130,473 research outputs found

    On the characteristic modes of a rigid body under forces

    Get PDF

    Integrated controls/structures study of advanced space systems

    Get PDF
    A cost tradeoff is postulated for a stiff structure utilizing minimal controls (and control expense) to point and stabilize the vehicle. Extra costs for a stiff structure are caused by weight, packaging size, etc. Likewise, a more flexible vehicle should result in reduced structural costs but increased costs associated with additional control hardware and data processing required for vibration control of the structure. This tradeoff occurs as the ratio of the control bandwidth required for the mission to the lowest (significant) bending mode of the vehicle. The cost of controlling a spacecraft for a specific mission and the same basic configuration but varying the flexibility is established

    The dynamics and control of large flexible space structures. Volume 3, part B: The modelling, dynamics, and stability of large Earth pointing orbiting structures

    Get PDF
    The dynamics and stability of large orbiting flexible beams, and platforms and dish type structures oriented along the local horizontal are treated both analytically and numerically. It is assumed that such structures could be gravitationally stabilized by attaching a rigid light-weight dumbbell at the center of mass by a spring loaded hinge which also could provide viscous damping. For the beam, the small amplitude inplane pitch motion, dumbbell librational motion, and the anti-symmetric elastic modes are all coupled. The three dimensional equations of motion for a circular flat plate and shallow spherical shell in orbit with a two-degree-of freedom gimballed dumbbell are also developed and show that only those elastic modes described by a single nodal diameter line are influenced by the dumbbell motion. Stability criteria are developed for all the examples and a sensitivity study of the system response characteristics to the key system parameters is carried out

    A stable FSI algorithm for light rigid bodies in compressible flow

    Full text link
    In this article we describe a stable partitioned algorithm that overcomes the added mass instability arising in fluid-structure interactions of light rigid bodies and inviscid compressible flow. The new algorithm is stable even for bodies with zero mass and zero moments of inertia. The approach is based on a local characteristic projection of the force on the rigid body and is a natural extension of the recently developed algorithm for coupling compressible flow and deformable bodies. Normal mode analysis is used to prove the stability of the approximation for a one-dimensional model problem and numerical computations confirm these results. In multiple space dimensions the approach naturally reveals the form of the added mass tensors in the equations governing the motion of the rigid body. These tensors, which depend on certain surface integrals of the fluid impedance, couple the translational and angular velocities of the body. Numerical results in two space dimensions, based on the use of moving overlapping grids and adaptive mesh refinement, demonstrate the behavior and efficacy of the new scheme. These results include the simulation of the difficult problem of a shock impacting an ellipse of zero mass.Comment: 32 pages, 20 figure

    The mechanical response of semiflexible networks to localized perturbations

    Full text link
    Previous research on semiflexible polymers including cytoskeletal networks in cells has suggested the existence of distinct regimes of elastic response, in which the strain field is either uniform (affine) or non-uniform (non-affine) under external stress. Associated with these regimes, it has been further suggested that a new fundamental length scale emerges, which characterizes the scale for the crossover from non-affine to affine deformations. Here, we extend these studies by probing the response to localized forces and force dipoles. We show that the previously identified nonaffinity length [D.A. Head et al. PRE 68, 061907 (2003).] controls the mesoscopic response to point forces and the crossover to continuum elastic behavior at large distances.Comment: 16 pages, 18 figures; substantial changes to text and figures to clarify the crossover to continuum elasticity and the role of finite-size effect

    Hydrodynamic induced deformation and orientation of a microscopic elastic filament

    Get PDF
    We describe simulations of a microscopic elastic filament immersed in a fluid and subject to a uniform external force. Our method accounts for the hydrodynamic coupling between the flow generated by the filament and the friction force it experiences. While models that neglect this coupling predict a drift in a straight configuration, our findings are very different. Notably, a force with a component perpendicular to the filament axis induces bending and perpendicular alignment. Moreover, with increasing force we observe four shape regimes, ranging from slight distortion to a state of tumbling motion that lacks a steady state. We also identify the appearance of marginally stable structures. Both the instability of these shapes and the observed alignment can be explained by the combined action of induced bending and non-local hydrodynamic interactions. Most of these effects should be experimentally relevant for stiff micro-filaments, such as microtubules.Comment: three figures. To appear in Phys Rev Let

    Fluctuating Elastic Rings: Statics and Dynamics

    Full text link
    We study the effects of thermal fluctuations on elastic rings. Analytical expressions are derived for correlation functions of Euler angles, mean square distance between points on the ring contour, radius of gyration, and probability distribution of writhe fluctuations. Since fluctuation amplitudes diverge in the limit of vanishing twist rigidity, twist elasticity is essential for the description of fluctuating rings. We find a crossover from a small scale regime in which the filament behaves as a straight rod, to a large scale regime in which spontaneous curvature is important and twist rigidity affects the spatial configurations of the ring. The fluctuation-dissipation relation between correlation functions of Euler angles and response functions, is used to study the deformation of the ring by external forces. The effects of inertia and dissipation on the relaxation of temporal correlations of writhe fluctuations, are analyzed using Langevin dynamics.Comment: 43 pages, 9 Figure

    Synthesis and control of generalised dynamically substructured systems

    Get PDF
    • …
    corecore