of taking into account physico-chemical properties of amino acids and not being exclusively based on distance cut-offs. II. The second part of the thesis is focused on properties of fluorinated amino acids in protein environments. In general, non-canonical amino acids with newly designed side-chain functionalities are powerful tools that can be used to improve structural, catalytic, kinetic and thermodynamic properties of peptides and proteins, which otherwise are not feasible within the use of canonical amino acids. In this context fluorinated amino acids have increasingly gained in importance in protein chemistry because of fluorine's unique properties: high electronegativity and a small atomic size. Despite the wide use of fluorine in drug design, properties of fluorine in protein environments have not been yet extensively studied. The aims of this part of the dissertation were: 1. to analyze the basic properties of fluorinated amino acids such as electrostatic and geometric characteristics, hydrogen bonding abilities, hydration properties and conformational preferences (section 3.1) 2. to describe the behavior of fluorinated amino acids in systems emulating protein environments (section 3.2, section 3.3) First, to characterize fluorinated amino acids side chains we have used fluorinated ethane derivatives as their simplified models and applied a quantum mechanics approach. Properties such as charge distribution, dipole moments, volumes and size of the fluoromethylated groups within the model have been characterized. Hydrogen bonding properties of these groups have been compared with the groups typically presented in natural protein environments. We have shown that hydrogen and fluorine atoms within these fluoromethylated groups are weak hydrogen bond donors and acceptors. Nevertheless they should not be disregarded for applications in protein engineering. Then, we have implemented four fluorinated L-amino acids for the AMBER force field and characterized their conformational and hydration properties at the MD level. We have found that hydrophobicity of fluorinated side chains grows with the number of fluorine atoms and could be explained in terms of high electronegativity of fluorine atoms and spacial demand of fluorinated side-chains. These data on hydration agrees with the results obtained in the experimental work performed by our collaborators. We have rationally engineered systems that allow us to study fluorine properties and extract results that could be extrapolated to proteins. For this, we have emulated protein environments by introducing fluorinated amino acids into a parallel coiled-coil and enzyme-ligand chymotrypsin systems. The results on fluorination effect on coiled-coil dimerization and substrate affinities in the chymotrypsin active site obtained by MD, molecular docking and free energy calculations are in strong agreement with experimental data obtained by our collaborators. In particular, we have shown that fluorine content and position of fluorination can considerably change the polarity and steric properties of an amino acid side chain and, thus, can influence the properties that a fluorinated amino acid reveals within a native protein environment. III. Coiled-coils typically consist of two to five right-handed α-helices that wrap around each other to form a left-handed superhelix. The interface of two α-helices is usually represented by hydrophobic residues. However, the analysis of protein databases revealed that in natural occurring proteins up to 20% of these positions are populated by polar and charged residues. The impact of these residues on stability of coiled-coil system is not clear. MD simulations together with free energy calculations have been utilized to estimate favourable interaction partners for uncommon amino acids within the hydrophobic core of coiled-coils (Chapter 4). Based on these data, the best hits among binding partners for one strand of a coiled-coil bearing a charged amino acid in a central hydrophobic core position have been selected. Computational data have been in agreement with the results obtained by our collaborators, who applied phage display technology and CD spectroscopy. This combination of theoretical and experimental approaches allowed to get a deeper insight into the stability of the coiled-coil system. To conclude, this thesis widens existing concepts of protein structural biology in three areas of its current importance. We expand on the role of solvent in protein interfaces, which contributes to the knowledge of physico-chemical properties underlying protein-protein interactions. We develop a deeper insight into the understanding of the fluorine's impact upon its introduction into protein environments, which may assist in exploiting the full potential of fluorine's unique properties for applications in the field of protein engineering and drug design. Finally we investigate the mechanisms underlying coiled-coil system folding. The results presented in the thesis are of definite importance for possible applications (e.g. introduction of solvent explicitly into the scoring function) into protein folding, docking and rational design methods. The dissertation consists of four chapters: ● Chapter 1 contains an introduction to the topic of protein-protein interactions including basic concepts and an overview of the present state of research in the field. ● Chapter 2 focuses on the studies of the role of solvent in protein interfaces. ● Chapter 3 is devoted to the work on fluorinated amino acids in protein environments. ● Chapter 4 describes the study of coiled-coils folding properties. The experimental parts presented in Chapters 3 and 4 of this thesis have been performed by our collaborators at FU Berlin. Sections 2.1, 2.2, 3.1, 3.2 and Chapter 4 have been submitted/published in peer-reviewed international journals. Their organization follows a standard research article structure: Abstract, Introduction, Methodology, Results and discussion, and Conclusions. Section 3.3, though not published yet, is also organized in the same way. The literature references are summed up together at the end of the thesis to avoid redundancy within different chapters

    A comparison between state-specific and linear-response formalisms for the calculation of vertical electronic transition energy in solution with the CCSD-PCM

    Get PDF
    The calculation of vertical electronic transition energies of molecular systems in solution with accurate quantum mechanical methods requires the use of approximate and yet reliable models to describe the effect of the solvent on the electronic structure of the solute. The polarizable continuum model (PCM) of solvation represents a computationally efficient way to describe this effect, especially when combined with coupled cluster (CC) methods. Two formalisms are available to compute transition energies within the PCM framework: State-Specific (SS) and Linear-Response (LR). The former provides a more complete account of the solute-solvent polarization in the excited states, while the latter is computationally very efficient (i.e., comparable to gas phase) and transition properties are well defined. In this work, I review the theory for the two formalisms within CC theory with a focus on their computational requirements, and present the first implementation of the LR-PCM formalism with the coupled cluster singles and doubles method (CCSD). Transition energies computed with LR- and SS-CCSD-PCM are presented, as well as a comparison between solvation models in the LR approach. The numerical results show that the two formalisms provide different absolute values of transition energy, but similar relative solvatochromic shifts (from nonpolar to polar solvents). The LR formalism may then be used to explore the solvent effect on multiple states and evaluate transition probabilities, while the SS formalism may be used to refine the description of specific states and for the exploration of excited state potential energy surfaces of solvated systems

    Role of noncovalent interactions in protein peripheral membrane binding. Computational perspectives

    Get PDF
    Noncovalent forces are important driving forces in nature particularly in biology, and they dictate many biological processes including the binding of peripheral protein to the cell membrane. The widely acknowledged models describe this process as electrostatics driven membrane adsorption followed by short-range protein-lipid interactions i.e. hydrogen bonds, hydrophobic interactions. Some of the key elements in such models are: clusters of basic residues are essential for electrostatic adsorption, and basic residues contribute equally to the membrane binding. Nevertheless, none of these models account for the role of cation-π interactions in membrane binding. With selected protein candidates, we further explore these models and work towards a generalized description of protein peripheral binding to membranes in terms of noncovalent forces. Our investigation highlights the limitations of these existing descriptions. We demonstrate that the requirement of having a cluster of basic residues is not essential. Further, we show that the contributions of basic residues are distance dependent. In other words, their localization in the membrane-water interface determines their strength and hence is not equal. We also establish the role of tyrosine-choline cation- π interactions in membrane binding of peripheral proteins. We explore in detail the nature of tyrosine-choline mediated cation-π interactions using high-level quantum mechanical calculations. Later, this information is used to improve the description of cation-π interactions in molecular simulation models. These improvements of force field parameters are further tested using molecular dynamics simulations. Finally, we used this information to build an interaction diagram that can be used to better describe the binding of peripheral proteins to the cell membrane. Future testing and the generalization of this diagram will further establish this as a common model
    corecore