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ABSTRACT OF THE DISSERTATION

Advances in Computational Solvation Thermodynamics

by

Matthew A. Wyczalkowski

Doctor of Philosophy in Biomedical Engineering

Washington University in St. Louis, 2009

Research Advisor: Professor Rohit V. Pappu

The aim of this thesis is to develop improved methods for calculating the free energy,

entropy and enthalpy of solvation from molecular simulations.

Solvation thermodynamics of model compounds provides quantitative measurements

used to analyze the stability of protein conformations in aqueous milieus. Solva-

tion free energies govern the favorability of the solvation process, while entropy and

enthalpy decompositions give insight into the molecular mechanisms by which the

process occurs. Computationally, a coupling parameter λ modulates solute-solvent

interactions to simulate an insertion process, and multiple lengthy simulations at a

fixed λ value are typically required for free energy calculations to converge; entropy

and enthalpy decompositions generally take 10-100 times longer.

This thesis presents three advances which accelerate the convergence of such calcula-

tions:

ii



1. Development of entropy and enthalpy estimators which combine data from mul-

tiple simulations;

2. Optimization of λ schedules, or the set of parameter values associated with each

simulation;

3. Validation of Hamiltonian replica exchange, a technique which swaps λ values

between two otherwise independent simulations.

Taken together, these techniques promise to increase the accuracy and precision of

free energy, entropy and enthalpy calculations. Improved estimates, in turn, can be

used to investigate the validity and limits of existing solvation models and refine force

field parameters, with the goal of understanding better the collapse transition and

aggregation behavior of polypeptides.
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Chapter 1

Introduction

Protein folding and binding is the sine qua non of biological life. The myriad tasks

which proteins perform in an organism – binding and recognition of macromolecules,

catalysis of reactions, conformational switching in response to stimuli, and structural

support and motility – are based on the three dimensional structure of folded proteins

and their specific associations with other molecules. Understanding the principles of

protein folding and binding is central to comprehending the molecular basis of life.

The pioneering work of Anfinsen, for which he was awarded the 1972 Nobel Prize in

Chemistry, led to the “thermodynamic hypothesis” for protein folding.

This hypothesis states that the three dimensional structure of a native
protein in its normal physiological milieu . . . is the one in which the
Gibbs free energy of the whole system is lowest; that is, that the native
conformation is determined by the totality of interatomic interactions and
hence by the amino acid sequence, in a given environment (Anfinsen,
1973).

The free energy of a protein’s conformation in an aqueous milieu – the focus of our

interest – is then the fundamental determinant of its structure. The entropic and

enthalpic constituents of that free energy, furthermore, are the fingerprints of the

underlying molecular processes.

The central focus of this thesis work is the development of improved techniques for

calculating free energies of solvation, and their entropy and enthalpy components,

based on computational molecular simulations.
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1.1 Free Energy of Solvation

1.1.1 Motivation

Proteins fold spontaneously to their native states. All the information necessary for

folding is encoded in the amino acid sequence and consequently, in the appropriate

milieu, a protein folds because the free energy of the protein and solvent system is

minimized upon folding. If the solution conditions are altered, then a protein will

unfold if the unfolded state minimizes the free energy of the entire system. Therefore,

in protein folding, the relevant quantity is the free energy of folding, ∆G◦
fold, defined

as the difference in the standard state partial molar Gibbs free energies of the folded

and unfolded states. For a given set of solution conditions, the folded state is the

preferred state when ∆G◦
fold < 0, and ∆G◦

fold can change in magnitude and sign as

solution conditions vary.

In the folded state, hydrophobic groups are shielded from the aqueous milieu, resulting

in compact structures with hydrophobic interiors and hydrophilic (polar or charged)

groups on the surface (see Fig. 1.1). Hence, protein folding is characterized by the

transfer of specific groups from an aqueous milieu to a different microenvironment

(a “greasy” interior in the case of hydrophobic groups). This transfer process is

connected fundamentally to the free energy of solvation, a quantity which will be

defined below.

1.1.2 Definition

Ben-Naim (1987) has provided a formal definition for the solvation process. According

to this definition, solvation refers to the “transfer of a solute molecule from a fixed

position in the ideal gas phase into a fixed position in the liquid phase, and the

process is carried out at fixed temperature and pressure.” In this definition, the term

solvation conceptually refers to a measure of the interaction between the solute and

its surroundings. With constant temperature T and pressure P as thermodynamic

constraints, and subscripts s and l referring to solute and solvent, respectively, the

2



Figure 1.1: The molecular structure of ubiquitin, a globular protein (PDB code
1D3Z). Hydrophobic residues, in white, tend to partition to the interior of the

protein, while the colored hydrophilic residues are on the exterior (with polar, basic
and acidic residues in green, blue and red, respectively). Visualization with VMD

(Humphrey et al., 1996).
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Gibbs free energy of solvation is written as,

∆Gs = ∆G∗
s + kBT ln(qρsΛ

3). (1.1)

Here, ∆G∗
s is the pseudochemical potential which captures the free energy of transfer

of an immobile solute from the gas phase to the solvated liquid phase. It is defined

as,

∆G∗
s = G∗(T, P, Nl + 1)−G(T, P,Nl) (1.2)

where Nl is the number of solvent molecules and the asterisk (∗) indicates that the

position of the solute is fixed. The pseudochemical potential captures the interactions

between the solute and the solvent, and may be calculated on the basis of such

interactions as,

∆G∗
s = −kBT ln〈exp{−[VNl+1(Γl, Γ∗

s)− VNl
(Γl)]/(kBT )}〉. (1.3)

where the ensemble average is taken over all possible conformations (Γl) of the Nl

solute molecules while the solvent configuration (Γ∗
s) is held fixed. VNl+1 and VNl

are the internal energies of the system at a given configuration with and without the

solute molecule, respectively. Their difference is the binding energy of the solute with

the solvent, or equivalently, the work required to insert the solute molecule.

The second term in Eq. (1.1) is the liberation free energy, which captures the con-

tribution from releasing the solute position restraint. kB is the Boltzmann constant,

ρs is the number density of solute s in the liquid, Λ is the momentum partition func-

tion and q is the internal partition function (Ben-Naim and Marcus, 1984; Ben-Naim,

1987). It is discussed further in chapter 3.

Eq. (1.3) forms the operational basis of evaluating solvation free energies compu-

tationally, and is effectively the free energy perturbation technique which will be

discussed in chapters 2, 3 and 4.

4



1.1.3 Relevance to Biology

Driving forces for a range of phenomena are tied to the precise values of ∆Gs at

the appropriate physiological conditions. Such phenomena include (i) protein folding

– the transfer of a protein from a solvent-exposed macrostate (unfolded) to a folded

state characterized by the partitioning of some groups into a solvent protected interior;

(ii) transfer of ions from water into the interior of an ion channel; (iii) transfer of a

protein from an aqueous milieu into a hydrophobic lipid environment (membrane

protein folding); (iv) self-association of proteins and aggregation/phase separation;

and (v) binding, where a ligand and protein lose interactions with the surroundings

and gain interactions with each other.

Such processes are all governed by transfer free energies from one solvent into another,

and are related to solvation free energies by the relationship (see Fig. 1.2),

∆Gt = ∆G(2)
s −∆G(1)

s (1.4)

with ∆G
(i)
s the free energy of solvation in solvent i. ∆Gt is then the transfer free

energy from solvent 1 to solvent 2.

∆
G

(1
)

s

∆
G
(2)s

∆Gt

Gas

Solvent
(2)

Solvent
(1) Transfer

SolvationSo
lva

tio
n

Figure 1.2: The transfer process of a solute from solvent 1 to solvent 2 can be
thermodynamically decomposed into a pair of gas→solvent solvation processes.

5



1.2 Driving Forces in Protein Folding

As described in section 1.1, ∆Gt and the relevant ∆G
(i)
s values provide the quantita-

tive basis for understanding the stability and spontaneity for a range of self-assembly

and molecular recognition processes involving proteins. In this section, we review

our understanding of the driving forces for protein folding from the perspective of

solvation thermodynamics.

The conformations of a protein in solution are governed by a number of forces, includ-

ing electrostatic, hydrogen bond and van der Waals forces, as well as the hydrophobic

effect and conformational and solvent entropy (Dill, 1990). ∆G◦
fold is governed by a

balance of large opposing forces, with three forces dominant: the hydrophobic effect

tends to stabilize compact states; chain entropy favors swollen conformations; and

hydrogen bonding stabilizes specific native conformations, although its overall con-

tribution to the relative stability of compact and swollen conformations is uncertain,

and is the subject of ongoing debate (Pace et al., 1996). As a consequence of this

balance, the stability of native structures of proteins is typically marginal, with small

perturbations in solvent conditions or sequence able to tip the balance and lead to

denaturation (Bolen and Rose, 2008).

1.2.1 The Hydrophobic Effect

The free energy change associated with the solvation of a nonpolar molecule such

as a hydrocarbon is positive (Tanford, 1973). This is intuitively understood from

the observation that water and oil do not mix and remain in separate phases, al-

though mixing does occur at very low concentrations. The magnitude and nature

of this driving force can be quantified by measuring the transfer free energy of a

hydrophobic model compound from a nonpolar solvent into water (Baldwin, 2005).

Alternatively, ∆Gs can be measured directly by determining the vapor pressure of the

compound over dilute aqueous solutions, for instance, from the equilibrium constant

for the transfer of the compound from water to the vapor phase may be calculated

(Wolfenden et al., 1981). The hydrophobic effect provides a driving force for the

collapse of hydrophobic polypeptides, favoring compact, globular structures which
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minimize protein interfaces with water. The nature and basis of the hydrophobic

effect will be discussed in greater detail in section 1.3.

1.2.2 Hydrogen Bonding

Hydrogen bonds are directional interactions involving atoms of different electroneg-

ativity. The hydrogen (H) is covalently attached to a donor atom (D), with the

hydrogen bond (· · · ) forming between this pair and an acceptor (A), D−H · · ·A, an

effect which may be modeled as a dipole-charge interaction. Donor-acceptor distances

range between 2.7Å and 3.2Å, and the interaction strength depends on the angle

6 DHA, leading to the linearity of hydrogen bonds. It has been proposed that quan-

tum mechanical effects such as charge transfer and classical, higher order electronic

polarization also play an important role in determining the strengths of hydrogen

bonds. Gas phase calculations show that the strength of multiple hydrogen bonds is

greater than the sum of the bonds individually, implying a cooperativity associated

with hydrogen bonding (Jeffrey, 2003; Ponder and Case, 2003).

Hydrogen bonds play a central role in determining the properties of water and ice,

such as the large heat capacity of liquid water, its strong surface tension and broad

temperature range in which it is liquid. These properties are the result of the open

tetrahedral structure which derives from intermolecular hydrogen bonding (Dill and

Bromberg, 2003).

Hydrogen bonding also occurs in proteins. The polypeptide backbone contains both

hydrogen bond donor and acceptor groups, and various side chains contain donors

and/or acceptors as well. As a result, in a protein system, the backbone, polar side

chains and water can all participate in hydrogen bonding. However, the effect of

hydrogen bonding on the stability of a collapsed polypeptide remains unclear, and

remains mired in controversy (Pace, 2009; Dill, 1990; Bolen and Rose, 2008). The

α helix (Pauling et al., 1951) and β sheets (Pauling and Corey, 1951) as originally

constructed were understood to be stabilized by intramolecular hydrogen bonds. Soon

after, however, Kauzmann argued that hydrogen bonding, while certainly important,

cannot be the dominant driving force for the stabilization of the folded state of the

protein, since there was no basis for believing that the intrachain hydrogen bonds in
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the folded state would have a lower free energy than those of the unfolded chain to

water (Dill, 1990).

Much effort has been made to quantify the energetic difference between a hydrogen

bond to water in the unfolded chain as compared to an intramolecular hydrogen bond

in a folded chain (Stickle et al., 1992; Pace, 2009). In order to evaluate this difference,

a number of estimates must be made, including (a) the enthalpy of hydrogen bond

formation in water and in the protein, (b) desolvation penalty in transferring polypep-

tide from aqueous to protein environment, (c) changes in conformational entropy of

both polypeptide chain and water molecules, (d) conformational dependence of in-

tramolecular hydrogen bond strength and (e) hydrogen bond cooperativity (Bolen

and Rose, 2008). None of these estimates are straightforward, and all are subject to

considerable uncertainty. Dill (1990) argues that the overall contribution of hydrogen

bonding to the stability of a protein is negligible. More recently, however, consen-

sus appears to be moving toward recognizing the importance of hydrogen bonding in

maintaining protein stability. Pace et al. (1996) argue that hydrogen bonding and

the hydrophobic effect make comparable contributions to the stability of globular

proteins. Bolen and Rose (2008) conclude that the energetically favorable hydrogen

bond stabilizes compact polypeptide structures. Recently, Gao et al. (2009) found

that the energetics of hydrogen bonds are sequence dependent, and can be up to 1.2

kcal/mol stronger in a hydrophobic environment, thus contributing significantly to

the stability of a protein native state.

1.2.3 Entropy of Unfolding

There are fewer ways for a protein to be collapsed than swollen, and fewer yet to be in

the native state; as a result, absent the other driving forces, a protein is overwhelm-

ingly more likely to assume swollen conformations (Dill, 1990). An additional contri-

bution is the entropy change of the solvent water upon protein unfolding. Whereas

the entropy of the chain increases when it swells, interactions of the solvent with

the newly exposed residues – both polar and hydrophobic – decrease solvent en-

tropy. On balance, conformational entropy dominates and drives the chain to swell

(Makhatadze, 2005).
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Quantifying such entropy changes is challenging, although consideration of the indi-

vidual components of the system allows some progress to be made. Simple models of

chain entropy based on excluded volume arguments provide a useful starting point for

theoretical estimates (Dill, 1990). Pursuing the problem in more detail, the protein

entropy can be divided into backbone, side chain, and rotation and translational com-

ponents (Amzel, 2000). Upon collapse, both the backbone and side chains experience

a loss of conformers accessible to each dihedral bond, as well as a reduction in the

magnitude of their fluctuations. The change in solvent entropy can be estimated from

the change in solvent exposed polar and hydrophobic areas (Lee et al., 1994). Based

on such arguments, the entropy loss upon collapse and folding can be obtained.

Alternatively, estimates of the entropy change upon unfolding can be based on ex-

perimental measurements of heat capacity changes, together with assumptions about

the effect that burial of hydrophobic and polar polypeptide groups has on the heat

capacity (Pace et al., 1996). Several different estimates of the magnitude of the en-

tropic penalty associated with collapse have been made. The actual value for a given

protein will likely be context specific, and dependent on the conformations populated

in the unfolded ensemble (Makhatadze, 2005).

1.3 Solvation Thermodynamics

Instead of evaluating the stability of a given protein conformation by considering the

total sum of forces acting on it, an alternative approach is to estimate the transfer

free energy change associated with removing a protein group – be it a side chain or

the entire residue – from the aqueous solvent and “burying” it in the interior of the

protein (Baldwin, 2005). The relative affinity with which polypeptide units interact

with water, as compared to their interaction with the rest of the polypeptide, governs

the stability of given polypeptide conformations. If such a transfer is favorable, the

polypeptide will tend adopt a compact structure, whereas unfavorable transfer free

energies stabilize the swollen protein conformation.
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1.3.1 Model Compound Experimental Studies

Our understanding of the solvation process, and in particular of the hydrophobic ef-

fect, is based on the thermodynamic analysis of experiments of the solvation of model

compounds. These solvation free energies, and their entropy/enthalpy decomposi-

tions, inform the construction of solvation theories. Here we present the basic results

of such experiments and their interpretations.

Hydrophobic Model Compounds

The Gibbs free energy of solvation, ∆Gs, can be decomposed into the solvation en-

thalpy ∆Hs and entropy ∆Ss components as,

∆Gs = ∆Hs − T∆Ss, (1.5)

where T is the temperature. With ∆Gs measured at a variety of temperatures, the

enthalpy of solvation may be calculated from experiment as

∆Hs = d[∆Gs/T ]/d[1/T ]. (1.6)

The following observations are made from experimental data of the solvation of

ethane, a nonpolar solute, in water at and around room temperature (Tanford, 1973):

• Since ∆Gs > 0, the solvation process is unfavorable.

• Further, ∆Gs decreases with increasing temperatures. According to Eq. (1.6),

this implies that ∆Hs < 0. That is, the solvation process is energetically fa-

vored, but only by a modest amount.

• Given the prior two observations, the solvation of non-polar model compounds

must be entropically unfavorable: ∆Ss < 0.

• The heat capacity of the system increases upon the addition of a solute, a

phenomenon known as anomalous heat capacity.
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These observations hold at vanishingly small solute concentrations, and so cannot be

explained by solute-solute interactions (such as clustering). Rather, they must be

interpreted as the result of changes in the state of water molecules induced by the

presence of hydrocarbons.

Since nonpolar compounds cannot form hydrogen bonds, they must perturb the water

hydrogen bond network. Water hydrogen bonds are not simply severed, however, as

that would require the enthalpy of the system to increase, whereas it is observed to

slightly decrease. Given that the free energy of the system increases, its entropy must

significantly decrease upon hydrophobic solvation. Apparently, the waters restructure

and lose degrees of freedom in the vicinity of the solute (Tanford, 1973).

This leads to the idea of clathrates or “icebergs” of water around hydrophobic solutes,

originally proposed by Frank and Evans (1945). That view, however, is inconsistent

with the anomalous heat capacity. Rather, it appears that there are competing ar-

rangements of water. One model consistent with these observations postulates two

types of water phases in the vicinity of the solute: one phase has high entropy and

enthalpy, the other low entropy and enthalpy. Both have the same free energy, being

in equilibrium. As the temperature increases the low entropy/enthalpy phase melts

out, and in so doing leads to the observed heat capacity anomalies (Gill et al., 1985).

The two-state model is not free of controversy, and other models have been proposed

(Sharp and Madan, 1997).

Polar Model Compounds

For polar compounds, ∆Ss is likewise negative, but a much more negative ∆Hs makes

the solvation process favorable. Also, the temperature dependence of ∆Hs is of the

opposite direction, with ∆CP < 0 (Sharp and Madan, 1997). This suggests that

unlike hydrophobic solvation, where the waters around the solute are more easily

displaced than in bulk, around a hydrophilic compound the waters are less labile and

more restrained (Tanford, 1973). Instead of fluctuating phases, the solvation shell

waters likely participate in hydrogen bonding with the solute and are less mobile.

The free energy associated with the solvation of a model compound defines the fa-

vorability of the process. Its decomposition into entropy and enthalpy, moreover,
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gives insight into, and imposes constraints upon, molecular models of the mechanism.

Theories of solvation are based upon these results.

1.3.2 Hydrophobic Solvation Theory

The generalized descriptions of the solvation process presented so far are helpful

in illustrating the mechanism of solvation, but are of limited use in predicting the

solvation free energies of arbitrary solutes. To this end, one needs a more detailed and

quantitative description of the solvation mechanism. As a first conceptual step, the

solvation process is divided into two legs: first a cavity of the size and shape of the

solute is created in the solvent, and then the solute is inserted so that it interacts with

the solvent (Lee, 1995). The first step can be understood in terms of the fluctuations

of the solvent alone. The second step involves van der Waals interactions, hydrogen

bonding and electrostatic interactions, and this step is in general much more difficult

to model accurately. The various solvation theories, differ in: 1) the nature of the

model used for the solvent, and 2) the models for interactions between the solute and

the solvent in the second step of the solvation process.

Hard sphere solutes

In hard sphere models of solvation, the solute and solvent particles both interact like

billiard balls, with infinitely strong repulsion at distances smaller than the sum of

their radii, and no attraction or repulsion at larger distances. For such systems the

free energy associated with solvation is entirely entropic and related to the probability

of spontaneous fluctuations making a cavity the size and shape of the solute. Two

types of theories are frequently used to predict these free energies. The first, scaled

particle theory (SPT) (Reiss et al., 1959; Postma et al., 1982; Heying and Corti,

2004), uses strictly geometric arguments based on the size, shape and bulk density of

the solute. From these the theory makes deductions about the average density of the

fluid some distance away from the cavity, as well as the work required to change the

size of the cavity. These are then used to make predictions about the thermodynamic

properties of the solute as well as solute density radial distribution functions.
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Hard sphere models, while not entirely realistic, are nevertheless a useful and impor-

tant starting point for understanding solvation phenomena. They predict the entropic

penalty associated with the formation of a cavity in a solvent, a process common to

all types of solvation, as well as the magnitude of the hydrophobic effect between two

hard sphere particles (Berne, 1996).

Information theory (Hummer et al., 1998) is a generalization of the SPT model de-

scribed above relates the probability of finding a molecule-sized cavity to the solvation

free energy. Based on computer simulations of liquid water, the probability of finding

n solvent particles in a solute-shaped cavity is evaluated. Maximum entropy meth-

ods are then used to obtain the most likely probability of finding a void of a given

size, which leads to an estimate of the free energy of solvation. Unlike scaled parti-

cle theory, where both the solute and solvent are hard sphere particles, information

theory utilizes molecular models of the solvent to make predictions about solvation

properties of hard sphere solutes. They utilize the properties of bulk water alone,

and allow comparison to other, nonpolar solvents in order to understand how liquid

water responds to the presence of small spherical cavities.

Cavity Size Effects

The discussion thus far has focused implicitly on relatively small solutes ( 3-5 Å). As

first described by Stillinger (1973) using scaled particle theory, the behavior of water

around a small cavity differs fundamentally from its behavior next to a hydrophobic

wall. Whereas the water density immediately around a small solute is large, a vapor

barrier with greatly decreased water density is predicted to form adjacent to the wall.

Small cavities and walls are, in effect, the limiting cases of a family of spherical cavity

sizes, from water molecule-sized cavities to cavities of infinite size (whose boundary is

a planar wall). As the cavity size increases, presumably there is a transition from the

small cavity behavior, with increased water density at its boundary, to large cavity

behavior, where a vapor barrier separates the cavity from bulk water.

This observation has been formalized by the Lum-Chandler-Weeks theory of solva-

tion (Lum et al., 1999), which predicts the transition from the small to large solute
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regime. For small cavities the probability distribution for finding a spherical observa-

tion volume with n solvent molecules (as analyzed in the information theory model)

is Gaussian with respect to n, and the solvation free energy of a hard sphere solute

is dominated by entropic effects (ten Wolde, 2002). For larger cavities, however, this

distribution is no longer Gaussian. As cavity size increases, the water hydrogen bond

network ruptures, close proximity of water to the void becomes energetically unfa-

vorable, and a vapor barrier is formed immediately next to the cavity. This drying

transition is a collective effect and can be interpreted as a microscopic manifestation

of a phase transition (ten Wolde, 2002). For such large cavities, the free energy of

solvation is enthalpically dominated. The transition from the small to large solute

regime occurs for spherical cavity radii on the order of 1 nm (Chandler, 2005); below

this size, the solvation free energy is proportional to the volume of the cavity, whereas

for larger sizes, it is proportional to the surface area.

Accessible Surface Area models

The free energy of solvation for linear alkanes, which are hydrophobic, is found to scale

linearly with their accessible surface area (Sharp et al., 1991). There is some debate

as to whether such scaling is proportional to surface area or to volume, with some

experiments suggesting that a linear relationship with volume more is appropriate

(Baldwin, 2005). As discussed, some hydrophobic theories predict that volume scaling

holds for small volumes and surface area scaling for large ones (Chandler, 2005). For

solvation of polar model compounds, however, the linear relationship between solute

size (whether surface area or volume) does not hold, and two compounds with very

different surface areas can have nearly equal polar contributions to the solvation free

energy (Baldwin, 2005).

In the protein folding field, accessible surface area (ASA) models, which quantify free

energy changes of protein conformations based on changes in the protein surface area

accessible to water (Lee and Richards, 1971) are widespread. When a hydrophobic

side chain is transferred from the surface of a protein into its interior, hydrophobic

interactions with the surface waters are lost. The hydrophobicity of side chains is

found to scale linearly with the accessible surface area (Chothia, 1974), so the change
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in this area provides a measure of the hydrophobic free energy change upon protein

collapse.

Polar residues also interact with water through the hydrophobic effect, in addition to

hydrogen bonding. It is assumed that upon burial of a polar group the hydrogen bonds

lost with water are replaced by hydrogen bonds with the protein backbone or side

chains, and so is energetically neutral (Chothia, 1974). As a result, the hydrophobic

energy contribution is proportional to the ASA change for all components of the

protein, and may be used in the analysis of protein stability as well as binding (Jones

and Thornton, 1996; Halperin et al., 2002).

Collapse of Hydrophobic Chains

Liquid water at ambient conditions is argued by some researchers to lie close to phase

coexistence with vapor (Chandler, 2005), and transient vapor cavities spontaneously

flit into and out of existence. Continuum models which take such density fluctuations

into account can reproduce the hydrophobic interaction between two hydrophobic

hard spheres (Willard and Chandler, 2008).

This phenomenon is also believed to be responsible for the collapse of chains composed

of small hard spheres (ten Wolde and Chandler, 2002). Water interactions around

the extended conformations of such chains are in the small solute regime, making

the conformations transiently stable. Collapse begins only when a vapor bubble

forms spontaneously in the vicinity of the chain. A kink may then form, creating a

critical nucleus which transitions the chain from the small to the large solute regime.

Now, instead of being volume dependent (and hence conformation independent), the

free energy of solvation is proportional to the surface area; as a result, the chain

collapses further in order to minimize the solvent interface. Hydrophobic collapse is

then driven by the transition from the small to large solute regimes. Whether this

model, confirmed by computer simulations for hard sphere models, holds for solutes

with dispersive (attractive) interactions is subject to debate (Athawale et al., 2007;

Ashbaugh and Paulaitis, 2001).
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1.3.3 Polar Solvation Theory and Additivity

The theory of hydrophobic solvation, as discussed previously, is relatively well devel-

oped from a theoretical perspective and the predictions made by such models correlate

well with experimental results. The same cannot be said for the solvation mechanisms

for polar compounds. Here, the hydrogen bond plays a dominant role and its effect

on the solvation process is significant and complicated.

Unlike hydrophobic solvation, where the solute is well approximated as a cavity which

does not interact with the water, polar solutes participate in and affect the hydrogen

bond network of liquid water. In general, such interactions tend to be favorable

enthalpically, and polar compounds tend to be soluble as well (hence, hydrophilic).

The central approximation of hydrophobic theories – that solutes are simply holes in

water – simply does not hold. As a result, theories of polar solvation tend to be more

heuristic and empirical.

The Tanford Transfer Model

Transfer models utilize the free energy changes associated with transferring a com-

pound – typically a model of the protein backbone or side chain – from water to a

liquid which mimics the conditions in the interior of the protein. This liquid-liquid

transfer free energy is in turn obtained from ∆Gs for model compounds (Baldwin,

2005).

Figure 1.3 illustrates the Tanford transfer model formalism (Aune and Tanford, 1969),

used to quantify the change in the stability of a protein upon transfer to a chemical

denaturant; the same theory also applies to the process of transferring a protein (or

its constituent groups) from water into a nonpolar solvent approximating the interior

of a protein. Based on the thermodynamic cycle illustrated in Fig. 1.3, where the

free energy change is independent of the path, we can write,

∆G◦
D + ∆G

(N)
t = ∆G◦

H2O + ∆G
(D)
t . (1.7)
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Figure 1.3: The change in stability of the native state of protein upon transferring
from an aqueous solution to denaturant, ∆G◦

D−∆G◦
H2O, is given by the difference in

transfer free energies, ∆G
(D)
t −∆G

(N)
t . By the Tanford transfer model, this quantity

can be approximated by the sum of the individual group transfer free energies.

Rearranging, we obtain an expression for the change in the free energy of folding upon

transfer from water into the denaturant,

∆G◦
D −∆G◦

H2O = ∆G
(D)
t −∆G

(N)
t . (1.8)

From experimental evidence it is observed (Auton and Bolen, 2004; Bolen and Rose,

2008) that the difference in the transfer free energies between the aqueous and the

denaturing solution is proportional to the number of groups newly exposed upon

denaturation and the transfer free energies of these groups into the denaturing solvent.

Thus, Eq. (1.8) can be rewritten as,

∆G◦
D −∆G◦

H2O =
M∑
i

niαiδgt,i. (1.9)

Here M is the number of distinct group types, ni is the number of groups of type i

in the polypeptide, and δgt,i is the free energy of transfer of a group i from water to

a given denaturing solution. Finally, αi is the fraction of groups of type i that are

exposed in the denatured state and not in the native state; it accounts for groups

which are exposed to solvent in the folded conformation that do not change their

solvent exposure.
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In summary, the Tanford transfer model, Eq. (1.9), predicts the change in the stability

of the folded state of a protein as it is transferred from an aqueous to a denaturing

(or hydrophobic) solvent, based on the individual group transfer free energies which

are derived from model compound solvation studies.

Limits of additivity

In spite of the utility of transfer models and the widespread use of ASA techniques,

there are concerns about the general soundness of such additivity methods. A protein

is not just the sum of transfers of small molecule side chains, but a polymer (Dill,

1990). Aside from conformational entropy, a driving force which cannot be captured

at all by model compounds, the view that free energies, entropies and enthalpies

of solvation are group-wise additive is not a fundamental principle but an empirical

approximation, valid only when it is demonstrated to be so, but at times erroneous

(Dill, 1997).

For instance, chain termini are much more exposed to solvent water than polypeptide

groups in the central portions of a chain (Bolen and Rose, 2008) and this modulation

of the local environment will presumably influence solvation thermodynamics. In

fact, free energies of transfer (from water to 1 M urea) of short segments of the

polypeptide backbone are additive only if the contributions of the end groups are

considered separately (Auton and Bolen, 2004), and a linear relationship between

chain length and transfer free energy holds for chains past a given length.

The general validity of using model compounds to measure the partitioning of side

chains has also been called into question (Roseman, 1988). This is because the polar

polypeptide group – typically absent in a side chain model partition experiment –

modifies the local aqueous environment. As a result, the hydrophobicity of the polar

group is markedly increased, and the transfer of the solute into water becomes much

less favorable than is predicted from the transfers of the individual components. In

addition, a phenomenon known as the proximity effect increases the hydrophobicity

of polar functional groups when they are separated by one or two carbon atoms, again

suggesting limits to simple additivity models (Roseman, 1988).
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In short, extrapolation of thermodynamic quantities from model compounds must be

done with care; additivity principles are heuristic and not supported by any rigorous

theory. On the other hand, statistical thermodynamics does not suffer from such

limitations (Dill, 1997), and models of solvation based on this theory, along with

molecular dynamics simulations, may offer a sound way to evaluate the validity and

limits of additivity models.

1.4 Collapse of Polar Peptides

The preceding section detailed the limits of additivity assumptions based on formal

considerations (Dill, 1997) and empirical observations (Roseman, 1988). Recent in-

vestigations which consider the conformational equilibria of polypeptide systems rich

in polar amino acids provide a direct test of the validity of the transfer model and its

implicit additivity assumptions.

The notion of solvent quality from the field of polymer physics is helpful in un-

derstanding and categorizing disordered states of proteins. A polymer chain which

interacts more favorably with itself than with the solvent will collapse, and is said to

be in a poor solvent. Conversely, if chain-solvent interactions are preferred, the sys-

tem is in a good solvent regime. These two states can be characterized by considering

how the average radius of gyration 〈Rg〉 of the polymer scales with chain length N .

For long enough chains the relationship 〈Rg〉 ∝ N ν is found to generally hold, with

the parameter ν indicating solvent quality. For poor solvent ν = 0.33, whereas for a

good solvent ν = 0.59 (Rubinstein and Colby, 2003).

Intrinsically disordered proteins (IDPs) are functional proteins that do not fold into

well-defined, unique three-dimensional structures under physiological conditions (Fink,

2005). IDPs are ubiquitous in vivo and their intrinsic disorder is implicated in a range

of regulatory functions, such as signaling, molecular switching, protein trafficking,

and protein turnover (Wright and Dyson, 1999; Dunker et al., 2001, 2002a,b; Uver-

sky, 2002; Dyson and Wright, 2005). Typical IDP sequences have a combination of

low overall hydrophobicity, high mean net charge (Uversky et al., 2000), and in some

cases, low sequence complexity (Sim and Creamer, 2002; Weathers et al., 2007).
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Uversky et al. (2000) argued that low overall hydrophobicity of IDPs must imply the

lack of a driving force for formation of ensembles with compact structures, suggest-

ing that IDPs in water will behave as chains in a good solvent. These predictions

have been questioned by recent spectroscopic studies which characterize the confor-

mational ensembles for sequences that have many of the traits of IDPs, including low

hydrophobicity and low sequence complexity. Experiments on polyglutamine (Crick

et al., 2006) and glycine-serine block copolypeptides (Möglich et al., 2006) show that,

contrary to expectation, such polypeptides prefer to form collapsed structures in aque-

ous solutions. Mukhopadhyay et al. (2007) obtained similar results for the glutamine

/ asparagine rich N-terminal domain of the yeast prion protein Sup35. Tran et al.

(2008) then asked if these observations were attributable, at least partially, to intrin-

sic preferences of polypeptide backbones in water. Their studies, based on molecular

simulation data, showed that polyglycine chains spontaneously form collapsed struc-

tures in water. These results are inconsistent with the predictions of the transfer

model, as explained below.

The free energy of solvation for N-methylacetamide (NMA), a model compound mimic

of the polypeptide unit, is about -10 kcal/mol at 298 K (Wolfenden, 1978) (see also

chapter 3). Extrapolation from the transfer free energy model suggests that polyg-

lycine – essentially, a concatenation of repeating NMA units – should prefer structures

that maximize the interface with the aqueous solvent. That is, according to this the-

ory, water should be a good solvent for this generic polypeptide backbone.

The simulations of Tran et al. (2008) suggest that water behaves like a poor solvent for

polyglycine, despite the fact that NMA and other secondary amides are highly mis-

cible as small molecules in water. Clearly, the transfer model does not anticipate the

correlations imposed by chain connectivity, which in turn leads to liquid-liquid demix-

ing that causes the polyamides to collapse on themselves to facilitate the formation of

water deficient collapsed structures. While the repeating units are miscible in water

across a wide concentration range, the polyamides become immiscible as chain length

increases. The accumulated experimental and molecular simulation data suggest that

polymers of polar and hence hydrophilic model compounds behave like polymers of

hydrophobic model compounds. Concatenation of polar moieties introduces interac-

tions and effects on new length scales that are only realizable in the polymeric forms,

suggesting a new twist to the hydrophobic effect that defies explanation via simple
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extrapolations of the transfer model. These observations have precedent in the poly-

mer solubility literature and the open question that remains unanswered pertains to

the driving force for collapse transitions of polymers of polar molecules in aqueous

milieus.

1.4.1 Why Is Water a Poor Solvent for Polyamides?

Tran et al. (2008) proposed several hypotheses to explain their observations regarding

the collapse of polyglycine in water and the reversal of this preference for collapsed

states in 8 M urea. These hypotheses fall into three categories.

1. Collapse is the direct result of amide-amide and water-water interactions being

preferred to amide water interactions. If this is true, then weakening the intra-solute

hydrogen bonds without perturbing the model compound hydrophobicity, the model

compound van der Waals interactions, and only weak perturbation of the solvent-

model compound hydrogen bonds should promote the preference for more swollen

states. This perturbation can be achieved through systematic replacement of amides

with esters, an exercise that has been carried out in the Pappu lab (unpublished data).

The results demonstrate that the constructs with amide-to-ester substitutions as well

as polyesters remain collapsed, with greater stabilization of the collapsed states. This

suggests that the preference of amide-amide hydrogen bonds, while providing a seem-

ingly simple explanation, cannot be the sole reason for the observations regarding

polyamides.

2. It is conceivable that the free energy of solvation per amide becomes less favorable

as the lengths of polyamides increase, suggesting a negative cooperativity in the

solvation process. Unfortunately, this proposal has been difficult to test pending the

availability of robust methods for calculating free energies of solvation in the context

of long polymers in aqueous milieus. Preliminary calculations carried out in the

Pappu lab (unpublished data) for polyglycine N-mers up to a N = 3 suggest a very

weak negative cooperativity in the ∆Gs per amide.
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3. A linear relationship between ∆Gs and N may still mask the details of the solva-

tion process. A finer dissection of the preceding proposal comes from parsing the data

for NMA into the enthalpy and entropy of solvation. The favorable free energy of

hydration (∆Gs ' −10 kcal/mol) at 25◦C for NMA is the result of a balance between

highly favorable enthalpy (∆Hs ' −20 kcal/mol) and negative entropy (T∆Ss ' −10

kcal/mol) (Makhatadze et al., 1997). The large negative entropy offsets at least half

the favorable enthalpy. Graziano has proposed that this “negentropic” term derives

mainly from the excluded volume penalty associated with creation of a solute-sized

cavity in water (Graziano, 2000). One working hypothesis is that the negentropic

term becomes increasingly unfavorable for hydration of long, intrinsically flexible

chains, and the work done to create solute-sized cavities for expanded conformations

will also be significant. The entropic penalties associated with cavitation for this het-

erogeneous ensemble of swollen conformations might increase nonlinearly with chain

length. Consequently, one can postulate that longer chains collapse to minimize the

entropic penalties of solvent organization around swollen, loosely packed conforma-

tions.

1.4.2 The Promise of Simulations

In the preceding discussion we presented examples calling into question the validity of

the additivity assumptions underlying the transfer model. The hypotheses presented

above require the computation of free energies of solvation and their entropy-enthalpy

decompositions for flexible polymers. Such measurements, inaccessible to experimen-

tal probes, are, in principle, directly accessible with computer simulations.

Given the fundamental importance of solvation free energy calculations in testing the

validity of additivity assumptions and solvation models in general, the work presented

here focuses on issues related to the efficiency and accuracy of such calculations and

their entropy/enthalpy decomposition. The overall goal is to enable calculations

that can provide precise answers through computational tests of specific hypotheses.

Increasing the precision and accuracy of such calculations will enable us to address

the nature of the driving forces for the collapse of polar tracts as well as to understand

how this new manifestation of the hydrophobic effect fits into the general framework
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for the hydrophobic effect being pursued by other research groups (Wagoner and

Baker, 2006).

1.5 Synopsis of Thesis

The focus of this thesis is on the methodological aspects of computational thermody-

namics. The overall goal is to improve the accuracy and precision of the thermody-

namic quantities – the free energy, entropy and enthalpy – obtained from computer

simulations of the solvation process.

While the motivation for such studies, as described in detail in the previous section,

is to understand the thermodynamic stability of protein conformations, the work

here will focus on the solvation of small model compounds. The reasons for this

are threefold. First, model compounds are important conceptual stepping stones

for understanding the solvation process and thermodynamic stabilities of proteins.

Also, model compound solvation calculations are important in refining force field

parameters; being able to reproduce both the experimental free energies as well as

their decompositions lends confidence to the general accuracy of simulations. Finally,

techniques developed here can be applied directly to protein systems. Larger flexi-

ble molecules are considerably more difficult to sample accurately, but there are no

apparent conceptual difficulties in applying these techniques to protein systems.

1.5.1 Summary Description of Solvation Calculations

In order to contextualize the main contributions of this thesis, we outline here the

basic concepts behind solvation calculations. These will be fleshed out in chapter 2.

Solvation calculations as employed here consist of multiple independent equilibrium

molecular simulations. All such simulations have the same constituents: one solute

molecule bathed by a relatively large number of solvent water molecules. A coupling

parameter λ governs the interactions between the solute and the solvent: when λ = 0

the solute and solvent do not interact, and the simulation is effectively of the neat

solvent phase. With λ = 1 the solute and solvent interact fully. λ can assume
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intermediate values, resulting in an unphysical but methodologically useful system of

scaled solute-solvent interactions.

Periodically over the course of the simulations the internal energy of the system,

corresponding to the sum of all the pairwise atomic interactions, is saved to disk.

Foreign energies, or the internal energy of a given simulation evaluated at some other

λ value, may also be saved, along with the derivative of the internal energy with

respect to λ. These energy values are the raw data from which the thermodynamic

solvation quantities ∆F , ∆S and ∆U are calculated, given that the simulation is in

the canonical ensemble. These can then be converted to the NPT ensemble quantities

∆G, ∆S and ∆H, respectively.

1.5.2 Advances Presented in Thesis

Three methodological and conceptual advancements for calculating the solvation ther-

modynamic quantities – ∆F , ∆S and ∆U – are presented in this thesis.

1. Improved Estimators

There are a number of techniques by which free energy changes can be obtained from

simulation output. The Bennett acceptance ratio estimator (BAR) and the recently

published multistate Bennett acceptance ratio (MBAR) estimators are designed to

yield the free energy (∆F ) estimates with the lowest possible statistical error. In

chapter 3, we present two new entropy (∆S) estimators, derived from the BAR and

MBAR ∆F estimators. We show that like their ∆F versions, these methods have

markedly superior performance as measured by statistical error.

2. Improved λ Schedule

The specific λ values at which equilibrium simulations are performed have tradition-

ally been chosen in an ad hoc fashion. In chapter 4, we derive a relationship, based on

recent results in the field of nonequilibrium statistical mechanics, which prescribes the
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formal requirements for an optimal λ schedule. A procedure is described for how test

simulation results can be used to obtain improved λ schedules for the full simulation,

which results in improved convergence of thermodynamic estimators.

3. Improved Sampling through Hamiltonian Replica Exchange

Replica exchange techniques implement a Monte Carlo move which may exchange a

parameter between two otherwise independent simulations in order to improve equi-

libration. Such simulations typically swap the temperature, although in Hamiltonian

replica exchange the λ parameter is exchanged. While this technique has been used

for ∆F calculations in the literature, its efficacy has not been demonstrated and

the the fundamental principles underlying Hamiltonian replica exchange are obscure.

In chapter 4 we describe how Hamiltonian replica exchange helps to satisfy a mul-

ticanonical equilibrium condition, and demonstrate that it significantly speeds the

convergence of both free energy and entropy calculations.

Taken together, these advances provide techniques by which thermodynamic quanti-

ties may be estimated with computer simulations more rapidly and accurately.
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Chapter 2

Background

The goal of computational solvation thermodynamics is to calculate the free ener-

gies of solvation, and their entropy and enthalpy decompositions, from a series of

molecular simulations. The physicochemical process of solute transfer and solvation

is simulated by a gradual “growing in” of a solute molecule in a simulation cell of

hundreds or thousands of explicitly represented water molecules. This “growing in”

is accomplished by scaling the strength of the interactions of the water with the so-

lute by means of a coupling parameter λ; when λ = 0 the solute and solvent do not

interact, and for λ = 1 they interact fully (see Fig. 2.1). Based on the statistics of the

internal energies of the system accumulated over the course of the simulations at dif-

ferent λ values, the free energy of solvation, and its entropy/enthalpy decomposition,

can be calculated.

λ = 0 λ = 1

Figure 2.1: A schematic of solvation calculations. The parameter λ controls the
solute-solvent interactions. For λ = 0 the solute does not interact with solvent, and
the simulation is effectively of the neat liquid. At λ = 1 solute and solvent interact

fully, and at intermediate λ values the interactions are gradually scaled.

26



2.1 Simulation Methodology

At a fundamental level, molecular mechanics models consist of some number of point

mass particles representing atoms and their interactions through various forces. In

the most straightforward case of molecular dynamics simulations, the positions and

velocities of these particles evolve according to Newton’s equation of motion, a =

F /m. The resulting behavior of the system then reflects and predicts the processes

which take place at the atomic level in physical system. Here we briefly review the

techniques and concepts relevant to solvation calculations; standard texts include

Allen and Tildesley (1987), Frenkel and Smit (2002) and Leach (2001).

2.1.1 Molecular Mechanics Force Fields

A force field defines the potential energy of a system as a function of its atomic

coordinates, and the force acting on an atom is the gradient of this potential. Most

common force fields employed in the simulation of proteins use a potential energy

function of the form (Ponder and Case, 2003),

V (Γ) =
∑
bonds

kb(b− b0)
2 +

∑
angles

kθ(θ − θ0)
2 +

∑
torsions

kφ[cos(nφ + δ) + 1]

+
∑

nonbond pairs

{
qiqj

rij

+ 4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]}

. (2.1)

Here, Γ refers to all the atomic coordinates collectively, rij to the distance between

atoms i and j, and b, θ and φ to the bond distance, bending angle and torsion angles

between atoms.

The first three terms specify interactions between atoms adjacent to each other in

a molecule (bonds), those separated by one atom (angles) and those separated by

two atoms (torsions). The non-bonded terms govern the interactions of more distant

atoms in a molecule as well as atoms in different molecules. Electrostatic interactions

are proportional to the product of the charges of two atoms, q. In most force fields,

hydrogen bonding is modeled as an electrostatic effect with two (or more) opposite
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charges in a neutral molecule. These charges form a dipole which then simulates the

linear hydrogen bond.

Lennard-Jones interactions are a second type of non-bonded force. They consist of

two components: the repulsive term, whose potential decays as r−12, simulates the

hard repulsive core of atoms, while the dispersive r−6 term accounts for the attractive

van der Waals interactions between atoms.

The most common force fields, such as AMBER (Case et al., 2005), CHARMM

(MacKerell et al., 1998) and OPLS (Jorgensen et al., 1996), all have the same (or

similar) functional form as in Eq. (2.1). They differ in the specific parameter values

(σ, ε, q, etc.) for a given molecular system, as well as in the methodologies by which

such parameters are determined (Ponder and Case, 2003). For instance, the OPLS

approach has emphasized the testing of the force field on thermodynamic proper-

ties of pure organic liquids, especially heats of vaporization and densities (Jorgensen

et al., 1996). Similarly, the water models used in this work, TIP3P and TIP4P, were

developed to reproduce the structural features as well as the energy and density of

liquid water (Jorgensen et al., 1983).

It should be recognized that, force fields of the type in Eq. (2.1) involve severe

tradeoffs between accuracy and computational efficiency, and have well recognized

and significant shortcomings (Ponder and Case, 2003). For instance, the use of fixed

charges means that the model is unable to respond directly to the molecular environ-

ment. Polarization, where an electric field induces a dipole in a molecule, is affected

by the presence of other charges; this is inherently a multi-body effect and cannot

be captured by potentials of the form (2.1), which consider strictly pair-wise inter-

actions. Polarizable force fields iteratively solve for the induced electric field and

are able to model this effect, albeit at a high computational cost (Grossfield et al.,

2003). Force fields of the type in Eq. (2.1) have also been demonstrated to be limited

in their ability to reproduce the hydrogen bond geometry found in high resolution

PDB structures (Kuster, 2009). Despite their shortcomings, non-polarizable force

fields are acceptably accurate in many situations, particularly those involving neutral

molecules, and are widely used (Leach, 2001).
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2.1.2 Sampling Techniques

Given the potential of the system as a function of atomic coordinates, V (Γ), the task

of molecular simulations is to obtain the equilibrium probability of observing a given

system configuration, ρ(Γ). Formally, this can then be used to derive the expectation

value of any observable A, as will be discussed later. The probability ρ(Γ) is given

at thermal equilibrium by the Boltzmann distribution,

ρ(Γ) = exp[−βV (Γ)]/Z (2.2a)

where β = 1/kBT and

Z =

∫
dΓ exp[−βV (Γ)] (2.2b)

is the configuration integral or partition function. Z is generally inaccessible to sim-

ulations directly, as it involves an integral over all configurations. Instead, various

computational sampling techniques are used to generate configurations Γ which are

sampled from the Boltzmann distribution. With enough sampling, the normalized

histogram of such observations converges to the probability distribution ρ(Γ).

The two major techniques by which configurations are generated with probabilities

given by the Boltzmann distribution are molecular dynamics (MD) and Monte Carlo

(MC) techniques. With either method, system statistics (e.g. A(Γ)) and possible

entire configurations Γ are saved periodically over the course of the simulation and

analyzed at its conclusion.

Molecular Dynamics

Molecular dynamics techniques integrate Newton’s laws of motion, F = ma, in order

to obtain the trajectory of all the atoms in the system as a function of time. The

force is obtained from the gradient of the potential function, F = −∇V . Starting

from some arbitrary initial condition, after an initial equilibration period the system

reaches thermal equilibrium, and successive of samples of the system configurations

Γ are drawn from the equilibrium probability distribution.
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Langevin dynamics (LD), a variant of molecular dynamics techniques, is a type of

stochastic dynamics algorithm commonly used to simulate the effect of solvent in

simulations where it is not explicitly represented. In an LD simulation, all degrees of

freedom are implicitly coupled to a heat bath, and there is assumed to be an underly-

ing continuum which provides frequent collisions to create the stochastic and friction

forces. The dynamics are again governed by Newton’s laws of motion, but with two

extra force terms. In addition to the force −∇V from Eq. (2.1), a force proportional

to velocity, γv simulates the friction caused by the motion of the particle through the

solvent, with γ the friction coefficient. Also, a random fluctuation force R(t) cap-

tures the force on the particle due to random fluctuations caused by interactions with

solvent molecules; this force is typically Gaussian in distribution with a zero mean

(Leach, 2001; Skeel and Izaguirre, 2002). With these forces added, the simulation

proceeds as described for molecular dynamics.

Monte Carlo

Monte Carlo techniques obtain the probability distribution of atomic configurations

by randomly generating trial moves (or configuration changes) and then accepting

or rejecting them based on energetic criteria. Here we briefly present the theory of

Monte Carlo simulations, describing along the way an alternate formulation which

forms the basis of a set of results in chapter 4.

Monte Carlo simulations are based on the concept of a Markov chain of states (New-

man and Barkema, 1999). Such a chain satisfies two conditions: (1) the outcome of

each trial move depends only on the state of the previous trial, and (2) each trial

belongs to a finite set of N possible outcomes.

Suppose that the probability of the system having a configuration Γm is ρ̃m, with the

tilde representing a non-stationary (i.e. not necessarily equilibrium) state. We can

then construct a combined probability vector,

ρ̃ = (ρ̃1, ρ̃2, . . . ρ̃m, ρ̃n, . . . ρ̃N). (2.3)

which represents the probability of the system being in any give state, with
∑

i ρ̃i = 1.
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If the system is in state m, then the probability that it is in state n after the trial

move is given by the transition probability πmn. π is then the N × N matrix of all

such transition probabilities.

Assume that at step 1 the system has the probability distribution ρ̃(1). The proba-

bility distribution at the next step is then given as,

ρ̃(2) = ρ̃(1)π. (2.4)

At equilibrium, the probability distributions are stationary and do not change; repre-

senting such a distribution as ρ, we require the following as a condition for equilibrium,

ρ = ρπ. (2.5)

In terms of vector components, this can be written as,∑
m

ρmπmn = ρn. (2.6)

We proceed by imposing the condition of microscopic reversibility, which states that

at equilibrium the transitions between two states (i.e. m → n and m ← n) occur

with the same frequency. That is,

ρmπmn = ρnπnm. (2.7)

Equilibrium probabilities are given by the Boltzmann distribution, Eq. (2.2a). While

the partition function Z remains unknown, it cancels in the ratio ρn/ρm, which then

becomes,
πmn

πnm

= exp{−β[V (Γn)− V (Γm)]} (2.8)

There are a number of ways in which the ratio in Eq. (2.8) may be satisfied. The

classic way, used in most Monte Carlo simulations, is with the Metropolis acceptance

criterion, which defines the transition probability πmn as (Metropolis et al., 1953),

πMetropolis
mn = min(1, exp{−β[V (Γn)− V (Γm)]}). (2.9)
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Other possibilities exist, however, and in chapter 4 we make use of an alternative

acceptance criterion, the Fermi criterion (see also Bennett (1976)),

πFermi
mn =

1

1 + exp{−β[V (Γn)− V (Γm)]}
. (2.10)

Both choices, Eq. (2.9) and Eq. (2.10), will satisfy Eq. (2.8), and will lead to a

Boltzmann distribution of configurations. The Metropolis criterion typically leads

to faster convergence in a simulation (Newman and Barkema, 1999), but it is not

analytical. The Fermi criterion is more mathematically convenient, and its use as

a replacement for the Metropolis criterion in the analysis of replica exchange swap

probabilities (discussed in section 2.1.4) paves the way for one of the major results of

chapter 4.

In practice, the Metropolis Monte Carlo algorithm is implemented as follows. Starting

with system configuration Γm,

1. Choose a trial move δΓ to obtain the trial configuration Γn = Γm + δΓ.

2. Evaluate δV = V (Γn)− V (Γm).

3. If rand[0,1] < min[1, exp(−βδV )] then,

• Move accepted.

• Replace Γm with Γn.

4. Collect statistics on observables A(Γm), if necessary.

5. Repeat.

As in MD simulations, consecutive configurations are highly correlated, and system

statistics are saved at some less frequent intervals.

2.1.3 Solvation Calculations

As illustrated in Fig. 2.1, solvation calculations scale the solute-solvent interactions

by the parameter λ (Mezei and Beveridge, 1986). That is, the strength of the non-

bonded forces between a solute and solvent atom is modulated; at λ = 0 these forces
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are strictly zero, and assume regular, unscaled values at λ = 1. The forces between

solvent atoms are unaltered by λ, and solvent-solvent interactions may or may not be

modulated, depending on the implementation, as will be discussed later.

Scaling of Potentials

The most straightforward implementation is to scale solute-solvent non-bonded in-

teractions linearly using an equation such as,

Vsolute solute(rij, λLJ) = λ

{
qiqj

rij

+ 4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]}

(2.11)

While formally valid, this approach can lead to numerical instabilities when the dis-

tance between solute and solvent atoms is very small and λ ' 0 (Shirts et al., 2003).

For instance, unphysical effects like “nuclear fusion” can occur with the Lennard-Jones

forces unable to counteract the electrostatic attractions. Some authors (e.g. Frenkel

and Smit (2002)) suggest avoiding simulations with λ = 0 and using extrapolation

techniques to evaluate the end point along the λ schedule.

A more rigorous approach is to control the Lennard-Jones and Coulomb terms individ-

ually, and divide the insertion process into two legs: first, Lennard-Jones interactions

are increased with the parameter λLJ , followed by the Coulomb interactions, gov-

erned by λC (Pitera and van Gunsteren, 2002). For this technique, linear scaling of

the Coulomb interactions using

VC(rij, λC) = λC
qiqj

rij

(2.12)

is acceptable. This is because the electrostatic interactions become active only after

the repulsive Lennard-Jones interactions are fully in place. However, linearly scaling

of the Lennard-Jones interactions with the equation

V linear
LJ (rij, λLJ) = 4λLJεij

[(
σij

rij

)12

−
(

σij

rij

)6
]

(2.13)
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remains problematic for very small values of r. The problem is that with λ = 0

this potential is strictly zero for overlapping atoms, whereas for any λ infinitesimally

greater than zero, such atoms will experience a very strong repulsive force. This is

sometimes called the “fence post effect” (Shirts et al., 2003) can also lead to numerical

instabilities, especially in molecular dynamics simulations (Beutler et al., 1994), and

results in the ensemble changing discontinuously as λ increases past 0.

A number of methods have been introduced to scale the non-bonded interactions

smoothly with λ and prevent the problems discussed above (Beutler et al., 1994;

Pitera and van Gunsteren, 2002). One effective approach is the soft-core Lennard-

Jones potential, given as (Beutler et al., 1994; Shirts et al., 2003),

V soft core
LJ (r, λLJ) = 4λ4

LJε

{
1

[αLJ(1− λLJ)2 + (r/σ)6]2
− 1

αLJ(1− λLJ)2 + (r/σ)6

}
,

(2.14)

where αLJ is a parameter which governs the the soft core term. Variants of this

functional form are employed in chapters 3 and 4.

Whether solute-solute interactions should scale with λ is an open question, and both

approaches have been employed in this thesis work. In most published work as well

as in chapter 4, solute-solute non-bonded interactions are not scaled, whereas in

chapter 3 solute-solute interactions scale just as solute-solvent interactions do. Each

approach has its advantages and complications. Implementing advanced electrostatic

techniques, such as Ewald summations (not discussed here) is considerably more

difficult if solute-solvent interactions are not scaled. If such interactions are scaled,

then there is a spurious contribution to the free energy of solvation stemming from

changing solute-solute interactions. This must be accounted for and corrected by

“growing in” a solute in vacuo, calculating the ∆F , ∆U and ∆S of this process, and

subtracting these values from the results obtained in solvent. (This is the source of

the self correction term discussed in chapter 3.) The choice of solute-solute interaction

scaling will also affect the conformational ensemble of flexible solute for λ < 1. The

molecules considered here are generally small and inflexible, however, so this difference

should not be significant.
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The λ Schedule

The λ schedule refers to the specific λ values for each equilibrium simulation in a

solvation calculation. For the case of non-equilibrium simulations, discussed in section

2.2.2, the rate at which the λ value varies during the course of the simulation holds

analogies to the λ schedule; the focus here, however, is on equilibrium simulations.

In general, we wish to find the free energy change between λ = 0 and λ = 1; that is,

we wish to calculate ∆F , defined as,

∆F = F (λ = 1)− F (λ = 0). (2.15)

∆U and ∆S are defined similarly. Since the λ schedule is divided up into multiple

simulations, and we typically obtain the free energy change between simulations ad-

jacent to each other on that schedule; we call these neighboring simulations. The free

energy change between neighboring simulations is,

δF = Fi+1 − Fi, (2.16)

where Fi = F (λi), and with M simulations in the schedule, ∆F =
∑M−1

i δFi. Again,

Ui and Si are defined similarly, and Vi(Γ) = V (Γ, λi).

Researchers often use a linear λ schedule, with equal λ spacing across the range λ = 0

– 1 (e.g. Jiang et al. (2009)). Shirts et al. (2003), using the accuracy of the trapezoidal

rule in thermodynamic integration as a guide, placed additional λ values in regions of

the schedule where the curvature of 〈∂V/∂λ〉 is large. Lu and Kofke (1999) emphasize

the importance of a judicious λ schedule (or “staging” in their parlance), and argue

that it should be selected such that the entropy change per neighboring λ pair is

constant. Other authors adjust the λ schedule such that the free energy change for

neighboring λ values should be equal (Pearlman and Kollman, 1989). In chapter 4,

we argue that the replica exchange swap probability, defined below, should be equal

between neighboring simulations. This quantity pertains to the rate at which errors

in free energy calculations between neighboring simulations decrease. Very recent

published work (Shenfeld et al., 2009) supports this approach, and will be discussed

in chapter 5.
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2.1.4 Replica Exchange

The Hamiltonian replica exchange method (Sugita and Okamoto, 1999; Fukunishi

et al., 2002) is a computational technique used to enhance sampling for a series of

simulations, or replicas, running in parallel. Each replica has a unique λ parameter

associated with it1, and the simulation proceeds independently in each replica for the

duration of a round. At the end of a round, a series of swap attempts takes place.

For each swap attempt, an exchange of λ parameters is attempted between two repli-

cas chosen at random. Assigning the labels 0 and 1 to the two replicas chosen and

with Γi the ending configuration for simulation with λi, we evaluate the change in

the total potential energy of a system upon a swap, ∆Vswap, as,

∆Vswap = V0[Γ1] + V1[Γ0]− V0[Γ0]− V1[Γ1]. (2.17)

The probability of a swap succeeding is given by Metropolis swap probability,

Pswap = min[1; exp(−β∆Vswap)]. (2.18)

This swap probability satisfies the microscopic reversibility criterion in the multi-

canonical ensemble (Sugita and Okamoto, 1999) and is formally a Monte Carlo move

in the “super-system” of all concurrent replicas. Provided that this “super-system”

is at equilibrium to begin with, a swap, if it occurs, will preserve that equilibrium.

Chapter 4 discusses the significance of the swap probability in greater detail.

If a swap succeeds, λ0 becomes associated with replica Γ1 and vice versa. With K

replicas in a simulation, we attempt (K−1)2 swaps between rounds. At the conclusion

of these swap attempts a new round of simulation begins, with each replica resuming

with the final coordinates of the previous round and possibly a new λ parameter.

Non-neighbor swaps Traditionally, replica exchange moves are typically permit-

ted only between replicas which are neighbors along the λ schedule (Jiang et al.,

1In the more popular temperature replica exchange techniques, temperature takes the place of
the λ parameter, but operationally the implementation is very similar.
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2009). In our implementation of replica exchange in chapter 4, we permit swaps be-

tween any two replicas along the λ schedule. Such non-neighbor swaps are believed to

increase the efficiency of replica exchange, particularly in cases where the λ schedule

is relatively dense, by allowing replicas to traverse the entire range of λ from 0 to 1

more quickly than if only neighbor swaps were permitted (Predescu et al., 2005).

The algorithm of the multiple-swap replica exchange algorithm is sketched out below.

At the end of a round, each of the K replicas have associated with them configuration

Γi and parameter λm; the mapping between them is given by the array f , with

i = f(m). The inverse map gives m = f−1(i). For each swap attempt, two distinct

replicas i and j are randomly chosen, with the corresponding λ indices m = f−1(i)

and n = f−1(j). ∆Vswap in this context is given as,

∆Vswap = Vm[Γj] + Vn[Γi]− Vm[Γi]− Vn[Γj],

If the swap succeeds (according to the swap probability (2.18)), the array f is updated

as,

f(m) = j, f(n) = i.

This modified array is then used for all succeeding swap attempts. At the start of the

following round, each replica i has the initial configuration Γi and parameter λf−1(i).

2.2 Free Energy Methods

The free energy of a simulation at a given value of λ can be defined formally as,

exp(−βFλ) =

∫
dΓ exp[−βVλ(Γ)] (2.19)

The right side is an integral over all possible configurations of the system, and all

portions of phase space contribute. Such a thermal quantity (Frenkel and Smit,

2002) can formally be evaluated only by an exhaustive integration over all of phase

space, an unfeasible proposition for all but trivial systems. Instead, we calculate the

free energy differences ∆F = F1 − F0 associated with a process in which λ varies
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(Bennett, 1976). A variety of techniques for evaluating such free energy changes have

been developed, and the field remains active.

2.2.1 Equilibrium techniques

Equilibrium techniques are perhaps the most common types of free energy calcula-

tions. Here, the λ parameter is held fixed over the course of a simulation and, after an

initial equilibration period, the probability of a given configuration can be assumed to

be given by the Boltzmann distribution. There are several such estimators, discussed

below; see section 3.2.1 for additional details.

Thermodynamic Integration

Thermodynamic integration (TI) is based on the identity, ∂F/∂λ = 〈∂V/∂λ〉. Inte-

grating this derivative from λ = 0 to λ = 1 yields (Leach, 2001),

∆F =

∫ 1

0

dλ

〈
∂V

∂λ

〉
λ

. (2.20)

In practice, equilibrium simulations are performed at discrete values of λ, and the

integral ∆F is typically approximated by the trapezoidal rule. Implementation of

thermodynamic integration requires that derivatives of V with respect to λ be output

during the course of a simulation.

Free Energy Perturbation

The free energy perturbation (FEP) method, attributed to Zwanzig (1954), can be

derived from Eq. (2.19) and gives the pair of estimators,

δF F = − ln〈exp(−βV1 + βV0)〉0, (2.21a)

δFR = + ln〈exp(+βV1 − βV0)〉1. (2.21b)
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The two formulae correspond to the forward and reverse estimates in which simula-

tions take place at λ0 and λ1, respectively (as discussed in chapter 4). The method

extrapolates information from one equilibrium simulation to obtain the free energy

difference at another λ value. In its implementation, it requires (for instance) the for-

eign energy V1 to be evaluated for a configuration observed in the λ0 simulation. The

free energy perturbation method is formally exact and can calculate ∆F , in principle,

from one simulation. In practice, multiple δF ’s are calculated along a λ schedule and

summed to obtain the ∆F of the entire process.

This technique suffers from slow convergence, and is prone to statistical errors (Zuck-

erman and Woolf, 2004). Furthermore, the forward and reverse estimators converge

at different rates (Lu et al., 2003b), and knowing which one is more accurate is in

general difficult. The underlying basis behind the convergence problems can be un-

derstood in terms of the distinction between the system configurations which are most

frequently sampled, and those which must be observed in order for the estimator to

converge (Jarzynski, 2006). In essence, the important configurations are rarely seen,

and correspond to transient violations of the second law of thermodynamics (Ritort,

2003).

Bennett Acceptance Ratio

The Bennett acceptance ratio (BAR) method (Bennett, 1976) makes use of two sim-

ulations to obtain δF , rather than one as for FEP. It was derived to minimize the

statistical error (or variance) associated with an estimate based on a finite number of

samples, N0 and N1, drawn from two independent simulations, respectively. Here,

δF = ln

∑
1 f(U0 − U1 + C)∑
0 f(U1 − U0 − C

+ C − ln(N1/N0), (2.22)

δF = C − ln(N1/N0), (2.23)

where the Fermi function f(x) = 1/[1 + exp(x)], and the set of equations are solved

iteratively until convergence. To estimate δF , output from two simulations, each with

foreign energies, is needed. Although this method was developed in the mid-1970’s,

it was largely ignored for 30 years, and only relatively recently have its advantages

been appreciated and its use increased (Shirts and Pande, 2005b).
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In order for the BAR estimator to converge, configurations which are common to

both simulations must be observed (Hahn and Then, 2009), a much less stringent

requirement than that needed of the FEP estimators. As a result, the BAR estimator

converges more quickly than FEP (see also Shirts and Pande (2005b)).

Multistate Bennett Acceptance Ratio

In a typical free energy of solvation calculation (e.g. Shirts et al. (2003)) simulations

take place at a number of λ values. To obtain the free energy change between adjacent

λ values, the FEP technique makes use of data from one simulation, and BAR uses

two. The free energy changes between neighboring simulations are then summed to

obtain the free energy change across the entire λ schedule. The multistate Bennett

acceptance ratio (MBAR) method (Shirts and Chodera, 2008) makes use of data from

all simulations to obtain a free energy estimate across the entire schedule. Like BAR,

it was derived to minimize the statistical error stemming from a finite number of

samples, and is given as,

βFi = − ln
K∑

j=1

Nj∑
n=1

exp[−βVi(xjn)]∑K
k=1 Nk exp[βFk − βVk(xjn)]

for i = 1, 2, ... K, (2.24)

where K is the number of simulations and Nj is the number of observations drawn

from the jth simulation. In fact, for K = 2, MBAR reduces to the BAR method (Shirts

and Chodera, 2008). The MBAR technique is relatively new and has not been widely

used, although results presented in chapter 3 suggest that it yields estimates with the

lowest variance of all the estimators. To implement this method, each simulation at

every λ value needs to output foreign energies at all the other λ values.

2.2.2 Slow Growth and Nonequilibrium Techniques

Not all free energy techniques require the use of equilibrium simulations with fixed

λ values. Slow growth techniques (Straatsma et al., 1986) utilize one simulation for

which λ is slowly and continuously modified from λ = 0 to λ = 1. In principle,

if λ is varied slowly enough, the system will remain in equilibrium at all times, in
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analogy to a quasi-static process in thermodynamics. Then, the fundamental formula

for thermodynamic integration, Eq. (2.20), can be evaluated directly, rather than

through piecewise trapezoidal integration between multiple equilibrium simulations.

For a time, this technique enjoyed some popularity and refinement (e.g. Hunter et al.

(1993)).

It has been shown, however, that slow growth techniques suffer from unavoidable

systematic error due to a phenomenon known as Hamiltonian lag (Pearlman and

Kollman, 1989): the ensemble average of ∂V/∂λ trails the actual λ value due to a

time lag between the changing of λ and a reflection of this change in the ensemble

average. As a result, simulation protocols which continually adjust the λ parameter

have fallen out of favor and attention focused on equilibrium simulations, which do

not suffer from this problem.

Jarzynski (1997) described a relationship between the work performed along a path

and the free energy change which is not dependent on the system being at (or near)

equilibrium:

exp(−β∆F ) = 〈exp(−βW )〉path. (2.25)

Here, the ensemble average is taken over an ensemble of simulations in which λ is

continuously varied between 0 and 1 at some rate (which defines the path). This rela-

tionship was later generalized by Crooks (2000) to relate the probabilities of observing

given work distributions far from equilibrium, a result which forms the theoretical un-

derpinning for chapter 4. The Jarzynski equality has been employed for free energy

calculations (Hendrix and Jarzynski, 2001) and continues to be under active devel-

opment (e.g. Oberhofer and Dellago (2009)). In general, the convergence rate is

dependent on the speed with which λ is varied, with more slowly varying simulations

converging more quickly. Nevertheless, it is frequently found that its convergence

properties are poor, and it is not clear that it is superior to equilibrium techniques

for computer simulations (Cossins et al., 2009). It has perhaps been most useful in

the experimental field, where nonequilibrium analysis techniques have been used to

estimate the folding free energy of RNA using AFM and optical tweezer experiments

(Collin et al., 2005).
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2.2.3 Reaction Coordinate Techniques

In the techniques described thus far, the coupling parameter λ is an intensive param-

eter, established and held fixed by the simulation protocol. In a related but distinct

set of techniques, we consider instead an extensive parameter ξ(Γ) which is a function

of the coordinates Γ. ξ is frequently called the reaction coordinate, examples of which

include the separation between two particles or the radius of gyration of a protein.

We then wish to find the free energy profile of the system as a function of ξ, called the

potential of mean force, which is related to the probability of observing some given

value of ξ in a simulation. Unlike λ, ξ generally fluctuates as the system evolves in

time.

In calculating the probability of a specific ξ value, it is necessary to observe this

and other coordinate values with sufficient frequency in order to accumulate good

statistics – that is, the system must be well sampled. It often happens that the

reaction coordinates of interest are infrequently observed, making the accumulation of

adequate statistics time consuming or practically impossible. The umbrella sampling

technique was developed by Torrie and Valleau (1977) in order to improve sampling of

infrequently-observed configurations. By adding an additional “umbrella” potential

W (ξ), otherwise rarely observed values of ξ are stabilized. With W (ξ) known, its

contribution to the final biased probability distribution can be backed out and the

unbiased probability distribution ρ(ξ) recovered. A significant complication with

this technique, however, is that the optimal umbrella potential needed to explore

all the relevant ξ efficiently is not a priori known. A number of techniques have

been developed to construct a umbrella potentials and simplify the use of umbrella

sampling.

One such technique is the metadynamics method (Laio and Parrinello, 2002). Here,

an umbrella potential is constructed incrementally by adding an energetic penalty to

frequently observed reaction coordinates. Over time, as such “penalties” accumulate,

the common configurations are destabilized and the system explores other regions of

phase space. This bias is itself the umbrella potential, and is used to construct the

free energy surface over the reaction coordinate.
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A common method for improving sampling along reaction coordinates is the Weighted

Histogram Analysis Method (WHAM) (Kumar et al., 1992; Souaille and Roux, 2001).

Here, an entire series of (typically parabolic) umbrella potentials is constructed, with

one such potential per simulation. Together, these umbrella potentials cover the

entire range of reaction coordinates, so that all relevant values of ξ are sampled in

one simulation or another. The key aspect of WHAM is the reconstruction of the

unbiased potential from a multitude of biased simulations. There is no unique way to

remove this bias; WHAM provides one technique for doing so which is optimal in the

sense of minimizing the variance (and maximizing the reproducibility) of the resulting

PMF. In that sense, WHAM is similar to MBAR, with both estimating the free energy

profiles with the least variance based on limited sampling. The MBAR technique can

in fact be understood as a histogram-free extension of WHAM for obtaining the free

energy as a function of the coupling parameter λ (Shirts and Chodera, 2008).

Up to this point, the fluctuating extensive reaction coordinate ξ and the imposed

intensive control parameter λ were considered distinct. In techniques such as λ-

dynamics (Kong and Brooks III, 1996), λ is itself a dynamical variable which evolves

in time. Essentially, λ becomes a “particle” with its own mass, inertia and restraining

umbrella potential V (λ). These terms associate with λ a kinetic and potential energy,

so that it evolves in time just as the atomic coordinates do. The observed probability

distribution of λ is used, along with the λ umbrella potential, to construct an unbiased

potential of mean force along λ. Just as in traditional umbrella sampling, however,

the biasing potential V (λ) is not a priori known, and its specific shape is important

to obtaining good sampling across the entire λ range. In addition, the potential must

rise steeply at λ ≤ 0 and λ ≥ 1 to prevent the sampling of unphysical (and potentially

numerically destabilizing) configurations.
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2.3 Entropy and Enthalpy Decompositions

The free energy of a system can be divided into its entropy and enthalpy2 components

as,

F = U − TS. (2.26)

Formally, in the context of statistical mechanics, U = 〈V 〉 and S = −kB〈ln ρ〉. The

enthalpy measures the average internal energy of the system, while the entropy quan-

tifies the volume of phase space accessible to it.

The fundamental importance of entropy and enthalpy decomposition rests on the fact

that, with the temperature as a controllable experimental parameter, the free energy

change associated with any physical process can be experimentally resolved, at least

in theory, into its entropy and enthalpy contribution.

Unlike free energy changes, which report on the spontaneity and stability of a pro-

cess, entropies and enthalpies can yield information about the molecular mechanisms

associated with that process. As an example, two solutes may be equally soluble un-

der given conditions for entirely different reasons. For one the interaction with water

may be energetically favorable, whereas solvation of the other solute may increase

the configuration space available to itself and to water, making the process entrop-

ically driven (Levy and Gallicchio, 1998). Such different solvation mechanisms are

discernible only when the free energy is decomposed into its entropic and enthalpic

constituents.

In addition to elucidating mechanism, entroy and enthalpy decompositions can also

provide an additional point of reference in the parameterization of atomic force fields

(Gallicchio et al., 2000). Being able to computationally reproduce the entropy and

enthalpy of an experimental process, in addition to its free energy, provides evidence

that the underlying physical phenomena are correctly captured in a simulation and

that the force field is transferable to other conditions and systems.

2In the context of estimators, where the ensemble is not specified, we use the terms enthalpy and
energy interchangeably. The distinction is immaterial here, but is discussed in detail in chapter 3.
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Most entropy/enthalpy estimators, aside from the direct method (below) are based

on the thermodynamic relationship (Chandler, 1987),

S = −∂F

∂T
. (2.27)

Other methods to calculate absolute entropy changes exist, based for instance on the

analysis of the covariance matrix of atomic fluctuations (Carlsson and Aqvist, 2005).

These are not decompositions of the free energy change associated with a process,

however, and will not be considered here.

In spite of its utility, progress in the decomposition of solvation processes into entropy

and enthalpy components has been slow. This is likely, in large measure, due to the

large errors and slow convergence of quantities associated with these decompositions,

as discussed below.

2.3.1 The Direct Estimator and Entropy/Enthalpy Conver-

gence

At first glance, obtaining the entropy and enthalpy decomposition of a free energy

seems straightforward. After all, the enthalpy is the average internal energy in the

canonical ensemble, and its change can be evaluated with the direct estimator,

∆U = 〈VK〉K − 〈V0〉0. (2.28)

where λ0 = 0 and λK = 1. It turns out, however, that for typical solvation calculations

the convergence properties of this estimator are poor, 10 to 100 times slower than

that of free energies (Lu et al., 2003a). Consequently its statistical error is frequently

larger than the estimate ∆U itself, making it uninformative for even a qualitative

interpretation of the mechanism.

The reason for this is that the internal energy of a typical system is numerically large,

with correspondingly large fluctuations. The energy difference from the solvation

process, however, is frequently rather small. As a result, the signal ∆U is simply

swamped by the noise of the thermal fluctuations, a situation which gets worse with
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increasing system size. By contrast, free energies evaluate quantities such as 〈∂V/∂λ〉
or 〈exp(V1−V0)〉; in the former case only the λ-dependent contribution is considered

in the average, and in the latter any common (non λ-dependent) energy components

tend terms cancel each other (Lu et al., 2003a). As a result, in general, free energy

calculations converge much more quickly, and the direct estimator is useful only when

the enthalpy changes of a process are large with respect to thermal fluctuations.

Nevertheless, perhaps due to its simplicity, the direct estimator is still commonly

employed (e.g. Horinek et al. (2009)).

2.3.2 Finite Difference Methods

Finite difference methods approximate Eq. (2.27) with the finite difference approxi-

mation (Levy and Gallicchio, 1998),

∆S ' − ∆F (T + ∆T )−∆F (T −∆T )

2∆T
, (2.29)

and obtain an entropy estimate by performing free energy estimates – using any of

the free energy estimators described previously – at two different temperatures.

In principle, such techniques can take advantage of the superior convergence qualities

of free energy estimators to obtain the entropy. However, they require a judicious

choice of ∆T . The statistical uncertainty of this method is inversely proportional to

∆T (Kubo et al., 1997) and as ∆T gets smaller, increasingly long simulations are

required in order to minimize the error of the free energy – and hence entropy –

estimates. If ∆T is too large, errors are introduced from the implicit assumption that

the heat capacity is constant over the temperature range (T −∆T ) to (T +∆T ). This

assumption is reasonably valid near room temperature for ∆T = 30K and up to 50K

(Wan et al., 2004). One result of such an assumption, however, is that finite difference

methods cannot accurately measure the variation of entropy with temperature. Also,

three free energy simulations at temperatures T , T + ∆T and T − ∆T have to be

performed to estimate ∆F and ∆S at the temperature T .
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Other finite difference methods, based on the relationship ∆U = ∂(β∆F )/∂β exist,

although in general the differences in performance among such techniques are small

(Lu et al., 2003a).

2.3.3 Analytical Methods

Rather than approximating Eq. (2.27) with finite differences, one can take analytical

temperature derivatives of the free energy estimators directly. In fact, each of the free

energy estimators discussed in section 2.2 has a corresponding entropy or enthalpy

estimator, and such derivations form a central aspect of the work presented in chapter

3. We provide a brief outline of the known estimators, and defer further discussion

and derivation to that chapter.

The TI and FEP (also known as Thermodynamic Perturbation) entropy/enthalpy

estimators are frequently used in the literature (Smith et al., 1992; Wan et al., 2004).

They are given as, for TI (Levy and Gallicchio, 1998),

T∆S = β

∫ 1

0

dλ

[〈
V

∂V

∂λ

〉
λ

− 〈V 〉λ
〈

∂V

∂λ

〉
λ

]
, (2.30)

and for FEP (Levy and Gallicchio, 1998),

TδSF = +
〈V1 exp(−βV1 + βV0)〉0
〈exp(−βV1 + βV0)〉0

− 〈V0〉0 − δF F , (2.31a)

TδSR = −〈V0 exp(+βV1 − βV + 0)〉1
〈exp(+βV1 − βV0)〉1

+ 〈V1〉1 − δFR. (2.31b)

The entropy estimators corresponding to the BAR and MBAR methods are new to

this work, and will be presented in chapter 3.

2.4 Error Measurements

Measuring the errors associated with solvation calculations is challenging. Thermo-

dynamic quantities tend to converge slowly, with typical simulations, consisting of
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several thousand atoms, requiring days or even weeks per single λ value. The exact

values of these quantities are generally unknown, so the absolute error of a simula-

tion is unknown. Beyond random statistical errors, which can themselves be large,

thermodynamic estimators are also be susceptible to systematic bias errors. Whereas

statistical errors deal with precision and reproducibility of results, bias errors relate to

accuracy and the convergence of a simulation to an incorrect value, and are typically

not detectable with standard error analysis techniques.

Yet the evaluation of errors is of central importance to this work, both to compare

novel estimation methods, and to evaluate the efficacy of improved λ schedules and

advanced sampling techniques such as Hamiltonian replica exchange. For this reason,

we have explored a variety of error estimation methods, and in some cases moved

beyond the standard techniques utilized in the literature. Here we describe the four

different error estimation techniques which are utilized in chapters 4 and 3.

2.4.1 Block Averaging

One of the most common techniques for evaluating the statistical error associated

with a simulation is block averaging (Allen and Tildesley, 1987). Here, the entire

simulation is divided into nb consecutive blocks of equal length. The block size is

chosen to be large enough such that the quantity of interest A (for instance the free

energy) evaluated in one block is independent of that quantity in another block. In

our work we take a common approach used in the literature and typically set nb = 10.

By the central limit theorem (Kreyszig, 1993) the expected variance of the quantity

A over the entire simulation, σ2(〈A〉sim), is obtained from the variance of the mean

of A across all nb blocks as,

σ2(〈A〉sim) = σ2(〈A〉block)/nb. (2.32)

The square root of Eq. (2.32) is the expected standard deviation of 〈A〉sim, and

indicates the confidence interval of the quantity. That is, we expect that future

simulations using the same parameters will yield an average value of A within one

standard error of the current result about 68% of the time.
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One disadvantage of the block averaging method is that the choice of nb = 10 leaves

the error estimate itself susceptible to a fair amount of statistical error. Increasing the

number of blocks over which to take the average will help this, and there are sophisti-

cated ways to evaluate the optimum block size which maximize the number of blocks

while ensuring that averages across these blocks remain statistically independent of

one another (Flyvbjerg and Petersen, 1989). Such an approach introduces another

complication when the quantity A is the free energy. Certain thermodynamic esti-

mators – notably, the free energy perturbation methods – have size-dependent bias

errors. As a result, averages of many small blocks do not equal the average of a fewer

number of larger blocks, even when the same dataset is used. This type of bias error

stems from the fact that rare events play a dominant role in nonlinear averages, and

are discussed in greater detail by Zuckerman and Woolf (2004) and Lu and Kofke

(2001a). As a result, shortening blocks in and of itself introduces an error. Neverthe-

less, block averages remain popular and widely used, in part due to their simplicity,

and we utilize them to estimate statistical errors in chapter 3.

2.4.2 Bootstrap Method

A second technique to estimate statistical error associated with a simulation is the

bootstrap method (Efron and Tibshirani, 1993). For the case of a dataset of N

unbiased observations, bootstrap proceeds by drawing n = N observations from the

original dataset at random with replacement3 to create a single bootstrap sample. The

quantity of interest A is then calculated from the bootstrap sample. This process is

repeated many times, so that typically thousands of bootstrap estimates of A are

obtained. The mean and variance of the bootstrap estimates of A then predict the

mean and variance of the entire simulation.

When the observations in a dataset are correlated, as is generally the case in com-

puter simulations, the number of observations n used for the bootstrap sample must

correspond to the number of independent observations in the dataset. This number

is usually obtained from the correlation time τ of V (or ∂V/∂λ) as n = N/2τ . We

obtain τ as the time at which the autocorrelation function of the quantity of interest

3With replacement indicates that each observation in the original dataset has an equal probability
of being selected, regardless of whether it was selected previously.
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decays to 1/e, although other methods to estimate τ exist, including integrated cor-

relation times (Newman and Barkema, 1999) and measures of statistical inefficiency

(Allen and Tildesley, 1987). All these techniques yield somewhat different values of

τ and affect the statistical error estimate proportionally to 1/
√

n.

A distinct advantage that the bootstrap method has over block averaging is that

the average is taken over a much larger sample; we typically use nb = 10 for block

averaging, but obtaining 10,000 bootstrap samples from the same dataset is easy to do,

making the estimate less susceptible to statistical error. We use bootstrap methods

in chapter 4. At the conclusion of that chapter, however, we also present unpublished

data relating the observed spread of 43 independent free energy simulations and the

projected error obtained from a bootstrap analysis of one such simulation. We find

that the bootstrap method underestimates the statistical error of such simulations

rather severely, possibly as a result of inadequate sampling. The bootstrap method

also suffers from some of the same problems as the block average method, including

an inability to detect bias errors and length-dependent bias for some estimators.

2.4.3 Hysteresis Error

Given the difficulty in quantifying errors with the block averaging and bootstrap

techniques, we developed an error measure called hysteresis error, which is defined

simply as the difference between the forward and reverse free energy perturbation

estimators (see chapter 4). The hysteresis error has several attractive features. First,

it incorporates bias as well as statistical errors; since the forward and reverse FEP

estimators tend to be biased in opposite directions (Lu et al., 2003b) bias error tends

to be emphasized. This error is also obtained from the entire simulation rather

than subsets or blocks of the entire data, minimizing length-dependent bias error. It

has a solid theoretical basis and is mathematically convenient. These properties are

exploited in chapter 4 to demonstrate the efficacy of advanced sampling techniques

and lend insight to their mechanism. The hysteresis error indicates areas of the λ

schedule where accurate sampling is problematic and where all estimators experience

convergence difficulties, albeit to differing degrees (see Fig. 4.2).
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One disadvantage of the hysteresis error is that it does not quantify the error of a

simulation in a readily interpretable way. While it is strictly zero when the simulation

is converged, it does not yield error bars or other measures that allow one to interpret

the magnitude of the bias or statistical error. Finally, it is based on FEP techniques

and does not quantify the error associated with more advanced estimators such as

BAR and MBAR (discussed in chapters 3).

2.4.4 Absolute Error

A final error measure introduced in chapter 3 is the absolute error. There, the Sun

model provides a system for which the values of both free energy and entropy/enthalpy

changes are known exactly. As a result, we can calculate the exact error, and plot

its root-mean-square average over 100 independent simulations. The absolute error

allows an unambiguous measure of the performance of estimators and includes both

the statistical and bias errors. It is, however, restricted to simulations of simple

systems where analytical results are available.

2.5 Computational Requirements

In order to implement the calculations described in this section as well as the sam-

pling improvements from Hamiltonian replica exchange, molecular modeling software

packages require:

1. Scaling of non-bonded interactions with λ, ideally with soft-core scaling. This

is a basic requirement for free energy of solvation calculations.

2. The ability to output ∂V/∂λ. This is required for the thermodynamic integra-

tion family of estimators and is available in many software packages.

3. The ability to write foreign energies Vj 6=i(Γi) – that is, the energy using some

λj of a configuration taken from a system running with λi.

4. The facility to implement Hamiltonian replica exchange, which requires foreign

energies.
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As of this writing, relatively few publicly available molecular simulation programs

have all the features described above. The work in chapter 4 was performed using the

publicly available MCCC Towhee (Martin and Siepmann, 1999) Monte Carlo simu-

lation package which was modified to implement all of the features described above

(see http://towhee.sourceforge.net. Modifications available under version maw4 17 4

[maw-dev branch]). The work in chapter 3 was performed using the CAMPARI soft-

ware package (Vitalis et al., in prep.), which has implemented items 1 and 3.

Other popular packages, such as gromacs (Hess et al., 2008), have only item 1 im-

plemented. It is, in fact, possible to evaluate foreign energies in gromacs during

postprocessing: save the full-resolution trajectory (TRR) file and perform the com-

mand mdrun -rerun on the TRR file, with the new λ value in the run configuration

MDP file; the energies written to the EDR file are then the foreign energies. This

technique requires a relatively large amount of disk space to store the trajectories,

but allows techniques like MBAR to be utilized.
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Chapter 3

Acceptance Ratio Methods for

Solvation Entropy and Enthalpy

Calculations

3.1 Introduction

There are two primary motivations for investigating the decomposition of the free

energy of solvation into entropy and enthalpy components. The first is to investigate

in detail the mechanisms of solvation (Durell and Wallqvist, 1996; Smith and Haymet,

1993), so as to validate and refine existing solvation models (see also section 1.3). A

second motivation is the development of improved parameters for molecular mechanics

force fields (Kubo et al., 1997; Horinek et al., 2009). Entropies and enthalpies of

solvation are experimentally accessible quantities, and reproducing them accurately

in a simulation provides an additional point of validation for force field parameters

(Levy and Gallicchio, 1998).

Both goals were recognized in early work in the field (Fleischman and Brooks III,

1987), yet progress has been slow. While solvation free energy calculations have ad-

vanced to the point where computational errors are on par with experimental ones

(Shirts et al., 2003), obtaining entropy and enthalpy decompositions with similar er-

rors has proven challenging (Gallicchio et al., 2000). Part of the problem is the inher-

ent difficulty of such calculations, which suffer from seemingly unavoidable statistical

errors 10 - 100 times larger than free energy calculations (Lu et al., 2003a). Another

problem, however, is methodological. While all estimators are formally correct and
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will yield the same converged value, some are better able to take advantage of limited

amounts of data, so that they yield more converged quantities from shorter simula-

tions. Free energy calculations can take advantage of advanced estimators such as

BAR (Bennett, 1976) and MBAR (Shirts and Chodera, 2008), which utilize bridging

estimators to take advangtage of information from multiple simulations to improve

the reliability of estimates made from limited simulation data. Currently available

entropy and enthalpy estimators, on the other hand, utilize information from only

one simulation at a time, in effect discarding data that could be used to improve the

estimate.

We address this problem by developing BAR and MBAR entropy estimators which,

like their free energy versions, utilize information from multiple simulations at once

in order to reduce the error of the estimates. We demonstrate the validity of these

methods on a simple model whose free energy, entropy and energy changes are known

exactly. Next, we demonstrate the improved performance of the estimators under

various simulation protocols for the solvation of NMA in explicit water. We con-

clude with an analysis of eleven model compounds and consider the effect of modified

Lennard-Jones parameters on the free energy of solvation and its entropy and enthalpy

decompositions.

3.2 Methods

In calculations designed to estimate the free energy of solvation, the solute molecule

is effectively transferred from the gas phase into the solvent. Introduction of the

Kirkwood coupling parameter λ (Mezei and Beveridge, 1986) into potential functions

allows one to vary the degree of coupling between specific molecules in a dense fluid. λ

modulates solute-solvent interactions, with the limits λ = 0 and λ = 1 corresponding

to the pure solvent and solvent plus inserted solute, respectively, and intermediate

values of λ interpolating smoothly between these limits. In our approach, independent

equilibrium simulations are performed for a series of λ values drawn from a prescribed

λ schedule. These simulations were performed in the canonical NVT ensemble. Dif-

ferent estimators were used to utilize data gathered from independent simulations to

compute the Helmholtz free energies of solvation, ∆F , and their decompositions into
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entropies (∆S) and energies (∆U). Operationally, we define

δF = F (λ1)− F (λ0) (3.1)

as the change in free energy between two adjacent λ values, λ1 and λ0, and ∆F is

the cumulative sum of the δF across the λ schedule. δU , ∆U , δS and ∆S are defined

similarly.

3.2.1 Free Energy and Enthalpy Energy Estimators

There exist a number of methods to estimate the free energy changes across a λ

schedule. For each of these, an analytical temperature derivative of the δF equation

yields a formula for either δU or δS. With two of these thermodynamic quantities

known, the third is determined from the relationship,

δF = δU − TδS. (3.2)

The exception to this is the direct method, which estimates only ∆U and which has

no corresponding free energy estimator.

The estimators in this section are written in terms of dimensional quantities, with the

same temperature assumed for all simulations. Section 3.5.1 derives expressions for

the BAR and MBAR estimators for the more general case of arbitrary temperatures

per replica. The potential energy V (x, λi), with x the positions of all the atoms of

the system, is written as Vi(x), and we write the work associated with changing the

scaling parameter from λ0 to λ1 for a given x as (Ritort, 2003),

δV (x) ≡ V1(x)− V0(x). (3.3)

Direct Energy Estimator

The simplest estimator for ∆U is the direct estimator, which obtains the thermody-

namic energy difference of two states based on the relationship U = 〈V 〉. Specifically,
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with λ0 = 0 and λK = 1,

∆U = 〈VK〉λK
− 〈V0〉λ0 . (3.4)

Unlike the other estimators, the direct estimator does not utilize information obtained

from intermediate λ values. Where we wish to consider the energy profile as a function

of λ, we define δU(λi) = 〈Vi+1〉i+1 − 〈Vi〉i.

Free Energy Perturbation

The free energy perturbation (FEP) method (Zwanzig, 1954) extrapolates information

obtained in one simulation to calculate the free energy difference at another λ value.

Because this estimator is directional, two independent free energy estimates – forward

and reverse – can be constructed for a pair of simulations:

δF F = −β−1 ln〈exp(−βδV )〉0, (3.5a)

δFR = +β−1 ln〈exp(+βδV )〉1. (3.5b)

A temperature derivative of these equations yields the forward and reverse FEP

(also known as thermodynamic perturbation) energy estimators (Levy and Gallic-

chio, 1998),

δUF = +
〈V1 exp(−βδV )〉0
〈exp(−βδV )〉0

− 〈V0〉0, (3.6a)

δUR = −〈V0 exp(+βδV )〉1
〈exp(+βδV )〉1

+ 〈V1〉1. (3.6b)

Thermodynamic Integration

The thermodynamic integration (TI) estimator is based on the identity,

∂F

∂λ
=

〈
∂V

∂λ

〉
λ

, (3.7)
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whose temperature derivative leads to the expression (Levy and Gallicchio, 1998),

−T
∂S

∂λ
= β

(〈
V

∂V

∂λ

〉
λ

− 〈V 〉λ
〈

∂V

∂λ

〉
λ

)
= β cov

(
V,

∂V

∂λ

)∣∣∣∣
λ

. (3.8)

Both 〈V 〉 and 〈∂V/∂λ〉 are accumulated from some number of equilibrium simu-

lations, and typically the trapezoid rule is used to estimate the difference in the

thermodynamic quantities between adjacent simulations, so that,

δF =
δλ

2

(
∂F

∂λ

∣∣∣∣
λ0

+
∂F

∂λ

∣∣∣∣
λ1

)
(3.9a)

and

TδS =
δλ

2

(
T

∂S

∂λ

∣∣∣∣
λ0

+ T
∂S

∂λ

∣∣∣∣
λ1

)
. (3.9b)

Bennett Acceptance Ratio

The Bennett acceptance ratio free energy estimator for two simulations of equal length

and temperature may be written as,

〈g∗+〉0 = 〈g∗−〉1, (3.10a)

with

g∗+ ≡ [1 + exp (+βδV − βδF )]−1 , (3.10b)

g∗− ≡ [1 + exp (−βδV + βδf)]−1 . (3.10c)

These equations are an implicit formula for δF , and are typically solved iteratively.

Details of this and subsequent derivations are found in section 3.5, as are formulae

for arbitrary simulation lengths Ni and temperatures Ti. Here, the ∗ symbol indicates

that all Ni and Ti are equal. A temperature derivative of (3.10) yields an explicit

equation for the entropy,

TδS =
α∗

0 − α∗
1

〈g∗+g∗−〉0 + 〈g∗+g∗−〉1
− δF, (3.11a)
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where

α∗
0 =

〈
g∗+V0

〉
0
−
〈
g∗+
〉

0
〈V0〉0 +

〈
g∗+g∗−δV

〉
0
, (3.11b)

α∗
1 =

〈
g∗−V1

〉
1
−
〈
g∗−
〉

1
〈V1〉1 −

〈
g∗+g∗−δV

〉
1
, (3.11c)

and the converged BAR δF estimate from Eq. (3.10) is used in Eq. (3.11a).

Multistate Bennett Acceptance Ratio

Shirts and Chodera (2008) recently introduced the multistate Bennett acceptance

ratio (MBAR) free energy estimator which uses information from all K simulations

along a λ schedule to construct an estimate of the free energies Fi all at once, rather

than calculating each pairwise δF individually. With an equal number of observations

drawn from all simulations, and all with the same temperature, the MBAR estimator

may be written as (see section 3.5),

K∑
j

〈µ∗i 〉j = 1 for i = 1, 2, ... K, (3.12a)

where for convenience we defined

µ∗i (x) ≡ exp[βFi − βVi(x)]∑K
k exp[βFk − βVk(x)]

. (3.12b)

Equation (3.12) is a set of K equations which are solved simultaneously for all Fi,

with F0 held fixed at 0.

Upon taking the temperature derivative of Eq. (3.12) (see section 3.5) we obtain the

entropy estimator,

TSi = −Fi +
K∑
j

〈µiVi〉j +
K∑
j

(〈µiVj〉j − 〈µi〉j〈Vj〉j) (3.13)

+
K∑
k

(Fk + TSk)
K∑
j

〈µiµk〉j −
K∑
k

K∑
j

〈µiµkVk〉j for i = 1, 2, ... K.
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Like Eq. (3.12), (3.14) is a set of K equations which yield Si. In practice, the Fi are

obtained first, then held fixed as the Si are calculated iteratively.

3.2.2 Calculation of Free Energies of Solvation

We used our homegrown CAMPARI package (Vitalis and Pappu, 2009b; Vitalis et al.,

2009) for calculating the free energies of solvation for different model compounds.

Two sets of calculations were carried out for each of the model compounds. The first

set used parameters from the OPLS-AA molecular mechanics force field (Jorgensen

et al., 1996; Kaminski et al., 2001). The second set of calculations used the mOPLS-

AA parameters, which utilize the partial charges from the OPLS-AA force field and

modified Lennard-Jones parameters as detailed below (Vitalis and Pappu, 2009a).

The MBAR analysis for both the free energies and its decompositions was performed

with a modified version of the freely available PyMBAR package (Shirts and Chodera,

2008).

Scaled Atomic Potentials

The solvation calculation takes place in two legs: first λLJ is scaled from 0 to 1 with

λC = 0, and then λC increases from 0 to 1 with λLJ = 1. For convenience, in the

context of the solvation calculations, we will refer to a single combined λ = λLJ + λC

parameter increasing from 0 to 2.

The potential energy of the entire atomic system V (x, λ) may be written as,

Vtot(x, λLJ , λC) = V bonded
W (x) + V bonded

S (x) + V nonbonded
W−W (x)

+ V nonbonded
W−S (x, λLJ , λC) + V nonbonded

S−S (x, λLJ , λC), (3.14)

where W and S refer to solvent and solute atoms, respectively. The bonded and

solvent-solvent interactions are not modified by λ and are given as described in section
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2.1.1. The scaled solute-solvent and solute-solute potentials are given by,

V nonbonded
W−S (x, λLJ , λC) =

NS∑
i

NW∑
j

[VLJ(rij, λLJ) + VC(rij, λC)] , (3.15a)

V nonbonded
S−S (x, λLJ , λC) =

NS∑
i

NS∑
j 6=i

[VLJ(rij, λLJ) + VC(rij, λC)] . (3.15b)

Here, rij is the distance between atoms i and j. The index j in the VS−S term iterates

over all solute atoms that participate in nonbonded interactions with atom i, typically

those which are separated by four or more covalent bonds. Scaling of solute-solute

interactions allows for a simplified implementation of reaction field electrostatics, as

discussed in the next section.

VLJ is a modified soft-core Lennard-Jones potential (Beutler et al., 1994) given by

VLJ(r, λLJ) = 4εijλLJ

(
R−2 −R−1

)
, (3.16)

where

R = 0.5(1− λ2
LJ) + r6/σ6

ij, (3.17)

and

VC(r, λC) = λC
qiqj

r
. (3.18)

The combined Lennard-Jones parameters σij and εij are constructed with geomet-

ric combination rules (σij =
√

σiσj, εij =
√

εiεj) for the OPLS-AA parameters and

Lorentz-Berthelot rules (σij = (σi + σj)/2, εij =
√

εiεj) for the mOPLS-AA parame-

ters. These parameters, along with the atomic partial charges qi, are listed for both

force fields in table 3.1 and are discussed in section 3.2.2. The solvent of interest,

water, was modeled using the rigid, three-site TIP3P model of Jorgensen et al. (1983).

Force Field Parameters

Eleven model compounds were used this study, ten of which are analogs of amino

acid side chains; the eleventh, NMA, is an analog of the repeating unit in a peptide

backbone. For all of these solutes experimental data are available for free energies
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of solvation as well as their decompositions into entropies and enthalpies. These

compounds constitute a subset of those studied by the Pande group (Shirts et al.,

2003; Shirts and Pande, 2005a), the free energies of solvation and their decompositions

obtained from experiment are listed in table 3.3.

Figure 3.1 illustrates the molecular structures of the 11 model compounds used in

this work. Many, although not all, of the molecules in the set are small, rigid solutes.

Bond lengths and angles were held fixed in the equilibrium values prescribed by the

all-atom OPLS-AA force field. We used an internal coordinate stochastic dynamics

integrator to sample conformational space for the solute-solvent system, details of

which are presented in section 3.2.2.

Vitalis and Pappu (2009a) followed Tran et al. (2005) and developed the mOPLS-AA

set of Lennard-Jones parameters for Monte Carlo simulations of polypeptides in im-

plicit solvent, where sampling is carried out in torsional space using fixed bond lengths

and bond angles. Table 3.1 details the Lennard-Jones parameters and charges asso-

ciated with each atom type. In general the σ parameters in mOPLS-AA are smaller

than in OPLS-AA, while the well-depth parameters ε on the whole tend to be larger

for mOPLS-AA. In the OPLS paradigm, parameters for Lennard-Jones potentials are

derived to reproduce the properties of neat liquids, with the σ parameters aiming to

capture liquid densities and the ε parameters heats of vaporization (Kaminski et al.,

2001). The modified σ and ε mOPLS-AA parameters are based on the original es-

timates of Pauling (1970), which reproduce crystal packing and heats of fusion of

neutral model compounds.

Simulation Details

For each model compound, we performed two sets of solvation calculations, one based

on the OPLS-AA and the other on the mOPLS-AA force fields. These comparative

calculations allow us to demonstrate how free energies of solvation and their decom-

positions into entropies and energies are useful for assessing the validity of different

force field parameters.
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Figure 3.1: A visual representation of the molecules for which solvation
thermodynamic quantities were calculated. Table 3.3 provides expanded

descriptions of the molecules, and the atom labels reference specific atomic force
field parameters in Table 3.1. Visualization with VMD (Humphrey et al., 1996).
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OPLS-AA mOPLS-AA
Atom σ ε σ ε q
C1 3.500 0.066 3.300 0.100 0.020
C2 3.500 0.066 3.300 0.100 0.145
C3 3.500 0.066 3.300 0.100 0.085
C4 3.500 0.066 3.300 0.100 -0.180
C5 3.500 0.066 3.300 0.100 -0.120
C6 3.500 0.066 3.300 0.100 -0.060
C7 3.500 0.066 3.300 0.100 -0.240
C8 3.500 0.066 3.300 0.100 -0.065
C9 3.550 0.070 3.000 0.100 0.150
C10 3.550 0.070 3.000 0.100 -0.115
C11 3.750 0.105 3.000 0.100 0.500
H1 2.000 0.000 2.000 0.025 0.380
H2 2.000 0.000 2.000 0.025 0.300
H3 2.000 0.000 2.000 0.025 0.418
H4 2.000 0.000 2.000 0.025 0.435
H5 2.500 0.030 2.000 0.025 0.060
H6 2.420 0.030 2.000 0.025 0.115
N1 3.250 0.170 2.700 0.150 -0.760
N2 3.250 0.170 2.700 0.150 -0.500
O1 2.960 0.210 2.700 0.200 -0.500
O2 3.120 0.170 3.000 0.150 -0.683
O3 3.070 0.170 3.000 0.150 -0.585

Table 3.1: Lennard-Jones parameters for the OPLS-AA and mOPLS-AA force
fields, as well as Coulomb parameter q shared by both. Atoms types are defined in

Fig. 3.1. Units: σ in [Å], ε in [kcal/mol] and q in [e].

Integrator Stochastic dynamics simulations based on integration of Langevin equa-

tions of motion were used to sample the system conformational space. The center-of-

mass translations and solid body rotations of all molecules, as well as torsion angles

for the flexible solutes, were sampled using the impulse integrator of Skeel and Iza-

guirre (2002). For all of the degrees of freedom we used γ = 5 ps−1 for the frictional

coefficient and a time step of 2.0 fs. Integrator stability was successfully tested by

assessing the convergence of a system of TIP3P water to a target temperature of 298

K, as well as the reproduction of accurate distributions of energy fluctuations and

the heat capacity. Details of how the algorithm of Skeel and Izaguirre was adapted

for the case internal coordinate degrees of freedom are being prepared for publication

(Vitalis and Pappu, in preparation).
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An equilibration period of 1.6 ns was followed by a 8 ns production run, with energy

output every 0.2 ps, for a total of 40,000 energy observations. The autocorrelation

time of the potential energy is less than 0.4 ps.

Cutoffs The simulations were performed using periodic boundary conditions in cu-

bic cells 32 Å to a side. Spatial distance cutoffs of 14 Å were employed for both the

Lennard-Jones and electrostatic interactions. The reaction field method (Onsager,

1936) was used evaluate corrections due to truncation of long-range electrostatic in-

teractions. As all of our solutes are neutral, use of the reaction field is appropriate

(Garde et al., 1998). Analytical corrections were applied to account for the Lennard-

Jones effects beyond this distance, as discussed later in section.

We employed twin-range cutoffs for both the Lennard-Jones and electrostatic inter-

actions. The full set of interactions was computed if the pairwise distance was below

10 Å. For distances in the 10-14 Å range, we computed the interactions once every

four time steps using neighbor lists that were also updated once every four steps.

Ensemble and System Preparation All solvation simulations were performed in

the NVT ensemble, as stochastic dynamics based on the Langevin dynamics formalism

reliably yields converged statistics from the canonical ensemble (Hunenberger, 2005).

Experimental data, specifically for the enthalpy and entropy decompositions, were

corrected for the NVT ensemble prior to comparison to the results from simulations.

Details of how these corrections were made are discussed in the next section.

For neat water with a target density of 1 gm/cc, the central simulation cell comprises

of 1,086 TIP3P water molecules. In preparing simulations with the solute added, the

number of water molecules removed was based on the Van der Waals volume of the

single solute and neat water density. We evaluated the error associated with this

method by performing two additional simulations on the NMA system, one with an

additional water molecule and another with one fewer water molecule. It was found

that the errors for both ∆F and ∆U associated with this pressure perturbation were

less than the standard errors associated with the simulation.
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The λ Schedule

The λ schedule for the free energy of solvation calculations was constructed as de-

scribed previously (Wyczalkowski and Pappu, 2008). The rate at which the error of

a free energy estimate between two equilibrium simulations decreases – in particular

the error associated with FEP estimators – is governed by the Fermi swap probability,

defined as,

〈pswap〉 =

〈〈
1

1 + exp(βδV [x0]− βδV [x1])

〉
0

〉
1

, (3.19)

where x0 and x1 are drawn from the λ0 and λ1 ensembles, respectively, and [δV (x0)−
δV (x1)] (see Eq. (3.3)) is the change in the combined potential energy of both systems

due to a replica exchange swap. Like the Metropolis transition probability typically

used in Hamiltonian replica exchange calculations (Sugita et al., 2000), the Fermi

swap probability satisfies detailed balance and leads to a multi-canonical Boltzmann

probability distribution (Bennett, 1976; Newman and Barkema, 1999), although no

actual swaps need to take place to calculate this quantity. A significant advantage of

the Fermi swap probability is that it is analytical, and its Taylor series expansion in

terms of δλ leads to the expression,

〈pswap〉 '
1

2
− β2(δλ)2

4
var

(
∂V

∂λ

∣∣∣∣
λ0

)
. (3.20)

Free energy calculations, as well as their thermodynamic decompositions, converge

more slowly and have larger errors if the swap probability is low. An optimum λ

schedule is one where the errors between all simulations decrease uniformly, implying

a uniform swap probability. Either Eq. (3.19) or Eq. (3.20) can be used to design

a λ schedule which equalizes 〈pswap〉 across all replica pairs. This is done by adding

additional simulations where the swap probability, based on preliminary simulations,

is low or equivalently, where var(∂V/∂λ) is large. Shenfeld et al. (2009) have obtained

a similar relationship between the replica exchange swap probability and the conver-

gence rate of ∆F , and related both to a measure of thermodynamic length (Crooks,

2007).

For this work, the λ schedule was refined by adding simulations in the interval 0.2 ≤
λ ≤ 1.0, based on the analysis of a preliminary set of simulations for NMA, giving a 29
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λ schedule. This schedule, used for all model compounds unless indicated otherwise,

consists of simulations at λ values (0.0, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,

0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,

2.0).

Correction Terms and Ensemble Conversions

The estimates of the thermodynamic quantities obtained from a simulation are not

immediately comparable to experimental results. Corrections are needed to account

for methodological artifacts, and results obtained from different ensembles must be

converted to a common ensemble to permit comparison. Also, corrections may need

to be applied to experimental results to bring them into line with standard states.

Self Corrections In our implementation, the interactions between scaled atoms of

a solute are also scaled, and the contributions that these self-interactions make to

the free energy must be taken into account. This is done by performing the same

experiment in the absence of solvent, which yields self-correction terms which are

subtracted from the thermodynamic quantities obtained in explicit solvent. Note

that this is methodology specific: if solute-solute interactions are not scaled, then no

such corrections are necessary. Self correction terms for all simulations are listed in

table 3.5.

Long Range Lennard-Jones Corrections These corrections account for errors in

the potential energy of the system imposed by cutoffs in the Lennard-Jones potential.

Taking into account only the slower-decaying r−6 term, the correction is calculated

for the entire solute molecule as (Allen and Tildesley, 1987),

Vlr =
∑

i

8πN

3V rc

εiW σ6
iW (3.21)

for each solute atom i, where εiW and σiW represent the combined Lennard-Jones

parameters between atom i and TIP3P water oxygen; N is the number of water

molecules and V the volume of the box. With rc = 1.4 nm, the correction term for
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each entire solute molecule is relatively small, varying between −0.02 kcal/mol for

Absinth methane and −0.13 kcal/mol for OPLS toluene. This correction is added to

both ∆F and ∆U , and its values are listed in table 3.5.

Standard State Corrections Experimentally obtained free energies of solvation

and their decompositions are reported in a variety of standard states. To make

them comparable to computational values, they must be converted to the Ben-Naim

standard state convention (Ben-Naim and Marcus, 1984). Such corrections generally

need to be applied to the free energies, entropies and enthalpies (Kubo et al., 1997).

In practice, we find that free energies reported in the literature frequently have the

corrections already applied, or else the transfer process is defined such that no such

corrections are necessary. For the case of Cabani et al. (1981), a particularly useful

reference for decompositions, the free energies are already in standard state and only

an additional term of β−1(1−Tαwater)=0.549 kcal/mol needs to be added to tabulated

∆H and T∆S values (Gallicchio et al., 2000).

Ensemble Corrections The solvation calculations, performed in the NVT ensem-

ble, yield values for the Helmholtz free energy ∆F as well as the energy ∆U and the

entropy, denoted in this ensemble as (∆S)V . Experimental values are typically given

for the NPT ensemble, yielding the Gibbs free energy ∆G, the enthalpy ∆H and

the constant pressure entropy, (∆S)P . In order to compare computational results to

experimental values ensemble corrections, in addition to standard state corrections,

must be performed.

The Helmholtz free energy obtained in an NVT simulation at a given volume is nu-

merically equal to the Gibbs free energy obtained in an NPT simulation whose average

volume (and pressure) is the same as the NVT simulation (Levy and Gallicchio, 1998),

so the comparison between ∆F and ∆G can be made directly. The decomposition of

the free energies is ensemble dependent, however. The NVT energy and entropy can
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be obtained from the NPT enthalpy and entropy (Kubo et al., 1997),

∆U = ∆H − (∆V )P
Tα

κ
, (3.22a)

T (∆S)V = T (∆S)P − (∆V )P
Tα

κ
, (3.22b)

where (∆V )P is the partial molar volume of the solute, α = V −1(∂V/∂T )P,N is the

thermal expansion coefficient and κ = −V −1(∂V/∂T )T,N is the isothermal compress-

ibility.

In principle, it is equally valid to either convert the computational quantities into

the NPT ensemble, or the experimental values into NVT. However, the calculated

TIP3P properties α and κ needed to convert computational quantities from NVT

to NPT are subject to large errors (Jorgensen et al., 1983; Jorgensen and Jenson,

1998; Mahoney and Jorgensen, 2000), making the conversion factors unreliable. Also,

the partial molar volume (∆V )P is only known experimentally, making its use in a

computational conversion factor another possible source of error.

On the other hand, the values of α and κ for liquid water are known to a relatively

high degree of accuracy, and we take advantage of this reduced error by converting

experimental results to the NVT ensemble for comparison to calculated values. For

liquid water, α = 25.7× 10−5 and κ = 45.8× 10−6 (Jorgensen and Jenson, 1998).

3.2.3 Error Estimates

Estimates of thermodynamic quantities based on simulation of fine length are subject

to two types of error (Lu and Kofke, 2001b). The first is statistical error, which

concerns issues of precision and reproducibility. This error quantifies the expected

distribution of results given repeated simulations. In this work, statistical errors are

estimated by block averaging (Allen and Tildesley, 1987).

The second type of error is bias error, and relates to the accuracy or correctness of the

estimate. In certain instances (such as nonlinear averages) bias error is observed as the

systematic dependence of the mean on the data size (Zuckerman and Woolf, 2004).

In the context of evaluating estimator performance the bias error is a much more
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informative quantity, but calculating the bias error requires that the exact solution

be known, which is generally not the case.

Absolute Error and the Sun Model

The Sun model is a dimensionless potential of a single coordinate, given as (Sun,

2003),

Vsun(x, λ) = x4 − 16(1− λ)x2. (3.23)

Figure 3.2 plots Vsun for various λ. This model is of interest as it can be analytically

integrated to obtain the exact values of ∆F , ∆U and T∆S associated with changing λ

from 0 to 1 (see section 3.5.4). With the exact values of the thermodynamic quantities

known, bias error can be accessed directly, allowing an unambiguous assessment of

the accuracy of various estimators.

λ=0

λ=1

Figure 3.2: The Sun model potential, Eq. (3.23), as a function of coordinate x for
various λ between 0 and 1. The potential is symmetric about x = 0.

We quantify the error of Sun ∆F and ∆U estimates using the εsun error measure.

The error εF
sun is defined for M independent estimates ∆Fi as,

εF
sun =

√√√√ M∑
i

(∆Fi −∆Fexact)2/M, (3.24)
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where the exact solution ∆Fexact is known; the corresponding ∆U εU
sun error is defined

analogously. Since it measures error with respect to the exact solution, εsun incorpo-

rates both statistical and bias errors, and the averaging over multiple (M) estimates

reduces the statistical noise.

A simple Monte Carlo sampler was used to construct a dataset of 1 million obser-

vations for each of eleven λ values, spaced uniformly between 0 and 1. The inverse

nondimensional temperature β, used in the sampler as well as the thermodynamic

estimates, has the value of 0.02. For each observation at a given λ value, foreign

energies corresponding to all other λ values were also computed. A second dataset,

consisting of 3 λ values (λ =0, 0.5, 1) was constructed by discarding data from the

11-λ dataset. Being one dimensional, sampling is rapid and sequential observations,

output every 10 Monte Carlo steps, are fully decorrelated based on autocorrelation

analysis.

For both ∆F and ∆U the error εsun was calculated as a function of dataset size.

100 consecutive samples, each of size ranging from 1 to 104 observations, were drawn

from the entire dataset of 1 million observations. ∆Fi and ∆Ui, with i = 1..100, were

calculated for each sample using different estimators, and εsun is calculated with Eq.

(3.24). The performance of the estimators in terms of this error was compared for a

range of sample sizes.

Standard Errors

With the exact values of the thermodynamic quantities unavailable for the solvation

calculations, we utilized block averaging to obtain the standard error of the solvation

calculation estimates (Allen and Tildesley, 1987). Simulation data were divided into

ten consecutive blocks of 4000 observations each and the thermodynamic quantities

were calculated independently for each block. With the variance of the 10 estimates

given by σ2, the standard error is
√

σ2/10. Were the same solvation calculation

to be repeated multiple times, we would expect that about 68% of the time those

results would be within a standard error of the results of the present calculation.

For simplicity, we calculated the block averages of ∆F , ∆U and T∆S as if they
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were independent quantities. However, only two of the three are independent and in

practice, the standard errors of ∆U and T∆S are very similar.

3.3 Results

3.3.1 Evaluation of Estimators

Section 3.2.1 provided an overview of several different estimators for calculating free

energies based on data from equilibrium simulations for every λ value along a given

schedule. Known entropy/energy estimators were presented, and we derived two new

entropy estimators based on temperature derivatives of the BAR and MBAR free

energy estimators. In this section, we evaluate the accuracy of these estimators for

two different systems of differing complexity. Since the quantities ∆S and ∆U are

not independent, we analyze the estimators in terms of ∆F and ∆U only.

Sun Model

The Sun model (Eq. 3.23) is a simple, one dimensional system which permits an

analytical evaluation of the free energy and its decomposition. For this system ∆F

quantifies the free energy change associated with a transition from a bi-stable state

to a state with a single minimum (see Fig. 3.2). With β = 0.02, analytical integra-

tion (see section 3.5.4) yields the nondimensional thermodynamic quantities ∆F =

65.8878, ∆U = 53.1957, and T∆S = -12.6921.

Numerical simulation data were analyzed using all of the estimators discussed in

section 3.2.1. We assessed the accuracy of the estimators by evaluating the error

measures εF
sun and εU

sun as defined in Eq. (3.24). The errors report on the root-

mean-square absolute error of 100 samples and are a function of sample size, or the

number of independent observations in each sample. We consider two different λ

schedules: the 11 λ schedule simulations take place at λ = (0, 0.1, . . . 0.9, 1), and the

3 λ calculations utilize a subset of these data for λ = (0, 0.5, 1). Figure 3.3 plots the

error as a function of sample size for ∆F and ∆U at the two different schedules.
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Figure 3.3: The Sun model errors εF
sun and εU

sun (see Eq. 3.24), which quantify the
absolute error of the various estimators for different λ schedules. The 3-λ schedule is

(0.0, 0.5, 1.0), the 11-λ schedule is (0.0, 0.1, ... 0.9, 1.0).
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Most estimators perform similarly, yielding a series of coincident lines of a uniform

slope on the log-log plot. As a result, BAR, MBAR and the FEP estimators yield

approximately the same εsun error for the same sample size N . Increasing the number

of λ values from 3 to 11 results in lower errors, so that a Sun model simulation with

the finer λ schedule needs to be only about 1/3 as long to achieve the same absolute

error.

Even for this simple one-dimensional model we find differences in the performance of

the different estimators. For the 3 λ simulation, TI estimators for both ∆F and ∆U

converge to an incorrect value because the trapezoidal rule is inaccurate for such a

coarse schedule. The TI estimate performs on par with other methods for the finer λ

schedule. Both FEP estimators, particularly the FEP R variant, tend to have larger

errors than either BAR or MBAR, especially for the 3 λ schedule. While the Direct

∆U method yields errors on par with others for 3 λ, its errors are significantly larger

for the 11 λ case. In fact, the Direct ∆U results are identical in both plots, as it only

uses data from the λ = 0 and λ = 1 simulations. Both BAR and MBAR estimators

perform uniformly well, although under closer examination the MBAR method tends

to have somewhat lower errors than BAR.

In order to establish consistency between the εsun and standard errors, these same data

were analyzed with block averaging (with 100 blocks). We find that the standard and

εsun errors are virtually identical; the only significant difference is that the standard

error for TI for the 3 λ system decreases together with the other estimators, whereas

the εsun error plateaus as the trapezoidal integration converges to an incorrect value.

Aside from this, all the conclusions drawn from the Sun model εsun error analysis

hold for a block average analysis as well.

The one-dimensional Sun model was used to test the accuracy of different free energy

and entropy/energy estimators. It also demonstrates that, in theory, it is possible

to obtain ∆S and ∆U estimates that are as accurate as ∆F , at least for simple

one-dimensional systems. Next, we turn to assessing the performance of the new

estimators in the context of solvation calculations.
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Solvation Calculations

Solvation calculations are considerably more complicated than the one-dimensional

example discussed above, and we tested the performance of the estimators in this

context by investigating the solvation process for N-methylacetamide (NMA). Table

3.2 lists the free energy of solvation for NMA and its decomposition using the various

estimators, with errors estimated by block averaging. Note that TI estimates are not

listed as ∂V/∂λ were not computed.

∆F [kcal/mol] ∆U [kcal/mol] T∆S [kcal/mol]
Direct — -20.751 ± 0.631 —
FEP F -6.422 ± 0.014 -22.167 ± 0.933 -15.745 ± 0.935
FEP R -6.453 ± 0.019 -22.251 ± 1.541 -15.798 ± 1.542
BAR -6.430 ± 0.015 -22.542 ± 0.987 -16.111 ± 0.987
MBAR -6.431 ± 0.015 -22.396 ± 0.798 -15.965 ± 0.798

Table 3.2: N-methylacetamide results calculated with OPLS-AA parameters for
various estimators, along with standard errors calculated with block averaging. Self

and long range Lennard-Jones corrections applied.

All ∆F estimators are relatively well converged, with statistical errors smaller than

0.02 kcal/mol. The errors in ∆U , however, are 50-80 times larger. The Direct method

appears to have the lowest statistical error, but its energy estimate is significantly

different from the consensus of the other estimators, suggesting that significant bias

error may underlie the smaller statistical error observed for this estimator.

The quantities ∆F and ∆U are constructed by the summation of δF and δU esti-

mates, and the errors of the former are some unknown combination of the errors of

the latter. To better understand the nature of the different estimators, and to identify

regions of the λ schedule which contribute most to the collective error, we consider

δF and δU as a function of λ. Figures 3.4 (a) and (b) plot δF/δλ and δU/δλ versus

λ, respectively. The quantity δF/δλ is the finite difference approximation to ∂F/∂λ,

the derivative of the potential of mean force (Roux and Simonson, 1999), and δU/δλ

is its energy decomposition. ∆F and ∆U then correspond to the areas underneath

the curves of Fig. 3.4.
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Figure 3.4: Plots of δF/δλ and δU/δλ for the solvation of NMA as obtained with
various estimators. These quantities are effectively the derivatives of the potential of

mean force, and its energy decomposition, along the λ schedule. For the free
energies (panel a) all the estimators are consistent and the differences are nearly
imperceptible. Significant differences among the estimators are observed for the
energies (panel b), where the direct estimator is subject to large statistical error

while the MBAR estimator yields a smooth profile.

In Fig. 3.4(a) we find that for all of the estimators, δF is converged to the point

that differences between them are not discernible by eye, an observation consistent

with the results of table 3.2. This is not the case for the energy plot, Fig. 3.4b,

where there are large differences in the smoothness of the δU/δλ profile. The direct

estimator has a serrated contour, suggesting a large degree of statistical error. The

FEP estimators are somewhat smoother, followed by BAR, and the δU/δλ profile for

the MBAR estimator is by far the smoothest of all.

The “smoothness” observed in Fig. 3.4 is quantified for δF in Fig. 3.5 and for δU in

Fig. 3.6, where the statistical error of the estimates, obtained by block averaging, is

plotted vs. λ. These figures illustrate the performance of estimators, as quantified by

statistical error, versus λ. Four different schedules are considered: the 29 λ schedule,

as defined previously, has a uniform spacing of δλ = 0.1 plus additional simulations

in the region 0.2 < λ < 1.0, so that δλ = 0.05 in that region. The remaining plots

have a uniform schedule across the λ range: δλ = 0.1 for 21 λ; δλ = 0.2 for 11 λ and

δλ = 0.5 for 5 λ. The latter three schedules are constructed from a subset of data

obtained in the full 29 λ simulation.
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Figure 3.5: δF error diagnostics for the solvation of NMA under different λ
schedules. Estimator standard errors are from 100-block averages, and the

root-mean-square hysteresis error is obtained from these same blocks. The average
Fermi swap probability is calculated from all data, and plotted using red scale on

right. The different λ schedules, detailed in the text, are indicated with tick marks
on top and bottom axes. All errors, including the hysteresis error, tend to be large

in regions of the λ schedule where the swap probability is low.

Consistent with the results of Fig. 3.4, in Fig. 3.5 the MBAR δF estimator generally

has the lowest standard error, followed in increasing order by BAR, FEP F and

FEP R. The error of all estimators increases considerably with a coarsening of the λ

schedule. The same observations hold for the δU results in Fig. 3.6, even though the

statistical error of the δU estimates is roughly 100 times larger than for δF . Here, the

direct method is considerably worse than all other estimators for the 29 λ schedule,

but it improves in relation to the other methods as the schedule coarsens. The error

of the direct method in fact stays constant while other techniques deteriorate with

fewer λ points.

In addition to the estimator standard error, Figs. 3.5 and 3.6 also plot the root-mean-

square hysteresis error (calculated using 100 blocks per λ pair) as well as the average
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Figure 3.6: δU error diagnostics for the solvation of NMA under different λ
schedules; see Fig. 3.5 for details. Like the δF errors in Fig. 3.5, δU errors for all
estimators (except direct) are large in regions of the λ schedule where the swap

probability is low. Additional simulations in these regions increase the swap
probability and significantly reduce estimator errors. The direct estimator is

independent of the schedule and becomes worse in relation to the other estimators
as additional simulations are added to the λ schedule.

Fermi swap probability. Both quantities, described in section 3.2.2 and discussed

in chapter 4, are useful diagnostics of convergence problems. The hysteresis error –

defined as the difference between the forward and reverse FEP estimates – is a general

indicator of a lack of equilibrium between two simulations. Its rate of convergence

with simulation length is given by the average Fermi swap probability: when the swap

probability is large the hysteresis error is low, and vice versa. This relationship is

borne out in Fig. 3.5. Moreover, the swap probability is seen to be predictive not

only of the hysteresis error, but of the statistical error of all estimators, for both δF

and δU . All estimators converge more quickly in regions of the λ schedule where the

swap probability is large.
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3.3.2 Application to Model Compounds

Having established the utility and performance of the newly developed estimators

on NMA, we carried out calculations to quantify ∆F , ∆S, and ∆U for 11 model

compounds using the OPLS-AA and mOPLS-AA force fields. We also carried out

comparisons between these calculated values and experimental data for the model

compounds, allowing us to dissect the differences between the two different force field

paradigms.

Table 3.4 shows the values obtained for ∆F , ∆U and T∆S for each of the eleven model

compounds using the two force fields, and table 3.3 gives the experimental data for

these compounds. Figure 3.7 provides a visual comparison of the results for the two

force fields, whereas Fig. 3.8 compares the computational values to experimental

data.

(a) (b) (c)

Figure 3.7: Comparison of thermodynamic quantities calculated using OPLS-AA
and mOPLS-AA parameters for all compounds listed in table 3.4 using the MBAR

estimators, with error bars indicating standard errors.

Data in table 3.4 and Fig. 3.7(a) indicates that compounds using the OPLS-AA

parameters systematically have more positive – or less favorable – free energies of

solvation than solutes with the mOPLS-AA parameters. As a result, agreement be-

tween computational ∆F values and experimental data improves with the mOPLS-

AA parameters for the polar compounds (acetamide, ethanol, methanol, p-cresol,

N-methylacetamide, and propionamide). For nonpolar compounds, specifically linear
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(a) (b) (c)

Figure 3.8: Comparison of calculated thermodynamic quantities to experimental
values. Both OPLS-AA and mOPLS-AA results were calculated with MBAR.

hydrocarbons, the computational ∆F values obtained using the mOPLS-AA parame-

ters are consistently more negative than experimental values, whereas with OPLS-AA

parameters they are generally more positive. Finally, the ∆F value for toluene is too

negative with the mOPLS-AA parameters while the OPLS-AA values approximately

match experiment.

Panels (b) and (c) of Figs. 3.7 and 3.8 show the decompositions of ∆F into T∆S and

∆U . As with the case of NMA discussed previously, the statistical errors for the de-

compositions are about two orders of magnitude larger than they are for ∆F , compli-

cating the interpretation of results. Nevertheless, a few systematic trends are revealed

in the analysis of the computational and experimental results. With the exception of

toluene, the ∆U values are systematically more negative using the OPLS-AA param-

eters as compared to values obtained using the mOPLS-AA parameters. Conversely,

in all cases, the OPLS-AA parameters make more negative entropic contributions to

the free energy of solvation.
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Experimental NVT Correction
Model Compound Name AA ∆G ∆H T∆S (∆V )P NVT ∆U T∆S
acetamide ACA Asn -9.71a -16.32 -6.61 55.82c 2.259 -18.58 -8.87
ethyl alcohol EOH Thr -5.05b -12.05 -7.00 55.12c 2.231 -14.28 -9.23
isobutane IBU Leu 2.32b -4.83 -7.15 83.10f 3.363 -8.19 -10.51
methane MET Ala 2.00b -2.75 -4.75 37.30c 1.510 -4.26 -6.26
methyl alcohol MOH Ser -5.10b -10.25 -5.16 38.25c 1.548 -11.80 -6.70
n-butane NBU Ile 2.08b -5.66 -7.74 76.60f 3.100 -8.76 -10.84
N-methylacetamide NMA BB -10.09d -19.36 -9.27 74.04c 2.996 -22.36 -12.26
4-methyl phenol PCR Tyr -6.14c -14.18 -8.05 103.23e 4.178 -18.36 -12.22
propionamide PPA Gln -9.38a -17.45 -8.07 71.54c 2.895 -20.35 -10.97
n-propane PRP Val 1.96b -4.83 -6.78 67.00c 2.711 -7.54 -9.49
toluene TOL Phe -0.88b -8.10 -7.21 106.86g 4.325 -12.43 -11.54

Table 3.3: Free energy, enthalpy and entropy (∆G, ∆H and T (∆S)P ) in kcal/mol,
partial molar volume (∆V )P in cm3/mol. Model compound names, abbreviations

(see Fig. 3.1) and corresponding amino acids (“BB” is backbone mimic). All values
reported in Ben-Naim convention (Ben-Naim and Marcus, 1984). NVT corrections
are applied to obtain ∆U and T (∆S)V values, and are given by (∆V )P Tα/κ (see

Eq. 3.22), with the correction factor Tα/κ = 0.04047[kcal / cm3] based on
experimental water properties from Jorgensen and Jenson (1998).

a Avbelj et al. 2000
b Ben-Naim and Marcus 1984
c Cabani et al. 1981
d Graziano 2000
e Hnedkovsky et al. 1998
g Moore et al. 1982
h Wilhelm et al. 1977

3.4 Discussion

3.4.1 Thermodynamic Estimators

The simplicity of the direct estimator is appealing, and its statistical error measures

in table 3.2 are small. However, it deviates significantly from the consensus of all

other estimators, making its performance difficult to gauge by this analysis alone.

The deficits of the direct energy estimator are more apparent in Figs. 3.4 – 3.6. Since

the direct estimator is independent of the schedule, its error for all δU is about the

same as the ∆U error. Where ∆U of a process is large, the direct estimator may

be a good choice, particularly if the λ schedule is coarse. For energy changes on the
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Computational
Name FF ∆F ∆U T∆S

ACA OPLS-AA -8.549 ± 0.015 -20.324 ± 0.747 -11.776 ± 0.750
ACA mOPLS-AA -8.875 ± 0.016 -17.916 ± 0.857 -9.042 ± 0.851
EOH OPLS-AA -4.260 ± 0.013 -16.908 ± 0.872 -12.648 ± 0.876
EOH mOPLS-AA -5.098 ± 0.016 -14.777 ± 0.886 -9.679 ± 0.883
IBU OPLS-AA 2.471 ± 0.011 -12.480 ± 0.835 -14.951 ± 0.838
IBU mOPLS-AA 1.353 ± 0.015 -10.691 ± 0.469 -12.045 ± 0.469
MET OPLS-AA 2.259 ± 0.011 -4.368 ± 0.324 -6.627 ± 0.319
MET mOPLS-AA 1.772 ± 0.006 -4.599 ± 0.431 -6.371 ± 0.434
MOH OPLS-AA -4.371 ± 0.012 -13.200 ± 0.694 -8.829 ± 0.691
MOH mOPLS-AA -4.941 ± 0.014 -13.744 ± 0.494 -8.803 ± 0.486
NBU OPLS-AA 2.493 ± 0.011 -11.902 ± 0.944 -14.396 ± 0.946
NBU mOPLS-AA 1.353 ± 0.017 -10.966 ± 0.413 -12.319 ± 0.415
NMA OPLS-AA -6.431 ± 0.015 -22.396 ± 0.798 -15.965 ± 0.798
NMA mOPLS-AA -7.333 ± 0.011 -21.230 ± 0.883 -13.896 ± 0.881
PCR OPLS-AA -5.533 ± 0.021 -24.497 ± 1.169 -18.964 ± 1.171
PCR mOPLS-AA -5.700 ± 0.017 -22.116 ± 0.835 -16.416 ± 0.833
PPA OPLS-AA -8.455 ± 0.015 -23.167 ± 0.929 -14.712 ± 0.931
PPA mOPLS-AA -9.027 ± 0.012 -21.658 ± 0.998 -12.631 ± 0.999
PRP OPLS-AA 2.426 ± 0.009 -9.999 ± 0.924 -12.425 ± 0.927
PRP mOPLS-AA 1.458 ± 0.013 -8.881 ± 0.646 -10.339 ± 0.653
TOL OPLS-AA -0.841 ± 0.016 -17.872 ± 0.745 -17.031 ± 0.739
TOL mOPLS-AA -2.661 ± 0.013 -19.220 ± 0.763 -16.559 ± 0.760

Table 3.4: Results of the solvation calculations as calculated using the MBAR
method with long range Lennard-Jones and self corrections applied. ∆U and

T (∆S)V columns give the NVT results, and ∆H and T (∆S)P columns are the NPT
values (with NVT corrections applied). Helmholtz (∆F ) and Gibbs (∆G) free

energies do not differ numerically.
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Uncorrected Self Correction
Name FF ∆F ∆U T∆S ∆F ∆U T∆S LJLR
ACA OPLS-AA -37.828 -49.612 -11.784 -29.356 -29.364 -0.008 -0.077
ACA mOPLS-AA -9.202 -18.244 -9.042 -0.384 -0.384 -0.000 -0.056
EOH OPLS-AA -2.961 -15.653 -12.692 1.240 1.196 -0.044 -0.059
EOH mOPLS-AA -5.198 -14.913 -9.714 -0.160 -0.195 -0.035 -0.059
IBU OPLS-AA 4.102 -11.183 -15.285 1.544 1.210 -0.334 -0.087
IBU mOPLS-AA 0.827 -11.241 -12.068 -0.600 -0.624 -0.024 -0.074
MET OPLS-AA 2.286 -4.341 -6.627 0.000 0.000 0.000 -0.027
MET mOPLS-AA 1.793 -4.577 -6.371 0.000 0.000 0.000 -0.021
MOH OPLS-AA 0.777 -8.052 -8.829 5.109 5.109 -0.000 -0.039
MOH mOPLS-AA -4.974 -13.777 -8.803 -0.068 -0.068 -0.000 -0.034
NBU OPLS-AA 4.825 -9.921 -14.746 2.244 1.894 -0.350 -0.087
NBU mOPLS-AA 1.105 -11.403 -12.507 -0.322 -0.511 -0.189 -0.074
NMA OPLS-AA -22.052 -38.062 -16.009 -15.722 -15.766 -0.045 -0.100
NMA mOPLS-AA -7.487 -21.368 -13.882 -0.227 -0.212 0.015 -0.073
PCR OPLS-AA -6.259 -25.126 -18.867 -0.863 -0.766 0.097 -0.137
PCR mOPLS-AA -5.942 -22.358 -16.416 -0.347 -0.347 -0.000 -0.104
PPA OPLS-AA -38.154 -52.924 -14.770 -29.795 -29.853 -0.058 -0.097
PPA mOPLS-AA -9.085 -21.906 -12.822 -0.132 -0.322 -0.191 -0.073
PRP OPLS-AA 4.983 -7.580 -12.563 2.490 2.352 -0.138 -0.067
PRP mOPLS-AA 1.180 -9.163 -10.344 -0.334 -0.339 -0.004 -0.056
TOL OPLS-AA 4.442 -12.590 -17.032 5.157 5.157 -0.000 -0.126
TOL mOPLS-AA -2.904 -19.462 -16.559 -0.334 -0.334 0.000 -0.091

Table 3.5: Raw data, corrections and final values for free energy and
entropy/enthalpy, calculated using MBAR. LJLR is the long range Lennard-Jones

correction.
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order of thermal fluctuations – typical for solvation calculations – this estimator’s slow

convergence makes its use inefficient. This is especially true for the decomposition

of the mean force along a fine λ schedule, as in Fig. 3.4b, where δU is necessarily

small between neighboring simulations; here, the direct estimator is nearly useless

and other methods, especially MBAR, perform exceptionally well.

The FEP estimators for both ∆F and ∆U generally suffer from significant errors

which decrease with an improved λ schedule. In general, FEP R is worse than FEP

F, a known result which stems from the fact that the insertion of a particle (forward

direction) constrains the phase space of a system and leads to faster convergence.

This is true for both ∆F as well as ∆U calculations (Lu et al., 2003a; Wu and Kofke,

2004).

Finally, both the BAR and the MBAR methods perform consistently well for both ∆F

and ∆U calculations, with MBAR outperforming BAR in all cases. The distinction

between the two methods becomes more pronounced with an increasing number of

simulations along the λ schedule, where the MBAR estimator can take advantage

of information from non-neighbor simulations to improve its estimate. For a coarse

schedule, non-neighboring ensembles are sufficiently different that little additional

information can be gleaned from them and BAR, which considers only neighboring

simulations, performs similarly to MBAR.

The ∆F MBAR estimator was derived to minimize the variance of the estimate given

a finite number of samples from simulations at multiple λ values. The present MBAR

∆U estimator is a temperature derivative of the ∆F formula, with no explicit variance

minimization. It is encouraging that the ∆U estimator likewise has a low variance,

although conceivably a distinct ∆U estimator, which minimizes the energy variance

explicitly, may exist and yield even better performance.

3.4.2 Convergence Rates

In the solvation calculations, the standard errors of ∆U are 50-100 times larger than

∆F , consistent with observations in the literature (Trzesniak and van Gunsteren,
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2006). For the Sun model, however, the errors of the two quantities are nearly identi-

cal. We can understand the difference between the systems by considering the source

of the distinct ∆F and ∆U convergence rates (Lu et al., 2003a).

The vast majority of the interactions in the solvation calculations are between pairs

of water molecules, which dominate the potential energy of the system and are inde-

pendent of λ. The thermal fluctuations of these interactions swamp out the relatively

small energy changes due to the scaled potential, requiring long simulations to make

out the signal from the scaling process. By contrast, free energy calculations generally

consider ensemble averages of δv, where the contributions which are independent of λ

tend to cancel. Consequently, the free energies for the solvation calculations converge

much more quickly than do the energies. (This remains true for all the estimators

considered here, including MBAR.) In the case of the Sun model, however, this dis-

tinction does not hold; there, the λ scaling directly affects the sole degree of freedom,

and both the free energy and the energy converge at the same rate.

3.4.3 Swap Probabilities

As discussed in chapter 4, the average replica exchange swap probability – and in

particular, the Fermi swap probability – indicates the relative rate of convergence

of the hysteresis error. When the swap probability is low, free energy calculations

converge slowly and the hysteresis error is large, whereas for high swap probabilities,

convergence is more rapid. While the hysteresis error is based on the free energy

perturbation estimators, we find that it is an indicator of convergence problems in all

estimators, both ∆F and ∆U , as illustrated in Figs. 3.5 and 3.6.

The swap probability is a particularly useful diagnostic of simulation convergence. It

is computed directly from a simulation without the need for statistical error analysis,

and has a ready interpretation as the overlap between two ensembles. Two simulations

are required in order to calculate the swap probability, but we can approximate it by

considering the variance of ∂V/∂λ obtained from only one simulation. As a result,

it is possible to improve a λ schedule, based on preliminary simulations, by placing

additional simulations at λ values either where the swap probability is low or where

var(∂V/∂λ) is large. As an example, the 21 λ and 29 λ schedules in Figs. 3.5 and
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3.6 differ by the addition of extra simulations where the swap probability (in the 21

λ case) is low. This increases the swap probability considerably in this region and

results in a significant decrease of the errors of all the estimators.

While no Hamiltonian replica exchange swaps need to take place in order to evaluate

the swap probabilities, actually performing such swaps is an additional effective way of

accelerating the convergence, and decreasing the errors, of thermodynamic estimators,

as discussed in chapter 4.

3.4.4 Solvation Calculations

Computational values for ∆F , particularly those based on the MBAR estimator, are

generally statistically reliable and can be used to make quantitative comparisons to

experimental data (Shirts and Pande, 2005a). The thermodynamic decompositions

into entropies and energies, on the other hand, are typically two orders of magni-

tude larger, irrespective of the specific model compound (Lu et al., 2003a). Despite

the lower reliability of the thermodynamic decompositions, we can discern trends to

rationalize the ∆F comparisons between experimental data and the computational

values.

Based on Fig. 3.7 and table 3.4, we find that

• ∆FOPLS−AA > ∆FmOPLS−AA (mOPLS-AA more favorable),

• ∆UOPLS−AA < ∆UmOPLS−AA (OPLS-AA more favorable), and

• T∆SOPLS−AA < T∆SmOPLS−AA (mOPLS-AA more favorable).

Thus it appears that the source of the improved overall agreement between experi-

mental data and computational values obtained using the mOPLS-AA force field is

due to the reduced entropic penalty associated with the modified force field.

These trends can be partly understood on the basis of the force field Lennard-Jones

parameters. The σ parameters are smaller for the mOPLS-AA parameter set, result-

ing in smaller atomic volumes from which the water must be displaced. This results in
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a less negative solvation entropy, which is governed by the cavity size. This difference

between the OPLS-AA and mOPLS-AA Lennard-Jones parameters is consistent with

previous work (Gallicchio et al., 2000) and theoretical predictions (Pratt and Chan-

dler, 1977). Larger ε parameters increase the attractive dispersion forces between the

solute and water and result in more negative energy changes, which are dominated

by dispersive interactions. Depending on the atom, the ε parameters for mOPLS-AA

can be larger or smaller than for OPLS-AA, with most molecules a mix of increased

and reduced dispersion forces; this prevents a straightforward interpretation of the

observation that ∆U for mOPLS-AA tends to be more positive and less favorable.

An illustrative example is that of NMA, a model compound of relevance for polypep-

tide backbones. While the computational ∆F values for both force fields disagree

with experimental data, the disagreement is smaller for the mOPLS-AA force field.

The entropy-energy decomposition shows that both force fields yield similar estimates,

within error, for ∆U , and that this result is close to the experimental value of -22.4

kcal/mol. The main contribution to the difference in ∆F values comes from the en-

tropic terms: for OPLS-AA T∆S = −16.0 ± 0.8 kcal/mol, whereas for mOPLS-AA

T∆S = −13.9 ± 0.9 kcal/mol. Both these values are more negative than the ex-

perimental value of -12.3 kcal/mol, but the mOPLS-AA is closer, resulting in more

accurate ∆F estimate, and suggesting directions for further force field refinement.

This example highlights the need for a more holistic approach to parameter optimiza-

tion, and provides a cautionary note regarding efforts that focus primarily on the

reparameterization of partial charges (Udier-Blagović et al., 2004).

3.5 Derivations

3.5.1 Definitions and General Identities

The free energy, energy, entropy and potential energy of simulation i – Fi, Ui, Si and

Vi, respectively – are normalized by the inverse temperature βi = (kBTi)
−1, to yield

the nondimensional forms of these quantities,

fi = βiFi, ui = βiUi, si = βiSi, vi = βiVi. (3.25a)
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With ∂Fi/∂T = −Si, temperature derivatives of these include,

∂fi

∂T
= − fi

Ti

− si,
∂vi

∂T
= − vi

Ti

, (3.25b)

and with δf = f1 − f0,

∂δf

∂T
= − 1

T0

(τf1 − f0 + T0δs), (3.25c)

where τ = T1/T0.

The Boltzmann probability distribution,

ρi(x) =
exp(−vi(x))∫
dy exp(−vi(y))

(3.26a)

has the temperature derivative,

∂ρi(x)

∂T
=

ρi(x)

Ti

(vi − 〈vi〉i) (3.26b)

with 〈A〉i =
∫

dxρi(x)A(x).

The Fermi function is defined (Bennett, 1976) as,

g(a) = 1/[1 + exp(a)] (3.27a)

and its derivative is,

∂g(a)

∂T
= − 1

1 + exp(a)

exp(a)

1 + exp(a)

∂a

∂T
= −g(a)g(−a)

∂a

∂T
(3.27b)
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3.5.2 BAR

Bennett (1976) derived the following free energy estimator (eq. (9) in that reference),

Q0

Q1

=
〈g(v0 − v1 + C)〉1
〈g(v1 − v0 − C)〉0

exp(C) (3.28a)

C = ln
Q0

Q1

N1

N0

(3.28b)

with δf = ln(Q0/Q1), which holds for an arbitrary number of observations per simu-

lation Ni and temperatures Ti. Equations (3.28) are typically solved iteratively until

C converges. Here, however, we substitute (3.28b) into (3.28a) directly to obtain,

N0〈g+〉0 = N1〈g−〉1 (3.29a)

with

g+(x) ≡ [1 + exp (+v1(x)− v0(x)− δf − ln N1/N0)]
−1 , (3.29b)

g−(x) ≡ [1 + exp (−v1(x) + v0(x) + δf + ln N1/N0)]
−1 . (3.29c)

Equations (3.10) are specific to N0 = N1 and T0 = T1, as indicated by the ∗ symbol.

We obtain the entropy equation by taking the temperature derivative of (3.29a) and

multiplying by T0,

T0
∂

∂T

{
N0

∫
dxρ0(x)g+(x) = N1

∫
dxρ1(x)g−(x)

}
, (3.30)

which, with identities from section 3.5.1, becomes

N0 [〈g+v0〉0 − 〈g+〉0 〈v0〉0 + 〈g+g−(τv1 − v0)〉0 − (τf1 − f0 + T0δs) 〈g+g−〉0] (3.31)

= N1 [τ 〈g−v1〉1 − τ 〈g−〉1 〈v1〉1 − 〈g+g−(τv1 − v0)〉1 + (τf1 − f0 + T0δs) 〈g+g−〉1] .

Solving for δs yields,

T0δs =
N0α0 −N1α1

N0 〈g+g−〉0 + N1 〈g+g−〉1
+ f0 − τf1, (3.32a)
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where

α0 = 〈g+v0〉0 − 〈g+〉0 〈v0〉0 + 〈g+g−(τv1 − v0)〉0 , (3.32b)

α1 = τ 〈g−v1〉1 − τ 〈g−〉1 〈v1〉1 − 〈g+g−(τv1 − v0)〉1 . (3.32c)

Equations (3.32) reduce to Eqs. (3.11) for N0 = N1 and T0 = T1.

3.5.3 MBAR

The MBAR free energy estimator is defined as Eq. (11) in (Shirts and Chodera,

2008),

fi = − ln
K∑

j=1

Nj∑
n=1

exp[−vi(xjn)]∑K
k=1 Nk exp[fk − vk(xjn)]

for i = 1, 2, ... K, (3.33)

where K is the number of simulations and Nj is the number of observations drawn

from the jth simulation. Substituting the empirical estimator
∑Nj

n An = Nj〈A〉j and

defining,

µi(x) ≡ exp(fi − vi(x))∑K
k Nk exp(fk − vk(x))

, (3.34a)

Eq. (3.33) can be written,

K∑
j

Nj〈µi〉j = 1 for i = 1, 2, ... K, (3.34b)

with x is drawn from probability distribution corresponding to vj(x).

We obtain the MBAR entropy estimator from the temperature derivative of (3.34b),

Ti
∂

∂T

{
K∑
j

Nj

∫
dxρj(x)µi(x) = 1

}
. (3.35)

With the identity

∂µi

∂T
= − 1

Ti

[
(fi + Tisi)µi − µivi −

K∑
k

Nk
Ti

Tk

{(fk + Tksk)µiµk − µiµkvk}

]
, (3.36)
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we find

Tisi = −fi +
K∑
j

Nj〈µivi〉j +
K∑
j

Nj
Ti

Tj

(〈µivj〉j − 〈µi〉j〈vj〉j) (3.37)

+
K∑
j

K∑
k

NjNk
Ti

Tk

[(fk + Tksk)〈µiµk〉j − 〈µiµkvk〉j] for i = 1, 2, ... K,

Equations (3.12) and (3.14) in the body of the paper correspond to equations (3.34)

and (3.38) for all Ni and Ti the same.

3.5.4 Sun model

Given a one-dimensional potential V (x, λ) free energy is given as,

F (λ) = −β−1 ln

∫ ∞

−∞
dx exp[−βV (x, λ)] (3.38)

and the free energy change ∆F = F (1) − F (0). For the Sun model (3.23), we can

integrate Eq. (3.38) and obtain ∆F analytically (Oberhofer et al., 2005; Nummela

et al., 2008),

∆F = β−1 ln
(√

2πe32β
(
I− 1

4
(32β) + I 1

4
(32β)

))
− β−1 ln

(
2Γ
(

5
4

)
4
√

β

)
(3.39)

where Γ is the gamma function and In is a modified Bessel function of the first kind.

We can obtain the energy change by differentiating,

∆U =
∂

∂β
β∆F

=
32
(
I− 3

4
(32β) + I− 1

4
(32β) + I 1

4
(32β) + I 3

4
(32β)

)
I− 1

4
(32β) + I 1

4
(32β)

(3.40)

For β = 0.02, ∆F = 65.8878, ∆U = 53.1957, and T∆S = -12.6921. The analytical

derivations for the Sun model were performed with Mathematica (Wolfram Research,

2008).
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Chapter 4

Replica Exchange in Free Energy

Calculations

4.1 Preamble

In this chapter we show how Hamiltonian replica exchange and an improved λ schedule

can speed the convergence of free energy calculations. Two concepts – the Crooks

fluctuation theorem and the hysteresis error – are central to the discussion.

The Crooks fluctuation theorem (Crooks, 1999), defined in the next section, is a

relationship between two equilibrium simulations at different λ values. Much like

the Boltzmann distribution upon which it is based, finite simulations satisfy this

relationship only approximately. We use the Crooks fluctuation theorem as a measure

of how well two simulations are equilibrated with respect to one another, as it detects

convergence problems – e.g. one simulation stuck in a local minimum – which are not

detectable from an analysis of one simulation alone.

The hysteresis error is one way to characterize the divergence of two simulations from

the ideal expected by the Crooks fluctuation theorem; it is, essentially, a measure

of the departure of a pair of simulations from mutual equilibrium (see also section

2.4.3). We show how Hamiltonian replica exchange introduces a Monte Carlo move

to directly minimize this error, and that replica exchange swap probabilities between

two simulations characterize the rate at which the hysteresis error decreases with

increasing simulation length. Based on this, a prescription for finding the optimal
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λ schedule – one for which the hysteresis error decreases uniformly quickly for all

neighboring simulation pairs – is constructed.

In the context of optimizing simulations, this chapter focuses on the hysteresis error

without discussing free energy calculations per se. The hysteresis error is in fact

operationally defined as the difference between the forward and reverse free energy

perturbation ∆F estimates. Moreover, as discussed herein and illustrated in section

3.3.1, all ∆F and ∆U estimators, not only FEP, suffer from convergence problems in

specific sections of the λ schedule for the same underlying reason – a rapid change with

respect to λ of the equilibrium configuration distributions. Consequently, reducing

the hysteresis error is tantamount to reducing errors of all ∆F and ∆U estimators.

Sections 4.2 through 4.9 have been published previously as Wyczalkowski and Pappu

2008. We conclude this chapter with two unpublished results stemming from this

work: a critical evaluation of the bootstrap technique for estimating standard errors

based on data from only one simulation, and an illustration of the effect of Hamilto-

nian replica exchange swap rate on ∆F and ∆U errors.

4.2 Introduction and Overview

Free energies of solvation provide quantitative assessments of driving forces for spon-

taneous processes such as protein folding, binding, self-assembly, and solubility. For-

mally, the free energy of solvation in the canonical ensemble is the free energy change

∆F associated with the transfer of a solute from the gas phase to a fixed position

in the solvent (Ben-Naim, 1987). Operationally, one has access to a range of tech-

niques to obtain estimates for ∆F (Ytreberg et al., 2006; Levy and Gallicchio, 1998).

Kirkwood (1935) showed that one could introduce arbitrary parameters into potential

functions and continuously vary the degree of coupling between specific molecules in a

dense fluid. The device of coupling parameters leads to simple expressions for chemi-

cal potentials of any component of the fluid. If the component is the solute molecule,

which is transferred from the gas phase into the solvent, then a single coupling pa-

rameter λ, where 0 ≤ λ ≤ 1, modulates solute-solvent interactions in the system’s

potential function. The limits λ = 0 and λ = 1 correspond to the pure solvent and

solvent plus fully grown solute, respectively. Intermediate values of λ correspond to
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potential functions that include only a part of the solute-solvent interactions. The

Kirkwood coupling parameter plays a central role in equilibrium methods for calcu-

lating ∆F . One carries out a series of independent canonical simulations where each

simulation is associated with a distinct potential function, characterized by a specific

λ value. As it samples the equilibrium ensemble, each simulation generates a series of

work values, which are then used to estimate the free energy change across the entire

λ schedule.

The multicanonical approach described above takes advantage of the simple formal-

ism developed by Kirkwood for calculating ∆F . However, in practice, standard free

energy calculations based on multicanonical simulations are plagued by slow conver-

gence and inaccurate estimates of ∆F (Mobley et al., 2007). Errors may be divided

into statistical and bias (or finite sampling) errors (Lu and Kofke, 2001a). The for-

mer stem from the fluctuations of the free energy estimator, and can be estimated by

block averaging or bootstrap methods (Frenkel and Smit, 2002; Efron and Tibshirani,

1993). Since the statistical error decreases as the inverse square root of simulation

length, it is frequently used as an indicator of the convergence of the multicanoni-

cal simulation. While statistical errors are random fluctuations of short simulation

results about some mean value, the bias error is an error of the mean value itself,

and it changes with simulation length. As discussed by Zuckerman and Woolf (2004),

bias errors have two causes: the free energy estimates are nonlinear averages; and,

the work distributions on which such estimates are based will typically have long

tails which are rarely sampled, and yet these are important to the average. The lat-

ter point is important: rare events dominate free energy estimates, and one seldom

observes these events in short simulations. As a result, the average drifts with sim-

ulation length, resulting in inaccurate estimates for ∆F from bias error even when

the statistical error is small. The magnitude of the bias error is difficult to quantify

directly, as it requires knowledge of the actual free energy difference, the very quan-

tity we wish to determine. Furthermore, small fluctuations in the estimate for ∆F

may not be indicative of convergence, but rather of inadequate sampling of the rare

but important configurations. To address these problems, we develop an alternate

measure of free energy error, one based on deviations from equilibrium distributions.

Crooks (1999) derived a fluctuation theorem (section 4.8.1) valid for stochastic, mi-

croscopically reversible dynamics, which relates the distribution of dissipated work
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values along a forward and reverse path as,

exp(βWD) =
PF (βWD)

PR(−βWD)
. (4.1)

Here, β = (kBT )−1, PF (βWD) is the probability distribution for dissipated work

associated with switching λ from λ0 to λ1, and PR(−βWD) is the corresponding

distribution for the reverse process. If the canonical simulations for each value of

λ sample the equilibrium ensemble adequately, then the distributions of dissipated

work obtained over the course of free energy calculations will satisfy Eq. (4.1).

In this work, we develop a readily measured error estimate, the hysteresis error εH ,

which quantifies the degree to which observed work distributions obey the Crooks

fluctuation theorem. Hamiltonian replica exchange, a multicanonical equilibration

technique, effectively reduces the hysteresis error. We relate the average replica ex-

change swap probability to the degree of overlap between equilibrium ensembles, as

well as to the rate at which εH falls. Based on this, we may construct an optimized

λ schedule to further minimize the hysteresis error for an entire simulation.

The remainder of this presentation is organized as follows: the theory section intro-

duces the hysteresis error in the context of the Crooks fluctuation theorem followed

by a formal illustration of how Hamiltonian replica exchange minimizes εH ; the defi-

nition of swap probability as a measure of the overlap between different equilibrium

ensembles; and a connection between the amount of overlap and minimization of

εH . We calculate the free energy of hydration for acetamide to demonstrate how

to estimate εH and minimize this error using replica exchange coupled to standard

multicanonical simulations. We conclude with a summary and a discussion of the

features of our methodology.
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4.3 Theory

4.3.1 Background

The free energy of replica i in the canonical ensemble at temperature T , whose po-

tential Vi(Γ) = V (Γ, λi) is a function of system configuration Γ and the parameter λi,

is formally given as (Chandler, 1987),

Fi = −β−1 ln

{∫
dΓ exp[−βVi(Γ)]

}
. (4.2)

At equilibrium, the probability of observing configuration Γ is given as,

ρi(Γ) = exp{β[Fi − Vi(Γ)]}. (4.3)

To calculate the free energy change δF associated with switching the Hamiltonian

from V0 to V1 we perform simulations at λ0 and λ1, and calculate the forward and

reverse work as,

W F (Γ) = V1(Γ)− V0(Γ), (4.4a)

WR(Γ) = V0(Γ)− V1(Γ). (4.4b)

For the forward and reverse work values the configuration Γ is typically drawn from

the equilibrium ensemble of V0 and V1, respectively. The Free Energy Perturbation

(FEP) method (Zwanzig, 1954) utilizes forward and reverse work distributions to

provide two independent estimators for δF ,

δF F
FEP = −β−1 ln〈exp(−βW F )〉0, (4.5a)

δFR
FEP = +β−1 ln〈exp(−βWR)〉1, (4.5b)

where the forward estimator δF F
FEP utilizes forward work values from the simulation

at V0, and the reverse estimator the reverse work from V1. Note that in both cases

δF is associated with the process of switching λ0 → λ1. These two estimators have

different convergence rates (Lu and Kofke, 2001a). Therefore, while in practice the
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two estimates should be equal, in simulations with finite sampling they are generally

different.

Another free energy estimator, the Bennett acceptance ratio (Bennett, 1976), uses

both the W F and WR distributions to obtain a free energy estimate. It is generally

more accurate (Shirts and Pande, 2005b) and is employed later in this paper for nu-

merical free energy estimates, but will not be considered for theoretical development.

4.3.2 The Hysteresis Error

The hysteresis error εH is defined as the difference between the forward and reverse

δFFEP estimates,

εH ≡ δF F
FEP − δFR

FEP . (4.6)

εH has contributions from both the statistical and bias error of the FEP estimators (Lu

and Kofke, 2001a; Zuckerman and Woolf, 2004). The bias error of the two estimators

is typically in the opposite direction. While the statistical error may dominate the

εH for a given simulation, in averages over multiple short simulations the dominant

contribution to the average hysteresis error is the sum of the forward and reverse FEP

bias.

We take εH as a measure of sampling quality and aim to minimize its magnitude be-

tween all pairs of neighboring replicas. The validity of using εH as a general sampling

error is based on a relationship between it and the fluctuation theorem of Crooks(4.1),

derived below.

Switching the parameter λ0 → λ1 (and vice versa) is equivalent to performing non-

equilibrium work; the difference between the work performed and the free energy

change of the system is the dissipated work, defined in the forward and reverse direc-

tion as,

W F
D (Γ) = W F (Γ)− δF, (4.7a)

WR
D (Γ) = WR(Γ) + δF. (4.7b)
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Crooks (1999) equates W F
D and WR

D to the entropy production caused by changing

λ0 → λ1 and λ1 → λ0, respectively, for the given configuration.

The distributions PF (WD) and PR(WD) give the probability of realizing a specific

value for the dissipated work in the forward and reverse directions, respectively. The

distributions are related to each other by the fluctuation theorem shown in Eq. (4.1),

which we have re-derived in section 4.8.1 for the specific case of instantaneous switch-

ing between configurations with different λ values. In practice, Eq. (4.1) will not be

satisfied exactly because of errors due to finite sampling. To take simulation errors

into account, we rewrite Eq. (4.1) with an arbitrary error term ε∗FT and with observed

(rather than ideal) dissipated work distributions P ∗
F and P ∗

R,

exp[βWD + βε∗FT (WD)] =
P ∗

F (βWD)

P ∗
R(−βWD)

. (4.8)

Eq. (4.8) is constructed such that the Crooks fluctuation theorem is recovered and

ε∗FT = 0 when the observed work distributions match the correct distributions. The

hysteresis error εH and the fluctuation error ε∗FT are related to each other as, (see

section 4.8.2),

εH = −β−1 ln〈exp(−βε∗FT )〉∗0, (4.9)

where 〈·〉∗ is defined as the average obtained from a finite simulation. The more

closely a simulation obeys the relationship (4.1), the smaller the hysteresis error εH ,

and vice versa. In the next section, we will discuss methods to reduce εH , which in

turn leads to the satisfaction of the Crooks fluctuation theorem.

4.3.3 Replica Exchange

In a Hamiltonian replica exchange (Sugita and Okamoto, 1999; Fukunishi et al.,

2002) simulation, Monte Carlo moves are employed to exchange configurations Γ (or

equivalently, parameters λ) between two replicas with the probability,

Pswap = min[1, exp(−β∆Vswap)], (4.10)
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where,

∆Vswap = V0(Γ1) + V1(Γ0)

−V0(Γ0)− V1(Γ1), (4.11a)

= W F + WR, (4.11b)

= W F
D + WR

D . (4.11c)

Γ0 and Γ1 denote configurations drawn at random from the equilibrium ensembles

of V0 and V1, respectively. For convenience, we write γ = (Γ0, Γ1) as a pair of such

configurations, and γ′ = (Γ1, Γ0) is the swapped configuration pair.

Since Γ0 and Γ1 are independent configurations, we can consider the probability of

sampling Γ0 in the equilibrium ensemble of V0 and sampling Γ1 in the equilibrium

ensemble of V1; this is the native probability ρN(γ). Analogously, the joint probability

of sampling the swapped configurations, Γ1 from ρ0 and Γ0 from ρ1 is given as ρ′N(γ):

ρN(γ) = ρ0(Γ0)ρ1(Γ1), (4.12a)

ρ′N(γ) = ρ0(Γ1)ρ1(Γ0) = ρN(γ′). (4.12b)

Replica exchange swaps are conveniently visualized by plotting the independent con-

figurations Γ0 and Γ1 along orthogonal axes and the equilibrium ensemble of the

system as an isocontour of ρN , illustrated in Fig. 4.1(a).

At equilibrium, the relative probability of observing a pair of replicas in their swapped

versus native configurations is,

ρ′N
ρN

= exp(−β∆Vswap), (4.13)

which is derived with definitions (4.12), (4.3) and (4.11a). We will refer to this as an

inter-replica equilibrium relationship.

In an infinitely long simulation, (4.13) will be satisfied exactly, but this will generally

not be the case for finite simulations, where inadequate sampling of configuration

space will result in inaccurate probability estimates. However, in simulations with
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Figure 4.1: A graphical representation of replica exchange. (a) The independent
(high dimensional) configuration spaces Γ0 and Γ1 have probability distributions ρ0

and ρ1, respectively, and the joint equilibrium ensemble ρN is drawn over this
domain. The ρ0 system has a kinetic barrier (represented by the two disconnected
lobes) and with no replica exchange the system explores only the configurations of

the shaded domain. A replica exchange swap is a reflection of the configuration pair
γ about the Γ0 = Γ1 diagonal axis, and three swap attempts are shown: the

configuration pair γa swaps successfully and becomes γ′a, but it does not sample
otherwise inaccessible regions; a swap of γb fails because γ′b is not in the equilibrium
ensemble; and the swap of γc succeeds and allows the system to explore otherwise

inaccessible regions of phase space. (b) The equilibrium domain ρN and its swapped
image ρ′N are drawn. Swaps are feasible only for configuration pairs which belong to

both ρN and ρ′N . This overlap region, labeled pswap, is the domain where the
integrand of Eq. (4.17b) is large, and its integral corresponds to the average swap

probability 〈pswap〉. (c) The overlap of the ρ0 and ρ1 distributions along the
common configuration Γ0 = Γ1. For the hysteresis error to converge, the λ0

simulation must observe configurations where ρ1 > ρ0, and the λ1 simulation must
adequately sample the region ρ0 > ρ1. The frequency with which this occurs is

approximately given by 〈pswap〉.

99



replica exchange we expect the inter-replica equilibrium relationship to be satisfied

more closely than in simulations without replica exchange, because the swap move

distributes configuration pairs in such a way as to satisfy Eq. (4.13). To illustrate,

consider the system in Fig. 4.1(a) where the V0 replica is presumed to be stuck

in the left lobe of the ρ0 distribution because of a kinetic barrier. Without replica

exchange, only the heavily shaded region of ρN will be sampled accurately. The

simulation will not have a correct estimate for ρ′N(γc) = ρN(γ′c), since ρ0 for the

swapped configuration, never having been observed, will be inaccurate. Consequently,

Eq. (4.13) will not hold. Replica exchange directly populates swapped configurations

(e.g., γ′c), thereby improving the statistics of ρ′N and allowing inter-replica equilibrium

to be achieved more quickly for all configurations in ρN .

The degree to which Eq. (4.13) is satisfied determines the magnitude of the hystere-

sis error. To illustrate this, suppose that the distribution ρ′N has some small error

ρε(Γ0, Γ1) due to finite sampling, so that we write (ρ′N + ρε) as the numerator in

Eq. (4.13). In section 4.8.3 we show, by integrating over all configuration pairs, that

the relationship between the hysteresis error and the error of sampling the swapped

distribution, ρε is,

εH ' −β−1

∫
dΓ0dΓ1ρε. (4.14)

The hysteresis error, then, will be minimized when the estimated swapped configura-

tion probabilities ρ′N are consistent with the equilibrium distribution. Since replica

exchange populates the swapped configurations directly, it provides an efficient route

to minimizing εH .

4.3.4 Swap Probability

Analysis of the average replica exchange swap probability is complicated by the fact

that the Metropolis function (Eq. (4.10)) is not analytical. For the purposes of

interpreting this quantity, we will instead consider the Fermi swap probability,

pswap = f(β∆Vswap),

100



where f(x) is defined as,

f(x) = 1/[1 + exp(x)]. (4.15)

(See Bennett (1976) for discussion). We use pswap to denote the Fermi swap probabil-

ity and Pswap for the Metropolis swap probability; while the theoretical development

uses pswap, replica exchange moves are accepted/rejected using Pswap. A simulation

with either the Metropolis or Fermi swap probability will yield a Boltzmann dis-

tribution of swapped and unswapped configurations (Eq. (4.13)). While the exact

numerical values of the Fermi and Metropolis swap probabilities will differ somewhat,

their qualitative behavior and the conclusions drawn here will hold for both.

The average Fermi swap probability for two systems evolving independently is,

〈pswap〉 ≡ 〈〈f(β∆Vswap)〉0〉1, (4.16a)

=

∫
dΓ0dΓ1ρNf(β∆Vswap), (4.16b)

which can be written as,

〈pswap〉 =

〈〈
ρ′N

ρN + ρ′N

〉
0

〉
1

, (4.17a)

=

∫
dΓ0dΓ1

ρNρ′N
ρN + ρ′N

. (4.17b)

The integrand of (4.17b) is a normalized probability of observing a given configuration

pair, and the average swap probability is then the overlap of ρN and ρ′N . See Fig.

4.1(b) for a graphical interpretation. Thus, a large average swap probability implies

a large overlap between the equilibrium distributions of the two replicas, and a low

〈pswap〉 indicates that the configurations these replicas adopt are distinct.

We can expand (4.16a) in a Taylor series about λ = λ0 + δλ. To leading order in δλ,

we find that in the neighborhood of λ0 the average swap probability is, (see section

4.8.4),

〈pswap〉 '
1

2
− β2δ2

λ

4
Cλ, (4.18)

where

Cλ ≡ var

(
∂V

∂λ

)
=
〈
(∂V/∂λ)2〉

0
−
〈
∂V/∂λ

〉2

0
.
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Cλ, then, determines the rate at which the average swap probability declines as the

difference in λ between the two replicas, δλ, increases, although this linear analysis is

accurate only for small δλ.

4.3.5 Swap Probability and the Hysteresis Error Conver-

gence Rate

We now demonstrate that the average swap probability between two replicas gives a

measure of how quickly the hysteresis error decreases, on average, over the course of

a simulation. The hysteresis error is the difference between the forward and reverse

δFFEP , and since the forward and reverse FEP estimators do not converge at equal

rates (Lu and Kofke, 2001a), it is the slower of these which governs the convergence

of εH .

We may rewrite Eq. (4.5a) as,

〈exp(−βW F
D )〉0 = 1. (4.19)

For this to hold, we must sample configurations where W F
D < 0; since the dissipated

work is on average greater than zero by the second law of thermodynamics, such

configurations tend to be rare (Jarzynski, 2006). As a result, the convergence rate of

δF F
FEP is governed by the probability of observing negative dissipated forward work

values. Likewise, the convergence of δFR
FEP is dictated by observations of WR

D < 0. We

can understand this criterion graphically with the relationships, (see section 4.8.1),

ρ0(Γ0)

ρ1(Γ0)
= exp[βW F

D (Γ0)], (4.20a)

ρ1(Γ1)

ρ0(Γ1)
= exp[βWR

D (Γ1)]. (4.20b)

In the context of Fig. 4.1(c), observing W F
D < 0 corresponds to sampling configura-

tions from the ρ0 distribution where ρ1 > ρ0, and for WR
D < 0 we require ρ0 > ρ1

when sampled from the ρ1 distribution.
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Turning our attention to the average swap probability, we note that ∆Vswap, which

is the sum of W F
D and WR

D , is negative whenever ρ′N > ρN (by Eq. (4.13)). Configu-

rations for which this is the case are sampled by a simulation only in the lower-right

half of the domain labeled pswap in Fig. 4.1(b). The larger this domain, whose size

is given by the average swap probability, the more frequently negative values of W F
D

and WR
D are observed, and the more quickly the hysteresis error converges. A numer-

ical confirmation of this argument, that low swap probabilities correspond to large

hysteresis errors and vice versa, is demonstrated in the results section.

4.4 Methods

The computational system consists of 21 replicas, each with a different λ, which

are simulated independently to obtain equilibrium statistics. The parameter λ con-

trols the non-bonded interactions between an acetamide (ACE) solute and the water

molecules. Two independent sets of simulations were performed, with and without

replica exchange, in order to investigate the effect of this technique.

The Lennard-Jones and Coulomb interactions between the water and ACE molecules

are scaled by λLJ and λC , respectively. We scaled both parameters simultaneously,

such that λLJ = λC ; the single parameter λ then refers to both terms. This choice,

while not commonplace in free energy calculations, was made to simplify the replica

exchange implementation, and since the free energy is a state function, any path

through (λLJ , λC) space is valid (Chialvo and Haile, 1987). The specific way in which

the Lennard-Jones and Coulomb terms scale with λ is described in section 4.9. λ

varies across the 21 replicas from 0 to 1 in increments of 0.05.

Each replica consists of 343 water molecules and one ACE molecule, which is rigid and

whose position is fixed in the central box. All simulations were performed at constant

temperature (298K) and volume (21.8Å cubic box) using Metropolis Monte Carlo

sampling. Parameters from the OPLS-AA force field (Jorgensen et al., 1996) and

4-site TIP4P water model (Jorgensen et al., 1983) were used to model the solute and

solvent, respectively. Minimum image boundary conditions and spherical cutoffs were

employed for the Coulomb and Lennard-Jones potentials. The cutoff radius was 10.5Å

for electrostatic interactions and 10Å for van der Waals interactions. Cutoffs were
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group-based for the former, and atom-based for the latter. No long-range corrections

were employed. All simulations were carried out using the MCCCS Towhee (Martin

and Siepmann, 1999) Monte Carlo simulation package 4.

The initial configurations for all replicas were identical and correspond to the end-

point of a pre-equilibration run with ACE in water. For each replica, simulations

consisted of 2 million cycles, where a cycle corresponds to 343 Monte Carlo moves;

each move combines rotations and translations of a randomly chosen individual wa-

ter molecule. The initial 105 cycles were discarded for equilibration. The average

acceptance rate for all replicas was 31%.

The replica exchange simulation consists of a number of simulation rounds, where

each replica evolves independently, separated by swap rounds, when a number of

swap attempts take place. The length of the simulation round was drawn from a

normal distribution with a mean of 500 and standard deviation of 50 cycles. 500

cycles is the approximate energy autocorrelation “time”. The swap round consists of

212 swap attempts between randomly selected replica pairs. Allowing swaps beyond

neighboring replicas increases the efficiency of replica exchange, by allowing a replica

to traverse the entire range of λ from 0 to 1 more quickly than if only neighbor swaps

were permitted (Predescu et al., 2005).

During the course of the simulation, the native (Vi(Γi)) and foreign (Vj 6=i(Γi)) poten-

tial energies, as well as values for dV/dλC and dV/dλLJ (where dV/dλ = dV/dλLJ +

dV/dλC), were saved every 10 cycles. These were then post-processed to obtain the

free energies, the hysteresis error, swap probabilities, and Cλ, regardless of whether

actual replica exchange swaps took place. The total free energy of hydration, ∆F ,

is the sum of all free energy changes (δF )i between neighboring replicas i and i + 1,

calculated using the Bennett acceptance ratio method (Bennett, 1976),

∆F ≡
M−1∑

i

(δF )i

4See http://towhee.sourceforge.net. Version maw4 17 4 (maw-dev branch) was used for this work.
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where M is the total number of replicas. Similarly, εRMS is the root-mean-square of

the hysteresis error (εH)i between neighboring replicas,

εRMS ≡

√√√√M−1∑
i

(εH)2
i /M (4.21)

Statistical errors for ∆F were estimated using the bootstrap method (Efron and

Tibshirani, 1993). With the simulation dataset consisting of N observations, we drew

n∗ observations at random and with replacement to create one bootstrap estimate,

∆F ∗. This process was repeated 10,000 times, and the standard deviation among all

the ∆F ∗ is the estimated error of ∆F . n∗ is the expected number of independent

observations in the dataset; here, n∗ = 1900 with the assumption that there is one

independent observation per two internal energy autocorrelation “times” (Newman

and Barkema, 1999).

4.5 Results

4.5.1 Acetamide Free Energy of Hydration

The hydration free energies we calculate for acetamide are in line with results obtained

by other researchers, as shown in Table 4.1. All numerical results differ somewhat

from experimental values due to differences in force field parameters. Our calculations

were carried out in the canonical ensemble. Therefore, we obtain estimates for the

Helmholtz free energy ∆F , whereas the experimental and other computational values

obtain estimates for the Gibbs free energy, ∆G. Since the box volume at λ = 0 was

adjusted to correspond to 1 atmosphere, the distinction between these two values

should be negligible (Qian and Hopfield, 1996) even with some “pressurizing” due to

insertion of the acetamide (Shirts et al., 2003); test calculations of ∆G in the NPT

ensemble confirm this assertion (data not shown). The general consistency between

our results and those of others serves to verify our implementation and sampling

technique.
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The methods to calculate ∆G in the NPT ensemble do not differ from those for calcu-

lating ∆F in the NVT ensemble; in particular, the replica exchange swap probability

(4.10) does not change, since the pressure-volume work is reversible and does not

contribute to the dissipated work.

Table 4.1 shows differences between results obtained with and without replica ex-

change. As expected from our theoretical considerations, we find that the root-mean-

square hysteresis error is lowered by an order of magnitude when replica exchange is

coupled to the multicanonical sampling protocol. However, it should be noted that the

statistical error estimated using bootstrap remains unaffected. This is not an artifact

of the bootstrap method used to estimate statistical errors. Instead, fluctuations in

estimates for δF originate in fluctuations of the underlying work distribution, shown

in Eq. (4.1). So long as both simulations sample the work distribution adequately,

they will have similar statistical error associated with them. As a cautionary note,

low statistical errors can also be caused by inadequate sampling of the appropriate

work distributions. The statistical error between two replicas can be reduced by de-

creasing the λ-distance between them, and an optimal λ schedule can reduce it for

an entire simulation.

4.5.2 Hysteresis Error and Replica Exchange

For a fixed λ schedule, the hysteresis error may be reduced with either an improved

sampling methodology like replica exchange, or longer simulations per replica. The

effects of both approaches are illustrated in Fig. 4.2.

Panel (a) shows εH for each neighboring replica pair. The hysteresis error is not

uniform across all pairs, with spikes in the region λ = 0.1 − 0.3. Replica exchange

systematically reduces the hysteresis error for all pairs of replicas.

Panel (b) illustrates how both longer sampling and replica exchange affect the hystere-

sis error. Block averaging shows that the average root-mean-square hysteresis error

declines consistently with longer simulations. This reduction can be improved with

replica exchange; in fact, a simulation with replica exchange will achieve the same

magnitude of εRMS about 5 times more quickly than one without replica exchange.
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(a) Acetamide Free Energy of Hydration: Current Work
∆F (kcal/mol) εRMS (kcal/mol)

No Replica Exchange -8.35 ± 0.051 0.120
Replica Exchange -8.14 ± 0.053 0.023

(b) Acetamide Free Energy of Hydration: Literature
∆G (kcal/mol) Details

MacCallum and Tieleman (2003) -8.25 ± 0.26 TIP4P, TI
Shirts et al. (2003) -8.205 ± 0.03 TIP3P, TI
Chang et al. (2007) -8.54 ± 0.1 - 0.3 TIP4P, BAR
Udier-Blagović et al. (2004) -9.65 ± 0.3 - 0.5 TIP4P, FEP
Experimental (Wolfenden, 1978) -9.54

Table 4.1: The hydration free energy of acetamide. (a) The Helmholtz hydration
free energy ∆F for the current work, as calculated by the Bennett acceptance ratio,
and the root-mean-square hysteresis error. The ∆F statistical errors are calculated

by the bootstrap method. (b) Published values of the Gibbs free energy ∆G,
obtained both computationally and experimentally. All computational results utilize
the OPLS-AA force field for the solute acetamide. Also noted are the water model

and free energy estimator (TI: thermodynamic integration; FEP: free energy
perturbation; BAR: Bennett acceptance ratio)
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Figure 4.2: (a) The hysteresis error between neighboring replicas. Replica exchange
effectively reduces the hysteresis error for replica pairs. (b) Block averages of the

root-mean-square hysteresis error, showing that the hysteresis error falls with
increasing block size. Replica exchange increases the rate at which hysteresis error is
lowered, thereby achieving the same magnitude error with simulations which are on

average 4-8 times shorter.
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4.5.3 Average Swap Probability

Fig. 4.3 shows downward spikes in the swap probability for values of λ where the

hysteresis error is large in Fig. 4.2(a). These results are consistent with the proposal

that swap probability between two replicas is an indicator of the rate at which εH

is minimized. The same region is characterized by a positive spike in Cλ, which is

expected based on the relationship between the swap probability and Cλ in Eq. (4.18).

However, while the swap probability calculation requires two separate simulations,

estimates of Cλ can be obtained from just one. Moreover, 〈pswap〉 varies as the distance

between the replicas changes, complicating the interpretation if the λ schedule is not

uniform. Evaluation of Cλ as a function of λ using a preliminary, coarse λ schedule

can identify regions where the swap probability is expected to be low, and can be

used to construct optimal λ schedules, as discussed in Sec. 4.6.2.
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Figure 4.3: The average swap probability between adjacent replicas and
Cλ=var(∂V/∂λ) evaluated for each replica (from the replica exchange simulation;

simulation with no replica exchange is not significantly different). Spikes in Cλ

indicate regions of low swap probability.
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4.6 Discussion

4.6.1 Physical Interpretation of Cλ Profile

To gain a physical interpretation of the profile for Cλ shown in Fig. 4.3, we plot in Fig.

4.4 the average water density in a 2.5Å sphere surrounding the carbonyl carbon of

acetamide. The plot shows that water occupancy around the growing solute decreases

rapidly in the range of λ ∼ 0.15. The expulsion and rearrangement of water molecules

during cavitation leads to a large shift in the equilibrium ensemble, giving rise to a

pronounced spike in Cλ. (Smaller shifts in Cλ near λ = 1 reflect electrostatic effects

and are not observed for simulations where λC = 0, data not shown.) Thus, Cλ

profiles serve as useful probes for detecting large shifts in equilibrium ensembles.

Regions where the equilibrium ensembles change most rapidly are the regions that

contribute the largest errors in free energy calculations.
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Figure 4.4: Water density within 2.5Å of the acetamide carbonyl carbon as λ varies.
The inset illustrates the position and size of the observation volume with respect to
an acetamide molecule. Density is normalized by the bulk density. As λ increases,

waters are expelled by the growing cavity.
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4.6.2 Optimal λ Schedule for Free Energy Calculations

For given computational resources, with the number of replicas and the simulation

length fixed, the root-mean-square hysteresis error of a simulation may be decreased

by optimizing the λ schedule, or the distribution of λ across the replicas. The swap

probability gives the rate at which the average hysteresis error falls between two

replicas, and in an optimized simulation it would be uniform across all replica pairs.

In practice it is difficult to obtain the λ schedule which makes the swap probability

exactly uniform, but reasonable approximations can be made by using the linearized

swap probability, given by Eq. (4.18).

First, it is necessary to perform some number of preliminary simulations to obtain

Cλ along a coarse λ schedule. These initial simulations need not be as long as the

final production runs, since Cλ converges more quickly than δF and is more tolerant

of error. With a rough estimate of Cλ(λ) in hand, the λ schedule can be adjusted to

ensure that the linear swap probability is uniform between all replicas. Alternatively,

one might simply shift replicas from where Cλ is small to where it is large. Both ap-

proaches are only approximate, and break down when the linear response assumption

in Eq. (4.18) ceases to be valid. They may be applied iteratively as Cλ is evaluated

for new λ schedules.

The aim of an optimal λ schedule is to place replicas close together in regions where

the Cλ profile shows spikes. This ensures reasonable swap probabilities and minimal

hysteresis errors in regions that are problematic. Preliminary investigations show

that even when the schedule is improved in an ad hoc manner, hysteresis as well as

statistical errors decrease.

4.6.3 Replica Exchange

Replica exchange provides a Monte Carlo move which may allow a replica to access a

distant part of its equilibrium ensemble in one step. It is no substitute for conforma-

tional exploration within a replica. This point, while obvious, must be emphasized in

the context of the hysteresis error, which does not report on the quality of intra-replica

sampling. As an extreme but illustrative case, consider a system of some number of
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frozen replicas, each with a different configuration, which undergo replica exchange

moves but no conformational changes. With just a modest number of swaps, these

configurations attain the probability distribution described by Eq. (4.13), and the

hysteresis error is zero. The system has achieved inter-replica equilibrium, but the

intra-replica probability distribution has not been obtained. In practice, the major-

ity of Monte Carlo moves must be within a replica. The optimal frequency of swap

moves remains an open question, although preliminary simulations suggest that more

frequent swaps reduce the hysteresis error more quickly.

It is worthwhile to relate replica exchange-based free energy calculations presented

here to other generalized ensemble techniques, particularly λ-dynamical methods

(Kong and Brooks III, 1996; Bitetti-Putzer et al., 2003; Abrams et al., 2006). There,

λ is a dynamical variable which evolves in time according to the conjugate force

∂V/∂λ, with additional terms typically added to the Hamiltonian to associate with

λ a momentum and to restrict its range. Since λ fluctuates, equilibrium distributions

associated with a fixed λ cannot be calculated, and measures like the swap probability

and the hysteresis error are no longer defined. Nonetheless, both classes of techniques

attempt to distribute atomic configurations across a range of λ values according to a

Boltzmann distribution; λ-dynamical generalized ensemble techniques generate this

distribution dynamically, whereas replica exchange techniques utilize a Markov chain

to the same effect. Sampling difficulties in both cases are associated with phase

changes and a large variance of ∂V/∂λ, or Cλ. This results in low swap probabilities

(for replica exchange) or regions in λ space not easily traversed (for λ dynamics),

and these problems may be overcome with improved λ schedules or modified biasing

potentials, respectively. One practical advantage of replica exchange techniques is

that they are readily parallelizable across a number of computers, a trait not shared

by all λ-dynamical methods.

4.7 Summary and Conclusion

In a simulation of multiple replicas, each sampling the equilibrium ensemble of a

different Hamiltonian, swapping configurations between replicas is a nonequilibrium
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work process. Accordingly, the work needed to perform such swaps has a distribu-

tion of values, as described by the Crooks fluctuation theorem. The hysteresis error

εH developed here measures how closely a given simulation reproduces these work

distributions between a pair of replicas.

The hysteresis error is particularly useful in the context of free energy calculations.

It reports on the combined bias of the forward and reverse free energy perturbation

techniques, and it measures how completely individual replicas sample their equilib-

rium ensemble. The root-mean-square hysteresis error, which reports on εH for the

whole λ schedule, may be decreased by running a longer simulation, employing replica

exchange, utilizing an improved λ schedule, or all of these approaches.

The average swap probability is another useful measure and can be calculated whether

or not replica exchange is employed. Since it determines the rate at which the hys-

teresis error decreases with simulation length, the swap probability can be used to

optimize the λ schedule. With a uniform average swap probability the hysteresis er-

ror falls evenly between all replica pairs. This maximizes the efficiency of simulations

with fixed computational resources, avoiding unnecessary replicas where the hystere-

sis is low and preventing excessive errors from regions where the hysteresis error is

large.

The swap probability, along with a related measure Cλ, yields insight into the micro-

scopic behavior of a system. The swap probability is low and Cλ is large when the

equilibrium ensemble changes rapidly with λ – for instance, during phase changes.

Slow convergence and bias errors in free energy calculations arise when there are

spikes in the Cλ profile along the λ schedule, resulting in large hysteresis errors.

4.8 Derivations

4.8.1 Fluctuation Theorem Derivation

We derive the Crooks fluctuation theorem (4.1) in the context of instantaneously

switching λ0 → λ1 (forward) and λ1 → λ0 (reverse). Expanding the ratio ρ0/ρ1 with
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(4.3) for an arbitrary configuration Γ,

ρ0(Γ)

ρ1(Γ)
= exp [β(F0 − F1)− β(V0 − V1)] ,

= exp(−βδF + βW F ),

= exp(βW F
D ), (4.22a)

and similarly,
ρ1(Γ)

ρ0(Γ)
= exp[βWR

D (Γ)] (4.22b)

where the definitions of work (4.4) and dissipated work (4.7) were used.

We integrate ρ1 from (4.22a) over all configurations, but consider contributions only

from those Γ for which the forward dissipated work value takes on a specific value,

WD: ∫
dΓρ0(Γ) exp[−βW F

D (Γ)]δ[βWD − βW F
D (Γ)]

=

∫
dΓρ1(Γ)δ[βWD − βW F

D (Γ)]. (4.23)

Since, from (4.22a) and (4.22b),

W F
D (Γ) = −WR

D (Γ)

(4.23) becomes, ∫
dΓρ0(Γ) exp[−βW F

D (Γ)]δ[βWD − βW F
D (Γ)]

=

∫
dΓρ1(Γ)δ[βWD + βWR

D (Γ)]. (4.24)

We define P F (WD) as the probability of observing a given dissipated work value

in the forward switching process, and it can be expressed as an integral over all

configurations which yield this value,

P F (WD) =

∫
dΓρ0(Γ)δ[βWD − βW F

D (Γ)] (4.25a)
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Likewise, the probability of observing a given dissipated work value in the reverse

switching process is,

PR(WD) =

∫
dΓρ1(Γ)δ[βWD − βWR

D (Γ)] (4.25b)

With these definitions, (4.24) may be written as,

exp(−βWD)P F (βWD) = PR(−βWD),

which is equivalent to (4.1).

4.8.2 Fluctuation Theorem and Hysteresis Error

The relationship between some arbitrary deviation of a simulation from the Crooks

fluctuation theorem and the hysteresis error is derived by first rewriting Eq. (4.8) as,

P ∗
R(−βWD) exp(βWD) = P ∗

F (βWD) exp(−βε∗FT ). (4.26)

Inserting the δFR
FEP definition (4.5b) into the definition of the hysteresis error (4.6),

expanding the reverse work with (4.7b) and using the δF F
FEP estimate for δF ,

εH = δF F
FEP − β−1 ln〈exp(−βWR)〉∗1,

= δF F
FEP − β−1 ln

[
〈exp(−βWR

D )〉∗1 exp(βδF F
FEP )

]
,

= −β−1 ln
[
〈exp(−βWR

D )〉∗1
]
.

We now expand the estimated ensemble average as an integral over all values of βW F
D ,

with P ∗
R the normalized histogram of βWR

D obtained from a simulation,

εH = −β−1 ln

[∫ +∞

−∞
d[βWR

D ]P ∗
R(βWR

D ) exp(−βWR
D )

]
.

As βWR
D is a dummy variable, we change it to −βWD,

εH = −β−1 ln

[∫ +∞

−∞
d[βWD]P ∗

R(−βWD) exp(βWD)

]
,
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where we implicitly multiplied the integrand by −1 to preserve the limits of integra-

tion. With (4.26) the above can be written as,

εH = −β−1 ln

[∫ +∞

−∞
d(βWD)P ∗

F (βWD) exp(−βε∗FT )

]
,

which reduces to (4.9).

4.8.3 Inter-Replica Equilibrium and Hysteresis Error

We can relate an small arbitrary error in the calculated distribution ρ′N to the hystere-

sis error by considering a small error ρε(Γ0, Γ1) in the otherwise correctly estimated

ρ′N . Rewriting (4.13),

ρ′N + ρε = ρN exp(−β∆Vswap),

we integrate over all configuration pairs and rewrite ∆Vswap with (4.11b),∫
dΓ0dΓ1ρ

′
N +

∫
dΓ0dΓ1ρε

=

∫
dΓ0dΓ1ρ0(Γ0)ρ1(Γ1) exp[−βW F (Γ0)]

×
∫

dΓ1ρ1(Γ1) exp[−βWR(Γ1)]. (4.27)

With the sampling error contained in ρε, the ρ′N term (expanded with (4.12b)) is

identically one. Taking the logarithm and dividing by β, (4.27) becomes,

−β−1 ln

[
1 +

∫
dΓ0dΓ1ρε

]
= δFR

FEP − δF F
FEP , (4.28)

where we have used the δFFEP definitions (4.5). With the approximation ln(1+x) ' x

for small x and the definition of εH (4.6), we obtain Eq. (4.14).

4.8.4 Linearized Average Swap Probability

Here we consider the average Fermi swap probability between two replicas whose λ

parameters differ by a small amount, δ (written as δλ in the text). For convenience
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we define

µ ≡ β∆Vswap,

= β[Vδ(Γ0)− V0(Γ0) + V0(Γδ)− Vδ(Γδ)],

where Γ0 and Γδ are configurations drawn from the equilibrium distributions V0 and

Vδ parameterized by λ0 and λ0 + δ, respectively. We expand Vδ as a Taylor series

about λ0,

Vδ(Γ) = V0(Γ) + δA0(Γ) +
δ2

2
B0(Γ) + O(δ3),

with

A0 ≡
∂V

∂λ

∣∣∣∣
λ=λ0

,

B0 ≡
∂2V

∂λ2

∣∣∣∣
λ=λ0

.

µ can then be written as,

µ = βδ[A0(Γ0)− A0(Γδ)] +
βδ2

2
[B0(Γ0)−B0(Γδ)].

Note that µ is small (O(δ)); thus, with the identities,

exp(x) = 1 + x + x2/2 + ..., (4.29a)
1

1 + x
= 1− x + x2 − ..., (4.29b)

we may write the Fermi swap probability between configurations Γ0 and Γδ as,

pswap =
1

1 + exp µ
,

=
1

2

(
1

1 + µ/2 + µ2/4 + O(µ3)

)
,

=
1

2

[
1− (µ/2 + µ2/4) + (µ/2 + µ2/4)2 + O(µ3)

]
,

=
1

2
− 1

4
µ + O(µ3).
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The average swap probability is the ensemble average over all configuration pairs,

〈〈pswap〉0〉δ =
1

2
− 1

4
〈〈µ〉0〉δ,

=
1

2
− 1

4

(
βδ〈A0〉0 +

βδ2

2
〈B0〉0

−βδ〈A0〉δ −
βδ2

2
〈B0〉δ

)
+O(δ3). (4.30)

To evaluate 〈·〉δ, we first obtain Qδ, the partition function at (λ0 + δ),

Qδ ≡
∫

dΓ exp(−βVδ),

=

∫
dΓ exp(−βV0)

[
1− βδA0 + O(δ2)

]
,

= Q0

[
1− βδ〈A0〉0 + O(δ2)

]
,

and its reciprocal,

Q−1
δ = Q−1

0

[
1 + βδ〈A0〉0 + O(δ2)

]
.

We can now evaluate 〈A0〉δ and 〈B0〉δ, retaining only terms which will remain O(δ2)

or larger in (4.30):

〈A0〉δ ≡ Q−1
δ

∫
dΓ exp(−βVδ)A0,

= Q−1
0 (1 + βδ〈A0〉0)

∫
dΓ(1− βδA0) exp(−βV0)A0,

= (1 + βδ〈A0〉0)(〈A0〉0 − βδ〈A2
0〉0),

= 〈A0〉0 + βδ
(
〈A0〉20 − 〈A2

0〉0
)
,

and

〈B0〉δ ≡ Q−1
δ

∫
dΓ exp(−βVδ)B0,

= Q−1
0 (1 + O(δ))

∫
dΓ exp(−βV0)B0[1−O(δ)],

= 〈B0〉0 + O(δ).
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Finally, (4.30) becomes,

〈〈pswap〉0〉δ =
1

2
− β2δ2

4

(
〈A2

0〉0 − 〈A0〉20
)

+ O(δ3), (4.31)

equivalent to Eq. (4.18), which is valid for small δ.

4.9 VLJ and VC Functional Forms

The functional forms of both the Coulomb and Lennard-Jones potentials were devel-

oped for this work based on three criteria:

1. Configurations where the solute and solvent overlap may be observed for λ = 0.

For such configurations, we require:

• That swaps be permitted with reasonable frequency for small λ (e.g. λ =

0.1).

• That swap probabilities falls off quickly thereafter; in particular, we wish

to avoid the situation where the swap probability declines only very near

λ = 1.0.

2. We require that ∂V/∂λ is not always zero for λ = 0 to avoid complications with

the thermodynamic integration (TI) estimator. While, we do not report results

using TI in this work, we wish to construct a λ schedule that works with all

estimators.

3. In this work, λLJ = λC . Therefore, Lennard-Jones repulsion must dominate

Coulombic attraction at very small atomic separations.

While various ways to scale the potential have been discussed in the literature (Beutler

et al., 1994; Pitera and van Gunsteren, 2002; Shirts and Pande, 2005a), none of these

satisfied all of our requirements. It should be noted that condition 3 is somewhat

arbitrary, and more common scaled potentials may be used if the insertion process

scales the Lennard-Jones prior to the Coulomb potential. The specific profiles of Figs.

4.2(a), 4.3 and 4.4 are dependent on the choice of the Coulomb and Lennard-Jones

functional forms, as well as the relationship between λC and λLJ .
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Coulomb scaling We employ a modified version of the linear soft-core scaling

(Pitera and van Gunsteren, 2002); for two atoms of charges qi and qj distance r

apart, the potential energy is λC as,

VC(r, λC) = λC
qiqj

αC(1− λC) + r
, (4.32)

αC controls the “soft core” term, and for small λC imposes a minimum effective atomic

separation. αC = 1.5Å for all simulations in this work.

Lennard-Jones scaling The Lennard-Jones potential between two particles may

be written generally as,

VLJ(r, λLJ) = BA(A− 1), (4.33)

where, for unscaled Lennard-Jones,

A(r) =
(σ

r

)6

, B = 4ε.

Simple linear scaling by λLJ of the Lennard-Jones potential is known to be unsatis-

factory, and a number of alternate forms have been introduced. We developed the

exponential soft-core,

A(r, λLJ) = 1/

[
αLJ(1− λLJ)b +

( r

σ

)6
]

, (4.34a)

B(λLJ) = 4ε
1− e−kλLJ

1− e−k
, (4.34b)

with a = 4, k = 1 and αLJ = 0.5Å. The precise position along the λ coordinate of

the swap probability trough (see Fig. 4.3) is specific to this Lennard-Jones potential.

4.10 Addendum

Here we present two additional results which were not included in the original paper

of relevance in the context of the dissertation. The first is a critical evaluation of

the error estimates provided by the bootstrap estimator, and the second an analysis
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of the hysteresis error – both free energy and energy – and how it decreases with

increasing replica exchange swap rate.

4.10.1 Bootstrap Method Analysis

The statistical error as calculated with bootstrap or block averaging techniques at-

tempts to estimate the range of results one would expect were the simulation to be

repeated multiple times (see section 2.4.2). The advantage of such methods is that

they obtain such information from an analysis of one simulation only. Yet they rely

on a number of assumptions, such as that the original simulation is well sampled and

representative of a population of simulations, which may not hold but are difficult to

verify. In the course of the work described in this chapter, we critically evaluated the

bootstrap technique against a series of independent simulations.

Figure 4.5 illustrates the ∆F and ∆U values of 43 independent simulations, 20 with

and 23 without replica exchange. Here, we used a simplified version of the system

presented in the body of this chapter, evaluating the solvation free energy for an

acetamide molecule with no coulomb interactions (λC = 0). The λLJ schedule was

constructed to try to equalize the swap probability (based on preliminary simulations),

with λLJ values of 0.0, 0.08, 0.137, 0.192, 0.27, 0.38, 0.54, 0.755 and 1.0; the λ schedule

is finer in the region where rapid changes in the equilibrium ensemble occur and where

swap probabilities are low. All the simulations started with the same configuration

and an equilibration period of 10,000 cycles, followed by a production run of 450,000

cycles. Round lengths for the replica exchange system were given by a Gaussian

distribution with a mean of 500 and standard deviation of 50 cycles; for comparison,

the autocorrelation time of the internal energy was about 450 cycles.

The values of ∆F and ∆U in Fig. 4.5 were both calculated with the Bennett accep-

tance ratio. The standard deviation of ∆F is 0.18 and 0.30 kcal/mol without and

with replica exchange, respectively. The corresponding ∆U standard deviations are

4.91 and 4.04 kcal/mol. The source of this difference is unclear, but may suggest

that improved sampling due to replica exchange may increase, for short simulations,

the statistical error of free energy calculations, perhaps because such simulations can

“jump out” of local energy minima and explore conformational space more effectively.
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Figure 4.5: Summary of results of 43 independent simulations, 20 with replica
exchange (“REX”, blue) and 23 without (”NoREX”, red), to independently

characterize the statistical error of such simulations. The standard deviation of ∆F
is 0.18 kcal/mol for NoREX and 0.30 kcal/mol for REX, respectively; ∆U standard
deviation is 4.91 kcal/mol NoREX and 4.04 kcal/mol REX, respectively. Estimates

performed with BAR.
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Figure 4.6: Predicted standard deviation of ∆F and ∆U based on bootstrap
analysis of one simulation as a function of sample size (with 5000 such bootstrap

samples drawn). Identical analyses of two different simulations, with (“REX”) and
without replica exchange (“No REX”), are shown (blue and red lines, respectively),
and are nearly indistinguishable. The expected number of independent observations
per simulation, n∗, is 500 based on an autocorrelation analysis, yielding from this
plot an expected statistical error of 0.10 kcal/mol for both REX and NoREX. The

observed ∆F errors (Fig. 4.5), indicated by “σREX” and “σNoREX” are significantly
larger than this bootstrap prediction. Observed ∆U errors are roughly consistent

with bootstrap estimates.

Since replica exchange reduces the error of free energy calculations as measured by

other error techniques (see e.g. Fig. 4.2 and the next section), this result suggests

that variance-based error measures should be used with caution. Nevertheless, our

aim here is not to analyze the source of this difference, but rather to use these inde-

pendent results to validate the statistical error calculated by the bootstrap analysis

of one simulation.

The number of independent observations during the simulation, n∗, is given by the

total simulation length divided by twice the system correlation time (see section

2.4.2). With the correlation time of the internal energy τ = 450 cycles, we find for

these simulations n∗ = 500. According to theory, analysis of one simulation using the

bootstrap technique with a sample size n∗ yields the simulation standard error.

Figure 4.6 critically evaluates this prediction, plotting the bootstrap error (standard

deviation σ) versus sample size n. We find that bootstrap does not discern between
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simulations with and without replica exchange, and in both cases significantly un-

derestimates the expected errors of the simulations. A bootstrap analysis reports an

expected ∆F error of 0.10 kcal/mol for n = 500, well below the observed errors of 0.18

and 0.30 kcal/mol. The bootstrap prediction of the ∆U error is roughly consistent

with that observed in Fig. 4.6, although the error for the replica exchange simulation

is somewhat overestimated.

In conclusion, we find that the bootstrap analysis of one simulation severely underes-

timates the statistical error of free energy calculations, yielding a standard deviation

two to three times smaller than observed by running the same simulation multiple

times. The source of this discrepancy is unclear, but may stem from basing the

bootstrap analysis on a simulation which is too short to be representative of a pop-

ulation of simulations. For this simulation protocol, which is relatively short with

few λ values, replica exchange also increases the standard deviation of independent

∆F calculations. That better sampling leads to increased ∆F variance suggests that

sampling in the individual simulations is inadequate. In conclusion, it is clear that

statistical error estimates may themselves be prone to error, particularly in the case

of slowly converging quantities such as free energies, and should be analyzed critically.

4.10.2 Hysteresis Error and Replica Exchange Swap Rate

An important parameter in replica exchange simulations is the frequency with which

swaps are attempted. In the work described in the body of this chapter, swaps occur

every 500 cycles or so (with a length given by a Gaussian distribution with a standard

deviation of 50 cycles); for comparison, the autocorrelation time of the internal energy

is 450 cycles. Figure 4.7 illustrates how the hysteresis error decreases with the swap

rate as a function of simulation length. As in Fig. 4.2, we plot the RMS hysteresis

error, averaged over all blocks of a given length, for both the free energy ∆F and the

energy ∆U . ∆U hysteresis error is defined analogously to the ∆F hysteresis error as

the difference of the forward and reverse FEP ∆U estimates (see section 3.2.1).

Consistent with results from Fig. 4.2, we find that the ∆F hysteresis errors fall

more quickly with replica exchange; we also find that the more rapid the swaps, the

more quickly the errors decrease. Interestingly, the corresponding error for ∆U rises
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Figure 4.7: The ∆F (left panel) and ∆U (right panel) RMS hysteresis errors as a
function of simulation length and replica exchange swap rate. The legend indicates
swap rates, with e.g. “250/50” representing swaps on average every 250 cycles, and
“NoREX” indicating no swaps. More frequent replica exchange attempts uniformly

result in a faster decrease in errors. The system is the solvation of uncharged
acetamide with a 31-λ schedule.

at short block lengths before declining. This rise and fall shifts to shorter blocks

and steepens with faster replica exchange rates. The reason for rise and fall of ∆U

hysteresis error is not entirely clear, but may have to do with the fact that measures of

∆U are closely related to the covariance of two quantities, V and ∂V/∂λ (see section

3.2.1). The inter-replica equilibration which is accelerated by replica exchange may

then affect such covariance measures.

The increased convergence rates due to replica exchange may be quantified from Fig.

4.7; compared to a simulation with no replica exchange, simulations with the fastest

(250/50) swap rates converge to the same error value > 10 times more quickly for

∆F , and about 3 times more quickly for ∆U . This is in line with results in Fig. 4.2,

where ∆F a 4-8 convergence rate increase was observed for a 500/50 swap rate.

These results, together with those presented in the body of this chapter, support

the notion that replica exchange is an effective way to speed the convergence of

solvation thermodynamics calculations, and the more frequent the swaps the greater

the improvement.
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Chapter 5

Conclusion

The aim of this thesis is to improve the methodology of free energy of solvation cal-

culations and their entropy/enthalpy decompositions, so that such thermodynamic

quantities may be calculated with greater accuracy and precision with given compu-

tational resources. We accomplish this goal with three primary advancements:

1. Improved estimators for entropy/enthalpy decompositions.

2. Methods to improve the λ schedule, so as to accelerate both free energy and

entropy/enthalpy calculations.

3. Improved sampling techniques – specifically, Hamiltonian replica exchange –

which likewise improve simulation convergence.

These techniques, along with the conceptual improvements upon which they are

based, are summarized and discussed in the following section.

We conclude with a discussion of various paths that such improvements present. First,

we consider possible simulation protocols by which the motivating problem of polar

collapse can be explored. Next we describe a technique by which phase transition-

like events can be detected unambiguously without reference to any specific order

parameter. Finally, we discuss a connection between the our analysis of Hamiltonian

replica exchange and recent findings in the field of nonequilibrium statistical mechan-

ics, which suggest further ways in which thermodynamic paths may be improved.
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5.1 Summary of Results and Discussion

5.1.1 Improved Entropy and Enthalpy Estimators

There are two major families of equilibrium free energy estimators. The sole member

of the first family is the thermodynamic integration method. This estimator is based

on a truncated Taylor series expansion of the free energy change between two systems

(Bennett, 1976).

The second family consists of the perturbation estimators, which can be categorized

by the number of systems from which they simultaneously draw their information.

Free energy perturbation uses information from one simulation to extrapolate the

free energy difference to another λ value. The Bennett acceptance ratio uses data

from two simulations and interpolates their difference to estimate the free energy

change. Finally, the multistate Bennett acceptance ratio estimator uses data from

K simulations to obtain, at once, the free energy changes between each of them and

across the entire λ schedule. Both BAR and MBAR are derived so as to minimize the

variance of the estimate ∆F , given that only a finite number of samples are drawn

from each simulation (Bennett, 1976; Shirts and Chodera, 2008). The MBAR method

reduces to BAR for the case of two simulations, and BAR reduces to FEP in the case

that all the data are drawn from only one simulation.

The crux of chapter 3 involves taking the temperature derivative of the BAR and

MBAR estimators in order to obtain the entropy estimator formulae. One apparent

complication of this approach is that there are in fact no explicit formulae for ∆F

in either of these methods; rather, both are implicit equations requiring an iterative

solution, where estimators for ∆F appear on both sides of the equals sign (c.f. (3.10)

and (3.12)). This is in fact not a problem, and we can take a derivative of both sides,

yielding an implicit equation for ∆S. A slightly more complicated issue is that the

MBAR ∆F equation is written in terms of an empirical average, which needs to be

cast as an ensemble average before the temperature derivative can be performed (cf.

section 3.5).

While both BAR and MBAR were derived to minimize the variance of ∆F , there is

no a priori reason to believe that the ∆S estimator likewise has the lowest possible
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variance. It may be possible to derive a ∆S estimator de novo which will formally

minimize the variance of ∆S and which differs from the one described here. Neverthe-

less, the ∆S estimates obtained from the BAR and MBAR derivatives are observed

to have favorable convergence properties. As illustrated in Fig. 3.6, the MBAR esti-

mator in all cases has a standard error lower than BAR, which is in turn superior to

the FEP estimates.

The remaining entropy estimator, the direct method, is a common but näıve choice for

performing entropy/enthalpy decompositions. It can be effective when the enthalpy

change is large, and is trivial to implement. For ∆U changes on the order of kBT ,

however, it is a poor choice because of its poor convergence qualities. For estimating

the enthalpic contribution to the mean force profile, which is typically calculated for

a fine λ schedule with correspondingly small enthalpy changes, the direct estimator

is so noisy as to be practically useless. It is in such situations where the MBAR

estimator, which makes maximal use of information from all simulations, excels.

5.1.2 Improved λ Schedule

The insertion of a solute into solvent, particularly if the solute is large, involves

considerable reorganization of the solvent molecules. Splitting the insertion process

into many substeps by means of multiple simulations along the λ schedule is a classic

technique used to aid convergence (see Mezei and Beveridge (1986) for a historical

perspective).

A variety of different ways have been presented in the literature to construct improved

λ schedules (Pearlman and Kollman, 1989; Lu and Kofke, 1999; Shirts et al., 2003),

although simple linear λ schedules are still commonly employed. We construct our λ

schedule so that it directly minimizes a specific measure of the error associated with

free energy calculations.

The configuration probability distributions of two systems with different λ values are

not independent of one another. Just like the relative probability of observing two dif-

ferent configurations in one simulation is given by the Boltzmann distribution, so the

probability of observing given work values when swapping configurations between the
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independent simulations is given by the Crooks fluctuation theorem (Crooks, 1999).

That is, when one simulation is well sampled, its internal probability distributions

satisfy the Boltzmann distribution; when two independent simulations are both well

sampled, configuration swaps between them satisfy the Crooks fluctuation theorem.

The hysteresis error presented in chapter 4 quantifies how closely the Crooks fluctua-

tion theorem is satisfied; it can be understood as a measure of inter-replica equilibra-

tion. Operationally, however, it is defined as the difference between the forward and

reverse FEP ∆F estimates. If the estimates agree then the hysteresis error is zero,

and the simulations are well converged.

In chapter 4, we propose that the rate at which the hysteresis error decreases is gov-

erned by the replica exchange swap probability. This swap probability – technically,

the Fermi swap probability, which has the same essential qualities as the Metropolis

swap probability (see section 2.1.2) – is a measure of the overlap in phase space of the

ensembles of the two simulations. The larger the swap probability the more similar

the two systems are, and the more likely they are to sample the regions of phase space

which lead to the convergence of the FEP estimators. Thus, the larger the swap prob-

ability the more quickly the hysteresis error decreases, the FEP calculations converge

and the Crooks fluctuation theorem is satisfied.

An optimal λ schedule is one for which the free energy estimate for the entire cal-

culation converges most quickly. Since the error of the whole calculation is governed

by the error of the least accurate section along the λ schedule, we define the optimal

λ schedule as one for which the hysteresis error decreases uniformly quickly every-

where. That is, the optimal λ schedule will have a uniform swap probability between

all replicas.

The swap probability, however, needs two simulations in order to be evaluated, and

varies nonlinearly with δλ, defined as the distance along the λ schedule between two

simulations. To permit its evaluataion based on the results of only one simulation,

we expand the swap probability in a Taylor series and find that it is proportional

to δλ2var(∂V/∂λ) (cf. Eq. (4.18)). This leads to a protocol by which the results

of a series of trial simulations are used as the basis for constructing an improved λ

schedule.
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One concern is that this methodology is specific only to FEP ∆F estimators, as

they are the basis for the hysteresis error formulation. Would a schedule which is

optimal for FEP ∆F also be optimal for, say, MBAR ∆U calculations? Figures 3.5

and 3.6 address this question by plotting the standard errors of various ∆F and ∆U

estimators alongside the swap probability. It is clear that “difficult” regions of the

λ schedule – where the ensemble is changing most quickly – correspond to areas of

relatively large errors for all estimators as well as low swap probabilities. Improving

the λ schedule by adding additional simulations in this region (compare, for instance

the 21λ and 29λ results) reduces all errors as it increases the swap probability.

5.1.3 Improved Sampling with Hamiltonian Replica Exchange

Replica exchange (also known as parallel tempering) employs a Monte Carlo move

to swap system parameters between multiple concurrent simulations, so that kinetic

bottlenecks can be overcome more quickly and sampling improved. The original and

most common implementations use temperature as the parameter (Hukushima and

Nemoto, 1996; Hansmann, 1997; Nymeyer et al., 2004). Hamiltonian replica exchange

(Sugita and Okamoto, 1999; Fukunishi et al., 2002) instead swaps some parameter

which modifies the Hamiltonian. The natural choice is the same λ parameter used in

solvation calculations, and this approach has been used in the context of free energy

calculations previously (Sugita et al., 2000; Woods et al., 2003a,b).

The contribution of this thesis is in the analysis of Hamiltonian replica exchange (al-

though the non-neighbor swap algorithm, section 2.1.4, is to our knowledge novel).

By casting the problem of independent replicas in the context of the Crooks fluc-

tuation theorem, as described in the previous section, we clarify and quantify the

concept of inter-replica equilibration. Then, just as a Monte Carlo move of, say, the

displacement of a solvent molecule in a simulation leads to the accumulation of sam-

ples which obey the Boltzmann distribution, so a replica exchange move works to

satisfy the work distributions required by the Crooks fluctuation theorem. By allow-

ing the “jumping” over barriers, Hamiltonian replica exchange leads to the Crooks

fluctuation theorem being satisfied more quickly.
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Also, by rewriting the replica exchange swap probability in terms of the Fermi rather

than the Metropolis criteria, we can formally interpret the average of the swap prob-

ability as the overlap of two ensembles.

Previous work on Hamiltonian replica exchange free energy calculations (Sugita et al.,

2000; Woods et al., 2003a,b) focused on the variance of the resulting estimates as

a measure of the improvement of sampling. This can be misleading, as improved

sampling can in fact lead to increased variance under some conditions (e.g. a system

escaping local minima; see also section 4.10.1). The hysteresis error is a much less

ambiguous error measure and leads to a clear demonstration of the benefits of replica

exchange. We show in Fig. 4.7 that both free energy and entropy estimates are

improved by Hamiltonian replica exchange, and that faster swaps lead to accelerated

convergence, a result otherwise demonstrated only for temperature replica exchange

(Sindhikara et al., 2008).

The optimal replica exchange swap frequency is not clear, and is dependent on the

measure of efficiency one wishes to maximize as well as on the specifics of the replica

exchange implementation. For instance, in the Towhee simulation engine (used in

chapter 4) each round requires a restart of the program, which incurs significant

overhead; even if this were avoided, swaps typically require the synchronization of

the different replicas (no swaps occur until the last one finishes) and inter-process

communication. Such restrictions limit the efficiency of the technique at very high

swap rates if one measures efficiency by the “wall clock time” spent performing the

simulation. In general, however, it would appear that the less overhead is incurred by

Hamiltonian replica exchange swaps, the more frequently they should be performed

to maximize sampling efficiency.

Another open question is the balance between the number of replicas versus the sim-

ulation time per replica, if the product of these two is held fixed such that the total

computer simulation time is constant. One could envision, for instance, a simulation

consisting of hundreds or even thousands of replicas along a λ schedule, each perform-

ing rapid Hamiltonian replica exchange swaps (perhaps asynchronously) and running

for a relatively short period of time. Would this approach be more effective than the

current model of a dozen or two simulations performing lengthy simulations? Once
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again, the tradeoffs are closely tied to the algorithm implementation, but it is plau-

sible that denser schedules increase sampling efficiency more quickly than increased

simulation time.

5.2 Future Directions

5.2.1 Sampling of Flexible Chains

The motivation for this work, as discussed in section 1.4, is to understand why polar

peptides – in contradiction to expectations based on transfer models – form compact

globules in water. Figure 5.1 illustrates the behavior of glycine 15-mers in water and

in the excluded volume limit, the latter simulating chain behavior in a good solvent.

The histogram of two quantities, the radius of gyration and asphericity (a measure

of shape), is plotted for both solvent conditions. This plot makes clear that chains in

water tend to collapse into compact, spherical globules, whereas in the EV limit the

chains are swollen and elongated (Tran et al., 2008).
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Figure 5.1: The radius of gyration (Rg) and asphericity (δ∗ is a measure of shape,
with δ∗ ≈ 0 for spherical shapes) for glycine 15-mers in different solvent conditions.
It is observed that the polypeptides collapse in water but swell and elongate in the

EV limit. We define the compact ensemble as that observed in water, and the
swollen ensemble as the EV limit. Figure from Tran et al. (2008).
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We can consider Fig. 5.1 as defining two ensembles: polypeptide conformations (Γ)

drawn from the water simulation belong to the ensemble γcompact, and those taken from

the EV simulation are members of the γswollen ensemble. These two ensembles overlap

very little. Since in water the compact conformations are preferred, by definition they

have a lower free energy. That is,

Gwater(γcompact) < Gwater(γswollen), (5.1)

where the free energy of an ensemble is defined as the expectation value of the free

energy for a population of fixed conformations drawn from that ensemble. For in-

stance,

Gwater(γcompact) = 〈Gwater(Γ)〉compact. (5.2)

We now consider two related but distinct questions:

1. How to measure,

∆Gcollapse = Gwater(γcompact)−Gwater(γswollen)? (5.3)

This is the free energy difference between the swollen and compact conforma-

tions in water (akin to ∆G◦
fold defined in section 1.1) and quantifies the stability

of the collapsed state. We can define ∆Scollapse and ∆Ucollapse similarly, and these

give insight into the nature of the thermodynamic driving force which leads to

collapse.

2. How does the total free energy of a flexible glycine N-mer, G(N), vary with

chain length N? That is, we wish to quantify

∆Ggrow(N) = Gwater(N + 1)−Gwater(N), (5.4)

and its decomposition into ∆Sgrow(N) and ∆Ugrow(N). This question addresses

the nonlinearity of the concatenation process and the failure of the additivity

model.

The solvation calculation techniques presented in this thesis provide a methodological

way forward but do not, in and of themselves, directly address these questions. In
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particular, solvation calculations of flexible chains cannot calculate ∆Gcollapse, since

the chain will collapse when fully coupled with the water and never explore the swollen

ensemble. The fundamental problem is that we wish to evaluate free energy changes

with respect to changes in the conformational ensemble, but we have no control of

this ensemble. In their current form, solvation calculations will report on the free

energy difference between a polypeptide in vacuuo and a collapsed chain in water.

Solvation calculations may be able to approach the second problem of calculating

∆Ggrow(N), but not directly and not without assumptions. Figure 5.2 illustrates

the issue in terms of a thermodynamic cycle. We wish to calculate ∆Ggrow(N), the

free energy change of increasing chain length by one unit in water. At our disposal

are calculations which report on ∆Gs(N) and ∆Gs(N + 1), the free energy change

associated with transferring a flexible chain of a given length from vacuum into water.

Since this transfer process is path independent, we can obtain the quantity of interest

as,

∆Ggrow(N) = ∆Gs(N + 1)−∆Gs(N) + ∆Gvac
grow(N). (5.5)

∆
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Figure 5.2: A thermodynamic cycle illustrating polypeptide transfer and growth
processes.

To evaluate ∆Ggrow(N), we need to obtain ∆Gvac
grow(N), the free energy change asso-

ciated with increasing the length of the chain in vacuuo, that is, with λ = 0. It may

be possible to estimate this quantity, although the conformation of the chain at λ = 0

would have to be determined. The conformation ensemble for a flexible molecule at

λ = 0 is in fact dependent on the particulars of the choice of the scaling potential

(see section 2.1.3). If solute-solute interactions are not scaled, then the polypeptide
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will assume a globular conformation, whereas if solute-solute interactions are scaled,

then the chain will likely be in the EV limit. An estimate of ∆Gvac
grow(N) would need

to take these details into account. Another problem with this approach is that it is

very inefficient; two solvation processes need to be performed with high accuracy in

order to calculate ∆Ggrow(N), even though information at λ 6= 1 is of no interest.

Thus while solvation calculations may be able to address question 2 above, they are

ill designed to do so.

Fortunately, the techniques presented here can estimate free energy changes and their

decompositions for any process parameterized by λ, not just the insertion of a whole

particle into solvent, and we have a great deal of latitude in choosing this process. In

whatever process we design, we wish the perturb the system as little as possible as λ

varies, so as to maximize ensemble overlap and the rate of convergence.

The approaches described below can be implemented using current technology. Pre-

liminary work has been performed on some of these approaches using the gromacs

(Hess et al., 2008) simulation engine, which is well suited to these tasks, principally

because of its speed and flexibility. The main drawback of gromacs is that, at

present (version 4.0.5), it lacks the ability to output foreign energies. As discussed

in section 2.5 this can to some extent be overcome in postprocessing for calculations

involving the MBAR methods. Foreign energies must be available at run time to

implement Hamiltonian replica exchange, however, and this method is currently not

possible in gromacs.

Frozen Conformation Solvation

A straightforward way to estimate ∆Gcollapse is to solvate some number of frozen

polypeptide conformations which are representative of the γcompact and γswollen en-

sembles. That is, we can choose conformations at random from each of the ensembles

illustrated in Fig. 5.1, hold them immobile, and proceed with the solvation process

just as for the small model compounds to calculate the solvation free energy and its

entropy/enthalpy decomposition. In effect, this techniques estimates the quantity

Gwater(γswollen/collapsed) in Eq. (5.2) by an empirical average over a finite number of

fixed conformations, and the greater the number of such conformations are sampled,
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the better converged the estimate will be. This approach is in the spirit of Ben-Naim

(1987), who generally focuses on the solvation of compounds with no conformational

degrees of freedom.

It is not clear a priori how many such calculations would be needed and what level of

accuracy is required to distinguish, beyond statistical error, differences between the

ensembles. If the differences are clear and distinct, then just a few calculations would

suffice. If the differences are subtle, or very sensitive to the details of the conformation,

then performing tens or hundreds of calculations may be necessary. This would likely

be a poor investment of resources, and other techniques would likely be preferred. Its

simplicity, however, make this approach an obvious first choice.

Chain Growth Simulations

To calculate the quantity ∆Ggrow(N) and address directly chain length-dependent

effects, we can consider a simulation where the λ parameter grows in only a terminal

amino acid in a peptide chain. Here, for λ = 0 the chain is effectively of length N ,

and for λ = 1 it is of length N + 1, so that both the λ = 0 and λ = 1 systems are

physically relevant.

More specifically, at λ = 0 the N-mer and water would interact normally, with a

terminal ghost residue which does not interact with either. Interactions of the ter-

minal residue with the rest of the system would then scale with λ, as if simulating

the solvation of the terminal residue onto the tail of a chain. Such simulations could

be performed for any N , and this technique could access length-dependent effects

directly. Since growing in one residue would presumably perturb the system only

modestly, swap probabilities should be reasonable with a λ schedule which is coarser

than that required to grow, say, a whole chain in from scratch.

One complication is that the ghost terminal group would need to be identical to the

Nth group. Typically, simulations of polyglycine (and other polypeptides) have acetyl

and n-methyl amide capping groups to preserve chemical accuracy and ensure neutral

charge groups. In this simulation protocol, however, it would be advantageous to avoid

mutating a capping group into an internal group while adding a new terminal group.

It seems reasonable that an appropriate synthetic system of N identical repeating

135



units in a chain (with no additional capping groups) could be constructed while

approximating the behavior of a physical polypeptide.

Such a system could address directly the linear additivity of peptide groups into a

chain, interpolating all the way from solvating a single amide group to the long chain

limit, and could readily be implemented in e.g. the gromacs simulation engine.

Inducing Coil-Globule Transitions

Neither of these approaches can investigate the transition from poor to good solvent

directly. The first method considers conformations which are by construction in one

ensemble or the other, while the second evaluates the free energies of the conforma-

tions naturally assumed by the solute. It would be helpful, for the investigation of the

collapse of polar peptides, to be able to access the coil-to-globule transition directly

in explicit solvent calculations.

It is, in fact, possible to populate the coil state in an explicit solvent model, and recent

work has demonstrated two different parameters which can induce a coil-to-globule

solvent transition for a glycine 15-mer. The scaling of either solute-solute or solute-

solvent dispersions6 will induce a transition from the swollen to the collapsed state;

others (Polson and Moore, 2005) have used similar approaches. The λ parameter

governs the magnitude of such dispersions, with λ = 1, λ < 1 and λ > 1 representing

a system with normal, reduced and strengthened dispersions, respectively. No other

interactions in the system are modified. The radius of gyration order parameter in

Fig. 5.3 captures the coil-to-globule transition of a polyglycine chain.

Given that we can induce a coil-to-globule transition with the parameter λ, how can

we use this methodology to investigate the driving force for polar collapse? A first

step would be to observe how ∆F , ∆U and especially T∆S change during the puta-

tive phase transition, and perhaps parse these system-wide changes into contributions

from the solvent and solute individually (Peter et al., 2004). A more formal proce-

dure might be based on the m-value analysis common in denaturation experiments

(Pace, 1986). With the assumption that the good-to-poor transition is a two-state

process, the average radius of gyration at a given λ can be used to estimate the free

6Dispersion forces refer to the attractive component of Lennard-Jones interactions.
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Solute-Solvent Solvent-Solvent

Solute-Solute

(a) Glycine 15-mer in water with solute,
solvent combination pairs labeled.

λ*

(b) Radius of gyration of glycine 15-mer as
solute-solute dispersion interactions are

scaled. The value λ∗ indicates the mid-point
of the coil-to-globule transition.

Figure 5.3: A coil-to-globule transition can be induced in a glycine 15-mer system
with explicit water by scaling the strength of solute-solute dispersion forces with the

parameter λ.

energy as well as the entropy and enthalpy of folding, independent of the systematic

perturbations induced by the modification of the Hamiltonian.

Both approaches seem reasonable and should be informative. In the next section we

will consider another approach, one based on analyzing the coil-to-globule collapse as

a phase transition, which may yield quantitative estimates of the free energy penalty

associated with the peptide collapse.

5.2.2 Phase Transitions

We can induce a coil-to-globule transition in a glycine 15-mer in explicit water by

modulating the solute-solute dispersion forces with the parameter λ, as illustrated in

Fig. 5.3b. Due to their cooperative nature coil-to-globule transitions, as well as the

protein folding process itself, are frequently modeled as phase transitions (Grosberg

and Kuznetsov, 1992; Ivanov et al., 1998; Pande et al., 1998; Tcherkasskaya and

Uversky, 2001; Shakhnovich, 2006). In this section, we will de-emphasize the specific

problem of polypeptide collapse and consider phase transitions more generally, with

an emphasis on how they can be detected in computer simulations in general, and

return to the issue of coil-to-globule at the conclusion of this section.
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Polypeptide Collapse as a Phase Transition

Whether the coil-to-globule transition is a phase transition in the sense of classical

thermodynamics (Callen, 1985) or simply a useful analogy (Mirny and Shakhnovich,

2001) is open to debate, as the precise nature of the collapse transition has proven dif-

ficult to establish (Shakhnovich and Finkelstein, 1989; Finkelstein and Shakhnovich,

1989; Kuznetsov and Timoshenko, 1999; Ivanov et al., 1998). The study of phase tran-

sitions in general has long been a topic of great interest in a variety of scientific fields

and plays a central role in many areas of physics. Formally, such phenomena occur

only in the thermodynamic limit of systems of infinitely many particles (Borrmann

et al., 2000). Proteins, on the other hand, are necessarily of finite length, as are com-

puter simulations. Still, mathematical models which describe phase transition-like

behavior in small systems have been been constructed, and these models converge to

classical definitions of phase transitions in the thermodynamic limit (Borrmann et al.,

2000; Gross, 2001; Pleimling and Behringer, 2005; Proykova and Berry, 2006). Our

aim here is not to review concepts of phase transitions or to commit to its nature in

small systems, but rather to discuss a set of techniques by which cooperative, phase

transition-like phenomena can be observed in computer simulations. In the following,

we use the term “phase transition” according to the definition of Gross (2001) (which

will be discussed), with the understanding that by other definitions the term “phase

transition-like” may be more appropriate.

Fundamentally, first order phase changes are caused by an instability in the underly-

ing thermodynamic potential and are marked by discontinuous changes in the molar

entropy and enthalpy of the system (Callen, 1985). In practice – that is, experi-

mentally and typically in computer simulations – phase changes are indicated by a

sudden change in an order parameter which characterizes some aspect of the system

(Landau and Binder, 2000), for instance the density (in a fluid system) or radius of

gyration (in a polypeptide system). In general a whole host of quantities changes

simultaneously and there is no single unique order parameter by which to charac-

terize the phase transition (Proykova and Berry, 2006). Theory aside, one problem

with such an approach to small systems, such as the collapse of polypeptides, is that

sharp transitions in order parameters occur only in the thermodynamic limit, and

observing them gets increasingly difficult as system size decreases. Also, specifying

the appropriate order parameter can be difficult.
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Nevertheless, the instabilities in the thermodynamic potentials which are at the root

of phase transitions still exist in small systems. These form the basis of a technique to

detect phase transitions in small systems which is independent of the choice of order

parameters. The aim of the remainder of this section is to introduce the concepts

behind this technique, and then to outline how these ideas may be used in the case of

polypeptide collapse like the one illustrated in Fig. 5.3b. The motivation is the work

of Junghans et al. (2006, 2008), who describe the thermodynamics of the aggregation

of a simple polypeptide model, and the theory is largely based on Gross (2001). The

extension to the case of the parameter λ is novel to this work.

Thermodynamics of Small Systems

The entropy of a system in the microcanonical ensemble, S(ξ), is maximized for

a system at thermodynamic equilibrium (Callen, 1985). Here, ξ is any extensive

variable, for instance the total internal energy U .

Suppose that the thermodynamic potential S(ξ) is concave in a section of its domain,

like illustrated in Fig. 5.4a. In the region marked by the point A, the system will exist

in a single phase, as a homogeneous system will maximize the entropy for the given

quantity ξA. In the region marked by point D, however, the situation is different.

The system will not stay in a homogeneous state with the entropy indicated by point

D, as this situation is not thermodynamically stable.

To illustrate, imagine that we divide the system into two parts and transfer some

quantity ∆ξ from one part to the other, so that (on a per mole basis) one part has

ξB = ξD − ∆ξ and the other ξF = ξD + ∆ξ. Given that for large systems entropy

is extensive (Touchette et al., 2004), the total system entropy is given by the point

H on the line drawn from B to F according to the lever rule (Callen, 1985). The

entropy of point H is larger than for D, and the partitioning we proposed would occur

spontaneously. In fact, anytime ξ is between ξB and ξF the system will separate into

two phases.
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(a) In the thermodynamic limit, a convex
entropy surface is never observed and the
total system entropy will lie on the line

BHF .
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(b) In small systems, the entropic penalty
associated with the interface (Sinterface) is

significant, and the observed system entropy
will lie on the curve BH ′F . As a result, a

convex entropy surface is observed.

Figure 5.4: Convex regions of the entropy S versus an extensive quantity ξ lead to
first order phase transitions. Figure adapted from Callen (1985).

This relationship between the shape of S(ξ) and the stability of the phases can be

expressed as,
∂2S

∂ξ2
≤ 0. (5.6)

If, at a given value of ξ this is not the case, the system will phase separate and restore

this relationship. For large systems, violations of Eq. (5.6) are not observed.

In small systems the situation is different, because entropy is no longer extensive. The

interface which occurs between phases incurs an entropy cost which is not negligible

(Janke, 1998; Junghans et al., 2008; Proykova and Berry, 2006; Gross, 2001; Gross and

Kenney, 2005). Bulk energy terms scale with the number of particles as N , whereas

interface terms grow as N2/3. As a result, in the thermodynamic limit the bulk terms

dominate and interface effects can be neglected. For small systems, however, the

interfaces form a significant part of the energy and cannot be neglected (Hill, 1994;

Sheehan and Gross, 2006). For a small system separated into two phases, the total

system entropy is given as,

Ssystem = Sphase A + Sphase B + Sinterface. (5.7)
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The presence of the interface entropy term has important consequences on the stability

criterion, Eq. (5.6). Figure 5.4b illustrates what the observed relationship between S

and ξ may look like. The additional entropy term shifts the state H predicted by the

lever rule line down by an amount Sinterface, such that the combined, phase separated

system has a decreased entropy marked by H ′. As a result, an apparent violation of

the stability criterion occurs, and a convex entropy relationship,

∂2S

∂ξ2
> 0 (5.8)

is observed in this region (Gross, 2001). This condition is an indicator of a first order

phase transition in a small system, and is the central conceptual result of this section.

Gross (2001) defines a phase transition for a finite system by regions of non-negative

curvature of the entropy surface as a function of conserved extensive quantities. For

the general case of entropy as a function of multiple extensive quantities, S(ξ1, ξ2, ...),

we define the Hessian H(S) as a matrix of second derivatives of S with respect to ξi

(Hale and Koçak, 1996),

H(S) =
∂2S

∂ξi∂ξj

, (5.9)

and consider its eigenvalues νi. A first order phase transition occurs when one of the

νi > 0. Second order transitions and critical points can also be defined in terms of

the eigenvalues of H (Gross, 2001).

An important consequence of phase transitions in small systems is that the micro-

canonical and canonical ensembles are no longer equivalent, so that phenomena which

can be observed in the former are obscured in the latter (Touchette et al., 2004). For-

mally, this comes from the failure of the Legendre transform whenever Eq. (5.8) holds

true (Callen, 1985). Because the slope of the curve (∂S/∂ξ) in Fig. 5.4b does not

vary monotonically with ξ, it ceases to be a useful control parameter in the vicinity

of the convex region.

An example from Junghans et al. (2006) helps to illustrate this point. The authors

analyze a model system of two model amphiphilic peptides in implicit solvent and

sample it exhaustively to obtain the density of states. From this the entropy S as

a function of the internal energy U is obtained. Effectively, the authors consider a
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system like in Fig. 5.4b where the extensive parameter ξ = U , the energy of the

system; then ∂S/∂U = 1/T defines the intensive parameter, the temperature.

U

T
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Figure 5.5: A plot of the the inverse temperature versus energy for a system of two
model peptides, from Junghans et al. (2006). The region with a positive slope of

T−1 indicates a phase transition. Here, the temperature temporarily decreases with
increasing energy. The equal areas A+ and A− quantify ∆Sinterface. Note that a

phase transition is observed unambiguously on the basis of a thermodynamic
instability, with no reference to any specific order parameter.

Fig. 5.5 plots T−1 versus U and illustrates the “backbending”, resulting from a

concavity of S(U), characteristic of a phase transition. Here, the temperature ceases

to be a suitable external control parameter. To illustrate, suppose that we hold the

temperature constant at T−1 = T−1
agg; this temperature corresponds to the coexistence

of two phases, one characterized by U = Uagg and the other by U = Ufrag. The state

of the system is some uncontrolled combination of the two phases (e.g. it may be

history dependent), and the macrostate of the system cannot be adjusted by fixing

the temperature. Instead, the phase transition is more favorably analyzed in the

microcanonical ensemble where the extensive variable (U , in this instance) is held

fixed (Junghans et al., 2006, 2008; Bachmann et al., 2005).

A fair amount of insight into the behavior of the system can be obtained from an

analysis of Fig. 5.5. Below Uagg the system is in an aggregated state, and above Ufrag

the system fragments and monomers dissociate; the phase transition occurs in the
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region Uagg < U < Ufrag. The positive slope of T−1 indicates a decreasing temper-

ature with increasing energy: additional energy leads to cooperative rearrangements

of monomers in the aggregate in order to reduce surface tension; as a consequence,

kinetic energy is transferred into potential energy and the temperature decreases.

That is, the aggregate becomes colder, although the total energy increases (Junghans

et al., 2006).

Finally, the entropy penalty associated with the interface, Sinterface, can be obtained

from Fig. 5.5 as the areas A− and A+. These areas are defined by the Maxwell

construction (Chandler, 1987), a horizontal line which divides the lobes of the “S”

curve into equal areas. Either area A+ or A− quantifies Sinterface.

Similar results have long been observed in computer simulations of melting systems

(see e.g. Allen and Tildesley (1987), Fig. 11.2a). Such phenomena are a general

result of convexity in the entropy function in small systems stabilized by interfaces

(Wales and Berry, 1994).

To summarize, plotting the intensive parameter (e.g. the temperature) while holding

the extensive parameter (e.g. the energy) fixed will allow phase transitions in small

systems to be identified as a “backbending” or S curve. This backbending will not

be observed when the intensive parameter is controlled, and may be used to quantify

the free energy penalty associated with the creation of the interface.

Observing Phase Transitions with Respect to λ

The proposal is that a similar approach can be used to investigate the coil-to-globule

transition of polypeptides in explicit solvent with variable solute-solute dispersions.

Simply replicating the approach of Junghans et al. (2006) is not possible, however.

First, we cannot exhaustively enumerate the density of states, a central feature of their

approach, since doing so in explicit solvent would be computationally prohibitive. In

addition, our control parameter is the intensive parameter λ, whereas we need to

control an extensive variable to observe the “backbending” upon which the analysis

rests.
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To preview our approach, we find that it is not necessary to estimate the density

of states of a system in order to proceed with the analysis of microscopic phase

transitions, as thermodynamic instabilities can be observed by considering only the

derivative of the thermodynamic potential (Wales and Berry, 1994). Given that,

we perform calculations at multiple fixed λ values and obtain the multicanonical

potential as a function of λ and its conjugate force ξ in post-processing. Then we

switch ensembles and obtain details of the system as if the extensive variable were

held fixed. This then allows us to proceed with an analysis like that in Junghans

et al. (2006).

The rest of this section describes this procedure in detail, and concludes with a

prescription and a demonstration of how such a calculation would proceed. The

mathematics and concepts utilized here are based on standard Legendre transforms

(Callen, 1985) and potentials of mean force calculations (see e.g. Roux (1995)).

Derivation The thermodynamic potential associated with the microcanonical en-

semble is the entropy, S(U, ξ), which we have written as a function of two extensive

variables. In physical systems the entropy is a monotonically increasing function of

the energy and hence invertible, so that we can write U(S, ξ). This is called the

energy convention (Callen, 1985).

So that we can keep the temperature rather than the entropy constant we switch en-

sembles by means of a Legendre transform to obtain a new thermodynamic potential,

L(T, ξ) = U − TS, (5.10)

in which the temperature and ξ are controlled.

In our simulations it is λ rather than ξ which is controlled, so we switch ensembles

again with another Legendre transform we obtain,

F (T, λ) = L− λξ. (5.11)

This is the free energy we calculate in canonical simulations at a fixed λ.
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To identify ξ, we perform a full derivative of F ,

dF (T, λ) =

(
∂F

∂T

)
λ

dT +

(
∂F

∂λ

)
T

dλ, (5.12a)

= −SdT +

〈
∂V

∂λ

〉
λ

dλ, (5.12b)

= −SdT + 〈ξ〉λdλ. (5.12c)

That is, we identify ξ = ∂V/∂λ as the extensive conjugate force to the constraint λ

we impose on the system.

We will focus on simulations at a fixed temperature and ignore any phase changes

with respect to T . Therefore, the instability condition (5.8) which indicates a phase

transition can be written in terms of the thermodynamic potential L as,

∂2L

∂ξ2
< 0, (5.13)

where the sign has switched due to the energy convention. At a fixed temperature,

dL(ξ) =

(
∂L

∂ξ

)
T

dξ, (5.14a)

= 〈λ〉ξdξ, (5.14b)

so that the instability condition (5.13) is,

∂〈λ〉ξ
∂ξ

< 0. (5.15)

To detect phase transitions, then, we plot 〈λ〉 versus ξ; a negative slope then signals

a phase transition.

Since, our simulations are performed at fixed λ, not ξ, we need to switch ensem-

bles from (N,V,T,λ) to (N,V,T,ξ) in post-processing. The remainder of this section

describes how to do so with computer simulation data.
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Implementation We define a multi-canonical potential W (λ, ξ) as,

exp[−βW (λ, ξ)] ≡
∫

dΓ exp[−βVλ(Γ)] δ

[
∂V

∂λ
(Γ, λ)− ξ

]
, (5.16)

where δ is equal to 1 when ∂V/∂λ = ξ and 0 otherwise. Thus, W (λ, ξ) is a potential

of mean force in the two coordinates, which are treated independently. We may then

define the relative probability of observing ξ at a fixed λ, ρλ(ξ), as well as ρξ(λ), as

ρλ(ξ) =
exp[−βW (λ, ξ)]∫
dξ exp[−βW (λ, ξ)]

, (5.17a)

ρξ(λ) =
exp[−βW (λ, ξ)]∫
dλ exp[−βW (λ, ξ)]

. (5.17b)

W relates the thermodynamic potentials as,

exp[−βF (λ)] =

∫
dξ exp[−βW (λ, ξ)], (5.18a)

exp[−βL(ξ)] =

∫
dλ exp[−βW (λ, ξ)], (5.18b)

and

∂F

∂λ
=

〈
∂W

∂λ

〉
λ

= 〈ξ〉λ, (5.19a)

∂L

∂ξ
=

〈
∂W

∂ξ

〉
ξ

= 〈λ〉ξ. (5.19b)

Finally, we can obtain the average λ at a given ξ as,

〈λ〉ξ =

∫
dλ λ ρλ(ξ) exp[−βF (λ)]∫
dλ ρλ(ξ) exp[−βF (λ)]

. (5.20)

Room for improvement remains. In particular, the formula for calculating the poten-

tial W , Eq. (5.16), could no doubt be improved; it is, on inspection, an analog of the

free energy perturbation technique, and could likely be improved by making use of

information obtained from simulations at other λ values. That is, it should be possi-

ble to extend the methodology of the MBAR method to obtain W , thus obtaining a

more accurate estimate of that quantity.
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Example A proof of concept implementation of this technique is illustrated in Fig.

5.6. The data are from the solvation of an uncharged acetamide molecule with 31 λ

values (λLJ varies, λC = 0); this is the same system (“ACE 4 250/50”) analyzed in

Fig. 4.7. The multicolored lines indicate a contour map of W (λ, ξ), the red line is

〈ξ〉λ vs. λ, and the black line is 〈λ〉ξ vs. ξ.

It is clear that there is a region of negative slope in the black 〈λ〉ξ curve, indicating

a phase transition. It is hypothesized that this feature corresponds to the creation of

an acetamide-sized cavity in neat water and the resulting rearrangement of water at

the interface. The free energy associated with this interface can be estimated from

this plot by a Maxwell construction, indicated by the horizontal gray dashed line; the

two equal areas formed by this construction give the free energy penalty associated

with the interface.

Summary of Phase Transition Calculations

In practice, the procedure to investigate the existence of phase transitions in a simu-

lation where λ parameterizes some aspect of the Hamiltonian proceeds as follows:

1. Perform simulations at various fixed λ values and obtain statistics on ξ =

∂F/∂λ.

2. Calculate F (λ) using any of the techniqes techniques described in chapter 3.

3. Calculate W (λ, ξ), Eq. (5.16), as a histogram.

4. From W obtain ρλ, Eq. (5.17a).

5. Calculate 〈λ〉ξ as in Eq. (5.20), possibly approximating the integrals as sums

using the trapezoidal rule.

6. Plot 〈λ〉ξ versus ξ, and investigate whether this quantity decreases at any point

over the domain. Such a decrease indicates first order phase transitions.

7. Draw a horizontal line (a Maxwell construction), as illustrated in Fig. 5.5, to

divide the “backbending” region into two equal areas. This area quantifies the

free energy penalty associated with creating the interface.

147



ξ ( = �V/�λ)

λ
ACE4 LJ Only: multicanonical PMF W(lambda, m)

−50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W(λ, ξ)

A+ A-

〈ξ〉λ

〈λ〉ξ

Figure 5.6: An observation of a phase transition in a solvation calculation. Data are
from the insertion of uncharged acetamide into solvent, as described chapter 4. The

contour map corresponds to W (λ, ξ), obtained histograms of ξ = ∂V/∂λ from 31
simulations at fixed λ. From this, the black line 〈λ〉ξ is obtained, and its negative
slope in the vicinity of ξ = −10 indicates a phase transition in the system. This
phase transition is possibly due to the formation of a cavity, with the interface

penalty due to the rearrangement of water at the cavity boundary. The dashed gray
line is the Maxwell construction, and defines the equal areas A+ and A−, each of

which is equal to the free energy penalty associated with the creation of the
interface.
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8. The middle crossing of the Maxwell line with the 〈λ〉 curve indicates λ∗, the

critical λ value at which the phase transition occurs (analogous to Usep in Fig.

5.5).

In this manner phase transitions can be observed generically in molecular simulations

performed at fixed λ values. No ad hoc order parameter need be defined, and the ther-

modynamic limit is not invoked. The method rests on a well established observation

that the interface between two phases in a small system induces a significant entropic

cost, and it is this penalty which allows us to detect the phase transition. Further-

more, this penalty can be quantified, yielding a measurement of the free energy cost

associated with the coexistence of two phases.

In the context of glycine N-mer simulations, such an approach would be able to unam-

biguously determine whether the coil-to-globule phase transition in explicit solvent,

induced by varying the solute-solute dispersions, is a first order phase transition,

regardless of any specific order parameters. Provided that it is, the Maxwell con-

struction could then quantify the free energy associated with an interface between

the two phases. This quantity, ∆Finterface, is the increase in the free energy of the

system due to the coexistence of both a swollen and collapsed state simultaneously,

under equilibrium conditions when both states are equally probable. It would be

worthwhile to investigate the nature of this quantity in more detail, and to clarify its

relationship with the quantity ∆Gcollapse.

5.2.3 Thermodynamic Length

Aside from addressing the motivating topic of polar collapse and techniques to accel-

erate free energy calculations, the work done in chapter 4 has bearing on contempora-

neous issues in nonequilibrium statistical mechanics. One of the major conclusions of

chapter 4 is the relationship between the swap probability between adjacent replicas

on a λ schedule and the rate of convergence of free energy calculations between the

replicas. This relationship can then be used to construct an optimal λ schedule for

which the convergence rate for ∆F between all replicas is uniform, and which for the

whole system is optimal.
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Other authors have recently reached similar conclusions using different approaches,

drawing connections between such calculations and the geometrical foundations of

statistical thermodynamics. Shenfeld et al. (2009) show that a λ schedule with replicas

equidistant along a measure called the thermodynamic length will both minimize

the variance in the calculated free energy and provide an “almost optimal” replica

exchange schedule. Nulton et al. (1985) reached a similar conclusion, finding that a λ

schedule which minimizes the dissipation of a thermodynamic process will have steps

of equal thermodynamic length.

Thermodynamic length is a measure of a distance between equilibrium thermody-

namic states. Unlike the free energy or entropy, which are state functions independent

of the path taken, thermodynamic length is a function of that path (Weinhold, 1975;

Crooks, 2007). This length can be understood in terms of the number of equilibrium

thermal fluctuations the system undergoes along that path; the larger the fluctua-

tions, the closer in thermodynamic space two equilibrium states are (Wootters, 1981).

More generally, thermodynamic length provides for a geometric interpretation for sta-

tistical thermodynamics (Mrugala et al., 1990; Nulton and Salamon, 1985). In the

context of nonequilibrium free energy calculations simulations, a path of the shortest

thermodynamic distance will minimize the dissipation for slow, finite time transfor-

mations (Feng and Crooks, 2009).

The thermodynamic length for a single controllable parameter λ parameterized by

the path variable s (s ∈ [0, 1]) is given as (Feng and Crooks, 2009),

L =

∫ 1

0

ds
∂λ

∂s

√
I(λ), (5.21)

where

I = β2var
∂V

∂λ
. (5.22)

How to actually obtain the thermodynamic length for a given path from a series of

simulations at discrete λ values, however, remains an open question. Crooks (2007)

obtains a bound on this quantity using an overlap measure derived from the Bennett

acceptance ratio technique. It is possible that the Fermi swap probability may yield

a better estimate of thermodynamic length, based on two lines of reasoning.
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The Fermi swap probability, as discussed in chapter 4 and illustrated in Fig. 4.1(b),

quantifies the overlap of two ensembles as an integral over configurations drawn from

both:

〈pswap〉 =

∫
dΓ0

∫
dΓ1

ρ0(Γ0)ρ1(Γ1)ρ1(Γ0)ρ0(Γ1)

ρ0(Γ0)ρ1(Γ1) + ρ1(Γ0)ρ0(Γ1)
(5.23)

The BAR overlap measure, on the other hand, is an integral over a subset of such

configurations; from Eq. (3.10), we can obtain the BAR overlap function qBAR as,

qBAR =

∫
dΓ

ρ0(Γ)ρ1(Γ)

ρ0(Γ) + ρ1(Γ)
(5.24)

Graphically, we can consider the Fermi swap probability as the shaded area in 4.1(b),

while the BAR overlap measure considers only the dashed diagonal line in that figure.

That is, both the BAR and the Fermi swap probabilities consider the overlap of

ensembles, but over a different domain; it may be that considering the latter measure

may lead to a superior estimate thermodynamic length.

Supporting this notion is the observation that the average swap probability can be

written, to second order in δλ, as (see Eq. (4.18)),

〈pswap〉 '
1

2
− δλ2

4
I (5.25)

That is, the linearized Fermi swap probability includes the same factor as does the

definition of thermodynamic length, Eq. (5.21). This suggests that further analysis

of the Fermi swap probability may lead to a superior estimate of the thermodynamic

length between two λ values.

A better understanding of thermodynamic length could lead to significant improve-

ments in free energy calculations and their decompositions. The particular functional

form with which Hamiltonians are scaled (see section 2.1.3) remain ad hoc with plenty

of room for improvement. Many different approaches can be used to construct such

scaled potentials (e.g. those described in section 4.9), and there is at present no

theoretical foundation upon which to base their improvements.

An approach based on thermodynamic length would offer a way forward. The in-

sertion of a solute into a solvent should formally follow a path which minimizes this
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distance. A calculus of variation approach, like the one employed in e.g. Wycza-

lkowski and Szeri (2003), could be used, together with simulation data, to obtain a

functional form of the scaling function which minimizes the thermodynamic length.

Insertion processes using this scaling potential should result in insertion paths supe-

rior to those used at present.
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H. Nymeyer, S. Gnanakaran, and A. E. Garćıa. Atomic simulations of protein folding,
using the replica exchange algorithm. Methods Enzymol., 383:119–149, 2004.

H. Oberhofer and C. Dellago. Efficient extraction of free energy profiles from nonequi-
librium experiments. J Comput Chem, 30(11):1726–1736, 2009.

H. Oberhofer, C. Dellago, and P. L. Geissler. Biased sampling of nonequilibrium
trajectories: can fast switching simulations outperform conventional free energy
calculation methods? The Journal of Physical Chemistry B, 109(14):6902–15,
2005.

L. Onsager. Electric moments of molecules in liquids. J Am Chem Soc, 58:1486–1493,
1936.

C. N. Pace. Determination and analysis of urea and guanidine hydrochloride denat-
uration curves. Meth Enzymol, 131:266–80, 1986.

C. N. Pace. Energetics of protein hydrogen bonds. Nat Struct Mol Biol, 16(7):681–2,
2009.

C. N. Pace, B. A. Shirley, M. McNutt, and K. Gajiwala. Forces contributing to the
conformational stability of proteins. FASEB J, 10(1):75–83, 1996.

V. S. Pande, A. Y. Grosberg, T. Tanaka, and D. S. Rokhsar. Pathways for protein
folding: is a new view needed? Curr Opin Struc Biol, 8(1):68–79, 1998.

L. Pauling. General Chemistry. W.H. Freeman Press, San Francisco, CA, 1970.

L. Pauling and R. B. Corey. The pleated sheet, a new layer configuration of polypep-
tide chains. P Natl Acad Sci Usa, 37(5):251–6, 1951.

162



L. Pauling, R. B. Corey, and H. R. Branson. The structure of proteins; two hydrogen-
bonded helical configurations of the polypeptide chain. P Natl Acad Sci Usa, 37
(4):205–11, 1951.

D. A. Pearlman and P. A. Kollman. The lag between the Hamiltonian and the system
configuration in free-energy perturbation calculations. Journal of Chemical Physics,
91(12):7831–7839, 1989.

C. Peter, C. Oostenbrink, A. van Dorp, and W. F. van Gunsteren. Estimating en-
tropies from molecular dynamics simulations. The Journal of Chemical Physics,
120(6):2652–61, 2004.

J. W. Pitera and W. F. van Gunsteren. A comparison of non-bonded scaling ap-
proaches for free energy calculations. Mol. Simulat., 28:45–65, 2002.

M. Pleimling and H. Behringer. Microcanonical analysis of small systems. Phase
Transit, 78:787–797, 2005.

J. M. Polson and N. E. Moore. Simulation study of the coil-globule transition of a
polymer in solvent. Journal of Chemical Physics, 122(2):024905, 2005.

J. W. Ponder and D. A. Case. Force fields for protein simulations. Adv Protein Chem,
66:27–85, 2003.

J. P. M. Postma, H. J. C. Berendsen, and J. R. Haak. Thermodynamics of cavity
formation in water – a molecular-dynamics study. Faraday Symp Chem S, 17:55–67,
1982.

L. R. Pratt and D. Chandler. Theory of the hydrophobic effect. Journal of Chemical
Physics, 67:3683, 1977.

C. Predescu, M. Predescu, and C. V. Ciobanu. On the efficiency of exchange in
parallel tempering Monte Carlo simulations. J. Phys. Chem. B, 109:4189–4196,
2005.

A. Proykova and R. S. Berry. Insights into phase transitions from phase changes of
clusters. J Phys B-At Mol Opt, 39:R167–R202, 2006.

H. Qian and J. J. Hopfield. Entropy-enthalpy compensation: Perturbation and re-
laxation in thermodynamic systems. J. Chem. Phys., 105(20):9292–9298, 1996.

H. Reiss, H. L. Frisch, and J. L. Lebowitz. Statistical mechanics of rigid spheres. The
Journal of Chemical Physics, 31(2):369, 1959.

F. Ritort. Work fluctuations, transient violations of the second law and free-energy
recovery methods: Perspectives in theory and experiment. In J. Dalibard, edi-
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