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ABSTRACT 

ATOMISTIC SIMULATIONS OF INTRINSICALLY DISORDERED PROTEIN 
FOLDING AND DYNAMICS 

 
 

SEPTEMBER 2023 
 

XIPING GONG, B.S., NANCHANG UNIVERSITY 
 

M.S., XIAMEN UNIVERSITY 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Jianhan Chen 
 

 
Intrinsically disordered proteins (IDPs) are crucial in biology and human diseases, 

necessitating a comprehensive understanding of their structure, dynamics, and 

interactions. Atomistic simulations have emerged as a key tool for unraveling the 

molecular intricacies and establishing mechanistic insights into how these proteins 

facilitate diverse biological functions. However, achieving accurate simulations requires 

both an appropriate protein force field capable of describing the energy landscape of 

functionally relevant IDP conformations and sufficient conformational sampling to 

capture the free energy landscape of IDP dynamics. These factors are fundamental in 

comprehending potential IDP structures, dynamics, and interactions.  

I first conducted explicit solvent simulations to assess the performance of two 

state-of-the-art protein force fields, namely CHARMM36m and a99SB-disp, in capturing 

the stability of small protein-protein interactions. To evaluate their accuracy, I selected a 

set of 46 amino acid backbone and side chain pairs with representative configurations and 

computed the free energy profiles of their interactions. The results demonstrated that 

CHARMM36m consistently predicted stronger protein-protein interactions compared to 
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a99SB-disp. Notably, the most significant overestimation in CHARMM36m occurred in 

charged pairs involving Arg and Glu side chains, with an overestimation of up to 2.9 

kcal/mol. Through free energy decomposition analysis, I determined that these 

overestimations were primarily driven by protein-water electrostatic interactions rather 

than van der Waals (vdW) interactions. Consequently, these findings suggest that careful 

rebalancing of electrostatic interactions should be considered in the further optimization 

of protein force fields.  

In order to enhance the conformational sampling of IDPs, I developed an 

integrated approach that combines an improved implicit solvent model called Generalized 

Born with molecular volume and solvent accessible surface area (GBMV2/SA) with a 

multiscale enhanced sampling (MSES) technique. To make this approach more efficient, 

I implemented it as a standalone OpenMM plugin on Graphics Processing Units (GPUs). 

The results demonstrated that the GPU-GBMV2/SA model achieved numerical 

equivalence to the original CPU-GBMV2/SA models, while providing a remarkable ~60x 

speedup on a single NVIDIA TITAN X (Pascal) graphics card for molecular dynamic 

simulations of both folded and unstructured proteins. This significant acceleration greatly 

facilitated the application of the approach in biomolecular simulations.  

In addition, I conducted an evaluation of the reliability of GBMV2/SA models in 

simulating both folded and unfolded proteins. The results revealed that the GBMV2/SA 

model accurately describes small proteins, but its applicability is limited when it comes to 

larger proteins such as KID and p53-TAD proteins. This limitation can be attributed to 

the absence of long-range solute-solvent dispersion interactions in the model. To address 

this issue, I introduced a comprehensive treatment of nonpolar solvation free energy 
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called GBMV2/NP model. Unfortunately, the GBMV2/NP model exhibited a 

destabilizing effect on well-folded proteins, particularly larger ones, due to an inaccurate 

representation of the repulsive solvent accessible surface area (SASA) model caused by 

the utilization of unphysical van der Waals volume. This observation highlights the need 

for further improvements in accurately describing the nonpolar term in the model.  
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CHAPTER 1  

INTRODUCTION 1 

1.1 Intrinsically disordered proteins: structures, folding and dynamics 

Intrinsically disordered proteins (IDPs) or regions (IDRs), compared to well-

structured proteins, do not have stable tertiary structures under physiological conditions. 

Nevertheless, IDPs or IDRs can be found in nearly a third of proteins encoded in the 

human proteome [1], and they play key roles in a variety of biological processes that 

underlie vital cellular functions ranging from signaling, regulation to transport [2, 3]. The 

inherent thermodynamic instability of an IDP’s conformation allows it to respond 

sensitively to numerous stimuli, including binding, changes in cellular environments 

(e.g., pH), and post-translational modifications [4-8]. Such conformational plasticity 

arguably enables IDPs to interact with multiple signaling pathways and serve as scaffolds 

to form multi-protein complexes [9]. Importantly, IDPs and IDRs house around 25% of 

disease-associated missense mutations [10]. They have been considered promising 

therapeutic targets for treating various diseases (such as chronic diseases) [11-13]. While 

many IDPs have been shown to undergo binding-induced folding transitions upon 

specific binding [3], many examples are also emerging to demonstrate that IDPs can 

remain unstructured even in specific complexes and functional assemblies [14-20]. Such 

a dynamic mode of specific protein interactions seems much more prevalent than 

previously thought [21-23]. 

 
1 Gong, X., Y. Zhang, and J. Chen Advanced Sampling Methods for Multiscale 
Simulation of Disordered Proteins and Dynamic Interactions. Biomolecules, 2021. 11 
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One of the key points is to provide a reliable description of the conformational 

ensembles of IDPs and IDRs. A disordered state does not lend itself to traditional 

structural determination methods that are geared toward describing a coherent set of 

similar structures. Biophysical techniques such as NMR, SAXS and FRET can provide 

complementary information on various local and long-range structural organizations [7]. 

However, these ensemble-averaged measurements alone are not sufficient to 

unambiguously define the heterogeneous ensemble, due to the severely underdetermined 

nature of the structure calculation problem [8, 24, 25]. As a result, studies of IDPs have 

relied heavily in the traditional structure-function paradigm, by solving the folded 

structure of the bound state, analyzing coupled binding and folding mechanisms, or 

identifying putative pre-existing functional structures in the unbound state [3]. However, 

the disordered ensemble itself is arguably the central conduit of cellular signaling. The 

functional mechanism of an IDP is encoded in how the disordered ensemble as a whole 

responds to various stimuli, may it be cooperative binding-induced folding or 

redistribution of conformational sub-states in dynamic interactions. Multiple cellular 

signals can be naturally integrated through cooperative responses of the whole dynamic 

ensemble [26-28]. Therefore, there is a critical need for reliable characterization of 

disordered protein conformation ensembles, in both bound and unbound states, in order to 

establish the molecular basis of IDPs and IDRs in various physiological and 

pathophysiological processes. 

Given the fundamental challenges of characterizing disordered protein states 

based on ensemble-averaged measurements alone, molecular modeling and simulations 

have a crucial and unique role to play in mechanistic studies of IDPs and IDRs [29-33]. 
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This is reflected in continuously increasing numbers of research articles that contain 

keywords “intrinsically disordered” and “molecular dynamics” published in the last 10 

years (Figure 1.1). A particularly attractive approach is to first generate the disordered 

ensemble using transferable, physics-based force fields without any experimental 

restraints and then use the later for independent validation [7]. Such de novo simulations 

of disordered protein ensembles require both high force field accuracy and adequate 

sampling of relevant conformational space, pushing the limit of these two central 

ingredients of molecular dynamics (MD) and Monte Carlo (MC) simulations. The 

challenges of simulating disordered proteins have driven significant interest in 

developing better protein force fields and advanced sampling methods. In particular, 

important advances have been made in the state-of-the-art atomistic force fields for 

describing the conformational equilibria of ordered and disordered proteins [13]. 

Enhanced sampling techniques have played crucial roles in both the development and 

application of atomistic force fields, by allowing one to cross energy barriers faster and 

accelerate the conformational sampling of IDPs [34-41]. Nonetheless, atomistic 

simulations still have limited capability for describing large systems such as biological 

condensates [42]. For this, the multi-scale approaches are necessary to bridge the gaps in 

experimental and computational time- and length-scales, including implicit solvent 

models, which removes the solvent degrees of freedom [8], and various coarse-grained 

models, which significantly reduce both proteins and solvent degrees of freedom [43].  
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Figure 1.1 Number of articles identified with three different search keywords 
published from 2011 to 2021 based on a Web of Science core collection source (as of 

August 15, 2021). 

1.2 Challenges of simulating IDP conformational equilibria 

Compared to the globular proteins that have one or a few well-defined global 

energy minima, the energy landscape of an IDP is flatter and generally includes many 

local energy minima separated by modest energy barriers [44]. IDPs and IDRs typically 

have fewer hydrophobic residues, but a larger number of polar or charged as well as 

disorder-promoting residues (such as glycine and proline) [45]. These sequence features 

hamper the formation of hydrophobic cores that drive protein folding and thus prevent 

the formation of stable tertiary structures. Instead, IDPs and IDRs favor forming an 

ensemble of unfolded or partially folded states. This presents a major challenge for 

simulation and depends critically on the ability of the force fields to accurately describe 

the energetics of relevant conformational states, especially for capturing both folded and 

unfolded states of an IDP. For example, one recent study tested atomistic simulations of 
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IDPs for eight force fields and found marked differences in describing the conformational 

ensembles of IDPs, in particular the secondary structure content [46]. Similar 

observations have also been made in other benchmark studies, consistently showing that 

protein force fields previously optimized for folded proteins are not suitable for 

simulating disordered protein states, largely due to over-stabilization of protein-protein 

interactions [47]. These benchmark studies also suggested that the key towards better 

protein force field was to rebalance protein-protein, protein-water, and water-water 

interactions. 

Besides accurate force fields, reliable simulation of IDPs hinges on sufficient 

sampling of many relevant conformation states within a reasonable simulation time. 

Standard MD simulations are generally insufficient to generate representative 

conformational ensembles, even using the most accurate protein force fields coupled with 

advance of GPU computing or specialized hardware such as ANTON supercomputer 

[48]. For example, a recent reanalysis of 30-μs ANTON trajectory of 40-residue Aβ40 

peptide in explicit solvent revealed very limited convergence even at the secondary 

structure level [13]. This can be attributed to the diverse and large accessible 

conformational space of an IDP and the potentially high free energy barriers separating 

various sub-states that require exponentially longer time to cross. Note that typical 

simulation times on conventional hardware (such as GPUs) are at least one-order of 

magnitude shorter. There is thus great danger in relying on standard MD to calculate 

disordered protein conformational ensembles at the atomistic level. There is a critical 

need to develop and leverage so-called enhanced sampling techniques, which aim to 
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generate statistically meaningful conformational ensembles with dramatically less 

computation.  

Computational studies of IDP interaction and assembly are even more demanding. 

The conformational equilibrium of an IDP can respond sensitively to specific and 

nonspecific binding, potentially shifting from a disordered to somewhat ordered state or 

fully folded state. In principle, simulations could provide the much-needed spatial and 

time resolutions to elucidate the kinetics and thermodynamics of coupled folding and 

binding processes and characterize the mechanistic features. However, the challenge is 

that this coupled process of folding and binding is a complex reaction involving the 

formation of many noncovalent interactions, which requires extremely long simulations 

generally beyond the current capabilities at the atomistic level. As such, coarse-grained 

models are generally required for computational studies of IDP interaction and assembly. 

1.3 The state-of-the-art protein force fields for describing IDP conformations 

Empirical protein force fields are potential energy functions that typically include 

physics-motivated bonded and non-bonded terms carefully parameterized based on a 

wide range of theoretical and experimental data [49]. These force fields can in principle 

be transferable between folded proteins and IDPs. To achieve this, it is also critical to 

develop suitable water models and better describe the water-protein interactions [50, 51]. 

Two recent review articles have already provided comprehensive descriptions on the 

latest development of better protein force fields [49, 52]. We therefore briefly summarize 

the status of the state-of-the-art nonpolarizable and polarizable force fields for IDP 

dynamics and interactions. 
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1.3.1 Nonpolarizable protein force fields 

Many previous nonpolarizable force fields have significant shortcomings for 

describing unfolded or disordered proteins. For example, they typically provide a poor 

description of the secondary structure content for IDPs and have a preference to give too 

compact conformations with respect to the experimentally measured dimension of IDPs 

[46, 53]. These problems were likely attributed to the unbalanced parameterization of 

dihedral torsion space and description of protein-protein and protein-water interactions 

[54]. As a result, most of improved force fields managed to give more accurate secondary 

structure propensities by adjusting dihedral parameters or adding grid-based energy 

correction map (CMAP) parameters [52]. The over-compactness of disordered proteins 

can be alleviated by modifying protein-water van der Waals interactions or combining 

with refined water models [50]. Representative state-of-the-art force fields includes the 

latest CHARMM36m/TIP3P* [55], ff19SB/OPC [56]and a99SB-disp/TIP4P-D [48]. 

Many benchmark studies have consistently demonstrated that these refined force fields 

do provide significant improvements in describing not only single folded and disordered 

proteins, but also the multiprotein systems that are either soluble or aggregate in the 

solution [53, 57-60]. At the same time, these studies also identified significant remaining 

limitations in description of the noncovalent interactions in the multiprotein systems [58]. 

Recognizing limitations in the ability of a99SB-disp/TIP4P-D force field to accurately 

describe the protein-protein interactions, a new force field, DES-Amber, was recently 

developed to provide more accurate simulations of protein-protein complexes while 

maintaining reliable descriptions of both ordered and disordered single-chain proteins 

[59]. However, DES-Amber is still limited in reproducing the experimental protein-
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protein association free energies of some protein complexes, in particular for the systems 

with highly polar interfaces [59]. In the latter case, it was found that the charged 

sidechains were buried at the protein-protein interface instead of being solvent-exposed. 

It was further suggested that nonpolarizable force fields were fundamentally limited in 

achieving a balanced description of charged groups that were solvent-exposed or buried 

at a protein-protein interface.   

1.3.2 Polarizable protein force fields 

Polarizable force fields explicitly consider electronic polarization using various 

empirical models to provide better description of charged and polar protein motifs in 

heterogeneous biomolecular environments [61]. Exciting progresses have been made in 

the last few years and several polarizable force fields are now available for stable 

simulation of proteins in both aqueous and membrane environments [62, 63]. Simulations 

using the latest polarizable force fields have also showed a high level of consistency with 

experimental observations, particularly the ion solvation and binding thermodynamics, 

permeation free energy of ions or small charged molecules into the cell membrane, and 

protein-ligand binding [61]. For example, the Drude-2013 polarizable force field, 

compared to CHARMM36 force field, is more accurate to describe folding cooperativity 

of (AAQAA)3 peptide, which can be attributed to enhanced backbone dipole moments in 

the helix state [64]. Additional studies are still needed to show the necessity of 

considering polarizable force fields in IDP simulations, where the significantly higher 

computational cost adds to the challenge of generating converged ensembles [61]. 

Existing comparisons suggest that polarizable force fields, including AMOEBA and 
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Drude models, still frequently have problems in reproducing the nature structures and 

folding of proteins [65-67]. For example, stronger protein-water interactions in 

polarizable force fields can destabilize the native protein structure, opposite to the 

observations from nonpolarizable force fields where protein-water interactions have 

traditionally been underestimated [42]. Nonetheless, it can be anticipated that polarizable 

force fields will continue to improve and become increasingly important for simulating 

IDP structure and interactions.  

1.4 Enhanced sampling methods for sampling IDP conformational ensembles 

Enhanced sampling techniques generally accelerate the crossing of energy 

barriers to achieve better sampling efficiency, such as by introducing bias potentials, 

modifying the potential energy itself, and changing the effective temperature. These 

techniques have proven essential in atomistic simulations of IDPs [68, 69], yielding 

levels of convergence that could not be achieved even with drastically longer standard 

constant-temperature MD simulations [13]. The central idea of biased MD simulations is 

similar to importance sampling in MC simulations, where a biased potential is introduced 

to construct a flat free energy landscape along single or multiple collective variables of 

interest, such that many states can be readily sampled due to the removal of free energy 

barriers. The replica-exchange (REX) class of sampling methods, in particular, replica 

exchange molecular dynamics (REMD), has been one of the most popular methods for 

simulating protein conformations. Figure 1.2 shows the general scheme of REMD 

simulations, where the key point is to first set up multiple replicas with different unitless 

unbiased or biased potentials, given as the energy over kBT (T is the temperature), and 
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then use the Metropolis rule to allow MC to exchange the replicas and maintain the 

detailed balance. A key advantage of using multiple replicas and maintaining detailed 

balance is avoiding the reweighting problem generally required for biased simulations. 

Note that virtually all biased sampling strategies can be readily incorporated within the 

REX framework to benefit from both classes of enhanced sampling, including 

metadynamics (MTD) [70, 71], accelerated MD (aMD) [72], umbrella sampling (US) 

[73, 74], integrated tempering sampling [75]. In practice, effective REMD protocols 

require proper choices of 1) the optimal number of replicas and proper distributions of 

conditions, to ensure a uniform exchange acceptance rate and efficient random walk in 

the condition space, and 2) the choice of those unitless (biased) potentials for effective 

conformational diffusion at each condition [76]. Here, we divide various enhanced 

sampling strategies into two general groups depending on the need for collective 

variables and discuss their recent applications to IDP conformational sampling. These 

methods are summarized Table 1.1. 
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Table 1.1 Summary of enhanced sampling methods for IDP simulations. 

Types Sampling Methods Key Features References 

CV-based 

WT-MTD History-based adaptive bias potentials  [70, 71] 

Bias-exchange MTD Multiple replicas with bias on different CVs [77] 

Umbrella sampling Pre-determined bias potentials  [78] 

Machine learning  On-the-fly discovery of optimal CVs [79, 80] 

Tempering-

based 

Simulated tempering Random walk in the temperature space [81] 

Parallel tempering Multiple replicas to avoid the need for estimating the density of states [36] 

Integrated tempering 
Integral of Boltzmann distributions over a range of temperatures as the 

bias 
[75] 

Solute tempering 
Scaling the energies of only selected atoms or terms to achieve effective 

tempering 
[37, 82] 
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Accelerated 

MD 
GaMD Boost potentials to accelerate barrier crossing [83] 

Combinations 

MSES 
Temperature/Hamiltonian replica exchange to couple CG and AT models 

accelerate sampling 
[34] 

REUS/REST Combined REUS and REST [84] 

REUS/GaMD Combined REUS and GaMD [85] 

Integrated aMD Integrated aMD and integrated tempering [67, 86] 

PT-MTD  Combined the WT-MTD with PT  [77] 
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1.4.1 Collective variables-based sampling methods and optimization 

MTD and its variants have been considered one of the most important collective 

variables (CV)-based sampling methods for protein simulations [87]. MTD uses a 

history-dependent bias potential, which is generally a sum of Gaussians, to eventually 

construct a flat free energy landscape along the predetermined CV(s). A well-tempered 

MTD (WT-MTD) was later developed to increase the convergence, by gradually 

reducing the size of Gaussians based on the total accumulated bias potential [70, 71]. 

Furthermore, the parallel tempering MTD (PT-MTD) and the combinations with other 

biased sampling methods have also been developed to increase the sampling efficiency 

and convergence of free energy calculations [88, 89]. Representative examples include 

the PT-MTD that combines WT-MTD with PT or bias-exchange MTD that uses a 

different CV in each replica, rather than exchanging the temperatures. For example, the 

PT-WTD and bias-exchange MTD have been employed to obtain the conformational 

ensembles and coupled binding and folding of disordered pKID and KID proteins, using 

the α-score of helical structures as CVs [77]. It has also shown that the REMD-based 

MTD, compared to conventional MTD or T-REMD, can enhance the conformational 

sampling of N-Glycans using dihedral angles as CVs to characterize the global motions 

[90]. The binding mechanism of two disordered peptides, NRF2 and PTMA, were 

simulated by the WT-MTD, and the results showed that the WT-MTD method could 

provide converged free energy profiles with 1.5 μs sampling time [91]. Together, these 

applications have shown that MTD-class sampling methods can be effectively applied to 

IDP simulations. Beside MTD, another important class of CV-based sampling strategy is 

the US method [74]. US is not strictly an enhanced sampling method like MTD. It 
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typically uses multiple harmonic potentials to focus sampling various states along the 

collective variables of interest. US is often combined with REMD in studies of IDPs, as 

illustrated in a recent 2D window-exchange US simulation of the coupled folding and 

binding mechanism of HdeA homodimer [78]. The simulation was able to capture rare 

unfolding transitions of the dimer at neutral pH and provided detailed description of the 

transition pathways. 

A central limitation of CV-based sampling methods is that the efficiency strongly 

depends on the quality of selected CV(s). For diffusion processes such as protein 

conformational fluctuation, it is often not clear which CVs can best capture large-scale 

transitions or even if these transitions could be effectively described using one or a few 

CVs [92-94]. Another practical limitation is that the computational cost of MTD and US 

grows exponentially as a function of the number of CVs, generally limiting the maximum 

to 3. Parallel bias metadynamics (PBMetD) approaches have been proposed to overcome 

this limitation, by applying multiple low-dimension bias potentials in parallel [95, 96]. 

Nonetheless, the efficacy of PBMetD for sampling complex (disordered) protein 

conformational space is yet to be demonstrated. Another recent work presented a 

temperature accelerated sliced sampling method to explore the high dimensional free 

energy landscape by combining Temperature-accelerated MD/driven-adiabatic free 

energy dynamics (TAMD/d-AFED), MTD and US methods to sample many CVs 

simultaneously [97]. However, the approach shares the limitation of PBMetD where the 

underlying bias potentials remain low dimensional in nature. To address the problem of 

determining the best CVs for a particular problem of interest, machine learning 

algorithms and deep learning network have been recently proposed to analyze 
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information from many candidate CVs and construct the free energy landscape using 

low-dimensional representations [79, 80]. On-the-fly discovery of optimal CV was also 

demonstrated using the artificial neural networks that have a strong capacity of learning 

and optimization for given linear or nonlinear CVs [98]. In another recent study, an 8-

dimensional optimal biased potential was constructed and applied to the free energy 

calculations of polypeptides using two machine learning algorithms, namely, nearest 

neighbor density estimator and artificial neural network [99]. It has been shown that 

similar deep neural networks are capable of constructing nontrivial biased potentials, for 

deep enhanced sampling of protein conformational space and overcoming so-called 

hidden barriers [100, 101]. These are exciting developments that may greatly expand the 

applicability of MTD, US and other CV-based sampling techniques to problems of 

increasing complexity, including simulations of IDPs and their dynamic interactions, 

especially when combined with REX.  

1.4.2 Collective variables-free sampling methods and optimization 

CV-free sampling avoids the need to identify a set of optimal CVs and can be 

highly desirable for simulating high-dimensional conformational fluctuation of IDPs. 

Many CV-free sampling methods have also been developed, including the tempering-

based and energy-scaled biased methods. Tempering-based sampling methods rely on 

increasing the effective simulation temperature (e.g., tempering) to accelerate barrier 

crossing. Examples include the temperature cool walking [102], annealed importance 

sampling [103], simulated tempering [81], and temperature-based REMD (T-REMD) 

[36]. T-REMD, in particular, has proven highly effective for protein folding and studies 
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of IDP conformation ensembles, where multiple replicas are simulated at different 

temperatures in parallel to promote barrier crossing as the system undergo random walk 

in the temperature space (Figure 1.2). Nevertheless, one potential limitation is that the 

number of replicas required for T-REMD scales as the squared root of the number of 

degree of freedoms (DOFs) of whole system to maintain a reasonable exchange 

acceptance probability. This can dramatically increase the computational cost of the 

explicit solvent T-REMD simulations. Several methods have been proposed to overcome 

this limitation of T-REMD, such as adding energy-related terms (such as accelerated-MD 

or Gaussian accelerated MD, named GaMD) or scaling the potential energy function 

(including the scaled MD that scaled all energy terms and replica exchange solute 

tempering (REST) methods that scaled part of energy terms) [85, 90, 104, 105]. 

 

Figure 1.2 The generalized replica exchange molecular dynamics protocol based on 
unitless potentials, where the initial condition of each replica could have a varied 

temperature or scaled potential. βm is the inverse of temperature, Em(X) is the 
potential energy of mth condition for given a configuration X. 
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aMD adds boost potentials to reduce the energy barriers and accelerate sampling 

[72]. However, it suffers from a serious energetic noise when reweighting [106]. The 

GaMD has been thus developed to reduce noise by introducing a new harmonic boost 

potential, to allow a new reweighting technique that could accurately recover the free 

energy landscape using a cumulant expansion to the second order [83]. GaMD has 

achieved some success in studying protein folding, protein-ligand binding, and protein-

protein interactions [106]. In particular, specifically developed Ligand GaMD [107] and 

Peptide GaMD [108] can capture the binding and dissociation of molecular ligands and 

highly disordered peptides within microsecond simulations. Recently, this GaMD method 

has also been combined with the REMD protocol, which can avoid the energy 

reweighting problem [105]. A combination of replica-exchange umbrella sampling 

(REUS) and GaMD has also been designed for the conformational sampling and free 

energy calculations [85]. It is noted that the CVs-free enhanced sampling methods are 

more generally more suitable for simulating IDP conformations and dynamics, because of 

the difficulty of identifying appropriate CVs for IDP simulations as discussed above. 

REST is a special variant of T-REMD designed specifically to reduce the number 

of DOFs that contribute to the Metropolis criteria of replica exchange, such that smaller 

number of replicas are needed [37, 82]. The basic idea of REST is to separate the system 

into two ‘hot solute’ and ‘cold solvent’ regions. The ‘solvent’ could be actual water 

molecules but could also be any region of the system where no tempering is to be 

applied. This offers great flexibility in tailoring REST for a specific system of interest. 

Even more generally, the ‘solute’ region can be defined to include only a subset of 

interaction terms within the ‘solute’ region, such as dihedral-angle energy or Lennard-
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Jones energy term in the generalized REST (gREST) method [109]. Temperature-

dependent factors are used to scale the ‘solute’-‘solute’ and ‘solute’-‘solvent’ 

interactions, while keeping the ‘solvent’-‘solvent’ interactions intact: 
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where X is the conformational coordinates and βm is the inverse of kBTm. The 

scaling of ‘solute’-‘solute’ interactions allows the ‘solute’ to be simulated with an 

effective temperature of Tm while maintaining the ‘solvent’ temperature at T0. As a result, 

the exchange acceptance probability will be independent of ‘solvent’-‘solvent’ 

interactions, which reduces the effective system size and requires fewer replicas to cover 

the same temperature range. A key open choice in REST is how the ‘solute’-‘solvent’ 

term is scaled . Different solute-solute and solute-solvent scaling factors can strongly 

affect the ability of driving conformational transitions of the selected ‘solute’ region. A 

strong solute-solute interaction favors the compact protein conformations, whereas a 

strong solute-solvent interaction prefers the disordered, solvent-exposed conformations. 

Different scaling schemes lead to very different characteristics of REST1 (original) and 

REST2 (revised) protocols (Equation 1.1). High temperature conditions favor the 

unfolded conformations in REST1, while both folded and unfolded conformations were 

observed in REST2 model for the condition with the same effective ‘solute’ temperature. 

The reason is that REST2 was designed to have a weaker solute-solvent interactions to 

promote the sampling of folded conformations even at high temperatures [82]. While this 

could allow the sampling of reversible folding transitions at all temperatures in REST2, it 
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could lead to conformational trapping and hampering the sampling of disordered 

conformations of IDPs. One important implication is that the performance of REST can 

be sensitive to the balance of protein-protein and protein-water interactions of a given 

protein force field. For example, Liu et al. showed that, while REST2 was highly 

effective in generating converged ensembles of 61-residue p53 N-terminal transactivation 

domain (TAD) using a99sb-disp, it completely failed to converge even with ~1 μs/replica 

in CHARMM36m and CHARMM36mw force fields [110]. Separate standard MD 

simulations reveal that p53-TAD can readily escape the apparent trapped conformations 

observed during REST2, suggesting that these traps arise due to the imbalance of scaled 

protein-protein, protein-water and water-water interactions [110].  

REST has proven to be one of the most reliable choices for enhanced sampling of 

protein folding and particularly disordered conformational ensembles [111, 112]. Sugita 

and co-workers leveraged gREST to target the dihedral-angle energy term and 

successfully sampled folding transitions of beta-hairpins and Trp-cage in explicit water, 

using fewer replicas but cover wider conformational space compared to REST2 [109]. 

Walsh et al. applied REST to investigate n16N disordered peptide conformational 

ensembles [113]. The conformations obtained via REST methods showed a high 

consistency with NMR experimental data. Furthermore, REST are specifically 

appropriate in simulating IDRs as the disordered region can be targeted in REST without 

tempering the well-structured region (or water). Zhou and co-workers studied the 

disordered loop of Staphylococcus aureus sortase A (SrtA) to order transition upon 

binding to calcium [114]. Chen and Liu characterized Bcl-xL interfacial conformational 

dynamics in explicit solvent [115]. Both works directly showed that REST covered 
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broader conformational spaces for intrinsically disordered regions and led to faster 

convergence compared to either standard MD or T-REMD simulations. REST 

simulations have also been successfully integrated with experiment to study how cancer-

associated mutations and drug molecules may modulate the disordered ensembles of p53-

TAD and Aβ peptides in recent years [116-119].   

Despite the success of REST for CV-free enhanced sampling, it does not benefit 

from targeted acceleration along specific CVs that are known to be rate limiting. For this, 

REST (or REX in general) has been combined with CV-based enhanced sampling to 

maximize the efficiency of sampling complex, high dimensional conformational space of 

proteins. Some of the examples are discussed in the sections above. Here we note a 

couple additional recent examples. By integrating free energy perturbation (FEP) and 

REST methods, Abel et al. obtained more thorough samplings of different ligand 

conformations around the active site and realized relative binding affinity predictions 

[120]. Okamoto and co-workers have applied REUS/REST two-dimensional replica-

exchange method to predict two protein-ligand complex systems with the help of REST 

to weaken the solute-solvent interactions but improve the binding events and REUS to 

enhance the sampling along with the reaction coordinates [84].  

Multiscale enhanced sampling (MSES) is yet another fascinating example of CV-

free enhanced sampling strategy. Protein folding and other cooperative transitions such as 

self-assembly are known to be dominated by entropy barriers, which renders tempering 

ineffective for driving faster transitions. Coupled with a lack of obvious CVs, sampling 

complex conformational transitions of IDPs and their interactions is challenging for both 

CV-based and REX-based CV-free methods. For this, an effective solution is to couple 
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atomistic simulations with a coarse-grain (CG) model, such that one could benefit from 

both faster transitions of CG modeling and accuracy of atomistic force field [121]. A 

particularly attractive approach was first introduced by Kidera and coworkers, where 

restraint potentials were used to couple CG and atomistic conformational dynamics along 

“essential” DOFs shared by the two models [35]. The bias introduced by the coupling 

potential is removed using Hamiltonian REX (H-REX). Chen and coworkers further 

adapt the method to utilize topology-based CG models (see below), better coupling 

potential and advanced Hamiltonian/temperature REX (H/T REX) [34, 122, 123]. 

Coupling the CG and atomistic models using restraints is a key strength of these MSES 

protocols. It allows full control of the energetic impact of diverged structures at different 

resolutions, which improves exchange efficiency and provides superior scalability to 

large systems. MSES coupling also provides robust tolerance of CG defects by 

preventing the CG model from dictating the conformational dynamics. The efficacy of 

MSES has been illustrated using several systems. It was highly effective in simulate 

reversible transitions of small β-hairpins and helical IDPs [34, 122, 123] and proved 

instrumental in further refinement of a GBMV2 implicit solvent protein force field for 

both ordered and disordered peptides [124]. Very recently, MSES was also observed to 

be effective in sampling the cis–trans transitions of lutein by coupling the atomistic 

model with the Martini CG model [125]. Nonetheless, the application of MSES to larger 

and more complex proteins has proven more challenging than originally expected, 

apparently due to difficulty in effective coupling of CG and atomistic conformational 

fluctuations of a larger protein. 
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Other tempering methods including integrated tempering and simulated tempering 

have also been combined with different biased potentials to enhance sampling [86, 126]. 

For example, an integrated accelerated MD method has recently used to sample the 

conformations of pepX peptides, and it was shown that this method can improve the 

sampling efficiency and provide a good strategy for simulating IDPs [67, 86]. The 

combination with the metadynamics has also been presented to sample the 

conformational space of silica, and the acceleration was increased by over one order of 

magnitude [126]. One significant benefit is that only a single replica is required and could 

be suitable for Anton specialized hardware [48]. However, one drawback is that we have 

to estimate the relative free energies of all conditions (or equivalently the density of 

states), which requires recursive simulations and can be difficult to converge for complex 

systems such as large IDPs and complexes. 

1.4.3 Reweighting techniques for generating unbiased ensembles 

When bias potentials are used to enhance sampling, reweighting is often required 

to obtain the unbiased samples and construct statistically optimal unbiased free energy 

surfaces. Two reweighting methods are widely used for this, including the weighted 

histogram analysis method (WHAM) for the biased simulations with specific CVs and a 

more general multistate Bennett acceptance ratio (MBAR) approach [127, 128]. Stability 

of both WHAM and MBAR can be susceptible to large energetic fluctuations due to 

exponential dependence of weights on the value of the unitless potentials. Large energy 

fluctuations among sampled conformations can lead to large uncertainties during 

reweighting and thus final unbiased distributions. Another population based reweighting 
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method has been used for unbiasing the scaled MD simulations by making a 

multidimensional histogram of all sampled configurations [129]. However, the 

dimensionality of configurational space is usually very huge and thus be hardly 

completely described by some dimensionality reduction techniques (such as the principal 

component analysis). Recently, it was proposed that this energetic noise can be alleviated 

by truncating the cumulant expansion of the exponential average [83], which has been 

originally used in the accelerated molecular dynamics. It has shown that it can accurately 

recover the free energy profiles within an acceptable error (~kBT), especially for the near-

Gaussian biased unitless potentials [83]. This approximated reweighting methods have 

therefore been successfully used for reweighting several biased simulations [85]. It 

should be mentioned that those reweighting techniques can be used for reweighting any 

biased simulation, even for the REMD simulations. Nonetheless, all reweighting methods 

including MBAR relies on good overlap between the true conformational space and the 

region sampled by biased simulations. When the overlap is limited, the reweighted 

distributions will remain significantly different from the true result. Conformational 

space of even very short IDPs (e.g., ~10 residues or longer) can be complex enough to 

present formidable challenges for recovering the true disordered ensemble from a biased 

trajectory, generated either at high temperatures or with modified Hamiltonian. Instead of 

analyzing self-convergence (as a function of simulation time), a more rigorous test of 

convergence is to analyze results obtained from simulations initiated from distinct and 

distal initial states (such as highly structured and fully disordered conformations [7]). 
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1.5 Multi-scale approaches for overcoming sampling problems of large systems 

As discussed above, dramatic improvement in atomistic protein force fields 

coupled with enhanced samplings and GPU computing have now enabled us to generate 

the disordered conformational ensembles of increasingly complex IDPs in both bound 

and unbound states. Many important phenomena related to IDPs remain largely out of the 

reach of physics-based atomistic simulations, such as aggregation [130-132] and 

biological condensates [133-136]. Here, we review two of the key multi-scale approaches 

that allow one to simulate longer time-scale bioprocesses and more complex systems 

within current computational capability, namely, implicit solvent and coarse-grained 

(CG) models. Both approaches have been extensively studied and applied to globular 

proteins as well as IDPs.  

1.5.1 Implicit solvent models for removing solvent DOFs  

Implicit treatment of solvent is an effective approach to reduce the computational 

cost of atomistic IDP simulations. The basic idea is to directly estimate the solvation free 

energy to capture the mean effect of solvent on the thermodynamic properties of the 

solute [137]. Implicit solvent is essentially a multi-scale model, where the solvent is 

represented using certain physical models while keeping atomistic details of the solute. 

These models have emerged as attractive alternatives for simulations of IDPs and their 

interactions compared to the explicit solvent. In particular, many generalized Born (GB) 

based implicit solvent models have been developed, including the fast analytical 

continuum treatment of solvation (FACTS) [138], Amber GB models (such as GB-

HCT[139], GB-OBC[140], and GB-Neck[141, 142]), analytical generalized Born plus 
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nonpolar (AGBNP) [143, 144], and GB models implemented in CHARMM program 

(such as GBSW [145] and GBMV[146, 147]). Several of these GB models can be 

optimized to provide a balance between computational efficiency and accuracy desired 

for IDP simulations [124, 148, 149], by systematic optimization of key physical 

parameters such as atomic radii to balance solvation and intramolecular interactions. 

Applied to various model IDPs with extensive experimental data, implicit solvent 

simulations have provided important insights on detailed conformational properties of the 

unbound state and how these properties may support function [32, 33, 150-152].  

Despite many successes, implicit solvent models have not been widely tested and 

applied to the studies of larger IDPs. Several factors likely contribute to this. Most 

implicit solvent models are built upon existing protein force fields, which until recent 

years have significant limitations in describing disordered protein conformations. Implicit 

treatment of solvent also relies on various approximations for computational efficiency, 

such as treating water as a continuous dielectric medium in GB models, limiting the 

ability of implicit solvent to accurately capture the conformational dependence of 

solvation free energy. A particular limitation is the common use of surface area (SA)-

based model for describing nonpolar solvation energy, which has known limitations in 

describing the length-scale dependence as well as solvent screening of dispersion 

interactions [149]. These limitations can result in a systematic bias towards overly 

compact conformational ensemble, which is more pronounced for larger IDPs. 

Several recent efforts have been made to further improve implicit solvent models 

for IDP simulations. The GB-Neck2 model has been optimized to reproduce solvation 

energies for a variety of protein systems [142]. Recent benchmark studies have shown 
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that the GB-Neck2 model can reasonably discriminate folded and disordered peptides and 

could be used for quantitative protein folding simulations up to millisecond time scales 

[153-155]. Recently, the GBMV2 model, which includes an analytical approximation of 

molecular volume and is arguably one of the best GB models, has been implemented on 

the CUDA platform using the CHARMM/OpenMM interface [156]. The ~2 order of 

magnitude GPU acceleration greatly enables GBMV2 to simulate the conformation and 

interaction of larger IDPs. The ABSINTH implicit solvent model focuses on 

recapitulating the polymer properties of peptides and has been successfully used for a 

variety of IDP simulations, including Aβ peptides and aggregation of phenylalanine [157, 

158] and sequence-conformation relationship of IDPs in general [8, 159]. Recently, an 

ABSINTH-C model was developed to address the problem of overly shallow 

Ramachandran distributions of ABSINTH, by adding residue-specific correction terms 

[160]. The new model not only has a capacity to maintain stable native structures of α-/β-

folded proteins, but also increase the reversible folding of β-hairpin peptides. 

1.5.2 Coarse-grain models for reducing the DOFs of proteins 

Notwithstanding the ever-improving atomistic modeling, coarse-graining has 

remained an attractive and often effective strategy for extending the accessible time and 

length-scales of MD simulations. By grouping multiple (protein) atoms into CG beads 

and using simplified potential energy functions, CG modeling does not only reduce the 

system size, often by ~10-fold, but also allows much larger MD integration time steps up 

to 20 fs. Together, many CG models can be several orders of magnitude more efficient 

than atomistic ones. Numerous CG models have achieved varying levels of success in 
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studies of protein folding, binding, and assembly [43, 161]. Nonetheless, there are 

important distinctions between the conformational properties between globular proteins 

and IDPs, as well as the relative importance of electrostatic, hydrophobic, and hydrogen-

bonding interactions in governing their conformational equilibria. Therefore, CG models 

optimized for the folded proteins are generally not suitable for the IDP simulations. It is 

often necessary to readjust the parameters of protein-protein and protein-solvent 

interactions or add new terms for a more accurate description of IDP conformations 

(Figure 1.3). Here, we summarize several of these refined CG models for more efficient 

sampling of IDP conformation and interactions as well as their successes and limitations. 

Gō/Gō-like models, also known as topology-based models, are based on the 

funneled energy landscape theory [162] and have been highly successful in describing the 

folding mechanism and pathway of structured proteins [163]. Somewhat surprisingly, 

Gō-like models have also proven effective for determining the mechanism and kinetics of 

IDP interactions, particularly the coupled binding and folding process [110, 164-168]. 

The implication is that the binding and folding are governed by similar principles that 

require minimal frustration for efficiency. Note that Gō-like models generally require 

additional calibrations to provide a more quantitative description of the balance between 

intermolecular interactions and intrinsic conformational propensities [169]. A key 

limitation of topology-based modeling of IDPs is lack of the ability to capture the impacts 

of non-“native” structural features and nonspecific interactions, which could play 

important roles in IDP structure and function. This may be partially overcome by 

including new energy terms (Figure 1.3) such as explicit charge-charge interactions, inert 

crowder molecules and confinement potentials. A particularly interesting discovery from 
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these extended topology-based modeling of IDPs is the role of long-range electrostatic 

interactions in promoting efficient coupled binding and folding, allowing IDPs to fold at 

timescales beyond the μs “folding speed limit” to avoid a potential kinetic bottleneck in 

specific recognition [166, 167, 170]. IDP-binding proteins have evolved to contain 

charges near the binding interface to complement those highly conserved charges on 

IDPs. Long-range electrostatic interactions between these charges do not only accelerate 

the encountering of IDPs but also promote the efficiency of IDP folding upon nonspecific 

encounter. 

 

Figure 1.3 Coarse-grain modeling for addressing various IDPs-related challenges. 
These models can have a range of spatial resolutions and may be refined by 

introducing various effective potentials and/or re-calibrating the parameters of 
these energy terms. 
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Several higher resolution coarse-grained models have also been developed 

specifically for modeling IDPs. Thirumalai and co-workers reparametrize the two-bead 

self-organized polymer coarse-grained model (SOP-CG) to reproduce Rg values of a set 

of diverse IDPs with 20 to 441 residues [171]. The resulting SOP-IDP also accurately 

reproduces the small-angle X-ray scattering profiles for these IDPs. Nonetheless, SOP-

IDP is designed for IDPs solely and lacks the transferability and compatibility in 

describing even small globular proteins under the physiological conditions. Recognizing 

the limitation of C⍺-only backbone representation in capturing the intrinsic 

conformational propensities of IDPs, Chen and Liu developed a hybrid resolution 

(HyRes) model that contains an atomistic description of the backbone, to provide a semi-

qualitative description of the secondary structure propensities, and intermediate 

resolution side chains, to allow qualitative description of the overall peptide chain 

dimension and transient long-range interactions [172]. While HyRes was originally 

designed for driving faster atomistic sampling for MSES simulations, applications to a set 

of small and large IDPs including p53-TAD suggest that HyRes may be appropriate for 

simulating IDP structure and interactions by itself [172]. Papoian and co-workers have 

developed the AWSEM-IDP model that can be used to efficiently sample the large 

conformational space of IDPs and at the same time can distinguish the levels of peptide 

chain expansion of globular proteins and IDPs [173]. AWSEM-IDP includes only C⍺, Cβ 

and O atoms, and has been reparametrized for IDPs by adjusting the secondary structure-

related potential energy terms as well as introducing a new parameter, VRg term, for 

controlling the collapse and size fluctuation of the protein.  
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An important application for CG models is to study liquid-liquid phase transitions 

(LLPS) that are frequently mediated by IDPs [29, 45, 174, 175]. Dignon et al, proposed a 

residue-based C⍺-only CG model to represent the disordered low complexity domain of 

the RNA-binding protein FUS-LCD and the DEAD-box helicase protein LAF-1 in the 

formation of LLPS [176]. The model uses the Debye-Hückel approximation for long-

range electrostatic interactions and the hydrophobicity scale model [176] or the Kim-

Hummer model [177] to short-range residue-residue interactions. The results indicated 

that both two approaches could reproduce the experimentally observed phase behaviors 

and changes in phase diagrams caused by mutation. Although they mentioned that the 

temperature-dependent phase behaviors were not compatible with the experimental 

absolute temperature and the ionic strength dependence was not fully tested due to the 

breakdown of the Debye-Hückel electrostatic energy potentials. The model could be 

further refined. For example, more residue-type parameters were considered to account 

for phosphorylation and acetylation effects [178], which allows in-depth investigation of 

how post-translational modifications may control LLPS behaviors. Recently, Latham and 

Zhang re-tuned Dignon et al’s model to better reproduce the Rg distributions of a set of 

folded and disordered proteins [179]. The resulting Maximum entropy Optimized force 

field (MOFF) includes a new residue-residue interaction matrix and is more transferable 

for modeling both globular proteins and IDPs. Hummer and co-workers modified the 

MARTINI model via re-scaling the solute-solute non-bonded Lennard-Jones potentials to 

reproduce the experimental transfer free energies of phase separation among dilute and 

dense liquid phases and proposed a more general approach in tuning CG models with MD 

for LLPS related studies by optimizing and balancing the solute-solute and solute-solvent 
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interactions then matching the CG data to the atomistic simulation or experimental results 

[176]. The resulting MARTINI-IDP model was shown to successfully simulate the 

droplet formation and capture reversible phase transformations. These are exciting 

progresses that highlights the strong potential for simple C⍺-only CG models in 

molecular simulations of LLPS involving IDPs. Nonetheless, difficulty in describing 

local structure propensities (such as transient helices) with the C⍺-only representation 

may be an important limitation for studying certain specific effects of IDPs in LLPS.   

1.6 Dissertation outline 

Effective and reliable molecular simulations are crucial for characterizing the 

details of disordered conformational ensembles of IDPs in isolation, dynamic complexes 

or biological condensates. Although many advanced computational methods have been 

developed to generally simulate the IDPs, their current reliability is still inconclusive, 

even for the state-of-the-art accurate atomistic protein force fields. This dissertation has 

therefore investigated both explicit and implicit solvent atomistic force fields for 

simulating the folding and dynamics of IDPs. Chapter 2 includes the benchmark and 

optimization of CHARMM36m explicit solvent force fields for simulating both ordered 

and disordered proteins, which provides important insights on the capability of the state-

of-the-art protein force fields and the potential limitations. Besides, this dissertation 

includes the development of implicit solvent force fields for accelerating conformational 

sampling of IDPs. For example, chapter 3 uses the graphics processing units to accelerate 

the GBMV2/SA implicit solvent simulations, chapter 4 further assesses its capability of 

simulating IDPs by using the multiscale enhanced sampling and gives its current 
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limitations to simulate both ordered and disordered proteins, and chapter 5 develops an 

improved GBMV2/NP model by introducing more physical treatment of nonpolar 

solvation free energies. The overall summary and future directions are also included in 

chapter 6. 
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CHAPTER 2  

CHARMM36M EXPLICIT SOLVENT FORCE FIELDS FOR SIMULATING 

BOTH ORDERED AND DISORDERED PROTEINS: BENCHMARK AND 

OPTIMIZATION 

2.1 Introduction 

Many additive protein force fields have been successfully designed for 

biomolecular simulations, in particular for simulating the globular and small peptides 

[180]. However, recent studies have shown that they likely can give inaccurate 

descriptions in the solvation free energies of some amino acids in water [181] and 

provide compact ensembles of intrinsically disordered proteins (IDPs) [29, 182]. It has 

been suggested that these force fields could favor protein-protein interactions, leading to 

a preference for compact conformations and protein aggregates [58]. 

In recent years, several protein force fields and water models have been 

developed to address the issue of preference for compact conformations and improve the 

balance between protein-protein and protein-water interactions in both folded and 

unfolded proteins [52, 183, 184]. This has been achieved through modifications to the 

water model (e.g., modified TIP3P, OPC, and TIP4P-D), torsion potentials (e.g., 

backbone and sidechain dihedral angles), or nonbonded parameters (e.g., scaling the 

Lennard-Jones parameters and charges). These balanced force fields have demonstrated 

improved agreement with experimental observations, particularly in terms of structural 

descriptions such as secondary structures and dimensions, for most disordered proteins. 

For instance, a simple scaling of protein-water Lennard-Jones parameters not only 
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improves the solvation free energy descriptions of amino acids and restores the 

dimensions of IDPs but also has minimal impact on the structural stability of well-

structured proteins [183, 185]. Furthermore, enhancing the dispersion interactions of 

water models (e.g., TIP4P-D) can be employed to modify both water-water and protein-

water interactions, facilitating sampling of expanded disordered states and significantly 

improving the descriptions of folded and unfolded states [50]. Notably, representative 

force fields such as CHARMM36m and a99SB-disp have been specifically developed to 

mitigate the issue of over compactness observed in earlier force fields and achieve a more 

balanced protein-protein and protein-water interaction profile [48, 55].  

Although many research studies have demonstrated impressive levels of accuracy 

in simulating many folded/unfolded proteins or peptides [180], some inconsistencies or 

failures were still observed in the CHARMM36m and a99SB-disp force fields. For 

example, many independent studies found that CHARMM36m force fields still favor the 

collapsed states, which were observed in simulating the nuclear coactivator binding 

domain [186], the phosphorylated disordered peptides [187, 188], and aggregates of 

ubiquitin proteins [58]. On another hand, we found that the CHARMM36m force fields, 

compared to the a99SB-disp force field, did not generate the converged ensembles of the 

p53 Transactivation Domain (p53-TAD), which could be attributed to a higher free 

energy barrier separating helical and unfolded coil states [110]. In addition, the a99SB-

disp force field is still limited to accurately describe protein–protein complexes, although 

an improved force field (DES-Amber) was developed to reduce this effect [59]. These 

studies therefore suggest that these force fields are still inconsistent in simulating some 

disordered proteins or protein-protein complexes to a certain extent. 
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In this work, we propose to utilize small protein systems, specifically 

backbone/side chain pairs, as a means to investigate potential differences in describing 

protein-protein and protein-water interactions among various force fields. This approach 

allows us to avoid convergence issues and clearly identify potential problems. Notably, 

several studies have employed the potential of mean forces (PMFs) between amino acid 

side chains or backbone to benchmark protein force fields [185, 189, 190]. In our 

research, we focus on assessing the impact of state-of-the-art force fields, including 

CHARMM36m and a99SB-disp, on the free energy profiles of representative amino acid 

side chain pairs. Our hypothesis suggests that these force fields are likely to yield 

different stabilities for these pairs, with CHARMM36m favoring protein-protein 

interactions and potentially resulting in more compact conformations compared to 

a99SB-disp. By investigating these test systems, our study not only provides valuable 

insights for optimizing and benchmarking protein force fields but also sheds light on 

potential differences between CHARMM36m and a99SB-disp force fields in simulating 

intrinsically disordered proteins (IDPs). 

2.2 Methods 

2.2.1 Test systems and force fields 

We first selected representative conformations of test monomers, including 

alanine dipeptides (original and modified), and nonpolar (aromatic and nonaromatic), 

polar, and charged (positive and negative) amino acids side chains (Figure 2.8). These 

conformations can form many representative dimers, including nonpolar-nonpolar, 
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nonpolar-polar/charge, and charge-charge pair (Figure 2.9 & Figure 2.10). It should be 

mentioned that they can potentially form hydrophobic, pi-pi stacking, backbone/sidechain 

hydrogen-bonds, and salt-bridge electrostatic interactions, which commonly exist in 

many protein-protein interactions. Besides these side chain interactions, we selected 

several important side chains of charged amino acids (Glu, Arg, and Lys) to investigate 

their interactions with different water models (TIP3P* and a99SB-disp), which enables us 

to identify the potential difference in describing protein-water interactions.  

To quantify whether these force fields have different performance in simulating 

these dimer systems, we also calculated their free energy profiles and stabilities. To avoid 

potential convergence problems, we fixed the conformations of these side chains by 

selecting multiple representative conformations. Taking the Trp-Trp side chain dimer as 

an example, we selected the edge-edge, edge-face, face-face, parallel or antiparallel 

displaced conformations (Figure 2.9). We then individually calculated the PMFs along a 

distance between two atoms that could form representative interactions. We selected two 

types of representative protein force fields. The first one is the CHARMM36m force field 

with two different water models (the modified TIP3Pm and the recommended TIP3P*), 

named as c36m and c36mw, respectively. Another one is the a99SB-disp force field with 

the recommended water model, named as a99SB-disp. It is noticed that they have been 

optimized by their main developing group for both ordered and disordered proteins, and 

also, they have been widely used in protein simulations. Additionally, our previous 

simulations showed that they had different descriptions in secondary structures of a p53-

TAD system [110]. This selection therefore provides useful information to answer why 

the c36m/c36mw still gave more compact conformations, compared to the a99SB-disp. 
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2.2.2 An on-the-fly approach to calculate the free energy difference between two 

overlap states 

We assume that two states (a and b) are sufficiently overlap, then a first-order 

approximation can be applied in both fab and fbc along an order parameter (ξ), 
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To calculate the reduced free energy, Fab, we expand these two states at an 

intermediate state c, 
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Then, we have the following estimator of the Fab, by using a second order 

cumulant expansion, 

 ( ) ( )1

1 , states{ }.N
ab ac bc ab ab n nnc

F F F f x f x x c
N =

= − ≈ ∈∑  (2.4) 

It shows that the free energy difference between two sufficiently overlapping 

states can be calculated by using the trajectories sampled from an intermediate state, 

which provides an on-the-fly way to calculate the free energy difference. 
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2.2.3 Free energy profiles, stabilities, and decomposition 

We then used the free energy perturbation (FEP) method to obtain all free energy 

profiles, where all protein conformations were fixed by using a massless strategy and the 

water molecules can be free to move in the simulation box. A simple approximation 

(Equation 2.4) was used to calculate the free energy difference between any two states 

(Fab), where they can be written as the sum of individual reduced potential energies 

between two configurations (fab),  

 ( )1

1 ,N
ab ab nn

F f
N =

≈ ∑ x  (2.5) 

where the ( )ab a bf E Eβ= − , Ea and Eb are the potential energy of state a and b, 

respectively, β is the inverse of kBT, xn is one configuration from an immediate state 

( )1 2c a bξ ξ ξ= + , and N is the number of samples collected.  

We selected multiple windows that covered the distances ranging from 13.5 to 1.2 

Å with a step of 0.01 Å, and then we ran 10 ns molecular dynamic (MD) simulations for 

each window, which can provide converged simulations (Figure 2.11). The PMF profile 

was then simply obtained by adding multiple states, while the standard errors of mean 

were calculated by dividing the 10 ns simulations into 10 blocks, where they are 

independent by looking at their time correlations. We defined the stability of one test 

system as the free energy difference between the first valley and the average PMF values 

along the distances more than 11.0 Å, 

  ( ) ( )Stability Mean 11.0Å first min ,G Gξ ξ = ≥ − =   (2.6) 
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where ξ is the distance between two representative atoms, and G(ξ) is the free energy of 

the state ξ. Based on the Equation 2.1, we have the following free energy decomposition 

for a PMF profile,  

 ( ) ( ) ( )pp pw ,ab ab abf f f= +x x x  (2.7) 

where the ( )ww
abf x  is zero, due to the use of the same configuration in both state a and 

state b. Obviously, we can have a further decomposition into the vdW and electrostatic 

contributions. Similarly, this can also be applied to the energy decomposition of 

monomer-water interactions. 

2.2.4 Computational details 

The atomic coordinates of each dimer were first obtained from a geometry 

optimization, and then fixed in all FEP simulations. We used a cubic simulation box, and 

the size was set to be large enough, so that they do not have interactions with their 

images. The topology and parameters of each side chain were determined by the 

corresponding residue in a given protein force field. They were then converted into the 

GROMACS topology file. The GROMACS program was used to generate the initial 

configurations and add the water models for all force fields [191]. The OpenMM program 

was used to equilibrate the simulation systems and run the production of FEP calculations 

[192]. The cutoff scheme (dc = 12.0 Å) in the OpenMM program was used to calculate 

the nonbonded interactions, which considered a default reaction field approximation to 

cover the effect of atoms beyond the cutoff distance. The Langevin thermostat with a 

collision frequency of 1.0 ps-1 was used for the temperature control to give us the NVT 

ensembles, and the temperature was set to 300 K. The time step of 2 fs was used for all 
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productions. Other parameters were default values provided by the v7.4 OpenMM 

program. The VMD [193] was used to visualize the configurations and all analyses were 

written by the in-house Python scripts. 

2.3 Results and Discussion 

2.3.1 Free energy profiles of representative dimers 

We calculated the PMF profiles of all amino acid side chain pairs, including the 

nonpolar-nonpolar, nonpolar-polar, polar-polar, polar-charged, charged-charged pairs. 

Six of them were then selected as representatives, to show the nonpolar-nonpolar, 

nonpolar-polar, π- π stacking, hydrogen bonding, and charge-charge interactions (Figure 

2.1). It can be seen that these PMF curves have similar positions for their valleys and 

peaks, which suggests that they can give similar solvation shells, where the displacements 

were less than 0.5 Å mostly, especially for the minimum positions. However, the a99SB-

disp force field showed different amplitude of free energy differences between those 

valleys or peaks, compared to the PMF profiles of both c36m and c36mw force fields. 

The representative examples include the wa_pd, ww_p, and wbco pairs. It is fair to state 

that three force fields have similar PMF profiles for most nonpolar pairs (e.g., aa_h), 

which could be attributed to their similar parametrization strategies in describing vdW 

interactions. However, it was noted that most polar pairs were even worse than those 

nonpolar pairs, which can be also observed in the following stability analysis. 
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Figure 2.1 PMF profiles of representative dimers for three force fields (c36m, 
c36mw, and a99SB-disp) and their configurations were inserted. The selected six 

dimers represent basic nonpolar-nonpolar/polar, pi-pi stacking, hydrogen bonding, 
and charge-charge interactions. 

2.3.2 Stabilities of nonpolar, polar, and charged pairs 

It showed that both c36m and c36mw force fields gave quite similar PMF 

profiles, but they were different from the a99SB-disp force field. To provide detailed 

comparisons, we calculated their absolute stabilities and relative stabilities for all amino 

acid side chain pairs (Figure 2.2). The stability can be utilized to determine the strength 

of protein-protein interactions in water: the larger stability of one pair likely results in a 

more favorable protein-protein interaction, which could give more compact protein 

conformations. It can be observed that all pairs have a positive stability, except the “ek” 

pair. Two different configures of Glu-Lys side chain pair (“ek” and “eks”) were used in 

our calculations, where the ek pair did not have a formation of hydrogen-bond, so it has a 
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negative stability, while the configure of the “eks” pair favors the formation of a strong 

hydrogen bond. It also shows that the force fields have an important impact on the 

stabilities of both nonpolar and polar pairs. For example, a significant difference is 

observed in the polar pairs, especially for the charged pairs, such as “rrsa”, “eks”, and 

“hpe” pairs. 

Figure 2.2 also displayed the relative difference between two protein force fields. 

We first compared the c36m and c36mw force fields because they used the same 

parameters of proteins but had different protein-water interactions. It clearly showed that 

the c36mw force field provided less stabilities for all pairs except the “he” pair, meaning 

that the c36mw force field could give less compact protein conformations. This is 

consistent with the previous observations, where the c36mw force field provides less 

compact protein conformations [55]. However, compared to the a99SB-disp force field, 

the c36mw still provides higher stabilities of many polar/charged pairs, although less 

significant for most nonpolar pairs. The distinct pairs are highlighted in Figure 2.2, where 

the relative stabilities are more than 1 kcal/mol. For example, the “rrsa” pair is much 

more stable in the c36mw (5.2 kcal/mol) than the a99SB-disp force field (2.4 kcal/mol). 

Surprisingly, most pairs with the Glu side chain gave a different stability in both force 

fields, particularly for “eks” pair. The corresponding configurations showed that they 

formed a strong hydrogen bond (Figure 2.10), so it suggested that both c36mw and 

a99SB-disp force fields had different descriptions of this hydrogen bond interaction. 
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Figure 2.2 (A) The stabilities of all amino acid side chain pairs for three protein 
force fields. (B) The relative stabilities between force fields, and the pairs where 

their relative stabilities are more than 1 kcal/mol are labeled. 

It can be concluded that the charged residual side chains (e.g., Args and Glus) 

performed differently in both c36m/c36mw and a99SB-disp protein force fields, where 

the c36m/c36mw force fields gave larger stabilities of these charged pairs, especially for 

the pairs with Arg and Glu side chains. Our previous p53-TAD protein simulation 

suggested that the c36m gave more compact conformations [110]. We therefore 

hypothesized that the observed compactness could be due to the imbalanced descriptions 

of nonbonded parameters of charged residues. It is noted that we are not providing a 
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comprehensive optimization of the c36m/c36mw force fields, instead our target is to 

understand why these force fields performed differently in simulating some disordered 

proteins. To reveal the underlying reason on why those charged pairs performed so 

differently in both c36m/c36mw and a99SB-disp force fields, we therefore took the 

calculations from the a99SB-disp force field as the reference, and then did the free energy 

decomposition of particular pairs to reveal what contributions dominated the difference.  

2.3.3 Glu side chain-involved pairs: imbalanced protein-protein and -water 

electrostatic interactions 

2.3.3.1 Free energy decomposition 

Similarly, we decomposed the free energy difference of the Glus-involved pairs 

into the protein-protein and protein-water contributions. Taking the “eks” as an example 

(Figure 2.3), it showed that the minimum positions were slightly different and around 1.8 

Å, which can be also found in the pairs of “hpe” and “re”. Nevertheless, it had significant 

differences in both protein-protein and protein-water contributions, although these 

different contributions compensated each other to achieve a less significant difference in 

total free energy. These results showed that tuning either protein-protein or protein-water 

interactions could help to achieve a balance. Similarly, we further decomposed the free 

energies by selecting two Glus-Lyss and Glus-H2O systems, into the vdW and 

electrostatic interactions (Figure 2.4). It clearly showed that both a99SB-disp and c36m 

force fields gave distinct descriptions of the electrostatic interactions. It was noted that 

those two force fields gave similar descriptions of the Lyss-H2O system for both vdW 
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and electrostatic interactions. This suggested that the free energy difference was 

attributed to the imbalanced electrostatic contributions. 

 

Figure 2.3 The free energy difference of “eks” pair between the a99SB-disp and 
c36m and its decomposition into the protein-protein and protein-water components. 
The minimum distance of the PMF profile for the a99SB-disp and c36m force fields 

was plotted as a dot, respectively, and the corresponding difference represented 
their stabilities. 

 

Figure 2.4 The energy difference between a99SB-disp and c36m force fields and its 
energy decomposition into the vdW and electrostatic contributions for the Glus-Lyss 

and Glus-H2O systems. 
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2.3.3.2 Using a99SB-disp water model can decrease the free energy difference 

We first increased the polarity of the Glu side chain by tuning the charge 

distribution and found that this strategy was insensitive to reduce the free energy 

difference. The reason was that increasing the polarity can increase the interactions with 

both protein and water, so that the total interaction changed slowly. Another strategy was 

to change the protein-water interaction. We then used the a99SB-disp water model in the 

c36m protein force field to calculate the stabilities of Glus-involved pairs. It was 

observed that it, compared to the c36m or c36mw force fields, can reduce their free 

energy differences, which were within 0.5 kcal/mol (Figure 2.5). It should be mentioned 

that the a99SB-disp water model has different nonbonded parameter values in both vdW 

and charges from the TIP3P* water model, so it suggests that we likely need to rebalance 

the electrostatic interactions between these charged side chains (e.g., Glu and Asp) and 

water models. 

 

Figure 2.5 (A) The PMF profiles of “eks” pair for four force fields. (B) The free 
energy difference between two force fields. The c36mrbdisp force field used the 

c36m force field, but the a99SB-disp water model. 
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2.3.4 Arg-Arg side chain pair: protein-protein electrostatic interaction dominates 

the difference 

2.3.4.1 Free energy decomposition 

 
Figure 2.6 (A) The free energy difference of “rrsa” pair between the a99SB-disp and 
c36m and its decomposition into the protein-protein and protein-water components. 
The minimum distance of the PMF profile for the “rrsa” pair was plotted as a green 

dot, and the corresponding difference was its stability. (B) The energy difference 
between a99SB-disp and c36mw force fields and their decomposition into the 

electrostatic and vdW protein-water contributions of Args-H2O system. 

Figure 2.6 showed the free energy difference between a99SB-disp and c36m force 

fields for Arg-Arg side chain pair that is the “rrsa” pair. It was clearly observed that the 

difference in the stability was mainly contributed by the protein-water free energy 

component, rather than the protein-protein interactions. We therefore selected an Args-

H2O model as a quick test system that can be formed when the “rrsa” pair has a first 

solvation shell. To see which nonbonded component was more dominated in this protein-

water interaction, we decomposed them into the vdW and electrostatic interactions 

(Figure 2.6). The energy decomposition demonstrated that the protein-water electrostatic 
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interaction made a dominant contribution to this energy difference, rather than the vdW 

interaction. 

2.3.4.2 Tuning the charges of Args can decrease the free energy difference 

To reduce the difference in the protein-water electrostatic contributions, we first 

tentatively tuned the charges of the Arg side chain. Given our previous observations that 

the c36m force field gave more compact conformation, we decided to tune the c36m 

force field. To keep the convention of the c36m force field, we kept the aliphatic part the 

same as the c36m force field, but the remaining part the same as the a99SB-disp force 

field. We finally tuned the charge of the “CZ” atom type, to keep the whole charge of the 

Arg side chain unchanged. Figure 2.7 showed the recalculated free energy difference of 

some pairs by using the modified c36mrbdisp force field. Obviously, its difference with 

the a99SB-disp force field was significantly reduced. For example, the difference was 

reduced from 2.9 to 0.5 kcal/mol, and the absolute difference of all Args-involved pairs 

were within 0.6 kcal/mol. These results showed that tuning the charges of Args was likely 

a simple but effective strategy. 
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Figure 2.7 The free energy difference between two force fields. The c36mrbdisp 
includes the a99SB-disp water model and a modified c36m protein force field that 

changed the charges of the Arg side chain. 

2.4 Conclusions 

We tested the effect of three force fields (c36m, c36mw, and a99SB-disp) on free 

energy profiles of a set of representative amino acid side chain pairs. Both c36m and 

c36mw force fields gave quite similar PMF profiles, but the c36mw had less stability for 

all pairs except “he” pair. However, compared to the a99SB-disp force field, the c36 or 

c36mw had higher stabilities for most pairs, in particular for the polar and charged pairs 

(such as the pairs with the Arg and Glu side chains). These observations suggested that 

the c36 or c36mw could give more compact conformations of disordered proteins, which 

was consistent with previous p53-TAD protein simulations. The further free energy 

decomposition showed that the free energy difference between the a99SB-disp and c36m 

force fields was likely attributed to the imbalanced electrostatic interactions of protein-

protein and protein-water, rather than the vdW interactions. Tuning the charges of the 

Arg side chain can reduce the free energy difference of the Args-involved pairs, but this 
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did not work for the Glus-involved pairs. However, a combination of c36m protein force 

fields and a99SB-disp water model can reduce the free energy difference of the Glus-

involved pairs. These findings showed that balanced electrostatic interactions need to be 

considered carefully for further optimization of force fields.  

2.5 Supporting material 

 

Figure 2.8 All backbone and side chain models. Their initial structures were 
optimized by the c36m protein force field. 
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Figure 2.9 The configurations of selected nonpolar pairs. 
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 Figure 2.10 The configurations of selected polar pairs. 
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Figure 2.11 The convergence analysis by comparing stabilities with the increase of 
simulation time for modified di-alanine dipeptide. 
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CHAPTER 3  

ACCELERATING THE GENERALIZED BORN WITH MOLECULAR 

VOLUME AND SOLVENT ACCESSIBLE SURFACE ARAE IMPLICIT 

SOLVENT MODEL USING GRAPHICS PROCESSING UNITS 2 

3.1 Introduction 

It is crucial to provide an accurate description of the solvent environment during 

biomolecular simulations, where the solvent plays a vital role in governing the 

conformational fluctuations and transitions [194-196]. Conventionally, explicit solvent 

models provide a relatively detailed and accurate description on interactions between the 

solvent molecules and solutes, and are regarded as standard approaches to explore the 

influence of solvent on the solute molecule [197]. However, it dramatically increases the 

computational cost of a simulation, and the solvent friction further adds to the difficulty 

of sampling the solute conformations. Implicit solvent is a viable alternative that captures 

the effective influence of solvent on the solute by direct estimation of the solvation free 

energy as a function of the solute coordinates [198]. Implicit treatment of solvent 

substantially reduces the system size, thus allowing significant reduction of 

computational cost and faster sampling of solute conformations [137, 149, 199-201]. 

There are many approaches for estimating the solvation free energy in implicit 

solvent treatment, including the Poisson-Boltzmann (PB) and generalized Born (GB) 

 
2 Gong, X., et al., Accelerating the Generalized Born with Molecular Volume and 
Solvent Accessible Surface Area Implicit Solvent Model Using Graphics Processing 
Units. Journal of Computational Chemistry, 2020. 41(8): p. 830-838. 
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models. Both PB and GB are based on continuum electrostatics treatment of solvent 

environment [202-206]. Compared with the PB model, the GB approximation allows the 

analytical evaluation of molecular forces and is more suitable for molecular dynamics 

(MD) simulations. The most important task in GB models is to evaluate the effective 

Born radius of each atom, which is dependent on all solute coordinates. GB models can 

be numerically equivalent to the underlying PB calculations, given accurate effective 

Born radii [198, 205]. Numerous approaches have been developed for efficient 

calculations of effective Born radii, including the Fast Analytical Continuum Treatment 

of Solvation (FACTS) [138], the Generalized Born Surface Area from Onufriev, 

Bashford, and Case (GBSA/OBC) [140], Analytical Generalized Born plus NonPolar 2 

(AGBNP2) [144], and numerical integration-based ones such as the Generalized Born 

with Simple Smoothing function (GBSW) [145, 148, 207] and Generalized Born with 

molecular volume [124, 141, 142, 146, 147, 208-210] models. The GBMV2 model, in 

particular, contains an analytical approximation of the Lee-Richards molecular volume 

and reduces unphysical solvent-inaccessible high dielectric protein interior regions [124, 

146, 147, 211]. It can reproduce the first solvent peak in the potentials of mean force 

(PMFs) of interactions between polar chemical groups [207]. A comparison of several 

implicit solvent models has also suggested that the GBMV2 model provides the best 

agreement with the experimental data, such as hydration free energies of small molecules 

[212, 213]. Recently, it was demonstrated that an optimized GBMV2 model could 

provide a reliable description of both folded and unfolded protein conformations. 29 In 

particular, it shows minimal over-compaction bias in simulation of disordered proteins 

frequently associated with many implicit and explicit solvent protein force fields [50, 
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110, 124, 183, 214]. A key limitation to broader application of GBMV2, however, is that 

it is ~10 times slower than vacuum calculations and scales poorly to parallel multi-core 

executions.  

One powerful technique to improve efficiency is the use of graphics processing 

units (GPUs) that can have thousands of parallel processing cores.  GPU-accelerated 

algorithms available in many MD engines, such as CHARMM [215], AMBER [216, 

217], GROMACS [218], NAMD [219, 220], and OpenMM [221], have offered up to two 

orders of magnitude speedup over traditional CPU-based codes. Some efforts have also 

been made on the GPU acceleration of GB implicit solvent models. The GB/OBC model 

in Amber has been implemented and achieved routine microsecond molecular dynamics 

simulations [222]. The GBSW model has also been implemented in a 

CHARMM/OpenMM module that displays around 100-fold improvement on the 

efficiency while maintaining similar numerical accuracy [223]. Notably, these early 

implementations only include the electrostatic solvation energy and thus might not be 

directly deployed for biomolecular simulations without the contribution of nonpolar 

solvation energy. Recently, an efficient pair-wise approximation of the solvent accessible 

surface area (SASA) was added into the GBSA/OBC GPU model, albeit with limited 

accuracy [224]. The correlation between atomic SASAs calculated by the GPU model 

and exact numerical results varies significantly from 0.54 to 0.91 for a number of test 

proteins. 

Here, we report the implementation of an efficient GPU-accelerated GBMV2/SA 

algorithm in a CHARMM/OpenMM module. The implementation takes advantage of the 

similarities between GBMV2 and GBSW algorithms and builds on several existing 
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kernels of the GPU-GBSW module. The numerical scheme for computing the Born 

radius of each atom also allows for implementation of an efficient algorithm for 

calculating atomic surface areas. Together, the current implementation provides a 

complete realization of the GBMV2/SA model on GPUs, making it appropriate for 

general MD simulations of biomolecules. In the below sections of this paper, the detailed 

methodologies of GPU-GBMV2/SA algorithm are discussed, including the treatment of 

electrostatic and nonpolar solvation contributions, the lookup table algorithm for efficient 

volume integration, and the scheme of GPU implementations. Key points of the original 

GBMV2 model are highlighted. Furthermore, the accuracy and efficiency of GPU-

GBMV2/SA are benchmarked against the CPU-GBMV2/SA implementation, and the 

remaining computational bottlenecks are also discussed. Finally, the conclusions and an 

outlook towards future work are given. 

3.2 Method 

3.2.1 Rigorous formulation 

The implicit solvent model can be, in principle, derived rigorously from the 

explicit solvent model characterized by a probability function ( ),P X Y  [200],  

 ( )
( )

( )

,

,, .
U

U

eP
d d e

β

β

−

−
=

∫

X Y

X YX Y
X Y

 (3.1) 

Here, the coordinates X and Y represent the complete configuration of solute 

(e.g., proteins) and solvent (e.g., water), respectively. The ( ),U X Y  is the potential of 

explicit solvent system, which can be usually decomposed into three terms, 
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( ) ( ) ( ) ( )p-p p-w w-w, ,U U U U= + +X Y X X Y Y , where the ( )p-pU X  is the intramolecular 

protein potential, ( )p-w ,U X Y is the protein-water interactions, and ( )w-wU Y  is the water-

water interactions. We then can define a reduced probability function, 

( ) ( ),P d P= ∫X Y X Y , by integrating out the solvent degrees of freedom Y. It is observed 

that this reduced probability function is not dependent explicitly on the solvent degrees of 

freedom by taking an average influence of the solvent into consideration. In a canonical 

system at temperature T, this reduced probability function can be further written as 

follows, 
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 (3.2) 

where ( )solvG∆ X  is defined as the solvation free energy for transferring a solute 

from the gas phase to a solvent phase, which includes the solvent-induced influence but is 

explicitly unknown. It is therefore critical to formulate an accurate reduced protein 

potential ( )W X or probability ( )P X , because each thermodynamic property (A) of 

solute system is then fundamentally calculated by an expectation ( ) ( )A d A P= ∫ X X X . 



 

 59 

3.2.2 Solvation free energy decomposition 

In conventional implicit solvent models, the total solvation free energy is 

generally decomposed into electrostatic and nonpolar terms by designing a 

thermodynamic cycle (Figure 3.1),  

 ( ) ( ) ( )solv np elec ,G G G∆ = ∆ + ∆X X X  (3.3) 

where the nonpolar component involves the free energy cost to create the solute 

cavity in the solvent and turn on the nonpolar solute-solvent van der Waals (vdW) 

interaction, and the electrostatic solvation free energy is the cost of charging up the solute 

in the solvent.  

 
Figure 3.1 Thermodynamic cycle decomposes the solvation free energy into 

electrostatic (polar) and nonpolar components.  

To obtain the explicit expression of each term, it is straightforward to write them 

into the following expressions,  
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Apparently, they can be calculated by a general potential energy function that 

decomposes the solvation free energy into the nonpolar and electrostatic components as 

below, 

 ( ) ( ) ( ) ( ) ( )vdW elec
p-p w-w vdW p-w elec p-w, , , ,U U U U Uλ λ= + + +X Y X Y X Y X Y  (3.6) 

where the parameters λvdW and λelec can be turned on or off to calculate their 

solvation free energies explicitly. 

3.2.3 Electrostatic solvation free energy and forces 

The GB approximation developed by Still and coworkers [225] allows the 

electrostatic energy to be written as a pairwise summation, 
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where ( )( )GB
solute solvent1 exp ,ij ijfτ ε κ ε= − −  and  iq and GB

iR are the atomic charge 

and effective Born radius of the atom i, respectively, κ is a Debye-Hückel screening 

parameter, and Ks is an empirical constant that is set to 8 in the GBMV2 model [146, 

147]. The effective Born radius is defined as the radius of an equivalent spherical cavity 

that yields the same atomic self-polarization free energy. It is thus a function of the 

positions of all solute atoms. The pairwise GB expression allows analytical evaluation of 

atomic forces and is thus particularly suitable for MD simulations. 

The GB forces with respect to the atomic positions include two terms, 
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where 
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It can be seen that the GB energy and forces depend on the effective Born radii, 

GB
iR , and their derivatives with respect to atomic positions, GB

i aR∂ ∂R . 

3.2.3.1 Born radii and their derivatives 

Computing the effective Born radius of each solute atom is a key step for 

calculating the GB electrostatic solvation free energy. In GBMV2 model, the calculation 

of a given Born radius considers the contributions from the Coulomb field approximation 

and an empirical high-order correction term:  

 1
2 ,GB
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where P1 and P2 are empirical fitting coefficients, Ri are atomic coordinates, and 

( )V r is the molecular volume function [146, 147]. Optimal values of P1 and P2 are 

obtained by linear regression fitting of atomic GB radii of model proteins to the reference 

values obtained from high-resolution PB calculations [124, 148, 207, 226]. Detailed 
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expressions for derivatives of Born radii are given in the section 3.5.1 of supporting 

information. 

3.2.3.2 Analytical approximation of the molecular volume 

The molecular volume (MV) is defined as the solute volume that is formed by 

rolling a water probe on the solute [211]. Two methods have been previously 

implemented in the CPU version of GBMV2 [146, 147]. One is to use arbitrarily precise 

numerical grids for a highly accurate calculation of Born radii; but this method is 

computationally expensive, does not provide an analytical gradient, and thus is not 

suitable for efficient MD simulations. The other method introduces an efficient analytical 

approximation to the MV with comparable precision of calculating Born radii, which is 

also suitable for GPU acceleration. The molecular volume is given by a Fermi-Dirac 

switching function from a preprocessed “raw” molecular volume, S(r), 
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+ =
 + + − 
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                       (3.13) 

where β and λ are the parameters that represent the width and midpoint of the 

switching function, respectively. 

The expression of S(r) in the GBMV2 model involved two terms, 
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where SvdW (r) is the vdW volume contribution and SMV2(r) includes a vector-

based scaling term to account for the discrepancy between vdW and MV volumes. There 
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are two significant points: One is that the atomic volume function, FMV2 (r), has a longer 

tail compared to the FvdW (r), in order to probe more overlapping regions between atoms. 

The other is that the representation of MV. For the vdW volume, because SvdW (r) is a 

monotonic function with the number of atoms, the summation can be immediately 

terminated when its value exceeds a certain cutoff. SMV2(r), however, contains vector-

based scaling approximation (VSA) term that helps to distinguish the “gap” (between 

atoms) and “open” (otherwise) regions, which is required to consider all atoms in 

proximity. As such, GBMV2 is considerably more expensive than GBSW, especially for 

small systems.  

Additional details of the GBMV2 algorithms can be found in the section 3.5.1 of 

supporting information and the original paper [147]. Importantly, it can be seen that the 

next step is to calculate the S(r) at each numerical integration grid point, which can be 

accelerated by a lookup table algorithm (see section 3.2.5). 

3.2.4 Solvent accessible surface area nonpolar solvation free energy and forces  

The nonpolar energy can be decomposed into a short-range repulsive energy and 

long-range solute-solvent dispersion energy, and is, in the first order approximation, 

proportional to SASA [147, 149]. Thus, the nonpolar energy in the GBMV2 model is 

estimated as, 

 np ,
i i

i
G Aγ∆ = ∑  (3.15) 

where the
i

γ and iA  is the effective surface tension coefficient and SASA of each 

atom, respectively. The surface coefficient is often assumed to be same for all atom 
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types, reducing Equation 3.15 to np i
i

G Aγ∆ = ∑ . This linear approximation has been 

shown to provide an adequate description of nonpolar solvation energy for many 

biomolecular applications [137, 147]. 

3.2.4.1 Atomic SASA and vdW volume 

The atomic SASA can be expressed as: 

 ( )( )vdW
w
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A f V d

− = +
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r r  (3.16) 

where the excluded volume ( ) ( )i j
j i

V V
≠

= ∑r r  involves volumes for all atoms 

except for atom i, and the smooth function f represents the exposed rate at r point, which 

should be one if the excluded volume is zero, and it should be zero if the sum of excluded 

volume is one. In the GBMV2/SA model, an analytic expression of the vdW volume is 

used,  
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the uj and exposed function f are written as, 
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where vdW
jR is the vdW radius of j atom and wR is the radius of solvent molecule, 

for the water molecule, which is 1.4 Å. The switching widths, vdWt+ and vdWt− , have been 

optimized to 1.2 and 1.5 Å, respectively, for Rw = 1.4 Å. 

The general integral of Equation 3.16 cannot be solved analytically. However, a 

straightforward numerical expression is given as follows, 

 ( ) ( )( )2vdW
w4 ,i i m i m i

m
A R R w f Vπ≈ + +∑ r R  (3.20) 

where the excluded molecular volume at each grid point is determined quickly by 

the lookup table algorithm described below. Detailed derivations of the nonpolar energy 

and forces term can be found in the section 3.5.2 of supporting information. 

3.2.5 Implementation algorithms and parallelization 

3.2.5.1 Numerical integration 

The important component of computing Born radius is to evaluate the 3-

dimension integrals shown in the Equation 3.12. In the GBMV2 and GBSW models, the 

integrals are evaluated using numerical quadrature, where they are split up into radial and 

angular components [146, 147, 226]. The radial integral is approximated by Riemann-

Stieltjes summation with the standard set of radial grid points, while the angular integral 

is calculated by the Lebedev quadrature. 
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where k
mnw  is the weight of each grid point mnr  and eff

iR is an effective integration 

starting point less than the vdW radius of each atom, in order to avoid the singularity of 

integrals. It is noted that the precise definition of the (solute) molecular volume in 

Equation 3.21 is a key quantity in determining the Born radii. The vdW-like volume 

employed in GBSW is simple and efficient to evaluate, and it provides stable forces 

[145]. However, it generates small and unphysical solvent-inaccessible high dielectric 

regions inside the solute, leading to an over-estimation of solvation free energy and a 

systematic over-stabilization of nonspecific compact conformations [148, 207]. This 

critical shortcoming is effectively solved by adopting an approximate Lee-Richards 

molecular volume in GBMV2. 

3.2.5.2 Lookup table algorithm 

The numerical volume integrations in GBMV2 (and GBSW) require quick access 

of all atoms within a certain distance that could contribute to the volume function. This is 

enabled by constructing a lookup table [145-147]. Specifically, the lookup table contains 

a spatially uniform cubic grid enclosing all solute atoms. At each grid point, all the atoms 

that are less than a certain distance, Rmax, are stored in a lookup table array,  

 vdW
max buffer

3max 2.1 ,
2i iR R c R − ≤ = + + + r R  (3.22) 

where c is the width of the grid cell, the value 2.1 Å is the length of the tail of the 

atomic function FMV2 (r), and Rbuffer is an adjustable length that determines how far any 

atom can move before rebuilding the lookup table. The default value of Rbuffer is zero, 

meaning the lookup table will be updated at each simulation step. By using the lookup 
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procedure, the cost of computing the molecular volumes is reduced to linear scaling with 

the number of grid points. It is noted that the number of neighbor atoms at each grid point 

is much larger in GBMV2 than GBSW due to the longer tail of atomic function, which 

contributes to a two to three-fold computational cost increase. 

3.2.5.3 Parallelization and CUDA implementation 

The existing GBSW kernels were adapted for the implementation of GPU-

GBMV2/SA. As a plugin of CHARMM/OpenMM program, the overall design of the 

GPU-GBSW model is considered as a stand-alone solvent model in the OpenMM library 

[223]. It contains eight kernels, four of which are used to implement the lookup table, and 

the other four are used to calculate the electrostatic solvation energies and forces of 

hydrogen and non-hydrogen atoms. Kernels to support the lookup table were directly 

modified to support a larger value of Rmax and the greater table depth required for 

GBMV2. In GBMV2, hydrogens have non-zero input radii and do not need to be treated 

separately. As such, the GBMV2 electrostatic term only requires three kernels (see Table 

3.1). A new kernel, calcSASA, was developed to calculate atomic SASA and forces. The 

GPU algorithm for computing SASA terms is similar, where the number of blocks is 

equal to the number of atoms and threads loop over all quadrature integration grip points.  

Note that the calcSASA kernel is an independent kernel that can be used for both GPU-

GBMV2 and GPU-GBSW models. 

The CUDA implementation has similar algorithmic construction to the CUDA-

GBSW model, and thus can be directly based on the existing CUDA platform [223]. 

Detailed algorithms for computing the electrostatic solvation energies and forces can be 
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found in the section 3.5.3 of supporting information, and the description of nonpolar term 

is briefly outlined because of the similar algorithms. Overall, these algorithms are 

analogous to the multi-processor tasks with CPU languages, as what previous GBSW 

paper stated. [223] To minimize the modification of GBSW CUDA implementation, each 

block is designed for each atom likewise. However, each thread is not used to each 

quadrature point, and instead we used the optimal 256 threads to loop all quadrature 

points per block. Meanwhile, high-speed shared memory was used for the sum reduction 

of quadrature points and neighbor atoms. Different from the CUDA-GBSW, the Born 

radii gradients are not saved, because its length is much larger resulted from the longer 

tail of atomic volume function. Instead, some shorter intermediate arrays (see section 

3.5.3 of supporting information) are saved into the global memory in order to reduce the 

computational complexity of electrostatic solvation forces.  
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Table 3.1 Layout of key kernels for GPU-GBMV2/SA. Kernels for creating a lookup table array are similar to those used in 
GPU-GBSW. 

Kernels Description 

calcBornR To calculate the Born radius of each atom and save the temporary variables for the rapid calculations of the 

electrostatic forces. Each block is assigned to one atom, and 256 threads are used to loop over all the grid 

points. The equations can be found in the electrostatic energies part of section 3.5.1 of supporting 

information. 

computeGBMVForce To calculate GB electrostatic energies and the derivatives with respect to atomic coordinates. 

reduceGBMVForce To calculate the electrostatic forces. Each block is assigned to one atom, and 256 threads are used to loop 

all the grid points. The equations can be found in the electrostatic forces part of section 3.5.1 of supporting 

information. 

calcSASA To calculate the nonpolar energies and forces. Each block is assigned to one atom, and 256 threads are 

used to loop all the grid points. The equations can be found in the section 3.5.2 of supporting information. 
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3.2.6 Computational details 

The correctness and accuracy of GPU-GBMV2/SA were mainly assessed by its 

ability to reproduce atomic energies and forces of the original CPU-GBMV2/SA 

implementation in CHARMM as well as PB-derived atomic self-solvation free energies. 

The model systems include the set of 22 small proteins previously used for the numerical 

parametrization of the original GBSW and GBMV models [147, 207]. The accuracy of 

GPU-GBMV2/SA was also validated by examining the interaction energy profiles 

between selected sidechains, in comparison to explicit solvent results from previous 

works [148, 207]. The numerical stability of the GPU-GBMV2/SA model was assessed 

by examining the energy conservation properties under different configurations. 

Furthermore, a small helical model peptide, (AAQAA)5, was used to examine the 

stability of GPU-GBMV2/SA in long-time MD simulations and its ability to recapitulate 

the peptide conformational equilibrium. For this purpose, two distinct initial structures, 

an ideal helix and a fully extended conformation, were used to initiate independent 

control and folding simulations, allowing a rigorous diagnosis of convergence. A time 

step of 2 fs was used. The previously optimized GBMV2/SA protein force field was used, 

and the results were directly compared with those from CPU simulations [124].  

The efficiency of the GPU versus CPU versions of GBMV2/SA was 

benchmarked using five folded proteins ranging from 856 to 77,304 atoms as well as an 

intrinsically disordered protein, the N-terminal transactivation domain (TAD) of p53 (926 

atoms). The initial structures of folded proteins were downloaded from the Protein Data 

Bank (PDB) and then energy minimized followed by 5,000 steps of NVT equilibration. 
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The initial structure of p53-TAD was taken from a previous study [227]. Default 

GBMV2/SA parameters were used in all calculations, except for three keywords, beta = -

12, P3 = 0.65, P6 = 8, which correspond to β, S0, and Ks, in Equations 3.13 and 3.7, 

respectively. The input radius of each atom is obtained from the previously optimized 

GBMV2 force field [124]. The cutoff distance for nonbonded interactions was set at 20 Å 

and a time step of 2 fs was used. All GPU simulations were done on an NVIDIA TITAN 

X (Pascal) graphics card, and CPU calculations were carried out on an Intel Xeon E5-

2620 v4 2.10GHz CPU. For CUDA calculations, the performance analysis of important 

kernels was also reported in Figure 3.9, including threads per block, registers per thread, 

and theoretical vs. achieved occupancy etc. 

3.3 Results and Discussion 

3.3.1 Electrostatic solvation energies and forces 

Proper GPU implementation of the GBMV2 is first assessed by its ability to 

reproduce the atomic electrostatic self-solvation energies and forces. As summarized in 

Figure 3.2, atomic self-solvation energies and forces of all 22 small proteins are 

essentially identical between the GPU and original CPU implementations. The numerical 

differences between CPU and GPU results (see inserts) are extremely small, completely 

negligible compared to the absolute GB electrostatic energies and forces. This 

demonstrates that the electrostatic solvation term of GPU-GBMV2/SA has been 

implemented correctly in the CUDA platform. 
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Figure 3.2 Accuracy of GPU-GBMV2/SA atomic electrostatic self-solvation energies 
(left) and forces (right), compared with those of CPU-GBMV2. The diagonal line 
(y=x) is shown for reference. All atoms of 22 small proteins are included in this 

comparison. The inserted panels show the difference between CPU and GPU results 
(in the same unit, kcal/mol or kcal/mol Å for each of all atoms from the protein test 

set. 

We also validated that atomic self-solvation energies provided by GPU-GBMV2 

are consistent with PB-derived results, which is a key indicator of the quality of a GB 

implicit solvent model. Given the numerical equivalence of GPU- and CPU-GBMV2 

models, GPU-GBMV2 should achieve a similar correlation with PB. Indeed, as 

summarized in Figure 3.3, the correlation coefficient between effective Born radii 

derived from PB and GPU-GBMV2 is 0.9985, consistent with the results of CPU-

GBMV2 [147]. We note that the superb ability of GBMV2 to reproduce PB is attributed 

to both the higher order correction to the Coulomb field approximation (Equation 3.12) 

and effective approximation of SMV (Equation 3.14) [147]. 
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Figure 3.3 Atomic electrostatic self-solvation energies derived from GPU-GBMV2 
versus PB. All atoms from 22 small proteins are included. The insert shows the 

difference for each atom. 

3.3.2 Nonpolar solvation energy and forces 

 

Figure 3.4 The accuracy of GPU and CPU-GBMV2/SA in calculating atomic SASA 
energies (left) and forces (right). The surface tension coefficient is 5 cal/mol Å2. All 
atoms from 22 small proteins are included. The inserted panels show the difference 
between CPU and GPU results (in the same unit, kcal/mol or kcal/mol/Å for each of 

all atoms from the protein test set. 
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Nonpolar solvation energy plays important roles in driving the conformations of 

proteins, although it makes smaller contributions to the total solvation energies compared 

to the GB term. Figure 3.4 shows that the nonpolar energies and forces of GPU-

GBMV2/SA are also numerically equivalent to those calculated by the original CPU-

GBMV2/SA, indicating that both SASA energies and forces have been implemented in 

the present CUDA platform correctly. As such, it can be expected that the errors of 

nonpolar energies are on the order of 1 - 2% compared with the exact SASA analytic 

model for proteins [147]. The successful implementation of the SASA term in the CUDA 

platform provides a complete GPU-GBMV2/SA implicit solvent model that can now be 

readily deployed for biomolecular simulations. In addition, it also paves the way for the 

future development of better nonpolar solvation models, such as by including the 

dispersion contribution [149]. 

3.3.3 Energy conservation and numerical stability 

After establishing the correctness of the GPU implementation, we evaluated the 

numerical stability of GBMV2/SA by examining the energy conservation properties in 

NVE simulations with three different surface tension parameters (γ). As summarized in 

Figure 3.5, the energies from CPU and GPU calculations display similar trends for all 

three cases, suggesting that the GPU version has similar numerical stability compared to 

the CPU version. The energy drifts over 300 ps are significant, but in line with a previous 

analysis of the numerical stability of GBMV2 on CPU [209]. The energy fluctuations in 

GPU calculations (after removing the linear drift) are slightly higher than those in CPU 

runs, likely due to the use of mixed single/double precisions. Comparison of the energy 
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conservation properties from simulations with different γ show that SASA as 

implemented is numerically highly stable. We note that GBMV2 is numerically less 

stable compared to GBSW because of the sharp molecular surface definition as well as 

the VSA term. Nonetheless, peptide simulations suggest that GBMV2 can be reliable 

even with a 2-fs time step with a proper thermostat in NVT simulations, showing no sign 

of numerical instabilities or any significant artifacts in the resulting trajectories [124].  

 

Figure 3.5 Energy conservation of MD simulations for a small protein (PDB: 1BDC) 
in CPU- and GPU-GBMV2/SA. Energies versus simulation time before (left) and 
after (right) removing the linear drift. The time step was set to 1 fs. The relative 
CPU/GPU energy drift rates are 0.0072/0.0085, 0.0048/0.0068 and 0.0071/0.0110 

(unit: % / ps) for three cases (γ = 0, 5, 15 cal / mol Å2), respectively. The standard 
fluctuations of CPU/GPU energies (after removing the linear drift) are 

1.5434/1.5942, 1.4566/1.5963, and 1.5934/2.0047 kcal/mol), for three cases, 
respectively. Only the last 100 ps trajectories were included in the energy drift 

analysis. 
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3.3.4 Sidechain interaction and peptide folding simulations 

 

Figure 3.6 Free energy profiles of interactions for two sidechain pairs, (left) His – 
His and (right) Lys – Lys, in TIP3P, CPU- and GPU-GBMV2/SA solvent. γ = 5 

cal/mol Å2 was used. 

Before applying GPU-GBMV2/SA to protein simulations, we first validated its 

ability to accurately describe interactions between various backbone and side chain 

chemical groups. The balance of these interactions governs the ability of a force field to 

properly capture the protein conformational equilibria. Figure 3.6 compares the free 

energy profiles of two representative sidechains pairs. It demonstrates that GPU-

GBMV2/SA exactly reproduces CPU-GBMV2/SA as expected, and the implicit solvent 

results also closely match the profiles derived from free energy calculations in TIP3P 

explicit solvent [148]. 
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Figure 3.7 Left: Helicity of (AAQAA)3 during folding and control GPU-GBMV2/SA 
simulations at 270 K. Right: Average residue helicity profiles calculated from GPU 
simulations in comparison with previous results derived from CPU simulations.26 
The RMSD values shown are the root-mean-square differences between profiles 

derived from control and folding simulations. 

The peptide (AAQAA)3 has been widely used as a model flexible peptide for 

force field evaluation and calibration [124, 148, 207]. Figure 3.7 shows the time 

evolution of helicity of  (AAQAA)3  during two independent control and folding 

simulations at 270 K in GPU-GBMV2/SA.  It can be observed that several reversible 

conformational transitions between the (partial) helices and unfolded structures were 

sampled in both simulations within 200 ns, indicating that the implicit treatment of 

solvent using the GBMV2/SA model greatly facilitates protein conformational sampling 

without the friction from explicit solvent molecules. The resulting average residue 

helicity profiles are well- converged; the RMSD value between results from control and 

folding GPU runs is only 0.021. These results are comparable to results derived from 

previous replica exchange simulations on a CPU platform [124]. 
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3.3.5 Computational efficiency 

Figure 3.8 summarizes the performance of GPU-GBMV2/SA in comparison to 

the CPU version for six folded and unfolded proteins of various sizes and topologies. It 

shows that the GPU version offers ~ 60 to 70-fold speed up, with the larger systems 

exhibiting slightly superior efficiency. We note that a faster version of CPU-GBMV2/SA 

has been previously developed, which extensively utilizes pre-calculated data arrays to 

speed up the evaluation of Born radii and derivatives [209]. Our current testing shows 

that the fast CPU version is ~50% more efficient than the standard one. Additionally, the 

performance with multicores seems to be less powerful compared to that using one GPU 

and has a poor scaling with the number of cores. For example, the 12-core 

multiprocessing calculations only gain around 6-fold speed up (see Table 3.4). One 

possible reason is that each of parallel tasks is only used to loop the number of atoms for 

current CPU parallelization, while these tasks to loop the quadrature points have been 

further distributed into branch of threads per block on a GPU. We have also profiled the 

timing distribution of each kernel in GPU-GBMV2/SA. The four kernels associated with 

the lookup table account for only ~5% of the time, although it is memory intensive. The 

calculations of electrostatic and nonpolar terms take up around 85% and 7% of the total 

time, respectively. Thus, the bottleneck of the GBMV2/SA algorithm is clearly the 

calculation of Born radii and their derivatives. The reason is that the calculation of the 

Born radius for each atom involves a complicated expression based on around 800 

numerical quadrature points and 100 neighbor atoms for each grid point; the derivatives 

of Born radii involve even more extensive operations (see detailed expressions in the 
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section 3.5.1). Consequently, the GB force calculations are about three-fold slower than 

the GB energies calculations. 

 

Figure 3.8 (Left) Timings of CPU- and GPU-GBMV2/SA simulations. The numbers 
next to the CPU-GBMV2/SA bars are the production time in ns/day, and the ratios 

next to the fast CPU-GBMV2/SA and GPU-GBMV2/SA are folds of speedup 
compared to CPU-GBMV2/SA. The production rates of GPU simulations are (in 

ns/day): 47.00 (3GB1), 48.96 (p53-TAD), 15.93 (1BVC), 3.52 (4AT5), 1.10 (PYK) and 
0.47 (LON). (Right) Percentages of time spent in various parts of GPU-GBMV2/SA 

calculation, including constructing and updating the lookup table (“Lookup 
Table”), nonpolar energies and forces (“Nonpolar”) and electrostatic energies and 

forces calculations (“GBEnergies” and “GBForces”). The GPU and CPU 
calculations were done on one NVIDIA TITAN X (Pascal) and one core of Intel 

Xeon E5-2620 v4 2.10GHz CPU, respectively. 

3.4 Conclusions  

A GPU-accelerated GBMV2/SA model has been implemented within the 

CHARMM/OpenMM interface, including both the GB electrostatic and SASA nonpolar 

solvation terms. The GB term has been implemented based on the existing CUDA kernels 

of the GPU-GBSW model [223]. Together with a SASA nonpolar term, it provides a 

complete and accurate GBMV2/SA implicit solvent model that is suitable for protein 

simulations. Results show that the GPU-GBMV2/SA solvation energies and forces are 

essentially the same as those in the original CPU-GBMV2/SA model with negligible 

errors, giving rise to similar energy conservation properties. Benchmarks based on a set 
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of folded and unfolded proteins show that the current implementation of GPU-

GBMV2/SA offers about 60 to 70-fold speedup on a single NVIDIA TITAN X graphics 

card compared to a single core of an Intel Xeon E5-2620 v4 2.10GHz CPU. While the 

speedup is somewhat modest compared to those achieved by GBSW or GBSA/OBC in 

Amber, it is still quite substantial and will enable the application of GBMV2 for MD of 

larger systems and for longer timescales. for both folded and unfolded proteins.  

We note that there is still room for further improvement of the computational 

efficiency of GPU-GBMV2/SA. For example, a key bottleneck is the large lookup table 

required for evaluating the volume integrals due to longer tails required for analytical 

approximation of MV. The numbers of atoms within the proximity of each grid point can 

be as high as ~100. It is likely that the list can be truncated without significant reduction 

to numerical accuracy. One can also optimize the usage of computational memory of 

lookup table array, e.g., by using the flexible allocation or avoiding the allocation by 

looping neighbor grid boxes. Development of the GPU-GBMV2/SA algorithm will also 

allow one to perform extensive folding simulations of model proteins and peptides to 

critically evaluate the ability of the simple SASA nonpolar model for describing the 

conformation equilibria [149]. This will pave the way for further development of better 

treatments of the nonpolar solvation that can more accurately capture the conformational 

dependence of solvation free energies.   
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3.5 Supporting information 

3.5.1 Electrostatic solvation energy and forces 

The electrostatic solvation energies in a low concentration of salt are described as 

follows, 
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where iq and GB
iR  the partial charge and Born radius of ith atom, ijR is a distance 

vector between two atoms, sK is usually set to 8 for GPU-GBMV2/SA electrostatic 

calculations, soluteε and solventε are the dielectric constant of solute and solvent, 

respectively, and κ is a Debye-Hückel screening parameter. 

In GBMV2/SA model, the Born radii are related to the molecular volume by 

considering the numerical Coulomb and high-order correction terms. 
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where the parameters of Born radii are 1P = 0.9085, 2P = -0.102 Å, 0a =1 1 2− , and 

1a = 1, nr are the coordinates of grid points, iR are the atomic coordinates, 0
nw are the grid 

weights of the CFA term, and 1
nw are the grid weights of the correction term, and eff

iR  are 

the effective atomic radii used for the quadrature integrals. 

The molecular volume has a complicated expression. 
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and four intermediate volumes are written as follows, 
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where, the parameters of molecular volume are β = -12, λ = 0.5, 0S = 0.65, and  α 

= -1.98 1/Å; the parameters of approximated function are 1c = 0.45 Å2, and 2c =1.25 Å; the 

parameters of atomic volume function are vdWt− = -0.125 Å, vdWt+ = 0.25 Å, MV2t− = 1.90 Å, 

and MV2
+t = 2.10 Å, respectively, vdW

iR are the atomic vdW or input radii. The electrostatic 

solvation forces in terms of atomic positions are expressed as follows, 
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where, 
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3.5.2 Nonpolar solvation energy and forces 

Based on the expression of nonpolar energy, the forces, the derivatives in terms of 

the atomic position, are expressed as follows, 
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where the ( )'f u is the derivative of exposed function, and ˆmr is the unit vector of grid 

points. 

In order to implement the nonpolar energy and forces in one kernel, whose 

calculation was divided into two parts and then effectively avoid the conflicts of blocks. 
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3.5.3 CUDA algorithms for computing the electrostatic solvation energy and forces 

Two important steps are used to calculate the electrostatic solvation energies. The 

first step is to calculate the Born radius of each atom. Besides looping over all atoms, it is 

necessary to loop each numerical integration grid and then all neighbor atoms at each grid 

point (as given by the lookup table). The major cost is to compute the molecular volume 

at each grid point (Equation 3.25), which has four intermediate volumes (Equation 3.26) 

that can be attributed to the neighbor atoms. The pseudocode is given in Table 3.2. After 

obtaining the Born radii, the existing kernel was used for computing the electrostatic 

solvation energies (Equation 3.23). 

Computing the electrostatic solvation forces are much more complicated than that 

of energies. The forces in terms of the coordinates can be calculated using a similar 

algorithm as implemented in the GPU-GBSW plugin. For the forces in terms of the Born 

radii, the computation of atomic forces is divided into two parts, in order to avoid the 

conflict of blocks. The algorithm is summarized in the following pseudo code. 

The computational bottleneck is to calculate the second part, because frequent 

access of the global arrays (S, X1, X2, X3, and X4) is expensive. Additionally, these global 

arrays plus the lookup table array takes up most of the global memory, which should be 

optimized by minimizing the effective size. 
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Table 3.2 The pseudocode of calculating the Born radius of each atom. 

Each block loops the atoms (i) 
 Assign the shared memory (size = # the numerical grids) 

Loop the numerical grids (n) using 256 threads (optimal) 
Initialize the V, S, X1, X2, X3, and X4 

 Using the lookup table array to locate the neighbor atoms (rn + Ri => Rj) 
Loop the neighbor atoms 
 Calculate the FvdW, FMV2, and X1, X2, X3, and X4 (Equation 3.26) 

  Calculate the S and V (Equation 3.25), and save them into shared memory 
  Save S, X1, X2, X3, and X4 into global memory for the calculations of forces 
 Loop the numerical grids (n) using 1 thread 
  Do the sum reduction (Equation 3.24) by extracting data from the shared memory 
 Save the sum into the Born radius of each atom 
END 
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Table 3.3 The pseudocode of calculating electrostatic solvation forces of each atom. 

Each block loops the atoms (i) 
 Assign the shared memory (size = # the numerical grids) 
 # First part of Equation 3.27: Felec, 2a 

Loop the numerical grids (n) using 256 threads (optimal) 
 Using the lookup table array to locate the neighbor atoms (rn + Ri => Rj) 

Access the global arrays (S, X1, X2, X3, and X4) 
Loop the neighbor atoms 
 Calculate the derivatives of FvdW, FMV2, and X1, X2, X3, and X4 (Equation 3.28) 

   Calculate derivatives of Born radii (Equation 3.28)  
  Do the sum reduction and save into the shared memory 
 Loop the numerical grids (n) using 1 thread 
  Do the sum reduction (Equation 3.24) by extracting data from the shared memory 
 Save the sum into the atomic forces array 
 # Second part of Equation 3.27: Felec, 2b 

Loop the numerical grids (n) using 256 threads (optimal) 
 Using the lookup table array to locate the neighbor atoms (rn + Ri => Rj) 

Loop the neighbor atoms 
Access the global arrays (S, X1, X2, X3, and X4) 

 Calculate the derivatives of FvdW, FMV2, and X1, X2, X3, and X4 (Equation 3.28) 
   Calculate derivatives of Born radii (Equation 3.28) using S, X1, X2, X3, and X4 

  Do the sum reduction and save into the shared memory 
 Loop the numerical grids (n) using 1 thread 
  Do the sum reduction (Equation 3.24) by extracting data from the shared memory 
 Save the sum into the atomic forces array 
END 
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3.5.4 Structure analysis of key GPU-GBMV2/SA kernels 

In the most time-consuming reduceGBMVForce kernel, each thread uses 54 

registers (Figure 3.9), and each block uses 54 x 256 = 13,824 registers. Since each 

streaming multiprocessor (SM) provides 65,536 register on Titan X (Pascal), only 4 

blocks (equivalently, 32 warps or 1024 threads) could run simultaneously on each SM. 

The analysis of the computeNonbonded kernel of OpenMM is also provided for 

reference. Even though the computeNonbonded kernel has a higher theoretical occupancy 

of 62.5%, the actual achieved occupancies are similar between these two kernels. 

 

Figure 3.9 GPU utilization using the nvvp and nvprof tools for the 
reduceGBMVForce kernel in GBMV2/SA (left) and the computeNonbonded kernel 

of OpenMM (right). The profile results were obtained using protein 3GB1. 
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3.5.5 Multi-Core Performance of CPU-GBMV2/SA  

Table 3.4 Benchmarks of GBMV2/SA for GPU vs. parallel CPU calculations with 1, 
2, 4, 8, 12 and 16 cores. The time step was set to 2-fs. The GPU and CPU 

calculations were done on one NVIDIA TITAN X (Pascal) and the Intel Xeon E5-
2620 v4 2.10GHz CPU, respectively. 

PDBID 
(#Atoms) 

3GB1 
(855) 

P53-TAD 
(926) 

1BVC 
(2459) 

4AT5 
(11766) 

CPU-GBMV2/SA (ns/day) 
 

0.7969 
(1x) 

0.8392 
(1x) 

0.2534 
(1x) 

0.0488 
(1x) 

Fast CPU-GBMV2/SA (1-core) 
 

1.2614 
(1.6x) 

1.3168 
(1.6x) 

0.3826 
(1.5x) 

0.0728 
(1.5x) 

2-core / 1-core 2.0x 2.0x 2.0x 2.0x 
4-core / 1-core 4.0x 4.0x 3.9x 3.5x 
8-core / 1-core 5.1x 5.1x 5.2x 4.6x 
12-core / 1-core 5.6x 5.6x 5.7x 4.8x 
16-core / 1-core 6.4x 6.4x 6.7x 5.5x 
GPU-GBMV2/SA (1-GPU) 46.9974 

(59.0x) 
48.9630 
(58.3x) 

15.9292 
(62.9x) 

3.5294 
(72.3x) 
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CHAPTER 4  

ASSESSING GBMV2/SA IMPLICIT SOLVENT FORCE FIELD FOR 

SIMULATING INTRINSICALLY DISORDERED PROTEINS USING THE 

MULTISCALE ENHANCED SAMPLING 

4.1 Introduction 

Compared to well-structured proteins, intrinsically disordered proteins (IDPs) or 

regions (IDRs) lack stable tertiary structures under physiological conditions but exhibit 

sophisticated signaling and functions in multicellular organisms [228]. They constitute 

approximately one-third of eukaryotic proteins and are associated with around 25% of 

missense mutation-related diseases, including cancer [10, 12]. The inherent 

thermodynamic instability of IDPs allows for greater conformational flexibility, enabling 

them to respond sensitively to various stimuli such as binding, changes in cellular 

environments (e.g., pH), and post-translational modifications [5, 229]. Experimental 

studies have shown that IDPs can adopt relatively stable structures and carry out their 

biological functions when bound to their partners [230, 231]. However, understanding the 

recognition of targets by IDPs and the mechanisms underlying their folding and binding 

processes is challenging due to their intrinsic flexibility. 

Characterizing representative states and transitions of IDPs at the atomistic level 

is essential for understanding their kinetics of binding and folding. Experimental studies 

often lack the efficiency to provide comprehensive descriptions, whereas MD simulations 

offer the ability to calculate thermodynamic and kinetic properties for both flexible and 

well-structured proteins [7]. However, MD simulations for IDPs require highly accurate 
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force fields and sufficient sampling of relevant conformational ensembles, which pose 

additional challenges [42, 232]. Therefore, it is crucial to explore alternative approaches 

that strike a balance between accuracy and efficiency.  

Explicit solvent protein force fields often lead to overly compact ensembles for 

IDPs due to limitations in describing protein-protein, protein-water, and water-water 

interactions, as well as computational constraints for larger water system sizes [50, 183, 

233]. An alternative approach with promise is the use of implicit solvent models, which 

reduce the system size by approximately 10-fold by directly estimating solvation free 

energy [199, 200]. Implicit solvent models have shown success in simulating well-

structured proteins and capturing structural features of certain IDPs [42, 234]. Among the 

popular implicit solvent models, the improved Generalized Born with molecular volume 

and solvent accessible surface area (GBMV2/SA) model can accurately reproduce the 

structures and stabilities of helical peptides and β-hairpins, while mitigating the over 

compaction bias seen in other implicit solvent force fields. This makes it particularly 

suitable for investigating the mechanisms of IDP interactions [124].  

One main limitation of the GBMV2/SA implicit solvent model is its demanding 

computational cost and poor multi-core scaling due to the complex calculation of 

solvation free energy. However, there have been significant advancements in GPU-

accelerated algorithms for protein force fields, enabling hundreds of speedups compared 

to conventional CPU-based algorithms and standard atomistic MD simulations at the 

microsecond level [217, 222, 235]. Similarly, a GPU-accelerated version of the 

GBMV2/SA implicit solvent model has been developed as an OpenMM plugin. 

Remarkably, this GPU-accelerated implementation achieves a ~60x speedup while 
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maintaining numerical equivalence to the original CPU-GBMV2/SA calculations. This 

enhancement in speed and efficiency greatly expands the applicability of the implicit 

solvent simulations using GBMV2/SA to larger systems and longer time scales.  

It remains challenging to generate representative conformational ensembles 

through standard GPU-GBMV2/SA implicit solvent simulations due to diverse 

ensembles and high energy barriers [25, 236]. To address this, enhanced sampling 

methods have been developed, including the topology-based coarse-grained model for 

accelerating atomistic conformational sampling [34]. The multiscale enhanced sampling 

(MSES) technique utilizes this coarse-grained model to drive conformational transitions 

in atomistic simulations, aided by temperature/Hamiltonian replica exchange to remove 

bias potential effects, achieving faster transitions and maintaining accuracy of atomistic 

force fields. While other techniques like temperature replica exchange, umbrella 

sampling, and metadynamics have been proposed for accelerated conformational 

sampling [237], the MSES model stands out by enabling faster sampling of atomistic 

models through the use of a coarse-grained model for driving transitions [34, 122]. 

Previous studies demonstrated significant improvements in convergence for small but 

non-trivial IDPs using implicit solvent models (e.g., GBSW and GBMV2) [122, 124]. 

Unfortunately, the CPU-only implementation of MSES limits its application in IDP 

conformational sampling and prevents harnessing the GPU capabilities of 

CHARMM/OpenMM. Therefore, the development of a GPU-accelerated MSES 

technique is crucial, as it would enable faster conformational sampling of IDPs. 

In this chapter, the implementation of the MSES algorithms for sampling 

conformational ensembles and transitions of both folded and unfolded proteins will be 
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introduced. This approach will then be applied to assess the reliability of the GBMV2/SA 

implicit solvent model for conformational sampling of IDPs. It is anticipated that GPU-

MSES will prove to be more efficient in sampling IDP conformations. The successful 

development of GPU-MSES will also greatly enhance the applicability of other implicit 

solvent models in IDP conformational sampling. The following sections will focus on 

introducing the methodology of the MSES model and its GPU implementation 

algorithms. The correctness of the GPU-GBMV2/SA model in simulating IDPs will also 

be tested and its reliability assessed. 

4.2 Method 

4.2.1 Multiscale enhanced sampling 

The MSES method uses the CG model to accelerate the conformational sampling 

of AT model by introducing a coupling AT-CG energy term. 

 ( ) ( ) ( ) ( )mix AT CG AT AT CG CG AT-CG AT CG, , , ,U U U Uλ λ= + +r r r r r r  (4.1) 

where the UAT, UCG and UAT-CG are the atomistic, coarse-grained and coupled AT-

CG potential energy functions, respectively. Given a proper coupling potential and a 

coupling scaling factor (such as λ = 1), it has been shown that the AT system can be 

effectively driven by the CG system, so a coupled potential plays an important role in 

accelerating the conformational transition of IDPs [34]. Motivated by the notion that 

native contacts dictate protein folding transitions, the CG and atomistic copies are 

coupled by using a harmonic type of penalty function, which depends on the differences 

of Cα–Cα distances between the AT and CG native contacts (Δd), 
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where the parameters Am and Bm are identified by requiring both energy and its 

first derivative to be continuous at a switching distance (dsm) point,  
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4.2.2 CPU/CUDA implementation of MSES method as an OpenMM plugin 

The atomistic and coarse-grained potentials use the same energy function, which 

is determined by the protein force fields used in the simulations. Different from a regular 

harmonic potential, the MSES coupling potential uses the Cα–Cα distance of native 

contact as a basic variable to quantify the similarity of AT and CG models, which 

assumes that native contacts can be considered as a reaction coordinate to describe a 

protein folding process. It can be therefore considered as a four-body bonded interaction, 

so it could be better if we can implement them as an OpenMM plugin, rather than using a 

custom force. At present, both CPU and CUDA platforms have been implemented in the 

MSES plugin. It can be expected that the calculation of MSES coupling potential should 

be much faster than the calculations of AT and CG potentials, because the number of 

native contacts is much less than the number of atoms in the protein system. The 

architecture of MSES plugin has three important layers. The first layer is a python layer 

that is public to users. This layer is usually created by a SWIG interface automatically, 
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once we provide an interface input file which includes all function declarations (such as 

“msesplugin.i”). The second layer is the openmmapi. In this layer, it will define both 

force and forceimp classes, for example, “MSESForce” and “MSESImpl” in this MSES 

plugin. These classes will provide the function/data not only for the Python API, but also 

for the OpenMM platforms (such as CPU and CUDA). The input data will therefore be 

saved in this layer, including the input data from the users after using a Python API. The 

last layer is the platforms, which will implement the underlying algorithms of different 

platforms and compute all necessary operations. 

4.2.3 Model systems and benchmark simulations 

To evaluate the computational accuracy of GBMV2/SA implicit solvent model in 

the conformational sampling of proteins, we select the small proteins, including Ace-

(AAQAA)3-NH2 and three β-hairpins, GB1p (residues: GEWTYD DATK TFTVTE), 

GB1m1 (residues: GEWTYD DATK TATVTE) and GB1m3 (residues: KKWTYN 

PATG KFTVQE), and also relatively large proteins, including the 28-residue segment of 

kinase-inducible domain (KID) of transcription factor CREB (residues 119−146: TD 

SQKRR EILSR RPSYR KILND LSSDA P), and p53-TAD domain (residues 1−61: 

MEEPQ SDPSV EPPLS QETFS DLWKL LPENN VLSPLPSQAM DDLML SPDDI 

EQWFT EDPGP D). The standard MD simulations at the temperature (270 K for GB1p 

and 300 K for others) are employed to run the folding simulations, where the initial 

conformation is an extend conformation melted from a MD simulation at a higher 

temperature (400 K). 
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4.2.4 Computational details and trajectory analysis 

We perform the Langevin dynamics with a friction coefficient of 0.1 ps-1 with a 

time step of 2 fs, where all bonds involving hydrogen atoms are constrained using a 

SHAKE algorithm. The default optimized GBMV2/SA force field and parameters are 

used in all simulations, e.g., the surface tension coefficient (γ = 5 cal/mol/Å2), the angular 

numerical points (NPHI = 38). The multiscale enhanced sampling (MSES) simulations 

are carried out in CHARMM with a modified MMTSB toolset [238]. The default 

parameters are used, including force constant is 1.0 kcal/mol/Å2, Fmax is 0.5, RSWI is 2 Å. 

The CHARMM36m protein force field is used to describe the protein-protein 

interactions. To monitor the convergence, the initial conformations include the mixed 

folded and unfolded structures, which are generated from a high-temperature simulation. 

All the results are analyzed using an in-house Python package. The error bar in each plot 

is shown in a standard error.  
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4.3 Results and discussion 

4.3.1 CPU/CUDA implementations of MSES model 

The MSES model involves three important energy terms, including the first two 

AT and CG energy terms that have been implemented previously, and the coupling 

energy term that is now implemented as an OpenMM plugin merged in the CHARMM 

program. Besides, two different platforms (such as CPU and CUDA) are implemented for 

a comparison, due to their simplicity. To ensure the correctness of MSES 

implementation, we compare their MSES energies and forces (Figure 4.1). It is clearly 

seen that their energies and forces are closer, and their difference is within a neglectable 

error, which suggests that the MSES model has been correctly implemented in the 

CHARMM program as an OpenMM plugin. 

 

Figure 4.1 The comparison of CPU- and GPU-MSES model in calculating energies 
(A) and forces (B). The inserted images show the difference of CPU and GPU 

calculations in the same unit. The black line (y = x) is used as reference. The p53-
TAD is used as a test system, and a variety of trajectories including both folded and 
unfolded structures are used for the energy calculations, but one folded structure is 

selected to calculate the molecular forces. 
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In addition to the conformational energies and forces, we test the energy 

conservation of MSES model (Figure 4.2). Conserved energy is often used to monitor the 

correctness of MSES model as well, because it can indicate that the conformational 

forces are derived from the energies. Unsurprisingly, total conformational energies are 

conserved well, and the observed energy fluctuation is much less. No obvious energy 

drift is observed within 300 ps, which also suggests a reliable implementation of MSES 

model as an OpenMM plugin. 

 

Figure 4.2 The energy conservation of MSES model. The p53-TAD protein is used 
as a test system. Mixed precision is used in the CUDA calculation. 

4.3.2 Conformational equilibrium of protein simulations 

Based on the correct implementation of MSES model, we then use it to accelerate 

the conformational sampling and to test whether this GBMV2/SA model can provide a 

reliable description in the conformational equilibrium of protein simulations. To remove 

the bias of MSES coupling potential, a series of Hamiltonian potentials are designed to 

achieve a replica exchange MD simulation, which can be found in previous simulations 
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as well [124]. To quantify the reliability of GBMV2/SA model, we select the secondary 

structure of several systems (such as Ace-(AAQAA)3-NH2, β-hairpins, KID and p53-

TAD) as an important indicator, because of the experimental data provided. 

4.3.2.1 Small peptide simulations 

We first calculate the secondary structure of both helical and β-sheet systems 

(such as Ace-(AAQAA)3-NH2 and β-hairpins), because these two systems have been 

considered as a reference to quantify the capability of computational model (such as 

GBMV2/SA). We clearly see that the GBMV2/SA model reasonably describes the 

helicity of Ace-(AAQAA)3-NH2 system, and the folding stability of three β-hairpins, 

which are all consistent with the experimental observations (Figure 4.3). It should be 

noted that our results also agree with previous CPU-GBMV2/SA calculations. However, 

these peptide simulations are insufficient to quantify the reliability of GBMV2/SA model, 

because the GBMV2/SA model was highly tuned by reproducing the secondary structure 

of these two types of peptides. 
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Figure 4.3 The population of (A) Ace-(AAQAA)3-NH2 helicity and (B) the number of 
hydrogen bonds of three β-hairpins, including GB1p, GB1m1, and GB1m3. Their 

stability is ordered as GB1m1 < GB1p < GB1m3. 

4.3.2.2 KID and p53-TAD simulations  

Larger proteins systems are therefore used to assess the GBMV2/SA model. 

Figure 4.4 shows the helicity profiles of KID and p53-TAD proteins. The KID protein 

includes two helical structures, and the experimental data shows that the first αA 

structure (residue ID: 120-129, 50-60%) is more helical than the second αB structure 

(residue ID: 134-144, 10%). Unfortunately, the results of GBMV2/SA model provide an 

opposite description, where the average helicity of αA structure is ~10%, while ~50% 

population is observed in the αB structure. This also agrees with the previous observation 

that αA structure is less stable than αB structure in the CPU-GBMV2/SA model [124]. 

For a larger p53-TAD protein system, we also observe that the GBMV2/SA model 

provides a higher population of its helicity of p53-TAD (residue ID: 17-29, ~ 40%), 

compared to the experimental data (~10%). Combined together, it suggests that the 

GBMV2/SA model provides a limited accuracy of secondary structures for larger helical 
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protein systems. This inconsistency could be attributed to the inaccurate description of 

nonpolar term, where a simple SASA model hardly captures some long-range dispersion 

solute-solvent interactions, which will be discussed in the following chapter. 

 

Figure 4.4 The helicity of KID (288 K) and p53-TAD (300 K) protein. Both systems 
are used to monitor the reliability of GBMV2/SA model in describing the 

conformational sampling of IDPs.  

4.4 Conclusions 

We have correctly implemented the MSES model as an OpenMM plugin, which 

is also validated by comparing molecular energies or forces of both CPU and CUDA 

calculations and confirming the energy conservation of p53-TAD protein simulation. We 

then use it to assess the capacity of GBMV2/SA model in sampling of IDP 

conformations, and potential limitations for a set of folded and unfolded proteins, 

focusing on the comparisons with experimental observations in protein secondary 

structures. Results show the GBMV2/SA model can provide consistent results with the 

experimental data for the small peptides but are limited to provide an accurate description 

of secondary structure of large helical proteins, such as KID and p53-TAD helical 
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proteins. This could be due to a missing nonpolar dispersion, which will be developed 

and discussed in the following chapter. 
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CHAPTER 5  

IMPROVED IMPLICIT TREATMENT OF NONPOLAR SOLVATION FREE 

ENERGIES: THE GBMV2/NP MODEL 

5.1 Introduction 

Explicit solvent models are widely used to investigate the impact of solvent on 

solute molecules, as they provide a detailed and accurate description of solute-solvent 

interactions [197]. However, their computational cost significantly increases with system 

size, and sampling solute conformations becomes more challenging due to solvent 

friction. Implicit solvent models offer an alternative by reducing system size and enabling 

faster sampling of solute conformations. These models accurately capture solvation free 

energies that govern solvent effects on solute conformations [200, 239]. The use of 

implicit solvent models provides faster energy calculations and conformational sampling, 

with up to a 60-fold speedup compared to explicit solvent models in folding simulations 

of small systems [240]. 

Several implicit solvent force fields have been developed to accurately capture 

solute-solvent interactions, with the solvation free energy being a crucial physical 

quantity for describing the solute's free energy landscape [241]. However, accurately 

describing the solvation free energy is challenging. A thermodynamic cycle can be 

employed to account for different contributions, including the cavity free energy, 

nonpolar free energy, and electrostatic free energy, which capture the effects of solvent 

entropy, solute-solvent nonpolar interactions, and solute-solvent electrostatic interactions, 

respectively [242]. The Poisson-Boltzmann (PB) and generalized Born (GB) models are 
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commonly used to estimate the electrostatic solvation free energy through continuum 

electrostatics treatments of the solvent environment [243]. The GB model, in particular, 

allows for analytical evaluation of molecular forces and is widely employed in molecular 

dynamics (MD) simulations [239]. However, the GB model requires an accurate 

description of the effective Born radius of each atom, which depends on the solute's 

coordinates and molecular volume [225]. Several GB models have been developed to 

improve the accuracy of these descriptions, such as the GB with simple smoothing 

function (GBSW) and GB with molecular volume (GBMV) [145-147]. Notably, the 

GBMV2 model incorporates a vector-based scaling term to approximate the molecular 

volume, resulting in a reduction of unphysical regions within the solute's high dielectric 

interior [146, 147]. The GBMV2 model has shown better agreement with explicit solvent 

and experimental data, including the free energy profiles of amino acid side chain pairs, 

hydration free energies of small molecules, and accurate descriptions of folded and 

unfolded small protein conformations [124, 207, 212, 213].. 

In addition to the electrostatic contribution, the nonpolar contribution is also 

crucial for describing solute conformations [149]. The conventional GBMV2/SA model 

utilizes solvent accessible surface area (SASA) to account for the nonpolar solvation free 

energy, employing a water probe radius of 1.4 Å [147]. While successful in describing 

folded and small disordered proteins, this model faces limitations in balancing the 

conformations of large proteins like KID and p53-TAD proteins (refer to section 4.3.2.2). 

One possible reason is the insufficient description of nonpolar solvation free energy, as 

the SASA model primarily captures short-range interactions and overlooks long-range 

solute-solvent nonpolar interactions [149]. Previous studies have pointed out 



 
 
 

106 
 

inconsistencies in the SASA-based model when describing nonpolar solvation free 

energies of different systems, such as cyclic, linear, and branched alkanes, and its 

limitations when calculating binding free energies of protein-protein or protein-ligand 

complexes [242, 244]. Furthermore, solute-solvent dispersion interactions are highly 

dependent on the conformation, with folded and unfolded conformations exhibiting 

different surface coefficients when fitted with SASA, indicating the inadequacy of the 

simple SASA model in capturing this conformational dependence. Therefore, improved 

implicit solvent models have been developed to directly include solute-solvent dispersion 

interactions and address this conformation-dependent effect [149]. For instance, solute-

solvent van der Waals (vdW) and hydrogen bonding interaction terms, absent in the GB 

model, have been incorporated to describe the nonpolar component, leading to improved 

agreement with reference explicit solvent models in capturing conformational ensembles 

[143, 144]. Hence, it is necessary to develop an enhanced GBMV2/NP model capable of 

capturing this conformational dependence. 

Graphic Processing Units (GPUs) have emerged as a powerful tool for 

accelerating the computational efficiency of MD programs [245]. Many MD engines, 

including CHARMM, AMBER, GROMACS, NAMD, and OpenMM, have incorporated 

GPU-based algorithms for protein force field calculations [191, 192, 246]. Consequently, 

significant efforts have been directed towards GPU acceleration of implicit solvent 

models, particularly in reducing the computational cost of calculating GB terms [220, 

222]. For instance, the GB/OBC model has enabled routine microsecond MD simulations 

[222], and the GBSW model exhibited a remarkable 100x improvement over 

conventional CPU calculations for protein simulations [223]. Additionally, the nonpolar 
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solvation energy term has also been accelerated, as seen with the implementation of the 

SASA model into the GPU-accelerated GBSA/OBC model [224]. Recently, GPU-

accelerated algorithms for GBMV2/SA were integrated into an OpenMM plugin, offering 

a substantial speedup of approximately 60x compared to the conventional CPU-based 

algorithms used in the CHARMM program [156]. 

In this chapter, we present a novel GBMV2/NP model and its GPU 

implementations as an OpenMM plugin. Building upon our previous GPU-accelerated 

GBMV2/SA model, we have devised a nonpolar model that combines SASA calculations 

with solute-solvent dispersion interactions. For consistency and compatibility, all 

implementations maintain the same architecture as the earlier OpenMM plugin, now 

referred to as the GBMV2/NP plugin, and have been integrated into both CHARMM and 

OpenMM programs. To comprehensively describe the GBMV2/NP model, this chapter 

offers an in-depth account of its methodology, implementation algorithms, and 

comprehensive testing and benchmarking analyses. 

5.2 Method 

In GBMV2/NP model, the total solvation free energy is generally divided into 

electrostatic and nonpolar contributions, 

 solv elec np ,G G G∆ = ∆ + ∆  (5.1) 

where the nonpolar component involves the free energy cost of creating the solute 

cavity in the solvent and turning on the nonpolar solute-solvent vdW interaction, and the 

electrostatic component corresponds to the free energy cost of the subsequent step of 

charging up the solute [242]. The nonpolar contribution can be estimated directly from 
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( ) ( ) ( )np rep disG G G∆ = ∆ + ∆X X X , these solvation free energy terms can be thus evaluated 

by the following expressions, 
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Similarly, the above three expressions can be described by the following 

thermodynamic cycle (Figure 5.1). 

 

Figure 5.1 A thermodynamic cycle for calculating the solvation free energy into 
repulsive, dispersion, and electrostatic components. 

5.2.1 Generalized Born electrostatic solvation free energy 

A detailed description of GB electrostatic solvation free energy has been included 

in the section 3.5.1. In brief, the electrostatic term is approximated by the GB model 
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developed by Still and coworkers [225], which can be expressed as follows in a low 

concentration of salt, 
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where iq and GB
iR  the partial charge and Born radius of ith atom, ijR is a 

distance vector between two atoms, The sK is usually set to 8 for GBMV2 electrostatic 

calculations, soluteε and solventε are the dielectric constant of solute and solvent, 

respectively, and κ is a Debye-Hückel screening parameter. It can be observed that the 

GB electrostatic model requires the calculations of Born radii that are related to the 

molecular volume by considering the approximated Coulomb and even high-order 

correction terms [147], 
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where the parameters of Born radii are 1P = 0.9085, 2P = -0.102 Å, 0a =1 1 2− , 

and 1a = 1. We usually used a standard numerical quadrature technique to calculate the 

integrals of the Coulomb field and high-order correction terms [147]. 

5.2.2 Nonpolar repulsive solvation free energy and forces 

In GBMV2/NP model, the nonpolar model can be divided into both the cavity 

free energies to create a cavity to fit in the solute molecule and the nonpolar free energies 
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to turn on the long-range nonpolar dispersion interactions between the solute and solvent 

[143]. The nonpolar repulsive term is usually described by a SASA model, 

 ( ) ( )rep , ,i i wi
G A Rγ∆ ≈ ∑R R  (5.5) 

where iA  and iγ is the atomistic surface area and surface tension coefficient of each 

atom, respectively. The atomic SA can be expressed as, 

 ( )( ) ,
vdW

i i w
i iR R

A f V d
− = +

= ∫r R
r r  (5.6) 

where the excluded volume, ( ) ( )i jj i
V V

≠
= ∑r r , involves the solvent accessible 

atomic volume except for ith atom, and the smooth function f represents the exposed rate 

at r point, which should be one if the excluded volume is zero and be zero if the excluded 

volume is one. A straightforward numerical expression is then given after using a 

numerical integration, 

 ( ) ( )( )( )2vdW vdW
w wˆ4 ,i i m i m i im

A R R w f V R Rπ≈ + + +∑ r R  (5.7) 

nonpolar repulsive energy can be further expressed as follows, 

 ( ) ( ) ( )( )( )2vdW vdW
rep w wˆ4 .i i m i m i ii m

G R R w f V R Rπγ∆ = + + +∑ ∑R r R  (5.8) 

The derivative of nonpolar repulsive energy in terms of each atomic position is,  

 ( ) ( )2rep ,rep vdW
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4 .m j
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a m j a
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R V
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5.2.3 Nonpolar attractive solvation free energy and forces 

It has been proposed that the solute-solvent dispersion interactions can be 

described by a continuum vdW solvent model, which assumes that the average water 
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number density is constant outside of solute volume. Then, the solute-solvent dispersion 

interactions can be evaluated by a summation of all atomic solute-solvent dispersion 

interactions [143, 149], 
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where the ( )dis iU x  is the dispersion interaction energy of atom i with the solvent. 

It has been reported that the atomic dispersion energy can be accurately estimated by 

integrating over the solvent region [242]. However, an empirical expression was 

previously used to describe the solute-solvent dispersion free energy, 

( ) ( )36
dis 16 3 GB

i i w iw iw i wU R Rπα ρ ε σ≈ +x , so that we have, 
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+
∑x  (5.11) 

where αi is an adjustable parameter (default value is 1.0), ρw is the number of 

solvent molecules at standard conditions, which is 0.33428 Å-3 for water, σiw and εiw are 

the Berthelot rule between Lennard-Jones interaction parameters of solute atom I and 

oxygen atom of the water model, respectively [143, 144]. An advantage of using this 

Gallicchio-Levy (G-L) approximation is that this atomic dispersion term is associated 

with the atomic Born radius, GB
iR . As a consequence, it is faster than calculate the forces 

of G-L dispersion energy as below, because this dispersion energy is directly related to 

the Born radius of each atom, so that they can share some data structure with the GB 

electrostatic calculations. Similarly, the nonpolar attractive forces can be written as 

follows, 
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Thus, the nonpolar attractive dispersion energy and forces are only dependent of 

the Born radii and their derivatives with respect to the coordinates. The Lennard-Jones 

parameters of atom i are ( ) 2iw i wσ σ σ= + , and iw i wε ε ε= , respectively, where the σw 

= 3.15365 Å and εw = 0.155 kcal/mol. Rw was set to 1.4 Å. 

5.2.4 CUDA implementation as an OpenMM plugin 

The existing GBMV2/SA kernels can be adapted for the CUDA implementation 

of GBMV2/NP model. First, it requires the calculations of Born radii and their 

derivatives that have been implemented in the GBMV2/SA kernels (such as “calcBornR” 

and “reduceGBMVForce”). Second, the energy and forces of SASA term can be 

computed in the “calcSASA” kernel. We therefore implement the calculations of 

nonpolar dispersion terms in the GB electrostatic kernels, instead of implementing a new 

kernel for the calculation of dispersion term, which avoids some unnecessary 

calculations. To provide an interface to the CHARMM and OpenMM programs, we also 

implement the C++/C, Fortran and Python API for the users according to the instruction 

of OpenMM development. At present, a standalone version of GBMV2/NP plugin has 

been implemented for OpenMM users. Besides, we provide another interface for the 

CHARMM users by merging it into the current CHARMM code. However, the CPU-

GBMV2/NP calculations are not available in the GBMV2/NP plugin, but we implement 

the CPU-GBMV2/NP energy calculations in the CHARMM program, which is used to 

validate the correction of CUDA-GBMV2/NP implementation. 
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5.2.5 Computational details 

Similar to the GPU-GBMV2/SA model, we validated the correctness and 

accuracy of nonpolar terms in the GPU-GBMV2/NP model by using the nonpolar 

energies of amino acid side chain pairs from the CPU-GBMV2/NP calculations. Besides, 

the increased computational cost and the percentage of time spent in different kernels are 

benchmarked in GPU-GBMV2/NP calculations. The energy conservation calculation is 

also used to evaluate the numerical stability of GBMV2/NP model, and we also test the 

effect of the number of numerical grids on its energy stability. To verify the reliability of 

G-L approximation, we follow the similar protocol published by previous study, to 

calculate the solute-solvent interaction energy by an explicit solvent MD simulations 

[242]. In brief, the CHARMM36m force field was used, and the solute molecules are 

kept rigid, and their atomic charges are set to zero to exclude the effect of electrostatic 

interactions. The periodic boundary condition is used, and a large water box is employed 

to ensure the solute cannot see its images along any direction. The system is first 

equilibrated for 100 ps using 1-fs as a time step, and 10 ns MD production simulation 

with a 2-fs time step is carried out to collect the trajectories. The attractive component of 

Lennard-Jones solute-solvent interactions is calculated by the Weeks-Chandler-Andersen 

(WCA) decomposition scheme [247]. For all calculations, the cutoff distance for the 

nonbonded calculations is set to 20 Å. All GPU calculations are carried out on an NVIDA 

TITAN X (Pascal) graphics card, and the CPU calculations use an Intel Xeon E5-2620 v4 

2.10GHz CPU. The nvprof tool is used to report the performance of all GPU kernels. 

It is critical but challenging to parameterize the GBMV2/NP model, because it 

includes many unknown parameters, including the global parameters (such as γ, Rw, and 
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α) and local parameters (such as the input radius of each atom). By following the 

philosophy of GBMV2/SA parameterization, we first obtain the solvation free energies of 

all side chains and the free energy profiles of side chain pairs by running the 

CHARMM36m explicit solvent simulations as reference, then use them iteratively 

parameterize the GBMV2/NP model. In addition, the vdW input radius can be regarded 

as a starting choice, so we use them to fit these global parameters first, and then tune the 

input radius to find out a good agreement with the reference data iteratively. We also use 

multiscale enhanced sampling simulations to run several small protein simulations (such 

as Ace-(AAQAA)3-NH2 and β hairpins) to ensure whether the GBMV2/NP can capture 

the equilibrium of both folded and unfolded conformational ensembles. Several control 

simulations of folded proteins (such as 1BDC protein) are also employed to test whether 

it can be used to simulate the folded proteins as well. 

5.3 Results and discussion 

5.3.1 Energy and forces of nonpolar solvation free energy 

We first verify the correctness of GBMV2/NP GPU implementation by 

comparing the conformational energies and forces of 1BDC proteins (Figure 5.2). 

Expectedly, the energies and forces calculated from both CPU and GPU implementation 

are closer and their difference can be neglectable in terms of the total energies or forces. 

However, the CPU energies are always a little larger than the GPU energies, which could 

be attributed to the mixed precision we used in the GPU calculations. Differently, the 

average difference of both CPU and GPU forces are closer to zero, although we still can 
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observe several large deviations (~0.1 kcal/mol Å).  Besides, the results can be 

reproduced in both CHARMM and OpenMM programs, so it suggests that the GPU-

GBMV2/NP has been implemented correctly and is also available for users upon request. 

 

Figure 5.2 Comparison of GPU- and CPU-GBMV2/NP in calculating the energies 
(A) and forces (B) of 1BDC protein, where a variety of conformations are used to 

calculate the energies, while the forces are calculated from one structure. The 
diagonal black line (y = x) is shown as reference. The inserted panels are the 

difference between CPU and GPU calculations in the same unit. The CPU forces are 
calculated by the “test first” command from the CHARMM program. 

5.3.2 Effect of NPHI on the numerical stability 

It is noted that the GBMV2/NP model uses a numerical method to calculate the 

molecular volume and surface of solute. The number of numerical grid points will 

therefore affect the stability of calculating molecular energy and forces. We investigate 

the effect of angular grid points (NPHI) on the energy conservation of GBMV2/NP 

calculations (Figure 5.3). It is clearly seen that the energy conservation of GBMV2/NP 

model is highly associated with the NPHI values, where a large NPHI can give a small 

energy drift. However, a larger NPHI value usually results in a slower performance, due 

to an increase of total numerical grid points. It should be mentioned that the GBMV2/NP 
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model uses a larger surface tension coefficient (γ = 62 cal/mol Å2), and thus is much 

larger than that of GBMV2/SA model (γ = 5 cal/mol Å2), which requires a larger NPHI 

value to keep the energies less drifted. To keep a balance of computational cost and 

accuracy, it is found that a good choice of NPHI value for GB electrostatic and nonpolar 

calculations is 50 and 110, respectively. 

 

Figure 5.3 The effect of NPHI value on the energy conservation for GBMV2/NP MD 
simulations of GB1p peptide. The NPHI value is the number of angular numerical 

grid points used for the GBMV2/NP model. Both GB electrostatic and nonpolar 
terms use the same NPHI value. The default number of radial grid points is also 

used in the calculations of GB electrostatic energy. 

5.3.3 Computational efficiency 

We further explore the computational efficiency of GPU-GBMV2/NP model. 

Previous observations of GBMV2/SA model showed a ~60x faster speedup [156]. It is 

expected that the addition of this dispersion term will not significantly increase the 

computational cost of GBMV2/NP model, because it directly shares the data from the GB 

electrostatic calculations, including the calculation of Born radius of each atom and its 
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derivative with respect to atomic coordinates. This is confirmed by the benchmarking test 

of 3GB1 protein (Figure 5.4), which shows a little increase in the GBMV2/NP 

calculation. Unsurprisingly, the timings of the important GPU kernels are similar to our 

previous observations (Figure 3.8). This indicates that the inclusion of dispersion term 

has little effect on the computational efficiency of GBMV2/NP model. 

 

Figure 5.4 Comparison of GPU-GBMV2/SA and GBMV2/NP models in simulating a 
moderate size of 3GB1 protein, and the percentage of time spent in several 

important GPU kernels is shown in a pie graph. 

5.3.4 Parameterization and benchmarking of GBMV2/NP model 

5.3.4.1 Verify G-L approximation 

The G-L approximation of vdW dispersion solute-solvent interaction energy has 

been used in previous implicit solvent models [143, 144]. It is still necessary to test 

whether it can provide a reliable approximation in the GBMV2/NP model, given that they 

use different approximations of molecular volume and Born radius. It can be seen from 
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Figure 5.5 that this G-L approximation can provide a good correlation between the 

implicit and explicit atomic solute-solvent dispersion interactions, which has an 

agreement with the previous observations [143]. This suggests that we can set the default 

value of its coefficient as one, which will be used in all following calculations. 

 

Figure 5.5 Comparisons of the atomistic solute-solvent vdW dispersion interactions 
between the GBMV2/NP and CHARMM36m (c36m) explicit solvent simulations. 

The PCC is the Pearson correlation coefficient, and it is better when it is closer to 1. 
The protein (PDBID: 1AJJ) was used in this calculation. 

5.3.4.2 Parameterization of GBMV2/NP model 

To parameterize the GBMV2/NP model, we use both solvation free energies of 

side chains and stabilities of many representative pairs to fit the key parameters, 

including the radius of water to probe the solvent accessible surface area (Rw), surface 

tension coefficient (γ), and the atomic input radius (RivdW), the coefficient of vdW 

dispersion term (αi), and possible backbone torsion profile (CMAP) to reproduce the 

secondary structures of both helical and β-sheet peptides. The reference data of solvation 

free energies of nonpolar side chains can be found from previous study [248]. We also 
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run both c36m and a99SBdisp explicit solvent simulations for all amino acids side chain 

pairs. In addition, we iteratively tune the hydrogen bond strength and CMAP profile to 

ensure a reasonable description of protein secondary structure for several peptides.  

First, the Rw value is optimized to 0.8 Å, which reproduces the peak of potential 

mean forces (PMF) profile of nonpolar side chain pairs (such as wy_pd), which 

represents the first shell waters on the surface of solute (Figure 5.6). As we see, the 

GBMV2/NP model gives a very close match to the c36m explicit solvent simulation, 

compared to the GBMV2/SA model, in particular for the first peak of PMF profile. This 

can also be observed in other nonpolar side chain pairs. 

 

Figure 5.6 The free energy profile of Trp and Tyr side chain pair (wy_pd) for three 
protein force fields. The distance of CE2 and CE1 atom type is used as an order 

parameter to obtain the free energy profile. The inserted image shows the structure 
of wy_pd pair. 

However, it is found that it is challenging to balance the solvation free energies of 

side chains and stabilities of side chain pairs when we fit the surface tension coefficient 

(γ). In the end, we find that the choice (γ = 0.062 kcal/mol Å2) reaches a compromise and 

provides a good agreement with the explicit solvent data of both solvation free energies 
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(Figure 5.7) and stabilities (Figure 5.8), although it is relatively limited for the 

GBMV2/NP model to describe the stabilities of several nonpolar side chain pairs. This 

inconsistency could be attributed to the use of vdW volume in calculating the cavity free 

energy term, which could provide an inconsistent description of bound and unbound state 

of nonpolar side chain pairs. 

Besides these nonpolar side chain pairs, we tune the polar or charged pairs to 

achieve a closer stability to the explicit ones by changing their input radii. We mainly 

focus on the backbone hydrogen bonding pairs (such as ala2 pair in Figure 5.8), which 

determines the stability of backbone hydrogen bond. It is noted that some charged pairs 

(such as rrsa, ek, and eks) cannot be described in the GBMV2 models (Figure 5.8). 

However, both the state-of-the-art c36m and a99SBdisp protein force fields are also 

limited in describing these charged pairs, so this deviation could highly depend on the 

protein force fields. 

 

Figure 5.7 The solvation free energies of all nonpolar amino acids side chains. The 
data of experiment and c36m explicit simulations is obtained from the previous 
result [248]. The RMSD values of all calculations are calculated in terms of the 

experimental data, and a larger value means that it is less close to the experimental 
values. 
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Figure 5.8 The stabilities of amino acids side chain pairs for the selected amino acid 
side chain pairs, and their descriptions can be found in previous paper [124]. The 
data from both c36m and a99SBdisp explicit solvent simulations are considered as 

reference. RMSD values of all calculations are calculated in terms of the c36m 
explicit solvent simulation. 

5.3.4.3 Conformational equilibrium of peptide simulations  

We further test the optimized GBMV2/NP to reproduce the conformational 

equilibrium of several peptide simulations (Figure 5.9); It shows that it can give a 

reasonable description of small peptide simulations. For example, the helicity profile of 

Ace-(AAQAA)3-NH2 peptide calculated from c36m-GBMV2/NP model is slightly higher 
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than the experimental observation. However, it describes the folding stability order of 

both GB1p and GB1m1 β-sheet peptide correctly, which are closer to the experimental 

data (~42% for GB1p and ~6% for GB1m1 at 278 K) [249]. This is partly due to an 

iterative optimization of input radius of each atom, in particular to reproduce the stability 

of backbone hydrogen bonding pairs. 

 

Figure 5.9 (A) The helicity profile of Ace-(AAQAA)3-NH2 peptide and (B) the 
population of the number of native hydrogen bonds. GB1p: GEWTYD DATK 

TFTVTE; GB1m1: GEWTYD DATK TATVTE; Experimental observation: GB1p 
is ~42% folded at 278 K and the stability of GB1p is higher than that of GB1m1 

peptide. 

5.3.4.4 Control simulations of folded proteins 

Unfortunately, it seems that the GBMV2/NP model does not favor the 

stabilization of well-folded proteins (such as 1BDC protein in Figure 5.10). The native 

structure of 1BDC protein can be readily unfolded within a few nanoseconds, which is 

inconsistent with the experimental observation that this protein is pretty stable at 300 K. 

To understand the underlying reasoning, we plot its SASA value with the increase of Rw 

value. We can observe that both folded and unfolded structures give different behaviors. 

For example, they both have a minimum point, which is around a small Rw value. This 
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suggests that the SASA value includes the unphysical surface area inside the 1BDC 

protein when the radius of water probe is very small (Figure 5.10). This effect can be 

significantly observed in the folded structures, compared to the unfolded structures. It is 

because most protein side chains are exposed to the solvent for the unfolded proteins. 

This unphysical surface area resulted from the use of a lower Rw value (0.8 Å in the 

GBMV2/NP model) destabilize the folded structures. Although the GBMV2/SA uses the 

same SASA model, it has a very small surface tension coefficient (γ = 0.005 kcal/mol 

Å2), compared to that of GBMV2/NP model (γ = 0.062 kcal/mol Å2) and also uses a 

larger radius of water probe (Rw = 1.4 Å). As a result, this effect is not highlighted in 

previous GBMV2/SA model. This observation shows that the GBMV2/NP model needs a 

better model to calculate accurately the SASA of proteins, which needs to be addressed in 

the future.  

 

Figure 5.10 (A) The RMSD value of 1BDC protein during a control simulation at 
300 K. The starting native structure is inserted, and the hydrophobic residues are 

shown in colors. (B) The SASA values are calculated from the SASA model with an 
increase of Rw value. Both folded and unfolded structures are used for a 

comparison. The inserted image shows a process to calculate the SASA value. 
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5.4 Conclusions 

A dispersion-corrected term by a G-L approximation has been correctly 

implemented in a GPU-accelerated GBMV2/NP implicit solvent model, to improve the 

description of the nonpolar solvation free energies. It shows that its inclusion will not 

significantly increase the computational cost, compared to a more expensive calculation 

of electrostatic solvation free energy. Preliminary results also verify the reliability of G-L 

approximation to reproduce the explicit solute-solvent dispersion energies. It also shows 

that the optimized GBMV2/NP model gives a good agreement with the explicit solvent 

calculations, including not only the solvation free energies of amino acids side chains and 

stabilities for most of side chain pairs, but also the equilibrium of both folded and 

unfolded conformational ensembles for small peptides. However, this model favors the 

unfolded states for well-folded proteins, in particular large proteins (such as 3GB1 and 

1BDC), which is inconsistent with the experimental observations. The underlying reason 

is attributed to the inaccurate description of repulsive SASA model that has a large 

surface tension coefficient, compared to that of GBMV2/SA model. As a result, the 

folded state of protein has a larger surface area that results from the description of 

unphysical vdW volume, which increases the instability of folded states of protein. This 

suggests that a sufficient description of the SASA term still needs to be improved. 
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CHAPTER 6  

SUMMARY AND FUTURE DIRECTIONS 

6.1 Summary 

Accurate and reliable molecular simulations are crucial for studying the detailed 

conformational ensembles of intrinsically disordered proteins (IDPs) in isolation, 

dynamic complexes, or biological condensates. By integrating computational capabilities 

with experimental studies, we can gain insights into how dynamic protein states respond 

to cellular stimuli, such as signaling and regulation, and establish a more rigorous 

understanding of the structure-function relationship of IDPs and intrinsically disordered 

regions (IDRs). In this dissertation, we investigated explicit and implicit atomistic 

simulations of IDP folding and dynamics. Our assessment of state-of-the-art protein force 

fields, including CHARMM36m and a99SB-disp, revealed that the CHARMM36m force 

field overestimated the stability of polar/charged pairs, particularly in electrostatic 

interactions with water molecules involving Arg and Glu residues. This indicates the 

need for a more accurate force field to describe protein-water electrostatic interactions 

and better describe the conformational ensembles and dynamics of IDPs. 

Implicit solvent models have shown great potential in accelerating the 

conformational sampling of IDPs, but they may provide less accurate descriptions of IDP 

conformations. The GBMV2 models, including GBMV2/SA and GBMV2/NP, utilize an 

improved molecular volume to describe the electrostatic solvation free energy, striking a 

balance between accuracy and efficiency in IDP simulations. To further enhance the 

speed of GBMV2 models, we have implemented GPU acceleration for the calculation of 
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electrostatic and nonpolar terms, resulting in a significant ~60x speedup in GBMV2 

simulations. However, the current GBMV2 models still struggle to accurately capture 

both folded and unfolded conformations. For instance, GBMV2/SA fails to capture the 

secondary structure of the p53-TAD protein compared to experimental observations. 

Additionally, the GBMV2/NP model, which includes an improved nonpolar description, 

faces challenges in effectively balancing the cavity and solute-solvent dispersion 

solvation free energies. Further optimization is necessary to fully realize the potential 

application of the GBMV2/NP model in sampling IDP conformations. 

6.2 Future directions 

The high dimensionality and complex nature of disordered protein conformation 

continues to push the limits of the force field and sampling capability. In particular, none 

of these methods alone appears to be generally applicable to simulate IDPs that are large 

(e.g., more than a few dozens of residues) and/or contain nontrivial residual structural 

features. We still need more studies to provide a reliable and feasible computational 

method to simulate both folded and disordered proteins, including the development of 

protein force fields and enhanced sampling methods.  

The optimization of current protein force fields to accurately describe protein-

water interactions, especially for polar/charged residue pairs, is an ongoing endeavor. 

However, achieving a balanced representation of protein-protein and protein-water 

interactions for these residues remains challenging. A promising direction for 

improvement lies in the optimization of polarizable protein force fields specifically 

tailored for IDP systems, as classical protein force fields may not adequately capture their 
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unique conformations. Polarizable force fields have the potential to describe 

polar/charged residues in buried or water-exposed environments by incorporating 

polarizable effects. In addition to polarizability, a more accurate force field is needed to 

describe protein-water electrostatic interactions. Machine learning (ML) based protein 

force fields offer a promising avenue in this regard. While numerous studies are focused 

on developing ML-based force fields for protein systems, these potential ML-based force 

fields can strike a balance between ordered and disordered proteins. They rely on more 

accurate, albeit computationally expensive, models such as quantum chemistry or density 

functional theory calculations, which serve as a valuable foundation for the development 

of transferable protein force fields. 

The development of more effective methods for sampling IDP conformations and 

dynamic interactions is an urgent need and presents exciting opportunities. One 

promising approach is the integration of various existing strategies, both CV-dependent 

and CV-free, to enhance sampling. A particularly exciting direction is the application of 

machine learning to design adaptive sampling strategies that can dynamically generate 

bias potentials to explore the free energy landscape more efficiently. Additionally, 

several protein models with different levels of resolution are being developed and refined 

for IDP simulations, especially for studying biological condensates. These models range 

from simplified C⍺-only single-bead protein models to more complex implicit solvent 

models with atomistic representations. Many of the current models are designed to 

capture systems with minimal residual structures. A key challenge in multi-scale 

modeling and simulation of IDPs is finding the optimal trade-off between resolution, 

accuracy, and efficiency for the specific problem at hand. Nevertheless, multi-scale 
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simulations are expected to continue playing a central role in the study of IDPs and their 

dynamic interactions.   

Indeed, the accurate prediction of binding free energies of protein-ligand systems 

remains a challenge for implicit solvent models, including GBMV2 models such as 

GBMV2/SA and GBMV2/NP. The reliability of these models in estimating the binding 

free energies of diverse drug-like molecules is still unknown. While many implicit 

solvent models struggle to provide accurate descriptions within a few kcal/mol, it is 

unclear whether GBMV2 models, with their improved molecular volume and accurate 

representation of electrostatic solvation free energy, can overcome this limitation. 

Therefore, further research is necessary to assess the potential of GBMV2 models in 

predicting the binding free energies of protein-ligand complexes. These studies will help 

elucidate the strengths and limitations of GBMV2 models and contribute to the 

development of more accurate computational methods for binding free energy 

predictions. 
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