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Summary

Protein-protein interactions: 

impact of solvent and effects of fluorination

Sergey A. Samsonov

Chair of the Supervisory Committee:
Professor Michael Brand

Faculty of Biology

Proteins have an indispensable role in the cell.  They carry out a wide variety of structural, 

catalytic and signaling functions in all known biological systems. To perform their biological functions, 

proteins  establish interactions  with other  bioorganic  molecules  including  other  proteins.  Therefore, 

protein-protein interactions is one of the central topics in molecular biology. My thesis is devoted to 

three  different  topics  in  the  field  of  protein-protein  interactions.  The  first  one  focuses  on  solvent 

contribution to protein interfaces as it is an important component of protein complexes. The second 

topic  discloses  the  structural  and  functional  potential  of  fluorine's  unique  properties,  which  are 

attractive for protein design and engineering not feasible within the scope of canonical amino acids. 

The  last  part  of  this  thesis  is  a  study  of  the  impact  of  charged  amino  acid  residues  within  the 

hydrophobic interface of a coiled-coil system, which is one of the well-established model systems for 

protein-protein interactions studies.

I. The majority of proteins interact in vivo in solution, thus studies of solvent impact on protein-protein 

interactions could be crucial for understanding many processes in the cell. However, though solvent is 

known  to  be  very  important  for  protein-protein  interactions  in  terms  of  structure,  dynamics  and 

energetics,  its  effects  are  often  disregarded  in  computational  studies  because  a  detailed  solvent 

description requires complex and computationally demanding approaches. As a consequence, many 

protein residues, which establish water-mediated interactions, are neither considered in an interface 

definition. In the previous work carried out in our group the protein interfaces database (SCOWLP) has 

been developed. This database takes into account interfacial solvent and based on this classifies all 

interfacial  protein residues of the PDB into three classes based on their  interacting properties:  dry 
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(direct interaction),  dual (direct and water-mediated interactions), and  wet spots  (residues interacting 

only through one  water  molecule).  To define  an interaction  SCOWLP considers  a  donor–acceptor 

distance for hydrogen bonds of 3.2 Å, for salt bridges of 4 Å, and for van der Waals contacts the sum of 

the van der Waals radii of the interacting atoms. In previous studies of the group, statistical analysis of 

a non-redundant protein structure dataset showed that 40.1% of the interfacial residues participate in 

water-mediated interactions, and that 14.5% of the total residues in interfaces are wet spots. Moreover, 

wet spots have been shown to display similar characteristics to residues contacting water molecules in 

cores or cavities of proteins. 

The goals of this part of the thesis were: 

1. to characterize the impact of solvent in protein-protein interactions 

2. to elucidate possible effects of solvent inclusion into the correlated mutations approach for 

protein contacts prediction

To study solvent impact on protein interfaces  a molecular dynamics (MD) approach has been 

used. This part of the work is elaborated in section 2.1 of this thesis. We have characterized properties 

of water-mediated protein interactions at residue and solvent level. For this purpose, an MD analysis of 

17 representative complexes from SH3 and immunoglobulin protein families has been performed. We 

have shown that the interfacial residues interacting through a single water molecule (wet spots) are 

energetically  and  dynamically  very  similar  to  other  interfacial  residues.  At  the  same  time,  water 

molecules mediating protein interactions have been found to be significantly less mobile than surface 

solvent in terms of residence time. Calculated free energies  indicate that these water molecules should 

significantly affect formation and stability of a protein-protein complex. The results obtained in this 

part of the work also suggest that water molecules in protein interfaces contribute to the conservation of 

protein  interactions  by  allowing  more  sequence  variability  in  the  interacting  partners,  which  has 

important implications for the use of the correlated mutations concept in protein interactions studies. 

This concept is based on the assumption that interacting protein residues co-evolve, so that a mutation 

in one of the interacting counterparts is compensated by a mutation in the other. The study presented in 

section 2.2 has been carried out to prove that an explicit introduction of solvent into the correlated 

mutations concept indeed yields qualitative improvement of existing approaches. For this, we have 

used the data on interfacial solvent obtained from the SCOWLP database (the whole PDB) to construct 

a “wet” similarity matrix. This matrix has been used for prediction of protein contacts together with a 

well-established “dry” matrix. We have analyzed two datasets containing 50 domains and 10 domain 
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pairs, and have compared the results obtained by using several combinations of both “dry” and “wet” 

matrices. We have found that for predictions for both intra- and interdomain contacts the introduction 

of a combination of a “dry” and a “wet” similarity matrix improves the predictions in comparison to the 

“dry” one alone. Our analysis opens up the idea that the consideration of water may have an impact on 

the improvement of the contact predictions obtained by correlated mutations approaches. There are two 

principally novel aspects in this study in the context of the used correlated mutations methodology : 

i) the first introduction of solvent explicitly into the correlated mutations approach;  ii) the use of the 

definition of protein-protein interfaces, which is essentially different from many other works in the 

field  because  of  taking  into  account  physico-chemical  properties  of  amino  acids  and  not  being 

exclusively based on distance cut-offs.

II.  The  second  part  of  the  thesis  is  focused  on  properties  of  fluorinated  amino  acids  in  protein 

environments. In general, non-canonical amino acids with newly designed side-chain functionalities are 

powerful tools that can be used to improve structural, catalytic, kinetic and thermodynamic properties 

of peptides and proteins, which otherwise are not feasible within the use of canonical amino acids. In 

this  context  fluorinated  amino  acids  have  increasingly  gained  in  importance  in  protein  chemistry 

because of fluorine's unique properties: high electronegativity and a small atomic size. Despite the wide 

use  of  fluorine  in  drug  design,  properties  of  fluorine  in  protein  environments  have  not  been  yet 

extensively studied. The aims of this part of the dissertation were: 

1. to analyze the basic properties of fluorinated amino acids such as electrostatic and geometric 

characteristics,  hydrogen  bonding  abilities,  hydration  properties  and  conformational  preferences 

(section 3.1) 

2.  to  describe  the  behavior  of  fluorinated  amino  acids  in  systems  emulating  protein 

environments (section 3.2, section 3.3)

First,  to  characterize  fluorinated  amino  acids  side  chains  we  have  used  fluorinated  ethane 

derivatives as their simplified models and applied a quantum mechanics approach. Properties such as 

charge distribution, dipole moments, volumes and size of the fluoromethylated groups within the model 

have been characterized. Hydrogen bonding properties of these groups have been compared with the 

groups typically presented in natural protein environments. We have shown that hydrogen and fluorine 

atoms  within  these  fluoromethylated  groups  are  weak  hydrogen  bond  donors  and  acceptors. 

Nevertheless they should not be disregarded for applications in protein engineering. Then, we have 
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implemented  four  fluorinated  L-amino  acids  for  the  AMBER  force  field  and  characterized  their 

conformational  and  hydration  properties  at  the  MD level.  We  have  found  that  hydrophobicity  of 

fluorinated side chains grows with the number of fluorine atoms and could be explained in terms of 

high electronegativity of fluorine atoms and spacial demand of fluorinated side-chains. These data on 

hydration agrees with the results obtained in the experimental work performed by our collaborators. 

We have rationally engineered systems that allow us to study fluorine properties and extract 

results  that  could be extrapolated to proteins.  For this,  we have emulated protein environments by 

introducing  fluorinated  amino  acids  into  a  parallel  coiled-coil  and  enzyme-ligand  chymotrypsin 

systems. The results on fluorination effect on coiled-coil dimerization and substrate affinities in the 

chymotrypsin active site obtained by MD, molecular docking and free energy calculations are in strong 

agreement with experimental  data obtained by our collaborators. In particular,  we have shown that 

fluorine content and position of fluorination can considerably change the polarity and steric properties 

of an amino acid side chain and, thus, can influence the properties that a fluorinated amino acid reveals 

within a native protein environment. 

III. Coiled-coils typically consist of two to five right-handed α-helices that wrap around each other to 

form a left-handed superhelix. The interface of two  α-helices is usually represented by hydrophobic 

residues. However,  the analysis of protein databases revealed that in natural occurring proteins up to 

20% of these positions are populated by polar and charged residues. The impact of these residues on 

stability of coiled-coil system is not clear. MD simulations together with free energy calculations have 

been  utilized  to  estimate  favourable interaction  partners  for  uncommon  amino  acids  within  the 

hydrophobic core of coiled-coils (Chapter 4). Based on these data, the best hits among binding partners 

for one strand of a coiled-coil bearing a charged amino acid in a central hydrophobic core position have 

been  selected.  Computational  data  have  been  in  agreement  with  the  results  obtained  by  our 

collaborators,  who  applied  phage  display  technology  and  CD  spectroscopy.  This  combination  of 

theoretical and experimental approaches allowed to get a deeper insight into the stability of the coiled-

coil system. 

To conclude, this thesis widens existing concepts of protein structural biology in three areas of 

its current importance. We expand on the role of solvent in protein interfaces, which contributes to the 

knowledge  of  physico-chemical  properties  underlying  protein-protein  interactions.  We  develop  a 
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deeper  insight  into  the  understanding  of  the  fluorine's  impact  upon  its  introduction  into  protein 

environments,  which  may assist  in  exploiting  the  full  potential  of  fluorine's  unique  properties  for 

applications in the field of protein engineering and drug design. Finally we investigate the mechanisms 

underlying coiled-coil system folding. The results presented in the thesis are of definite importance for 

possible  applications  (e.g.  introduction  of  solvent  explicitly into  the  scoring  function)  into  protein 

folding, docking and rational design methods.

The dissertation consists of four chapters:

● Chapter 1 contains an introduction to the topic of protein-protein interactions including basic 

concepts and an overview of the present state of research in the field. 

● Chapter 2 focuses on the studies of the role of solvent in protein interfaces. 

● Chapter 3 is devoted to the work on fluorinated amino acids in protein environments. 

● Chapter 4 describes the study of coiled-coils folding properties. 

The experimental parts presented in Chapters 3 and 4 of this thesis have been performed by our 

collaborators at FU Berlin.

Sections  2.1,  2.2,  3.1,  3.2  and  Chapter  4  have  been  submitted/published  in  peer-reviewed 

international  journals.  Their  organization  follows  a  standard  research  article  structure:  Abstract, 

Introduction, Methodology, Results and discussion, and Conclusions. Section 3.3, though not published 

yet, is also organized in the same way. The literature references are summed up together at the end of 

the thesis to avoid redundancy within different chapters.
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“The scientist does not study nature because it is useful; he studies it because he delights in it.”

Jules-Henri Poincaré 

“A learned man is an idler who kills time by study.”

George Bernard Shaw
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CHAPTER 1

This chapter introduces the basic concepts of protein-protein interactions and depicts  recent 

achievements  and  challenges  in  related  studies.  When  not  particularly  cited,  the  chapter  is  the 

recompilation of 'Principles of Biochemistry' by Lehninger [1], 'Principles of Biochemistry' by Zubay 

[2], 'Biochemistry'  by Berg et al.  [3], 'Principles of Physical Biochemistry'  by van Holde et al.  [4], 

'Computational Chemistry' by Cramer [5], 'Bioinformatics. Sequence and Genome Analysis' by Mount 

[6], 'Dynamics of proteins and nucleic acids' by  McCammon and Harvey [7], AMBER 8.0 manual 

[8] and Wikipedia, the free multilingual encyclopedia project [9]. 

1.1 Proteins: a 'sequence-structure-function' dogma 

In this section we introduce the basic definitions and concepts of protein chemistry.  

1.1.1 Role of proteins in biology of the cell

Proteins are the most versatile macromolecules in living systems and serve crucial functions in 

essentially all biological processes.  Their central place in the cell is reflected in the fact that genetic 

information is ultimately expressed as protein.  Proteins carry out functions, by which they could be 

arbitrarily classified as:

– Enzymes (possess biocatalytic activities; e.g. lysozyme, ribonuclease)

– Transport proteins (participate in processes, in which specific molecules or ions are transported 

from one localization to another; e.g. hemoglobin, lipoproteins)

– Nutrient  and  storage  proteins  (are  used  for  storage  of  energy  or  specific  molecules;  e.g. 

ovalbumin, metallothionein)

– Contractile or motile proteins (endow cells and organisms with the ability to contract, to change 

shape, or to move; e.g. actin, myosin, tubulin)

– Structural proteins (serve to establish filaments, or sheets, to give biological structures strength 

or protection; e.g. collagen, elastin, keratin)

– Defense proteins (defend cells/organisms against invasion by other species or protect them from 

injury; e.g. immunoglobulins, toxins).

– Regulatory proteins (regulate cellular or physiological activity; e.g. G-proteins, insulin, MAP-

kinases)

– Others (their functions are exotic or not classified; e.g. antifreeze proteins, monellin)

Despite this wide functional variety, all proteins are polymers built up from relatively simple 
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monomeric subunits: α-amino-acids. An α-amino acid consists of a central carbon atom, called the α-

carbon, linked to an amino group, a carboxylic acid group, a hydrogen atom, and a distinctive R-group 

(Figure 1.1.1). The R-group is often referred to as the side chain. With four different groups connected 

to the tetrahedral α-carbon atom, α-amino acids are chiral; the two mirror-image forms are called the L-

isomer and the D-isomer.

Figure 1.1.1. The L- and D-isomers of amino acids. R refers to the side chain. The L and D isomers are mirror images of 
each other [2].

Only L-amino acids are constituents of proteins. For almost all amino acids, the L-isomer has S 

(rather  than  R)  absolute  configuration  (Figure  1.1.1).  Although  considerable  effort  has  gone  into 

understanding why amino acids in proteins have this absolute configuration, no satisfactory explanation 

has been arrived yet. It seems plausible that the selection of L- over D- was arbitrary but, once made, 

was fixed early in evolutionary history. Amino acids in solution at neutral pH exist predominantly as 

dipolar ions (also called zwitterions). In this dipolar form, the amino group is protonated (–NH3+) and 

the carboxyl group is deprotonated (–COO–). 

Twenty side chains varying in  size,  shape,  charge,  hydrogen bonding capacity,  hydrophobic 

character, and chemical reactivity are commonly found in proteins (Table 1.1.1). Indeed, all proteins in 

all species—bacterial, archaeal, and eukaryotic—are constructed from the same set of 20 amino acids. 

The remarkable range of functions mediated by proteins results from the diversity and versatility of 

these  20  building  blocks.  The  side  chain  functionalities  of  amino  acids  include  alcohols,  thiols, 

thioethers, carboxylic acids, carboxamides, and a variety of basic groups. Sometimes proteins contain 

also non-protoigenic groups covalently (e.g. phosphorylation of Ser/Tyr/Thr) and non-covalently (e.g. 

metal ions coordination). 

To  quantify  the  hydrophobicity/hydrophilicity  of  amino  acids,  the  hydropathy  index is 
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corresponded to each of them and represented by the partition coefficient P, measured as the fraction of 

molecules in the aqueous phase χaq relative to the fraction in the organic phase χnonaq at equilibrium:

P = -lg(χaq/χnonaq)                                                                      (1.1.1)

Table 1.1.1. Standard amino acids and their side chain properties
Amino acid 3-letter code 1-letter code Side chain polarity Side chain charge (pH 7) Hydropathy index (P)

Alanine Ala A nonpolar neutral 1.8

Arginine Arg R polar positive -4.5

Asparagine Asn N polar neutral -3.5

Aspartic acid Asp D polar negative -3.5

Cysteine Cys C nonpolar neutral 2.5

Glutamic acid Glu E polar negative -3.5

Glutamine Gln Q polar neutral -3.5

Glycine Gly G nonpolar neutral -0.4

Histidine His H polar positive -3.2

Isoleucine Ile I nonpolar neutral 4.5

Leucine Leu L nonpolar neutral 3.8

Lysine Lys K polar positive -3.9

Methionine Met M nonpolar neutral 1.9

Phenylalanine Phe F nonpolar neutral 2.8

Proline Pro P nonpolar neutral -1.6

Serine Ser S polar neutral -0.8

Threonine Thr T polar neutral -0.7

Tryptophan Trp W nonpolar neutral -0.9

Tyrosine Tyr Y polar neutral -1.3

Valine Val V nonpolar neutral 4.2

Two amino acid molecules can be covalently joined through a substituted amide linkage, termed 

a peptide bond, to yield a dipeptide. Such a linkage is formed by removal of a water moleculed from 

the α-carboxyl group of one amino acid and the α-amino group of another (Figure 1.1.2). Peptide-bond 

formation is an example of a condensation reaction. Three amino acids can be joined by two peptide 

bonds to form a tripeptide etc. When a few amino acids are joined in this fashion, the structure is called 

an oligopeptide. When amino acids are joined, the product is called a polypeptide. Proteins may have 

thousands of amino acid units (residues). 
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Because of the partially double nature of peptide bond it is planar and could represent either the 

cis- or  trans-  isomers. In the unfolded state of proteins, the peptide groups are free to isomerize and 

adopt both isomers; however, in the folded state, only a single isomer is adopted at each position. The 

trans form is  preferred  overwhelmingly  in  most  peptide  bonds  (roughly  1000:1  ratio  in  trans:cis 

populations).

Figure 1.1.2. Dipeptide formation from amino acids with the side chains R1 and R2. 

1.1.2 Sequence

The sequence of a protein is the order of the amino acids that are covalently linked by peptide 

bonds. Taking into account that there are 20 different standard amino acid monomers, the probability of 

finding any of these 20 amino acids at  each position of the sequence is 1/20.  Thus, probability of 

finding two polypeptides of N amino acids length to be identical by sequence by chance is 1/20N. That 

means that even for a small protein (N=100) there are ~10130 different possible amino acid sequences, 

which could have strikingly different unique structural and functional properties. Millions of protein 

sequences  from  different  organism  sources  are  nowadays  available  from  the  Internet  accessible 

databases (e.g. UniProt Consortium [10], National Center for Biotechnologica Information [11]). 

1.1.3 Structure

Despite planarity of the peptide bond the main chain of protein (the atoms not belonging to side 

chain) has two conformational degrees of freedom, which could be corresponded to dihedral angles φ 

and ψ, illustrated at the Figure 1.1.3.

Depending on amino acids side chains physico-chemical properties  φ and ψ angles for each 

residue have different allowed conformational space. The ability of  proteins to fold into well-defined 

structures is remarkable thermodynamically. Consider the equilibrium between an unfolded polymer 

that exists as a  random coil—that is, as a mixture of many possible conformations—and the folded 

form that  adopts unique conformation.  The favorable  entropy associated with the large number of 
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conformations in the unfolded form opposes folding and must be overcome by interactions favoring the 

folded form. Thus, highly flexible polymers with a large number of possible conformations do not fold 

into unique structures.  The rigidity of the peptide unit and the restricted set of allowed and  φ and ψ 

angles limits the number of structures accessible to the unfolded form sufficiently to allow protein 

folding to occur. 

Figure 1.1.3. Rotation about bonds in a polypeptide. The structure of each amino acid in a polypeptide can be adjusted by 
rotation about two single bonds. A) φ is the angle of rotation about the bond between the nitrogen and the α-carbon atoms, 
whereas ψ is the angle of rotation about the bond between the α-carbon and the carbonyl carbon atoms. B) A view down the 
bond between the nitrogen and the α-carbon atoms, showing how φ is measured. C) A view down the bond between the α-
carbon and the carbonyl carbon atoms, showing how ψ is measured [2].

Conceptually, protein structure can be considered at four levels (Figure 1.1.4):

– Primary structure refers to an amino acids sequence in the protein.

– Secondary structure refers to regular, recurring arrangements in space of adjacent amino acid 

residues in a polypeptide chain. The types of secondary structure relate to a certain area in the 

(φ, ψ) space. There are few common types of secondary structure, the most prominent being the 

α-helix and the β-sheet conformation. 

– Tertiary structure refers to the spatial relationship among all amino acids in a polypeptide; it is 

the complete three-dimensional (3D) structure of the polypeptide.

– Quaternary structure refers to the spatial relationship of polypeptides, or subunits, within the 

protein (usually not bound covalently).

The relationship  between sequence,  structure and function of  proteins  is  one of  the  central 

topics in molecular biology.
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Figure 1.1.4. Main protein structural levels.

1.2 Protein interactions

Protein-protein interactions involve the association of protein molecules. These interactions are 

crucial for many biological functions. Here we briefly describe the physico-chemical basis of protein 

interactions, define the concepts of protein complexes and protein interfaces.  

1.2.1 Physico-chemical basis of protein interactions 

Interactions between protein atoms allow a protein to adopt a 3D-structure as well as define the 

association between different proteins. All protein-protein interactions could be divided into covalent 

and non-covalent interactions. A covalent bond is a form of chemical bonding that is characterized by 

the sharing of pairs of electrons between atoms, or between atoms and other covalent bonds. In short, 

attraction-to-repulsion  stability  that  forms  between  atoms  when  they  share  electrons  is  known  as 

covalent  bonding.  Thus,  covalent  interactions  define  primary structure  and sometimes  tertiary and 

quaternary structure (e.g. disulfide bonds between side chains of cysteine residues). They could be 

described approximately by harmonic potential:
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Vbond=Vbond 0 + kbond(r-r0)2                                                              (1.2.1),

where Vbond 0 is an equilibrium potential, r-r0 is the shift of the coordinate from the equilibrium and kbond 

is a bond “spring” constant. 

Non-covalent  interactions  are  critical  for  maintaining  structures  of  large  macromolecules, 

including proteins and nucleic acids. These interactions could be arbitrarily classified into electrostatic, 

van der Waals, hydrogen bonding and hydrophobic interactions. 

Electrostatic  interaction is  described by the Coulomb law.  For the system of point  charges 

associated  with  individual  atoms,  which  most  of  the  time  represents  adequate  approximation  for 

proteins,  the  electrostatic  potential  is  usually  represented  by  charge-charge,  dipole-charge,  dipole-

dipole and charge-induced dipole interactions:

V el= ∑
i , j=1 ; i j

N 1


qi q j

r ij

qi  j

r ij

r ij
3
i  j

r ij
3 −3

 i r ij  j r ij

r ij
5 ...                                          (1.2.2),

where N is the number of atoms, qi and qj, i and  j are charges and dipole moments of the ith and 

jth  atoms,  respectively,  is  dielectric  constant, r ij is  the  radius-vector  between  charges  and  dipole 

moments. 

Typical  charge-charge  interactions  that  favor  protein  folding  are  those  between  oppositely 

charged R-groups such as Lys or Arg and Asp or Glu (salt bridges). A substantial component of the 

energy involved in protein folding is charge-dipole interactions. This refers to the interaction of ionized 

R-groups of amino acids with the dipole of the water molecule. The slight dipole moment that exist in 

the  polar  R-groups  of  amino  acid  also  influences  their  interaction  with  water.  It  is,  therefore, 

understandable that the majority of the amino acids found on the exterior surfaces of globular proteins 

contain charged or polar R-groups. 

There are both attractive and repulsive  van der Waals (VDW) interactions that contribute to 

protein interactions. Attractive VDW forces involve the interactions among induced dipoles that arise 

from fluctuations in the charge densities that occur between adjacent uncharged non-bonded atoms. 

Repulsive VDW forces involve the interactions that occur when uncharged non-bonded atoms come 

very close  together  but  do not  induce  dipoles.  The  repulsion  is  the  result  of  the  electron-electron 

repulsion that occurs as two clouds of electrons begin to overlap (Figure 1.2.1). Although VDW forces 
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are extremely weak, relative to other forces governing conformation, it is the huge number of such 

interactions that occur in large protein molecules that make them significant to the folding of proteins.

Figure 1.2.1. Van der Waals interaction. Interaction energy of argon dimer. 

Van der Waals interaction between two atoms is described by a potential as following: 

V vdw=
A
rm−

B
r 6                                                           (1.2.3),

where A and B are positive constants and r is the distance between interacting atoms, m is the power of 

the repulsive term (usually between 5 and 12). If m=12 the potential is called Lennard-Jones potential 

or 6-12 potential.

Hydrogen bonding interaction is related to the formation of a hydrogen bond, an attractive force 

between one electronegative atom (acceptor of hydrogen bond) and a hydrogen covalently bonded to 

another electronegative atom (donor of hydrogen bond). It results from a dipole-dipole force with a 

hydrogen atom bonded to nitrogen, oxygen or fluorine (thus the name "hydrogen bond", which must 

not be mixed with a covalent bond to hydrogen).  Hydrogen bond interaction has a potential, which 

resembles the VDW potential but with involvement of hydrogen atom: 

V vdw=
C

r 12−
D

r6                                                                   (1.2.4),

where C and D are positive constants and r is the distance between interacting atoms. Polypeptides 

contain numerous proton donors and acceptors both in their backbone and in the R-groups of the amino 

acids. The environment in which proteins are found also contains ample H-bond donors and acceptors 

of the water molecule. H-bonding, therefore, occurs not only within and between polypeptide chains 
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but with the surrounding aqueous medium. Energies of hydrogen bonds strongly depend on a donor-

acceptor  pair  as  well  as  on  surrounding  environment.  However,  typically  these  values  for  protein 

environments are in the range of 1-10 kcal/mol.

Hydrophobic interactions are explained in terms of hydrophobic effect, which is the property of 

non-polar molecules to form intermolecular aggregates in an aqueous medium. At the macroscopic 

level, the hydrophobic effect is apparent when oil and water are mixed together and form separate 

layers or the beading of water on hydrophobic surfaces such as waxy leafs. At the molecular level, the 

hydrophobic effect is an important driving force for biological structures and responsible for protein 

folding, protein-protein interactions, formation of lipid bilayer membranes, nucleic acid structures, and 

protein-small molecule interactions. In the case of protein folding, the hydrophobic effect is important 

to understand the structure of proteins that have hydrophobic amino acids, such as Ala, Val, Leu, Ile, 

Phe,  and Met grouped together with the protein.  Most folded proteins have a hydrophobic core in 

which side chain packing stabilizes the folded state, and charged or polar side chains on the solvent-

exposed surface where they interact with surrounding water molecules. It is generally accepted that 

minimizing the number of hydrophobic side chains exposed to water is  the principal driving force 

behind the folding and protein association processes. 

All non-covalent interactions could be also classified by distance-dependence (Table 1.2.1) and 

interaction energies typical values. In comparison to covalent bonds, non-covalent bonds are about one 

order weaker in terms of energy (~100 kcal/mol vs ~10 kcal/mol) but as stated above, their impact for 

protein folding and protein-protein association processes is crucial. 

Table 1.2.1. Relationship of non-covalent interactions to the distance between interacting atoms (r)
Type of interaction Distance Relationship

Charge-charge 1/r

Charge-dipole 1/r2

Dipole-dipole 1/r3

Charge-induced dipole 1/r4

Dispersion 1/r6

Repulsion 1/r12

1.2.2 Protein complexes and interfaces

Protein complex is a group of several proteins, which are associated by non-covalent protein-
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protein interactions. Protein complexes could be classified by their stability over time as transient  or 

permanent. The first ones are characterized by a short and the latter by a long complex lifetime. A 

homomultimeric complex consists of identical subunits and  heteromultimeric complex is made up of 

different  subunits.  Protein  complexes  formed  by protein  chains  where  the  process  of  folding  and 

binding is essentially inseparable are obligated (i.e. multi-subunit enzymes) [12,13]. On the other hand, 

complexed formed by proteins that  fold independently and then associate to carry out a  particular 

biological task are  non-obligated. However, it remains arbitrary to classify protein complexes due to 

the  overlap  between  types  and  the  limitation  of  their  biological  annotation  (i.e.  localization, 

coexpression, or binding energies) [14].

Protein interfaces are defined by atoms, which participate in protein-protein interactions. Size 

of an interface is usually characterized by the difference between accessible surface area of unbound 

interacting counterparts and of a complex.  Protein interfaces have been studied at protein chain and 

domain interface levels [12,15-21]. Many databases containing structural domain-domain interactions 

have been recently created: 3did  [22], PiBase  [23], iPfam [19], PSIbase  [24], InterPare  [25], PRISM 

[26]. Nevertheless, most current methods do not provide an accurate description of protein interfaces, 

which  is  required  to  be  able  to  establish  the  bases  for  understanding  the  principles  that  govern 

molecular  recognition  and protein  function  [27].  In  addition,  all  these  databases  and methods  use 

different definitions for protein interfaces that makes related studies ambiguous to compare with each 

other. In many studies a simple criteria of distance cut-off between atoms is used to define protein 

interfaces [28,29]Although this cut-off based definition is easy and fast to implement in computational 

approaches, there is a low relevance to physico-chemical nature behind protein-protein interactions. In 

our group,  SCOWLP (Structural Characterization of Water, Ligands and Proteins),  the database for 

characterization of protein interfaces, was created based on the interface definition, which contains data 

obtained from the whole PDB and includes physico-chemical properties of individual atoms in protein 

complexes and interfacial solvent  [27]. To define an interaction SCOWLP considers a donor–acceptor 

distance for hydrogen bonds 3.2 Å, for salt bridges 4 Å, and for VDW contact the VDW radii distance. 

Interfacial residues, whose atoms fulfill these criteria, are classified according to the interaction type as 

dry (direct interaction), dual (direct and water-mediated interactions), and wet spots, which are residues 

interacting  only through one  water  molecule  (Figure  1.2.2  A).  The  most  important  feature  of  this 

interface description is that it takes into account water explicitly into the protein interface definition. 

Currently,  SCOWLP  contains  74907  protein  interfaces  and  2093976  residue-residue  interactions 
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formed by 60664 structural units (protein domains and peptidic ligands) and their interacting solvent. 

Statistical analysis of the SCOWLP data showed that 40.1% of the interfacial residues are interacting 

through water and that wet spots represent a 14.5% of the total, emphasizing the contribution of wet 

spots to interfacial description (Figure 1.2.2 B). 

Figure 1.2.2. Residue interaction types. A) Definition of residue interactions: Interface between domains A and B is formed 
by 13 residues (five dry, five dual, and three wet spots). B) Partition of residue interactions [27].

1.3 Solvent in protein interactions

Despite the fact that  protein interactions take place in aqueous solution, solvent is frequently 

ignored in protein interaction analysis and, for this reason, many protein residues are not taken into 

account in interface definition.  This subsection focuses on the recent findings in the field of protein-

solvent relations and gives a short review on how solvent effects are modeled computationally. 

  

1.3.1 Water unique properties.

Physical properties of water, despite its abundance in environment, are unusual compared to 

other fluids. Although water is similar to them in its VDW attraction and repulsion interaction terms, it 

has  the ability to  form hydrogen bonds and a  three-dimensional  tetrahedral  network-like structure. 

Thus, compared to other liquids with the same molecular size, water is more cohesive, as indicated by 

its higher boiling and freezing temperatures, surface tension, and vaporization enthalpies. Further, it has 

a high dielectric constant and exists in numerous crystalline forms. Liquid water’s fluidity increases 

with increasing pressure. The mobility of H+  and OH−  ions is higher in water than in other liquids. 

Water also has volumetric anomalies. Whereas most solids are denser than their corresponding liquids, 

ice  floats  on  water.  Also,  a  typical  liquid’s  density  decreases  monotonically  with  increasing 

temperature.  For  water,  this  is  true  only at  high  temperatures  (above 3.984ºC,  the  temperature  of 
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maximum  density).  Other  related  anomalies  include  minima  in  the  isobaric  heat  capacity  and 

isothermal compressibility with temperature in the normal liquid range (at 36ºC and 46ºC, respectively) 

[30].

1.3.2 Role of solvent in protein interactions.

Though cellular solvent is sometimes erroneously considered as an inert environment for the 

biomolecular  machinery,  various  studies  have  indicated  particular  importance  of  individual  water 

molecules for structural, catalytic, energetic and dynamical behavior of proteins [31]. At the same time 

properties of water molecules themselves in close proximity of proteins (surfacial solvent) or in protein 

cavities differ significantly from the ones of bulk solvent in terms of residence time, mobility, energetic 

impact and evolutionary conservation [32]. As an example of water-mediated interaction conservation, 

a water site in coiled-coil interfaces was found to be structurally conserved in many three-stranded 

coiled-coils,  and  together  with  charged  residues  forming  a  structural  motif  that  determines  three-

stranded coiled-coil formation by water bridge formation [33]. In another study, the number of water 

molecules in a chaperonin cavity observed in molecular dynamics (MD) simulations has been shown to 

be correlated with experimentally measured folding rates  of  proteins.  Thus water  impact  has  been 

proved to  be important  in  chaperonin-assisted  folding  process  [34].  These  data  suggest  that  water 

molecules actively participate in the process of folding, one of the key processes in molecular biology. 

Another case of a crucial impact of hydration of a protein cavity for the function of the protein is 

demonstrated for β-lactoglobulin pore. Here, apo- and holoforms of the enzyme differ significantly in 

the rate of ligand association binding affinity, what could be attributed to the essential differences in 

hydration  properties  of  the  catalytic  pore  [35].  Thermodynamic  analysis  of  high  affinity  peptides 

binding  to  the  Abl-SH3 domain  revealed  that  maintenance  of  a  complex  hydrogen-bond  network 

mediated by water  molecules buried at  the binding interface is  responsible  for the thermodynamic 

behavior observed in calorimetry experiments  [36]. Similarly, a computational study of high affinity 

epitopes  binding  to  the  class  I  MHC  complex  has  found  that  the  entropy  of  water  molecules 

participating in binding interfaces is essentially different from the bulk solvent. This work concludes 

that solvent plays an active role of mediator of interactions in MHC-peptide system [37]. Additionally 

for MHC-peptide system, 63 conservative clusters of water have been identified in the study of a non-

redundant dataset of complexes at high resolution. Water molecules at these positions are supposed to 

be  associated  with modulation  of  peptide  recognition  [38].  Other  analyses  of  crystal  structures  of 
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conserved water molecules with high residence time and low mobility have demonstrated structural and 

catalytic importance of these water molecules in ribozyme [39] and microbial ribonucleases [40]. These 

examples underline the importance of detailed solvent studies for broad variety of protein systems. 

There is  a concept that  micro-osmosis explains why water changing properties near protein 

surfaces are driving forces for protein-protein interactions in the cell.  According to this idea, water 

could  be  classified  into  high  density  and low density  water.  These  two states  are  metastable  and 

transient, but they appear to last long enough to play significant roles in biochemical and physiological 

processes and determined by both thermodynamic and kinetic considerations.  Low density water is 

more strongly hydrogen-bonded and more viscous compared to normal water. High density water is 

more  fluid  and has  highly selective  solvent  properties  compared  to  low density water.  These  two 

different water states exist near surfaces of proteins depending on their electrostatic characteristics. At 

hydrophobic surfaces, there is a limitation for water molecules to form hydrogen bonds as much as near 

charged surfaces, that is why water density at hydrophobic surfaces is lower. Aggregation of proteins 

independently of their hydrophilic nature could be explained in terms of three forces: electrostatic, van 

der Waals and micro-osmotic force driven by water density  [41].   There is a number of biochemical 

and polymer chemistry evidence that demonstrate different levels of reactivity of solutes in high and 

low density water.  The state of water,  in turn,  could be determined by chaotropic (disordering)  or 

kosmotropic (ordering) effect of biopolymers irregular surfaces and of ions in the solution [42]. 

Energetically, water molecules associated with protein interfaces have been shown to contribute 

essentially to thermodynamic properties of a protein complex.  Use of simple models based on the 

hydrogen bonding propensity of water as a function of temperature gives quantitative estimates of heat 

capacity that  agree  well  with  experimental  (calorimetry)  observations  for  both  protein  folding and 

ligand binding. Impact of an individual water molecule upon exothermic binding has been estimated 

with changes of enthalpy, entropy and heat capacity in ranges of −1.5 to −3 kcal/mol, ≈−2.5 kcal/mol K 

and ≈−20 kcal/mol K, respectively  [43]. Free energy perturbation studies also aimed to estimate an 

energetic  impact  of  individual  water  molecules  to  the  protein  binding  site.  Application  of  a 

thermodynamic  integration  approach  for  water  molecules  in  binding  pockets  of  trypsin  and  HIV 

protease yielded free energies in ranges from slightly positive values to -4 kcal/mol  [44,45]. Monte 

Carlo  simulations  allowed  to  classify  water  molecules  in  protein  binding  sites  into  two  classes: 

displaced and remaining upon ligand binding. The molecules belonging to the second class, in general, 

form more hydrogen bonds, locate in more polar environment and are characterized with lower free 
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energies.  The  most  stable  water  molecules  give  an  impact  of  up  to  -10  kcal/mol  to  the  complex 

formation  [46]. A MM-PBSA study of T-cell receptor with its enterotoxin ligand demonstrated that 

inclusion of only two structurally conservative interfacial water molecules into free energy calculations 

significantly lowers the energy of the system [47]. Inclusion of the water term into the Hamiltonian 

explicitly leads to better results in a protein folding study [48].

Statistically, MD and X-ray analysis suggest that being incorporated into protein environments, 

water molecules try to retain their tetrahedral hydrogen bond geometry and enable the extension of the 

3D chain connection of a hydrogen bond network among hydration water molecules and protein atoms 

in  protein  interfaces.  These  networks  of  hydrogen  bonds  are  flexible  enough  to  control  the 

conformational  changes  of  proteins  as  domain  motions  [49,50].  In  general,  protein  motions  and 

dynamics of interfacial water molecules are tightly interconnected [51]. MD simulations demonstrate 

that  movements  of  protein  structure  elements,  especially  of  loops,  are  strongly  correlated  with 

hydration dynamics of protein [52].  

There are two hydration shells found near protein surface with the corresponding maximums of 

water  density (radial  distribution  function  for  water  oxygens)  at  2.75  Å and 4.50  Å from protein 

surface.  Within  these  distances  dynamical  properties  of  water  molecules  could  be  significantly 

distinguished  from  bulk  solvent  [53].  These  differences  are  often  explained  in  term  of  chemical 

heterogeneity at the protein surface or by its surface roughness [54,55]. Residence time is one the most 

well-established characteristics of water molecules on protein surfaces and hydration sites.  Usually 

there are  two exponential  components describing water  residence time distribution in proximity of 

protein surface: long and short residence time components. The long component dominates with the 

decrease of the distance to the protein and does not correlate with density of water molecules in space 

[56].  The long residence time component  is  related to vacancy times for a single water molecule, 

corresponding to kinetically bound molecules, which comprise only a small fraction of the total number 

of occupancy sites and are correlated with local heterogeneities in both surface charge and roughness. 

Short residence times are physically associated with a high-speed turnover involving multiple water 

molecules [57]. Fluorescence experiments and MD simulations define long residence time components 

in ranges of 100 ps and higher, while short residence time component is usually below 10 ps [58-60] . 

These data add to the evidence that properties of solvent change drastically in  proximity of protein 

surface. 

Despite all these above discussed findings suggesting the important role of solvent in protein-
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protein  interactions,  there  are  still  very  few computational  studies  that  take  water  molecules  into 

account. However, an attempt to introduce an explicit solvent term into a Monte Carlo simulation based 

docking algorithm yielded promising results  [61]. To model water networks several algorithms have 

been developed based either on physico-chemical properties of protein-protein interfaces (WATGEN 

[62]) or knowledge-based potentials and free energy calculation [63]. Statistical analysis of the data on 

water including protein interfaces represented in SCOWLP database [27] suggest that wet spots present 

similar characteristics to residues binding buried water molecules in the core or cavities of proteins 

[64]. In the same study contact matrices for dry and water mediated interactions have been derived. 

The Chapter 2 of this thesis focuses on the role of water in protein interfaces. First, a MD study 

of water-mediated protein interactions has been carried out on a representative set of protein complexes 

(section 2.1). Then, the data on water mediated interactions available from the PDB is applied for the 

protein structure ab initio prediction in the section 2.2. 

1.3.3 Computational models of solvent.  

In general, computational models of solvent could be classified into two groups: explicit and 

implicit solvent models. Explicit solvent models treat solvent as individual molecules, each of which 

has its microscopic properties. As opposite to explicit solvent, implicit solvent represents solvent as a 

continuous dielectric medium instead of individual solvent molecules. Both  methods are developed to 

reproduce macroscopic properties of solvent in  simulations. Implicit solvent models (MM-PBSA/MM-

GBSA) are described in details in the subsection 1.5.4 of this chapter. Here, we review some explicit 

solvent models used in computations. 

Classification of the explicit solvent models is based on the number of points (Figure 1.3.1) 

used to define the model (atoms plus dummy sites), bonds flexibility, and inclusion of polarization 

effects. 

Figure 1.3.1. The 3- to 6-site water models. The OH distance and the HOH angle vary depending on the model. L is a lone 
pair, M is a dummy atom.

The simplest water models treats the water molecule as rigid and participating only in non-
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bonded interactions. Electrostatic interaction is modeled using Coulomb's law and the dispersion and 

repulsion forces using the Lennard-Jones potential. The potential for SPC or TIP models such as TIPS 

[65] , TIP3P, TIP4P [66] and TIP5P [67] is represented by:

V ab=∑
i

ona

∑
i

onb k c qi q j

r ij


A

rOO
12 −

B

rOO
6                                          (1.3.1),

where kc,  the  electrostatic  constant,  has  a  value of  332.1 Å·kcal/mol;  qi are  the partial  charges  in 

electron  charge unit;  rij is  the distance between two atoms or  charged sites;  and A and B are  the 

Lennard-Jones parameters. The charged sites may be on the atoms or on dummy sites (such as lone 

pairs).  In  most  water  models,  the  Lennard-Jones  term applies  only to  the  interaction  between the 

oxygen atoms.

The  models  with  three  interaction  sites  (TIPS  [65],  TIP3P  [66],  SPC  [68],  SPC/E  [69]), 

corresponding to the three atoms of the water molecule are popular in MD because of their simplicity 

and computational efficiency. Each atom gets assigned a point charge, and the oxygen atom also gets 

the Lennard-Jones parameters. Most models use a rigid geometry matching the known geometry of the 

water molecule. An exception is the SPC [68] model, which assumes an ideal tetrahedral shape (HOH 

angle of 109.47°) instead of the observed angle of 104.5°.

The 4-site models (BF [70], TIPS2, TIP4P [66], TIP4P-Ew [71], TIP4P/Ice  [72], TIP4P/2005 

[73]) have a negative charge on a dummy atom (Figure 1.3.1) placed near the oxygen along the bisector 

of the HOH angle. This improves electrostatic distribution around the water molecule. The first model 

to use this approach was the Bernal-Fowler model published in 1933, which may also be the earliest 

water model [70]. However, the BF model does not reproduce well the bulk properties of water, such as 

density  and  heat  of  vaporization.  New  4-site  models  were  parameterized  by  iteratively  running 

Metropolis Monte Carlo or MD simulations and adjusting the parameters until the bulk properties are 

reproduced well enough.

The  TIP4P model  published  first  in  1983  [66] is  the  most  popular  4-site  model  used  for 

simulation of biomolecular  systems.  There have been subsequent  reparameterizations of the TIP4P 

model for specific uses: the TIP4P-Ew model, for use with Ewald summation methods [71]; the TIP4P/

Ice, for simulation of solid water ice [72]; and TIP4P/2005, a general parameterization for simulating 

the entire phase diagram of water [73].
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The 5-site models (BNS, ST2  [74], TIP5P  [67], TIP5P-E  [75]) place the negative charge on 

dummy atoms (Figure 1.3.1) representing the lone pairs of the oxygen atom, to provide a tetrahedral-

like geometry.  The BNS and ST2  [74] models do not use Coulomb's law directly for the electrostatic 

terms, but a modified version that is scaled down at short distances by multiplying it by the switching 

function.  Mainly  due  to  their  higher  computational  cost,  these  early  five-site  models  were  not 

developed much until recently, when the TIP5P model was published [67]. When compared with earlier 

models,  the  TIP5P model  results  in  improvements  in  the  geometry  for  the  water  dimer,  a  more 

"tetrahedral" water structure that better reproduces the experimental radial distribution functions from 

neutron  diffraction,  and  the  temperature  of  maximum density  of  water.  The  TIP5P-E  model  is  a 

reparameterization of TIP5P for use with Ewald sums [75] . 

A 6-site model that combines all the sites of the 4- and 5-site models [76] is able to reproduce 

the structure and melting of ice better than other models.

The  Mencedez-Benz  (MB)  model  is  a  model  resembling  the  Mercedes-Benz  logo  that 

reproduces some features of water in 2D systems. It is not used for simulations of 3D systems, but it is 

useful  for  qualitative studies and for educational  purposes  [77].   In  the MB model,  the energy of 

interaction between two water molecules is the sum of a Lennard-Jones potential and an orientation-

dependent hydrogen bond interaction. Neighboring water molecules form an explicit hydrogen bond 

when an arm of one water molecule aligns with an arm of another water molecule; the corresponding 

energy  is  a  Gaussian  function  of  both  separation  and  angle.  Hydrogen  bonding  arms  are  not 

distinguished as donors or acceptors. The strength of a hydrogen bond is determined only by the degree 

of  alignment  of  arms  on  two  neighboring  waters.   In  3D,  computational  modeling  is  unable  to 

reversibly freeze water for most of water models because simulations get stuck in deep kinetic traps, 

whereas reversible freezing and melting are readily studied in the two-dimensional MB model [30].

One- and two-site coarse-grained models of water have also been developed  [78]. In coarse 

grain models, each site can represent several water molecules.

A polarization term could be introduces to equation 1.3.1, as, for example, in SPC/E model 

[69] by addition of an average polarization correction:

 V pol=
1
2∑i

−0
2

i
                                                       (1.3.2),
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where μ is the dipole of the effectively polarized water molecule (2.35 D for the SPC/E model), μ0 is 

the dipole moment of an isolated water molecule (1.85 D from experiment), and αi is an isotropic 

polarizability constant, with a value of 1.608 × 10−40 F m. Since the charges in the model are constant, 

this correction just results in adding 1.25 kcal/mol to the total energy. The SPC/E model results in a 

better density and diffusion constant than the SPC model.

Choice of a water model could be critical for the results of the study if some specific properties 

of solvent are investigated. In all simulations we utilized widely the used TIP3P water model. 

1.4 Protein engineering and non-canonical amino acids

Protein engineering is a directed construction of proteins with new properties such as increased 

thermostability, altered binding specificity, improved binding affinity or enhanced enzymatic activity. 

Protein engineering contributes  to the understanding of protein folding and protein recognition for 

protein design principles.  Two general  strategies for protein engineering are  used.  The first  one is 

rational design, in which the detailed knowledge of the structure and function of a protein are used to 

make  desired  changes  in  its  properties.  The  second  strategy for  protein  engineering  is  a  directed 

evolution. In this case random mutagenesis is applied to a protein, and a selection criteria is used to 

find variants with the desired qualities. 

Protein design  (rational design technique used in protein engineering) is  the design of new 

protein molecules by making calculated variations on a known structure. Computational protein design 

algorithms require an understanding of the molecular interactions that stabilize proteins in specific 

folded configurations. However, protein design does not require an understanding of the dynamical 

process by which proteins fold. In a sense it is the reverse of structure prediction: a tertiary structure is 

specified, and an amino acid sequence is identified which will fold to it. Protein design investigations 

pursue both scientific and engineering goals, using design to test and advance our understanding of 

underlying biophysical interactions. There are some challenges in the field of computational protein 

design, which one faces while applying related approaches. 

1. Development of energy functions. Protein design strongly relies on energy functions used to evaluate 

obtained  results.  Development  of  energy  functions  includes  understanding  and  validating  their 

applicability to design studies, developing new potentials and target functions where appropriate, and 

improving efficiency through both better algorithms and approximations. A common difficulty reported 

in  computational  design efforts  is  the  accurate  evaluation of  electrostatic  solvation  and interaction 
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terms. Sometimes the electrostatic term of the binding energy was even found to be a better predictor 

than the total energy for affinity improvements [79]. 

2.  Treatment of solvent.  Because proteins are surrounded by water, which is highly polarizable, any 

accurate description of protein requires to treat electrostatics as a function of the solvent environment, 

making the electrostatic energy a manybody term. Thus it is necessary to reconcile the limitations of 

the pairwise approximation with the need for an accurate description of electrostatics. Furthermore, 

modeling of water explicitly is currently intractable for the number of conformational energies that 

must be calculated for protein design. Therefore, continuum or empirical models have been used in 

most protein design force fields to address electrostatic interactions as well as polar desolvation [80]. 

However, the placement of individual water molecules, particularly bridging protein complexes, could 

be crucially important in natural and designed proteins. Baker and colleagues have introduced a new 

energetic description of water-mediated hydrogen bonds and combined it with a ‘solvated rotamer’ 

approach  to  place  interfacial  water  molecules  using  conventional  rotamer  search  techniques  [63]. 

Solvent  treatment has always a trade-off  between accuracy and effectiveness of an used approach. 

More details on this topic can be found in the subsection 1.3.2 and the section 1.5 of this thesis.

3.  Dealing with conformational ensembles. Such useful characteristics of a studied protein system as 

kinetic energy, full free energy or entropy could be properly estimated only when taking into account 

statistical ensembles  for  analysis.  The  role  of  entropy  calculations,  which  are  usually  the  most 

computationally  demanding  part  in  protein  design,  is  still  widely  discussed  [81].  Kuhlman  and 

colleagues  used  a  protein  design  procedure  based  on  Monte  Carlo  search  to  include  side-chain 

conformational entropy in the design of 110 native protein backbones. They found very little difference 

in the resulting sequence designs whether entropy was included or not, with the largest differences 

involving  long,  flexible  side  chains  [82].  Even  if  conformational  entropy  contributions  are  not 

dominant in protein design calculations, the use of ensembles is likely to have other benefits in protein 

design engineering [79].

4. Taking into account non-contacting residues near binding interaface. An approach for introduction 

of non-contacting residues near a binding interface allowed to enhance affinity by virtue of paying very 

little desolvation penalty yet making larger ‘action-at-a-distance’ intermolecular interactions [83].

5. Enzymes characterization. It is not well understood how many of natural enzymes function, and thus 

the optimization objectives for computational enzyme design are unclear. Factors that may be important 

include binding to transition state of substrates, accommodation of substrate, release of product, protein 
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flexibility and dynamics, and active-site catalytic residues. Though computational design has been used 

to stabilize proteins, enzyme stabilization is complicated by the need to maintain catalytic activity [79].

6. Search and optimization algorithms. To speed up computationally demanding tasks in protein design 

numerous new algorithms are being developed. Energy minimization uses wide variety of methods 

such as discrete approaches (dead-end elimination, genetic algorithms, and integer programming etc.), 

as  well  as  faster,  non-guaranteed  methods  (Monte-Carlo,  self-consistent  mean  field  theory  etc.) 

[79,84] .

7. Human intervention. Unfortunately for high-throughput approaches, most protein design methods are 

not free of human intervention. The use of hand curation is common for selecting or refining designs, 

as opposed to a fully automated methodology.

Utilization  of  non-standard  for  protein  environments  components  as,  for  example,  non-

biological amino acids and cofactors opens up new broad perspectives for protein engineering, yielding 

protein systems poised to present new functions that have not previously been accessible  [84]. This 

approach requires both basic theoretical studies of non-standard components and introduction of them 

into simplified model systems emulating protein environments. Chapter 3 of this thesis describes this 

challenge  in  respect  to  fluorinated  amino  acids.  In  particular,  we  provide  a  theoretical  study  of 

fluorinated amino acid properties and a study behavior of fluorinated amino acids within two distinct 

protein model systems: coiled-coil and chymotrypsin catalytic site. 

1.5 Computational approaches to study protein interactions

This  section  does  not  represent  an  exhaustive  overview  of  existing  computational 

methodologies in the field of protein-protein interactions but rather gives a brief general introduction to 

methodologies used in this thesis and the theoretical concepts behind them.   

   

1.5.1 Sequence-based approaches 

A sequence alignment is a way of arranging sequences of DNA, RNA, or proteins to identify 

regions of similarity that may be a consequence of functional, structural, or evolutionary relationships. 

Aligned sequences of nucleotides or amino acid residues are typically represented as rows within a 

matrix. Gaps are inserted between the residues so that identical or similar characters are aligned in 

successive columns. Very short or very similar sequences can be aligned by hand. However, often an 

alignment of lengthy, highly variable or extremely numerous sequences is required, which cannot be 
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carried  out  solely  by  human  effort.  Therefore,  algorithms  are  developed  to  produce  high-quality 

sequence alignments, and the final results are curated to reflect patterns that are difficult to represent 

algorithmically. Computational approaches to sequence alignment generally fall into two categories: 

global alignments and local alignments. Calculating a global alignment is a form of global optimization 

that  "forces"  the  alignment  to  span  the  entire  length  of  all  query  sequences.  By  contrast,  local  

alignments identify regions of similarity within long sequences that are often widely divergent overall. 

Local alignments are often preferable, but can be more difficult to calculate because of the additional 

challenge of identifying the regions of similarity.  A variety of computational algorithms have been 

applied to the sequence alignment problem, including optimizing methods like dynamic programming, 

heuristic algorithms and probabilistic approaches designed for a large-scale database search. 

Sequence alignments could be divided into two other groups: pairwise alignments and multiple 

sequence alignments. Pairwise sequence alignment methods are used to find the best-matching local or 

global alignments of two query sequences.  Multiple sequence alignment is an extension of pairwise 

alignment to incorporate more than two sequences at a time. Multiple alignment methods try to align 

all  sequences  in  a  given  query  set.  Multiple  alignments  are  often  used  in  identifying  conserved 

sequence  regions  across  a  group  of  sequences  hypothesized  to  be  evolutionarily  related.  Such 

conserved sequence motifs can be used in conjunction with structural and mechanistic information to 

locate the catalytic active sites of enzymes, for example. Alignments are also used to aid in establishing 

evolutionary  relationships  by  constructing  phylogenetic  trees.  Multiple  sequence  alignments  are 

computationally  difficult  to  produce  and  most  formulations  of  the  problem lead  to  combinatorial 

optimization problems [85]. Nevertheless, the utility of these alignments in bioinformatics has led to 

the development of a variety of methods suitable for aligning three or more sequences [86]. 

 In  the  thesis  we  utilized  CLUSTAL  [85,87-91],  one  of  the  most  popular  global  multiple 

sequence alignments programs. It works as follows: 

1. Performs pairwise alignments of all sequences.

2. Uses alignment scores to produce a phylogenetic tree joining the closest neighbours.

3. Aligns the sequences sequentially guided by the phylogenetic relationship indicated by the tree.

Thus, the most closely related sequences are aligned first, and then additional sequences and 

groups  of  sequences  are  added,  guided  by  the  initial  alignments  to  produce  multiple  sequence 

alignment showing in each column the sequence variations among the sequences. For producing of 

phylogenetic tree, genetic distances (the number of mismatched positions in an alignment divided by 
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the total number of matched positions with ignoring the positions with opposite gaps) between the 

sequences are required. Sequence contributions to multiple sequence alignment are weighted according 

to their relationships on the predicted evolutionary tree based on the distance of each sequence from the 

root. The alignment scores between two positions in the multiple sequence alignment are calculated 

using the resulting weights as multiplication factors (Figure 1.5.1). 

Figure 1.5.1.  Weighting scheme used by CLUSTAL [89]. A. Sequences that arise from a unique branch deep in the tree 
receive a weighting factor equal to the distance from the root. Other sequences that arise from the branches shared with 
other sequences receive a weighting factor that is less than the sum of the branch lengths from the root. For example, the 
length of a branch common to two sequences will only contribute one-half of that length to each sequence. Once the specific 
weighting factors  for  each  sequence  have  been  calculated,  they are  normalized  so  that  the  largest  weight  is  one.  As 
CLUSTAL aligns  sequences  or  group  of  sequences,  these  fractional  weights  are  used  as  multiplication  factors  in  the 
calculations  of  alignment  scores.  B.  Illustration  of  using sequence  weights  for  aligning two columns  in  two separate 
alignments. 

The scoring of gaps in  multiple sequence alignment is performed in a different manner from 

scoring gaps in pairwise alignment. As more sequences are added to a profile of an existing multiple 

sequence alignment, gaps accumulate and influence the alignment of further sequences [87]. Like other 

alignment  programs,  CLUSTAL uses  a  penalty  for  opening  gap  in  a  sequence  alignment  and  an 

additional penalty for extending the gap by one residue. These penalties are user-defined. Gaps found 

in initial alignments remain fixed. New gaps introduced as more sequences are added also receive this 

same gap penalty, even when they occur within an existing gap, but the gap penalties for an alignment 

are then modified according to the average match value in the substitution matrix, the percent identity 
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between the sequences [89]. 

CLUSTAL also has options for adding one or more additional sequences with weights or an 

alignment to an existing alignment. Once an alignment has been made, a phylogenetic tree may be 

made by the neighbor-joining method, with corrections for possible multiple changes at each counted 

position in the alignment.

Multiple sequence alignments contain information, which reflects evolutionary and functional 

conservation  of  protein  sequences.  Thus,  results  obtained  by sequence  alignments  are  utilized  for 

protein  structure  and  function  predictions.  Correlated  mutations  approach  is  a  representative  of 

sequence  alignment  based  structure  prediction  methods.  The  idea  of  the  concept  behind  is  that 

interacting  protein  residues  co-evolve,  so  that  a  mutation  in  one  of  the  interacting  counterparts  is 

compensated  by a  mutation  in  the  other  (Figure  1.5.2)  [92].  This  co-evolution is  revealed  for  the 

residues within the same protein domain and for the pairs of different interacting protein domains.   

Figure 1.5.2. Concept of correlated mutations. {A}i and {B}i are families of sequences. A) Sequence alignment of {A}i and 
{B}i sequences. For the ith and jth members of both families there are mutations X to Y and X' to Y', corresponding to one of 
positions  in  each  alignment,  in  which  the  residues  are  supposed  to  interact.  B)  Mutation  of  X  to  Y in  A family  is  
compensated by the mutation X' to Y' in B family to keep the existing interaction between the positions in the counterparts.

There are many different methods and algorithms used for the implementation of this concept 

for practical applications. The differences between the methods correspond to the following steps: 

1. Alignment. Sequence alignments or structure-based sequence alignments could be used at this stage. 

The following parameters for input sequences should be specified before the final alignment is done: 

highest and lowest sequence similarity, minimum and maximum length, and minimum number of input 

sequences.   

2. Scoring positions in an alignment.  First of all,  the measure of variance for each of positions in 

alignments should be defined. Similarity matrices for amino acids are used for this purpose. The source 

of data used for similarity matrices could be based on physico-chemical properties of amino acids or 

probabilistic information obtained from different data. Then, after assigning scores for positions, only 

23



the positions within the specified allowed range of variance are taken into account for the further 

analysis. 

3.  Scoring  pairs  of  positions.  To  predict  if  residues  in  the  analyzed  positions  could  interact,  the 

positions scores should be used for application of a function, which deals with pairs of positions and 

ranked. There is a vast variety of scores used for pairs based on: covariance, informational entropy 

measures, probabilistic models of co-occurence etc. [93]

4. Ranking and making predictions. After obtaining scores for pairs of sequential positions, they are 

ranked. Best N contacts are compared with experimental data. N is usually dependent on the length L 

of sequences in an alignment, e.g. N=L, L/2, L/10. Distribution of distances between predicted to be in 

contact residues is analyzed. One of restrictions that could be introduced at this step is a  sequence 

separation: pairs are considered for analysis only if they are separated in sequence by more than  n 

positions. 

5. Contact definition. It is important to notice that different definitions of residue contacts could lead to 

different results of predictions. Some contact definitions are based only on distant cut-offs between 

residue atoms (e.g. in [94]) and others take into account physico-chemical properties of the interacting 

atoms (see section 2.2). 

6.  Predictions  assessment.  Usually  standard  parameters  to  estimate  predictions  such  as  accuracy, 

sensitivity and specificity are used. However, depending on a length of a sequence it could be useful to 

analyze how big is an improvement of prediction compared to random chance to predict a pair of 

residues to form a contact. 

7. Neural nets approach could be implemented into the predictive pipeline (e.g. [95]). 

However, despite significant progress in development of the approaches, relatively high levels 

of false-positive predictions typically render such methods of little use in the  ab initio prediction of 

protein structure, when they are used alone [96]. Typically, accuracy of the approach is in the range of 

0.1-0.4 [97]. 

In  section  2.2  the  study on  topic  of  correlated  mutations  is  presented  and more  details  of 

methodology can be found.  

1.5.2 Structure-based sequence alignment

Structure-based sequence alignment is a form of sequence alignment that is based on structural 

comparison. These alignments attempt to establish equivalences between sequences of two or more 

proteins based on their structural similarity. Structure-based sequence alignment is a valuable tool for 
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comparison of the protein sequences with low sequence similarity, where evolutionary relationships 

between proteins  cannot  be  easily  detected  by standard  sequence  alignment  techniques.  Structural 

alignment can, therefore, be used to imply evolutionary relationships between proteins that share very 

little common sequence. However, caution should be taken in using the results as evidence for shared 

evolutionary ancestry because of the possible confounding effects of convergent evolution by which 

multiple  unrelated  amino  acid  sequences  converge  to  a  common  tertiary  structure.  Similarly  to 

sequence-based sequence alignments structure-based alignments can deal with pairwise or multiple 

sequences. Since these alignments rely on structural information related to all the query sequences, the 

method can be only applied if all the structures being compared are known. Structure-based sequence 

alignments can be used as comparison points to evaluate alignments produced by purely sequence-

based bioinformatics methods [98]. 

The  output  of  a  structure-based  alignment  is  a  superposition  of  the  atomic  coordinate  sets 

corresponding to the minimal root mean square distance (RMSD) between the structures. The RMSD of 

two aligned structures indicates their divergence from one another. Multiple structural alignment can be 

complicated by the existence of multiple protein domains within one or more of the input structures. In 

this case an attempt to align whole proteins can artificially inflate the RMSD even if certain domains in 

these proteins are very similar.

MAMMOTH  (MAtching  Molecular  Models  Obtained  from  Theory)  is  a  structure-based 

sequence alignment program used in this thesis. Benchmarks on targets of blind structure prediction 

(the CASP experiment) and automated GO annotation have shown it is tightly rank correlated with 

human  curated  annotation  [99,100].  A highly  complete  database  of  MAMMOTH-based  structural 

annotation  for  the  predicted  structures  of  unknown  proteins  covering  150  genomes 

(http://homepages.nyu.edu/~rb133/wcg/thread_8036.html) facilitates genomic scale normalization.

MAMMOTH-based structure alignment  methods  decompose the  protein  structure  into short 

peptides  (heptapeptides)  which  are  compared  with the  heptapeptides  of  another  protein.  Similarity 

score between two heptapeptides is calculated using a unit-vector RMS (URMS) method, which uses 

comparison of Cα coordinates  [101]. These scores are stored in a similarity matrix, and the optimal 

residue alignment is calculated with a hybrid (local-global) dynamic programming. Protein similarity 

scores  calculated with MAMMOTH is  derived from the likelihood of obtaining a  given structural 

alignment by chance [99].
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1.5.3 Quantum mechanics calculations

To  obtain  microscopic  basic  properties  of  relatively  small  molecules  methods  of  quantum 

chemistry are used. These methods deal with the atoms as a complex system consisting of electrons and 

nuclei explicitly. Here, we describe the very basics of QM methods, which have been utilized in the 

section 3.1 of the thesis.

Schrödinger equation. For a system of atoms the Schrödinger equation describes its quantum 

state in time:

 Hψ=Eψ                                                                     (1.5.1),

where H is the Hamiltonian operator, ψ is a wave function of the system and E is an eigenvalue of the 

operator H. The typical form of the Hamiltonian operator for QM calculations (non-relativistic, without 

external  electric  field  etc.)  takes  into  account  five  contributions  to  the  total  energy  of  a  system 

(molecule): the kinetic energies of the electrons and nuclei, the attraction of the electrons to the nuclei, 

the interelectronic and internuclear repulsions:  

H = −∑
i
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2me

∇ i
2  −∑

k
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∇ k
2 −∑
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∑
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e2 Z k
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∑
i j

e2

r ij
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kl

e2 Z k Z l

r kl

            (1.5.2),

where i and j run over electrons, k and l run over nuclei, ħ is Planck's constant divided by 2π, me is the 

mass of the electron, mk is the mass of nucleus k, ∇ 2 is the Laplacian operator, e is the charge on the 

electron, Z is an atomic number, and rab is a distance between the particles a and b. In general, the 

equation  1.5.1 has many acceptable eigenfunctions ψi (perhaps infinite)  for a given molecule, each 

characterized  by a  different  associated  eigenvalue Ei.  Without  loss  of  generality,  the functions  are 

chosen to be orthonormal:    

 ∫∫∫ψi ψ j dx dy dz=ij                                                         (1.5.3),

where the integration is taken over the whole phase space. And:

∫∫∫ψ j H ψi dx dy dz =<ψi H ψj>= E iij                                                 (1.5.4).
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Born-Oppenheimer  approximation,  often  accepted  for  the  calculations,  decouples  the 

Hamiltonian into “slow” nucleus movement and electronic term, because the nuclei move much slower 

than electron.  Even then,  there is no analytic solution for the equation  1.5.1 even for such simple 

systems as the molecular hydrogen. That is why the most precise quantum chemistry methods dealing 

with wave functions give only approximate solutions for molecules (in this case solutions ψi are called 

molecular  orbitals).  Molecular  orbitals  are  searched  as  a  linear  combination  of  atomic  orbitals  

(LCAO),  which  is  a  superposition  of  atomic  orbitals.  Since  electron  configurations  of  atoms  are 

described as wave functions, these wave functions are the basis set of functions, which describes the 

electrons of a given molecule (system):

 =∑
i=1

N

ai φi                                                                  (1.5.5),

where the set of N functions φi is the basis set and each of basis functions is weighted by a coefficient 

ai. So, in principal, one of problems in application of QM methods is the choice of basis set. 

Hartree-Fock methods (HF) use assumption that electronic Hamiltonian could be decomposed 

into the one-electron Hamiltonians:

H=∑
i=1

N

h i                                                                   (1.5.6),

where hi are related to one-electron Hamiltonians:

h i=−
1
2 ∇ i

2 −∑
k=1

M Z k

r ik

V i { j }                                                                                (1.5.7),

where M is the number of nuclei and Vi{j} is the part describing interelectronic interactions:

V i { j }=∑
i≠ j
∫
 j

rij

dr                                                          (1.5.8),

where ρj is the charge density associated with electron j. The repulsive third term in 1.5.7 is analogous 
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to the attractive second term, except that nuclei are treated as point charges, while electrons, being 

treated as wave functions, have their charge spread out, so an integration over all space is necessary. 

The solution for molecular orbital is searched in form of Slater determinant:

                          (1.5.9),

where  N is  the  total  number  of  electrons  and  χi is  a  spin-orbital  (spin  space  and cartesian  space 

dependences are decomposed into two independent functions, the interaction between spin moment and 

electric charge is supposed to be zero). The solution could be also expressed by a linear combination of 

Slater determinants (physically they correspond to excited states of the molecule). 

Thus, the methods are classified by: 

1. Number of the electrons, taking into account in the calculations.

2. Number of Slater determinants (one Slater determinant is used only if the full spin of the system 

is 0).

3. Number of electronic states of each atom taken into account (excitation by spin variable change, 

for example).

4. If  the coefficients ai from 1.5.5 are known (direct variational methods) or not.

The functional  <ψ H ψ> is then minimized iteratively. 

The Hartree-Fock (HF) method assumes that the exact, N-body wave function of the system can 

be approximated by a single Slater determinant (in the case where the particles are fermions) of N spin-

orbitals. By invoking the variational principle, one can derive a set of N-coupled equations for the N 

spin-orbitals. Solution of these equations yields the HF wavefunction and energy of the system, which 

are approximations of the exact ones. In process of solving an equation resulted from a functional 

minimization, 4-bodies integrals appear, that means that complexity of calculations increases as m4, 

where m is the number of taken into account electrons. Basis sets in HF-methods normally consist of 

Slater functions expressed by Gaussian functions, which are simpler to use for integration. The most 

critical limitation of HF-methods is that they do not take into account electron correlation (electrons 

search the space independently if other ones already occupy this part of the space). Normally this error 

is  of 1% order of magnitude of the calculated energies.  Roothaan method is  used to improve HF-
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method by use of perturbation. In this method the Hamiltonian is precisely expressed as a sum HF-

Hamiltonian and the difference between precise Hamiltonian of the system and  HF-Hamiltonian: 

H=F+(H-F)                                                                   (1.5.10),

where the last component is considered as perturbation. Such method is called Hartree-Fock-Roothaan 

method (HFR). The second of order of perturbation theory (MP2) is widely used to deal with electron 

correlation [102].

Semiempirical methods of quantum chemistry are based on the HF formalism, but make many 

approximations  and  obtain  some  parameters  from  empirical  data.  They  are  very  important  in 

computational chemistry for treating large molecules, where the full Hartree-Fock method without the 

approximations is too expensive. The use of empirical parameters appears to allow some inclusion of 

electron  correlation  effects  into  the  methods.  Though  being  computationally  less  expensive 

(calculations scale as m3 instead of m4), these methods do not necessarily sacrifice accuracy compared 

to HF methods. 

One of the simplest semiempirical methods Complete Neglect of Differential Overlap (CNDO) 

could be obtained from HFR method by several assumptions and approximations:

1.Only the electrons at the atomic open shells are taken into account. The electrons at the closed shells 

are localized on the point nuclei. 

2. Basis set corresponds to the occupied states of the atomic orbitals. 

3. All integrals containing φi
*and φj

 are considered to be zero if i≠j. 

Some of the one-electron integrals are not calculated but correspond to empirical value obtained 

from an  experiment.  Other  semiempirical  methods  could  have  different  number  of  electrons  and 

empirical parameters. Different semiempirical methods are constructed to reproduce distinct properties 

of  molecules (e.g., ZINDO/1 is a method for calculating ground state properties such as bond lengths 

and bond angles and covers a wide range of the periodic table, including the rare earth elements).  

Density Functional Theory (DFT) in contrast to ab initio HF or semiempirical methods does not 

deal with wave functions (which are mathematically formal and only their absolute square is physically 

relevant) but with physically observable charge densities. Within this theory, the properties of a many-

electron system can be determined by using functionals, which in this case is the spatially dependent on 

electron density. DFT was put on a firm theoretical basis by the two Hohenberg-Kohn theorems (H-K) 
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[103].  The original  H-K theorems held only for non-degenerate  ground states  in the absence of a 

magnetic field, although they have since been generalized to encompass these.

The first H-K theorem demonstrates that the ground state properties of a many-electron system 

are uniquely determined by an electron density that depends on only 3 spatial coordinates. It lays the 

groundwork for reducing the many-body problem of N electrons with 3N spatial coordinates to only 3 

spatial coordinates, through the use of functionals of the electron density. This theorem can be extended 

to the time-dependent domain to develop time-dependent density functional theory (TDDFT), which 

can be used to describe excited states.

The second H-K theorem defines an energy functional for the system and proves that the correct 

ground state electron density minimizes this energy functional.

Within the framework of Kohn-Sham DFT, the intractable many-body problem of interacting 

electrons in a static external potential is reduced to a tractable problem of non-interacting electrons 

moving in an effective potential. The effective potential includes the external potential and the effects 

of  the Coulomb interactions  between the electrons,  e.g.,  the exchange and correlation interactions. 

Modeling  the  latter  two  interactions  becomes  the  difficulty  within  KS  DFT.  The  simplest 

approximation is the local-density approximation (LDA), which is based on exact exchange energy for 

a uniform electron gas, which can be obtained from the Thomas-Fermi model, and from fits to the 

correlation energy for a uniform electron gas. Non-interacting systems are relatively easy to solve as 

the wave function, which can be represented as a Slater determinant of orbitals. Further, the kinetic 

energy functional of such a system is known exactly. The exchange-correlation part of the total-energy 

functional remains unknown and must be approximated. Distinct DFT methods differ in this part of 

equation, and different exchange-correlation parameters could be tuned by theoretical precalculations 

as well as by empirically obtained values. Computationally these methods are scale as m3
 expensive, 

which is less than for HF-methods but scaling also depends on the exchange-correlation part. However, 

they have the limitations related to treatment of the systems which cannot be described by use of single 

Slater determinant (excited states). 

BSSE-correction.  The  basis  set  superposition  error (BSSE) is  a  consequence  of  basis  set 

truncation,  i.e.  of  the  unavoidable  fact  that  finite  basis  sets  have  to  be  chosen.  Upon  a  complex 

formation,  a  complex  has  more  basis  functions  employed  in  the  calculations  than  in  either  of 

monomers. That means that each monomer is able to utilize, at least in part, the basis functions of its 

interaction partners. This is not the case when a monomer is treated alone, e.g. when a binding or 
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interaction  energy is  calculated.  Therefore,  the  energy of  the  whole  system is  computed  lower  in 

comparison  to  the  separated  subsystems  which  do  not  benefit  from  the  basis  functions  of  their 

interaction partners. 

In the counterpoise correction the basis set for subsystems contain also the basis functions of the 

whole molecule. In the uncorrected calculation of a dimer AB, the dimer basis set is the union of the 

two monomer basis sets. The uncorrected interaction energy is 

VAB(G) = EAB(G,AB) - EA(A) – EB(B)                                            (1.5.11),

where  G denotes  the coordinates that  specify the geometry of  the dimer and  EAB(G,AB) the total 

energy of the dimer AB calculated with the full basis set AB of the dimer at that geometry. Similarly, 

EA(A)  and  EB(B)  denote  the  total  energies  of  the  monomers  A and  B,  each  calculated  with  the 

appropriate  monomer  basis  sets  A and  B,  respectively.  This  is  the  procedure  for  calculating  an 

interaction energy without BSSE correction. 

The counterpoise corrected interaction energy [104] is: 

VAB
cc(G) = EAB(G,AB) - EA(G,AB) – EB(G,AB)                                (1.5.12)

where  EA(G,AB)  and  EB(G,AB)  denote  the  total  energies  of  monomers  A and  B,  respectively, 

computed with the dimer basis set AB at geometry G, i.e. in the calculation of monomer A the basis set 

of the other monomer B is present at the same location as in dimer AB, but the nuclei and electrons of B 

are not. In this way, a basis set for each monomer is extended by the functions of the other monomer. 

Important to note that the counterpoise correction provides only an estimate of the BSSE since the 

monomer basis set is enhanced not only by empty orbitals, but also by orbitals occupied by electrons of 

the other monomer molecule. 
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1.5.4 Molecular dynamics and related methods

Figure 1.5.3. Schematic flow chart of algorithms for energy minimization and MD. Features which apply only to molecular 
dynamics are indicated with asterix. Each cycle of energy minimization represents a step in conformation space, while each 
cycle of molecular dynamics represents a step in time [7].

● Molecular dynamics (MD) is a form of computer simulation that solves Newton’s equations 

of motion for a system of N interacting atoms:

 m i

2 r i

 t2 = F i                                                                     (1.5.12),

where forces are:

F i=
−V
ri

                                                                     (1.5.13),

where V is the potential.

The  equations  are  solved  simultaneously  in  small  time  steps,  so  that  the  temperature  and 
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pressure remain at  the required values,  and the coordinates are written to an output file at  regular 

intervals.  The  coordinates  as  a  function  of  time  represent  a  trajectory  of  the  system.  After  initial 

changes, the system usually reaches an equilibrium state. By averaging over an equilibrium trajectory 

many macroscopic properties can be extracted from the output file. The pipeline typical for energy 

minimization and MD in common is represented in the Figure 1.5.3. 

Further, we give some definitions and details on the stages and aspects important for MD runs.

●  Forcefield refers to the functional form and parameter sets  used to describe the potential 

energy  of  a  system  of  particles  (typically  but  not  necessarily  atoms).  Force  field  functions  and 

parameter sets are derived from both experimental  work and high-level QM calculations.  All-atom 

forcefields provide parameters for every atom in a system, including hydrogens, while  united-atom 

forcefields could treat the hydrogen and carbon atoms in methyl and methylene groups, for example, as 

a  single  interaction  center.  Coarse-grained forcefields,  which  are  frequently  used  in  long-time 

simulations  of  proteins,  provide  even  more  abstracted  representations  for  increased  computational 

efficiency. More detailed description of the physical nature behind potential included in the force fields 

is given in the subsection 1.2.1. In comparison to analytical expression for the potentials mentioned 

before,  bonded interactions  are  explicitly  decomposed into  bond,  torsion  angle  and dihedral  angle 

potentials: 

 Vbonded = Vbond + Vangle + Vdihedral                                               (1.5.14)

Electrostatic interaction usually contains explicitly only the first  component  of the equation 

1.2.2, which describes point-charge interactions, unless a force-field is polarizable and, therefore, has a 

different expression for the electrostatic potential. So, in general, the potential has the following form:

V r =∑
bonds

K r r−r eq
2∑

angles

K −eq 
2 ∑

dihedrals

V n

2
1cos[n−]∑

i j

atoms


A ij

rij
2 −

B ij

r ij
2 ∑

i j

atoms qi q j

 R ij

(1.5.15)

and polarization component is usually expressed as:
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 E pol=−
1
2 ∑i

atom

i
E i
0                                                           (1.5.16)

where μi is an induced atomic dipole and E i
0 is an initial electric field causing this polarization. In 

addition,  charges that  are  not  centered on atoms,  but  are  off-center (as for lone-pairs)  that  can be 

included in the forcefield.

●  Energy  minimization methods  are  common  techniques  to  compute  an  equilibrium 

configuration of molecules, which should be a stable state and correspond to a local minimum of their 

potential energy. This kind of calculations generally start from an arbitrary state of molecules, then the 

mathematical procedure of optimization allows to move atoms (to vary coordinates) in a way to reduce 

the net forces (the gradients of potential  energy)  to nearly zero (or defined cut-off  value).  From a 

computational viewpoint, the problem of minimizing the energy of a model macromolecular system 

falls  into  the  general  area  of  nonlinear  optimization  problems.  The  functional  V( r )  should  be 

minimized  in  the  multidimensional  space  r .  In  case  of  a  model  with  N atoms,  there  are  3N-

dimensional space (since each atom has 3 cartesian coordinates), and V is the potential energy of the 

system.  There  are  two  most  popular  algorithms  used  for  the  minimization:  steepest  descent and 

conjugate gradient. 

●  Steepest  descent is  an  first-order  optimization  algorithm.  To find  a  local  minimum of  a 

function using steepest descent, one takes steps proportional to the negative of the gradient (or the 

approximate gradient) of the function at the current point. For each next iteration: 

r k= r k−1k

F
F

                                                       (1.5.17),

where  λk is  a positive coefficient.  Since the vector  
F
F

is parallel  to the negative gradient of the 

energy, it points straight downhill. The weaknesses of steepest descent are:

1. The algorithm can take many iterations to converge towards a local minimum, if the curvature 

in different directions is very different. 

2. Finding the optimal λ per step can be a time-consuming task. Conversely, using a fixed λ can 

yield poor results. 

● Because of these limitations, steepest descent is usually followed by conjugate gradient in the 
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minimization procedure. This technique combines information on the current gradient with that based 

on the gradient at previous steps. Iteratively: 

 r k= r k−1k  F k
F k

2

F k−1
2

F k−1

F k−1

                                            (1.5.18)

It can be proven that for a quadratic surface, the search direction specified by the last equation 

passes through minimum on the Nth step for an N-dimensional surface, as long as the minimum along 

each successive search direction is found. Even if the step size is not optimal, the conjugate gradient 

method still yields a search direction that is superior to that of steepest descent.  

●  Verlet  integration  [105] is  a  numerical  method  frequently  used  to  integrate  Newton's 

equations of motion. The Verlet integrator offers greater stability than the much simpler Euler method, 

as well as other properties that are important in physical systems such as time-reversibility. Stability of 

the technique depends fairly heavily upon either a uniform update rate, or the ability to accurately 

identify positions at a small time intervals into the past.

The idea for Verlet algorithm comes from the third-order Taylor expansions for the positions 

r  t of atom:

               r  t t=r  tv t  ta t 
 t2

2
b t 

 t3

6
O  t 4

                               

                   

r  t− t=r t −v t  ta t 
 t2

2
−b t 

 t3

6
O  t4

                 (1.5.19).

Therefore:

 

r  t t=2r  t−r  t− ta t  t2O  t4                         (1.5.20).

Considering that acceleration is expressed as:

a  t=1
m
F r t                                                     (1.5.21),
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an atomic position is: 

r  t t=2r  t−r  t− t1
m
F r t  t2O  t 4                           (1.5.22)

So, the truncation error of the algorithm, when evolving the system by δt, is of the order of δt4, 

even if third derivatives do not appear explicitly. This algorithm is simple to implement, accurate and 

stable, explaining its large popularity among molecular dynamics simulators. For velocities: 

v  t=
r  t t−r t t 
2 t

                                               (1.5.23).

However, the error associated with this expression is of order of δt2
.

If in Taylor expansions δt is rewritten as 1/2δt+1/2 δt, the final equations for integration could 

be obtained for propagating the position and velocities in a coupled fashion: 

r  t t=r  tv t1
2
 t  t                                                        

         

                 v  t
1
2
 t =v t−1

2
 t a t  t                                         (1.5.24).

In this algorithm, position depends on velocities as computed one-half time step out of phase, 

thus, scaling of the velocities can be accomplished to control the temperature. Forces, however, are 

computed at integral time steps, half-time-step-forward velocities are computed therefrom, and used to 

update particle positions. The possible source of algorithm's instability is ignoring the third derivatives 

in Taylor expansions.

● Periodic boundary conditions (PBC) are a set of boundary conditions that are often used to 

simulate a large system by modeling a small part that is far from its edge. A unit cell of a certain 

geometry is defined, and when an object passes through one face of the unit cell, it reappears on the 

opposite face with the same velocity. The simulation is of an infinite perfect tiling of the system. The 
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tiled copies of the unit cell are called images, of which there are infinitely many. During the simulation, 

only  the  properties  of  the  unit  cell  need  to  be  recorded  and  propagated.  The  minimum-image 

convention is a common form of PBC particle bookkeeping in which each individual particle in the 

simulation interacts with the closest image of the remaining particles in the system.

In MD PBC are usually applied to simulate bulk gases, liquids, crystals or mixtures. A common 

application is to use PBC to simulate solvated macromolecules in a bath of explicit solvent. Since MD 

contains electrostatic  interactions,  the net  electrostatic charge of the system must  be zero to avoid 

summing to an infinite charge when PBC is applied. However, there are still some artifacts originated 

from the  correlations  between  unit  cells  and  artificial  interactions  between  “heads”  and “tails”  of 

different unit cells.

PBC requires the unit cell to be a shape that tiles perfectly into a three-dimensional crystal. 

Thus, a spherical or elliptical droplet cannot be used. A cube or rectangular prism is the most intuitive 

and common choice,  but can be computationally expensive due to unnecessary amounts of solvent 

molecules in the corners, distant from the central macromolecules. A common alternative that requires 

less volume is the truncated octahedron.

● Particle Mesh Ewald (PME) method is utilized for electrostatic calculations in PBC. PME 

uses  Ewald  summation,  which  is  a  special  case  of  the  Poisson summation  formula,  replacing  the 

summation of interaction energies in real space with an equivalent summation in Fourier space. The 

advantage of this approach is the rapid convergence of the Fourier-space summation compared to its 

real-space equivalent when the real-space interactions are long-ranged. Because electrostatic energies 

consist of both short- and long-range interactions, it is maximally efficient to decompose the interaction 

potential into a short-range component summed in real space and a long-range component summed in 

Fourier space  [106]. In practice, the  cut-off for PME is defined by a researcher, who uses MD, and 

depends on the size of a unit in PBC. The cut-off should be less or equal to the half of unit's dimension, 

to assure the convergence of electrostatic summation in the direct space.

● Temperature coupling is a technique used for maintenance of constant temperature in PBC in 

NTP or NTV microcanonical ensembles. There are several ways to carry out the temperature couplings. 

In the weak-coupling algorithm a single scaling factor  is  used for all  atoms  [107].  This algorithm 

ensures that the total kinetic energy is appropriate for the desired temperature but does not control that 

the  temperature  is  even  over  all  parts  of  the  molecule.  Atomic  collisions  tend  to  ensure  an  even 

temperature distribution, but in reality this is not guaranteed, and there are many subtle problems that 
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can arise with weak temperature coupling [108]. Andersen temperature coupling scheme [109] implies 

imaginary  collisions,  which  randomize  the  velocities  to  a  distribution  corresponding  to  the  fixed 

constant temperature. The dynamics process is Newtonian. Hence, time correlation functions can be 

computed and the results averaged over an initial canonical distribution. Too high collision rate slows 

down the speed at which the molecules explore configuration space, whereas too low rate means that 

the canonical distribution of energies is sampled slowly [110]. Use of Langevin dynamics is an another 

approach for temperature coupling. There is a collision frequency parameter in this algorithm to be 

defined  and a  simple  leapfrog  integrator  (a  variant  of  Verlet  integration)  is  used  to  propagate  the 

dynamics, with the kinetic energy adjusted to be correct for the harmonic oscillator case [111,112]. A 

collision frequency parameter is not necessary equal to the physical collision frequency. In fact, it is 

often advantageous, in terms of sampling or stability of integration, to use much smaller values for this 

parameters than the physically relevant ones.

● Pressure coupling  adjusts the volume of the unit cell (gradually on each step) to make the 

computed pressure approach the target pressure. Equilibration with NTP microcanonical ensemble is 

generally  necessary  to  adjust  the  density  of  the  system  to  appropriate  values.  Pressure  coupling 

algorithms are often analogous to weak temperature coupling [107]. 

●  Constraints  in MD are used to restrict movements of a group of atoms. There are several 

ways  of  the  most  popular  constraints:  freezing and  putting  harmonic  restraints.  In  the  first  case 

positions of the constrained atoms are absolute rigidly fixed, they do not move in a MD simulation and 

all equations of motion are rewritten with consideration that masses, for example, of these atoms are 

infinite. When harmonic restrains are applied, all bonds of the constrained atoms receive additional 

rigidity by increasing spring constants for these bonds. In this case the equations of motion look the 

same  as  in  unconstrained  dynamics  but  with  changed  coefficients.  Important  to  remember,  that 

application of these constraints does not speed up calculations since atoms are still described by the 

same equations of motion. Another type of constraints include  positional and rotational constraints, 

when an an additional potential is acting upon a group of atoms to bias them to be at certain distance of 

to keep a certain angle with a reference point. Mathematical form of this kind of potential could be very 

different. 

● SHAKE algorithm is used to perform bond length constraints [113]. It is normally utilized for 

hydrogens in MD simulations. The size of the MD time step is determined by the fastest motions in the 

system. SHAKE removes the bond stretching freedom, which is the fastest motion, and consequently 
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allows a larger time step to be used, resulting in speeding up the calculations. For water models, a 

special "three-point" algorithm is used  [114]. Since SHAKE is an algorithm based on dynamics, the 

minimizer is not aware of what SHAKE is doing; for this reason, minimizations generally should be 

carried out without SHAKE. 

● Counterions are used in MD with PBC to make a charge of a unit neutral to avoid problems 

with electrostatics. For counterions Na+, K+ and Cl- are usually used. A study on counterions impact to 

MD results in AMBER shows that the simulations of solvated proteins are moderately sensitive to the 

presence  of  counterions. However,  this  sensitivity  is  highly  dependent  on  the  starting model  and 

different procedures of equilibration used. The neutralized systems tend to evince smaller root mean 

square deviations regardless of the system investigated and the simulation procedure used. The results 

of parameterized fitting of the simulated structures to the crystallographic data,  giving quantitative 

measure of the total charge influence on the stability of various elements of the secondary structure, 

revealed a clear scatter of different reactions of various systems' secondary structures to counterions 

addition: some systems apparently were stabilized when neutralized, while the others were not. Thus, 

one cannot unequivocally state, despite consideration of specific simulation conditions, whether protein 

secondary structures are more stable when they have neutralized charges. This suggests that caution 

should be taken when claiming the stabilizing effect of counterions in simulations involving small, 

unstable polypeptides or highly charged proteins [115].

●  MM-PBSA/MM-GBSA  (Molecular  Mechanics-Poisson-Bolzmann  Surface  Area/Molecular 

Mechanics-Generalized Born Surface Area) approach represents the postprocessing method to evaluate 

free  energies  of  binding  or  to  calculate  absolute  free  energies  of  molecules  in  solution.  The 

MM_PBSA/GBSA method  combines  molecular  mechanical  energies  with  the  continuum  solvent 

approaches. Often, the key quantity that needs to be computed is the total free energy of the molecule 

in the presence of solvent, which could be written as: 

Etot = Evac + δGsolv                                                           (1.5.25), 

where  Evac represents  a  molecule’s  energy in  vacuum (gas-phase),  and  δGsolv is  the  free energy of 

transferring the molecule from vacuum into solvent,  i.e. solvation free energy. Usually it is assumed 
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that Evac is given by a classical potential function, or force-field, that breaks the interaction down into 

various  physical  components,  such  as  bond  and  angle  stretching,  torsional  twist,  and  VDW and 

Coulomb interactions between its atoms (see above in this subsection).

To estimate the total solvation free energy of a molecule δGsolv one typically assumes that it can 

be decomposed into the electrostatic and non-electrostatic components:

δGsolv = δGel + δGnonel                                                       (1.5.26),

where δGnonel is the free energy of solvating a molecule from which all charges have been removed (i.e. 

partial charges of every atom are set to zero), and δGel is the free energy of first removing all charges in 

the vacuum, and then adding them back in the presence of a continuum solvent environment.  The 

above decomposition, which is yet another approximation, is the basis of the widely used MM-PBSA 

scheme [116]. Generally speaking, δGnonel comes from the combined effect of two types of interaction: 

the favorable van der Waals attraction between the solute and solvent molecules, and the unfavorable 

cost of breaking the structure of the solvent around the solute. δGnonel is described in terms of solvent 

accessible surface area (ASA), the surface area of a biomolecule that is accessible to a solvent. The 

ASA is usually measured in  Å2. ASA is typically calculated using the 'rolling ball' algorithm  [117], 

which uses a sphere (of solvent) of a particular radius to probe the surface of the molecule. The choice 

of the probe radius does have an effect on the observed surface area, as using a smaller probe radius 

detects more surface details and, therefore, reports a larger surface. A typical value is 1.4 Å (also used 

as a default value in a popular NACCESS program [118]), which approximates the radius of a water 

molecule. Another factor that affects the results is the definition of the VDW radii of the atoms in the 

studied molecule. For example, the molecule may often lack hydrogen atoms which are implicit in the 

structure. The hydrogen atoms may be implicitly included in the atomic radii of the heavy atoms, with 

a measure called the group radii.

The ASA is closely related to the concept of the solvent-excluded surface (also known as the 

molecular surface or Connolly surface), which is imagined as a cavity in bulk solvent (effectively the 

inverse of the solvent-accessible surface).  In practice, it is also calculated via a rolling-ball algorithm 

[119] and independently implemented three-dimensionally in two studies works  [120,121]. Connolly 

spent several more years perfecting the method  [122] and it is thus sometimes called the Connolly 

surface.
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The ASA can be used in protein interfaces characterization (difference of the ASA of complex 

and unbound components gives the size of an interface of the complex) and for empirical estimation of 

hydration energy, which is considered to be proportional to ASA. Within the PBSA, δGnonel is supposed 

to be proportional to the total solvent ASA of the molecule, with a constant derived from experimental 

solvation energies of small non-polar molecules:

δGnonel ~ ASA                                                             (1.5.27),

which is an approximation, but arguably not the most critical one in the hierarchy of assumptions that 

form the foundation of the implicit solvent methodology [123]. 

In a model of continuous solvent the remained component δGel can be easily calculated if the 

potential  distribution φ(r)  in  space  is  known.  This  distribution  is  described  by Poisson-Bolzmann 

equation for the charge density ρ(r) distribution in a dealectric with constant ε(r):

ε∇ (r) φ ∇ (r) = −4π ρ(r) + κ2 ε(r) φ(r)                                            (1.5.28),

where  κ is  Debye-Huckel  parameter.  However,  in  molecular  dynamics  applications,  the associated 

computational costs are often very high, as the Poisson-Boltzmann equation needs to be solved every 

time the conformation of the molecule changes. The Generalized Born (GB) model is an approximation 

to  the  exact  (linearized)  Poisson-Boltzmann  equation.  The  GB  approach  is  computationally  more 

effective than PB approach and it is an approximation to the exact Poisson-Boltzmann equation. It is 

based on modeling a protein as a volume whose internal dielectric constant differs from the external 

solvent. The model has the following functional form:

 Gel , GB=
1
8

1
0
−

1

∑

i j

N q i q j

f GB
                                                   (1.5.29),

where:

 f GB= rij
2
aij

2 e−D                                                             (1.5.30)

and:
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r ij

2a ij


2

, aij=ai a j                                                          (1.5.31)

where, ε0 is the dielectric constant in vacuo, qi is the electrostatic charge on particle i, rij is the distance 

between particles i and j, and ai is a quantity (with the dimension of length) known as the effective 

Born radius  [124]. The effective Born radius of an atom characterizes its degree of burial inside the 

solute;  qualitatively it  can  be  thought  of  as  the  distance  from the  atom to  the  molecular  surface. 

Accurate estimation of the effective Born radii is critical for the GB model [125].

Often,  the challenge in  these calculations  is  to  extract  frames from trajectory to  essentially 

sample the conformational space. Depending on a system, there is a different number of randomly 

chosen frames to be enough for this purpose. Averaged structure of a system is usually not used since 

even for two equally probable rotamer states of a side chain its average would not correspond to the 

physically relevant state of the system. The most important impact of conformational changes is on 

electrostatic energy component, that is why at the first step, statistical sampling could be carried out 

only for less computationally expensive electrostatic component (for the details see Methodology in 

section 2.1) [126].

For calculations of entropies in MM-PBSA method normal mode analysis is used. Nevertheless, 

entropy components of free energies are still the least accurate in MM-PBSA energy calculations [81].

● Free energy perturbation (FEP) is a method based on statistical mechanics that is used for 

computing free energy differences from MD or Metropolis Monte Carlo simulations [127]. According 

to  free-energy perturbation  theory,  the free energy difference  for  going from state  A to  state  B is 

obtained from the following equation, known as the Zwanzig equation: 

G=G A−GB=−k b T ln [exp
−E B−E A

k b T
]

A
                                 (1.5.32),

where T is the temperature, kB is Boltzmann's constant, and the quadratic brackets denote an average 

over a simulation run for state A. In practice, one runs a normal simulation for state A, but each time a 

new configuration is accepted, the energy for state B is also computed. The difference between states A 

and B may be in the atom types involved, in which case the G obtained is for “mutating” one 

molecule into another, or it may be a difference of geometry, in which case one obtains a free energy 

map along one or more reaction coordinates. These reaction coordinates could be related, for example, 
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to the charge of perturbed atoms or to their van der Waals radii. Mathematically, free energy could be 

expressed by thermodynamical integration approach as: 

G=G =1−G =0=∫
0

1


V




d                                       (1.5.33),

where V is a potential function and λ is a reaction coordinate.

For numerical integration Gaussian integration procedure could be used:

G=∑
i=1

n

w i
V


i

                                                             (1.5.34),

where wi are weights corresponding to the number of quadrature points (n).

The main limitation of this method is the difficulty in convergence for G for large perturbed 

groups of atoms. Normally, the method is applied for perturbation of single atoms of geometrically 

similar chemical groups or for “eliminating” atoms. 

In this thesis FEP has been utilized to calculate free energy impact of water molecules in protein 

interfaces (section 2.1) and for the study of fluoromethylated groups, which were compared to their 

non-fluorinated analogues (section 3.1). One can find more computational details on the application of 

FEP in these studies in the corresponding methodology related subsections.  

● Charge derivation (ESP/RESP procedure) for a new residue/molecule, not yet parametrized 

for a given forcefield, is an important step in MD. To derive such atom-centered charges three steps 

need to be followed: 

1.  The  molecule  studied  is  optimized  to  determine  a  stable  minimum  (using  a  QM  approach).

2. Then, this minimized structure is used to calculate a Molecular Electrostatic Potential (MEP) on a 

3D grid (also using QM).

3. This grid is exported into the RESP program which is used to fit atom-centered charges to the MEP 

[128].
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1.5.5 Molecular docking

In the field of molecular modeling, docking is a method which predicts the preferred orientation 

of one molecule to a second when bound to each other to form a stable complex [129]. Knowledge of 

the preferred orientation in turn may be used to predict the strength of association or binding affinity 

between two molecules. Hence docking plays an important role in the rational design of drugs [130]. 

Given the biological and pharmaceutical significance of molecular docking, considerable efforts have 

been  directed  towards  improving  the  methods  used  to  predict  docking.  Molecular  docking  can  be 

thought  of  as a  problem of “lock-and-key”,  where one is  interested in finding the correct  relative 

orientation of the “key” which will open up the “lock” . 

Two principal approaches are particularly popular within the molecular docking community. 

The first approach uses a matching technique that describes a protein and a ligand as complementary 

surfaces  [131,132].  Complementarity  descriptors  are  usually  related  to  molecular  surface  area  of 

receptor  and  ligand  characterized  by  its  hydrophobic  and  hydrophilic  properties.  Shape 

complementarity based approaches are typically fast and robust,  but they cannot usually model the 

movements  or  dynamic  changes  in  ligand/protein  conformations  accurately,  though  recent 

developments allow these methods to investigate ligand flexibility. Shape complementarity methods 

can  quickly scan through several  thousand ligands  in  a  matter  of  seconds and actually figure  out 

whether  they can bind at  the protein’s active site,  and are usually scalable to even protein-protein 

interactions. The second approach simulates the actual docking process in which the ligand-protein 

pairwise interaction energies are calculated [133]. In this approach, a protein and a ligand are separated 

by a certain physical distance, and the ligand finds its position into the protein’s active site after a 

certain  number  of  'moves'  in  its  conformational  space.  This  motions  incorporate  rigid  body 

transformations such as translations and rotations,  as well  as internal changes in  ligand’s structure 

including torsion angle rotations. Each of these moves in the conformation space of the ligand induces 

a total energetic change of the system, and hence after every move the total energy of the system is 

calculated.  The obvious advantage of the method is that  it  is more amenable to incorporate ligand 

flexibility into its modeling whereas shape complementarity techniques have to use some ingenious 

methods to incorporate flexibility in ligands. Another advantage is that the process is physically closer 

to what happens in reality, when a protein and a ligand approach each other after molecular recognition. 

An obvious disadvantage of this technique is that it takes longer time to evaluate the optimal pose of 

binding since they have to explore a rather large energy landscape. However grid-based techniques as 
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well as fast optimization methods have significantly addressed these problems.

To accomplish a docking search in conformational space many different search algorithms (MD, 

linear combinations of multiple structures to emulate flexibility of receptor/ligand, genetic algorithms) 

and scoring functions (molecular mechanics force fields, Generalized Born, Poisson-Bolzmann etc.) 

could be applied. 

Autodock, the docking program used in this study (section 3.3), has a complementary surface 

based approach implemented with Lamarckian genetic algorithm, in which environmental adaptations 

of an individual’s phenotype are reverse transcribed into its genotype and become heritable traits. The 

implemented algorithm is characterized by  i)  efficiency of search in terms of lowest energy reached 

within a given number of energy evaluations;  ii) reliability in terms of reproducibility of finding the 

lowest  energy  structure  in  independent  docking  simulations,  as  measured  by  the  number  of 

conformations in the top ranked cluster; iii) success in terms of reproducing the known crystal structure 

[132].

Despite many promising results achieved by docking, there are still many limitations (especially 

for  protein-protein  docking)  for  this  technique  because  of  the  problem  of  trade-off  between 

conformational space exhaustive search and  accuracy of scoring function. 
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CHAPTER 2

2.1 A molecular dynamics approach to study the importance of solvent in protein interactions

by Sergey Samsonov, Joan Teyra, and M. Teresa Pisabarro

Proteins: Structure, Function, and Bioinformatics. 2008 Nov 1;73(2):515-525.

2.1.1 Abstract

Water constitutes the cellular environment for biomolecules to interact. Solvent is important for 

protein folding and stability, and it is also known to actively participate in many catalytic processes in 

the cell.  However,  solvent is often ignored in molecular recognition and not taken into account in 

protein-protein interaction studies and rational design. Previously we developed SCOWLP, a database 

and its web application (http://www.scowlp.org), to perform studies on the contribution of solvent to 

protein interface definition in all protein complexes of the PDB. We introduced the concept of  wet 

spots,  interfacial  residues  interacting  only  through  one  water  molecule,  which  were  shown  to 

considerably enrich  protein interface descriptions.  Analysis of interfacial solvent in a non-redundant 

dataset  of  protein complexes  suggested  the  importance  of  including interfacial  water  molecules  in 

protein interaction studies. In this work we use a molecular dynamics approach to gain deeper insights 

into solvent contribution to protein interfaces. We characterize the dynamic and energetic properties of 

water-mediated protein interactions by comparing different interfacial interaction types (direct,  dual 

and wet spot) at residue and solvent level. For this purpose, we perform an analysis of 17 representative 

complexes  from  2  protein  families  of  different  interface  nature.  Energetically  wet  spots  are 

quantitatively comparable to other residues in interfaces, and their mobility is shown to be lower than 

protein surface residues. The residence time of water molecules in wet spots sites is higher than of 

those on the surface of the protein. In terms of free energy, though wet-spots-forming water molecules 

are very heterogeneous, their contribution to the free energy of complex formation is considerable. We 

find that water molecules can play an important role in interaction conservation in protein interfaces by 

allowing  sequence  variability  in  the  corresponding  binding  partner,  and  we  discuss  the  important 

implications  of  our  observations  related  to  the  use  of  the  correlated  mutations  concept  in  protein 

interactions studies. The results obtained in this work help to deepen our understanding of the physico-

chemical nature underlying protein-protein interactions and strengthen the idea of using the wet spots 

concept to qualitatively improve the accuracy of folding, docking and rational design algorithms.
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2.1.2 Introduction

Water  plays  an  extremely  important  role  in  all  biological  processes  because  of  its  unique 

physical and chemical properties. It represents not only an environment for interacting components of 

biochemical reactions but it is also an active participant. Without a critical level of hydration proteins 

are not functional, and water molecules presence is crucial in catalytic sites of many enzymes [32]. It 

has been shown that water molecules can be structurally conserved in protein complexes, and that their 

residence time and diffusion characteristics are  distinct  from bulk and surface solvent  [39,37,134]. 

Thermodynamically, water molecules can contribute favorably to protein complex formation [135,136]. 

Computationally, the inclusion of water in the Hamiltonian of protein systems has improved folding 

predictions compared to  in vacuo folding models  [48]. It is widely accepted that exclusion of water 

molecules from the proteins contact area in the process of complex formation is associated with a free 

energy decrease. The entropic component increase due to the transfer of water molecules into bulk 

solvent is considered to have the decisive energetic impact. This entropy gain is usually thought to 

exceed the corresponding enthalpy loss  [137]. Despite all, solvent is often ignored in the analysis of 

protein-protein interactions. 

The protein interface concept is very important in the description of protein-protein interactions. 

Protein interfaces could be defined differently depending on the criteria introduced for the cut-off for 

interacting  atoms  of  the  complex  counterparts  [138].  In  our  previous  work  we  have  developed 

SCOWLP, which, taking into account interfacial solvent, classifies all interfacial protein residues of the 

PDB into three classes based on their interacting properties:  dry (direct interaction),  dual (direct and 

water-mediated interactions),  and  wet spots  (residues interacting only through one water molecule) 

[27]. Also in our preceding studies,  statistical analysis of a non-redundant protein structure dataset 

showed that 40.1% of the interfacial residues participate in water-mediated interactions, and that 14.5% 

of the total residues in interfaces are wet spots. Moreover, wet spots have been shown to display similar 

characteristics  to  residues  contacting  water  molecules  in  cores  or  cavities  of  proteins  [64].   This 

suggests that water-mediated interactions should not be disregarded in a detailed definition of protein 

interfaces.  Our  and  other  studies  have  revealed  that  water-mediated  interactions  are  highly 

heterogeneous  [64,15,139],  making protein-protein  interactions  studies  challenging.  In  fact,  certain 

aspects of water-mediated interactions still remain unclear. 

This study aims to gain insights into solvent contribution to protein interactions. Our focus is 

the contribution of wet spots to protein interfaces in comparison to other interfacial residues. For this 
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purpose, we use a molecular dynamics (MD) approach to characterize dynamic and energetic properties 

of wet spots and the water molecules forming them. We pay special attention to the role of water 

molecules in interaction conservation in protein interfaces. 

For our studies we use representatives of two protein families of different physico-chemical 

interface  nature  and  interface  size  in  complex  with  other  proteins  and  peptides:  Src-homology  3 

domains (SH3) and immunoglobulin domains (Ig). SH3 are small recognition domains comprising 5 

antiparallel β-strands and widely presented in signaling pathways [140]. Immunoglobulin domains are 

bigger and comprise 7 to 9 antiparallel  β-strands  [141]. Ig interfaces are more hydrophilic than SH3 

domain interfaces.

The results  of  this  study show that  water-mediated  interactions  are  similar  in  both  protein 

families,  and  that  the  dynamic  and  energetic  characteristics  of  wet  spots  and  dual  residues  are 

comparable to dry interfacial residues. Interfacial water molecules display properties such as residence 

time and mobility more similar to water molecules in cores and cavities of proteins than to bulk or 

protein surface solvent. Our findings emphasize the important role of water contributing to interaction 

conservation of protein interfaces and strongly imply the significance of including interfacial solvent in 

detailed protein interface descriptions.

2.1.3 Methodology

Protein complexes dataset (Table 2.1.1). The following criteria for protein complex selection was 

applied: resolution ≤ 2.5 Å and existence of wet spots (as they are annotated in SCOWLP [27]). The 

complex  1avz  (FYN  SH3  domain  with  HIV1-Nef)  was  also  taken  in  our  dataset  because  of  its 

biological relevance. Structural alignments of the proteins were done with the MAMMOTH algorithm 

[142]. 

Molecular dynamics simulations. MD simulations were carried out with the AMBER 8.0 package. All 

hydrogen atoms were added using the Xleap tool.  Standard ff03 force field parameters were used. 

Parameters  for  phosphorylated  residues  (complexes  1opk,  2src,  1qcf)  were  taken  from  the 

phosphorylated amino acids  library set  [143],  and parameters for the N-substituted glycine residue 

(complex 1b07) were derived in the Antechamber module of AMBER 8.0. Each complex was solvated 

in  a  truncated  octahedron  periodic  box  filled  with  TIP3P  water  molecules  and  neutralized  by 

counterions. MD simulations were preceded by two energy-minimization steps: 500 cycles of steepest 

descent and 1000 cycles of conjugate gradient with harmonic force restraints on protein atoms, then 
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1000 cycles of steepest descent and 1500 cycles of conjugate gradient without constraints. This was 

followed by heating of the system from 0 to 300K for 10 ps, and a 30 ps MD equilibration run at 300K 

and 106  Pa in isothermal isobaric ensemble (NPT). Following the equilibration procedure, 10 ns of 

productive MD runs were carried out in periodic boundary conditions in NPT ensemble with Langevin 

temperature coupling with collision frequency parameter  γ =1 ps-1 and Berendsen pressure coupling 

with a time constant of 1.0 ps.  The SHAKE algorithm was used to constrain all bonds that contain 

hydrogen atoms. A 2 fs time integration step was used. An 8 Å cutoff was applied to treat non-bonded 

interactions, and the Particle Mesh Ewald (PME) method was introduced for long-range electrostatic 

interactions treatment. MD trajectories were recorded each 2 ps. For the analysis of the trajectories 

PTRAJ module was used. 

Table 2.1.1. Complexes dataset
PDB ID SCOP family Resolution Å PP/Pp Short description

1ujo* SH3 1.70 Pp Signal transducing adaptor molecule-2(STAM-2) SH3 domain with 
peptide derived from deubiquitinating enzyme (UBPY)

1bbz SH3 1.65 Pp Abl Tyrosine Kinase SH3 domain with p40 synthetic peptide 

1fyn SH3 2.30 Pp Fyn Tyrosine Kinase SH3 domain with 3BP-2 synthetic peptide

1oeb SH3 1.76 Pp Grb2-like adaptor protein Mona/Gads SH3 domain with the peptide 
derived from T-cell receptor signal transducer SLP-76 

1b07 SH3 2.50 Pp Proto-oncogene Crk2 (Serine-Threonine kinase) SH3 domain with peptoid 
inhibitor

1uti SH3 1.50 Pp Grb2-like adaptor protein Mona/Gads with the peptide derived from 
Hematopoietic Progenitor Kinase 1 (Hpk1) 

1abo SH3 2.00 Pp Abl Tyrosine Kinase SH3 domain with 3BP-1 synthetic peptide 

1opk SH3 1.80 PP Mouse Abl Tyrosine Kinase (SH3-PI)

2src SH3 1.50 PP Human Src Tyrosine Kinase (SH3-PI)

1avz* SH3 3.00 PP Fyn Tyrosine Kinase SH3 domain with HIV1-Nef protein

1qcf SH3 2.00 PP Human Hck Tyrosine Kinase (SH3-PI)

1sm3 Ig 1.95 Pp Tumor specific Fab fragment with its peptide epitope

1qkz* Ig 1.95 Pp Fab fragment with bacterial antigen

1ejo Ig 2.30 Pp Monoclonal 4C4 Fab fragment with G-H loop from virus FMDV 

1g7i Ig 1.80 PP Monoclonal Fab fragment with Hen Egg White Lysozyme

1jps Ig 1.85 PP Fab D3h44 fragment with tissue factor

1lk3 Ig 1.91 PP Fab 9D7 fragment with engineered IL-10 

PP, protein-protein complex; pp, protein-peptide complex. *Soft harmonic force restraints (2 kcal/mol) were applied on Cα 

of the ligands to keep them in their binding sites during the simulation. 

Trajectory processing.  We defined interfacial interactions based on physico-chemical and distance 
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criteria between atoms. For hydrogen bonds, we considered a donor-acceptor distance of 3.2 Å, for salt 

bridges 4 Å, and for van der Waals interactions  the van der Waals radii distance. Three classes of 

residues were introduced: dry (direct interaction), dual (direct and water-mediated interactions), and 

wet spots (residues interacting only through one water molecule) [27]. Each frame of the trajectory was 

processed so that the relative time fractions (TFs) of total, dry, dual and wet spot interactions (TFT, TFD, 

TFd, TFws) during the simulation were corresponded to each residue. The total interaction was defined 

as a sum of all three defined interaction types. A residue was considered interacting if the total time of 

interaction was at least 5% of the simulation time. A residue was considered to be a wet spot if it 

interacted only through a single water molecule more than 10% of the simulation time. Such cut-offs 

were chosen arbitrarily in order to consider the wide range of the interactions for analysis and to restrict 

the definition of wet spots in molecular dynamics to a certain intuitively significant value.      

Effective  interface  area  calculations.  The  area  of  interface  is  usually  defined  as  the  difference 

between solvent accessible areas for the unbound molecule and for the same molecule in complex. We 

introduced “effective”  interface  areas  related  to  water-less  (∆ASAwl)  and  water-mediated  (∆ASAw) 

interactions in order to estimate the impact of water-mediated interactions on the interface definition. 

The introduction of “effective” interface areas allows to consider that during the simulation the same 

interfacial  residue  could  belong  to  dry (D),  dual  (d)  and  wet  spots  (ws)  residue  class  for  certain 

respective times:  

∆ASAwl=∑i ∆ASAi (TFD,i + ½ TFd,i)                                                      (2.1.1) 

∆ASAw=∑i ∆ASAi (TFws,i + ½ TFd,i)                                                     (2.1.2),

where TFD/d/ws, i are the relative time fractions of residue i; ∆ASAi is the accessible surface area of the ith 

residue calculated in the NACCESS program with a standard water probe radius of 1.4 Å [118].  

Fluctuation analysis. The average fluctuation (F) for each interfacial residue was obtained with the 

PTRAJ module of AMBER 8.0 as a mass-weighted sum of fluctuations for atoms belonging to this 

residue. To implicitly decompose the impact of each type of interaction (total, dry, dual, wet spots) on 

the fluctuation as an analytically unknown function F(TFT, TFD ,TFd, TFws), the following method was 

used. The function values were averaged regarding to all other TFs except for the one of interest in 

order to obtain dependence on this certain TF: <F(TFij,TFkj≥a)>i, where i contains all interaction types 

(T= total, D= dry, d= dual, ws= wet spot) except k (i≠k), k is the TF of interest, j is the summing index 

for interfacial residues and a∈[0,100] expressed in %. Dependences on these 4 TFs were compared 
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qualitatively. 

MM-GBSA free energy decomposition per residue. Energetic post-processing of the trajectories was 

done  in  a  continuous  solvent  model  as  implemented  in  the  AMBER  8.0  MM-GBSA (Molecular 

Mechanics-  Generalized  Born  Surface  Area)  module.  MM-GBSA is  a  method  for  free  energy 

calculation utilizing implicit solvent model and is based on a Generalized Born approximation to the 

exact (linearized) Poisson-Boltzmann equation for electrostatics.  The snapshots for the calculations 

were chosen as described by Lafont  and coworkers  [126].  To achieve better  conformational  space 

sampling,  first,  all  frames of the trajectory were sorted by  in vacuo calculated electrostatic energy 

values and the range of these energies was divided into 10 equal intervals. For each interval the number 

of corresponding conformations was calculated and served as a weight function for the interval. Then, 

for a conformation, most closely corresponding to the interval mean value of electrostatic energy, full 

MM-GBSA energy calculations were carried out. The final result was calculated as a weighted sum of 

values for each interval. The energy components per residue were compared by TFs (i.e. TFT, TFD, TFd, 

TFws) in a similar way as it is described in the “Fluctuation analysis” section . 

Residence time analysis of water molecules. The distance from the interacting heavy atoms of each 

wet spot counterpart to water molecules in each frame was calculated using the PTRAJ module of 

AMBER 8.0. If the distance did not exceed 3.6 Å, the wet spot site was considered to be occupied. A 

surface water site was defined by the volume that was closer than  3.6  Å to one of the protein polar 

groups and was not located in an interface. Solvent was considered as bulk at a distance ≥ 5 Å from the 

protein surface.  Surface and bulk sites are defined so that their total occupancy is 100%. This makes 

them  a priori more  occupied  in  comparison to  interfacial  sites,  where total  occupancy is  64% on 

average.  Therefore, when differences between surface, bulk and interfacial sites exist, conclusions can 

be made even stronger. The frequency of consecutively occupied frames for the site was presented as 

residence time distribution density. Maximum number of consecutively occupied frames for the site 

was  corresponded  to  maximum  residence  time  (Tmax)  of  a  water  molecule  in  the  site,  and  total 

occupancy was defined as the sum of all time intervals when the site was occupied. 

Free energy perturbation calculations. For free energy calculations of water molecules in wet spot 

sites, the double decoupling method of free energy perturbation as described in the work of Hamelberg 

D.,  McCammon  J.A.  was  used  [44].  This  method  is  based  on  two  steps  of  perturbation.  First, 

electrostatic interactions are gradually turned off; then van der Waals radii of chargeless atoms are 

decreased to 0. The free energy difference between two states was calculated using the thermodynamic 
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integration approach at discrete points of the coupling parameter λ, which was variated from 0 to 1 and 

then back from 1 to 0 with a 0.01 step along the path. Simulation for each λ  value was equilibrated for 

10 ps followed by a productive MD sampling for 10 ps. In the case of two water molecules in the same 

spot, the less mobile one was first removed. If the removal energy of the first water was negative 

(favorable) and the two waters were establishing hydrogen bond interactions in the site, both waters 

were removed from the spot at a time. AMBER prevents other water molecules from occupying the site 

of  the  perturbed  one  by considering  the  volume corresponding  to  the  site  of  the  perturbed  water 

molecule as occupied by default.

Statistical analysis. Statistical analysis of data was carried out with the R-package [144]. 

2.1.4 Results and discussion

We have performed MD studies to deepen our understanding of the properties of protein interfacial 

residues  (direct,  dual,  wet  spots)  and  interfacial  solvent.  In  this  work  we  have  studied  protein 

interactions in terms of mobility, free energy and interaction conservation. For this purpose we have 

analyzed water-mediated interactions in a representative set formed by 11 complexes of SH3 domains 

(7  with  peptides  and 4  with  proteins)  and  6  complexes  of  Ig  domains  forming  variable  antibody 

fragments  (3  with  peptides  and  3  with  proteins)  (Table  2.1.1).  A total  of  292 interfacial  residues 

including 110 wet spots were analyzed.   

Interaction patterns in MD simulations. MD runs of 10 ns were performed for each complex. To 

define interfacial residues the trajectories were processed and the corresponding TFs were calculated. A 

summary of properties averaged over all structures of a family  for the interface description of the 2 

representative protein families used in this study is presented in Table 2.1.2. 

Table 2.1.2. Summary of interface properties
Domains SH3 Ig

Number of interacting residues per domain 14±2 24±5

Interface area, Å2 733±195 1291±471

Interacting residues/1000Å2 19 19

Total observed wet spots in MD (SCOWLP) 49 (15) 61(19)

Wet spots in MD (SCOWLP)/complex 4.5 (1.4) 10 (3.2)

Wet spots in MD (SCOWLP)/1000Å2 6.1 (1.9) 7.7 (2.5)

Wet spots in MD (SCOWLP)/interface residue 0.32(0.1) 0.42(0.13)

Effective areas ratio ∆ASAw/∆ASAd,  % 28±7 39±13
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Immunoglobulin interfaces are almost twice bigger than SH3 domain interfaces, both in number 

of residues and in area size. However, the density of interactions (number of interfacial residues per 

area unit) is the same for both families. In both families the number of wet spots observed in MD 

simulations is about three times higher than in the corresponding PDB initial structures. This could be 

explained, first of all, because of the different nature of the source of information (obtained from PDB 

files, static; defined in MD, dynamic), and partly by resolution and quality of data contained in PDB 

files. Classification of interfacial residues based on X-ray data falls into 3 classes (direct, dual and wet 

spots), while in MD this discrete division is not possible due to the fact that the same residue may 

present different interacting modes during the simulation. A continuous model of residue interaction 

pattern requires more complicated,  often implicit,  not  direct  mathematical  approaches  for  analysis. 

Table 2.1.2 illustrates roughly same ratios for the parameters for the two representative domain families 

though Ig interfaces have higher relative number of wet spots than SH3 domains interfaces. The last 

displayed parameter in Table Table 2.1.2 corresponds to the ratio of effective areas of dry and water-

mediated interfaces (see Methods section). These ratios reflect how larger the area of the interfaces 

would be if we would include wet spots in the interface definition. We obtained roughly 30% and 40% 

of interface size increase for SH3 and Ig, respectively. Considering the importance of the interfacial 

area as empirical parameter in algorithms implemented for energy calculations, these numbers suggest 

that exclusion of the water molecules from protein interface analysis may lead to significantly biased or 

incomplete results.   

Figure 2.1.1. Average time fractions of interaction in the Ig and SH3 complexes. 

In terms of total interactions per residue, despite the differences in size and chemical nature, 

both SH3 and Ig interfaces have comparable averaged contribution of interfacial residues to each class 

(Figure 2.1.1). The t-Test shows only a significant difference for the wet spots impact (at the level of p-

value=0.05). Although the total occurrence of wet spots interactions is about 3 times lower than of 
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direct  interactions,  overall  water-mediated interactions correspond to  almost  the same TF as  direct 

interactions. The percentage of interactions in our complexes agrees with the 14% presence of wet 

spots in total interfacial residues obtained for a non-redundant dataset of protein complexes [64]. That 

means that, in terms of wet spots contribution, both SH3 and Ig families are close to average protein 

families.  Direct  and  water-mediated  interactions  reveal  differences  in  distributions  of  TFs  (Figure 

2.1.2). Direct interactions are almost uniformly distributed on all time fraction intervals, while dual and 

wet spots interactions are distributed mostly on intervals up to 30% of relative interaction time. At the 

same time, the distribution of total interactions shows that most of the residues are interacting during 

more than half of the simulation. Comparison of the distributions suggests that there are few interfacial 

residues forming wet spots interactions for a long time during simulations. However, the contribution 

of wet spots to total interaction is substantial (Figure 2.1.1). The analysis of the distributions shows that 

it  is not correct to consider that an interfacial  residue unambiguously belongs to only one class of 

interfacial residues. 

Figure 2.1.2. Distribution of time fractions of interaction for all simulated complexes.

We monitored wet spots in the MD simulations of the SH3 and Ig domains, and classified them 

by interaction type (main-chain/side-chain) as well as by amino acid composition (Figure 2.1.3). For 

both  families  side-chain  interactions  slightly  prevailed  (55% of  all  wet  spots),  which  agrees  with 

previous results obtained for transient complexes based on crystallographic data [64]. Wet spots show 

in general a strong preference for polar and negatively charged residues, mostly interacting through 

their side-chains. At the same time, water mediation increases the participation of hydrophobic amino 

acid residues through their main-chains in the formation of interfaces with a certainly less hydrophobic 
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character. 

Figure 2.1.3. Participation of different residues in wet spots.

Interaction conservation through water. Water plays a role of “molecular glue” in protein interfaces 

[145]. Water may mediate conserved interactions in protein families and thus participate in specificity. 

Certain water-mediated interactions can be present in most of the interfaces of a protein family (e.g. 

Asn52 in SH3 domains; Figure 2.1.4). In addition, water may also keep the interactions conserved 

despite  the introduction of semi-  or  non-conservative mutations in  a  specific  position in  a protein 

family (e.g. sites I, IV and V; Figure 2.1.4).  

Figure 2.1.4. Structure-based sequence alignment of SH3 domains. Residues are colored by their participation in wet spots. 
The position of Asn52 (numbering by 1uj0) is labeled with an asterisk. Interaction sites from Table 2.1.3 are labeled with 
roman numbers at the top of the alignment. 

Correlated mutations in binding partners are expected to appear as a result of co-evolution and 

aim to keep a specific interaction conservative [92,146]. However, due to the participation of water in 

protein interfaces conservation of an interfacial interaction may occur despite non-correlated mutations 

(Table 2.1.3). 
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Table 2.1.3. Examples of interaction conservation in SH3 domain interfaces
Site PDB ID SH3 Ligand Site PDB ID SH3 Ligand

I 1uj0 E12m R64s III 1bbz* T16s Y63s

1bbz V10m Y63s 1uti* E17s R66s

1oeb E15m R65s IV 1uj0 D34s N66m

1uti E11m R66s 1oeb N37s T67m

II 1bbz S12s Y63s 1uti* N33s E68m

1qcf I16m E175s Va 1uj0 N36s N66s

1fyn* R16s Y66s 1oeb S39s T67m

1uj0* V14s R64s 1uti S35s E68s

1oeb* L17s R65s Vb 1fyn N38s Y66m

1b07* N14s R68s 1abo E35s M62m

1uti* I13s R66s Vc 1bbz E35s P65m

III 2src D16s I172m 1avz D237s L106m

1uj0* E18s R64s 1qcf R35s W174m

1fyn* D20s Y66s 1b07* R36s P67m

s=side-chain, m=main-chain interactions; *=direct interaction; 5a, 5b, 5c correspond to different interactions in the same 
site. 

Examples  of  interaction  conservation  through water  found in  SH3 domains  are  graphically 

shown in Figure 2.1.5. Figure 2.1.5 A illustrates site I with no correlation between the mutations in 

protein  and  ligand.  The  conserved  interaction  Glu(SH3)-Arg(ligand)  is  replaced  in  one  of  the 

complexes (1bbz) by the interaction Val(SH3)-Tyr(ligand). The interaction formed by the side-chain of 

different  ligand residues  with the protein is  conserved due to  the establishment  of water-mediated 

main-chain interactions. Figure 2.1.5 B illustrates site III with direct interacting residues being replaced 

by wet spots. The conserved interaction between side-chains of ligand and side-chains of the protein is 

maintained  in  one  of  the  complexes  with  a  non-conservative  mutation  (1fyn)  thanks  to  the 

establishment of a water-mediated main-chain interaction.

The concept of correlated mutations in protein-protein interaction studies was introduced in the 

90s [92,146] and has been used since then to optimize protein design, predictions of protein interfaces 

and docking algorithms. Several matrices of residue-pairwise interacting probabilities have been built 

using different mathematical approaches and empirical parameters [147,97,93]. However, none of them 

considers solvent as mediator of interactions. Our results indicate that disregarding interfacial solvent 

may cause inaccuracies in the application of correlated mutations based approaches in the complete 
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analysis of protein interfaces and the prediction of protein interactions.

Figure 2.1.5. Examples of interfacial interaction conservation through water in SH3 interfaces. A) Site I of Table 2.1.3.  with 
no correlation between the mutations in protein and ligand. B) Site III of Table 2.1.3.  with direct interacting residues being 
replaced by wet spots. Proteins and ligands are represented by ribbons and labeled. Interacting residues are shown in sticks, 
and water molecules as spheres. The color code of the sequences in the upper right panels corresponds to the colors of the 
residues in the proteins and ligands as well as in the water molecules. Hydrogen bonds are represented with dash lines.

Fluctuation analysis. In previous work we showed that thermal B-factors of wet spots are comparable 

to  those of other  interfacial  residues  [64].  Prior  to  checking if  the mobility properties  of  different 

interfacial residue classes could be distinguished, we compared the mobility of surface residues and 

interfacial residues in terms of average fluctuations. Our results show that fluctuations of interfacial 

residues (side-chain and also full residue) are significantly lower than those of surface residues (at the 

level of t-Test p-value=0.05), while there is no significant difference for backbone fluctuations. Implicit 

decomposition of the average fluctuation function calculated for all interfacial residues in the studied 

complexes shows that, in general, residue fluctuations decrease with the increase of residue interaction 

time (Figure 2.1.6). Dual residues fluctuate more than dry and less than wet spots. At the same time the 

residues in the protein interior were shown to be significantly (at the level of t-Test p-value=0.05) less 

mobile  than  those  in  the  interface  or  surface.  For  example,  for  the  1UJ0  complex,  the  average 

fluctuations for protein interior, interfacial and surface residues were 0.50±0.06 Å, 0.74±0.30 Å and 

1.00±0.48 Å, respectively. The fluctuation analysis of 111 surface and 151 interfacial residues  also 

revealed significant difference (at the level of t-Test p-value=0.05) between these two groups of protein 
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residues (1.20±0.61, 0.83±0.59, respectively). 

Figure 2.1.6. Fluctuations of interfacial residues decomposed by interaction type.

Our  data  agree  with  the  thermal  factor  analysis  performed  on  a  large  dataset  of  protein 

complexes,  which found that  the closer  the residues  are  to  the core of  interfaces,  the higher  their 

stability  [148]. Since the fluctuations of wet spots and surface residues at temperatures higher than 

180K could be roughly explained in terms of surrounding water molecules mobility [149], it suggests 

that  water  flow around wet spots is  slower in general  than water molecules motion in the surface 

hydration shell. A similar trend was obtained for the interfacial residues participating in water-mediated 

interactions  in  another  study where  the  speed  of  surrounding  water  flow and the  mobility  of  the 

residues  were  analyzed  in  MD  simulations  [138].  Therefore,  dynamical  properties  of  interfacial 

residues and solvent mediating interaction are tightly interconnected, and they could be mechanically 

described as a coupling of harmonic oscillator to solvent modes via small springs (hydrogen bonds) 

[51].  This  means  that  dynamic  analysis  of  the  interfacial  residues  might  be  biased  without  the 

consideration of surrounding water molecules. 

Free  energy  decomposition  per residue  in  interfaces.  The  MM-GBSA method  applied  for  free 

energy decomposition calculations per residue allows to obtain the following independent components 

describing the energetics of a protein complex in implicit solvent: electrostatic component  in vacuo, 

van der Waals interactions component  in vacuo,  Generalized Born reaction field energy  [150] and 

hydrophobic component of solvation. The differences in energy values for interfacial residue classes 

were compared with the characteristic thermal motion energy value at 300K (RT~0.6 kcal/mol). The 
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differences in hydrophobic component of solvation were lower than this value, so we considered that 

this component does not differ significantly among the interfacial residue classes. Generalized Born 

reaction field energy roughly compensates for the electrostatic component in vacuo, so we discuss only 

the results obtained for van der Waals and electrostatic components  in vacuo. The general trend for 

both components and all types of interactions is that the energy values decrease with the increase of 

residue interaction time, suggesting that both energy components stabilize complexes independently of 

the residue class. 

Figure 2.1.7. Free energy decomposition for interfacial residues decomposed by interaction type. A) Electrostatic energy. B) 
Van der Waals energy. C) Hydrophobic component of solvation energy. D) Total MM-GBSA energy.

 Energy decomposition (Figure 2.1.7) illustrates that the electrostatic impact of water-mediated 

interactions is at least of the same order as of direct interactions, considering that the dielectric constant 

of water in the protein interface within the analyzed distance scale is approximately one order lower 

than the dielectric constant in bulk (and several times higher than in dry interfaces) [151]. The Van der 

Waals energy component is the lowest for dual residues and the highest for wet spots. Such a benefit 

for dual residues is explained by more tight contacts of the atoms additionally summed up with water 

atoms contacts. In wet spots there are only contacts with water atoms, which are not so tightly packed. 

 Despite  the  quantitative differences  observed for  the  SH3 and Ig interfaces,  the important 

finding out of the energy decomposition is that all three interfacial residue classes are energetically 

comparable even in implicit solvent, meaning that wet spots interactions are energetically of the same 

order as direct interactions. This conclusion could be generalized for all protein interfaces since the 
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analyzed  interface  families  substantially  differ  in  physico-chemical  properties.  The  obtained  small 

differences between the families in the free energy components are due to intrinsic properties of the 

dataset, and the larger size and more hydrophilic nature of Ig interfaces. Non-interfacial residues were 

analyzed in the same way but their free energy contribution values were at least one order lower than of 

the interfacial  ones. This suggests that inclusion of water-mediated interactions in protein interface 

definition is energetically well grounded.

Residence time of water molecules in wet spot sites. The analysis of the residence time distribution 

density of wet spot sites obtained from MD simulations suggests that the best theoretical model to 

describe the distribution density function should be defined as ρ(t)=Ct-k, where C is a constant that can 

be obtained by normalization for each site individually, and the constant k>0 is the only distribution 

parameter. This k constant and the maximum residence time (Tmax) in sites were taken as the parameters 

to compare different water sites. For wet spot sites the linear regression adjusted correlation coefficient 

r is equal to 0.97±0.04 with p-value ranging from 8*10-13 to 3*10-2.  r and p-values for most of the 

surface and bulk solvent sites were not defined because the observed residence times were in the most 

cases less than 20ps, meaning that there were just 2 points in the distribution (each point was obtained 

summing up the number of events on a 10ps interval to avoid big fluctuations in the density function). 

Table 2.1.4. Residence time parameters of different water sites

Site type Sample size Tmax, ps k 

Wet spot 110 137±12 3.0±1.0

Surface 30 18±6 7.1±1.1

Bulk 10 14±2 8.7±0.9

Sample size is the number of analyzed sites of each water site type. Tmax is maximal residence time. 
k is residence time distribution parameter. 

As it  is shown in Table 2.1.4,  both k and Tmax significantly differ  (at  the level of t-Test  p-

value=0.05) for different sites, indicating that water molecules in wet spot sites are less mobile than in 

bulk solvent or in surface hydration sites. At the same time, in each wet spot site many occupancy 

events  occur  that  have as  short  residence  as  in  bulk  or  surface sites.  That  agrees  with the  model 

proposed by Makarov et al.,  where the correlation function for residence time in hydration sites is 

decomposed  into  the  sum  of  fast  and  slow  diffusion  exponent  components.  These  components 

characterize  bulk  water  motions  and  specific  for  hydration  site  events,  respectively  [56].  Other 

theoretical and experimental studies obtained similar residence time values for different water sites, 

which vary from 1-10 ps for bulk solvent to 101-103 ps for protein hydration sites, cavities and cores 
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[32].  Tmax  and  k  are  well  correlated  (adjusted  correlation  coefficient  r=0.81  for  ln(Tmax)~k  linear 

regression,  Figure  2.1.8  A),  meaning  that  maximum residence  time  of  water  molecules  does  not 

correspond  to  an  opportunistic  event  of  site  occupation  but  is  expected  from  the  residence  time 

distribution. The correlation between total residence time/maximum residence time and water mediated 

interaction amount is weak but the dependence is clearly observed (Figure 2.1.8 B, C). There was no 

correlation  between  total  occupancy  of  the  sites  and  Tmax  (r<0.3,  Figure  2.1.8  D)  because  these 

parameters  are  independent  and  describe  different  kinetic  characteristics  of  the  site.  While  Tmax  is 

defined only by the energy barrier required for the molecule to leave the site, total occupancy is also 

dependent on the energy barrier of water transfer from bulk solvent to the site. The residence time 

analysis suggests that the potential barriers for wet spots sites are significantly higher than those for 

surface sites. However, it does not mean that the potential energy level of water molecules in wet spot 

sites are necessarily lower than in bulk solvent.  

Figure 2.1.8. Interdependence of different time related wet spot sites parameters. A) Tmax  vs k. B) Tmax  vs water mediated 
interaction time. C) Total residence time vs water mediated interaction time. D)  Total residence time vs Tmax.

Free  energy  of  water  molecules  in  wet  spot  sites.  To  determine  if  water  molecules  contribute 
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energetically favorably to complex formation we calculated their free energy using the free energy 

perturbation double decoupling method [44]. As a first step, free energy of removing a water molecule 

from bulk solvent was calculated. Electrostatic and van der Waals components were equal to 8.2 and 

-2.2  kcal/mol,  respectively,  which  agrees  well  with  the  results  obtained  from similar  calculations 

correlated with experimental data [44,45] (Table 2.1.5). The second step consisted of the transfer of a 

water molecule from the wet spot site to vacuum. The difference of these two energy components 

makes up the total energy of a water molecule transfer from bulk solvent to the wet spot site. 

Table 2.1.5. Free energy perturbation of water molecules in 1uj0 complex using the double-decoupling 
method 
             E (kcal/mol)
Site      

Site type EElect EVDW -RT* ln(SwSp/w*p) RT* 
ln(C0V1)

Erot Etotal ∆G0

E12-R64 Wet spot 12.9 -1.5 0.4 -4.4 0 7.4 -1.4

D34-N66 Wet spot 8.3 0.1 0.4 -4.1 0 4.7 1.3

D34-N66, 2 water 
molecules

Wet spot 22.9 -3.7 0.8 -8.2 0 12.6 -6.6

N52-M61,N63 Wet spot 8.9 0.1 0.4 -4.2 0 5.2 0.8

N52-M61,N63
2 water molecules

Wet spot 18.1 0.1 0.8 -7.2 0 11.2 0.1

L58-R6 Surface 9.8 0.2 0.4 -3.8 0 6.4 -0.4

D31-S33 Surface 7.6 -0.6 0.4 -3.7 0 3.7 2.3

Lysozyme Cavity 13.5 0.0 0.4 -3.9 0 10.0 -4.0

Bulk-vacuo transfer Bulk 8.2 -2.2 - - - 6.0 -

Bulk-vacuo transfer [20] Bulk 8.2 -2.2 - - - 6.0 -

Bulk-vacuo transfer [34] Bulk 8.3 -2.4 - - - 5.9 -

EElect,  electrostatic  energy;  EVDW,  van  der  Waals  energy;  -RT*  ln(SaSb/Sa*b),  the  free  energy  component  related  to  the 
symmetry of water molecule (Sa), protein (Sb) and the complex of water molecule with protein (Sa*b); RT* ln(C0V1), the free 
energy component associated with translational constraints in the V1 volume; Erot, the free energy component associated with 
rotational constraints; Etotal, total free energy of a water molecule transfer from the site to vacuo; ∆G0, free energy of transfer 
of a water molecule from bulk to the site [20]. 

The obtained results for several water sites of the SH3 domain complex 1uj0 show that the sites 

are very heterogeneous. In particular, the free energy of water molecule transfer from bulk to the site 

formed by the carboxyl oxygen of Glu12 in the SH3 domain and the side-chain of Arg64 in the ligand 

is  -1.4 kcal/mol,  meaning a  favorable impact of a water molecule  on the complex formation.  The 

calculations carried out for another site formed by the side-chain of Asp34 in the SH3 domain and the 

side-chain of Asn66 in the ligand revealed a positive change of free energy (1.3 kcal/mol). However, as 

it was observed in the trajectory, another water molecule was present in this site and establishing a 
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hydrogen  bond  with  the  first  water  molecule  forming  the  wet  spot.  Consideration  of  both  water 

molecules in the free energy calculations revealed an energy gain of -6.6 kcal/mol (Table 2.1.5). In this 

case removal of two water molecules from a wet spot site leads to an increase of the free energy value, 

while  a  removal  of  each  water  molecule  independently leads  to  a  free  energy decrease.   Another 

example of such an effect was found in the site formed by the side-chain of Asn52 in the SH3 domain 

and the main-chain of Met61 in the ligand. Here, although the energy became more favorable by taking 

into  account  two  water  molecules  transfer,  water  contribution  was  still  not  favorable.  For  the 

comparison of the free energies of wet spot sites we took several surface sites and a site in the cavity of 

lysozyme,  which is  not  exposed to  bulk solvent  (1HEL, 1.7 Å).  The X-ray structure of  lysozyme 

presents a very stable water molecule  [152], which is present in the site during the whole simulation 

with a residence time of several nanoseconds. The energetic impact of the cavity water to the stability 

of the lysozyme was quite significant (-4 kcal/mol). In surface sites no big negative values for free 

energy were found.  In  similar  calculations  performed with the  double decoupling  method for  free 

energy calculation with AMBER, the obtained values for the free energy of water in hydration sites 

changed from slightly positive up to -5 kcal/mol [44,45]. The examples of favorable energetic impact 

of water molecules on complex formation was also found in a study of various protein complexes by 

Monte Carlo calculations using different force fields [46]. 

The most important conclusion that can be driven from this free energy analysis is that water 

molecules in wet spot sites can not be characterized uniformly in energetic terms since in some cases 

they manifest properties similar to cavity waters and in other do not even contribute favorably to the 

complex free energy (just occupying an empty space between the residues). Nevertheless, it is realistic 

to claim that the introduction of water into protein interface description would crucially change the 

energy function of the system. Interestingly, a recent attempt of solvated protein docking has shown 

promising results [61]. 

2.1.5 Conclusions

We present a detailed molecular dynamics study on 17 protein complexes representatives of two 

families  of  different  interface  nature. Our  aim has  been  to  gain  insights  into  the  contribution  of 

interfacial solvent in protein-protein interactions. We show that water molecules in protein interfaces 

contribute  to  the conservation of protein interactions by allowing more sequence variability in the 

interacting partners, which has important implications for the use of the correlated mutations concept in 
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protein interactions studies. 

Interfacial residues interacting through water are more mobile than those interacting directly but 

less  than  protein  surface  residues.  Despite  their  broad  heterogeneity,  all  interfacial  residues  are 

quantitatively  comparable  in  terms  of  their  contribution  to  the  energy  of  complex  formation, 

independently of their type of interaction. In the case of interfacial solvent, water molecules forming 

wet spots have significantly longer residence time than those on the protein surface, meaning that in 

terms of  mobility interfacial  protein residues  and interfacial  solvent  are  alike.  Although interfacial 

water  molecules  are  very  diverse  energetically,  their  contribution  to  the  free  energy  of  complex 

formation should be not be ignored.  

Our data confirm that water plays an important active role in protein interfaces, suggesting that 

consideration of solvent in the development of energetic functions describing protein interactions is 

essential. Moreover, the introduction of water-mediated interactions into protein interface definitions 

should substantially increase the accuracy of protein interaction predictions based on protein contacts. 

We believe that  the results  obtained in this  work could be useful  for deeper  understanding of  the 

physico-chemical properties underlying protein-protein interactions in order to improve the accuracy of 

protein folding, docking and rational design methods. 
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2.2 Analysis of the impact of solvent on contacts prediction in proteins

by Sergey Samsonov, Joan Teyra, Gerd Anders and M. Teresa Pisabarro

BMC Structural Biology 2009 Apr 15;9(1):22.

2.2.1 Abstract

Background.  The correlated mutations concept is  based on the assumption that interacting protein 

residues  coevolve,  so  that  a  mutation  in  one  of  the  interacting  counterparts  is  compensated  by a 

mutation in the other. Approaches based on this concept have been widely used for protein contacts 

prediction since the 90s. Previously, we have shown that water-mediated interactions play an important 

role in protein interfaces. We have observed that current “dry” correlated mutations approaches might 

not  properly  predict  certain  interactions  in  protein  interfaces  due  to  the  fact  that  they  are  water-

mediated. 

Results. The goal of this study has been to analyze the impact of including solvent into the concept of 

correlated mutations. For this purpose we use linear combinations of the predictions obtained by the 

application of two different similarity matrices: a standard “dry” similarity matrix (DRY) and a “wet” 

similarity matrix (WET) derived from all water-mediated protein interfacial interactions in the PDB. 

We analyze two datasets containing 50 domains and 10 domain pairs from PFAM and compare the 

results obtained by using a combination of both matrices. We find that for both intra- and interdomain 

contacts  predictions  the  introduction  of  a  combination  of  a  “wet”  and  a  “dry”  similarity  matrix 

improves the predictions in comparison to the “dry” one alone. 

Conclusions. Our analysis, despite the complexity of its possible general applicability, opens up that 

the consideration of water may have an impact on the improvement of the contact predictions obtained 

by correlated mutations approaches.

2.2.2 Introduction

The correlated mutations concept was introduced in the 90s [92,153-155] and has been widely 

used  for  protein  contacts  prediction  [93].  The  method is  based  on  the  assumption  that  interacting 

protein residues co-evolve, so that a mutation in one of the interacting counterparts is compensated by a 

mutation in the other. Therefore, it is possible to introduce an exchange matrix or other measures of 

similarity  for  each  sequence  position  in  a  multiple  sequence  alignment  and  to  use  covariance 

(correlation coefficient) between two positions to predict if the residues at these positions may establish 

physical  contact in 3D space,  and develop contact maps. Several  different similarity measures and 

algorithms have been implemented in the concept of correlated mutations [93,156,96]. Most exchange 
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matrices are based either on physico-chemical properties of amino acids or on statistical data on the 

substitutions  obtained  from  multiple  sequence  alignments  [157].  Statistically  it  is  clear that  the 

distribution of distances between the residues at highly correlated positions is shifted towards lower 

values compared to the distance distribution of all residues. This has been demonstrated in the study of 

correlated mutations for residues within one protein domain (intradomain), for residues from different 

domains in multidomain proteins (interdomain intraprotein) [158,159] and in transmembrane proteins 

[160].  At  the  same  time,  attempts  to  use  the  concept  of  correlated  mutations  to  predict 

thermodynamically coupled residues have suggested that the method is successful only for residues in 

evolutionary constrained positions [161]. 

The  concept  of  correlated  mutations  has  been  intensively  developed  recently.  The 

implementation  of  neural  nets  into  algorithms  of  contact  predictions  has  allowed  to  substantially 

improve the accuracy of the methods in a number of studies  [147,162-164]. Also the application of 

filtering procedures such as the similarity of sequences in a dataset and the number of sequences in 

multiple sequence alignments, introduction of weights for physico-chemical properties of the residue 

pairs  and  creation  of  sub-multiple  sequence  alignments  were  successfully  used  to  increase  a  true 

positive ratio of contact predictions  [97]. Nowadays, different correlated mutations based approaches 

yield predictions accuracies in the range of 0.1-0.4 [97] but they are still of little use in the ab initio 

prediction of protein structure [96] . 

Previously, we have shown that water-mediated interactions play an important role in protein 

interfaces [64,165]. In particular, we observed that the interfacial residues interacting only through one 

water molecule (wet spots) are more similar in terms of dynamic and energetic properties to residues in 

the core of proteins than to residues on the protein surface. Moreover, in our studies interfacial water 

molecules show significantly longer residence times than water molecules on the protein surface or in 

bulk solvent, and have been shown to give an indispensable energetic impact on complex formation 

[165]. In other studies it has been demonstrated that inclusion of solvent term into the Hamiltonian of 

protein systems has improved folding predictions compared to  in vacuo folding models  [48].  Also 

consideration of solvent explicitly in protein docking approaches has recently shown promising results 

[61].  In addition, we have observed that  water molecules in protein interfaces may contribute to the 

conservation  of  interactions  by  allowing  more  sequence  variability  in  the  interacting  partners.  In 

particular, we have observed water-mediated interactions in protein complex interfaces that are not 

predicted by “dry” correlated mutations approaches [165]. Interestingly, in one of the recent studies on 
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correlated mutations, protein contacts prediction has been shown to be more accurate for protein cores 

than for the whole protein  [94]. This could be partly explained by a higher conservation of residue 

contacts in protein cores, especially the hydrophobic ones [166] and probably also by the fact that the 

participation of solvent in protein contacts is being ignored.

The goal of this study has been to analyze the impact of including solvent into the concept of 

correlated mutations. For this purpose, we use a linear combination of predictions obtained by the use 

of two similarity matrices: a standard and widely used “dry” similarity matrix (DRY) [167] and a “wet” 

similarity matrix (WET) derived from data on all water-mediated protein-protein interfacial interactions 

in the PDB [168]. We compare the predictive results obtained with different combinations of these two 

similarity matrices in terms of number of correctly predicted contacts, accuracy,  improvement ratio 

over random prediction for intradomain contacts and distributions of distances between residues in 

interdomain pairs.   

Our results show that, despite a partial interdependence of both WET and DRY matrices, there 

is a clear trend pointing that a combination of these two matrices yields improved predictions over the 

single use of the DRY matrix for both intra- and interdomain contacts. The results obtained in this work 

underline  the  importance  of  water-mediated  interactions  in  the  description  of  protein-protein 

interactions, and that implementing combinations of “dry” and “wet” matrices could possibly improve 

the results obtained by correlated mutations-based approaches.

2.2.3 Methodology

Dataset  and multiple  sequence  alignments. We based the generation of  our  dataset  on previous 

similar studies [92,158,94]. Our dataset includes 50 domains and 10 domain pairs extracted from the 

PFAM database [169]. Consecutive increase of the size of our dataset for intradomain contacts did not 

significantly change our results.    

For most of the families, only seed sequences were used, except for the cases when the number 

of seed sequences was less than 20. Datasets with a smaller number of sequences are not supposed to 

be useful in correlated mutations analysis [94]. The reference sequence (corresponding to the structure 

used for predictions evaluation) was added to the set of sequences, if this did not already contain it, 

following the same procedure that Eyal and co-workers used for obtaining a substitution matrix for 

protein  structure  prediction  purposes  [94].  Multiple  sequence  alignments  were  obtained  with 

CLUSTALW [87]. Sequences with more than 95% of identity were not taken into account. 

For  the  interdomain  dataset  the  sequences  from  the  two  domain  families  were  aligned 
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independently. Except for the case of immunoglobulins, where light and heavy chains were used as two 

interacting  domains,  all  interdomain  entries  in  the  dataset  contained  pairs  of  two different  PFAM 

domains. Reference structures had resolution ≤ 2.0 Å except for five of them (1BU1 and 1A19 taken 

from the Eyal et al dataset and 2HB2, 1WMG, 1ZWW taken into account to enrich the dataset with 

bigger domains and highly represented families).

Source and analysis of atomic data on protein structures. An in-house relational database of protein 

structures  (XMLRPDB)  and  the  SCOWLP  database  [27,168] were  used  to  obtain  interaction 

information including solvent from X-ray structures in the PDB.

Contact definition. Residue contacts in a reference structure were defined by following the physico-

chemical criteria from SCOWLP [27]. We considered a 3.2 Å donor-acceptor distance for hydrogen 

bonds, 4 Å for salt bridges, and van der Waals radii for van der Waals interactions.

Similarity  matrices. We  used  the  McLachlan  similarity  matrix  (based  on  structural  and  genetic 

similarities of amino acids) as a 'dry' matrix (DRY) [167]. To build a 'wet' matrix (WET) we extracted 

information on protein interfacial residues and solvent from all available X-ray PDB structures using 

the SCOWLP database [27,168]. In this database, three classes of interacting residues are defined based 

on their interactions: dry (direct interaction), dual (direct and water-mediated interactions), and wet 

spots (residues interacting only through one water molecule). For each type of amino acid residue the 

probability of participation in water-mediated interactions (by establishing hydrogen bond by main 

chain or side chain) in protein interfaces was calculated as:  

pi=Ni,w/Ni,total  (Table 2.2.1), where i corresponds to any of the 20 amino acids; Ni,w is the number of the 

residues of this type forming wet spots or dual interactions; and Ni,total is the total number of residues of 

this type participating in interfaces in all PDB structures. Each element of the WET similarity matrix 

was then defined as:

WETij=1-|pi-pj|, where i and j correspond to any of the 20 amino acids.

The fact that for the creation of the wet matrix we take low resolution structures containing 

either none or few water molecules into account when considering the whole PDB does not bias the 

WET matrix because it affects each probability proportionally. 

Correlation coefficient calculations. For both DRY and WET similarity matrices the corresponding 

covariance matrices were calculated as previously described (Göbel et al 1994) using formula: 
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where  N is the number of sequences;  i and j are sequence position numbers;  Sikl is a value from the 

similarity matrix (DRY or WET); Si is the mean of Sikl; σi is the standard deviation of Sikl; and Wkl is a 

weight matrix defined as: 
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where L is the sequence length; Rik and Ril are the residue types at position i in the sequences k and l, 

respectively; and δ is Kronecker delta [170].  

For the interdomain dataset the weight matrix Wkl was calculated as an average for the domains 

and weighted by sequence length. The positions with more than 10% of gaps as well as completely 

conserved positions were not included in thSCOWLP criteriae calculations (zero was assigned to the 

corresponding correlation coefficient).  After calculating covariance matrices based on the DRY and 

WET similarity matrices, we built their linear combinations:  

rij=rij DRY + α∙rij WET                                                                                                           (2.2.3),

where α takes values from {0, 0.1, 0.2, 0.5, 1, 2, 4, 10, 20}, so that the weight ratio between the impact 

of  DRY  and  WET  represents  the  range  from  completely  dry  (α=0)  to  extremely  WET-biased 

covariance (α=20). 

Evaluation of intradomain predictions. For evaluation of intradomain contacts predictions we used 

previously described methodology [92]. Sequence separation of 0, 6, 12 and 24 was used. Prediction 

accuracy was defined as the ratio between the number of correctly predicted contacts (Ccorr) and total 

number  of  predicted  contacts  (Ctot).  Random  accuracy corresponds  to  the  probability  of  correct 

prediction of the contact by chance and is equal to the ratio between experimentally observed contacts 

(Cobs) and maximum number of possible contacts. The ratio between accuracy and random accuracy 

was introduced as improvement ratio over random prediction. Wet prediction ratio is equal to accuracy 

normalized by the accuracy obtained by using only the DRY matrix (α=0). For the reference structures 

Ccorr was taken as the number of contacts defined by SCOWLP criteria (see the Contact definition 

section in Methods).

Distance  calculation  and  harmonic  average  (Xd). In the  analysis  of  interdomain  contacts  the 

accuracy calculated in the same way as for intradomain contacts (typical value Cobs~102) is expected to 

be at least one order of magnitude lower (typical value Cobs~101). That is why comparison of accuracy, 

improvement ratio over random prediction and Ccorr  as functions of α is not appropriate in this case. It 

has been shown that the distribution of distances between the correlated pairs is shifted to lower values 
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compared to the distribution of distances for all residue pairs in two domains [158]. In our study we use 

a harmonic weighted difference statistic Xd described before [158]:
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                                                            (2.2.4),

where n is the number of distance bins; di is the upper limit for each bin normalized to the maximum 

value of the distributed distances; Pic is the percentage of the analyzed correlated pairs at the distances 

between di and di-1; and Pia is the same percentage for all pairs of residues. The width of bin was 4 Å. 

The higher the Xd value, the more successful a prediction is.

Different definitions for the distance between residues resulted in all cases in the same trends 

and quantitatively only slightly affected Xd values. For interdomain pairs we used distances between the 

centers of mass of residues in order not to be biased to either main-chain or side-chain contacts. 

For  Xd  calculations we took the best L/2 contacts for intradomain and (L1+L2)/2 contacts for 

interdomain contact predictions, where L1 and L2 are the reference sequences of the two interacting 

domains.

Although both the wet prediction ratio and Xd characterize the predictive power of the method, 

it is irrelevant to compare the results obtained for these parameters with each other. The same applies to 

α values corresponding to best predictions.

Statistical analysis. Statistical analysis of data was carried out with the R-package [144]. 

2.2.4 Results and discussion

Residue-solvent  relations  in  proteins. Independently  of  residue  types,  we calculated  the  average 

ratios between the number of residues found to be in contact with water and all residues in X-ray PDB 

structures. A negligible difference was found between these ratios for interfaces and the whole protein 

(0.33 and 0.35, respectively). The ratios by residue type (Figure 2.2.1 and Table 2.2.1) correlate with an 

adjusted  squared  correlation  coefficient  R2=0.90 (p-value~10-10)  and  there  is  also  a  clear  trend  of 

residue ratios distribution in interfaces, which relates to their hydrophilic properties. This agrees with 

observations obtained from other datasets not including the whole PDB [171]. The better correlation 

between the ratios and the hydrophilicity index for interfaces compared to the whole protein (R2=0.62 

p-value~10-5 and R2=0.44 p-value~10-3,  respectively) could be explained by the fact  that  the whole 

protein includes many residues in the core that are not accessible to water. This further supports the 

evidence that residue-solvent relations in protein interfaces are different from the ones in the proteins as 
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a whole [64,165]. 

Figure 2.2.1.Water contacts of residues in PDB. Fractions of residues found to be in contact with water in protein interfaces 
(white) and in whole proteins (grey) in the PDB.

Table 2.2.1.  Probabilities for residues to be in contact with water in protein interfaces
Residue Total  in 

interfaces
In contact with 
water

Probability Residue Total  in 
interfaces

In contact with 
water

Probability

Gly 131875 40188 0.30 Pro 104724 19398 0.19

Ala 133562 33008 0.25 His 71046 28339 0.40

Val 128573 21609 0.17 Met 56221 8871 0.16

Leu 188008 29506 0.16 Cys 20393 4913 0.24

Ile 111915 18277 0.16 Asp 134113 78111 0.58

Ser 119168 50556 0.42 Asn 102592 55597 0.54

Thr 123482 47469 0.38 Glu 147932 77461 0.52

Tyr 114596 45580 0.40 Gln 94758 46319 0.49

Phe 106920 15936 0.15 Arg 163652 86656 0.53

Trp 42958 10448 0.24 Lys 116322 47565 0.41

The probabilities are derived from SCOWLP data for protein interfaces.

Relations between the DRY and WET similarity matrices. Both DRY and WET similarity matrices 

are created in a way that each column or row is a vector, which coordinates correspond to the similarity 

between certain amino acid residue type and other residue types. It is possible to define whether these 

vectors are  interdependent  for  both matrices by application of linear  regression analysis.  The data 

obtained and averaged for all types of residues are presented in Table 2.2.2. 
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Table 2.2.2. Correlation between vectors per residue type in the DRY and WET matrices
Residue p-value Adjusted R2 Residue p-value Adjusted R2

Ala 0.90 -0.05 Leu 6∙10-3 0.31

Arg 4∙10-3 0.35 Lys 8∙10-3 0.29

Asn 4∙10-5 0.65 Met 6∙10-3 0.31

Asp 6∙10-4 0.46 Phe 0.02 0.24

Cys 0.14 0.07 Pro 0.62 -0.04

Gln 5∙10-4 0.47 Ser 2∙10-3 0.39

Glu 4∙10-4 0.49 Thr 0.07 0.12

Gly 0.53 -0.03 Trp 0.18 0.05

His 0.02 0.22 Tyr 0.71 -0.05

Ile 8∙10-4 0.44 Val 4∙10-3 0.33

High  degree  of  correlation  is  observed  for  some  vectors,  which  correspond  to  hydrophilic 

residues  (excluding  Thr  and  Tyr)  and  for  Ile,  Leu,  Met,  Val,  suggesting  that  these  vectors  in  the 

matrices are close to be collinear in 20-dimensional space. This can be explained by the properties of 

these residues. In particular, hydrophilic residues interact by electrostatic forces through their polar 

atoms, and water mediation in this case can only change the electrostatic forces by introducing water 

dipoles  oriented  in  a  way to  weaken  the  initial  electric  field.  For  hydrophilic  residues  there  is  a 

correlation between hydrophilicity indexes and co-linearity of the corresponding vectors in the DRY 

and  WET  matrices,  which  explains  also  relatively  low  co-linearity  for  Tyr  and  Thr  residues  in 

comparison to other hydrophilic residues (Figure 2.2.2). 

Figure 2.2.2. Hydrophilicity index  vs correlation for  the  DRY and WET matrices  per  residue type.  The grey shading 
highlights two areas resulting from the different trends.
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Direct  and water-mediated interactions formed by main chains of  Ile,  Leu,  Met  and Val  in 

interfaces have been previously shown to be especially important, whereas other residues that present 

no correlation have been shown to predominantly participate in side-chain interactions in interfaces 

[64].  We  conclude  that  the  DRY  and  WET  similarity  matrices  contain  partially  interdependent 

information  for  some of  amino  acid  residues,  and  the  found similarities  can  be  explained  by the 

physico-chemical properties of these residues.    

Intradomain  contacts  prediction.  Our  dataset  for  intradomain  contacts  prediction  consisted  of 

domains of 50 PFAM protein families (Table 2.2.3). The lengths of the reference sequences varied from 

30 to 195 residues. Initially we analyzed L, L/2, L/3, L/5 and L/10 best correlated contacts for each 

family (L is the length of the reference sequence). The number of sequences considered for the multiple 

sequence  alignments  was  in  the  range  of  20  to  295 sequences.  Previous  studies  have  shown that 

accuracy (ratio between the number of correctly predicted contacts and the number of total predicted 

contacts) and improvement ratio over random prediction (ratio between accuracy and the probability of 

predicting  a  contact  by  chance)  decrease  with  the  increase  of  the  number  of  analyzed  contacts 

[92,93,156].  Table 2.2.4 shows accuracy and improvement ratio over random prediction for  α =0.5 

(weight  for  WET matrix  prediction  when  for  DRY is  1),  which  corresponds  to  the  average  best 

accuracy obtained for different numbers of analyzed predicted contacts. The results obtained for other 

α values followed the same trend (data not shown). Independent of the number of analyzed contacts the 

best  predictions  in  average  did  not  correspond  to  α= 0.  The  obtained  values  for  accuracy  and 

improvement ratio over random prediction are within the ranges obtained by other correlated mutations 

approaches  [97,94].  However,  direct  quantitative  comparison  of  these  methods  is  not  appropriate 

because of their substantial differences in their residue contacts definitions. In particular, some of these 

approaches utilize for contact definition (see contact definition in Methods section) a chosen distance 

cut-off of 6-8 Å between atoms  [92,97,163], whereas  we use physico-chemical properties of protein 

residues, which results in a ≤ 4 Å cut-off [27]. 
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Table 2.2.3. Dataset used for intradomain contact predictions.

PFAM ID PDB IDa Res, Å Nb % idenc Ld Ran acce Accf Rg Optimal α h Xd dry
i Opt Xd α j Xd wet|opt α

k

PF00014 6pti 1.70 151 33 52 0.096 0.346 3.61 1 9.37 1 11.16

PF03705 1af7 2.00 85 20 57 0.081 0.241 2.65 0.5, 4, 10 6.14 2 7.63

PF00062 5lyz 2.00 22 46 127 0.043 0.078 1.91 0, 0.5 2.68 0 2.68

PF00018 1bu1 2.60 61 28 56 0.088 0.357 4.06 0.5 12.99 0 12.99

PF03900 1pda 1.76 21 25 74 0.062 0.237 3.82 2 9.18 0.2 9.99

PF00034 1ctj 1.10 35 17 89 0.061 0.250 4.10 1 9.13 0.1 10.34

PF01568 1dmr 1.82 88 18 113 0.044 0.050 1.14 0.2, 0.5 10.62 2 12.53

PF00127 8paz 1.60 31 29 89 0.055 0.102 1.85 2 0.50 1 4.82

PF01814 2mhr 1.30 295 12 49 0.098 0.400 4.08 0.5, 2 8.39 2 13.14

PF00017 1bmb 1.80 59 28 93 0.058 0.212 3.66 0-0.5 5.98 1 8.37

PF01320 1ayi 2.00 45 47 86 0.056 0.233 4.15 0.2 16.04 0 16.04

PF08666 1ame 1.65 171 14 66 0.074 0.273 3.69 0 10.25 0 10.25

PF01337 1a19 2.76 30 25 89 0.065 0.178 2.87 0, 0.1 4.55 0.1 4.72

PF00595 2hb2 2.30 56 19 85 0.062 0.233 3.75 0.5-2 10.16 1 11.67

PF00531 1wmg 2.10 92 14 82 0.066 0.250 3.79 0-0.5 7.67 0.2 7.95

PF00397 1eg3 2.00 73 32 30 0.143 0.467 3.26 2-20 6.59 2 8.81

PF01335 2f1s 1.40 40 21 76 0.072 0.237 3.88 0.1, 0.2 5.66 0.2 5.96

PF00619 1cy5 1.30 61 16 85 0.066 0.209 3.43 0.2-2 5.09 2 9.42

PF02213 1syx 2.35 112 28 58 0.083 0.241 2.91 0.5-2 7.37 0.5 7.77

PF05743 1uzx 1.85 28 27 118 0.035 0.068 1.98 0.1 7.22 0 7.22

PF00536 1b4f 1.95 69 28 74 0.076 0.395 5.19 0.2-2 15.53 2 16.36

PF03114 1zww 2.30 29 19 195 0.021 0.074 3.53 0.2 2.41 20 3.99

PF00169 1nty 1.70 139 10 112 0.050 0.071 1.43 0, 0.2, 0.5 5.46 2 7.53

PF08416 1wvh 1.50 49 28 132 0.040 0.106 2.65 2, 4 0.53 0.1 1.24

PF01981 1wn2 1.20 69 43 116 0.049 0.172 3.52 0.1-0.5 7.63 20 12.38

PF03992 1xbw 1.90 116 15 65 0.068 0.125 1.84 0.5 3.34 0 3.34

PF00907 1h6f 1.70 23 49 183 0.032 0.033 1.03 All the same 3.30 2 6.03

PF02237 1wpy 1.60 47 21 48 0.094 0.167 1.77 0.5-2 -2.83 0.5 0.22

PF08031 2axr 1.98 64 34 34 0.135 0.235 1.74 0.1, 0.2 -0.05 2 3.37

PF02861 1k6k 1.80 165 21 51 0.098 0.440 4.49 1, 4, 10, 20 9.55 20 13.21

PF02834 1vgj 1.94 106 14 85 0.048 0.119 2.48 4-20 -0.51 4, 10 3.21

PF01423 1kq1 1.55 128 23 60 0.079 0.167 2.11 0.2, 0.5 5.78 0.1, 0.2 7.14

PF01472 1as0 1.80 106 24 78 0.058 0.128 2.21 1-20 3.57 2, 4 11.45

PF01909 1no5 1.80 119 14 91 0.059 0.133 2.26 0.1-1 4.97 0.2 6.01

PF09261 1r34 1.95 79 31 78 0.069 0.205 2.97 0.1, 0.2 4.87 0.1 6.64

PF01315 1vlb 1.28 28 19 117 0.041 0.207 5.05 1, 2 7.70 2 10.28

PF04545 1ku3 1.80 128 31 54 0.096 0.370 3.86 0, 0.1, 1, 10, 20 12.37 10, 20 12.76

PF00984 1mv8 1.55 24 17 98 0.048 0.184 3.83 0.5-20 8.27 0.2 9.78

PF01658 1u1i 1.90 20 31 105 0.049 0.096 1.96 0.1-20 1.93 0.5 6.28

PF00745 1gpj 1.95 34 23 99 0.048 0.100 2.08 0.1-0.5 3.17 0.1 4.17

PF03099 1wnl 1.60 65 14 117 0.043 0.121 2.81 0 13.7 0.2 14.20

PF01985 1jo0 1.37 50 23 84 0.064 0.167 2.60 0-0.2 6.96 0 6.96

PF08436 1q0q 1.90 77 57 94 0.049 0.213 4.34 0-0.1 6.91 10 10.15

PF02881 1jpn 1.90 52 19 85 0.063 0.119 1.89 All the same 3.94 2 5.78

PF01966 1ynb 1.76 158 12 91 0.057 0.333 5.85 0-0.2 -0.79 2 2.20

PF00191 1yii 1.42 178 28 66 0.076 0.273 3.59 0-0.2 -0.35 10 1.05

PF00317 1xje 1.90 79 23 90 0.056 0.178 3.17 0.5-2 10.01 0.5 13.16

PF00046 1puf 1.90 184 37 60 0.082 0.333 4.07 1, 2 6.07 2 8.60

PF00077 5fiv 1.90 48 27 108 0.049 0.093 1.89 2 -1.37 1 3.63

PF00042 1ecn 1.40 73 18 101 0.046 0.163 3.56 1, 2 6.89 2 7.19
aPDB ID; bNumber of sequences; cAverage sequences pairwise similarity (%); dReference sequence length; eRandom 
accuracy; fAccuracy for optimal α;  gImprovement ratio over random prediction for optimal α; hValues for α=0; 
iα  corresponding to the highest accuracy; jα  corresponding to the highest Xd;  kXd highest value. 
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Table 2.2.4. Prediction parameters dependence on the number of analyzed contacts
Number of analyzed  predicted contacts Accuracy Improvement ratio over random prediction

L 0.15±0.09 2.24±0.95

L/2 0.18±0.10 2.67±1.08

L/3 0.19±0.12 2.81±1.52

L/5 0.21±0.16 3.16±1.79

L/10 0.23±0.20 3.55±2.81

L is the length of the reference sequence. The value α = 0.5 has been used.

We  compared  the  dependences  on  α of:  i)  accuracy,  ii)  improvement  ratio  over  random 

prediction, iii) number of correctly predicted contacts (Ccorr); and,  since our dataset is heterogeneous 

(see high standard deviations in Table 2.2.4),  we  normalized these parameters by the corresponding 

values at  α=0 (wet prediction ratio). For the purpose of wet prediction ratio comparison at different 

values of α we found L/2 to be the most appropriate number of contacts. This choice is explained by 

the fact that the changes in prediction results influenced by α variation become hardly detectable if a 

smaller number of contacts (Ctotal) is considered for analysis since these changes are limited by low 

values of Ctotal and, consequently, of correctly predicted contacts (Ccorr). On the other hand, the increase 

of Ctotal  generally leads to decrease of prediction accuracy and to negligible differences in prediction 

results  corresponding  to  different  α values.  Only  in  2  out  of  the  50  families  of  our  dataset  best 

predictions correspond to α= 0 values (Table 2.2.3). 

Figure 2.2.3. Dependence on α of relative prediction characteristics for the intradomain dataset. A) Wet prediction ratio. B) 
Relative harmonic weighted difference statistic (Xd).

Maximum  values  for  wet  prediction  ratio  and  relative  Xd (harmonic  weighted  difference 

statistic) averaged for the whole dataset are obtained when α=0.5 and α=1 (1.19 and 1.29, respectively; 

Figure 2.2.3 A, B). This means that, for these values of α, introduction of the WET similarity matrix 

improves prediction by 20-30% on average. Noticeably, the high values of α∈{10, 20} still make the 
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predictions on average better  than by the single use of the DRY matrix.  For optimal value  α=0.5, 

absolute values of accuracy and improvement ratio over random prediction averaged for all 50 families 

increase by 1.4% and 0.19, respectively, in comparison to the single use of the DRY similarity matrix. 

For each family in the dataset there is an essentially higher increase of accuracy and improvement ratio 

over random prediction than on average. In some families, wet prediction ratio is improved more than 

twice (reference structures 1AF7, 1PDA, 8PAZ, 1DMR, 1AS0) and even 4.5 times (reference structure 

1WVH) when α > 0. Our results show a significant improvement (20-30% of increase in wet prediction 

ratio) in predictions by the introduction of the WET similarity matrix in comparison to the single use of 

the DRY matrix within a correlated mutations approach. We observe that for sequence separations |i-j|

>6, 12, 24 our results follow the same trend. The obtained results for  α=0.5 for different number of 

contacts  (L,  L/2,  L/3,  L/5,  L/10)  are  shown in  Table  2.2.5.  We observe  that  the  best  predictions 

correspond to  α=0.2 and 0.5 for most  of sequence separation values and number of contacts.  Wet 

prediction  ratios  for  the  whole  range  of  analyzed  α are  presented  in  figure  2.2.4).  In  all  cases, 

independently of sequence separation and number of contacts, the best predictions correspond to α > 0. 

Figure 2.2.4. Dependence on α of wet prediction ratio for the intradomain dataset with sequence separation: A) 6. B) 12. C) 
24.
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Table 2.2.5. Accuracy, improvement ratio over random prediction and wet prediction ratio for different 
sequence separations

Sequence separation=6 Sequence separation=12 Sequence separation=24

Contacts number Accuracy R Wet ratio Accuracy R Wet ratio Accuracy R Wet ratio

L 0.061 3.07 1.01 0.051 3.02 1.02 0.042 2.97 1.06

L/2 0.079 4.18 1.11 0.070 4.34 1.14 0.050 3.76 1.10

L/3 0.087 4.56 1.14 0.071 4.49 1.01 0.060 4.61 1.14

L/5 0.099 5.49 1.05 0.085 5.71 1.08 0.068 5.18 1.04

L/10 0.122 6.68 1.14 0.103 6.89 1.13 0.078 6.31 1.00

L is the length of the reference sequence. R is improvement over random prediction. The value α  = 0.5 has been used.

Table 2.2.6. Dataset used for interdomain contact predictions
Interacting partners PFAM ID 

Family 1 
PFAM ID 
Family 2 

PDB 
IDa

Nb idenc L1
d L2

e Xd dry
f OptimalXd α g Xd wet|opt α 

h

Tyrosine kinase SH3 
and SH2 domains

PF00018 PF00017 2src 19 35 57 83 1.86 0.2 3.25

Alcohol dehydrogenase 
N- and C-domains

PF08240 PF00107 1adg 89 23 128 143 3.52 0.2 3.64

Mg superoxide 
dismutase
N- and C-domains

PF00081 PF02777 1ap5 23 44 82 107 4.76 0.2 5.04

Immunoglobulin heavy 
and light chains

PF00047 PF00047 12e8 116 36 107 114 13.56 0 13.56

Ortnithine transferase 
N- and C-domains

PF02729 PF00185 1duv 20 30 142 178 4.47 0.1 4.94

NFKB factor RHD and 
TIG domains

PF00554 PF01833 1svc 21 40 199 100 4.56 0.5 4.62

STAT alpha and binding 
domains

PF01017 PF02864 1bf5 32 38 180 251 4.30 0.2 4.42

Mur-ligase catalytic and 
C-terminal domains

PF01225 PF08245 1e8c 26 25 82 208 1.84 0.1 2.12

Dynamin central and N-
domains

PF00350 PF01031 2aka 32 40 174 89 0.04 0.2 0.14

Trk C- and N-domains PF02254 PF02080 1lnq 42 20 114 72 0.53 1 0.78
aPDB ID of the reference structure;  bNumber of sequences in the multiple sequence alignment;  cAverage percentage of 
sequences pairwise similarity;   d,eLengths of the reference sequences; fValues for  α=0;  gα   value corresponding to the 
highest Xd;  hXd highest value.

Interdomain  contacts  prediction.  The  interdomain  dataset  used  for  our  studies  consisted  of  10 

different  pairs  of  interacting  domains  (Table  2.2.6).  From the  analysis  of  the  (L1+L2)/2  predicted 

interdomain residue contacts (L1 and L2 are the lengths of the sequences in each of the two domains) we 
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observed that in 9 out of 10 cases best predictions in terms of Xd were obtained when both the WET and 

DRY matrices were used. Relative Xd averaged for the whole dataset reaches a maximum value of 1.32 

at α=0.2 and then decreases with the further increase of α (Figure 2.2.5). In one of the examples (SH2-

SH3 domains interaction) the differences of distance distributions for different α values are dramatic 

(Figure 2.2.6). In this case the Xd value for predicted contacts at α=0 and α=0.2 changes almost twice 

(Table 2.2.6). These results point out that the use of the WET similarity matrix might improve the 

statistic Xd in comparison to the single use of the DRY similarity matrix.   

Figure 2.2.5. Predictions for interdomain dataset. Relative harmonic weighted difference statistic (Xd) dependence on α.

Figure 2.2.6.  Proportion of residue pairs at distance bins for the interaction SH2-SH3.All residue pairs are shown in black, 
correlated pairs with α=0 in white, and correlated pairs with α=0.2 in grey.  Reference structure used is PDB ID 2src.

Dependence  of  relative  average  Xd  on  α for  interdomain  contacts  prediction  (Figure  2.2.5) 

resembles the one obtained for intradomain prediction  (Figure 2.2.3) but they differ in the optimal 

α and in the Xd corresponding to the higher α values.  While in predictions of intradomain contacts all 

values of  α > 0 lead to the improvement of contact predictions, in the case of interdomain contacts 
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prediction the use of the WET similarity matrix yields higher Xd than the DRY alone when α∈{0.1,0.2}. 

This might be due to the differences in distance distributions between the analyzed pairs of residues, 

which are closer to each other in the case of intradomain contacts. Nevertheless, introduction of the 

WET similarity matrix improves contact prediction compared to the single use of the DRY similarity 

matrix  for  both intra-  and interdomain contacts.  Although there  are  still  significant  limitations  for 

practical use of the correlated mutations approach for interdomain contacts prediction, also mentioned 

by other  authors  [93,158],  we  believe  that  consideration  of  water  by  the  use  of  “wet”  similarity 

matrices could improve the results obtained by correlated mutations approaches.

2.2.5 Conclusions

This  study is  the  first  investigating  the  impact  of  inclusion  of  solvent  into  the  concept  of 

correlated mutations. With this work we further demonstrate our previous observations that relations 

between solvent  and protein  residues  in  protein  interfaces  differ  from those  in  the  whole  protein. 

Recent  work on bond preferences  in  inter-  versus  intraprotein  interactions  highlights  the  different 

architecture of protein interfaces and their unique bond preferences [172].

Two  similarity  matrices  have  been  used  in  this  work:  the  McLachlan  matrix  as  the  DRY 

similarity matrix and a WET similarity matrix derived by statistical analysis of the frequency of water 

contacts  by residue  type  in  protein  interfaces  in  the  whole  PDB. Analysis  of  the  DRY and WET 

similarity  matrices  shows  that  they  are  interdependent  for  some  residue  types,  which  could  be 

explained by physico-chemical properties of individual amino acid residues. We analyze two datasets 

containing 50 domains and 10 domain pairs belonging to PFAM families.  We sum the predictions 

obtained by the use of both matrices with different weight coefficients and find optimal combinations 

for best predictions. Our datasets are heterogeneous to propose one best weight value to be able to 

apply the optimized method to all domain families; however, the prediction of contacts obtained by the 

introduction of the WET similarity matrix is improved for most of the families in the datasets (for both 

intra- and interdomain) as well as on average (by 20-30%). Our analysis of solvent impact on contact 

prediction in proteins suggests  that  further development of the correlated mutations concept would 

benefit from taking into account solvent as an active participant in protein-protein interactions, which is 

usually overlooked in these studies.
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CHAPTER 3

3.1 Characterization of fluorinated amino acids by QM and MD approaches

by Sergey Samsonov, Mario Salwiczek, Gerd Anders, Beate Koksch, and M. Teresa Pisabarro 

Submitted to Proteins: Structure, Function, and Bioinformatics in 2009

3.1.1 Abstract

Non-canonical amino acids with newly designed side-chain functionalities represent powerful  

tools to improve structural, biological, and pharmacological properties of peptides and proteins. In this 

context fluorinated amino acids have increasingly gained importance. Despite the current wide use of 

fluorination in protein engineering, the basic properties of fluorine in protein environments are still not 

completely understood. Our aim has been to characterize the physico-chemical properties of fluorinated

amino acids by using quantum mechanics (QM) and molecular dynamics (MD) approaches. We have 

analyzed geometry, charges and hydrogen bonding abilities of several ethane fluorinated derivatives at 

different  QM theory  levels,  and  have  used  them as  simplified  models  for  fluorinated  amino  acid 

sidechains. We have parametrized four fluorinated L-amino acids for the AMBER MD package: 4-

monofluoroethylglycine  (MfeGly),  4,4-difluoroethylglycine  (DfeGly),  4,4,4-trifluoroethylglycine 

(TfeGly) and 4,4-difluoropropylglycine (DfpGly). We have characterized them in terms of molecular 

volumes,  conformational  preferences  and  hydration  properties.  The  obtained  results  illustrate  that 

fluorine and hydrogen atoms of fluoromethyl groups could be potential acceptors and/or donors of 

weak hydrogen bonds in protein environments. Hydration of the studied fluorinated amino acids was 

found to be more favorable than for their non-fluorinated analogues, and hydrophobicity was observed 

to increase with the number of fluorine atoms, which is in accordance with the experimental retention 

times we obtain for these amino acids. This study broadens our understanding on the properties of 

fluorine  within  protein  environments,  which  is  important  in  order  to  exploit  the  full  potential  of 

fluorine's unique properties for applications in the field of protein engineering.

3.1.2 Introduction

Because of its unique physico-chemical properties fluorinated compounds have gained a lot of 

interest in organic chemistry and biochemistry fields  [173]. Impact of fluorination on bioactivity of 

substrates, inhibitors and catalysts has been monitored in a number of biochemical studies [174-177]. 

In protein chemistry,  several  studies on folding of polypeptides containing fluorinated amino acids 

[178-180], as well as on protein subunits association  [181], and protein design  [182] have suggested 
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that the use of fluorinated amino acids offers remarkable opportunities for improvement of structural, 

thermodynamic and kinetic properties of the engineered proteins  [183,184].  This utility of fluorine 

could be attributed to its basic properties. Fluorine is highly electronegative, which makes its covalent 

bonds strongly polarized so that their contribution to the electric dipole interaction with the surrounding 

environment is very high. This also leads to polarization of the chemical bonds adjacent to fluorine 

covalent bonds. At the same time, this high electronegativity of fluorine results in its very poor ability 

of being electronic pair donor [185]. Furthermore, fluorine is the second smallest atom after hydrogen 

and almost isosteric to oxygen (Bondi radii of 1.47 Å, 1.20 Å and 1.57 Å, respectively)  [186]. The 

possibility of substitution of these atoms by fluorine in different chemical groups is very powerful for 

drug design [187] and has a high potential in protein engineering. It is widely assumed that fluorine is a 

weak hydrogen bond acceptor [188,174]. Nevertheless, many studies have demonstrated the structural 

importance of the hydrogen bonds formed by fluorine atoms for establishing intra- and intermolecular 

interactions  [189-191].  Though some detailed  studies  on hydrogen bonding abilities  of  fluorinated 

small molecules as methane derivatives [192,193] and 2-fluoroethanol [194] have been carried out, the 

basic properties and characteristics of fluorine-mediated hydrogen bonds in protein environments are 

still not clear. Fluorinated amino acids have not been yet parametrized for forcefields implemented in 

the currently most widely used MD packages like AMBER  [8], CHARMM  [195] and GROMACS 

[196].  In  our  previous  studies  fluorinated  derivatives  of  ethylglycine  (difluoroethylglycine, 

trifluoroethylglycine and difluoropropylglycine)  have  been  incorporated  into a  α-helical  coiled-coil 

system and their impact on  the stability of coiled-coils interaction has been analyzed by using CD 

spectroscopy  [178].  We concluded that  there  are  two major  effects  of  fluorine  substitution  on  the 

behavior  of  the system:  increased polarity and a  change in  steric  demand of fluoromethyl  groups. 

However,  these experiments  were not  able  to characterize the physico-chemical  properties of non-

standard amino acids at basic level of theory and to look in details at each of these two observed effects 

independently.

We have used a QM approach at several levels of theory to: i) characterize in terms of charge, 

geometry and size several fluorinated ethane derivatives as simplified models for fluorinated amino 

acid side-chains, ii) analyze their hydrogen bonding properties and compare them with canonical amino

acids, iii) derive RESP charges for fluorinated amino acids used in libraries for the AMBER force field. 

We have also used a MD approach to carry out conformational analysis for fluorinated amino acids. We 

have compared the hydration properties of the fluorinated amino acids with non-fluorinated analogues 
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using free energy perturbation calculations, RDF-function and retention time experiments.

Our data show that fluoromethyl groups could play role of hydrogen bond acceptors and/or 

donors, though they are in general weaker than in canonical amino acids. The created fluorinated amino 

acids libraries, compatible with the AMBER force field, were used to obtain Ramachandran plots and 

rotamer libraries. The data on hydration of fluorinated amino acids, obtained both theoretically and 

experimentally,  show that their  hydrophobicity increases with the number of fluorine atoms and is 

lower than of their non-fluorinated analogues. The results obtained in our study contribute to widening 

our understanding on the properties of fluorine within protein environments, which is essential to be 

able to exploit the full potential of fluorine's unique properties for applications in the field of protein 

engineering.

3.1.3 Methodology

Quantum  chemical  calculations. We  used  ethane  derivatives  CH3CH3,  CH3CH2F,  CH3CHF2, 

CH3CF2CH3, CH3CF3  for modeling fluorinated amino acid side-chains. The molecules were optimized 

at four levels of theory: 1) HF; 2) MP2 perturbation [102], proved to agree well with experimental data 

for  fluoroethanol  conformers  [194];  3)  density  functional  theory BLYP  [197,198] and 4)  DFT/HF 

hybrid functional B3LYP [199], which has been shown to be one of the best choices for amino acid 

systems, especially rich in hydrogen bonds [200]. All methods were provided in GAMESS (US) [201]. 

Geometry optimizations employed the 6-311G**++ basis set. Inclusion of diffuse components is an 

obligatory requirement for hydrogen bond calculations [202]. Hydrogen bonding abilities of CH3CH3, 

CH3CH2F, CH3CHF2, CH3CF2CH3, CH3CF3  were analyzed at the same theory levels. For comparative 

analysis  of  hydrogen  bonds  we  used  ethane  derivatives  and  other  hydrogen  bond  donors  and/or 

acceptors  typical  for  protein  environments:  water,  amideD  (CH3CONHCH3),  imidazole,  hydroxyl 

(CH3CH2OH), indole, methanethiol (CH3SH), amideA (CH3CONH2), ketone (CH3COCH3) and furan. 

Geometry optimizations were carried out without any atomic constraints with an initial configuration 

obtained by minimization with the AMBER ff99 force field implemented in the MOE program [203]. 

We analyzed hydrogen bond donor-acceptor pairs that were interacting only via hydrogen bonds in 

order to minimize the impact of other types of interactions in our analysis. The following properties 

characterizing hydrogen bonds were measured: H-bond energy (difference between the energy of the 

hydrogen-bonded complex and the sum of the energies of the isolated binding partners) (E), BSSE 

corrected energy using the counterpoise correction approach (EBSSE)  [104], hydrogen bond length (d), 
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hydrogen bond angle (A-H-D), shift of the D-H bond (r), and the charge transfer on acceptor and 

hydrogen atom (∆q(A), ∆q(H)).

Creation of non-canonical amino acids libraries for AMBER.  The non-canonical L-amino acids 

ethylglycine  (Abu),  4-monofluoroethylglycine  (MfeGly),  4,4-difluoroethylglycine  (DfeGly),  4,4,4-

trifluoroethylglycine  (TfeGly)  and  4,4-difluoropropylglycine  (DfpGly)  and  propylglycine  were 

parameterized to be compatible with the ff03 AMBER force field  [204] using a standard procedure 

implemented in the R.E.D. III program, which we used for RESP charge calculations  [128]. Charges 

were  derived  for  each  amino acid  in  two conformations  (helical  and  extended)  with  the  ab initio 

Hartree-Fock method HF/6-31G* using GAMESS-US. We used the ff03 AMBER force field [204] with 

standard atomic parameters for fluorine derived from liquid simulations [205].

Volume and solvent  accessible  surface  area calculations. For  these  calculations  we used ethane 

derivatives optimized in B3LYP (6-311G**++) and amino acids from the created AMBER libraries 

(see above). Their volumes and solvent accessible surface areas (ASA) were calculated in Discovery 

Studio 1.7  [206] using VDW surface calculation. In the case of ethane derivatives, the volumes for 

fluoromethyl groups were calculated as the difference between the volumes for the entire molecules 

and a half of the ethane molecular volume. Volumes and ASA of the fluorinated amino acids side 

chains were calculated for the whole amino acids with subtraction of the corresponding values for Gly.

Conformational analysis. For the conformational analysis of the fluorinated amino acids we used the 

ff03 force field implemented in AMBER 8.0 [8]. Dipeptides Ace-FXR-Nme, where FXR corresponds 

to each of the studied amino acids (Abu, MfeGly, DfeGly, TfeGly, DfpGly, Ala, Val, Leu, Met, Phe) 

were minimized applying the pairwise generalized Born model of implicit solvent [207] in two steps: 

5∙104 cycles of steepest descent and 5∙104 cycles of conjugate gradient with harmonic force restraints of 

104 kcal/mol∙Å on the atoms defining backbone dihedral  angles (N, C, Cα)  and a 10-4 kcal/mol∙Å2 

convergence criterion. Backbone dihedral angles (ϕ, ψ) were varied from  180° to 180° with a 10° 

step. The full energies calculated in the minimization were used for obtaining Ramachandran plots 

using Gnuplot [208]. For comparative quantitative characterization of secondary structure propensities 

we defined a  propensity  index,  which  is  a  covariance between the  probabilities  obtained  from the 

secondary  structure  data  from  the  whole  PDB  and  the  probabilities  derived  from  our  energy 

calculations. Using an in-house relational database of the PDB we calculated the density of dihedral 

angles distribution ω i(ϕ, ψ) for each type of secondary structure elements i={α-helix, β-sheet and left 

α-helix}.
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The probability of an amino acid to adopt a certain secondary structure conformation (i) was derived 

from energetic calculations as follows: 

P(i)(ϕ,ψ)=exp[(E(ϕ,ψ)-Emin(i))/RT]                                              (3.1.1),

where Emin(i) is the energetic minimum observed in our calculations for this amino acid in this particular 

conformation (i). The propensity index for secondary structure type i is the defined as: 

PIi=Σϕ, ψ∈[-180;180] wi(ϕ, ψ)·pi(ϕ, ψ)                                               (3.1.2), 

where:

                                         (3.1.3)

Therefore, 

PIi =Σϕ, ψ∈[-180;180] wi(ϕ,ψ)·exp[(E(ϕ, ψ)-Emin i)/RT]                                    (3.1.4)

A similar analysis was carried out for side-chains of the fluorinated amino acids. In this case 

three dihedral angles (ϕ, ψ, χ1) for MfeGly, DfeGly, TfeGly and four dihedral angles (ϕ, ψ, χ1,χ2) 

for DfpGly were restrained as described above. χ1  was defined by the N, Cα, Cβ, Cγ atoms and  χ2  by 

Cα, Cβ, Cγ, Cδ. The used scanning step for  χ1  and  χ2  was 5°, while  ϕ, ψ were fixed at the energy 

minima  values  for  α-helix,  β-sheet  and  left  α-helix  areas  in  the  Ramachandran  plot.  Similar 

approaches have been previously reported for both canonical and non-canonical amino acids [209,210].

Hydration energy calculations. We used free energy perturbation for the calculation of the hydration 

energy similarly to the work of Pendley et al. [211]. For the MD run in solvent the dipeptide Ace-FXR-

Nme was placed in an octahedral TIP3 water box, the fluorine atoms were perturbed to hydrogen atoms 

using  12  values  of  thermodynamic  integration  parameter  λ (0.00922,  0.04794,  0.11505,  0.20634, 

0.31608,  0.43738,  0.56262,  0.68392,  0.79366,  0.88495,  0.95206,  and  0.99078)  with  the  following 

Gaussian integration. MD simulations were preceded by two energy-minimization steps: 500 cycles of 

steepest descent and 1000 cycles of conjugate gradient with harmonic force restraints on all dipeptide 

atoms, followed by 1000 cycles of steepest  descent and 1500 cycles of conjugate gradient without 

constraints. This was followed by heating of the system from 0 to 300K for 10 ps. MD calculations 

were done at 300K and 106 Pa in isothermal isobaric ensemble (NPT). Periodic boundary conditions in 

NPT ensemble with Langevin temperature coupling with collision frequency parameter  γ =1 ps-1 and 
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Berendsen pressure coupling with a time constant of 1.0 ps were applied. The SHAKE algorithm was 

used to constrain all bonds containing hydrogen atoms. A 2 fs time integration step was used. An 8 Å 

cut-off was applied to treat non-bonded interactions, and the Particle Mesh Ewald (PME) method was 

introduced for long-range electrostatic interactions treatment. MD trajectories were recorded each 2 ps. 

We analyzed the last nanosecond of a 2 ns MD trajectory. For in vacuo calculations, a 5 ns MD run was 

preceded by 1000 cycles of minimization. The same values for λ were used as in the explicit solvent 

simulations. The last three nanoseconds of the MD run were considered for analysis. The equilibration 

of dV/dλ for solvated and in vacuo simulations is shown in Supplementary File 1. 

The difference between the hydration energies (Ehyd) of fluorinated amino acids (f) and their 

non-fluorinated (nf) analogues is obtained from the thermodynamical cycle and is calculated using 

thermodynamic integration along the perturbation path: 

∆Ehyd,f  ∆Ehyd,nf = ∆Epert in vacuo - ∆Epert in water                                                                              (3.1.5)

The analysis of hydration in terms of the radial distribution function (RDF) was done with the PTRAJ 

module of AMBER 8.0.  

Amino acids retention time calculations. An HPLC-assay was developed that aimed at investigating 

the impact of fluorination on the correlation of amino acid side chain volume and hydrophobicity. We 

used the Fmoc-protected analogues of Gly, Abu, Val, Leu, Ile as well as of MfeGly, DfeGly, TfeGly, 

and  DfpGly  and  determined  their  retention  times  on  a  C18  column  (Capcell  C18,  5  µm). 

Approximately 10 µmol of the respective Fmoc-amino acid were dissolved in 5 mL of a mixture of 40 

% acetonitrile (99.9%, HPLC gradient grade, Acros Organics) in deionized water containing 0.1% TFA 

(Uvasol®, Merck) and filtered over 0.2 µm. The retention times on the C18 column were determined. A 

linear gradient from 40% to 70% in 30 minutes was applied at room temperature and all experiments 

were performed as triplicates. 

Statistical analysis. Statistical analysis of the data was carried out with the R-package [144]. 

3.1.4 Results and discussion

Geometry optimization of the fluorinated ethane derivatives.  We optimized the geometry of ethane 

and its fluorinated derivatives CH3CH2F, CH3CHF2, CH3CF3, CH3CF2CH3 at 4 levels of theory. The 

obtained values for charges and bond lengths are shown in Figure 3.1.1. Because of the fluorine atom 

being highly electronegative, fluorine substitution polarizes the C-F bond and the electronic density is 

partially drawn from carbon to fluorine. As the number of fluorine atoms increases, the charge of the 
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carbon  atom  (C2)  bonded  to  fluorines  increases  by  ~1  charge  unit  and  becomes  positive.  As  a 

consequence, the charge of C1 (the carbon atom not attached to fluorine) decreases by ~0.1 units. That 

is followed by polarization of the hydrogens bonded both to C1 (HC1) and C2 (HC2). The charge of HC2 

increases about 0.4 units and becomes comparable to the charge of hydrogens in hydrogen bond donor 

groups in amino acids (amide,  imidazole  and hydroxyl,  indole groups) and water  (0.23-0.34 units, 

Table 3.1.1). This suggests that fluorinated groups may act as hydrogen bond donors. On the contrary, 

additional  fluorination  leads  to  decrease  of  fluorine  atoms absolute  charge  values.  The  charges  of 

fluorine atoms are comparable with the ones of standard hydrogen bond acceptor atoms of amino acid 

groups (amide, imidazole, ketone, Table 3.1.2) as well as of water and furan oxygen atoms. 

Figure 3.1.1.  Charges and bond lengths in ethane and ethane derivatives. All methods were applied with the same basis set 
(6-311G**++). A) Charge of C1, a not-fluorinated carbon. B) Charge of C2, a fluorinated carbon. C) Charge of H(C1), 

hydrogen bound to C1. D) When 1 or 2 fluorine atoms are bonded to C2, the charge distribution on different H(C1) is not  
symmetric around the C1-C2 bond. This figure represents the highest charges on the H(C1) atoms. E) Charge of H(C2) , 

hydrogen bound to C2. F) F charge. G) C1-C2 bond length. H) C1-H(C1) bond length. I) C2-H(C2) bond length. J) C2-F 
bond length.

89



The bond lengths change upon fluorination in the range of 10-2 Å for C-C and C-H bonds, and 

10-1 Å for C-F bond. All bond lengths decrease with the increase of number of fluorine atoms, which is 

explained by increased polarization of the bonds. Although the electric dipole values of the different 

ethane derivatives do not change dramatically with fluorination, the directions of the dipole vectors are 

significantly distinct (Figure 3.1.2), which may have an important impact on the electrostatic properties 

of the molecules, containing these groups.

Table 3.1.1. Charges of hydrogen atoms in different hydrogen bond donor groups
Group/aMethod HF MP2 BLYP B3LYP

AmideA -0.464 -0.340 -0.354 -0.379

Imidazole -0.246 -0.177 -0.176 -0.192

Ketone -0.362 -0.254 -0.263 -0.284

Furan -0.143 -0.044 -0.053 -0.063
a All the methods were applied with the same basis set (6-311G**++).

Table 3.1.2. Charges of hydrogen bond acceptors
Group/aMethod HF MP2 BLYP B3LYP

AmideD 0.298 0.266 0.257 0.271

Imidazole 0.332 0.316 0.280 0.297

Hydroxyl 0.256 0.242 0.230 0.240

Indole 0.335 0.316 0.277 0.295

Water 0.259 0.248 0.242 0.249

CH3SH 0.027 0.033 0.037 0.039
aAll the methods were applied with the same basis set (6-311G**++).

Figure 3.1.2. Electric dipoles calculated in B3LYP (6-311G**++). 
A) Monofluoroethane. B) Difluoroethane. C) Trifluoroethane. D) 2,2-difluoropropane. Fluorine atoms are green, hydrogens 
are white, carbons are dark green. Dipoles are represented as arrows.

90



Hydrogen bond analysis.  We carried out analysis of hydrogen bonding properties of the fluorinated 

ethane  derivatives  and  compared  them with  hydrogen  bond  donors/acceptors  typical  in  biological 

macromolecular systems: water, amideD (CH3CONHCH3), imidazole, hydroxyl (CH3CH2OH), indole, 

methanethiol (CH3SH), amideA (CH3CONH2), ketone (CH3COCH3) and furan. Except for methanethiol 

and water, hydrogen bonding properties of these molecules have been also characterized in the work of 

Hao et al. [212]. However, direct comparison of the results of that work with our results is not feasible 

since  the  used  methodology  of  the  geometry  optimization  of  hydrogen  bonded  complexes  is 

substantially different. 

All calculated data for hydrogen bonding pairs of donors and acceptors is represented in Tables 

3.1.3-3.1.8. The data for the fluorinated ethane derivatives as hydrogen bond acceptors in comparison 

with the rest of analyzed acceptors are summarized in figure 3.1.3. The analysis of this data allows to 

rank  these  acceptors  by  hydrogen  bonding  properties  in  the  following  order: 

imidazole>amideA>ketone>CH3CH2F>furan~CH3CHF2~CH3CF2CH3>CH3CF3.  Obviously,  the 

acceptor properties of the fluoromethyl group become less pronounced with the increase of number of 

fluorine atoms. All these analyzed hydrogen bonds yield positive D-H bond length shift (red-shifted 

hydrogen bonds) except for some bonds with methanethiol, which is a very weak hydrogen bond donor. 

This blue-shifting could be explained in terms of the redistribution of electronic density from both 

atoms (D-H) to a very electronegative fluorine atom [213]. The hydrogen bond energy, bond length and 

D-H bond length shift for the fluoromethyl groups are similar to the ones of furan and characterize the 

bonds as essentially weaker as the hydrogen bonds formed by imidazole, amideA or ketone acceptors. 

Directionality of  the hydrogen bonds formed by the atoms of  fluoromethyl  groups is  significantly 

broader,  and the average angles have lower values compared to other analyzed groups. Hydrogens 

charge transfer in the formation of hydrogen bonds is also lower for fluorinated groups, while acceptor 

atom charge  transfer  is  slightly  positive  and  similar  to  furan  and  ketone  groups.  The  strength  of 

hydrogen bond decreases with additional fluorination of the group in terms of energy, bond length, and 

D-H bond length shift, but not in terms of charge transfer, which remains roughly the same for all 

fluoromethyl groups. These relatively low values for fluorine atom charge transfer are explained by the 

high  electronegativity of  fluorine  atoms  [185].  We also have  analyzed hydrogen bonds formed by 

CH3CHF2 and CH3CF2CH3  with water molecules where each water hydrogen atom interacts  with a 

fluorine atom (Table 3.1.9). These interactions are energetically less favorable than in the case of only 
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one water hydrogen atom establishing a hydrogen bond with just a fluorine. To sum up, hydrogen bond 

acceptor  properties of fluoromethyl  groups are  weak in comparison to typical acceptors in  protein 

environments.

Figure 3.1.3. Hydrogen bond acceptors properties. The box plots contain data on all analyzed hydrogen bonds calculated in 
B3PLYP (6-311G**++). A) Hydrogen bond energy with BSSE correction. B) Relative shift in the covalent bond between 
hydrogen and heavy atom upon hydrogen bond formation.  C) Hydrogen bond length. D) Hydrogen bond angle ∠(D-H-A). 
E) Hydrogen atom charge transfer. F) Acceptor atom charge transfer. 
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Table 3.1.3. Hydrogen bond acceptor properties of the fluorinated ethane derivatives. Hydrogen bond 
energies

Donor Water AmideD Imidazole Hydroxyl Indole CH3SH

aMethod Acceptor bΔE cΔEBSSE
bΔE cΔEBSSE

bΔE cΔEBSSE
bΔE cΔEBSS

E

bΔE cΔEBSSE
bΔE cΔEBSSE

HF CH3CH2F -3.43 -3.22 -2.71 -2.66 -3.87 -3.66 -3.15 -2.90 -3.26 -3.04 -1.35 -1.09

CH3CHF2 -3.19 -2.92 -2.12 -1.95 -3.22 -2.92 -2.59 -2.20 -2.88 -2.49 -1.32 -0.97

CH3CF2CH3 -3.32 -3.01 -2.05 -1.93 -3.22 -2.94 -2.70 -2.29 -3.18 -2.73 -1.17 -0.85

CH3CF3 -2.65 -2.32 -1.49 -1.26 -2.07 -1.75 -2.64 -2.19 -1.88 -1.38 -0.87 -0.52

MP2 CH3CH2F -4.73 -3.67 -4.41 -3.37 -4.88 -4.17 -4.93 -3.74 -4.59 -3.74 -2.55 -1.43

CH3CHF2 -4.43 -3.41 -3.60 -2.68 -4.58 -3.59 -4.38 -3.05 -5.02 -3.52 -3.73 -1.79

CH3CF2CH3 -4.95 -3.75 -3.58 -2.72 -4.62 -3.72 -4.66 -3.23 -5.26 -3.81 -3.93 -1.81

CH3CF3 -3.95 -2.78 -2.80 -1.74 -3.12 -2.29 -4.20 -3.00 -3.48 -2.24 -2.44 -0.89

BLYP CH3CH2F -3.83 -3.41 -2.71 -2.60 -3.74 -3.45 -3.40 -2.93 -3.04 -2.97 -1.46 -0.99

CH3CHF2 -3.07 -2.69 -1.93 -1.74 -2.93 -2.64 -2.69 -2.21 -2.80 -2.55 -1.11 -0.72

CH3CF2CH3 -3.55 -3.01 -1.94 -1.73 -3.44 -2.99 -2.82 -2.19 -3.25 -2.68 -1.12 -0.68

CH3CF3 -2.65 -2.19 -1.34 -1.01 -1.86 -1.65 -2.50 -2.00 -1.54 -1.31 -0.72 -0.32

B3LYP CH3CH2F -4.16 -3.77 -3.00 -2.93 -4.26 -3.82 -3.81 -3.34 -3.78 -3.29 -1.68 -1.25

CH3CHF2 -3.58 -3.20 -2.31 -2.12 -3.14 -2.82 -3.09 -2.63 -3.14 -2.64 -1.42 -1.03

CH3CF2CH3 -4.07 -3.52 -2.33 -2.06 -3.73 -3.23 -3.30 -2.65 -3.63 -3.14 -1.42 -0.96

CH3CF3 -3.10 -2.65 -1.54 -1.31 -2.14 -1.86 -2.96 -2.49 -2.08 -1.50 -0.95 -0.52
a  All the methods were applied with the same basis set (6-311G**++). b Hydrogen bond energy without BSSE correction. c 

Hydrogen bond energy with BSSE correction. Energies are in kcal/mol.
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Table 3.1.4. Hydrogen bond acceptor properties of the fluorinated ethane derivatives. Hydrogen bond 
geometric characteristics

Donor Water AmideD Imidazole Hydroxyl Indole CH3SH

aMethod Acceptor bd, Å cAngle, ° d∆r, 
mÅ 

bd, Å cAngle, ° d∆r, 
mÅ 

bd, Å cAngle, ° d∆r, 
mÅ 

bd, Å cAngle, ° d∆r, 
mÅ 

bd, Å cAngle, ° d∆r, 
mÅ 

bd, Å cAngle, ° d∆r, 
mÅ 

HF CH3CH2F 2.084 154.831 2.5 2.222 172.571 3.0 2.103 178.140 2.3 2.119 155.562 1.9 2.153 176.423 2.4 2.482 175.159 0.0

CH3CHF2 2.211 123.177 1.5 2.370 170.829 1.6 2.234 174.468 1.5 2.266 149.053 1.1 2.271 171.641 1.2 2.646 159.513 0.4

CH3CF2CH3 2.572 139.011 1.8 2.291 174.321 1.4 2.172 172.270 2.0 2.220 155.213 1.2 2.250 172.265 1.6 2.584 155.533 -0.5

CH3CF3 2.509 125.460 1.1 2.451 169.959 0.5 2.311 170.529 0.9 2.472 126.931 0.9 2.236 169.709 0.6 2.762 162.810 -0.5

MP2 CH3CH2F 2.010 148.567 3.7 2.026 175.387 3.2 2.026 177.697 2.9 2.026 175.387 3.2 2.026 177.697 2.9 2.369 148.934 -2.3

CH3CHF2 2.247 122.209 2.1 2.152 163.025 1.5 2.125 176.170 1.9 2.152 163.025 1.5 2.125 176.170 1.9 2.477 149.535 -0.1

CH3CF2CH3 2.129 137.015 2.8 2.047 171.537 1.9 2.089 170.470 2.0 2.047 171.537 1.9 2.089 170.470 2.0 2.427 134.670 1.6

CH3CF3 2.352 124.691 1.6 2.233 166.900 1.8 2.200 169.361 0.6 2.233 166.900 1.8 2.200 169.361 0.6 2.528 160.231 0.4

BLYP CH3CH2F 1.989 160.366 5.0 2.144 165.543 2.5 2.049 178.083 6.4 2.052 157.902 2.9 2.249 177.162 3.1 2.363 171.397 0.4

CH3CHF2 2.204 130.982 2.3 2.365 155.522 1.6 2.205 172.500 5.0 2.168 151.905 1.5 2.254 173.347 0.6 2.506 165.807 -0.2

CH3CF2CH3 2.090 144.344 3.3 2.255 176.468 2.9 2.127 169.894 2.3 2.185 152.022 2.0 2.187 172.005 3.3 2.487 155.774 -0.1

CH3CF3 2.314 132.532 1.6 2.457 165.471 1.2 2.261 169.937 0.4 2.592 122.560 0.3 2.234 173.871 1.6 2.831 154.534 -0.2

B3LYP CH3CH2F 1.961 158.266 5.1 2.079 174.026 3.2 2.030 174.546 4.4 2.013 155.452 2.8 2.013 155.452 2.8 2.303 170.430 1.2

CH3CHF2 2.174 129.169 2.7 2.312 155.892 1.8 2.184 171.791 2.8 2.139 150.998 1.6 2.139 150.998 1.6 2.475 158.554 0.2

CH3CF2CH3 2.080 142.302 3.0 2.189 176.309 1.2 2.100 171.442 3.3 2.128 152.521 2.1 2.128 152.521 2.1 2.420 154.250 -0.1

CH3CF3 2.277 131.102 1.6 2.329 162.255 2.4 2.247 169.811 2.4 2.460 123.314 0.7 2.460 123.314 0.7 2.671 152.755 -0.5

aAll the methods were applied with the same basis set (6-311G**++). bHydrogen bond length. cHydrogen bond angle. dD-H 
bond shift. 
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Table 3.1.5. Hydrogen bond acceptor properties of the fluorinated ethane derivatives. Hydrogen bond 
charge transfer characteristics: hydrogen and acceptor charge transfer
Donor Water AmideD Imidazole Hydroxyl Indole CH3SH

aMethod Acceptor b∆q(H) c∆q(A) b∆q(H) c∆q(A) b∆q(H) c∆q(A) b∆q(H) c∆q(A) b∆q(H) c∆q(A) b∆q(H) c∆q(A)

HF CH3CH2F 0.023 0.007 0.115 0.006 0.199 -0.015 0.089 0.020 0.166 -0.006 -0.014 0.028

CH3CHF2 0.016 -0.008 0.109 0.022 0.291 0.010 0.026 0.008 0.115 0.020 0.014 0.029

CH3CF2CH3 0.010 -0.012 0.163 -0.004 0.178 0.031 0.076 0.030 0.143 0.044 0.010 0.014

CH3CF3 0.008 -0.009 0.111 0.014 0.235 0.006 0.014 0.004 0.107 0.013 0.001 0.020

MP2 CH3CH2F 0.009 0.005 0.088 0.016 0.185 -0.014 0.056 0.022 0.169 -0.004 -0.018 0.019

CH3CHF2 0.012 -0.014 0.078 0.024 0.116 0.006 0.018 0.008 0.094 0.025 0.020 0.027

CH3CF2CH3 -0.003 -0.016 0.136 0.000 0.170 0.021 0.054 0.031 0.150 0.042 0.011 0.010

CH3CF3 0.016 -0.011 0.120 0.012 0.163 -0.001 0.007 0.000 0.118 0.013 0.006 0.017

BLYP CH3CH2F -0.006 0.007 0.103 -0.001 0.190 -0.012 -0.030 0.020 0.044 0.016 0.141 0.000

CH3CHF2 0.003 -0.010 0.051 0.022 0.102 0.007 0.002 0.025 0.008 0.006 0.116 0.020

CH3CF2CH3 -0.011 -0.011 0.116 0.006 0.171 0.029 0.002 0.014 0.036 0.027 0.155 0.043

CH3CF3 0.001 -0.015 0.063 0.001 0.156 0.002 -0.001 0.019 0.005 0.008 0.125 0.015

B3LYP CH3CH2F -0.002 0.008 0.113 0.001 0.188 -0.012 0.052 0.017 0.178 -0.009 -0.025 0.022

CH3CHF2 0.006 -0.012 0.056 0.023 0.103 0.011 0.015 0.010 0.114 0.018 0.008 0.027

CH3CF2CH3 -0.007 -0.012 0.133 -0.001 0.177 0.029 0.042 0.029 0.153 0.044 0.002 0.007

CH3CF3 0.003 -0.015 0.087 0.011 0.157 0.002 0.007 0.011 0.112 0.013 -0.001 0.019
aAll the methods were applied with the same basis set (6-311G**++). bHydrogen charge transfer. cAcceptor charge transfer.
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Table 3.1.6. Hydrogen bond properties of typical for proteins hydrogen bond acceptors. Hydrogen bond 
energies

Donor Water AmideD Imidazole Hydroxyl Indole CH3SH

aMethod Acceptor bΔE cΔEBSSE
bΔE cΔEBSSE

bΔE cΔEBSSE
bΔE cΔEBSSE

bΔE cΔEBSSE
bΔE cΔEBSSE

HF AmideA -6.26 -6.06 -5.31 -5.36* -7.31 -7.16 -5.68 -5.47 -6.20 -6.04 -2.48 -2.25

Imidazole -6.02 -5.73 -5.14 -5.17* -6.89 -6.73 -5.49 -5.24 -5.80 -5.60 -2.48 -2.18

Ketone -5.30 -5.05 -4.37 -4.33* -5.92 -5.68 -4.93 -4.65 -5.15 -4.89 -2.09 -1.78

Furan -2.77 -2.42 -1.89 -1.70 -3.31 -2.98 -2.55 -2.21 -2.20 -1.91 -0.96 -0.61

MP2 AmideA -7.54 -6.25 -6.31 -5.46 -8.70 -7.73 -7.99 -6.94 -8.27 -7.33 -4.01 -2.68

Imidazole -7.80 -6.82 -8.42 -7.52 -10.05 -9.16 -8.27 -6.98 -9.58 -8.49 -5.19 -3.64

Ketone -6.55 -5.34 -5.72 -4.89 -6.89 -6.07 -6.89 -5.51 -6.92 -5.81 -3.33 -2.29

Furan -3.78 -2.88 -4.73 -3.36 -5.30 -4.34 -4.26 -3.14 -4.54 -3.34 -3.91 -1.89

B3LYP AmideA -6.91 -6.38 -5.05 -5.14 -7.05 -6.75 -6.20 -5.96 -6.46 -5.97 -2.62 -2.20

Imidazole -7.20 -6.88 -5.74 -5.89 -7.97 -7.59 -6.02 -5.95 -7.12 -6.48 -2.92 -2.56

Ketone -5.87 -5.37 -3.78 -3.96 -5.43 -5.14 -5.10 -4.85 -5.06 -4.73 -2.08 -1.68

Furan -2.86 -2.42 -1.47 -1.71 -3.05 -2.94 -2.30 -2.04 -2.71 -1.97 -0.51 -0.27

B3PLYP AmideA -7.41 -7.00 -5.61 -5.73 -7.79 -7.57 -6.81 -6.76 -6.94 -6.68 -2.94 -2.60

Imidazole -7.50 -7.25 -6.31 -6.44 -8.43 -8.07 -6.54 -6.48 -7.50 -6.90 -3.25 -2.89

Ketone -6.56 -5.92 -4.61 -4.55 -5.70 -5.24 -5.91 -5.45 -5.66 -5.06 -2.62 -2.05

Furan -3.30 -3.00 -1.97 -2.16 -3.46 -3.33 -2.75 -2.48 -2.99 -2.28 -0.88 -0.62
aAll the methods were applied with the same basis set (6-311G**++). b  Hydrogen bond energy without BSSE correction. c 

Hydrogen bond energy with BSSE correction. Energies are in kcal/mol.
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Table 3.1.7. Hydrogen bond properties of typical for proteins hydrogen bond acceptors.Hydrogen bond 
geometric characteristics

Donor Water AmideD Imidazole Hydroxyl Indole CH3SH

aMethod Acceptor bd, Å cAngle, ° d∆r, 
mÅ 

bd, Å cAngle, ° d∆r, 
mÅ 

bd, Å cAngle, ° d∆r, 
mÅ 

bd, Å cAngle, ° d∆r, 
mÅ 

bd, Å cAngle, ° d∆r, 
mÅ 

bd, Å cAngle, ° d∆r, 
mÅ 

HF AmideA 1.991 166.690 7.1 2.120 179.218 4.6 2.005 148.822 7.2 2.016 176.060 4.8 2.040 178.079 6.4 2.383 171.632 1.1

Imidazole 2.094 171.049 7.9 2.117 178.906 8.5 2.131 178.955 9.8 2.116 170.668 6.8 2.181 178.774 8.6 2.497 163.719 1.7

Ketone 2.038 166.113 5.5 2.177 178.557 3.9 2.072 178.678 4.6 2.063 166.899 4.5 2.100 174.664 4.3 2.451 170.328 0.4

Furan 2.176 171.110 2.2 2.125 179.030 2.1 2.188 173.057 3.0 2.241 149.812 1.6 2.291 178.279 2.7 2.787 155.855 -0.3

MP2 AmideA 1.885 165.762 10.6 1.993 171.629 2.1 1.918 177.472 4.8 1.993 171.629 2.1 1.918 177.472 4.8 2.162 167.383 4.0

Imidazole 1.978 170.993 11.7 2.027 178.668 10.0 1.940 178.841 17.8 2.027 178.668 10.0 1.940 178.841 17.8 2.236 160.720 7.6

Ketone 1.936 164.360 8.7 2.022 170.927 3.3 1.990 179.276 4.8 2.022 170.927 3.3 1.990 179.276 4.8 2.245 162.617 2.3

Furan 2.081 167.152 3.3 2.100 174.819 2.4 2.056 174.273 3.2 2.100 174.819 2.4 2.056 174.273 3.2 2.320 161.790 -1.8

B3LYP AmideA 1.883 168.714 12.8 2.036 172.967 6.2 1.954 176.193 9.8 1.898 175.393 10.5 1.967 175.176 13.0 2.204 176.352 4.2

Imidazole 1.953 174.639 16.7 2.090 179.119 13.7 2.000 175.822 18.4 1.996 167.467 12.3 2.033 179.547 16.7 2.292 166.024 7.1

Ketone 1.924 166.400 9.4 2.117 171.709 5.1 2.043 171.394 5.0 1.966 166.053 8.9 2.048 176.941 5.3 2.334 168.417 3.3

Furan 2.086 177.038 5.1 2.187 157.041 4.4 2.110 172.145 3.3 2.184 149.892 1.4 2.189 176.266 4.2 2.655 159.184 -0.9

B3PLYP AmideA 1.860 168.728 12.7 1.994 173.872 6.1 1.937 176.201 11.5 1.860 174.925 10.7 1.860 174.925 10.7 2.202 177.625 5.0

Imidazole 1.941 175.673 17.5 2.087 179.440 12.4 1.990 175.808 17.4 1.966 168.974 12.7 1.966 168.974 12.7 2.332 165.157 6.8

Ketone 1.910 166.766 10.2 2.074 171.644 5.3 2.041 169.845 8.4 1.951 165.255 8.6 1.951 165.255 8.6 2.283 169.111 2.9

Furan 2.048 176.820 4.5 2.167 176.929 3.8 2.121 172.220 5.9 2.177 149.612 2.5 2.177 149.612 2.5 2.612 110.817 1.2
aAll the methods were applied with the same basis set (6-311G**++). bHydrogen bond length. cHydrogen bond angle. dD-H 
bond shift. 
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Table 3.1.8. Hydrogen bond properties of typical for proteins hydrogen bond acceptors. Hydrogen bond 
charge transfer characteristics: hydrogen and acceptor charge transfer

Donor Water AmideD Imidazole Hydroxyl Indole CH3SH

aMethod Acceptor b∆q(H) c∆q(A) b∆q(H) c∆q(A) b∆q(H) c∆q(A) b∆q(H) c∆q(A) b∆q(H) c∆q(A) b∆q(H) c∆q(A)

HF AmideA 0.060 -0.040 0.207 -0.002 0.538 -0.091 0.198 -0.039 0.208 -0.073 0.020 -0.016

Imidazole 0.145 -0.120 0.276 -0.082 0.607 -0.087 0.247 -0.100 0.198 -0.085 0.024 -0.028

Ketone 0.059 -0.005 0.217 0.031 0.607 0.041 0.178 0.007 0.206 0.038 0.015 0.051

Furan 0.095 -0.046 0.230 0.034 0.641 0.008 0.095 -0.001 0.197 0.016 0.002 0.055

MP2 AmideA 0.030 -0.030 0.183 -0.009 0.215 -0.084 0.174 0.014 0.211 -0.061 0.011 -0.001

Imidazole 0.147 -0.121 0.263 -0.072 0.299 -0.062 0.252 -0.092 0.239 -0.053 0.029 -0.038

Ketone 0.029 0.001 0.186 0.004 0.268 0.040 0.163 0.025 0.206 0.031 0.009 0.045

Furan 0.094 -0.063 0.167 0.019 0.302 0.000 0.070 0.004 0.231 0.021 0.003 0.058

B3LYP AmideA 0.016 -0.020 0.191 0.007 0.225 -0.068 -0.041 0.000 0.170 0.005 0.242 -0.055

Imidazole 0.137 -0.112 0.226 -0.035 0.316 -0.034 -0.026 0.007 0.231 -0.060 0.255 -0.014

Ketone 0.018 0.009 0.190 0.024 0.254 0.038 -0.026 0.045 0.098 0.016 0.262 0.046

Furan 0.069 -0.028 0.140 0.021 0.293 0.012 -0.017 0.040 0.062 0.016 0.237 0.036

B3PLYP AmideA 0.028 -0.026 0.207 0.007 0.236 -0.078 0.188 0.000 0.233 -0.059 -0.026 -0.007

Imidazole 0.154 -0.124 0.236 -0.044 0.318 -0.045 0.262 -0.074 0.250 -0.023 -0.012 -0.001

Ketone 0.028 0.006 0.205 0.026 0.251 0.041 0.109 0.017 0.234 0.041 -0.019 0.047

Furan 0.085 -0.036 0.160 0.023 0.295 0.010 0.072 0.012 0.238 0.034 -0.015 0.043
aAll the methods were applied with the same basis set (6-311G**++). bHydrogen charge transfer. cAcceptor charge transfer.

Table 3.1.9.Characteristics  of  bifurcated hydrogen bonds of the fluorinated ethane derivatives  with 
water

aMethod Acceptor b∆E, kcal/mol c∆EBSSE, kcal/mol dd, Å eangle, ° f∆r, mÅ g∆q(H) h∆q(A)

HF CH3CHF2 -2.72 -2.22 2.317 126.921 0.8 0.006 -0.004

CH3F2CH3 -3.01 -2.45 2.572 139.011 1.8 0.014 0.001

MP2 CH3CHF2 -3.94 -2.60 2.211 131.309 0.8 0.005 -0.010

CH3F2CH3 -4.32 -2.87 2.466 127.036 1.2 0.013 -0.005

BLYP CH3CHF2 -2.58 -1.93 2.129 137.015 2.8 0.005 -0.009

CH3F2CH3 -3.06 -2.12 2.409 130.201 1.4 0.012 -0.009

B3LYP CH3CHF2 -3.04 -2.40 2.524 128.645 0.9 0.004 -0.010

CH3F2CH3 -3.43 -2.58 2.090 144.344 3.3 0.014 -0.008
a  All the methods were applied with the same basis set (6-311G**++). b Hydrogen bond energy without BSSE correction. c 

Hydrogen bond energy with BSSE correction. d Hydrogen bond length. e Hydrogen bond angle. f D-H bond shift. g Hydrogen 
charge transfer. h Acceptor charge transfer.

Most donor-acceptor pairs with fluoromethylated groups acting as hydrogen bond donor are 
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interacting via bifurcated hydrogen bonds (Tables 3.1.10-3.1.11). 

Table 3.1.10. Hydrogen bond donor properties of the fluorinated ethane derivatives. Hydrogen 
bond energies.

Donor CH3CH3 CH3CH2F CH3CHF2

aMethod Acceptor b∆E c∆EBSS

E

b∆E c∆EBSSE
b∆E c∆EBSSE

HF AmideA -0.37 -0.28 d-2.18 d-2.04 e-4.91 e-4.70

Imidazole -0.31 -0.23 -1.92 -1.69 e-3.62 e-3.32

Ketone -0.30 -0.20 d-1.81 d-1.65 -2.82 -2.56

Furan -0.18 -0.06 -1.60 -1.28 e-1.85 e-1.43

MP2 AmideA -1.11 -0.66 d-3.08 d-2.42 e-6.40 e-5.18

Imidazole -1.05 -0.78 -3.85 -3.00 e-5.45 e-4.45

Ketone -1.06 -0.60 -2.77 -2.02 -3.50 -2.74

Furan -0.88 -0.79 -3.05 -2.11 e-3.39 e-2.30

BLYP AmideA -0.44 -0.32 d-1.98 d-1.67 e-4.73 e-4.65

Imidazole -0.11 -0.09 -1.75 -1.56 e-2.85 e-2.66

Ketone -0.20 -0.04 d-1.38 d-1.21 -2.30 -2.20

Furan No binding - -1.14 -1.00 e-1.10 e-1.04

B3LYP AmideA -0.24 -0.09 d-2.28 d-2.04 e-5.30 e-5.21

Imidazole -0.36 -0.20 -2.16 -1.90 e-3.46 e-3.26

Ketone -0.60 -0.30 d-1.91 d-1.45 -2.89 -2.52

Furan No binding - -1.52 -1.41 e-1.55 e-1.44
a  All the methods were applied with the same basis set (6-311G**++). b Hydrogen bond energy without BSSE correction. c 

Hydrogen bond energy with BSSE correction. d  Bifurcated hydrogen bond with one acceptor and 2 donors. e  Bifurcated H-
bond with an additional fluorine atom also H-bonded). Energies are in kcal/mol.
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Table 3.1.11. Hydrogen bond donor properties of the fluorinated ethane derivatives. Hydrogen bond 
geometric characteristics and charge transfer.

aMethod bD/A AmideA Imidazole Ketone Furan

HF cd, Å dAngle, ° e∆r, 
mÅ

f∆q(H) g∆q(A) cd, Å dAngle, ° e∆r, 
mÅ

f∆q(H) g∆q(A) cd, Å dAngle, ° e∆r, 
mÅ

f∆q(H) g∆q(A) cd, Å dAngle, ° e∆r, 
mÅ

f∆q(H) g∆q(A)

CH3CH3 2.887 173.310 -1.5 0.090 0.022 3.174 171.141 -1.2 0.029 0.004 2.997 172.999 -1.2 0.071 0.042 3.180 168.351 -0.5 0.044 0.028

CH3CH2F 3.038 96.545 -1.9 0.046 -0.004 2.816 139.011 -2.6 0.042 -0.024 3.062 97.193 -1.5 0.045 0.040 3.037 119.351 -1.3 0.018 0.029

F-H bond - - - - - 2.675 139.353 2.7 0.008 0.024 - - - - - 2.530 139.101 -0.1 0.043 0.028

CH3CHF2 2.630 116.901 -1.9 0.065 0.003 2.772 119.265 -3.7 0.045 -0.009 2.507 143.364 -3.8 0.108 0.041 2.874 114.335 -2.9 0.033 0.027

F-H bond 2.252 154.477 1.8 0.054 -0.006 2.634 123.213 -0.3 0.036 0.008 - - - - - 2.669 127.452 -0.2 0.028 0.018

MP2 CH3CH3 2.585 167.135 -0.3 0.099 0.033 3.066 179.349 -0.8 0.046 -0.009 2.620 153.658 -1.8 0.062 0.048 3.044 167.409 -0.3 0.040 0.034

CH3CH2F 2.849 93.981 -1.5 0.043 0.012 2.619 138.555 -1.7 0.032 0.015 2.821 94.856 -1.2 0.044 0.044 2.880 120.789 -0.1 0.018 0.033

F-H bond - - - - - 2.506 139.872 0.3 0.037 0.024 - - - - - 2.424 139.389 -0.2 0.040 0.027

CH3CHF2 2.510 115.450 -3.6 0.064 0.006 2.640 119.742 -3.3 0.040 0.005 2.465 130.671 -3.2 0.082 0.041 2.746 113.316 -2.1 0.031 0.030

F-H bond 2.115 156.372 1.7 0.054 -0.007 2.535 123.007 -0.1 0.036 0.007 - - - - - 2.539 127.792 -1.2 0.029 0.017

BLYP CH3CH3 2.897 167.213 -1.4 0.077 0.020 3.129 169.669 -0.2 0.033 0.004 3.054 162.787 -1.5 0.049 0.036 3.008 169.046 -1.6 0.029 0.038

CH3CH2F 3.036 94.822 -4.5 0.024 0.006 2.757 138.940 -1.9 0.023 0.023 3.277 94.981 -1.2 0.019 0.042 3.065 120.795 -1.4 0.007 0.030

F-H bond - - - - - 2.612 141.211 0.1 0.027 0.018 - - - - - 2.447 145.269 -0.6 0.039 0.024

CH3CHF2 2.555 126.094 -3.3 0.054 0.002 2.722 119.338 -3.0 0.020 0.022 2.422 150.411 -1.9 0.093 0.039 2.827 116.539 -1.0 0.020 0.035

F-H bond 2.107 160.376 3.0 0.059 -0.005 2.604 124.079 0.0 0.034 0.006 - - - - - 2.754 126.905 -0.8 0.021 0.017

B3LYP CH3CH3 2.735 168.348 -0.9 0.090 0.022 3.131 175.780 -2.0 0.039 -0.004 2.927 161.174 -0.3 0.055 0.040 3.226 167.326 -0.8 0.026 0.031

CH3CH2F 3.072 94.825 -1.9 0.036 0.001 2.735 138.851 -6.8 0.021 0.021 3.015 95.726 -1.3 1.035 0.045 3.042 120.747 -1.0 0.014 0.029

F-H bond - - - - - 2.581 140.999 0.5 0.028 0.021 - - - - - 2.417 144.964 -0.8 0.040 0.027

CH3CHF2 2.507 124.502 -2.4 0.068 0.001 2.735 119.339 -2.2 0.068 0.014 2.368 148.671 -3.4 0.101 0.044 2.804 115.664 -4.3 0.033 0.035

F-H bond 2.080 159.135 3.3 0.055 -0.006 2.610 123.435 -2.9 0.033 0.005 - - - - - 2.698 126.690 -0.8 0.022 0.017

a All the methods were applied with the same basis set (6-311G**++). b Donors and acceptors. c Hydrogen bond length. 
d Hydrogen bond angle. e D-H bond shift. f Hydrogen charge transfer. g Acceptor charge transfer.
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Furthermore, some fluoromethylated groups exhibit a dual donor/acceptor behaviour where the 

fluorine atom can in addition act as a hydrogen bond acceptor. Water does not behave as acceptor of 

hydrogen bond with fluoromethylated groups. The optimization shows that water acts as hydrogen 

bond donor and fluorine atoms are acceptors. Most of these hydrogen bonds are relatively weak in 

terms of their energies and lengths (Tables 3.1.10-3.1.11). However, they are much stronger than weak 

hydrogen bonds formed by methyl groups as donors, which are nevertheless considered to be important 

in protein environments and molecular recognition  [214,215]. For example, the energy value of the 

hydrogen bond formed by the hydrogen atom of CH3CHF2 and a ketone oxygen is one order lower than 

the one of the hydrogen bond formed by the ethane hydrogen atoms and a ketone oxygen. Moreover, 

some hydrogen bonds established by hydrogen atoms from the fluorinated groups are comparable in 

terms of energies to the hydrogen bonds formed by other analyzed groups presented in canonical amino 

acids (Tables 3.1.3-3.1.8, 3.1.10-3.1.11). The hydrogen bonds formed by fluoromethyl group as a donor 

yield a negative D-H shift (blue-shifted hydrogen bonds). Charge transfer on the hydrogens is in the 

order of 10-2 units, which is one order less than in donor-acceptor pairs, where fluoromethyl groups act 

as acceptors. In general,  hydrogen bond donor properties of fluoromethyl groups are weak and the 

groups prefer to participate in bifurcated hydrogen bonds.  

Comparison of the results  obtained by QM shows correlation (R2 more than 0.7,  see  Table 

3.1.12) between different levels  of theory for all  analyzed hydrogen bonding parameters.  The best 

correlation is found for the energy calculations, while the worst is observed for HF method compared 

with other methods for hydrogen charge transfer and bond length calculations. In general, we conclude 

that all used QM methods yield qualitatively similar characterization of the studied hydrogen bonding 

properties. 

Table  3.1.12. Correlation  between  different  levels  of  theory  (adjusted  R2)  for  hydrogen  bond 
calculations

Energy without BSSE correction Energy with BSSE correction D-H bond shift Relative D-H bond shift

Method MP2 BLYP B3LYP MP2 BLYP B3LYP MP2 BLYP B3LYP MP2 BLYP B3LYP

HF 0.872 0.964 0.971 0.920 0.974 0.973 0.778 0.893 0.907 0.829 0.920 0.932

MP2 - 0.900 0.900 - 0.951 0.946 - 0.879 0.850 - 0.885 0.861

BLYP - - 0.995 - - 0.996 - - 0.879 - - 0.928

H-bond length H-bond angle Hydrogen charge transfer Acceptor charge transfer

Method MP2 BLYP B3LYP MP2 BLYP B3LYP MP2 BLYP B3LYP MP2 BLYP B3LYP

HF 0.778 0.854 0.847 0.819 0.798 0.752 0.741 0.704 0.708 0.911 0.841 0.888

MP2 - 0.836 0.880 - 0.789 0.696 - 0.956 0.973 - 0.882 0.916

BLYP - - 0.954 - - 0.767 - - 0.989 - - 0.986
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Volumes  and  ASA of  fluoromethylated  groups  and  fluorinated  amino  acid  side  chains.  We 

estimated volumes and ASA for the fluoromethylated groups from ethane derivatives (Figure 3.1.4 A). 

Fluorination of the methyl group leads to a volume and ASA increase of 21%, 33%, 47% and 15%, 

27%, 39%, correspondingly, for each consecutive fluorine substitution. 

We  created  libraries  of  6  non-canonical  L-amino  acids  compatible  with  AMBER  8.0: 

ethylglycine  (Abu),  4-monofluoroethylglycine  (MfeGly),  4,4-difluoroethylglycine  (DfeGly),  4,4,4-

trifluoroethylglycine (TfeGly), 4,4-difluoropropylglycine (DfpGly) and  propylglycine. In comparison 

to  canonical  amino  acids,  side  chain  size  increases  as  follows: 

Ala<Abu<MfeGly<DfeGly<TfeGly<Val<DfpGly<Ile<Leu<Met<Phe  (Fig.  3.1.4  B).  However,  there 

are no canonical amino acids that  could be isosterically substituted by the fluorinated ethylglycine 

derivatives since they all are branched except for Met, which chain is one carbon atom longer than 

DfpGly. Moreover, because of substantially different electrostatic properties dictated by fluorination, 

incorporation of fluorinated amino acids into protein environments could not be correctly estimated by 

taking into account only the size of the group. 

Figure 3.1.4. Volumes and solvent accessible surface areas (ASA). A). Fluoromethyl groups after B3LYP (6-311G**++) 
geometry optimization. B) Amino acids side chains created for AMBER libraries. 
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Conformational analysis of fluorinated amino acids.  Ramachandran plots were calculated for the 

fluorinated  amino  acids  and  compared  to  other  canonical  hydrophobic  amino  acids  (see  Methods 

section). Their α-helical and β-strand propensities for amino acids can be observed in figure 3.1.5. As 

already described, Ala, Leu and Met have higher  α-helical, while Val and Phe have higher  β-strand 

propensities [216]. MfeGly and TfeGly show slight but clear preference for α-helical conformation in 

the Ace-FXR-Nme system, while DfeGly and DfpGly rather adopt a β-strand conformation. MfeGly, 

and TfeGly have substantially higher left α-helical propensities than Abu, DfeGly and DfpGly. 

Figure 3.1.5. Ramachandran plots of the fluorinated amino acids in comparison to canonical hydrophobic amino acids.

For quantitative characterization of secondary structure propensities we analyzed  propensity  

indexes (see  Methods),  which  are  shown  in  figure  3.1.6.  The  propensity  indexes  do  not  directly 
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characterize secondary structure propensities but rather the relations between the obtained potential 

energies for amino acids in the used the Ace-FXR-Nme dipeptide and summarized data for backbone 

dihedral  angles  in  secondary  structure  elements  from  PDB  structures.  Propensity  indexes  are 

proportional  to  quadratic  probabilities  to  adopt  a  certain  conformation  and,  thus,  demonstrate 

differences between amino acids more profoundly than probabilities. The obtained results reveal low β-

strand propensity indexes for Abu, MfeGly and TfeGly. DfeGly and DfpGly have essentially higher β-

strand propensity indexes, which, nevertheless, are still lower than for typical 'β-amino acids' like Val 

and Phe. As for α-helical propensity indexes, MfeGly and TfeGly have the highest values among the 

fluorinated amino acids and are comparable with typical 'α-amino acids' like Met, Ala. Abu, DfeGly 

and DfpGly have low α-helical propensity indexes. A big difference was found for the left  α-helical 

propensity index, which shows significant increase for MfeGly and TfeGly. The analysis shows that 

secondary structure  propensities  are  similar  for  two pairs  of  fluorinated  amino acids:  MfeGly and 

TfeGly; DfeGly and DfpGly. We suppose, that this finding could be partly attributed to their different 

electric dipole properties.

Figure 3.1.6. Covariance (propensity index) between probabilities obtained from calculated Ramachandran plots and PDB-
derived secondary structure data. A) β-strand. B) α-helix. C) Left α-helix.
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We characterized the side chain rotamers of Abu and its fluorinated derivatives using the Ace-

FXR-Nme system and analyzed the changes occurring upon fluorination for three secondary structure 

types: α-helix, β-strand and left α-helix (Table 3.1.13). All these amino acids i) reveal three potential 

energy minima independently of the backbone dihedral angles values except for DfeGly in  β-strand 

conformation, which has two minima; ii) have very similar values of χ1  dihedral angle corresponding 

to  energy minima (Figure 3.1.6).  The differences  in  energy barriers  between the minima could be 

explained in terms of electrostatic and dipole interactions of the fluoromethyl groups with backbone 

atoms and their steric demands.

Table 3.1.13. Side chain rotamers of Abu, MfeGly, DfeGly, TfeGly
β-strand α-helix Left α-helix

Amino 
acid

aχ1, ° bEmin, kcal/
mol

cp d∆χ, ° aχ1, ° bEmin, 
kcal/mol

cp d∆χ, ° aχ1, ° bEmin, kcal/
mol

cp d∆χ, °

Abu -150 -29.7 0.09 51 -170 -31.8 0.20 44 -155 -27.9 0.17 27

-65 -30.2 0.13 45 -60 -32.6 0.44 39 -55 -29.4 0.82 34

65 -31.9 0.78 36 65 -32.4 0.36 37 60 -25.3 0.01 24

MfeGly -175 -36.5 0.34 35 -175 -37.8 0.42 41 -160 -34.1 0.36 30

-70 -35.8 0.17 42 -60 -37.5 0.33 39 -55 -34.7 0.63 23

60 -36.8 0.49 39 65 -37.2 0.25 37 75 -30.2 0.01 21

DfeGly -170 -38.3 0.46 45 -175 -37.4 0.36 41 -160 -31.7 0.91 31

-75 -35.6 0.03 47 -65 -37.3 0.34 43 -65 -29.4 0.09 27

65 -38.4 0.51 41 70 -37.2 0.30 37 - - - -

TfeGly -130 -39.8 0.17 116 -165 -41.9 0.22 51 -140 -37.8 0.24 30

-70 -40.5 0.36 38 -65 -42.9 0.59 42 -60 -39.0 0.76 30

70 -40.8 0.47 37 70 -41.8 0.19 30 70 -24.5 0.00 15
a Value for χ1 dihedral angle corresponding to an energy minimum. b Energy minimum value. c Probability for the side chain 
to be in a conformation corresponding to χ1. d Width of the area  corresponding to |E(χ1)-Emin|<1 kcal/mol.
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Figure 3.1.7. Side chain rotamers potential energy E(χ1)-Emin(χ1) of the fluorinated ethylglycine derivatives in different 
backbone conformations. A) β-strand. B) α-helix. C) Left α-helix.

For  example,  for  the  energy barrier  value  between  the  minimum with  χ1∈[60;70]  and the 

corresponding maximum with χ1∈[120;150] in β-strand conformation there is an obvious increase of 

value  for  TfeGly  compared  to  Abu  and  decrease  for  MfeGly  and  DfeGly.  In  minimum  energy 

conformation none of the side chains interacts with the Ace-Xxx-Nme backbone, while the maximum 

energy conformation  allows  the  side  chain  to  interact  with  the  backbone atoms (Figure  3.1.8).  In 

particular, there is a repulsion between the trifluoromethyl group and the two electronegative atoms of 

the backbone (the carboxyl oxygen from TfeGly residue and the nitrogen from Nme group) only partly 

compensated  by  a  very  weak  hydrogen  bond  between  one  of  the  fluorine  atoms  and  the  amide 

hydrogen of Nme group. These interactions lead to the increase of the barrier value. In case of Abu, 

there are no similar interactions since the methyl group is apolar. At the same time, one of the fluorine 

atoms of DfeGly forms a stronger hydrogen bond than in case of TfeGly with the amide hydrogen of 

Nme group, which lowers the energy barrier value. Similarly the barrier is lower in case of MfeGly 
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because of the hydrogen bond formation between the hydrogen of the monofluoromethyl group and the 

carboxyl oxygen from MfeGly, but in this case the hydrogen bond is weaker. In case of  α-helix, the 

found energy maxima correspond to roughly the same  χ1  values but the energy barrier differences 

between Abu,  MfeGly,  DfeGly are  lower since  the  distances  between the  fluoromethyl  group and 

backbone atoms are longer.  Another maximum, corresponding to  χ1∼ 0 appears to be due to both 

electrostatic repulsion and steric clash between the fluorine atoms and the oxygen and nitrogen atoms 

of the backbone. In the case of left α-helical conformation DfeGly has the most unfavorable interaction 

corresponding to this maximum with an energy barrier even higher than the one of TfeGly, because the 

fluorine atoms of DfeGly are more negatively charged than of TfeGly but the group volume is smaller. 

The third and also the lowest energy barrier (χ1  ∼  −1 2 0 ) is very similar for all analyzed amino acids 

and, therefore, is almost independent of fluorination. In general, all the highest barriers are for left α-

helical conformation and the lowest for α-helix, which is explained in terms of different proximities of 

backbone and side chain atoms. Obviously, dipole interactions should be also considered for this kind 

of analysis. As it was mentioned before, there is a significant difference in dipole vector directions of 

MfeGly, DfeGly and TfeGly.

Figure 3.1.8. β-strand conformation for Ace-Xxx-Nme dipeptides, where Xxx= A) Abu. B) MfeGly. C) DfeGly. D) TfeGly.
 

For the DfpGly side chain we found 9 conformations for  α-helix and 6 conformations for  β-

strand and 6 fox left α-helix, which corresponded to a probability ≥ 0.01 (Table 3.1.14). For the left α-

helix χ1>0 values are conformationally forbidden because of steric clash between the side chain and the 

backbone as well as of electrostatic repulsion between the fluorine atoms and the backbone carbonyl 

oxygens  (Figure 3.1.9).  Some of  the rotamers  corresponding to  the minima contain intramolecular 

hydrogen bonds between the  fluorine  atoms and the  backbone amide  hydrogens  of  the  backbone. 
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However,  the  probabilities  for  a  certain  rotamer  do  not  correlate  with  the  probability  to  form a 

hydrogen  bond,  meaning  that  hydrogen  bond  interaction  between  the  fluorine  atoms  of  the 

difluorinated  group  and  the  backbone  hydrogen  atoms  is  not  the  decisive  factor  for  a  rotamer 

preference. We suppose that hydrophobic and dipole interactions make instead a substantial impact on 

the dynamic behavior of the side chain of DfpGly.   

Figure 3.1.9. DfpGly side chain rotamers potential energy E(χ1, χ2) in different backbone conformations. A) β-strand. B) α-
helix. C) Left α-helix.

Table 3.1.14. Side chain rotamers of DfpGly
Secondary 
structure

aχ1, ° bχ2, ° cEmin, 
kcal/mol

dp eH-bond Secondary 
structure

aχ1, ° bχ2, ° cEmin, 
kcal/mol

dp eH-bond

β-strand 65 -175 -50.3 0.44 + α-helix -75 65 -48.8 0.08 -

70 -60 -49.4 0.19 - -175 -90 -47.9 0.03 -

-140 -180 -49.2 0.15 + 70 85 -47.3 0.02 +

55 65 -48.9 0.11 + 70 -65 -47.1 0.01 +

-140 65 -48.7 0.09 + Left 
α-helix

-150 -180 -42.5 0.43 -

-125 -65 -46.3 0.01 - -145 -60 -41.7 0.19 -

α-helix -175 170 -49.9 0.23 - -150 65 -41.5 0.16 -

-65 -175 -49.7 0.20 + -65 -170 -41.3 0.12 g  +

-175 55 -49.4 0.15 - -65 -50 -40.6 0.07 +

70 -170 -49.4 0.15 f + -75 70 -39.6 0.02 -

-60 -55 -49.3 0.13 +

a,b Values for χ1 and χ2 dihedral angles corresponding to an energy minimum. c Energy minimum value. d Probability for the 
side chain to be in a conformation corresponding to (χ1,χ2).  e  Presence of a hydrogen bond with backbone.  f  Bifurcated 
hydrogen bond: two hydrogen atoms interact with one fluorine. g Bifurcated hydrogen bond: 2 fluorine atoms interact with 
one hydrogen.
Hydration of fluorinated amino acids. To characterize the hydrophobic properties of the fluorinated 
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amino acids we carried out free energy perturbation calculations  in vacuo and in a TIP3 water box. 

MfeGly, DfeGly, TfeGly were perturbed to Abu, and DfpGly was perturbed to propylglycine, so that 

the fluorine atoms were perturbed into hydrogens. We obtained the differences between the energies of 

solvation for fluorinated amino acids and their non-fluorinated analogues (Table 3.1.15). The results 

show that these differences are negative for all fluorinated amino acids, meaning that hydration of the 

fluorinated amino acids  is  energetically more favorable  than the hydration of  their  non-fluorinated 

analogues. Hydrophobicity of the mono-fluorinated side chain increases with the addition of fluorine 

atoms.  Nevertheless,  the  difference  in  hydrophobicity  between  non-fluorinated  side  chains  and 

di/trifluorinated is low. 

Table 3.1.15. Hydration energies differences between fluorinated and non-fluorinated amino acids
Fluorinated residue Non-fluorinated residue a∆Evacuo

b∆Ewater
c∆∆Ehydration

MfeGly Abu 3.8.29 6.10.58 2.5

DfeGly Abu 6.3.49 7.00.81 

TfeGly Abu 9.10.87 9.6 0.5

DfpGly Propylglycine 20.2.55 21.1 0.9
a Free energy of perturbation of a fluorinated residue to a non-fluorinated residue in vacuo. b Free energy of perturbation of a 
fluorinated residue to a non-fluorinated residue in TIP3 water. c Difference between hydration energies of a fluorinated and a 
corresponding non-fluorinated residue.

The obtained retention times for the canonical hydrophobic amino acids correlate very well, 

albeit not linearly between the volume of the side chains (calculated as described by Zhao et al. [217]) 

and their hydrophobicity (Figure 3.1.10). We fitted the plot for the non-fluorinated amino acids to yield 

an exponential equation to describe the correlation between the side chain volume and retention time (rt 

= 8.0012 e0.0086 V(VdW); R2=0.998). The fluorinated amino acids, however, scatter around the curve and do 

not fit into the equation proposed above. The mono- and difluorination of Abu increases the volume of 

its side chain by roughly 6 Å3 per fluorine atom. The hydrophobicity of the mono- and difluorinated 

side chains is lower than for Abu due to the polarization of the hydrogens in close proximity to the 

fluorine atoms and, thus, manifest a more favorable interaction with water. This effect is most dramatic 

for DfpGly.  With a side chain very close to Leu in terms of steric size it represents an even more 

hydrophilic derivative than TfeGly.  Nevertheless, a closer look at the fluorinated analogues of Abu 

(MfeGly,  DfeGly, and TfeGly) also shows that the hydrophobicity increases more progressively by 

stepwise fluorination than it does by elongation or branching of the side chain without fluorination, 

which agrees with our calculations of free energies of hydration. 
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Figure  3.1.10.  Retention  times  of  the  Fmoc-amino acids  against  the  van  der  Waals  volume  of  the  side  chains.  Non-
fluorinated amino acids are represented by black squares, the correlation between them is shown with a black line and 
fluorinated amino acids are represented by gray diamonds.

The hydration energy of 5,5,5,5',5',5'-hexafluoroleucine was found to be 1.1 kcal/mol higher 

than of leucine in another free energy perturbation study [211].  This, together with our experimental 

and computational findings,  suggests  that  there are two opposing factors determining the solvation 

energetics  for  the  fluorinated  groups.  On  one  hand,  substitution  of  a  hydrogen  atom by  fluorine 

increases  the  ASA  of  the  chemical  group  and  leads  to  the  increase  of  solvation  energy  and 

hydrophobicity. On the other hand, the C-F bond is more polarized than the C-H bond and electrostatic 

interactions of the fluorinated group with solvent are energetically more favorable. With an increase of 

fluorination the polarity of the group decreases and that leads to weaker interactions with solvent. 

These results agree with the data obtained by Yin  et al.  for fluorinated ethane derivatives using the 

CHARMM force field [218]. 

Analysis of the radial distribution function (RDF) shows that the density of solvent in proximity 

to the side chains of fluorinated amino acids depends on the number of fluorine atoms. The solvent 

density in a 2 Å distance from the fluorine atom of MfeGly is about twice higher than for the fluorine 

atoms of DfeGly, TfeGly and DfpGly (Figure. 3.1.11 A), and it roughly corresponds to the hydrogen 

bond length between the fluorine of the fluoromethylated group and water hydrogens. At the same 

time, there is almost no difference between the RDF calculated for hydrogen atoms of fluoromethyl 

groups of Abu, MfeGly,  DfeGly and water oxygen atoms (Figure 3.1.11 B), suggesting very weak 

hydrogen  bonds.  The  same  conclusion  about  these  hydrogen  bonds  was  drawn  from  our  QM 

calculations.  These  results  agree  well  qualitatively  with  the  data  obtained  for  fluorinated  ethane 
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derivatives using the CHARMM force field [218] proving that i) fluorinated ethane derivatives, which 

we used for our QM calculations, represent a good model to study fluoromethylation in amino acid side 

chains;  ii) parameterization for the AMBER force field of amino acids including fluoromethylated 

groups in their side chains and ethane derivatives for the CHARMM force field allows to describe 

similar hydrogen bonds properties.  

Figure 3.1.11. Radial distribution function (RDF) for A) fluorine atoms of the fluoromethylated group and water hydrogen 
atoms; B) hydrogen atoms of the fluoromethylated group and water oxygen atoms.

3.1.5 Conclusions

In this study we apply a QM approach to study the hydrogen bonding properties of fluorinated 

ethane derivatives as a simplification for fluorinated amino acid side chains, and we carry out a MD-

based analysis of 4 fluorinated derivatives of L-ethylglycine. We show that polarization of covalent 

bonds upon fluorination leads to such a redistribution of electronic density within fluoromethylated 

groups, so that both fluorine and hydrogen atoms establish hydrogen bonds, which are weaker than in 

normal protein environments.  Libraries for 4 fluorinated L-amino acids (4-monofluoroethylglycine, 

4,4-difluoroethylglycine, 4,4,4-trifluoroethylglycine, 4,4-difluoropropylglycine) have been created for 

the AMBER MD package. Their side chain volumes and ASA have been estimated and compared to 

those of canonical amino acids. MD simulations performed with these libraries and a Ace-(fluorinated 

residue)-Nme dipeptide system have been used to characterize backbone and side chain conformational 
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preferences of these fluorinated amino acids. We find that MfeGly and TfeGly have high α-helical and 

especially  pronounced  left  α-helical  propensities,  while  DfeGly  and  DfpGly  prefer  a  β-strand 

conformation.  Side  chain  rotamer  energy surfaces  are  explained  by electrostatic  properties  of  the 

fluoromethylated  groups  and  their  steric  demand.  Hydration  analysis  of  Ace-FXR-Nme dipeptides 

shows that for the determination of the solvation properties of fluorinated amino acids there is a trade-

off between polar properties of fluorine atoms and the increase of ASA upon fluorination, which is 

confirmed by the retention times obtained experimentally.  The studied fluorinated amino acids are 

found to have more favorable hydration energy than their non-fluorinated analogues. The analysis of 

the RDF function for solvent in the MD simulations shows clearly the existence of weak hydrogen 

bonds between water molecules and fluorine atoms of side chains of fluorinated amino acids, and is in 

agreement with our QM data. Our results provide new insights into the understanding of the properties 

of fluorine within protein environments, which may assist in exploiting the full potential of fluorine's 

unique properties for applications in the field of protein engineering.
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3.2.1 Abstract

Systematic model investigations of the molecular interactions of fluorinated amino acids within 

native protein environments substantially improve our understanding of the unique properties of these 

building blocks. A rationally designed heterodimeric coiled-coil peptide (VPE/VPK) and nine variants 

containing  amino  acids  with  variable  fluorine  content  in  either  position  a16  or  d19  within  the 

hydrophobic  core  were  synthesized  and  used  to  evaluate  the  impact  of  fluorinated  amino  acid 

substitutions  within  different  hydrophobic  protein  microenvironments.  The  structural  and 

thermodynamic stability of the dimers were examined by applying both experimental (CD spectroscopy

and  analytical  ultracentrifugation)  and  theoretical  (MD  simulations  and  MM-PBSA free  energy 

calculations) methods. The coiled-coil environment imposes position dependent conformations onto the 

fluorinated  side  chains  and thus  affects  their  packing  and relative  orientation  towards  their  native 

interaction partners. We find evidence that such packing effects exert a significant influence on the 

contribution of fluorine-induced polarity to coiled-coil folding.

3.2.2 Introduction

The widespread interest in peptides and proteins as highly potent pharmaceuticals [219] as well 

as bio-inspired materials [220] motivates attempts towards the de novo design of peptides and proteins 

with superior properties such as chemical and metabolic resistance as well as thermodynamic stability 

[221]. Moreover, endowing these biomolecules with novel functions that are not carried out by natural 

proteins  [222] is  perhaps  one  of  the  most  interesting,  albeit  challenging  prospects  in  protein 

engineering  [223]. To this end, continuous efforts are made to expand the repertoire of genetically 

encoded  amino  acids  through  manipulation  of  the  translational  machinery  in  vitro  and  in  vivo 

[224,225]. Also, pure synthetic and semi-synthetic approaches, i.e. the direct chemical modification of 

protein functional groups [226] as well as solid phase peptide synthesis [227], native chemical ligation 

[228], and expressed protein ligation  [229] enable the incorporation of non-natural amino acids into 

peptide  and  protein  sequences.  In  this  context,  fluorinated  amino  acids  have  increasingly  gained 
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recognition as analytical probes and modulators for protein structure and stability [178].

Organic molecules containing C-F bonds display unique properties [185] that account for their 

ever-growing importance in medicinal chemistry [230]. Most prominent amongst these is a pronounced 

enhancement  in  steric  size  upon fluorination  of  alkyl  groups  that  is  combined  with  the  very low 

polarizability  of  the  fluorine  atom.  This  often,  although  not  generally  [174],  leads  to  a  manifold 

increase in hydrophobicity and thus improves membrane permeability  [231]. It has been anticipated 

that global replacement of hydrophobic amino acids in hydrophobic domains with fluorinated analogs 

would accordingly stabilize the structure of proteins. As summarized in a recent review [232] this has 

been proven to be a successful concept for the design of hyperstable α-helical coiled-coils. Along with 

enhanced self-association behaviour, some of these peptides display an increase in membrane binding 

affinity [181,233]  that lead to the design of fluorinated peptides with enhanced antimicrobial activity 

[234,235]. The attempt towards a global replacement of leucine residues by fluorinated analogs within 

globular  proteins,  however,  resulted  in  reduced thermodynamic  stability  [236,237].  In  these  cases, 

additional mutations were needed to compensate for the disadvantageous effects  [238]. It was also 

shown that fluorination of aromatic side chains within proteins does not generally enhance secondary 

structure formation  [239]. These findings suggest that properties other than hydrophobicity may also 

play an important  role  in  directing the interactions of fluorine within native protein environments. 

Though a weak electron donor and thus poor hydrogen bond acceptor[240], carbon-bound fluorine has 

been  shown to  participate  in  favorable  multipolar  interactions  within  native  protein  environments 

[241]. It is also important to note that despite the fact that specific fluorine-fluorine interactions are 

able  to  promote  ordered  self-association  [232],  it  has  been  proposed that  they may also  result  in 

misfolding  [242,236].  In  addition,  our  previous  studies  suggest  that  hydrophobic  interactions  in 

proteins may be severely disturbed by fluorine-induced polarity [242]. In summary, it still seems rather 

difficult to predict the impact of fluorination on the structure and activity of peptides and proteins. To 

further investigate the impact of fluorine substitution in native protein environments, we designed a 

heterodimeric  α-helical  coiled-coil  peptide  containing  one  fluorinated  amino  acid  at  either  of  two 

positions within the hydrophobic core, which are different in terms of side chain packing. We find that 

the effect of fluorine-induced polarity highly depends on the microenvironment of the substitution.

3.2.3 Methodology

Materials. Fmoc-Glu(OtBu)-  and  Fmoc-Lys(Boc)-NovaSyn®-TGA resins  (0,16  mmol  g-1 and  0,21 

mmol g-1, respectively) were purchased from Novabiochem. Fmoc-L-amino acids, 2-(1H-benzotriazol-
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1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), and 1-hydroxybenzotriazole (HOBt) were 

purchased  from  Fa.  Gerhardt  (Wolfhagen,  Germany).  1-Hydroxy-7-azabenzotriazole  (HOAt)  was 

purchased from Iris Biotech, and Fmoc-protected (S)-2-aminobutyric acid (Abu) from Bachem. (S)-2-

amino-4,4,4-trifluorobutyric acid (TfeGly) [243], (S)-2-amino-4,4-difluorobutyric acid (DfeGly) [244], 

and  (S)-2-amino-4,4-difluoropentanoic  acid  (DfpGly)  [245] were  prepared  according  to  literature 

procedures. Dimethylformamide (p.a., Acros), N,N-diisopropylethylamine (DIEA 98+%, Acros), N,N-

diisoporopylcarbodiimide  (DIC  99%,  Acros),  trifluoroacetic  acid  (TFA  99%,  Acros),  sodium 

perchlorate  (p.a.,  Acros),  triisopropylsilane  (TIS  99%, Acros),  piperidine  (99% extra  pure,  Acros), 

acetonitrile (HPLC gradient grade, Acros), 1,8-diazabicyclo[5.4.0]undec-7-en (for synthesis, Merck), 

di-sodium  hydrogenphosphate  dihydrate  (p.a,  Merck),  and  sodium  dihydrogenphosphate  dihydrate 

(ultra  >99%,  Fluka)  were  used  without  further  purification.  Acetic  anhydride  (99%,  Acros)  was 

distilled prior to use. Deionized water for buffer solutions and HPLC was prepared using the MilliQ®-

AdvantageA10®-System (Millipore). Water (solvent A) and acetonitrile (solvent B) for RP-HPLC were 

supplemented with 0.1 % TFA (Uvasol®, Merck).

Peptide Synthesis, Purification, and Characterization. Peptides were synthesized using a SyroXP-I 

peptide  synthesizer  (MultiSynTech  GmbH,  Witten,  Germany)  on  a  0.05  mM  scale  according  to 

standard Fmoc/tBu chemistry  [246].  For standard couplings a four fold excess of amino acids and 

coupling reagents (TCTU/HOBt) as well as an eight fold excess of DIEA relative to resin loading was 

used. All couplings were performed as double couplings (30 minutes). Our initial attempts to synthesize 

the peptides produced poor purities and low yields of often less than 10 mg that we attributed to on-

resin  aggregation  during  the  coupling  step.  Accordingly,  we  prevented  aggregation  by  adding  a 

chaotropic agent. For syntheses with the SyroXP synthesizer the amino acids are usually dissolved in a 

0.5  M HOBt solution  (in  DMF).  We additionally supplemented  these  solutions  with  either  0.8  M 

lithium chloride or 0.8 M sodium perchlorate with only the latter  being effective in increasing the 

purity of the crude products. Its final concentration in the coupling mix was 0.23 M. The yield of the 

pure peptides could be increased to generally more than 20 mg. Fluorinated amino acids as well as the 

first  subsequent amino acid were activated by means of DIC/HOAt (1/1) protocols (seven minutes 

preactivation) without the addition of base to prevent racemization [247]. The molar excess of amino 

acid and coupling reagents was reduced for fluorine-containing residues to 1.5 fold for the first and 0.8 

fold for the second coupling. These couplings were performed manually until completion indicated by 

a negative Kaiser test  [248]. Prior to deprotection possibly non-acylated N-termini were  capped by 
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adding a mixture of acetic anhydride and DIEA (10% each) in DMF (3 x 10 min). A mixture of DBU 

and piperidine (2% each) in DMF was used for Fmoc-deprotection (4 x 5 minutes). Peptides were 

cleaved from the resin by treatment with 4 mL TFA/TIS/H2O (95/2.5/2.5). The resins were washed 

twice  with  TFA (1  mL)  and  dichloromethane  (dry,  1  mL)  and  excess  solvent  was  removed  by 

evaporation. The peptides were precipitated with cold Et2O. Purification was carried out by RP-HPLC 

(Phenomenex® Luna C8, 10 µm, 250 mm x 21.2 mm) and the purity was confirmed by analytical 

HPLC (Phenomenex® Luna C8,  5  µm, 250 mm x 4.6 mm).  All  products  were identified by high 

resolution  ESI-MS  (see  Table  3.2.1).  To  identify  the  products  high  resolution  mass  spectra  were 

recorded on the  Agilent 6210 ESI-TOF mass spectrometer (Agilent Technologies, Santa Clara, CA, 

USA.)  The  samples  were  dissolved  in  acetonitrile/water  (1/1)  containing  0.1  % TFA and  injected 

directly into the spray chamber using a syringe pump with flow rates of 10 to 50 µL/min. The spray 

voltage was 4.000V and the drying gas (N2) flow rate was set to 1 psi (1 bar). Peptide concentrations 

were determined using the absorbance of o-aminobenzoic acid (λmax = 320 nm at pH 7.4) attached to the 

N-terminus of each peptide (see supporting information).

Table 3.2.1. Identification of the peptides by ESI-TOF mass spectrometrya

Peptide Calc.[M+4H]4+ Obs [M+4H]4+ 

VPE 948.274 948.274

VPE-NYNO2 970.527 970.529

VPK-CAbz 979.578 979.562

VPK 947.801 947.803

VPK(Leu16) 951.304 951.293

VPK(Abu16) 944.297 944.291

VPK(Abu19) 940.793 940.792

VPK(DfeGly16) 953.292 953.287

VPK(DfeGly19) 949.788 949.789

VPK(TfeGly16) 957.789 957.793

VPK(TfeGly19) 954.286 954.285

VPK(DfpGly16) 956.796 956.790

VPK(DfpGly19) 953.292 953.291
a If  not stated otherwise all the peptides bear an N terminal Abz label. For VPK-CAbz the Abz label is attached to an 
additional lysine at the C terminus. 

Determination of Peptide Concentration. Concentrations were estimated by UV spectroscopy on a 

Cary 50 UV/Vis spectrometer (Varian) using the absorption of oaminobenzoic acid attached to each 

Nterminus. A calibration curve (Figure 3.2.1) was recorded using different concentrations of H2NAbz
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GlyCOOH  ⋅   HCl   (Bachem)   in   the  buffer  used   for  CD spectroscopy containing  6M guanidinium 

hydrochloride (Fluka). Disposable Plastibrand®  PMMA cuvettes (Brand GmbH, Germany) with path 

lengths of 1 cm were used.

Figure 3.2.1. Calibration curve for the determination of peptide concentrations recorded at 20°C (100 mM phosphate buffer, 
6M GdnHCl, pH 7.4).

Circular Dichroism. CD-spectra were recorded on a Jasco J-715 spectropolarimeter at 20 °C (Jasco 

PTC-348WI peltier thermostat). Overall peptide concentrations were 20 µM (10 µM VPE and 10 µM 

VPK) at pH 7.4 (100 mM phosphate buffer). CD-spectra were obtained in the far-UV range (190 nm - 

240 nm) using 0.1 cm Quartz Suprasil® cuvettes (Hellma) equipped with a stopper. The nitrogen flow 

rate was set to 3 L/min. Ellipticity was normalized to concentration (c/mol L-1), number of residues (n = 

35, including the N-terminal label) and path length (l cm) using eq 3.2.1:

[θ ]=
θ obs

10000⋅l⋅c⋅n                                                          (3.2.1)

where θobs is the measured ellipticity in millidegrees and [θ] the normalized ellipticity in 103 deg  cm2 

dmol-1  residue-1. Melting curves were recorded using the signal at 222 nm applying a heating rate of 3 

K min-1  from 20°C to 100°C. Each sample was prepared three times and both the baseline corrected 

spectra and the melting curves were averaged.

Fluorescence Resonance Energy Transfer. We carried out the FRET assay according to previously 

published procedures [249] using o-aminobenzoic acid (Abz: λex = 320 nm, λem = 420 nm, Bachem) as 

the fluorescence label and 3-nitrotyrosine (YNO2: λabs = 420 nm, Bachem) as the quencher [250]. Three 

peptides were synthesized: VPK carrying the Abz-label at either the N- or the C-terminus and VPE 

carrying YNO2 at the N-terminus. Fluorescence spectra were recorded on a luminescence spectrometer 
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LS 50B (Perkin Elmer) using a 1 cm Quartz Suprasil® cuvette (Hellma) at 20°C. Three scans from 350 

to  550 nm were performed averaged and the spectra  were normalized to  the respective maximum 

fluorescence.

Calculation of thermodynamic parameters. Thermodynamic parameters were determined by non-

linear least square fitting of the normalized CD-melting curves to six parameters (a, b, [θ]M(0), [θ]D(0), 

ΔHm, and Tm) assuming a two-state monomer-dimer equilibrium. The fits were performed as follows. 

Ellipticity can be calculated from the fraction unfolded (fu) according to eq 3.2.2:

DuDM f ][)][]([][ θθθθ +⋅−=                                              (3.2.2)

where  [θ]M represents  the  linear  temperature  dependance  of  the  ellipticity  of  the  fully  unfolded 

monomers M (eq 3.2.3), and VPK and VPE are mathematically regarded as equal  [251]. [θ]D is the 

linear temperature dependance of the ellipticity of the fully folded dimer D (eq 3.2.4):

  )0(][][ MM ta θθ +⋅=                                                    (3.2.3)

)0(][][ DD tb θθ +⋅=                                                     (3.2.4)

Here,  t is the temperature in °C and [θ]M(0) as well as [θ]D(0) represent the hypothetical ellipticity 

values for the unfolded and the folded peptides at 0°C. The fraction unfolded can be expressed in terms 

of equilibrium constant (eq 3.2.5) after solving the equation for a bimolecular reaction D  2M:

0

2
0

][8

][16

D

KKDK
fu

−+
=                                                        (3.2.5)

where  K is  the  equilibrium  constant  and  [D]0 the  concentration  of  the  fully  folded  dimer.  The 

temperature dependence of K is expressed by eq 3.2.6:

TRGeK ⋅∆−= /                                                               (3.2.6)
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The Gibbs-Helmholtz equation can be used to express the temperature dependence of ΔG in terms of 

ΔHm and Tm as given by eq 3.2.7:
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where ΔHm is the enthalpy change at the melting temperature Tm, that is defined as the temperature at 

which  fu = 0.5. ΔCp is the change in heat capacity that was initially assumed to be zero for the purpose 

of fitting because due to the high interdependence of  ΔH and  ΔCp these parameters cannot be fitted 

simultaneously.  Equations 3.2.2 through 3.2.7 were combined and the data fitted directly.  ΔCp was 

calculated afterwards from the dependance of ΔHm from Tm and the standard free energy of unfolding 

ΔGø (1M standard state) was then calculated at 25°C according to eq 3.2.8:
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Errors were determined by a statistical analysis of the fitted parameters  [252]. The error for the free 

energy of unfolding was calculated using eq 3.2.8 applying the minimum and maximum values for 

ΔHm, ΔCp, and Tm according to their individual errors. To prove the validity of the fit, ΔHm and Tm were 

also determined manually using the Van’t Hoff equation[253].

Analytical  ultracentrifugation.  Analytical  ultracentrifugation  (AUC)  was  performed  on  a  XL-I 

(Beckman-Coulter, Palo Alto, CA) ultracentrifuge at 25 °C applying the UV-Vis absorption optics at 

320 nm and using standard 12 mm double sector centerpieces. Sedimentation velocity experiments 

were  performed  at  60000  rpm  and  a  sample  concentration  of  50  µM,  sedimentation  equilibrium 

experiments at 40000 rpm. The samples were dissolved in 100 mM phosphate buffer at pH 7.4 (ρ = 

1.009942 g  ml-1,  η =  0.9243 cP both  at  25  °C).  The  partial  specific  volume of  the  samples  was 

determined in a density oscillation tube (DMA 5000, Anton Paar, Graz) to be 0.730 ml g-1 for VPK and 

0.594 ml g-1 for VPE. The partial specific volume of the VPE-VPK heterodimer was selected as the 

arithmetic  average  to  be  0.662  ml  g-1.  Apparent  weight  average  molar  masses  were  determined 

concentration dependent  from sedimentation equilibrium experiments  using the model  independent 

MSTAR approach[254]. Sedimentation velocity data were evaluated using the program SEDFIT by P. 
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Schuck[255]  yielding the diffusion corrected molar mass distribution c(M). 

MD simulations and MM-PBSA free energy calculations. The  crystal  structure of  the  Sir4p C-

terminal coiled-coil at 2.5 Å resolution (PDB ID: 1pl5) was used as template for modeling our parallel 

coiled-coil  systems.  To obtain  the  parent  peptide  model  system (VPE-VPK) and its  nine  fluorine-

substituted variants the length of the helices of the Sir4p coiled-coil was reduced to 34 aa, and the 

necessary side chain substitutions were carried out with the MOE program [203]. The structures were 

solvated in a TIP3P water octahedral box. MD simulations performed with AMBER 8.0[8] using the 

ff03 force field were preceded by two energy minimization steps: 500 cycles of steepest descent and 

1000 cycles of conjugate gradient with harmonic force restraints on protein atoms, then 1000 cycles of 

steepest  descent  and 1500 cycles  of  conjugate  gradient  without  constraints.  This  was  followed by 

heating of the system from 0 to 300K for 10 ps, and a 30 ps MD equilibration run at 300K and 106 Pa in 

isothermal isobaric ensemble (NPT). Following the equilibration procedure, 5 ns of productive MD 

runs were carried out in NPT ensemble with Langevin temperature coupling with collision frequency 

parameter  γ=1 ps-1 and Berendsen pressure coupling with a time constant of 1.0 ps.  The SHAKE 

algorithm was used to constrain all bonds that contain hydrogen atoms. A 2 fs time integration step was 

used. An 8 Å cutoff was applied to treat non-bonded interactions, and the Particle Mesh Ewald (PME) 

method  was  introduced  for  long-range  electrostatic  interactions  treatment.  MD  trajectories  were 

recorded each 2 ps. For the analysis of the trajectories PTRAJ module was used. Non-standard amino 

acid  residues  were  parameterized  to  be  compatible  with  the  Cornell  force  field  using  a  standard 

procedure for non-natural amino acids [256-259] in the R.E.M. III program, which we used for RESP 

charge calculations  [260]. For each amino acid charges were derived for two conformations (helical 

and  extended)  with  the  ab  initio  Hartree-Fock  method  HF/6-31G* using  GAMESS-US  [201] (the 

authors  can  provide  derived  charges  information  upon  request).  Energetic  post-processing  of  the 

trajectories was done in a continuous solvent model as implemented in the AMBER 8.0 MM-PBSA 

module. The snapshots for the calculations were chosen as described by Lafont and coworkers [126]. 

Entropies were calculated using normal mode analysis. Significant comparison of the free energies of 

interaction between two coiled-coils is not possible because of the intrinsic flexibility of the helices 

termini. To avoid this additional source of noise in the MM-PBSA calculations only the central parts of 

the helices were analyzed (residues 10 to 25). Thus, taking into account the reduced size of our model 

system, only the comparison of relative values of energies with experimental data is reasonable.
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3.2.4 Results and discussion

The aim of this study was to evaluate how fluorinated amino acids interact with native residues 

in  a  natural  protein  environment.  A previously  reported  de  novo designed  α-helical  coiled-coil 

interaction motif was shown to sufficiently fulfill the requirements for an appropriate model system 

[178].  Besides  being  of  paramount  biological  importance  [261,262],  the  coiled-coil’s  greatest 

advantage is that it provides two very well defined recognition surfaces [263]. Its primary structure is 

based on a repetitive pattern of seven amino acids,  the heptad repeat (abcdefg)n.  Along the helical 

surface, the hydrophobic positions a and d and the mostly polar positions b, c, and f point in opposite 

directions. The a- and d-residues of the interacting helices are packed in a zipper-like fashion to form 

the hydrophobic core while all the other heptad positions are solvent exposed. The perfect interactions 

within  the  hydrophobic  core  provide  the  basis  for  a  stable  fold  and  drive  oligomerization.  In 

consequence the peptides associate to form a slightly left-handed superhelix. In dimeric coiled-coils 

positions  e and g are preferably populated by charged residues that further contribute to stability and 

control the specificity of folding by forming interhelical salt bridges. Following this primary structure 

code coiled-coils of different length and oligomerization specificity can be designed de novo  [263]. 

Because the packing of the hydrophobic side chains in a parallel coiled-coil, a against a’ and d against 

d’, is not equivalent in terms of relative side chain orientation (vide infra) [264], a parallel design as 

presented below can be used to  study the impact of fluorination within two different hydrophobic 

microenvironments. 

The model system VPE/VPK was designed to provide the environment for specific interactions 

between a fluorinated and a non-fluorinated peptide. The peptide model fulfils two important criteria: 

1)  specificity  for  one  distinct  orientation  of  the  peptide  strands  within  the  dimer  and  2) 

heterodimerization.  Figure  3.2.2  illustrates  the  design  of  the  model  peptide.  The  amino  acid 

composition of the hydrophobic core is inspired by the GCN4 transcription factor, which has already 

been extensively characterized at high resolution [164]. Here, valine in all of the a- and leucine in all of 

the d-positions provide for a parallel orientation of the peptide strands in the coiled-coil dimer.
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Figure 3.2.2. Amino acid sequence and helical wheel representation of the heterodimeric coiled-coil model system. Two 
series of peptides were synthesized - one that contains the fluorinated amino acid at position a16 (grey box) and one that 
contains it at position d19 (grey circle) within VPK. Each peptide carries Abz at its N-terminus (not shown).

Most important for the purpose of the study, heterodimerization is required to guarantee that the 

observed effects  trace  back  to  a  single  fluoroamino acid  substitution  per  dimer.  This  condition  is 

accomplished by introducing  e-g’ and  g-e’ pairs that engage in favorable electrostatic interactions in 

the heterodimer but would repel one another in both possible homodimers. The fully natural  VPE 

peptide  was  then  used  as  a  template  to  screen  the  interactions  with  different  fluorine-containing 

variants of the complementary interaction partner VPK. 

Figure  3.2.3.  Structures  of  (S)-aminobutyric  acid  (ethylglycine,  Abu),  (S)-4,4-difluoroethylgylcine  (DfeGly),  (S)-4,4,4-
trifluoroethylglycine  (TfeGly),  (S)-4,4-difluoropropylglycine  (DfpGly)  and  native  leucine.  The  VdW-volumes  given  in 
parentheses correspond to the alkyl groups that are attached to the β-carbon and were calculated according to Zhao et al. 
[217].

As mentioned above, the packing characteristics of the  a- and  d-positions in parallel coiled-
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coils are different. Therefore, the  VPK strand contains the fluorinated amino acids either at position 

a16 or d19,  which  allows  evaluating  the  impact  of  fluorination  within  two different  hydrophobic 

microenvironments.  Peptides  containing  leucine  at  the  respective  substitution  site  served  as  the 

reference peptides.

FRET and Analytical Ultracentrifugation. The parent peptides VPE and VPK were used to verify the 

parallel heterodimerization of the model system. In order to determine the relative orientation of the 

helices we applied a FRET-assay using o-aminobenzoic  acid (Abz) as the fluorescence donor and 3-

nitrotyrosine (YNO2) as the acceptor [250]. Resonance energy transfer from Abz to YNO2 only occurs 

when the donor and the acceptor are in close proximity.  For a parallel alignment, this condition is 

fulfilled when donor and acceptor are attached to the respective N-termini of VPK and VPE. 

Figure 3.2.4 A shows the fluorescence spectra of N-terminally Abz-labeled VPK (VPK-NAbz, 

where Abz is attached to the N-terminus) at different concentrations of N-terminally YNO2-labeled 

VPE  (VPE-NYNO2).  The  spectra  show  a  progressive  decrease  in  fluorescence  intensity  as  the 

concentration of VPE increases. A similar experiment in which the fluorescence donor Abz was present 

at the C-terminus of VPK (VPK-CAbz) shows much weaker quenching (Figure 3.2.4 B) and confirms 

that VPE and VPK preferentially form parallel heterooligomers. Furthermore, control experiments in 

the presence of a denaturant (GdnHCl) demonstrated that the quenching shown in figure 3.2.4 A is the 

result of specific folding rather than self-quenching. Accordingly to these experiments, the fluorescence 

should be recovered upon chemically induced unfolding. Figure 3.2.5 shows the fluorescence intensity 

of a mixture of VPK-NAbz (150 μg/mL) and VPE-NYNO2 (300 μg/mL) at different concentrations of 

guanidinium hydrochloride.
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Figure 3.2.4. Fluorescence spectra of A) 150 µg ml-1 VPK-NAbz at different concentrations of VPE-NYNO2 and B) 150 µg 
mL-1 VPK-CAbz at different concentrations of VPE-NYNO2: () 0 µg mL-1, () 50 µg mL-1, (▼) 100 µg mL-1, () 150 µg 
mL-1, and () 300 µg mL-1 (λex=320 nm).

Figure 3.2.5. Spectral overlap of the donor (Abz) and the quencher: () absorption spectrum of 20 µM VPE-N-YNO2 and 
() fluorescence spectrum of 20 µM VPK-N-Abz  at pH 7.4 (100 mM phosphate buffer). The spectra were normalized.

The oligomerization state of the VPE-VPK heterooligomers was determined by sedimentation 

velocity  and  equilibrium  experiments.  Sedimentation  velocity  experiments  show  artificial  peak 

broadening due to insufficient removal of diffusion effects in the evaluation algorithm yielding a molar 

mass estimate of 7000 g mol-1 for the VPE-VPK heterodimer and a monomodal distribution confirming 

that only heterodimer is present in solution (Figure 3.2.6). This result was confirmed by the absolute 

molar mass determinations enabled by sedimentation equilibrium measurements, which yielded a Mw 

of 7600 g mol-1 from the extrapolation of five Mw,app. to infinite dilution. This molar mass agrees very 
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well with the expected molar mass for the VPE-VPK heterodimer of 7580.82 g mol-1 and confirms the 

specific  heterodimerization  of  the  model  system.  The  formal  extrapolation  to  infinite  dilution  is 

necessary to remove the effects of charge and excluded volume on the determined apparent molar 

mass, which is found too low with increasing concentration due to these non-ideal effects. Although at 

infinite dilution monomer is to be expected, this formal extrapolation was possible for the investigated 

concentration  range  of  100  -  500  µM,  since  figure  3.2.6  B  shows  the  absence  of  association  or 

dissociation of the heterodimer in this concentration range.

Figure 3.2.6 A) Diffusion corrected molar mass distribution  c(M) of the VPE-VPK heterodimer determined for a 50 µM 
VPE-VPK sample. The peak is broadened due to insufficient removal of diffusion effects. B) Concentration dependence of 
the inverse apparent molar masses Mw,app. to yield 
Mw = 7600 g mol-1 by formal extrapolation to infinite dilution (solid line).

CD spectroscopy and MD simulations. All CD-spectra of the equimolar mixtures of VPE and VPK-

analogues display distinct minima at 208 and 222 nm at 20°C (Figure 3.2.7), indicating that all peptides 

form stable α-helical structures. Also, the intensities for all heteromers are very similar, which suggests 

that the substitution of leucine by Abu and its fluorinated analogues at either position a16 or d19 only 

causes  minor  structural  perturbations.  We carried out  MD simulations  to  verify these findings and 

further  support  our  studies.  The  results  of  these  experiments  show  that  the  structures  of  all 

heterodimeric coiled-coils investigated here remain stable in solution. 
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Figure 3.2.7. CD-spectra at 20°C and fitted thermal unfolding profiles of the 1:1 VPE-VPK mixtures substituted at  A) 
position  a16 and  B) position  d19 of VPK: ( ) Leu, ()Abu, ()DfeGly, () TfeGly, and (◊)DfpGly. Overall peptide 
concentrations were 20 µM (10 µM in each monomer at pH 7.4, 100 mM phosphate buffer). 

The root mean square deviation (RMSD) values for all atoms did not exceed 2.5 Å (2.0 Å for 

backbone atoms). Moreover, the distances between Cβ atoms of the residues in a- and d- positions in 

each helix did not fluctuate substantially during simulation except for those at the N- and C-termini 

(Table 3.2.2). The dihedral angles of all residues are comparable to values for an ideal α-helix (-60º and 

-45º for ϕ and ψ, respectively), again with the exception of the N- and C-terminal residues. Although 

the coiled-coil structure was preserved in all systems, small deviations from ideal α-helical values were 

found  for  DfeGly16,  DfeGly19  and  Abu19.  These  results  point  to  structural  perturbations  of  the 

backbone that may, in part, account for the decreased thermodynamic stability of these dimers (vide 

infra).
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Table 3.2.2. Distances between Cβ atoms in a- and d-positions in MD simulations
Substitution a2 d5 a9 d12 a16 d19 a23 d26 a30 d33

Leu16 6.8±1.5 4.7±0.7 5.5±0.4 5.2±0.3 5.2±0.3 4.5±0.3 5.6±0.4 5.0±0.4 6.4±1.2 8.6±3.2

Abu16 5.8±0.8 6.4±1.6 5.8±0.4 5.7±0.3 5.2±0.3 4.0±0.2 5.8±0.2 4.0±0.2 5.7±0.6 4.3±0.5

DfeGly16 5.4±0.4 4.1±0.2 5.6±0.5 4.6±0.6 5.0±0.4 4.1±0.2 5.7±0.3 4.0±0.2 6.0±0.5 5.2±0.9

TfeGly16 11.2±2.9 5.4±0.6 5.0±0.4 5.2±0.5 5.2±0.3 4.1±0.2 5.6±0.4 4.8±0.4 5.9±0.6 5.0±0.4

DfpGly16 5.6±0.4 4.2±0.4 5.6±0.5 4.9±0.4 5.2±0.3 4.0±0.2 5.8±0.2 4.0±0.2 6.0±0.6 5.2±0.6

Leu19 5.9±0.3 4.3±0.5 5.8±0.4 4.8±0.3 5.5±0.5 4.0±0.2 5.8±0.2 4.1±0.4 6.1±0.4 4.2±0.4

Abu19 4.9±0.6 5.3±0.5 5.2±0.3 4.6±0.5 5.4±0.5 4.1±0.4 6.0±0.2 4.4±0.6 5.8±0.6 4.7±1.1

DfeGly19 5.5±0.4 4.2±0.4 5.6±0.5 4.5±0.5 5.4±0.5 4.6±0.5 5.8±0.5 6.0±0.8 6.0±0.8 6.1±3.4

TfeGly19 5.9±0.3 4.1±0.3 5.4±0.4 5.3±0.3 5.1±0.4 4.2±0.4 5.7±0.2 3.9±0.2 6.2±0.4 5.2±0.5

DfpGly19 5.5±0.7 5.1±0.6 5.2±0.4 5.4±0.4 5.2±0.4 4.3±0.4 5.6±0.4 4.0±0.2 5.7±0.6 4.9±0.4

Thermodynamic Characterization. Temperature dependent circular dichroism spectroscopy was used 

to experimentally probe the thermodynamic stability of the dimers. Non-linear least squares fitting was 

carried out. The fitted parameters and their errors are shown in Table 3.2.3.

Table 3.2.3. Fitting parameters (and their errors)
VPE/VPK dimers aa ba [θ]M(0)b [θ]D(0)b Tm

c ΔHm
d ΔGød

Leu19 -0.02 0.21 -3.28 (0.4) -31.30 (0.05) 344,48 (0.1) 61.69 (0.7) 11.66 (0.2)

Leu16 -0.02 0.19 -3.17 (0.6) -27.60 (0.04) 351.09 (0.1) 75.54 (1.1) 13.83 (0.2)

Abu16 -0.01 0.24 -3.67 (0.2) -31.09 (0.06) 339.04 (0.1) 62.19 (0.8) 11.48 (0.2)

DfeGly16 -0.02 0.17 -1.95 (0.2) -22.30 (0.06) 339.12 (0.1) 61.99 (1.1) 11.46 (0.1)

TfeGly16 -0.02 0.16 -2.00 (0.3) -22.95 (0.05) 342.12 (0.1) 61.37 (0.9) 11.51 (0.2)

DfpGly16 -0.01 0.18 -2.74 (0.3) -27.58 (0.05) 342.45 (0.1) 67.15 (0.8) 12.27 (0.2)

Abu19  0.00 0.15 -4.54 (0.1) -25.49 (0.05) 326.86 (0.1) 50.71 (0.4)   9.64 (0.1)

DfeGly19  0.00 0.13 -3.98 (0.1) -24.60 (0.05) 330.05 (0.1) 52.67 (0.3)   9.99 (0.1)

TfeGly19  0.01 0.12 -4.49 (0.1) -22.97 (0.05) 328.47 (0.1) 52.25 (0.4)   9.87 (0.1)

DfpGly19  0.00 0.15 -4.65 (0.1) -26.04 (0.04) 330.64 (0.1) 52.45 (0.3) 10.00 (0.1)
a in 103 deg cm2 dmol1 residue1 °C1 (errors are smaller than 0.01), b in 103 deg cm2 dmol1 residue1, c in 
K, d in kcal mol1.

The heat capacity change upon unfolding is usually very small. Therefore, the second term of eq 

3.2.7 was neglected for the purpose of fitting. An approximate value for ∆Cp was calculated afterwards 

from the  ∆Hm  against the melting points (Van’t Hoff plot,  Figure 3.2.8). The slope of the plot was 

calculated to be 0.94 ± 0.1 kcal/(mol ∙ K), which corresponds to 0.013 kcal/(mol ∙ K ∙ residue).
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Figure 3.2.8. Van’t Hoff Plot of ∆Hm against Tm for all dimers the slope of which yields ∆Cp.

The Van’t Hoff equation was used in order to prove the validity of the above described fit. For 

this   method,   the   baselines   of   the   unfolding   transitions   were   determined   manually   and  Tm  was 

determined at fu = 0.5. ∆Hm was then calculated from fu(T) using the Van’t Hoff equation that has been 

adapted to the dimer to monomer transition (eq 3.2.9):

(3.2.9)

The values for Tm and ∆Hm are in excellent agreement with those derived from the automated 

fitting of the denaturing data (Figure 3.2.9).

Figure 3.2.9. Plot of the manually determined Tm (left panel) and ∆Hm (right panel) values against those determined by non
linear fitting.

All of the dimers show cooperative thermal unfolding transitions upon heating from 20°C to 

100°C (Figure 3.2.7). The thermodynamic parameters of unfolding are summarized in Table 3.2.4. In 

both positions a16 and d19 the substitution of Leu by Abu and its fluorinated analogues considerably 

decreases the thermodynamic stability of the dimer. Comparison of the stabilities relative to leucine 
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Leu), however, shows that in most cases substitution at position a16 seems to be less tolerated 

than substitution at position  d19 (Figure 3.2.10). This loss in stability due to considerably removing 

hydrophobic surface area is partly attenuated by fluorination of the Abu side chain. Furthermore, while 

a pronounced increase in steric size of the fluorinated side chain by incorporation of DfpGly appears to 

further stabilize the folding motif at position  a16 the same substitution at position  d19 shows only 

marginal effects. Most strikingly, the findings for DfpGly contradict previous results for an antiparallel 

coiled-coil model, where this residue as a replacement for leucine was found to disturb folding even 

stronger than alanine in an a-position [178].

Table 3.2.4. Thermodynamic parameters for the unfolding of the heterodimers substituted at position 
a16 and d19 of VPK.

Position a16 Position d19

Amino Acid Tm/°C[a] ΔGø/kcal mol-1 [b] Tm/°C[a] ΔGø/kcal mol-1 [b]

Leu 77.9 13.8 71.3 11.7

Abu 65.9 11.5 53.7  9.6

DfeGly 66.9 11.5 56.9 10.0

TfeGly 69.0 11.5 55.3   9.9

DfpGly 69.3 12.3 57.5 10.0

[a] Tm is defined as the temperature at which the fraction unfolded is 0.5. Errors are typically not higher than 0.1 °C. [b] ∆Gø 

values were calculated for the 1M standard state at 25°C using eq 8. The value for ∆Cp was determined from a Van’t Hoff 
plot (see supporting information) to be 0.94 ± 0.1 kcal mol-1 K-1. Errors for ∆Gø are typically not higher than 0.2 kcal mol-1 

for the a16 and 0.1 kcal mol-1 for the d19 substituted peptides.

Figure 3.2.10. Relative stabilities of the  a16- and  d19-substituted dimers compared to the respective leucine variants as 
determined by thermal unfolding (black bars) and MM-PBSA analysis (grey bars).

The experimentally observed stability trends and those determined by the MM-PBSA energetic 

analysis  are  in  agreement  (Figure  3.2.10).  The  adjusted  correlations  between  experimental  and 
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calculated enthalpies and free energies are 0.35 and 0.58, respectively (with significance at the level of 

p-value 0.05,  Figure 3.2.11). Despite relatively low correlation coefficient values, our computational 

results also qualitatively distinguish substitutions at positions  a16 and  d19 (Figure 3.2.10 and  Table 

3.2.5). 

Figure 3.2.11.  Correlation of the observed and theoretical  thermodynamic parameters of folding:  A) enthalpy (adjusted 
correlation coefficient: 0.35) and B) free energy of unfolding (adjusted correlation coefficient: 0.58).

Table 3.2.5. Calculated free energy components for the unfolding transition
Substitution ELEa 

kcal mol1
VDWb 
kcal mol1

GASc 
kcal mol1

PBSURd 
kcal mol1

PBCALe 
kcal mol1

PBELEf 
kcal mol1

∆H 
kcal mol1

∆G 
kcal mol1

Leu16 49.3 35.3 84.6 4.1 57.6 8.3 31.2 7.8

Abu16 81.5 33.3 114.8 3.9 86.7 5.3 32.0 4.8

DfeGly16 57.7 33.8 91.6 4.0 67.2 9.5 28.3 3.2

TfeGly16 47.6 35.5 83.1 4.1 57.5 9.9 29.6 3.9

DfpGly16 55.7 36.2 91.9 4.1 65.6 9.9 30.5 4.7

Leu19 65.5 37.5 103.1 4.2 74.8 9.3 32.4 6.4

Abu19 53.4 31.5 84.9 3.9 61.7 8.3 27.2 0.4

DfeGly19 45.3 34.3 79.6 4.0 54.2 9.0 29.3 5.3

TfeGly19 58.5 32.3 90.8 3.9 66.1 7.6 28.7 1.2

DfpGly19 42.2 30.4 72.7 3.8 51.5 9.3 25.0 0.5
aelectrostatic energy; bvan der Waals energy; cGAS = VDW + ELE; dhydrophobic component of solvation energy; ePoisson-
Bolzmann reaction energy of the field; fPBELE = ELE + PBCAL (full electrostatic energy)

The  theory  supports  the  experimental  finding  that  an  increasing  spatial  demand  of  the 

fluorinated  side  chain  at  position  a16 increases  the  stability  of  the  dimer,  while  this  trend  is  not 

reflected  for  identical  substitutions  at  position  d19.  However,  direct  quantitative  comparison  of 

experimental and MM-PBSA data is not possible because of three factors: 1) there is an overestimation 

of the entropic component of the free energy because a single trajectory was used for the entropy 
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calculation of the bound and unbound complex components [265], 2) the length of the model system 

was considerably reduced for the energy calculations, which results in a generally stronger impact on 

stability upon substitutions, and 3) entropy component are still the least accurate of MM-PBSA energy 

calculations [81].

The  general  decrease  in  stability  that  was  observed  for  the  fluorinated  peptides  may  be 

attributed to several factors. Recent investigations reveal that fluorine-containing amino acids exhibit 

weaker helix forming propensities than their native counterparts [266]. Reliable thermodynamic scales 

for helix propensity are essentially measured using isolated helices[267]. Coiled coil stability, however, 

is  substantially  determined  by  interhelical  interactions  of  the  a- and  d- positions  within  the 

hydrophobic  core  [268].  For  example,  Abu  in  a  monomeric  helix  favors  helix  formation  by 

approximately 0.08 kcal mol-1 [81] compared to Leu but its substitution for Leu within the hydrophobic 

core of our coiled-coil destabilizes the folding motif by more than 2 kcal mol-1. Our MD-simulations 

reveal mostly non-significant effects of fluorination on the conformational preferences of the amino 

acids within this coiled-coil environment. We certainly do not rule out that introduction of fluorine 

affects helix propensity,  but we would assign it  less importance in the case of strongly interacting 

coiled-coil residues. The stability of coiled-coils generally correlates with hydrophobicity and with the 

spatial demand of hydrophobic side chains in positions a [269] and d [270]. In addition, the packing 

characteristics of side chains in both positions are significantly different (Figure 3.2.13)  [264]. This 

difference may explain the  general  differences  between relative stabilities  of  positions  a and  d as 

shown in Figure 3.2.10. The most striking dissimilarity between the positions is the relative orientation 

of the Cα-Cβ vectors of interacting residues within the dimer. For a-positions they point away from each 

other, whereas they point towards each other for d-positions. Interestingly, this happens in all simulated 

coiled-coil systems, suggesting a key role in the packing differences of d- and a-positions. For a- and 

d-  positions  the dihedral  angles defined by both side chains (i.e.  Cα-Cβ-Cβ’-Cα’)  were found to  be 

significantly different during the MD simulations (-96±7° and 91±14°, respectively). Also there is an 

observable difference in Cβ- C’β distances, which is roughly 1 Å shorter for d- than for a-positions (see 

supporting information). Figure 3.2.12 exemplarily illustrates the different packing for TfeGly at both 

substitution positions according to the MD simulations. 

The fluorinated amino acids used in this study share a common structural feature, i.e. fluorine 

substitution at  the γ-carbon of  the  side chain,  which  results  in  a  significant  polarization of  the  β-

methylene groups. According to the different packing characteristics at  a- and  d- positions described 
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above,  these  β-methylene  groups  and  their  corresponding  dipoles  are  closer  to  their  hydrophobic 

interaction partners at the  d- than at the  a-positions. We conclude that fluorine-induced polarity may 

accordingly have varying degrees of importance for the stability of coiled-coil interactions at these 

positions.  Apparently,  the  impact  is  stronger  at  position  d19 because,  unlike  for  position  a16, the 

increase in volume of the fluorinated side chains by methylation (DfpGly) is not able to gain further 

stability (see Figure 3.2.10 and Table 3.2.5 for experimental and calculations results, respectively). This 

is  because  the  highly  polarized  β-methylene  group  in  position  d19 points  towards  the  interaction 

partner in the opposite strand, while it points away from it at position a16. The interpretation that the 

impact  of  fluorine-induced  polarity  in  amino  acid  side  chains  may  depend  on  the  packing  and 

orientation of coiled-coil helices gains further support from the finding that DfpGly in an antiparallel 

coiled-coil [178] destabilizes the folding motif much stronger than observed here (Figure 3.2.12). This 

is because the side chains in antiparallel coiled-coils are generally more tightly buried within the core 

[264] and  we  concluded  that  the  highly  polarized  γ-methyl  group  of  DfpGly  strongly  disturbs 

hydrophobic interactions. The differences in packing of position  a in antiparallel and parallel coiled-

coil dimers are outlined in figure 3.2.12.

Figure 3.2.12. Differences in packing of position a in antiparallel and parallel coiled-coil dimers and consequences on the 
stability of DfpGly substitutions.

Our findings for the parallel and the previously reported antiparallel system suggest that the 

orientation and flexibility of fluorinated side chains within a certain protein environment are additional 

factors  that  strongly determine  the impact  of  fluorine-induced polarity.  These conclusions  are  also 

supported  by  very  recent  MD  studies  by  Pendley  et  al,  which  also  reveal an  important  role  of 
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electrostatics in the stability of parallel coiled-coil systems containing fluorinated amino acid residues 

(5,5,5,5’5’5’-hexafluoroleucine) in the hydrophobic core [211].

Figure 3.2.13. Packing of TfeGly against its direct interaction partner. A) position a16 and B) position d19. The Cβ atoms of 
the interacting side-chains are closer in the d-position (B) than in the a-position (A). The displayed Cα-Cβ vectors highlight 
the significantly different packing characteristics of the side chains in a- and d- positions.

3.2.5 Conclusions 

We have shown that the effect of fluorine at different positions within a heptad repeat on the 

stability  of  an  α-helical  coiled-coil  can  be  rather  ambiguous.  Its  effects  highly  depend  on  the 

microenvironment of a certain substitution that, in our case, is defined by both the substitution position 

and by helix orientation. Although the coiled-coil model is a rather specific folding motif, our results 

imply that the packing and orientation of fluorinated side chains are very important in determining their 

interactions  with  native  protein  environments.  The  conception  or  notion  that  the  introduction  of 

fluorine into proteins necessarily leads to stabilization is clearly disputable according to our results. 

Changes in fluorine content and position of fluorination can considerably change the polarity and steric 

properties of an amino acid side chain and, thus, can influence the properties that a fluorinated amino 

acid develops within a native protein environment. This study shows that not only the fluorine itself, 

but also the characteristics of the environment determine the consequences of fluorine-induced polarity 

and steric demand of fluorinated side chains. Such systematic investigations will pave the way towards 

its directed application in protein engineering, for fine tuning of protein stability, their interactions with 

peptidic ligands as well as for therapeutical applications.
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3.3 Binding of fluorinated peptide substrates in the catalytic center of chymotrypsin

by Matthias Hakelberg, Sergey Samsonov, M. Teresa Pisabarro, and Beate Koksch

to be published

my contribution: computational part

3.3.1 Introduction

Chymotrypsin (bovine γ chymotrypsin: EC 3.4.21.1) is a peptidase participating in proteolysis. 

Chymotrypsin cleaves substrate peptides after Tyr, Trp and Phe residues, which side-chains fit into a 

hydrophobic  pocket  of  the  enzyme  [3].  Chymotrypsin's  catalytic  mechanism  is  carried  out  by  a 

catalytic triad. A catalytic triad commonly refers to the three amino acid residues found inside the 

active site of certain protease enzymes: Ser, Asp and His. More generally, catalytic triad can refer to 

any set of three residues that function together and are directly involved in catalysis. The residues of a 

catalytic triad can be far from each other in the primary structure however are brought close together in 

the tertiary structure. In chymotrypsin the triad consists of Ser195, Asp102 and His57. Ser195 hydroxyl 

group binds covalently to the carboxyl carbon atom of Phe, Trp or Tyr, while Asp102 and His57 then 

hydrolyze the bond [1].

The goal of this work has been to study impact of fluorinated amino acids substitutions in a 

chymotrypsin's peptidic substrate depending on sequential positions of the substitutions. For this we 

have used a MD approach and MM-PBSA energy calculations implemented in AMBER. The obtained 

data have been used to explain experimentally observed trends. 

3.3.2 Methodology

Docking.  The  structure  of  the  receptor  was  retrieved  from  Protein  Data  Bank  (bovine  alpha-

chymotrypsin,  ID:  4CHA,  1.68  Å  resolution).  His57  of  the  catalytic  triad  was  considered  to  be 

protonated  at  Nє atom.   The  system was  minimized  in  AMBER 8.0  [8] sander  module  in  TIP3P 

octahedral  water  box and periodic  boundary conditions  for  5000 cycles using steep descent  (3000 

cycles) and conjugate gradient (2000 cycles) algorithms. 

The ligands were built in AMBER xleap module:

Wt  : Ace-Ala-Phe-Ala-Ala-Nme

Dfe1: Ace-DfeGly-Phe-Ala-Ala-Nme

Tfe1: Ace-TfeGly-Phe-Ala-Ala-Nme

Dfp1: Ace-Dfp-Phe-Ala-Ala-Nme

Dfe3: Ace-Ala-Phe-DfeGly-Ala-Nme
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Tfe3: Ace-Ala-Phe-TfeGly-Ala-Nme

Dfp3: Ace-Ala-Phe-Dfp-Ala-Nme

Dfe4: Ace-Ala-Phe-Ala-DfeGly-Nme

Tfe4: Ace-Ala-Phe-Ala-TfeGly-Nme

Dfp4: Ace-Ala-Phe-Ala-Dfp-Nme,

[DfeGly- difluoroethylglycine, TfeGly- trifluoroethylglycine, DfpGly- difluoropropylglycine.]

For docking, atomic potential grid was calculated in autogrid4 (Autodock 4.0  [132]) with the 

0.375Å spacing in the box of size of 40x40x40 Å centered on the OG atom of catalytic Ser195. The 

docking was done by autodock4 program (5·107 energy evaluations, 150 members in population and 50 

individual runs). The results were clustered using g_cluster program in GROMACS [196].

The obtained binding poses were considered as productive if the distance between the main 

chain carbon atom of ligand's Phe and the side-chain hydroxyl oxygen atom of Ser195 was less than 

3.0 Å and the Phe carboxyl oxygen atom pointed into the oxyanionic hole formed by the main chain 

nitrogen atoms of Ser195 and Gly193. A productive docked pose with the minimal energy was taken as 

initial structure for a MD simulation.

MD simulations. The system was minimized in AMBER 8.0 sander module in TIP3P octahedral water 

box and periodic boundary conditions for 5000 cycles using steep descent (3000 cycles) and conjugate 

gradient (2000 cycles) algorithms. This was followed by heating of the system from 0 to 300 K for 10 

ps, and a 30 ps MD equilibration run at 300 K and 106 Pa in isothermal isobaric ensemble (NPT). 

Following  the  equilibration  procedure,  5  ns  of  productive  MD runs  were  carried  out  in  periodic 

boundary conditions in NPT ensemble with Langevin temperature coupling with collision frequency 

parameter γ = 1 ps-1 and Berendsen pressure coupling with a time constant of 1.0 ps. The SHAKE 

algorithm was used to constrain all bonds that contain hydrogen atoms. A 2 fs time integration step was 

used. An 8 Å cutoff was applied to treat nonbonded interactions, and the particle mesh ewald (PME) 

method  was  introduced  for  long-range  electrostatic  interactions  treatment.  MD  trajectories  were 

recorded each 2 ps. Non-standard amino acid residues were parameterized to be compatible with the 

Cornell force field using a standard procedure for non-natural amino acids in the R.E.M. III program, 

which we used for RESP charge calculations [260]. For each amino acid charges were derived for two 

conformations  (helical  and  extended)  with  the  ab  initio  Hartree-Fock  method  HF/6-31G* using 

GAMESS-US [201].

MM-PBSA calculations. For MM-PBSA free energy calculations only the parts of the trajectories with 
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a productive binding mode were considered. In order to avoid bias towards certain conformations, 10 

frames corresponding to electrostatic energy weighted intervals were chosen for the calculations as it is 

described in Lafont  et  al  [126].  The values for  the individual  energy components  as well  as  their 

standard deviations were averaged from three MD runs.

Measuring  residues  mobility.  Average  fluctuations  of  the  ligand  residues  at  the  positions  for 

mutations were obtained using PTRAJ module of AMBER 8.0. The obtained values were averaged 

with weights for three MD runs. The weights represented the times of a productive conformation in 

each run.

3.3.3 Results and Discussion

Docking.  For each peptide docking at least  3 (3-9) productive conformations (Figure 3.3.1) out of 

overall 50 were found. In most cases a productive conformation corresponded to a minimal docking 

energy. Docking results were clustered by RMSD of main-chain and CB atoms for X-Phe-X-X part of 

the docked peptides with a 1.2Å cutoff. The number of clusters varied from 11 to 27, with the biggest 

cluster containing from 7 to 35 members.  Productive conformations are predominantly presented in the 

same clusters. However, because of the flexibility of a productive mode (mostly due to the mobility of 

the N-terminal residue) productive conformations could have substantial RMSD values (up to 1.3 Å) 

between each other (also shown in the fluctuation analysis, vide infra). 

Figure 3.3.1. Productive conformation for Wt peptide obtained in docking. A) Ribbon and licorice representation. Ligand 
and receptor residues are shown in orange and green, respectively. B)  The  ligand  is  shown  in  balls  and  sticks 
representation, the receptor is shown as a surface coloured by electrostatic potential.

MD.  In  all  simulations  the  peptide  ligand  remained  in  the  catalytic  site,  though  a  productive 

conformation could have been disrupted during the simulation. The calculated energies and average 
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residue fluctuations are presented in the Figures 3.3.2 and 3.3.3 and discussed for positions 1, 3, 4. The 

corresponding binding energies obtained by docking do not correlate with total MM-PBSA energies, 

but with the MM vacuo component (adjusted correlation coefficient R=58%, p-value=0.05).  

Figure  3.3.2.  MM-PBSA binding  energy  components.  A)  Electrostatic  and  van  der  Waals  components  B)  Non-polar 
solvation energy C) MM-PBSA reaction field energy D) Total MM-PBSA energy.
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Figure 3.3.3. Mobility of the peptide residues at mutated positions.

Position 1. The introduction of DfeGly and TfeGly stabilizes the interaction at position 1 (Figure 2D), 

disallowing the flip of the first residue in the peptide. In the fluorinated peptides van der Waals energies 

as well as non-polar energies of solvation are lower, which is due to an increase of solvent accessible 

surface area (Figure 2A, 2B). Because of the bigger hydrophobic moiety exposed to the solvent in case 

of DfpGly in the first position, the residue demostrates an increased mobility (Figure 3) and flips. 

Position 3. The introduction of DfeGly and TfeGly makes hydrophobic contacts for the position 3 more 

favorable. Additional stabilization results from contacts made by the Ala1 side chain. In general, these 

mutations make the peptide less mobile, though twists of Ala1 are allowed without any disruption of 

the productive conformation. DfpGly mutant disrupts the productive conformation rapidly, Dfp3 is the 

only peptide with not-favorable binding energy in the productive conformation (Figure 2). 

Position 4.  The bigger becomes the moiety of a fluorinated substitute (in the row DfeGly,  TfeGly, 

DfpGly), the more stabilized are hydrophobic contacts and a peptide binding in general (Figure 2A, 

2D). Residues in this position are the most mobile compared to the ones in positions 2 and 3 (Figure 3).

Fluctuations analysis. The linear regression analysis shows that total energy is dependent on quadratic 

fluctuation of the residue in the 1st position (adjusted R= 17%, 66%, 82% for all, all peptides without 

Dfp3 and all peptides without Wt and Dfp3, respectively), for other dependencies p-values are always 

higher than 0.05, meaning that impact of residues in the position 1 could be energetically decisive for 

binding. 

3.3.4 Conclusions
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Introduction of a sterically more demanding hydrophobic moiety into the ligand leads either to 

destabilization of interactions between a receptor and a ligand if a moiety is exposed to solvent (Dfp1, 

Dfp3) or to a hydrophobic interaction energy gain by formation of new contacts (Dfe1, Tfe1, Dfe3, 

Tfe3, Dfp4). 

All the analyzed substitutions are characterized by decrease of electrostatic energy. 6 out of 9 

studied fluorinated peptides improve the binding energy in productive binding mode (Dfe1, Tfe1, Dfe3, 

Tfe3, Tfe4, Dfp4), Dfe4 do not significantly affect the binding, and Dfp1 and Dfp3 make the binding 

weaker  compared  to  Wt.  Comparison  of  the  obtained  energy values  shows that  the  position  1  in 

substrate peptide affects binding energetics the most.

 Our results agree and help to explain the experimental data obtained by use of analytical HPLC 

with a fluorescence marker.
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CHAPTER 4

Selection of a buried salt bridge by phage display 

by Toni Vagt , Christian Jäckel, Sergey Samsonov , M. Teresa Pisabarro, and Beate Koksch

Bioorganic & Medicinal Chemistry Letter, 2009 Mer 21 [Epub ahead of print]

my contribution: computational part

4.1 Abstract

The α-helical coiled-coil  is a valuable folding motif  for protein design and engineering.  By 

means of phage display technology, we selected a capable binding partner for one strand of a coiled-

coil bearing a charged amino acid in a central hydrophobic core position. This procedure resulted in a 

novel coiled-coil pair featuring an opposed Glu-Lys pair arranged staggered within the hydrophobic 

core  of  a  coiled-coil  structure.  Structural  investigation  of  the  selected  coiled-coil  dimer  by  CD 

spectroscopy and MD simulations suggest that a buried salt bridge within the hydrophobic core enables 

the specific dimerization of two peptides.

4.2 Introduction

The α-helical coiled-coil is one of the most widespread structural motifs in nature and is found 

in motor proteins, transcription factors, viral fusion proteins, and many more[271]. Due to extensive 

investigations within the last decades, the coiled-coil is also one of the best understood protein folding 

motifs[272]. The structural simplicity and distinctive coherence between sequence and structure allows 

the  de  novo design  of  coiled-coils  with  special  features  and  makes  it  a  useful  tool  in  protein 

engineering[232,273].  In  such  cases,  one  of  its  most  valuable  features  is  the  formation  of  highly 

specific dimerization domains, which introduces the possibility of targeting viral fusion proteins or 

transcription  factors  in  therapeutic  applications.  Furthermore,  the  coiled-coil  has  proven  to  be  an 

excellent model system for the systematic investigation of protein folding [178,221].

Coiled coils typically consist of two to five right-handed α-helices that wrap around each other 

to form a left-handed superhelix. The primary structure of each helix comprises the so-called heptad 

repeat, a periodicity of seven residues commonly denoted (a-b-c-d-e-f-g)n. Typically, nonpolar residues 

occupy  positions  a and  d,  forming  a  hydrophobic  surface  which  initiates  oligomerization  under 

aqueous conditions. Charged amino acids in positions e and g form a second interaction domain which 

favors coiled-coil formation by interhelical ionic interactions, while positions  c,  b and  f are solvent-

exposed and thus often populated by polar residues.
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Despite the important role of the hydrophobic character of positions a and d for the formation 

and stability of the coiled-coil folding motif, an analysis of protein databases revealed that in natural 

occurring proteins up to 20 % of these positions are populated by polar and charged residues[274]. In 

spite of their destabilizing effect, these amino acids play a decisive role in the oligomerization state and 

orientation of the monomers within the coiled-coil [275,276]. As the construction of specific interacting 

peptide domains is one of the main goals of coiled-coil design, modification of the hydrophobic core by 

charged amino acids represents a promising strategy for the design of coiled-coil heteromers  [277]. 

Buried salt bridges have already been used successfully in the design of highly specific interacting 

coiled-coil dimers  [278-280]. However, these approaches are commonly based on lysine or arginine 

analogues with shortened side chains in order to minimize steric mismatches within the hydrophobic 

core.  However,  folding  motifs  which  are  applicable  for  synthesis  in  vivo,  desirable  for  many 

applications, typically require a composition of naturally occurring amino acids. Otherwise, charged 

interactions within the hydrophobic core provide a promising design principle to direct oligomerization 

specificity  in  a  manner  which  keeps  the  e-  and  g-  positions  free  for  the  introduction  of  further 

specifications.  To  combine  both  features  (control  of  heteromerization  specificity  by  charged 

interactions within the hydrophobic core and accessibility by in vivo synthesis) within one system, we 

were interested in the determination of peptides built up of canonical amino acids which specifically 

interact with coiled-coil strands bearing charged amino acids in hydrophobic core positions. 

In contrast to the often used strategy of rational peptide design, we used saturation mutagenesis 

to construct an extensive library of potential coiled-coil pairs which was screened using phage display 

technology[281]. This technique links the phenotype of a peptide which is displayed on the surface of a 

bacteriophage with the genotype encoding this  peptide within the  phage  particle.  While  saturation 

mutagenesis  enables  generation  of  a  phage  displayed  peptide  library,  physical  linkage  between 

phenotype and genotype enables the easy identification of individual peptides which are selected by 

binding preference to a given target. Phage display has already proven to be a powerful tool for the 

screening of protein-DNA, protein-protein, and protein-peptide interactions [282-285]. Previously, this 

technique was successfully applied in the determination of specific coiled-coil pairing, demonstrating 

its suitability for peptide design [286,287].

4.3 Methodology

Library  construction  and  phage  display.  The  VPE-library  was  expressed  on  the  surface  of 

bacteriaphage M13 as pIII fusion using  E. coli ER2738 (New England Biolabs #E4104S), VCSM13 
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helper phage (Stratagene #200251),  pComb3H [288] phagemid vector (GenBank database accession 

number: AF268280, Barbas laboratory, TSRI). Library construction was performed by annealing of two 

complementary oligonucleotides that have the four library codons randomized by applying the NNK-

strategy [289,290].

The  following  randomized  oligonucleotides,  which  possess  phosphate  at  the  5’-end,  were 

purchased from biomers.net GmbH (Ulm, Germany) and applied for library construction (codons are in 

reading frame): 

sense-strand: 5’-CG GCC GAG GTT AGC GCG CTG GAA AAG GAG GTG GCC AGT TTA GAG 

AAA GAG NNK AGT GCC NNK NNK AAG AAA NNK GCG AGC CTG AAA AAG GAG GTA 

AGT GCG TTA GAA GGC CAG GC-3’

anti-sense-strand: 5’-TG GCC TTC TAA CGC ACT TAC CTC CTT TTT CAG GCT CGC MNN TTT 

CTT MNN MNN GGC ACT MNN CTC TTT CTC TAA ACT GGC CAC CTC CTT TTC CAG CGC 

GCT AAC CTC GGC CGC CT-3’

N stands for A, G, C, and T; K stands for G and T; M stands for A and C

Vector  digest. 10  µl  pComb3H  phagemid  vector  (1  µg/µL)  were  incubated  with  60U  SfiI 

(recombinant, New England Biolabs #R0123S) and BSA (100 µg/mL) in NE-buffer 2 (total volume 

100 µL) for 4.5 h at 50 °C. The reaction was worked up by agarose gelelectrophoresis, and both the 

phagemid DNA as well as the small DNA fragment (insert) were isolated from the gel, DNA bands 

were cut out, and DNA was isolated using a Qiaquick gel extraction kit (Qiagen). After elution from the 

column with 50 µL deionized water, the DNA concentration was determined and the DNA was stored 

at -20°C.

Annealing  of  the  library  encoding  oligonucleotides. 3  ×  675  ng  of  both  of  the  randomized 

oligonucleotides were incubated at 95°C for 10 min in a volume of 200 µL annealing buffer (10 mM 

TrisHCl, 2 mM MgCl2, 50 mM NaCl, pH 7.5). The annealing samples were cooled down slowly to 

15°C within 80 min. After ethanol precipitation and dissolving in 20 µL deionized water, all DNA 

samples were purified by agarose gelelectrophoresis. DNA bands were cut out and DNA was isolated 

using  a  Qiaquick  gel  extraction  kit  (Qiagen).  After  elution  with  20  µL deionized  water  all  DNA 

samples were pooled, and concentration was determined.

Ligation and transfection of ER2738. 1 µg annealed library DNA was incubated with 1.4 µg digested 

(o)-phagmid DNA and 4000U T4 DNA Ligase (New England Biolabs #M0202S) over night at 16 °C in 

a total volume of 200 µL T4 DNA Ligase Reaction Buffer. Ligation reactions without insert DNA 
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served as negative controls and ligations of vector DNA with the non-randomized DNA insert, which 

was cut out of the vector before, served as positive controls. Ligated phagemid DNA was purified by 

ethanol precipitation and dissolved in 15 µL deionized water. For transfection of electrocompetent ER 

2738 all 15 µL of ligated phagemid were mixed with 300 µL freshly thawed electrocompetent cells and 

transferred into a 2 mm electro cuvette. After electroporation with 2.5 kV, the cuvette was immediately 

flushed with 1 mL prewarmed SOC medium. The cuvette was rinsed with additional 4 mL SOC media 

and all  five fractions  were pooled.  Cell  cultures  were  shaken for  1h at  37°C and 200 rpm.  After 

addition of 10 mL prewarmed SB medium, 5, and 0.5 µL of each culture, respectively, were plated on 

carbenicillin agar plates (10 µg/ml) and allowed to grow over night at 37°C. Colonies were counted and 

a library size of 2.3 × 106 was calculated.

Production of library phage. 3 µL carbenicillin (100 mg/mL) were added to the 15 mL cell culture 

(see above). After 1h incubation at 37°C/ 200rpm agitation, additional 4.5µl carbenicillin (100 mg/ml) 

were added, and the incubation proceeded for 1h at 37°C / 200 rpm. Cell cultures were transferred to 

183 mL prewarmed SB media, containing 92.5 µL carbenicillin (100 mg/mL) in centrifuge bottles, and 

2 mL VCSM13 helper phage (Stratagene #200251) were added. After incubation for 2 h at 37 °C/ 200 

rpm, 280 µL kanamycin (50 mg/mL) were added and phage were produced over night at 37°C/ 200 

rpm agitation. Overnight cultures were centrifuged at 3000 g/ 4°C for 30 min. The supernatant was 

transferred  to  precooled  centrifuge  bottles,  containing  0.2  volumes  20% PEG 8000/  2.5M sodium 

chloride solution, and the phage precipitation proceeded for 30 min on ice. The phage were centrifuged 

for 30 min at 15000g/ 4°C. The supernatant was discarded, and bottles were drained by inverting on a 

paper towel for 10 min. Phage pellets were resuspended with 2 ml PBS and passed through a 0.22µm 

filter. For storage at 4°C, sodium azide was added to a final concentration of 0.02% (w/v).

Library panning. For the immobilization of target peptides,  30µL of streptavidin-coated magnetic 

beads (M-280, Dynal Biotech) were incubated with 500 µL 10 µM biotinylated peptide in PBS for 45 

min at RT. Particles were washed twice with 500 µL 0.1% Tween 20 in PBS. 500 µL 5% non-fat dried 

milk in PBS was added and the sample was incubated for 45 min at RT. The milk-PBS suspension was 

removed and the target-phage binding on magnetic particles was performed with 500µL phage solution 

for 1.5 h at RT. Particles were washed 4 x with 500 µL Tween20 in PBS (PBS buffer contained 0.1 % 

Tween 20 in round 1; 1 % Tween 20 in rounds 2-5; in round 5 two washing steps with 1 M GndHCl in 

PBS were added) and once with 500µL TBS (4min incubation). For Panning with VPK-E19 only PBS 

containing 0.1 % Tween20 (round 1-4) and 0.2 % Tween20 (round 5) was used. 
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Reinfection. E. coli for phage infection were prepared by inocculation of 7.5 µL electrocompetent 

ER2738 in 5 mL prewarmed SB media and growing for 2 h at 37°C/ 200rpm. The elution of bound 

phage from magnetic particles proceeded with 25 µL freshly prepared trypsin solution (10 mg/mL in 

TBS) for 30 min at RT and the reaction was quenched with 75 µL SB media. For reinfection, 100 µL 

phage  solution  was  transferred  to  5  mL  E.  coli culture  and  shaken  for  30  min  at  37°C/  200rpm 

agitation. After removing 10 µl cell culture for output-titering (see below), 5 ml prewarmed SB media 

and 2.5 µL carbenicillin (100mg/mL) were added and samples were shaken for 1h at 37°C/ 200rpm. 

Cell cultures were transferred to 90 mL prewarmed SB media, containing 46 µL carbenicillin (100 mg/

mL) in centrifuge bottles and 1 ml helper phage were added. After incubation for 1.5 h at 37°C/ 200 

rpm, 140 µL kanamycin (50mg/mL) were added and phage were produced over night at 37°C/ 200 rpm 

agitation.

Determination of phage titers. Input-titering was performed by infecting 50 µL E. coli with 1 µL of a 

1x10-6 dilution of the phage preparation and incubation for 15 min at RT. All 50 µL were plated on 

carbenicillin agar plates and bacteria were allowed to grow over night at 37°C. Output-titering was 

performed by plating 50 µL of a 10-2 and af 10-3 dilution of the 5 mL reinfection cell culture (see above) 

on  carbenicillin  agar  plates.  After  growing  over  night  at  37°C  bacteria  colonies  were  count  and 

output/input ratios for all samples were calculated.

Peptide  synthesis,  purification  and  characterization.  Fmoc-Glu(OtBu)-  and  Fmoc-Lys(Boc)-

NovaSyn-TGA  resins  (0.16  mmol/g  and  0.21  mmol/g,  respectively)  were  purchased  from 

Novabiochem.  Fmoc-L-amino  acids,  2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium 

tetrafluoroborate  (TBTU),  1-hydroxybenzotriazole  (HOBt)  were  purchased  from  Fa.  Gerhardt 

(Wolfhagen,  Germany)  and  1-hydroxy-7-azabenzotriazole  (HOAt)  from  Iris  Biotech. 

Dimethylformamide (p.a.),  triisopropylsilane (TIS 99%),  N,N-diisopropylethylamine (DIEA 98+%), 

N,N-diisopropylcarbodiimide (DIC, 99%), trifluoroacetic acid (TFA, 99%), sodium perchlorate (p.a.), 

piperidine (99% extra pure) and biotine were purchased from Acros. 1,8-diazabicyclo[5.4.0]undec-7-en 

and trifluoroacetic acid (Uvasol) were obtained from Merck. Peptides were synthesized on a SyroXP-1 

peptide synthesizer (MultiSynTech GmbH, Witten, Germany) using standard Fmoc/tBu chemistry and 

TCTU/HOBt as coupling reagents at a 0.05 mM scale. For standard couplings a fourfold excess of 

amino acids and coupling reagents as well as an eight fold excess of DIEA relative to resin loading was 

used. All couplings were performed as double couplings (30 min.). The coupling mixture contained 

0.23 M NaClO4 to prevent on-resin aggregation. Fmoc-deprotection was performed 4 × 5 min using 2 
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%  DBU  and  2  %piperidine  in  DMF.  After  synthesis  peptides  were  cleaved  from the  resin  with 

TFA/TIS/H2O (95/2.5/2.5). Purification was carried out by RP-HPLC (Phenomenex® Luna C8, 10 µm, 

250 nm × 21.2 mm). Purity was determined by analytical HPLC (Phenomenex® Luna C8, 5 µm, 250 nm 

× 4.6 mm).

To identify the products high resolution mass spectra were recorded on the Agilent 6210 ESI-

TOF mass spectrometer (Agilent Technologies, Santa Clara, CA, USA.). The samples were dissolved in 

acetonitrile/water (1/1) containing 0.1 % TFA and injected directly into the spray chamber using a 

syringe pump with flow rates of 10 to 50 µL/min. The spray voltage was 4.000V and the drying gas 

(N2) flow rate was set to 1 psi (1 bar).

Circular Dichroism.  CD-spectra were recorded in 100 mM phosphate buffer pH 7.4 at an overall 

peptide concentration of 20 µM on a Jasco J-715 spectropolarimeter at 20°C (Jasco PTC-348 WI peltier 

thermostat).  The ellipticity was normalized to concentration (c/mol×l-1), number of residues (n) and 

path length (l/cm) using the following equation:

ncl
obs

⋅⋅⋅
Θ

=Θ
1000

][                                                                      (4.1)

where Θobs is the measured ellipticity in mdeg and [Θ] the normalized ellipticity in 103 deg × cm2 × 

dmol-1 × residue-1. Each sample was prepared three times and spectra were averaged.

Determination of Peptide Concentration.  Concentrations were estimated by UV spectroscopy on a 

Cary 50 UV/Vis spectrometer (Varian) using the absorption of o-aminobenzoic acid attached to each N-

terminus. A calibration curve (Figure 4.1) was recorded using different concentrations of H2N-Abz-

Gly-COOH·HCl  (Bachem)  in  the  buffer  used  for  CD  spectroscopy  containing  6M  guanidinium 

hydrochloride (Fluka). Disposable Plastibrand® PMMA cuvettes (Brand GmbH, Germany) with path 

lengths of 1 cm were used.

Figure 4.1. Calibration curve for the determination of peptide concentrations recorded at 20°C (100 mM phosphate buffer, 6 
M GdnHCl, pH 7.4).
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MD simulations and MM-PBSA free energy calculations.  The crystal  structure of  the  Sir4p C-

terminal coiled-coil at 2.5 Å resolution (PDB ID: 1pl5) was used as template for modeling our parallel 

coiled-coil systems. To obtain the parent peptide model system (VPE-VPK) the length of the helices of 

the Sir4p coiled-coil was reduced to 34 aa, and the necessary side chain substitutions were carried out 

with  the  MOE program[203].  The  structures  were  solvated  in  a  TIP3P water  octahedral  box,  and 

periodic boundary conditions under constant temperature (300K) and constant pressure (106 Pa NTP) 

were applied. MD productive runs of simulations of 5 ns were performed with AMBER 8.0 [8] using 

the ff03 force field.  Energetic post-processing of the trajectories was done in a continuous solvent 

model as implemented in the AMBER 8.0 MM-PBSA module. The snapshots for the calculations were 

chosen as described by Lafont  and coworkers[126].  Entropies were calculated using normal  mode 

analysis.  Significant comparison of the free energies of interaction between two coiled-coils  is  not 

possible because of the intrinsic flexibility of the helices termini. To avoid this additional source of 

noise in the MM-PBSA calculations only the central parts of the helices were analyzed (residues 10-

25). 

Phage Display. Sequencing of randomly picked clones after the last round of panning against the VPK 

wild type (Table 4.1) and VPK-E19 (Table 4.2) resulted in the following amino acid pattern in the 

randomized positions of VPE:

Table 4.1. Peptides used in this study synthesized by SPPS.
Peptide Sequence

Bio-VPK Biotin-GSGKVSALKEKVASLKEKVSALKEEVASLEEKVSALK-OH

Bio-VPK-E19 Biotin-GSGKVSALKEKVASLKEKVSAEKEEVASLEEKVSALK-OH

VPK Abz-KVSALKEKVASLKEKVSALKEEVASLEEKVSALK-OH

VPK-E19 Abz-KVSALKEKVASLKEKVSAEKEEVASLEEKVSALK-OH

VPE Abz-EVSALEKEVASLEKEVSALEKKVASLKKEVSALE-OH

VPE-LLLL Abz-EVSALEKEVASLEKELSALLKKLASLKKEVSALE-OH

VPE-LLLK Abz-EVSALEKEVASLEKELSALLKKKASLKKEVSALE-OH

Abz: o-Aminobenzoic acid.

Table 4.2. Identification of the synthesized peptides by ESI-TOF mass spectrometry.
Peptide Calc.[M+4H]4+ Obs [M+4H]4+ 

Bio-VPK-E19 1028.8112 1028.8219

Bio-VPK 1024.8216 1024.8302

VPK-E19 951.7824 951.7886

VPE 948.2665 948.7715

VPE-LLLL 951.2847 951.2795

VPE-LLLK 955.0375 955.0466
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Oligomerization  state  of  the  VPK-E19/VPE-LLLK  heteromer.  In  order  to  determine  the 

oligomerization state of the VPK-E19/VPE-LLLK heteromers CD-spectra of mixtures of both peptides 

at different molar ratios were recorded. Plotting of the mean residue ellipticity at 222nm versus the 

mole fraction of VPK-E19 showed a minimum at a nearly 1:1 molar ratio of VPK-E19 and VPE-LLLK 

suggesting the formation of heterodimers (Figure 4.2). 

Figure 4.2. Mean residue ellipticity at 222 nm versus the mole fraction of VPK-E19. Spectra were recorded at 20 °C in 100 
mM phosphate pH 7.4. The total peptide concentration was held constant at 20 µM.

4.4 Results and Discussion

Figure 4.3. A) Helical wheel presentation of the parallel VPK-VPE heterodimer. B) Schematic side view of VPK-E19 and the 
VPE-library. C) Glu19 in VPK-E19 is highlighted in red, while the four randomized amino acid positions in VPE which 
directly interact with Glu19 are highlighted in green.  Amino acid sequences of VPK-E19 and the VPE-phage library.

The starting point for our studies was the coiled-coil pair VPE/VPK, reported by our group to 

form parallel heterodimers [291]. VPK features lysine in positions e and g while e’ and g’ in VPE are 

occupied  by  negatively  charged  glutamic  acid  to  further  the  formation  of  heterodimers  by  ionic 
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interactions  under  physiological  conditions  (Figure  4.3  A).  A parallel  arrangement  as  well  as  a 

preference for dimer formation is dictated by valine in position a [263]. In order to place a negatively 

charged side chain within the hydrophobic core, Leu19 in VPK was replaced by glutamic acid (Figure 

4.3 B). As expected, this substitution results in significant destabilization of the VPK/VPE coiled-coil.

Neither homodimerization of VPK-E19 nor the formation of VPK-E19/VPE dimers could be observed by 

CD spectroscopy (Figure 4.4). Subsequently, the four amino acid positions within VPE which directly 

interact with Glu19 in VPK-E19 were fully randomized and the resulting VPE-library was fused to the 

minor coat protein pIII on the surface of the filamentous bacteriophage M13 (Figure 4.3 B). The DNA 

fragment that encodes for the VPE-peptide, including the four randomized positions a16, d19, e20 and a23, 

was inserted into the phagemid vector pComb3H to the 5’-end at the gene that encodes for the C-

terminal part of the truncated minor coat protein pIII [288]. After successful cloning of the randomized 

DNA into M13, amplified phage that present the peptide library were used in the selection for binding 

partners of the Glu19-substituted VPK-variant. VPK-E19 used for the selection procedure carries an N-

terminal biotin  label for immobilization on streptavidin-coated magnetic beads.  Coiled coil  pairing 

selectivity  was  then  used  to  determine  the  best  binding  partner  in  the  library,  which  is  able  to 

compensate for the destabilizing effect of the charge within the hydrophobic domain of VPK-E19.

Figure 4.4.  CD spectra of VPK-E19 (solid line) and an equimolar mixture of VPK-E19 and wild type VPE (dotted line). 
Spectra were recorded at 20 °C in 100 mM phosphate buffer pH 7.4 at an overall peptide concentration of 20 µM.

In a control experiment, 5 rounds of panning against wild type VPK resulted in a variety of 

sequences  which  can  be  summarized  as  the  motifs  VPK-Z16L19X20L23 and  L16L19X20Z23,  where  X 

indicates predominantly hydrophobic residues and Z marks aromatic residues (Table 4.3, 4.4). Despite 

the surprising variety of selected VPE-variants, the hydrophobic character of the amino acids which 

were found in the positions of the hydrophobic core clearly correlate with the design principles of the 
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α-helical coiled-coil. 

Table 4.3. Results of the sequencing of 10 randomly selected clones after 5 rounds of panning against 
VPK wild type.
Frequency Position a‘16 Position d‘19 Position e‘20 Position a‘23

2× Leu Leu Leu Tyr

1× Leu Leu Leu Phe

1× Leu Leu Tyr Tyr

1× Leu Leu Gln Tyr

1× Tyr Leu Lys Leu

2× Tyr Leu Leu Leu

1× Phe Leu Leu Leu

1× Leu Leu Leu Leu

Table 4.4. Results of the sequencing of 9 randomly selected clones after 5 rounds of panning against 
VPK-E19.
Frequency Position a‘16 Position d‘19 Position e‘20 Position a‘23

2× Leu Leu Leu Tyr

1× Leu Leu Leu Phe

1× Leu Leu Tyr Tyr

1× Leu Leu Gln Tyr

1× Tyr Leu Lys Leu

2× Tyr Leu Leu Leu

1× Phe Leu Leu Leu

1× Leu Leu Leu Leu

In contrast, panning against VPK-E19 resulted in greater sequence convergence. Sequencing of 

nine clones yielded only two different phenotypes: 8 of 9 clones matched the sequence of VPE-LLLK, 

in which leucine occupies positions a16, d19 and e20 and lysine position a23. The remaining clone differs 

only in position e20, where methionine was found instead of leucine. Overall, leucine represents the 

most common amino acid within the hydrophobic core of naturally occurring coiled-coil peptides and 

its selection in positions  a16 and  d19 is unsurprising. The increase in hydrophobic surface area by the 

substitution of  Glu20 with  leucine or  methionine  obviously stabilizes  the coiled-coil  structure even 

further. 

As  expected,  CD  analysis  of  VPK-E19 and  VPE-LLLK  in  isolation  yields  CD  spectra 

characteristic for predominantly random coil structures  (Figure 4.5 A). In both peptides, the charged 

residue within the hydrophobic core, in addition to the repulsive interactions between the e/g’ and g/e’ 
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positions which are a feature of the original design strongly discourages the formation of homodimers. 

In addition,  a 1:1 mixture of VPK-E19 and wild type VPE does not result  in coiled-coil  formation 

(Figure 4.4). In contrast, an equimolar mixture of VPK-E19 and VPE-LLLK shows a strong α-helical 

CD signal.  Plotting the mean residue ellipticity at  222 nm versus the mole fraction of VPE-LLLK 

shows  a  minimum at  a  1:1  molar  ratio  of  VPK-E19 and  VPE-LLLK,  suggesting  the  presence  of 

heterodimers  (Figure  4.2).  An  additional  experiment  confirmed the  importance  of  Lys23 for  the 

formation of the coiled-coil heteromer. The control peptide VPE-LLLL differs from VPE-LLLK only 

in  position  a23,  in  which  lysine  was  replaced  by  leucine.  While  this  single  substitution  enables 

homodimerization of VPE-LLLL, no formation of heteromers in combination with VPK-E19 could be 

observed.  Instead,  an equimolar  mixture of the two peptides  shows a  CD spectrum which exactly 

matches the sum of the CD spectra recorded for each isolated peptide (Figure 4.5 B). This indicates that 

no interaction between VPK-E19 and VPE-LLLL takes place. Obviously, Lys23 is the key element for 

the formation of the heteromeric coiled-coil dimer VPK-E19/VPE-LLLK.

Figure 4.5. A) CD spectra of VPK-E19 (solid line), VPE-LLLK (dotted line), and an equimolar mixture of VPK-E19 and 
VPE-LLLK (dashed-dotted line). B) CD-spectra of VPK-E19 (solid line) and an equimolar mixture of VPK-E19 and VPE-
LLLL (dashed line). The sum of the single spectra of VPK-E19 and VPE-LLLL is presented as dashed-dotted line and the 
spectrum of VPE-LLLL as dotted line. Spectra were recorded at 20 °C in 100 mM phosphate buffer pH 7.4 at an overall 
peptide concentration of 20 µM.
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Our results suggest that the formation of an interhelical salt bridge between Glu19 (VPK-E19) and 

Lys23 (VPE-LLLK) represents one of the driving forces for dimerization of VPK-E19/VPE-LLLK and 

that it  determines the specificity of this interaction  (Figure 4.6). Computer modelling supports this 

assumption. MD simulations (see Supporting Information for details) demonstrate that the heterodimer 

is stable in solution. The distances between Cβ atoms of the residues in a- and d-positions in each helix 

do not fluctuate significantly in the simulation and the backbone dihedral angles remain close to ideal 

α-helical values. The distance between the carbonyl oxygen of Glu19 and amide nitrogen of Lys23 was 

calculated to be less than between 3Å (95.9% of the simulation time) and 4Å (99.7% of the simulation 

time),  which  strongly  suggests  the  existence  of  a  salt  bridge  between  these  functional  groups. 

Furthermore,  decomposition of the MM-GBSA energy values show that Lys23 contributes the most 

significant value of all amino acids to the overall energy of the coiled-coil interaction (-5 kcal/mol, 

which is about 20% of the overall free energy of unfolding).

Figure 4.6. Structure of the proposed salt bridge between Glu19 of VPK-E19 and Lys23 of VPE-LLLK. 

4.5 Conclusions

Buried  salt  bridges  within  the  hydrophobic  core  of  coiled-coil  peptides  created  by rational 

design to construct specific interacting coiled-coil pairs have been shown before. Nevertheless, such 

structures typically are limited to directly opposed a and a’ or d and d’ positions. Due to the small 

distance between these positions in the parallel coiled-coil, aspartic acid and positively charged non 

proteinogenic amino acids with shortened side chains are necessary for stable coiled-coil formation 

[278-280]. However, by using saturation mutagenesis and selection, we were able to find a coiled-coil 

pair characterized by a buried salt bridge between lysine and glutamic acid. Here, the charged amino 
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acids are not placed in positions directly opposed, but staggered within the hydrophobic core. This 

arrangement between i and i’+4 positions apparently enables the formation of a salt bridge between the 

ammonium function of the lysine side chain and the carboxylate function of the glutamic acid side 

chain without disruption of the coiled-coil structure. Instead, this interaction results in a highly specific 

dimerization domain made up of canonical amino acids which could potentially be used in protein 

design and material engineering  [277]. The selection of VPE-LLLK not only delivers a new highly 

specific  coiled-coil  heterodimer  but  also  demonstrates  the  potential  of  the  phage  display-based 

screening  system  to  select  specific  interaction  partners  for  uncommon  amino  acids  within  the 

hydrophobic core of coiled-coils.
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Figure  3.1.6.  Covariance  (propensity  index)  between  probabilities  obtained  from  calculated 

Ramachandran plots and PDB-derived secondary structure data. A)  β-strand. B)  α-helix. C) Left  α-

helix.

Figure  3.1.7.  Side  chain  rotamers  potential  energy  E(χ1)-Emin(χ1)  of  the  fluorinated  ethylglycine 

derivatives in different backbone conformations. A) β-strand. B) α-helix. C) Left α-helix.

Figure 3.1.8. β-strand conformation for Ace-Xxx-Nme dipeptides, where Xxx= A) Abu. B) MfeGly. C) 
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DfeGly. D) TfeGly.

Figure  3.1.9.  DfpGly  side  chain  rotamers  potential  energy  E(χ1,  χ2)  in  different  backbone 

conformations. A) β-strand. B) α-helix. C) Left α-helix.

Figure 3.1.10. Retention times of the Fmoc-amino acids against the van der Waals volume of the side 

chains. Non-fluorinated amino acids are represented by black squares, the correlation between them is 

shown with a black line and fluorinated amino acids are represented by gray diamonds.

Figure 3.1.11. Radial distribution function (RDF) for A) fluorine atoms of the fluoromethylated group 

and water hydrogen atoms; B) hydrogen atoms of the fluoromethylated group and water oxygen atoms.

Figure 3.2.1. Calibration curve for the determination of peptide concentrations recorded at 20°C (100 

mM phosphate buffer, 6M GdnHCl, pH 7.4).

Figure 3.2.2. Amino acid sequence and helical wheel representation of the heterodimeric coiled-coil 

model system. Two series of peptides were synthesized - one that contains the fluorinated amino acid at 

position a16 (grey box) and one that contains it at position d19 (grey circle) within VPK. Each peptide 

carries Abz at its N-terminus (not shown).

Figure  3.2.3.  Structures  of  (S)-aminobutyric  acid  (ethylglycine,  Abu),  (S)-4,4-difluoroethylgylcine 

(DfeGly), (S)-4,4,4-trifluoroethylglycine (TfeGly), (S)-4,4-difluoropropylglycine (DfpGly) and native 

leucine. The VdW-volumes given in parentheses correspond to the alkyl groups that are attached to the 

β-carbon.

Figure 3.2.4. Fluorescence spectra of A) 150 µg ml-1 VPK-NAbz at different concentrations of VPE-

NYNO2 and B) 150 µg mL-1 VPK-CAbz at different concentrations of VPE-NYNO2: () 0 µg mL-1, 

() 50 µg mL-1, (▼) 100 µg mL-1, () 150 µg mL-1, and () 300 µg mL-1 (λex=320 nm).

Figure 3.2.5. Spectral overlap of the donor (Abz) and the quencher: () absorption spectrum of 20 µM 

VPE-N-YNO2 and () fluorescence spectrum of 20 µM VPK-N-Abz  at pH 7.4 (100 mM phosphate 

buffer). The spectra were normalized.

Figure   3.2.6   A)   Diffusion   corrected   molar   mass   distribution  c(M)   of   the   VPEVPK   heterodimer 

determined for  a  50 µM VPEVPK sample.  The peak   is  broadened due  to   insufficient   removal  of 

diffusion effects. B) Concentration dependence of the inverse apparent molar masses Mw,app. to yield Mw 

= 7600 g mol-1 by formal extrapolation to infinite dilution (solid line).

Figure 3.2.7. CD-spectra at 20°C and fitted thermal unfolding profiles of the 1:1 VPE-VPK mixtures 

substituted at A) position a16 and B) position d19 of VPK: ( ) Leu, ()Abu, ()DfeGly, () TfeGly, 
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and (◊) DfpGly. Overall peptide concentrations were 20 µM (10 µM in each monomer at pH 7.4, 100 

mM phosphate buffer). 

Figure 3.2.8. Van’t Hoff Plot of ∆Hm against Tm for all dimers the slope of which yields ∆Cp.

Figure 3.2.9. Plot of the manually determined Tm (left panel) and ∆Hm (right panel) values against those 

determined by nonlinear fitting.

Figure 3.2.10. Relative stabilities of the a16- and d19-substituted dimers compared to the respective 

leucine variants as determined by thermal unfolding (black bars) and MM-PBSA analysis (grey bars).

Figure 3.2.11. Correlation of the observed and theoretical thermodynamic parameters of folding: A) 

enthalpy (adjusted correlation coefficient: 0.35) and B) free energy of unfolding (adjusted correlation 

coefficient: 0.58).

Figure 3.2.12. Differences in packing of position a in antiparallel and parallel coiled-coil dimers and 

consequences on the stability of DfpGly substitutions.

Figure 3.2.13. Packing of TfeGly against its direct interaction partner. A) position a16 and B) position 

d19. The Cβ atoms of the interacting side-chains are closer in the d-position (B) than in the a-position 

(A). The displayed Cα-Cβ vectors highlight the significantly different packing characteristics of the side 

chains in a- and d- positions.

Figure 3.3.1.  Productive conformation for Wt peptide obtained in docking.  A) Ribbon and licorice 

representation. Ligand and receptor residues are shown in orange and green, respectively. B) The ligand 

is shown in balls and sticks representation, the receptor is shown as a surface coloured by electrostatic 

potential.

Figure 3.3.2. MM-PBSA binding energy components. A) Electrostatic and van der Waals components 

B) Non-polar solvation energy C) MM-PBSA reaction field energy D) Total MM-PBSA energy.

Figure 3.3.3. Mobility of the peptide residues at mutated positions.
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