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ABSTRACT

The dynamics and stability of large orbiting flexible beams, and plat-

forms and dish type structures oriented along the local horizontal are
treated both analytically and numerically. Tt is assumed that such
structures could be gravitationally stabilized by attaching a rigid light-
weight dumbbell at the center of mass by a spring loaded hinge which also
could provide viscous damping. TFor the beaw it is seen that the small ampli-
tude inplane pitch motion, dumbbell librational motion, and the anti-symmetric
elastic modes are all coupled. The three dimensional equations of motion

for a circular flat plate and shallow spherical shell in crbit with a two-
degree-of freedom gimballed dumbbell are also developed and show that only
those elastic modes described by a single nodal diameter line are influenced
by the dumbbell motion. Further, in the case of shallow spherical shells

the pitch and the axi~symmetric modes are seen to be weakly coupled in the
linear range. With the shell's symmetry axis following the local vertiecal,
the structure undergoes a static deformation under the influence of gra-

vity and inertia. Stability criteria are developed for all the examples

and a sensitivity study of the system response characteristics to the
key system parameters is carried out.
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CHAPTER 1

INTRODUCTION

This represents the second part of the 1979-80 final report and con-
centrates on the modelling, dynamici, and stability of large, flexible
earth pointing orbiting structures., First, a brief review of the general
formulation (continuum model) fgr any large flexible space system in
orbit, as previously developed* »2 is summarized¢ in Chapter2,

The paper to be presented at a forthcoming conference forms the basis

of Chapter 3: "On the Dynamics and Control of Large Orbiting Flexible
Beams and Platforms Oriented along the Local Horizontal," XXXIst Congress
of the International Astronautical Federation, Sept. 21-28, 1980, IAF-
80-E-230. This section treats the uncontrolled dynamics of a large thin
flexible beam in orbit with emphasis placed on the motion about the local
horizontal orientation instead of the local vertical. The use of a
gimballed connected dumbbell is propcsed to provide the correct composite
moment of inertia ratio required for gravitational stabilization and to
also offer a restoring torque (and possibly damping torque) due to the
spring-gimball assembly. A further extension of this concept considers
the use of a two-degree~of-freedom gimballed dumbbell to aid in the sta~
bilization of a large flexible plate (platform) in orbit about the nominal
orientation in the lwzal horizontal (tangent) plane

In Chapter 4 the treatment of Chapter 3 is extended to consider the
dynamics and stability of a large flexible shallow shell structure in
orbit. As in the previous formulation for the beam and plate, a sta-
bilizing dumbbell with two degrees of freedom 1s also incorporated to
offer gravitational stabilization characteristics.

In Chapter 5, general concluding comments and recommendations for future
work to be initiated in the 1980-8l grant year, in accordance with a
recent proposal3 to NASA are discussed.

*
For references cited in this report, see list of veferences
provided after each chapter.
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CHAPTER 2

EQUATIONS OF MOTION OF AN ARBITRARY FLEXIBLE BODY
IN ORBIT

A brief review of the basic equations describing the attitude motion
of an arbitrary flexible body in orbit is presented here. Details
regarding the derivation ¢f these equations can be found in vef. 1.

In general, any arbitrary motion of a flexible body in space, about its
center of mass, consists of a rigid body rotation about an instantaneous
axis of rotation through the center of mass and elastic deformations.

The rigid body rotation can be expressed by a sequence of three successive
Euler angle rotations about the body fixed axes. Furthermore, if we
assume small elastic deformations of the body, the elastic displace-

ments can be expressed as the superposition of an infinite number of
structural mode shapes weighted by the time dependent amplitude functions.
Expressed symbolically, this appears as,

o

q (Typt) = I, A (0) ¢ (r,) (2.1)

where, ;b = position vector of a generic point in the body in the
- undeformed state _

q = elastic displacement vector at r

¢ = vector of mode shape functions.

Thus, the basic equations which describe the general motion of an arbitrary
flexible body in space about fts center of mass consist of (n+3) equations:
three equaticns describing rigid body rotational motion; and n-modal equ-
tions which describe the elastic motion of the body. These equations

as developed in ref. 1 appear as follows;

Equations of rigld body rotation:

7 3), ¢ 5M) = =) 5
R + E Q + § D GR,+ § G + C (2.2}
where, R = inertia torques due to rigid body motion

ga(n) = inertia torques due to elastic motion

gﬁ(n) = torques due to center of mass shift effects
' (zero for unconstrained structures)

Ref. 1: Bainum, P.M., Kumar, V.K., James, P.K., "The Dynamics and
Control of Large Flexible Space Structures,' NASA CR-156976 Report,
May 1978.



GR = gravitational torques due to rigid body motion

Eén) = oravitational torques due to elastic motion

c = other external disturbance and control torques

Equations of elastic motion:

" X, 1 1
A +w* A + + ERP =g +3%g
n nn M M, ™ Mn n m “m n n

where, Ab = modal amplitude

*

W, o= nt" 4tructural modal frequency

d?n = inertia coupling between the rigid body modes and

nth gtructural mode

(2.3)

d?nm>= inertia coupling between the mtP and nt! structural modes

g = gravity coupling between the rigid body modes and n

n structural mode

g = gravity coupling between the mth and ntP structural mode

D! = term due to center of mass shift (zero for unconstrained

structures)

M = nth godal mass

The term R in eq. (2.2) contains the terms from the classical Euler
equations for rigid body rotationswhich are obtained by assuming the
body to be rigid. In the body fixed principal axes reference frame,

R is given by,
R = {Jxmx + (Jz-Jy) wy wz} i

+ {Jywy + (Jx-Jz) w, wx} j

&>

{szz + (Jy-Jx) W wy}
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= modal component of external disturbance and control forces
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where,

(Tp3y00,) =

the undeformed state

principal moments of inertia of the body in

o) ,wz) = components of the body angular velocity vector,

£y W, in the body principal axes frame

nN oA
3k, = unit vectors along the body principal axes

The vector expressions for the other remaining terms in eqns. (2.2) and
(2.3) are as follows:

z g

n

ars

Ql

gl

2w}

S [roxq'+ 2r0x(mkq)'+ rowaxq) +»qx(wxr0)

v
- Gy B @xD - @D @) ] da

— - = ) —

5 q dm x (acm fo) + g Wy A.n v£1 r0x¢ dm

S T.xM T, dm

5 oM T

S [ryxd q + qxMry ] dm

v

[ Txe dm

v [ ]

[ ¢(n). Z&;b + ¢(n). Bkdﬁi;b) dm

~F

[Zﬁ(n)~ wxq + ¢(n). Bka4¢(“)- wx(wxq)] dm

S
v
i Q(n) . M;b dm
v
i)
v
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(2.11)
(2,12)
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where, 8 ™ inertial acceleration of the center of mass of

the body '

?b = gravitational force per unit mass at the center
of mass of the body

T = Instantaneous position vector of a generic mass
point in the body

e = external disturbance and control forces per unit

mass of the body

M = a matrix operator dependent on the Euler angles

The mode shape vectors, ¢(n) (n=1,2,...,) are orthogonal to each
other, 1i.ea.

(m), H(n),

{ ¢ ¢ dm Mn dmn (2.15)
In addition, for unconstrained structures in s?age, rigid body translation
and rotational modes should be orthogonal to ¢ N (n = 1,2,...)
i.e., (h)

S oY dm = 0 (2.16)

v .

S ?Oxfb(“)dm = 0 (2.17)

v

Several specific applications of flexible spacecraft in orbit considered in
the following chapters utilize the equations presented in this chapter as
the basis of the fomulation of their models.



Chapter 3

ON THE DYNAMICS OF LARGE ORBITING FLEXIBLE BEAMS AND
PLATFORMS ORIENTED ALONG THE LOCAL HORLZONTAL

ABSTRACT T S e
The dynamics and stability of large orbiting flexible beams and platforms oriented
along the local horizontal are treated bothﬁgnaljtlcally and numerically. It is
assumed that such structures could be gravitationally stabilized by attaching a
rigid lightweight dumbbell at the center of mass by a spring loaded hinge which
also could proevide viscous damping. For the beam it is seen that the small ampli-
tude inplane pitch motion, dumbbell librational motion, and the anti-symmetric
elastic modes are all coupled. The three dimensional equations of motion for a
circular flat plate in orbit with a two-degree-of-freedom gimballed dumbbell are
also developed and show that only those elastic modes described by a single nodal
diameter line.are influenced by the dumbbell motion. Stabilmty eriteria are de-
valoped for both examples and a parametric study of the least damped mode charac-
teristics together with numerically simulated transient responses are carried out.

KEYWORDS

Flexible spacecraft dynamics; stability; stabilizing gimballed dumbbell booms;
large space structures,

INTRODUCTION

Proposed future applications of large space structures include: space based power
generation and transmission (to earth); communications; earth resource observation
missions; and electronic mail systems.



Through the use of such systems, one can see an exanple of the applications of
space developments to solve some of the problems of mankind such as in education,
economy, and energy. The applications described here all require that the largest
surface (length) of the system be nominally oriented along the orbital tangent or
normal to the local vertical. To guin insight into the types of problems in-
volved with inherently complex space structures, two simple examples of large flex-
ible space systems are addressed in this paper. It should be recognized that beams
and plate elements would be two of the most fundamental structural elements in any
large space structural system.

Previously the equatfons of ,motion of a general arbitrary flexible spacecraft in
orbit have been developed.l'2 The elastic displacement at any arbitrary point in
the structure was assumed to result from a superposition of the different flexural
modes. The various terms in the general vector equations of motion were expgnded
in terms of the spatially dependent modal shape functions and frequencies.

a specific example, the dynamics and stability of a long, flexible beam constrained
to move only in the orbital plane was considered, with the principal emphasis
placed on the motion about the nominal earth pointing (local vertical) orienta-
tion.2 It was observed that for small amplitude pitch and flexural oscillations,
the pitch motion was not affected by the elastic modes, and that the elastic mo-
tion was coupled to the pitch motion and deséribed by sets of Mathieu equations.
The possibility of parametric instability at very low natural elastic frequencies
wasg demonstrated.

The present paper extends the work of Ref. 2 to consider: (1) the motion and
stability of the beam about a nominal local horizontal orientation; and (2) the
dynamics of free-—free homogeneous platfoxrms in orblt with emphasis placed on a
circular plate structuTre.

R DEVELOPMENT OF EQUATIONS OF MOTION-BEAMS ORIENTED ALONG
THE LOCAL HORIZONTAL

A Uniform Beam in Orbit with its Axis Nominally along the Local Horizontal

Fig. 1 shows a long, thin flexible beam in orbit with its centroidal axis nomi-
nally along the local horizontal. The following assumptions are made in de-
riving the equations of motion: (a) fthe.beam is long and slender with uniform
cross section and uniform distribution of mass and stiffness properties; (b) the
center of mass of the beam follows a circular orbit; (¢) all motions and deforma-
tions of the beam are restricted to occur-within the orbit plane; (d) there are
no constraints on the beam's elastic motion; (e) longitudinal vibrations of the
beam are negligible in comparison to the transverse vibrations.

Based on assumption (c), the Euler angles representing the ou% gf—plane beam roll
and yaw motions vanish and also the out-of-plane component, ¢ ;of the mode shape
vector is set to zero. In addition as a result of assumptlon (e) the longitudnal
conponent, ¢gn, of the modal shape vector also vanishes. Furthermore, for uncon-
strained structures and by virtue of the orthogonality conditions together with
the other assumptions, it can be shown that both the inertia and gr%v tational
coupling terms between the rigid body modes and flexzible modes (X Q'35 I g(n) d? ’
8n) appearing in the rotational equations of motion and the genegic modal equaw
tions (Eqs. (15) and (17)cf Ref. 2) vanish. In additlon, the terms associated
with the shift in the center of mass (I p(m) and D‘) also vanish for the assumed
unconstrained motion. As a result, the rotatlonal and generic equations of metion,
for this application, simplify to:
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Jo =G, + 1
Wy R, c, (1)
(1] 2
An + mnAn + (anmn) (s m+En)/ M 2)
where | . .
my = 0; my = 6-mc; 8 = pitch angle

w_ = orbital angular velocity
w_ = natural frequency of the nth elastic mode

' K 2 . - 2
Gp = Wl y sind; @m wyMnAn

-~ 2a. 2
an (3 cos<o l)mcl'iinA.n

g

Jy = beam pitch axis moment of inertia
A.n = nth fiexural modal amplitude
M = nth modal mass -

Cy = external torque about the pitch axis
E

n effect of external forces on the nth mode |

i

for small amplitudedgiich oscillations of the beam with respecf to the local hori-
zontal, sin638, cos@=1, and Fqs. (1) and (2) simplify to,

e"_ e = J )
30 = C/ ymn | (3)
" 2 (av-1%2. = 2 . .
€a + L fu)2- (8'-1)2-2]e = E /M wit (4)
where

= Ahlz (2 = undeformed beam length)

()'= d/dt, where T = W, b
t = time

It is well known that in the absence of external control torques, the nominal
local horizontal orientation of the beam reprasents an unstable motion which is
reflected by Eq. (3). In order to overcome the destabilizing effect of the gra-
vity-gradient torque on the bsam, one can either apply active control torques,
or adjust the moment of inertia distribution of the system such that the gravity-
gradient torque now becomes stabilizing. The beam can be gravitationally sta-
bilized by using a rigid lightweight dumbbell with proper moment of inertia
(Fig. 1). In this work the dumbbell is assumed to be attached at the center of
the beam by a spring loaded hinge with viscous rotational damping also assumed
to be present. The proper moment of inertia of the dumbbell can be attained by
selection of the tip masses which are assumed to be much larger than the mass of
the dumbbell rod.
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Gravitationally Stabilized Flexible Beam in Orbit-~Axis Nominally along
the Local Horizontal

In addition to the assumptions wade in the development of Eqs. (1) ~ (4), it
will also be assumed that the stabilizing dumbbell is rigid and that the mass of
the connecting link is negligible compared with that of the tip masses. 1In
addition to the restoring torque provided by the spring, it will also be assumed
that a linear viscous damping force is also provided at the hinge.

Thus, the resulting restoring and dissipative torque at the hinge can be ropre-
sented as,

Cy = k(a-g-08) + c(a-g~8) (5)
where
k = torsional restoving spring constant at the hinge
c = viscous damping coefficient
a = angle between the dumbbell axis and the local vertical (see Fig. 1)
o = rotation angle of the beam normal At the hinge due to the elastic

deformation (Fig. 1).

For small elastic deformations (q 3% Ah$(n)),

(n)
g = 31& =3 A "% (6)
3z n 9z -
' zm0 z=Q
. (n)
3¢
and s . do - A X
TTE TR V|, ™

The modal component of the torque, , can be obtained by replacing C_ by an
equivalent force system consisting of two forces of equal magnitude bht opposite
in sign and separated by a small distance. In the limit as ths forces are moved
closer,

(n)
E =¢C a¢x

n y 92z (8)

z=0

The pitch and modal equations for the system shown in Fig. 1 are easily obtained
by substituting Eqs. (5)-(8), into Eqs. (1) and (2), with the result, in dimen-
sionless form,

§'"-3sing = EK&—G)#Z(a'_e')-g(ﬁgn+zbg)cin) (9)

entl(u /u )2-(8'-1)2-2]c = {k(u-8)+c(a'-0")

-2 (ke bee ) ci“‘) } c§“> 3 82 (10)
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-y i cernmete T¥ = -

P

where, __ , | =
k = k/Jymc ; Com c/Jywc

NN TR
2
3z

z=(0

The equation of motion of the dumbbell is given by,

a''+3sina = 4ﬁhl(a-6)-zhl(a'-6')+§(§EmﬁEEA)CIC§F) (11)
where, ‘
¢y = Jy/Id
Id = pitch moment of inertia of the dumbbell.

The following observations can be made from a study of Eqs. (9)-(11l): (a) the
pitch motion of the beam, the dumbbell motion (a), and the elastic motion of the
bean (e ) are all cgupled to each other; {b) within the linear range the elastic
modes £0r which C 1) = 0 (the symmetric modes), are completely independent of the
pitch and dumbbell motions. Furthermore, these modes do not influence either the
pitch or dumbbell motion; (c) because of the presence of the dumbbell the natural
frequencies and the mode shapes of the symmetric modes of the beam differ from
those of the free-free beam. The frequencies and mode shapes can be easily ob-

tained by replacing the dumbbell by a concentrated mass, equal to that of the
dumbbell, at the center of the beam. 3

STABILITY' ANALYSIS - BEAM WITH STABILIZING DUMBBELL ™ "

For small amplitude pitch and dumbbell oscillations and small deformations Egs.
(9)-(11) can be linearized to yield the following equations:

0" +(E-3) 0-ca' R (e 14k )c{™ = 0 L (12)
"+cLEﬁ'+(c E%s)a-clEb'-clib-z(Eé'+Eé )c C(n) = 0 (13)
"+(92-3)e - {k(a=8)+c(a'-8" )}c(“)J /M 9,2+>:(ce'+1<e )c(““‘) = 0, (14)

whzre c(mn) = J c(m) (n)/M 22 (m,n = 1,2,

..) and M = mass of the beam for all
A ¥z n

The small amplitude stability of the solutions to Eqs. (12)-(14) is govermed by
the roots of the characteristic equation. For the independent symmetric modes
the system characteristic equation contains the separate factors

2 2 =
Us2+(a2-3)] = 0; o

for all the symmetric modes.
characteristic equation can be expressed as

= mn/wc

(15)

For the remaining anti-symmetric modes the system

s2+cs+k-3 ~(cstk ) (cs+k) cél) .o (cs+k)C(n)
~(cs+k) ¢q s2+(cs+k) c t3 - (cs+k) ¢ 1€ 21)
(cs-s ( 12 -(Es+¥<')c(“)/1z :x . A
z In ’ nn
: : a_e : (16)



wiere, — o (om)
A = (cs+k)cz /', nfm

o 2ufmana o) 2
Ahn s +(cs+k)Cz + Qn 3

If in a particular model only a finite number of elastic modes are considered in
the model, then the associated characteristic equation can be easily obtained

from Eq. (16) by deleting the rows and colummns corresponding to the neglected modes.
The stability analysis of a few selected truncated models is presented in the fol-
lowing sections. ) '

The Case of a'Rigid Beam o ' .

Here it is assumed that ¢(n) 0 for all n, and from Eq. (16) the characteristic
equation can be obtained by using only those elements contained in the first two
rows and the first two columms, as

8% + (Ito )esd+(1ts 1)k52+3(l—cl)cs+3k(1-cﬁ—9 -0 an

With an application of the Routh-Hurwitz criterion and noting that c, = J /I >0,
the following necessary and sufficient conditions for stability result:

€>0; K505 ¢ <1-T€>3/(1—c) o . | (18)

The condition. < 1, implies that the dumbbell moment of inertia (I4) should
be greater then t%e-beam (pitch axis) moment of inertia. 1In the"limit as the
spring stiffness (k) tends to infinity, the characteristic equation for the
lower rodes approaches:

s243(1-c )/ (I4e)) = 0, T (19)
the characteristic equation the system would have if the dumbbell were to be

rigidly connected to the beam at the center and pitching with it as a single
rigid body. :

The Case of a Flexible Beam with only the First Anti-Symmetric
"Mode Included

In this case it is assumed that ¢i n)_ 0 for alln # 2 (n = 1, first elastic
mode). The characteristic equation of this truncated model as obtained from
Eq. (16) is given by:

s2+cs+k-3 -(cs+k) (Eé+§3c£2)
-(estk)e; "s24(@st) e 3 -(esti) e, (P =0 (20)
(cs#cP /12 -(esH)c(P /12 a, 2 -,

where AZ,Z = 52+(E§+§)C§2’2) + Qg - 33 92 = wzlwc.

After formal expansion and application of the'Routh-Hurwitz necessary conditions
for stability involving the sign of each of the coefficients in the characteristic
equation, the following necessary conditions for stability must be satisfied:
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c>0; k> (3-93_)/(1+c1+c§2’2)) \
ﬂ% > Gcl/(l+cl); E39/{(1+c1)ﬂg-6c1}

szg_ > 3(c§2’2)/(1-c1)+1}

k> 9(9%-3)/{3(9%-3) (1-¢4)-9 ciz 12)3 4 (21)

The Case of a Flexible Beam with More Than One But a Finite Number
of Anti-Symmetric Modes in the Model

In this caseA¢(n) = 0, for n>m where m is a finite integer greater than or equal

to 4. As the fiumber of modes retained in the model increases, the direct expansion
of the determinantal equation, (16), is algebraically complicated, and an alternate
algorithm§’6 was used to determine the coefficients of the characteristic equationm.
For the implementation of this algorithm, it is necessary to rewrite Eqs. (12) -
(14) in the standard state variable form

X' = AX - . - - (22)
where X'= [e,a,el,... € 8'%a', el', ces e; ]T

The characteristic equation obtained by this algorithm can be solved for the
characteristic roots by any of the many alg-rithms, for determining the roots of an
algebraig 9olynomia1 equation. (In this case an algorithm based on the modified
Bairstow®s/ method was usqu) -

NUMERICAL RESULTS - BEAM WITH STABILIZING DUMBBELL

Figure 2 depicts the root loci of the least damped mode with the spring stiffness
(k) as the varying parameter for increasingly complex models of the beam-dumbbell
system. The root loci are symmetric about the real axis and only the portion above
the real axis is shown. The upper curve labeled "w,+»'" corresponds to the case of
the rigid beam. It can be noted that as the-spring stiffness increases the_roots
tend toward the imaginary axis. For the rigid beam case, from Ineq. (18), k' >30

to ensure stability for the wvalue of c1==13y/1d= 0.9 selected.

When the first anti-symmetric mode is included in the model (solid zurves in
Fig. 2) the locus is obtained by assuming a particular value for wy /w . The
following observations can be made:

(a) with increasing values of the spring stiffness, k, the roots of the
characteristic equation move toward the imaginary axis;

(b) the addition of an elastic mode into the model has the effect of
moving the eutire root locus toward the origin;

(c¢) the minimum value of spring stiffness required for stability is
increased.

With the further inclusion of the first two and the first three anti-symmetric
modes of the beam into the model, it can be noted from Fig. 2 that a further
slight deterioration of the stability characteristics results. The minimum

value of hinge spring stiffness required for stability is further increased in
these cases.
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A representative transient response to an initial displacement about the local
horizontal is shown in Figure 3. The long time required to completely damp

the system oscillations in the lowust frequency mode may be attributed to the
fact that the dumbbell inertia is only slichtly larger than the beam's pitch
axis inertia in this example (c1w0.9). Increasing the dumbbell inertia can be
accomplished by increasing the connecting linkage length within certain limits
and/or increasing the tip masses at the expense of the overall useful payload.
It is thought that the use of an active control system together with the hinged
spring damper may prove to be the most efficient way to remove transient motinns
and also to achieve shape control in all modes.

'

A THIN, UNIFORM FLAT PLATE IN ORBIT WITH ITS MAJOR SURFACE
NOMINALLY IN THE LOCAL HORIZONTAL PLANE ; .

It 1is known that a flat plate with its surface normal nominally along the local
vertical is gravitationally unstable in the absence of external restoring torques.
In order to overcome the destabilizing effect of the gravity-gradient torque on
the plate, one can either apply active control torques or adjust the moment of
inertia distribution of the system such that the gravity-gradient torque now
becomes stabilizing. As in the case of the”»eam, the plate also can be gravi-
tationally stabiliznd by attaching a rigid, light weight dumbbell of proper
moment of inertia at the center of mass of the plate (Fig. 4). The dumbbell is
assumed to be attached to the plate by a spring loaded double gimballed joint.
Thus the dumbbell possess two degrees of freedom described by the angles y and §

as shown in Fig. 4. Damping may be assumed to be present at the hinges of the
gimball.

3
- - gy
[T L

The following assumptions are made in deriving the equations of motion for this
system shown in Fig. 4: (a) the plate has a constant thickness which 1s much
less than the other characteristic dimensions of the plate. The mass and stiffness
properties are uniformly distributed throughout the plate; (b) the center of
mass of the plate is moving along a circular orbit in a spherically symmetric
gravitational field of the earth; (c) the elastic displacements in the plane

of the plate are negligible compared to those normal to the plane of the plate;
(3) the plate is completely free (unconstrained); (e) the mass of the rigid

link connecting the two tip masses of the dumbbell is negligble compared to the
tip masses; (f) the center of mass of the dumbbell coincides with the center

of mass of the undeformed plate; (g) the attitude angles and vibration ampli-

tudes are small; (h) there are no external disturbance and control torques.

With the above assumptions one can derive the linearized equations of motioa

in the following nondimensional form: ra
w o - " o ) .
v Qv (l+9x)¢ =-0 . (23)
"o 'y SV_To = e V4l (n) -
P~ bgH2y'-c 8 k26+§(czen+kzen)cy 0 (24)
"o g T = e'+k (n) =
8 30 cyy kyY+§(°yen+kyen)Cz 0 (25)

" 2 Al v il (M), = oot (n) M 02
el + (Qn 3)€n {(cyy +ky~{)Jy Cz +(czd +&26)JZCy }/dnz

ol Wi nm), = e (mn), _ .
+§\{(cycm+kyem)cz +(czsm+kzam)cy }=0 (26)
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Wy o tnat - - kv (n)
A cy(l+°1)' 1+ky(l+cl)}y+66 (J&cl)ECcyeA+kysn)Cz »x 0 (27)

—

§Mk ¢ Vol fioble O - N ! (n}

cz(l+c2)6 +{9+kz(l+c2)}6+8¢ 2P (l*cz)g(czen+kzen)cy = 0 (28)
vhere, ¢, ¢, 0 = yaw, roll and pitch angles,respectively; En ™ Ah/z; A_ = modal
amplitude; Mh = ntl modal mass; & = characteristic length (eg. radius Of a clrx-
cular plate or length of the side of a square plate); ¥, § = dumbbell angles;
Jx,Jy,Jz = principal moments on inertia of the plateé; I, = principal moment of

inertia of thz dumbbell; Q= (Jz=Jy)/Jx ; ky,kz = torsional spring stiffness;
CysCz = damping co-efficierits; and,

. [ -_-- 2-—- 2
ey ™ Jy/Id, cy Jz/Id' k,y ky/Jymc, sz kz/szc

e, mc /Jwsic mec /Tw; ) 325?

A TS L Pl
(), % (mn) (m) ,(n) 2
C o' ———— 2

z % lyuo, gm0 ¥ VY Gy MMy

(m) _ (m) o(n) 2 e SR
c, 3,C,7°C," /M & | .

A study of Eqs. (23) through (28) reveal that: (i) in general, the pitch, xoll,
yaw, dumbbell angles (y and §) and elastic motiong of the plate are all coupled

to each other; (ii) the elastic modes for which C(? = 0 and c{®™= 0 can neither
influence ¢,$,0,y and 8§ nor be influenced by them; however, their frequencies ,and
mode ?h?pes are modified by the dumbbell; (iii) the elastic mddes for which cia 0
and Czn # 0 are not influenced by Y,$ and §. However, they are directly coupled to
8 and"y; (iv). the elastic modes for which C(n)é 0 and C3™*/= 0 are not influenced by
8 and v; howevef, they are _directly coupledyto ¥, and 6; (v) the elastic modes for
which neither c{?) nor Cé“) vanish couple ¢,$,8,y and § motions; (vi) the natural
frequencies and”mode shapes of the elastic modes for which the hinge point (y=0,z=0)
lies on a modal line, are not affected by the dumbbell.

The stability of the solutions of the Eqs. (23)-(28) to small initial conditions
depend on the characteristic roots of the system. Theoretically, the characteristic
determinant. of Eqs. (23)-(28) is of infinite order. However, if only a finite num-
ber of elastic modes of the plate are retained in the model, the characteristic '
determinant corresponding to the truncated model is of finite oxder, A stability
analysis of a few such truncated models is discussed in the following section.

STABILITY ANALYSIS~PLATE WITH STABILIZING DUMBBELL

The Case of a Rigid Plate

For a rigid plate,¢§é)==oxfo; allin. Hence, C(n)= 0 and C(“)= 0. This results in
(V,4,8) and (6,y) being independent of each Jther. The characteristic roots of the

system Eqs. (23)-(28) for this case are given by the roots of the following equa-
tions: ‘



Roll-yaw and § motion

2., -

] Rx (l+9x)s _P _

2s (s%-4) ~(c, stk ) - 0 (29)
~28 8 AGG ~

Pitch ~ v motion !

by < F 241: (1~ K (l1-c_ )=9 =
.) 8 +cy(1+cl)s +ky(1+cl)s +3cy(1 °1)5+3ky(1 cl) 9 = 0
vwhere, A = 92+(1+c2)(2;s+§;)+4 (30)

From Eq. (29) it can be observed that for plates with, Q =0 (e.g. square plates,
circular plates etc.), the roll-yaw motion tends to be unstable, which is indi-
cated by the double root at the origin of the complex plane. This instability
in roll-yaw may be overcome by introducing a slight asymmetry into the plate

such that, I |<<1 but not equal to zero. This may be achieved by placing

small concentrated masses at suitable locations on the plate as dictated by

zhe follgwing necessary corditions for stabi{Pity which are obtained from Eqs.
(29)~(30).

cy>0 3 ¢,20 3 ¢ <l ; ¢ <(4—Q )/(2-& ); 2.<0 ; E'>3/(l-c1) k >4/(1-c )
Hence, the slight asymmetry introduced by the @ma]l -concentrated masses should
be such that, 9 <0 i e, J «Jy. .,

It 1s interesting to note that in the limit as k. + » and k -+ o  the charac—-
teristic roots corresponding to the low frequenc¥ modes of Fhe system tend
toward the roots of the following equations,

‘*+{(1+c2) (2-0,)+2}s2/ (L+c,)+48, (c, 1)/(1+c2) =0 - (31)
and 2+3(1—c1)/(1+c )=0 (32)
Fig. 5 shows fhe locus of the roots corresponding to the least damped mode of

Eq. (29) with k, as the parameter along each curve. As the value of kz is
increased, the roots move toward the imaginary axis to the value as given by
Eq. (31). Also, we note that with higher values of |Qx| the roll-yaw sta-
bility.of the system is improved. The locus of the roots corresponding to

the least damped mode of Eq. (30) is shown by the solid curve in Fig. 6. Here
also we note that as kg is increased, the roots move toward the imaginary axis

to the value as given by Eq. (32). The effects of flexibility on the system
stability characteristics is considered in the next section.

The Case of a Flexible Circular Plate

In order to investigate the effects of flexibility on the dynamics, we have
considered a circular plate in the present paper. It is well known that the
elastic mode shapes of a thin, uniform completely free circular plate are
characterized by a nodal pattern which consists of nodal diameters and con-
centric nodal circles centered at the center of the plate. Mathematically
these mode shapes are given by,®»

¢(n)

N ’p[J (X C)*CJ D p( i, pC)]cos P (B+8,) FBB)
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where, p = number of nodal diametexs (p = 1,2,...)‘
4 = number of concentric nodal circles (3 = 1,2,...)

A, _ = the frequency parameter, (wj,p£2/57ﬁ)k ;
Qj.p - naturgl frequency

p = mass density “

D = flexural rigidity, Eh3/12(1-v2)

h = thickness of the plate; v = Poisson's ratio

E = Young's modulus

* ¢ = nondimensionalized radial distance'fromfthe center ¢ £
the plate (0<g< 1) ' "

f = polar angle measured with respect to'the y axis
. 's? .
. By = arbitrary phase angle

Jp,Ip = Bessel and modified Bessel functions of the first kind

Aj ’Qj ‘"= constants whose value can be adjusted to yield the modal mass
P 1P equal to the mass of the plate8 .

- 20T - -t

Based on Eq. (33) one can easily show that for circular plates,

p 1 . -
c(d) ) 2 A3’1 lj,l(l+cj’1) cos B, forp=1

y 0 for p#l , (34)
and, .
(L LT -
C(d)\n 5 Aj,l Aj’l(l+cj’l)cos (./2+po) for p=1
z

(35)
0, for pfl

Thus, Eqs. (23) through (28) are coupled to each other through the elastic
modes which have only one nodal diameter. The other elastic modes are inde-
pendent of ¢,¢,0,y and 6.

In the previous section it was assumed that small concentrated masses were placed
on the plate such that, 9x<0 to prevent the instability in the roll-yaw degree of
freedom. The concantrated masses are acsumed to be placed at the ends of the
diameter along the roll axis (z-axis) of the plate. Because of this asymmetry

in the plate, the arbitrary phase angle, By, in Eq. (33) can now have the values
0 or TT/2‘onlyalo This implies that the nodal diamerers can have only one of

the following two orientations: (1) a nodal diameter along the roll or z axis

of the plate (Bo=0); and (2) a nodal diameter along the pitch or y-axis of

the plate (8,=7/2). The natural frequency and the mode shapes of the plate are
not affected by the concentrated masses for the first orientation of the nodal
diameter. However, the small concentrated masses slightly perturb the values

of the natural frequencies and the mode shapes of those elastic modes for which
the position of the concentrated masses do not lie on a nodal line.
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To a first order approximation, the values of the perturbed natural frequency
and the perturbed mode shapes axe given by,lo

w2 : w2 (1_ ¢(“)(z)}2) .Qﬂ <<)

nP &1 Mh
n
My ), p o @ . ¢
¢xb ¢x .+. E um¢x .
(m#n)
vhere, w, ¢£n) = perturbed natural frequency and mode shape
P’ Tp |
LW ¢ié)v- unpérturbed: natural frequency and mcde shape :

M = total mass added

w? &M '

o o= 2 == ¢ (2) ¢ (L)

m MZ.,mZ n m n . * A'
m n . :

In the following sections the dynamics of a flexibe circular plate for the
previously mentioned two possible orientations of the nodal diameter are
discussed separately..

The case of a nodal diameter along the pitch axls or y axls of the plate (B8,=11/2), .
For this orientation’ of the nodal diameter C§"/=0 for all n (Eq. (34). MHence,
(V,9,8) motions become completely independent of pitch, ¥ and elastic motions of
the plate and thus the plate behaves like a rigid body in the roll-yaw degree of
freedom. However, the 8 and y motions_are coupled to the elastic motions of the
plate through the terms containing c(m) in Eqs. (25)-(27). The stability of the
sc..i'tions of these equations to smalf initial conditions is governed by the roots
of 1 characteristic equation which theoretically is an infinite degree polyno-
mial equation. However, in practice since only a finite number of modes are
retained in the mathematical model, the degree of this polynomial equation will
be finite. A stability analysis of such truncated models is presented in Fig. 6.

It can be noted :rom Fig. 6 that the characteristic roots corresponding to the
least damped mode, of the system behave similar to those discussed in Fig. 3.

The case of a nodal diameter along the roll axis or z axis of the plate (8,=0).

s

For this orientation of the nodal diameter Ci{"/= 0 for.alln (Eq. (35)). Hence,
(8,Y) motions become completely independent of ¥, ¢, § and elastic motions of
the plate and thus the plate behaves like a rigid body in the pitch degree of
freedom. However, Y, ¢, 8§ are coupled to the elastic motions of the plate
through the terms containing C§n> in Egqs. (23), (24), (26) and (28). A para-
metric study of the least dampad mode characteristics for these equations re-
sults in a root locus plot similar to those presented in TFigs. 2 and 6.

CONCLUSIONS

Space ‘structures with their maximum moment of inertia axis along the local ver-

tical are gravitationally unstable. Such structures may be gravitationally sta-
bilized by attaching a light weight dumbbell with heavy tip masses.
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An analysis of the dynamics of two such systems, a thin flexible beam nominally
along the local horizontal and a flat plate with its surface normal nominally
along the local vertical, is presented in this paper.

In the case of the flexible beam, the dumbbell. motion excites only the anti-.
symmetric elastic modes of the beam.- .However, the frequencies and the mode
shapes. of the gsymmetric modes of the beam are modified by the presence of the
dumbbell.

For case of flat circular plates, the dumbbell can excite only those elastic
modes with only one nodal diameter. Also, the dumbbell modifies the value of
natural frequency and mode shapes of axi-symmetric modes ¢Z the plate. The
small concentrated masses added to the plate for roll-yaw stability results

in only two possible orientations for the nodal diameters. These concentrated
masses slightly perturb the value of the natural frequency and mode shapes,

i1f they do not lie on a nodal line.. .

For all the cases presented in this paper, the characteristic roots corresponding
to the least damped mode of the system move toward the imaginary axis as the
torsional spring stiffnes3 at the hinge is increased. The stability of the
truncated model deteriorates with the incred%e in the number of elastic modes
retained in the model,

In order to damp the motion of the system in all its modes, espécially the low
frequency modes, the use of active dampers (control systems) are needed.. However,

-it is thought that with the use of the passive gimballed dumbbell stabilization

device together with active controllers, both the peak forces as well as fuel
consumption could be significantly reduced. Such a.study would represent a logical
extension ¢f the presunt paper. ,
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Chapter 4

ON THE MOTION OF A FLEXIBLE SHALLOW SPHERICAL
SHELL IN ORBIT

In this chapter an analysis of the motion of a thin, shallow spherical
shell type structure in orbit nominally pointing towards the earth
along the local vertical is presented. It is known that in this
orientation, the system is gravitationally unstable. Such structures
may be passively stabilized with a connecting dumbbell. Hence an
analysis of the motion of a shell structure with a stabilizing dumb-
bell 1is also presented in this chapter.

DEVELOPMENT OF EQUATIONS OF MOTION-SHELL AXIS
ORIENTED ALONG THE LOCAL VERTICAL

Fig. 4.l1a shows a shallow spherical shell with the various notations
defined. The assumptions that were made in deriving the model for the
shell are as follows:

(1) the mass and elastic properties are distributed continuously
and uniformly throughout the domain of the shell;

(11) the thickness of the shell is small as compared to the height
of the shell;

(1ii) the ratio, height (H)/base radius (L) 1is much less than
unity (condition for shallowness);

(iv) the edge of the shell is completely free;

(v) the elastic deformations perpendicular to the symmetry axis
(i.e. x-axis) of the shell are negligible compared to the de-
formations parallel to the symmetry axis, i.e. only transverse
vibrations are considered;

(vi) the center of mass of the shell is moving in a circular orbit.

The transverse vibrational mode shapes of shallow shells can be conveniently
expressed in a cylindrical system of co-ordinates (r sByx ) can be related
to the x e?Yor2, System (see Fig. 4.la).l

In order to evaluate the coupling terms in Eqs. (2.5) and (2.14) for the
present case, let us express, ry = ri+r2 (4.1)



where, 1r, = the vector from thi centzr of mass of the shell
to the origin of (x y,z )

r, = the vector from the origin of (x y 2 ) to a generic
point on the shell.

Since the shell is assumed to be:completely free, by Eqs. (2.16) and (2.17)
we have,

a'dm = (

<

dm = 0 (4.2)

ajfe

S
v
f Tyxq dm = 0

Using Eqs. (4.1) and (4.2) in Eqs.. (2.5)~(2.14) one can easily show that,

23 2 f [2Ex(@xq) + Fox@xq) + qx@xr,) - (F,e0) (@xq)
n v 2 2 2 2

-(q*w) (WxT,)] dm (4.3)
5 - s G agal®T) (h.4)
v
© = W™ xms ™ T @ar)] dm (4.5)
" V 2 2 :
t@ = 1™ TGx@xg) dm (4.6)
v
s, "] 2™ (DT, am 4.7)
- (n) ()= 4
%gmn £ ¢ M*"q dm (4.8)
where, M(®) = TAMT;
T4 = transformation matrix given by Eq. (A.2)
M = matrix operator given by Eq. (A.4)

In deriving Eq. (4.6) use has been made of the assumption that the elastic
deformations are parallel to the symmetry axis only, i.e. q = lq]i.
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The following observations can be made from Eqs. (4.4)-(4.8);

(a) the rigid body votational mode and elastic modes of the
shell are coupled to each other by both inertia and gravity;

(b) the earth's gravitational fileld can excite elastic motion in
the shell through rigid body coupling terms.

After expressing the various vectors in Eqs. (4.4)-(4.8) in the
cylindrical co-ordinate system (rc,B,xc) we have,

T, = r e tx (4.9)
w = wrer+w8 6

T = A @™ e (4.11)
2 (®a y My (4.12)

By substituting Eqs. (4.9)-=(4.12) into Eqs. (4.3)-(4.8) one obtains
™ « I 2A_ {xc(?u'-wx;:) - rcmri}
+ A {xc(i;&xi) - rcér;}
+ A {x @b D) - e e )

- A (rw-’-xm)(wz:]\—ml:)

- AW {wace -(w,x -t W )e -r W i}] ¢(n)dm (4.13

A L M1 - x M§‘1=>e Ho D~ e ey
+ e 1) o (e {4 MEE)] am (4.14)
L =- J’ {r “’B“‘ (w2+m2)-r wew } ¢(n)dm (4.15
L - -Am(w;mi)ﬁm M (4.16)
g, = /0% (D 368 am | (4.17)

v
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- A Mic) (m) e:"“*) dm (4.18)

Emn m .
where, Mig) are elements of the symmetric matrix, M<°2 given by,
r— i -
Mll _____ - . Symmetric - w " - - - - »
i
(e) - 2, 2
MY | MypcB-MyysB Mp,ctR-My,8204M,,878 v
Lom - 204M -
M2156+M31c8 2(M22 M33>326+Mg_g°26 M B+M 2_,28
_ 2 + ué 5c%8 i (4.19)
The other elements of the matrix are generated by noting, (§) - M§z>
Mij's are the elements of the matrix M (ref. 3) .
After substitution of the following
e, = 063 + sBﬁ
eq = -s8] + cok
w, = wycB + wzss
wB = -wysB + wzcs (4.20)

into Eqs. (4.13) - (4.18), there results

™ - {-zAn(wyxé"‘) 4w 1) -8 (@, {4 14w 15

(n)
—wxnyS )} i

(n) ¢ -(n) (n) (n)
+{2 (A wy+A @ )I + A (-waz -2mzcuxIl +wzwy12

(w2 -wz)r(“))} ]
+{2(Z;nmz+A 0 )I(“) A (w I(“) -2u nyin)m; é“)

+ww Ig My (“))} k (4.21)
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T A M1 g“)+nnr<“)} L

+ (-, 18- 2, 1M 180 M, 1M

M S
22 (I<“)+ I(n))_+ 33 <I7(n) (n))} 3

+ {21, W= 20 1 g, 184 Y22 @™+ ™)

33 a®- 1)} k)

Q = ™. g (™. (wzmz)l(“)w 0, 1M o 1

y'3 Xy 2 X'z 3
Q --A (wzmz)a M
m z" m n
(n) (n) (n)
g, = Myl THh Iy - Myl
gmn, = A MllamnMn

where, .(n)_ (), . (), (). (), (), .
I, £ xc¢x dm; I2 £ rcc8¢x dm; I3 5 rcsﬁ¢x dm;
Ign)--£ xc326¢in)dm; Ién)- £ xc528¢i?)dm; Ién)- £ rcc38 dm;

Ign)- [ t 838 dm
v

(4.22)

(4.23)
(4.24)
(4.25)

(4.26)

Since, the shell is assumed to be completely free, the mode shapes satisfy

the conditiecn in Eq. (2.17).

i.e.
Jr x¢<n)dm = 0
v

— — ~
With Ty = l rz and ¢<n) ¢ié)i, Eq. (2.17) translates into,

= @7
£ r2x¢x i dm =0

ioeo A AN
(n)?, . (m)
I 3+, k=0
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Hence,

(n) =
12“ = (4.27)
Ig“):-: 0 (4.28)

The mode shapes of a completely free shallow spherical shell are charac-
terized by a nodal pattern consisting of a set of j concentric nodal circles
ceatered on the symmetry axis and p nodal diameters. The mode shape as
given by Eq. (B.4) in Appendix - B is in the form

¢,£“)- Wysp(5) cosp(B+R ) (4.29)

where, [ = rc/k and £ = the base radius of the shell .

Using the fgrm of ¢§n) in Eq. (4.29) we can evaluate the integrals, I§n>
through Ign as follows:
(n) _ (n)
I, £ xc¢x dm
= 0 4* ST x (D)W, (5) cosp(B+B) Ldzd8
00 '
(n)_ $
i.e., Il 2m sopIx (4.30)
(1) °
- 1
where, Ixo g xc(C)Wj’O(C)CdC
m = mass of the shell, mp&?
(L p=20
Sop { 0, p#0
Now consider,
(n)_ (n)
14 £ xcc26¢x dm
= pf% 12Ty (D)W (;)cosp(8+80)c0928 ;dpdB
0o © 1w
i.e. (n) (1)
14 m cos.pBO GZPIXZ (4.31)
Similarly,
I§n>= -m SianO 52p1§;> (4.32)



Ién)- m& cospBo 63p1(j) (4.33)

I;n)- - mf sianO 3p I(j) (4.34)
where, (),
I, Ik

)™ [ @ 05

0,p¥k (k =2,3)

The integrals Iég), I;g) and Iﬁj) are evaluated in Appendix C. Theilr values
are given by, -

I3, _
I . 2, o % 2% 140y 1 1Oy /A g (4.35)
PAC PR SN [ P P22 10y (Tg(Ay H1)-8T, (A, )}
x2 2R 4,2 12RDAJ’.”2 127 35 2o 1,2

1
+ =— (2%, (I (A, ,)+1)~-8J. (A, ,)}] 4.36
NP A 19,2 (4.36)
1@ w2 o el (ais (A )b, T (A )-AZ 3 O, )
r 6RDAT ' 3,3 %3 0%%4,377%y,3°1%4,3774,3%2 1,3
._.'Lx_ -
+ 3, {xg RACHESETINS HNIREL } NOWIOELY (4.37)

where, V = Poisson's ratio

A, ,Cc, ,D = constants in the mode shape function in Eq. (C.4)
.2 jep i,p = 1.2
(j’p H4 "")

After substituting Eqs. (4.21)-(4.28) into Eqs. (2.2) and (2.3), we
arrive at Eqs. (4.38) - (4.41) for the motion of the shallow shell
in orbit. o : : e ‘

.



Yaw: w +Q m w, () M23+C /J (4.238)

M
R . 1
Pitch: W +Qymdmx+2L(A W kAimy A W, )

= My 4T 30y )Ic“)-2\ - 18 1)) Byl
y 311 PALKK] ’22 121 4 ‘23 Jy Jz
pn)
Roll: +Q RINC +22(A w +A ) +A ww )1
Xy nx y'-—— J
= (n) ¢ (n)_ (ﬂ) (n) Ay
QM 4L (N22 Maa) T +2My 3 L2070 =(2Myy T 4Ny 21,7 ) ) z.yc /3,
N 2 23,2 11(.“) 2.2 11(23_ En
Modes: Ayt - (yhey) M, -t ) A M)y n A N

where, Qx = (Jz—Jy)/Jx ; Qy = (Jx—-Jz)/Jy ;= (Jy-Jx)/Jz ;
Qn = W /mc ;e = Ah/L s & = base radius of the shell;

In order to examine the stability of the system response to small initial
conditions, Eqs. (4.38)-(4.41) are linearized assuming small amplitude
pitch (8), roll (¢), yaw ({) and elastic displacements (A ) and denoting

T()“()',T=wct.

As a result of this we arrive at the following linear equations of
motion for the shallow shell:

-0 Y- (142 )¢" = C /T vl (4.42)
AR ¢+ (-0 D' = €, /T wp (4.43)
0"—39y8~2§€"11£“),Q./Jy=Cy/Jymz Cou )
er+(@2-3)e 420 T ™/ Lm3Ti™ /y paE /e w2t (4.45)

An examination of Eqs. (4.42) - (4.45) reveals the following points
(external disturbance assumed to be zero):

* din the linear range of operation, the motion in the roll-yaw
degree of freedom can be studied independently of the pitch and elastic
motions;

*  the pitch and elastic motions are coupled directly to each other
through their rates;

.+ sie I(™W=0 for all elastic modes except for the axi-symmetric
modes (i..¢. modé&s with no nodal diameters), only axi- symmetric modes
are responsible for the coupling of pitch and the elastic motions. Non-
axisymmetric modes ave independent of the rigid body rotational motilons,
W,d, and 9;
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+ the axisymmetric elastic modes are subjected to a constant
excltation force due to the orbital motion and gravity effects;

« the pitch and the roll-yaw motions are unstable about the
present nominal orientation because of the unfavorable moment of the
inertia distri ution.

In order to stabilize the pitch motion, a passive stabilization
procedure using a light weight dumbbell, as proposed in the case of
flat plate, is also considered in the next section.

GRAVITATIONALLY STABILIZED SHALLOW SHELL IN ORBIT

A gravitatinnally stabilized shallow spherical shell in a circular orbit
is shown in Fig. 4.1b. The stabilizing dumbbell is assumed to be hinged
to the shell at its apex by a spring loaded double gimbal joint.  Thus,
the dumbbell has two degrees of freedom with respect to the shell. Damp~
ing is assumed at the hinges of the gimbal,. The two tip masses of the
dumbbell are assumed to be connected by a rigid link of negligible mass.

The reaction torques on the shell due to the relative motion between
the dumbbell and the shell are given by,

C, = {kz(G-oz)+cz(6-oz)} sY (4.46)
cy = ky(y-oy)+cy(y—cy) (4.47)
c, = {kz(d—cz)+cz(6-oz)} ey (4.48)

where, k ,kz = torsional spring stiffness at the hinges of
y the gimbal

cy,cz = damping co-efficients at the hinges

Y,8 = dumbbell angle defined in Fig. 4.1b

0,0, = small rotations of the shell at the gimbax
y due to elastic deformations.

The modal components of the reactinn torques in Eqs. (4.46)-(4.48) can
be expressed as,

8¢in) 8¢in)

E =¢ + C
n y 9z y=0 z 9y

(4.49)
y=0
z=0 z=0
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Eqs. (4.38)-(4.41) together with eqs. (4.46) (4.49) describe the motion
of the shallow shell. The equation of motion of the dumbbell io the
Ta(xqyq24) frame (sece Appendix A) are given by,

[ ] - .-. '} .
wyd-wxdwzd Gyd/:t s {ky(Y—dy)'i'cy(Y o“y)}/ld (.50)

wzdw‘wydmxd = sz/Id+ {kz(6-02)+cz(5—cz)}/1d (4.51)

where, W, »w w, = angular velocity components of the dumbbell.

G ,G = pravity-gradient torques on the dumbbell.

In order to investigate the stability of the system about its nominal
local horizontal orientation, Eqs. (4.38)-(4.41), (4.50) and (4.51) are
linearized for small pitch (8), roll (¢), yaw (¥), ¥, § and elastic dis-
placements. The linearized equations sre presented in Eqs. (4.54)-(4.59).
In deriving these equations we have used the results,

9q
o, . .Xx B (n)
y P § enCz (4.52)
y=0
z=(
9q
T a2 -3ec® C4.53)
Yy y=0 n ny
z=(
where, (n) (n) ) 3¢(n)
e =Afo; Y =0 »ocMa g =X
n n y y =0 z z y 0
z=0 z=0

Since, C(“)= C(n)= 0 for all modes except for the modes with only one
nodal diXmeterf it is evident from Eqs. (4.54)-(4.59) that in the linear
range the pitch, roll, yaw, Y and § motions are coupled to the elastic
motion only through the axi-symmetric modes foz which I{)# 0, and the
modes with only one nodal diameter for which Cyn)# 0, é“ # 0.

V" - QU-(140 )¢ = 0 (4.54)

‘ _ - TR sy - (n)
" + 4Qz¢+(l QZ)W' c28'+sz é(cu€&+kzen) Cy ‘ (4.55)
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(1\) 2' by ' g N T (n)
L - - o N -
0! 39 8 228 I y ey AR kyy ﬁ(°y8n+kyen)cz (4.56)
i“) 31§“) J @)
1 2_ - o n
R RACNCE Sl s e CH R Y ﬁi@r c,
J
— AT Yz (n) _ ' (mn)
+ (cz6'+kz'5) E\_’Q’? Cy <cy8n+ky8n>c
— — (mn) 5
- ‘%(sz::;l‘*'kzen) Cy (n 1,2, " o) (4-57)

- = - T (n)
" + cy(l+cl)Y'+ {3+ky(l+cl)} Y + 3(1+Qy)e - (1+c1)§(cy8‘;+kyen)cz

(n)_&  _
+2 % I T 0 F4.58)

" +,E;(l+c2)6' + {4¥E;(1+c2)}a +4(1-0,)¢ - (1-2)9"

- (14e,)E(E e'+kzen)L§n) =0 (4.59)

In the following sections the stability of the system when a finite number
of '‘elastic modes are retained in the model is cousidered.

. ‘ ¢ A

+

The Case of a Rigid Shallow Spherical Shell

Fer rigid shallow shells, ¢£n)= 0 for all n. This results in decoupling
of Eqs. (4.54), (4.55) and (4.59) from Eqs. (4.56) and (4.58). Thus, the
stability of the system for small initial conditions is governed by the
following two independent characteristic equations.

s2~Q -1+ )s 0
X X
’ 2 " 1 -
(1-2,)s  s+4Q - (e s+ ) 0 (4.60)
-(l+Qz)s 4(l+ﬂz) ASS
s2-3Q -(c s+k )
y y ¥ = 0 (4.61)
3142 A
(1 y) -
where, ASG = sz+(1+c2) (czs+kz) + 4
= g%+( c stk ) +
AYY s*+(L+e, ) (cys ky) 3
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For a perfectly symmetrical spherical shell, R_ = 0, This results in
Eq. (4.60) having a double root at the origin ind, thus, rendering the
system unstable in roll and yaw., To prevent this instability, it may
beldesl;irable to introduce a slight asymmetry in the structure such that
0<|Q_| =<1,

x

After formal expansion of the characteristic determinants in Eqs. (4.60)
and (4.61), we arrive at Eqs. (4.62) and (4.63).

g8+, s5+a, 5%, s 340, s2 4 s, = 0 (4.62)

1 2 3 4 57776

b 3 2an -
s +a7s +ass +ags+u10 0 (4.63)

where, al = cz(1+02)

]
¥

5 +»kz(1+c2) - Qz(Qx—3)

j=d
i

cz{c2(1+3nz-nznx) + 4—nx}

<
o
H

kz{cz(1+3nz-gz Qx) + A—Qx}

+ 4{1+3$zz-2§zznx}

Q
H

-4cz(czﬂz+l)ﬂx

-{kz(c292+l) + AQZ}AQX

R
|}

cy(l+cl)

Q
|

ky(1+cl)+ 3(1-ﬂy)

2
o
4

3cy(1-clﬂy)
d10= 3ky(l-clﬂy)— QQy
-1 <Q <0and 0<Q <1

After applyingthe Routh-Hurwitz criterion for stability, we arrive at the
following necessary and sufficient conditions for the stability:

€z>0
k, > {Q,(Q-3)-5}/(1tc,)
c, <(4-R)/(2,0 30 -1)

k, >=4{1+30Q -2Q 8 }/{c, (1430,-0,Q )+ 4-2 }
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_ -4,
X z 1+c25'2z
~ . iy - L) \
ey > 0; ky > =3(1 Qy,/(l+cl)

1
and Ai >0 (=1, ..., 5)
where, Ai's are the principal minors of the determinant

< H k > -
c 1/S2y y SQy/(l clﬂy)

al 1 0 0
a3 az al 0
as a4 a3 02 al
0 a6 as a4 a3
0 0 0 u6 o

The condition < 0 implies that J, » J . This can be achieved by adding
two small concelitrated masses at the ends of the diameter along the z-axis.

As k_ and E; become very large, the characteristic roots corresponding
to the lower frequency modes are, to a very good approximation, given
by the roots of the following algebraic equations

s*+os%4a, = 0 (4.64)
52+°‘10 =0 (4.65)
vhere, 0, = {c2(1+392-ﬂzﬂx) + 4 - Qx}/(l+c2)
Qg = -d(c292+1)9x/(l+c2)
%= 3(1-clny)/(1+cl)

The roots of Eqs. (4.64) and (4.65) are given by,

8,2 % & 1Vog/ay
S3,4 S L1V 0y
S5 =11V 0y
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For the values of the parameters given in Fig. 4.2 i.e. cy = 0.9,
Q‘ = -,0001, cy = 0.9, H/a = 0.1 we have

3

8, , =+ 1 4.2640143x10"

1,2
84,4

%5,6

Fig. 4.2 shows the locus of the roots corresponding to the lowest frequency
mode in the roll-yaw degree of freedom. The spring stiffaess k_ is varied
along each of these curves. It can be seen from these curves that by
placing heavier concentrated masses at the ends of the diameter the roll-
yaw stability can be improved.

= + 1 1.076055
= + 1 0.4090303

The Case of a Shallow Spherical Shell with a Finite Number
of Elastic Modes in the Model.

The mode shapes of a shallow spharical shell are characterized by a nodal
pattern consisting of p (p = 1,2,...) nodal diameters and j (J = 1,2,...)
concentric nodal circles centered about the axils of symmetry. For a per~-
fectly symmetrical shell the position of the nodal diameter is arbitrary
which 1s indicated by the arbitrariness of B_ in Eq. (B.4) in Appendix - B.
However, the addition of two small concentraged masses on the z-axis to
make the shell slightly asymmetrical for roll-yaw stability, permits only
two possible orientations of the nodal diameter:

a. nodal diameter aligned along the roll axis (z axis)
i.e. B, = 0.

b, nodal diameter aligned along the pitch axis (y axis) of the
plate i.e. By = /2.

Hence, the uncontrolled dynamics of the shell for each of these possible
orientations of the nodal diameter is presented separately in the following
sections.

A. The case of the nodal diameter along the.pitch axis (y axis). TFor
this position of the nodal diameter, B8, = 7/2, in Eq. (B.4) in Appendix B.
Hence,

C;n) =0 for all n

and cn) {jAj,l A,y (G /2, pl (4.66)
0, p# 1

Hence, the roll (¢), yaw (¥) and § motions completely decouple from pitch,
Y and elastic motions, i.e. (Y, ¢, ) and (8, Y, €, +seveesss.E_) are two
independent sets. Further, we consider only axi-symmetric modeS and modes
with only one nodal diametezr in the present analysis. The other elastic
modes are all independent in the uncontrolled dynamics.
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The characteristic equation corresponding to the set (¥, ¢, §) is given

be Eq. (4.60). Tkus, the shell behaves like a rigid body in the ¢, ¢,
§ degrees of freedom. The characteristic equation corresponding to the
set (9, v, € 1» *e°€ ) is given by,
n
2 iy = i Y olLl) (1)
—39 — + - o0 0
s v (cys ky) (cys+ky)cz 21% )(R/iy;
3140 A - ) o + 3 ..
( y) YY (1+c1)(cys ley)cz 21, (R./J.y)
(1 - (1) -
21, s/, 2 (<. s+ky)-ﬁ1-xz— c A 0
(a) . ( ) :
n n
where, 2 o
A v = 8 +(1+cl»)(cys+k y)+3
Amn (cys+ky)Cz (m#n)

sz+(92-3)+(3's+i')5<“n)
nn n y y z

If only one elastic mode is retained in the model Eq.

(4.67) reduces to,

s"--sﬁy A—éEys+I€y) (E‘ys-*-llgy)Cél) -21{1) (2/3y)
3(140,) Ay -(1+c1)("Eys&y)cil)ﬂxil)%_ - 0
(n) y
;Ii s —(c s+k ) ;fzr (1) Al,l
where, A.YY and Al,l are defined in Eq. (4.67)
If the retained mode is an axi-symmetric mode, i.e., C(l)= 0, Eq. (4.68)
can be simplified to, z
s5+als5+azs“+a3s3+a4s"-+ass+a6 =0 (4.69)
where, a, = (l+cl)E§
a, = <1+c1)I€y+ﬂi-3szy
Gy = Ey{(1+cl)(n§-3)—3c1(1+9y)}+41£1)Z/MlJy (1)2
o, = 'Ey{3(1-clszy)+(1+cl)<sz§-3)}+3szi(1-9y) -9+ %y— clzy
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Amil)z
" 2. L) <
3(82l 3 clﬂy)cy+ MlJy

= 2_ - T 2
Qg 3(9l 3 clﬂy)ky 9Qy(Ql 3)

o (clky+3)

The necessary conditions for stability are given by,

N, _~n2
. ¥y 1
°y’ 03 ky (L+e,)
D
Q2=3 3 {3c, (1) - z——=— 1} /(1l4c,)
1 1 y Mlchy 1
(1)
k >{9-30%(1-0 )~ —El-—ilfl {3 (1-c, 0 )+(1+c, ) (02-3)}
y 1y MI, 1y 1/ Y
edh
Q2~3 5om L (c K +3)/3(1-c.0 )0
1 WI 17y 1y Cy
ky > 39y/(1-c19y) (4.70)

If, on the otherhand, the retained mode is a mode with one nodal diameter

for which, Iil) = 0, Eq. (4.68) simplifies to,

6 5 4 3 2 -
) +uls +a25 +a35 +a4s +ass+a6 0 (4.71)

where,

o /e, = Lo 4cits)

'y 1
=k = 2_
a, ky(al/cy)+ﬂl SQy
— = 2_ - - (191)
dB/CY (Ql 3)(1+c1) 3(1 clﬂy)+30 (l—Qy)

- - 2
a, = ky(aB/cy)+391(1—Qy)-9
d’S/E (l,l)

- 2- - -
v 3(9l QA chl) 9QyC

Qg ky(aS/cy) 9Qy(ﬂl 3)
The necessary conditions for stability are given by,

c >0
y

™ 2 (lyl)
ky > - (Ql-sny»Kl+cl+c )
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(1,1)
ni—s > f3(l-clﬂy)-30 (1-2,) }lte,)

'Ey >{9-39§(1-ny)}/(a3/§y>

_ (1,1) ..
szi 3> 3szyc /(1 chl)
k, > 99},(Qi~3)./(015/cy) (4.72)

When more than one elastic mode is retained in the model, a formal expansion
of the characteristic determinant in Eq. (4.67) 1s algebraically complicated.
Hence, we employ a digital algorithm to evaluate the characteristic equation
when all the system parameters are known. For this purpose Eqs. (4.56),
(4.57) and (4.58) are re-written in the state variable form as,

X = A x (4.73)

[0y € +en 8, 0" Y €] Lun €l ]
VI

t
A= [--+..
P ; Q

0 = null matrix of size (n+2)x(n+2)

I = didentity matrix of size (n+2)x(n+2)
~ -
a0 k. & ) .
y y y 2 o
-3(1+szy) -{3+k (1+cl)} (1+cl)kyCz -
<l> ~(02_2V. 1 (191)
0 kyc3Cz (Ql 3)‘kycz e v
P - L L L]
0 Ec o™ 1),
- y 3z y z B
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0 Cy "'cybz +211 (Z/Jy) . s 0
- - (1) (1)
. 0 -(1+cl)cy (l+cl)cy0z 21y ’(&/Jy) . e
(@) 0y = (n) - (n,1)
"(ZI /M 2/) cc C L c ’ . 0 .
_ 1 ""n y 3z y"z (n+2)x(n+2)
cy ™ Jy/Mh%z

One can easily find the characteristic roots of the system of Eqs. (4.73)
using a digital computer 4,5, The result of such an analysis is pre-
sented in Fig. 4.3. This figure shows the root loci of the lowest frequency
mode of the system. It can be noted from the figure that the influence
of the axi-symmetric modes, e.g. (1,0), (2,0) etc., on the other system
modes is very weak. Since, the coupling between the axi-symmetric modes
and the rigid body modes is very weak a negligible amount of damping is
imparted into the axi-symmetric elastic modes. Hence, the characteristic
roots corresponding to the axi-symmetric nodes lie very close to the
imaginary axis. We also note from Fig. 4.3 that with an increase in
spring stifness, k, the characteristic roots corresponding to the lowest
frequency modes move toward the imaginary axis.

B. The case of the nodal diameter along the roll axis (body z axis).

For this position of the nodal diameter, f5 = 0 in Eg. (B.4) in Appendix -B.
Hence,

¢™a g
Z

and e . {A:l,l }\j,l(l'mj,l)/z s P =1
0, p#1l

A study of Eqs. (4254)-(4.59) reveals that for the present:case; the- roll (9),
yaw (¥), 8 motion and elastic modes with only one nodal diameter form an inde-
pendent set from that. of the pitch (8), Y motion and the axi-symmetric elastic
modes. Hence, we arrive at the following two independent characteristic
equations for the system.
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Roll-yaw ~§

szwﬂx -(1+Qx)s 0 0
2 o T = g4 Yo'l
(.’l.-ﬂz)s 8 -492 (czs+k) (CZS'HCZ)CY
-(1-0) 4R Asg ~(Lte,) (¢ s+k ) c}(})
(T aal (1)
0 0 <czs+kz) CBCy Al,l
— (n)
0 0 —(czs+kz)c30y An,l
Pitch = y - axi-symmetric modes
2_ (T i _nepil)
s BQy (cys+ky) 2(1‘.l Z/Jy)s N
o - _ (l) _
3(1+§2y) AYY 2(1l Z/Jy)s . e
(1) 2,02
2(1:l /Mlz)s 0 s*4a7-3 0
218 1y )8 0 0
where, A66 = sz+(l+c2) ('c?zs+l_c'z)+4
A_ = <Zz-s+Ez)c§“'“) (mpn)

[}

=4

€3 T M 7

n

2,02 _au (T aul yalnn)
] +Qn 3+(cz 5+kz)Cy

2 - -
s +(1+c1) (cys+ky)+3
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(4.75)

82402 -3
n

(4.76)




Since a formal expansion of the characteristic determinants in Eqs. (4.75)

and (4.76) is involved, the numerical algorithm used in the previous cases

is used to evaluate the characteristic equation and the characteristic roots.
For this purpose we re-write Eqs. (4.54)=(4.59) in the following state variable

form:
i = Ax (4.77)
Xy = AgXp (4.78)
T
where, X ™ [ 8y €o,1 eo’z voe e Eo,n g y! 85,1 RN eé n]

Xp = [V ¢3S €,1 5,2 " 5 W' ¢! 8! ei 1" .ei ]T
€on ™ non-dimensional modal amplitude of the nth axi-symmetric mode.
El’n = non-dimensional amplitude of modes with one nodal diameter.
’
The characteristic roots of the system of Eqs. (4.77) and (4.78) can be
found by using digital computer algorithm »2, The root loci of the lowest
frequency mode of the system for the roll-yaw degree of freedom is presented
in Fig. 4.4. It can be observed that this plot 1s very similar to the plot
presented in Fig. 6 of Chapter 3. .hus, we see that the behavlor of a free
shallow spherical shell is very close to that of a flat circular plate. It
is also observed that in the pitch degree of freedom, the axi-symmetric modes
have negligible influenie on the system characteristic roots correspondi.g
to the lowest frequency modes.
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1.

5A. CONCLUSTONS

Space structures with thelr maximum moment of inertia axis along
the local vertical are gravitationally unstable. Such structures
can be gravitationally stabilized by attaching a light weight
dumbbell with heavy tip masses.

In the case of the flexible beam, the dumbbell excites only the
anti-symmetric elastic modes of the beam.

In the case of the flat circular plate, the stabilizing dumbbell
excites only those elastic modes with one nodal diameter. The
small concentrated masses added for the roll-yaw stabilization

of the plate result in only two possible positions for the nodal
diameters.

In the case of the shallow spherical shell, the axi-symmetric modes

are coupled to the pitch motion. In addition, the stabilizing dumbbell
excites those elastic modes with one nodal diameter. The small con-
centrated masses added to stabilize roll-yaw result in only two
possible positions for the nodal diameter.

The shallow shell undergoes a small static deformation under the
action of gravity and centrifugal forces.

In all the cases above, as the torsional spring stiffness is increased,
the characteristic roots of the least damped mode move toward the
imaginary axis. The stability of the truncated model deteriorates
with the increase in the number of elastic modes retained in the model.

To damp the motion of the system in all its modes, especially the

low frequency modes, the use of active dampers (control systems)

are needed. Moreover, it is thought that with the use of the passive
gimballed dumbbell stabilization.device together with active controllers,
both the peak forces as well as fuel consumption could be significantly
reduced. Such a study would represent a logical extension of the present
work.



5B. RECOMMENDATIONS

Possible future contributions to this work could consist of: a study of

the effects of higher order gravity~-gradient potential terms and of solar
radiation pressure for very large structures.

»

In the case of shell structures it was shown that the gravity and orbital
motion can excite elastic modes of the structure. :Hence, it 1is suggested
to investigate the influence of orbital eccentricity on the elastic
motion and find possible sources of resonance.

At the operational altitudes of the future missions involving large
structures, the principal enviromental disturbance is that due to solar
radiation. Hence, it is proposed to develop accurate models for solar
radiation pressure. Thermal gradients are also induced due to solar
radiation which can excite some of the lower elastic modes of the struc-
ture. An investigation of the possible thermally induced structural
oscillations is recommended.
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APPENDIX - A

Kinematic Relationsl:

Fig (A.1) shows the sequence of Euler angle rotations adopted in going
from orbit frame, Ty(Xy,Y,,Z,) to the body frame, Tb(X,Y,Z).

X
y 4°
X v
O
¢ .
Z
ORBIT 2
25
8 - pitch
$p = roll
Y - yaw

Fig. A.l: Euler angle rotatiomns

The body frame, Ty(X,Y,Z) and the orbit frame,t (X, Y2 ) are related
to each other by the following transformation relatlon, )

T, = T T, (A.1)

where,
cped  sdcydcdsOsy  sPsyP-csOey

Tl = | -s0cO® cocyP-spsBsy  cosy+sPpsBey
sf -c8sy cOey

The ,body angular velocity components (wx,w ,wz) and Eular angular rates
(6,9,9) are related as follows, y

w = Bs¢Hicoco-u, (scytcdsosy)
wy = §c¢-@s¢c6-mc(c¢cw—s¢sesw)
w, = YsO+pHo cBsy

A-1



The transformation between the co~ordinate freme, To and the local
cylindrical co-ordinate frame is as shown below.

g
B
PN >ZC
e
r
B
Yc
Fig. A.2
Ax Ax
A
Yy = T4 AV
Az T, AB local cylindrical frame
where,
0 0
T, = |0 cB -sB (A.2)
sB cB



Fig. (A.2) shows the sequence of Y and § rotations adoprzd in arriving
from body frame, Ty, to the dumbbell frame, Ty

X' X
iy 4
d ) Y Td - (xd!yd’zd)
T ~ (X’Y,Z)

Fig. A.3

k]

The body frame, Ty, and the dumbbell frame, T4, are related to each
other by the following transformation:

Tb = Tz Td
where,
cyce$ -cysd sY
T = s6 cd 0 (A.3)
2 ~-sycd sys6 cyY



APPENDIX B

Frequencies and Mode Shapes of a Shallow Spherical Shell¥:
The results presented here are based on the following assumptions.

* the shell has constant thickness

* the vibration of the shell is primarily in the transverse direction
1.e. parallel to shellls symmetry axis. The effect of longitudinal
inertia is negligible in comparison with transverse inertia.

The natural frequencies of a thin, shallow spherical shell with completely
free edge can be obtained from the roots (A, p,kz p,...) of the tran~
scendental equations, ’ ’

Al Ip(A) + In(A) )
L s A L =1 (p=0,1 B.1
2 [Jp+l(>\) Ta™ | p=0,1) (B.1)
Y s..(A) 4
w >, %3—- iﬁ?XT -1 (P=2,34004.) (B.2)
n* = U m
wn<ww -ET vp<n) + l 4 (p-2,3, v o) (Bo 3)
where, \ R '2
Mip ™ Wt AV 5o 5

w_ = natural frequency

% = base radius of the shell

h = wall thickness of the shell

£ = mass per unit volume of the material of the shell
D = flexural rigidity, Eh®/12(1-v?)

vV = Poisson's ratio

w_ = (C/hpR?)*

C = longitudinal stiffness factor, Eh

R = radius of curvature of the middle surface of the shell.

Jp(k),Ip(A) Bessel function and modified Bessel function of the

first kind and order, p. Primes denote the derivative
with respect to the argument.

= 4 2(p2. - PNy 1!
S0 = 4 5 (p-1) (1-VHAT WL =T (DT, (]
HEH) AV [TV -F 1 )] 0- £ 3 0]

P

e s iong
iy s n a : .
sixcracted from Johnson, M.W. and Reissner, E., "On Transeverse Vibra. "

of Shallow Spherical Shells," Quart. Appl. Math., Vol. 15, No. 4, Jan 1958,
pp. 367-384.



" ' -ty 2 " 2 '
RP(A) {Q v)[AJp(A) PEI (M) ) Jp(A>}{(1 V)P [AIP(A>
- A3y - " 2 ' - I
Ip(k)] A 1P(A)} {(1-v)p [AJp<A> Jp<k)]+k JPCA)}
x((l-v>[A1;<A)-p21p<A>]- A”IP<A)}
n o= MY =/1, n20

Up(n)

Z(l—v)ptpz-l){23/2pn(berénbeipn-berpnbei&n)
! -2
+ 28(1-v)p(p+1)[ ﬁz‘(ber;n+bei;n) - %‘(bergn
+ bei;n)‘+(ber$n)2+(beién)2]}
V,(n) = [(1-v2>p2<p2—1)-n"]2!’1n(ber;nbeipn—berpnbeil;n>
+ 251V {p?[ = (ber®n+bei?n)]'-(ber'n)?
n P p p

- (beién)z}

a/2

3

ber 1 = real part of J (1 n)
P P /2

beipn = imaginary part of Jp(i n)
k* = c&"/DpRr?

The elastic mode shapes of the shallow spherical shell are given by the
expression,

¢(n) - &, pth 0
’P[’Eﬁi“;; Cy,pb Hp(hy 224Dy [T (Ay SE)] cosp(B+B)
‘ (B.4)
where, p = Number of nodal diameters in the nth mode
j = Number of nodal circles in the nth dee

A = Roots oWtained form eqms. (E.1l), (B.2) and (B.3)
r = Non-dimensionalized radial distance, 0<z<1
B = angle defined in fig. B.l

Bo = arbitrary phase angle



|

Cj ’Dj = constants determined from Eqns. (6.1)=(6.4) of
PP Johnson and Reissner (1958)

A = arbitrary constant

3P

Thus, from Eq. (C.13) we can observe that the mode shapes of shallow

spherical shells are characterized by a nodal pattern consisting of
a set of concentric nodal circles (j) centered on symmetry axis and
a set of nodal diameters (B). The modes with mode shapes having no
nodal diameter (f=0) are called "axi-symmetric" modes. Thus, axi-
symmetric mode shapes are dependent only on 7,

The expressions for the constants Cén)’cin) are given by,
w, S
n X . ' T
Gy = 3 = Aj'lkj’llJi(0)+Dj’111(0)]cos (- §=+ Bo)
gm0
Bur/2
= 0 (pFl)
Similarly, (@) 3¢£n)
c, = T = Aj'llj,l[Ji(0)+Dj’lIi(0)]coSBo
£=0
=0

= 0 (p¥l)
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APPENDIX C

Evaluation of Integrals Iéjz I£j> and Iij): From Eq. (B.13) of

0 2
Appendix B we have,
_ £p+4' p
wj’P(c) - Ajyp [m;:; cj’P ¢ +Jp(lj :pC)+DN1 rPIP(Aj pP;)] (¢.1)

Also, from the equation of a shallow spherical shell (H<<%),

By definition,
NP
X

(o]

b x ()W o (0)Eds

i.e.

@) . 2
o) = g 41500 Lo by 0Dy 6To(hy o001z

Using the values of integrals given in Table -~ Cl and noting that

Dj,O - -Jl(Aj’O)/II(Aj’O) we obtain,
(1) }\ (C.5)
100 24y £ aw) 5,0, P/
Now consider,
(1) . m
Ty = L m Ny H@u
i.e.
2
- & e [—-r- 1,28 19y 0y, 204Dy pTa (hy 2168
2 Js
Hence using the values of integrals listed in Table Cl we get,
SCOIN N S A IS . P {2 (1 0 H)+D-8T (O, )
X, 2R Jy2 lZRD*§’2 §,2 A; 2 05,2 15,2
1
+ 23— {2\, (I (A, )+1)-83. (A, )} (C.4)
A g 18,270, 11,2
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Similarly, consider

Do f1
1= Sy By 4(B)dT

-l o2 87 3
Iy & o, Cy 3 B3y 50Dy RI3(Ay 4E)1ds

Using the values of the integrals given in TableC1l, we arrive at,

(4. 87 1
I 'ﬁ"n’)?;"; Gy 3+ —Xr[(B-BJO()\j’:;)-Mj’3J1(>\j’3)-A§,3J2(7\j’3)]

Dy3 .
+ }\; ) { Af.,.;lz()‘j,3)'4>‘j,311(>‘j,3)+BIO(}‘_~],3)'8} .5



Table ClL: Some Useful definite integrals.

1
I'e3y (Anyd I, (/A
I3, () [A23, (A)42035 (V) =43, (V) ]/A?
f‘t;Jz()\t;)dZ; -[AJl(,\)-!-ZJO(A)—-Z]/Az
0
S5, () dg [SJl(A)—AAJO(A)-AZJl(A)]/A3
Q
£1§2J3(,\tj)dt_‘,‘ [8~8JO(A)-4}\J1(;\)—>\2J2(,\)]/)\3
1
£1E1, (Vo) I, M/
1,.3 2
151, (o) s (A1, () =2AT, (\)+41; (M) ]/A°
ng;Iz(}\I;)da; [}\Il(A)—ZIO()\)-f-z]/Az
1,3 "2
cf> £*1, (AL)dg [A*1, (V) =4AT, (A48T, (M) ]/A°
1
it L
0
2 '
élr, I,(\5)dg [Azxz(A)-a,\xl(,\)wxoc,\)-s]/,\3

Cc-3



	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf

