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Abstract: The experimental technique for testing engineering systems via the method of
dynamic substructuring is receiving significant global interest, for example in the fields of
large-scale structural, aerospace, and automotive system testing. Dynamically substructured
systems (DSSs) enable full-size, critical components of a complete system to be physically
tested in real-time, within a laboratory environment, while the remainder of the system is
modelled numerically. The intention is that the combined physical–numerical DSS behaves as
if it were the complete (or emulated) system.

In an ideal mechanical DSS, for example, perfect synchronization of displacements and
forces at the interfaces between the numerical and physical components (or substructures) is
required. Hence, a key design feature of successful DSS systems is the high fidelity of the
control action. Equally, a DSS controller must be able to cope with non-linear, time-varying,
and uncertain parameters within the physical substructure dynamics.

The main purpose of this paper is to present a generalized DSS framework, together with
associated linear and adaptive control strategies, that are specifically tailored to achieve high
synchronization performance. The initial studies of this problem, as described in an earlier
paper by Stoten and Hyde, are therefore continued by generalizing both the DSS dynamics and
the control strategies to include (a) a number of newly defined modes of operation and (b)
multivariable dynamics. In addition, comparative implementation and simulation studies are
included, based upon the DSS testing of a mechanical system (a planar quasi-motorcycle rig),
which was specifically designed to highlight the main features of this research. The
comparative studies show that excellent DSS control can be achieved, especially with the
addition of an adaptive component to the controller, despite significant changes to the physical
substructure dynamics.

Keywords: adaptive control, minimal control synthesis algorithm, dynamic substructuring

1 INTRODUCTION

Much attention is currently being given to the

technique of dynamically substructured systems

(DSSs) by the worldwide dynamic testing community.

DSS is a numerical–physical testing strategy, which

decomposes a complete, or emulated, system (SE) into

two or more substructures. These substructures may

be physical (SP) or numerical (SN). Critical, often non-

linear, components are tested physically, at full scale,

to allow vital dynamical behaviour to be investigated.

The remaining parts, which are often dynamically well

understood, are modelled in real-time, for example via

numerical integration methods or the finite element

method. During a test, the decomposed DSS system

must be controlled in real-time, so that errors between

the synchronization variables at the interfaces are

ideally reduced to zero. The DSS system will then

replicate the behaviour of SE.

The DSS technique offers certain advantages over

more conventional testing schemes [1–4].
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1. Only critical components are tested, avoiding the

necessity to test a complete system (which may

be impossible in some cases, due to size con-

straints, impracticality, or lack of existence).

2. Difficulties associated with scale model testing,

such as similitude and non-linearity problems,

are avoided.

3. Convergence and stability problems associated

with purely numerical simulations of the critical

components are avoided.

4. Problems associated with non-real-time testing,

such as generating accurate derivative-dependent

inertial and viscoelastic forces, are avoided.

However, the DSS method also has a number of

potential disadvantages, including the necessity for

high-quality synchronization control, the lack of a

generalized framework for analysis and synthesis,

the requirement for real-time numerical simulation,

additional sensor requirements at the interfaces with

the physical substructures, and the necessity to

negate the dynamical effects introduced by the

actuation systems within SP.

Much of the work in reference [1] focused on

solving the synchronization control problem for a

generalized single-input/single-output (SISO) struc-

tured DSS and a generalized closed-loop scheme was

developed, as shown in Fig. 1. In this paper, a

substructured system will again be represented by

the three terms in Fig. 1, {G0, G1, G2}, which can be

either SISO or multi-input/multi-output (MIMO)

substructures, modelled in the transfer function

matrix (TFM) or state-space form. For the present,

a mainly TFM approach to DSS controller analysis

and synthesis is adopted.

In reference [1] the three terms, {G0, G1, G2}, were

used to represent a generalized system, yielding the

generalized substructures S1 and S2, together with

the generalized outputs {z1, z2}, as shown in Fig. 1.

For many practical cases S1 5 SN and S2 5 SP.

Hence, in order to represent the DSS dynamics in a

transparent manner and without loss of generality, it

will be assumed that S1 5 SN and S2 5 SP in what

follows. Thus, the following associations can be

made: G0 is related to SN, G1 to both SP and SN, and

G2 to the so-called transfer system component of SP.

The transfer system consists of the test specimen

actuators, sensors, and mechanical support struc-

ture. Typically, the transfer system actuators will

have their own inner-loop controllers, often proprie-

tary proportional-integral-derivative (PID) systems,

which are therefore part of SP and not part of the

DSS controller. The latter is shown as the linear

substructuring controller (LSC) in Fig. 1 and is

comprised of two terms, {Kd, Ke}.

In the figure, {d, u} are external excitations and the

DSS control signals, while {z1, z2} are the outputs of

the numerical and physical substructures respec-

tively. The two outputs must be in near-perfect

synchronization; that is, the substructuring error

(e 5 z1 2 z2) must always be driven towards zero if a

DSS is to function satisfactorily. Synchronization is

complicated by the addition of the transfer system,

which of course would not be part of the original

emulated system, SE. In particular, the transfer

system actuators and inner-loop controllers intro-

duce additional gain and phase, which must be

compensated for by the DSS controller.

An outer-loop LSC and an adaptive minimal

control synthesis with error feedback (MCSEF)

algorithm have both been proposed as viable DSS

controllers in references [1] and [4]. Figure 1 shows

that LSC is a two-degree-of-freedom (DOF) con-

troller, where (in the SISO case) Ke is a constant

feedback gain and Kd is a forward loop shaping filter.

In the ideal case, {Kd, Ke} are synthesized from a

complete knowledge of the DSS dynamics. However,

the effectiveness of the LSC policy will deteriorate in

the presence of non-linearities and/or unknowns in

the system. Therefore, the adaptive MCSEF algo-

rithm has also been specifically tailored for the

control of DSS. The MCSEF controller, which is

normally used in parallel with LSC, is of the same

structure as the LSC component within Fig. 1.

However, in MCSEF, Kd and Ke are synthesized as

time-varying adaptive gains. The DSS synchroniza-

tion error dynamics are then ensured to possess the

property of global asymptotic stability.

Hence, the principle objective of this paper is to

generalize the substructuring framework beyond

that presented in reference [1] and to develop the

associated control synthesis procedure. This involves

a discussion of multivariable design, force/displace-

ment substructuring, and various modes of DSS
Fig. 1 The generalized substructuring framework of

Stoten and Hyde [1]
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operation. The rest of this paper is structured as

follows. A generalized substructuring framework is

presented in section 2, using a purposely con-

structed quasi-motorcycle (QM) DSS rig to illustrate

the concepts. Section 3 provides the basis for the

synthesis of MIMO LSC and MCSEF controllers,

directly following on from the developments in

section 2. In order to introduce the DSS concepts

in a relatively straightforward manner, section 4 then

details the design, implementation, and comparative

test results of a SISO example. Section 5 moves on to

describe the synthesis and control of a more

complex MIMO DSS, this time using comparative

tests via simulation of the dynamic responses.

Finally, section 6 draws together the main conclu-

sions from this work.

2 DEVELOPMENT OF A GENERALIZED
FRAMEWORK FOR DSS TESTING

This section aims to discuss the generalization of a

substructuring framework to MIMO systems. To

illustrate the DSS concepts in a transparent manner,

a QM DSS is described as the subject for substructur-

ing synthesis and control. The rig, shown in Fig. 2, has

been developed as part of the EPSRC (Engineering

and Physical Sciences Research Council)-sponsored

ACGDSS (adaptive control of generalized dynamically

substructured systems) project within the University

of Bristol’s ACTLab (Advanced Control and Test

Laboratory) and consists of two horizontally mounted

wheel/tyre one-DOF substructures, {S1, S2}, and a

vertically mounted two-DOF rigid body substructure,

S3. Each substructure is mechanically separate from

the others and each can be tested in physical or

numerical form.

2.1 Generalized framework for a DSS quasi-
motorcycle system

A schematic representation of the planar emulated

QM system is shown in Fig. 3, together with its

equivalent three-substructure decomposition. The

emulated system, SE, is comprised of two wheels

and tyres with associated mass–spring–damping

constants {m1, k1, c1} and {m2, k2, c2}, plus two

suspension struts with spring–damper constants

{k31, c31} and {k32, c32}, and a rigid vehicle body with

inertial properties {m3, J3}. As shown in section 2.2,

some or all of the substructured components {S1, S2,

S3} may be implemented as physical substructures,

with the remainder being implemented as numerical

substructures. Furthermore, two external road dis-

turbances, {d1, d2}, are assumed to excite {S1, S2},

where S1 is considered to be at the front of the

vehicle and S2 at the rear.

Fig. 2 The quasi-motorcycle DSS test rig showing the three substructures and their actuators
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The induced displacements and forces at the

common attachment point of the front swing-arm

and wheel hub are denoted as {y31, f31} and {y1, f1}

respectively and {y32, f32} and {y2, f2} for the rear

attachment point. Thus, the synchronized variables

and dynamic constraints have to be selected from

the pairs {y31, y1}, {y32, y2}, {f31, f1} and {f32, f2}. In

many DSSs there is a degree of arbitrariness over the

selection of these synchronized variables and the

interaction constraints. This will be a topic for future

research.

In summary, it is noted that the QM system allows

for a general investigation of DSS, according to the

type of body forces (inertial or reaction) that are

imposed, the number and type of substructures

(physical or numerical), the dynamic complexity

(SISO or MIMO), and the type of synchronization

variables (displacement or force).

In the next section the modes of operation (MO) of

a DSS system are characterized by reference to the

types of body force imposed on the physical

substructure, SP. MO characterization is of particu-

lar relevance to users of test facilities, where the type

of body forces has a profound effect on the hardware

that must be used and, as it transpires, the formula-

tion of a DSS controller. For example, in the field of

large-scale structural testing, a shaking table would

typically be used to impart purely inertial forces,

while a reaction frame/wall would be used to impart

reaction forces. Furthermore, solutions to combina-

tions of inertial and reaction force DSS testing

problems are becoming increasingly necessary.

2.2 QM experimental rig design features

In this section, the original substructuring frame-

work of Fig. 1 is imposed on the QM system, using

the concept of the MO of the physical substructure,

SP, together with the adoption of the following

notation. In Fig. 4(a), for example, {S1, S2} are both

physical substructures of the reaction force type and

are therefore relabelled as {SP1, SP2}. Similarly, in

Fig. 4(b), S3 is a physical substructure of the inertial

type and is relabelled SP3. However, if either of these

two sets are numerical substructures, they are

Fig. 3 Schematic representation of the QM rig in its substructured form
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relabelled {SN1, SN2} and SN3 (see Figs 4(c) and (d)

respectively). In the actual rig, all physical substruc-

tures, SPi, include ¡25 kN servo hydraulic actuators,

supported by hydrostatic bearings, to provide the

fundamental motion. Note in Fig. 4(b) that the right-

hand (rear) actuator 32 of SP3 is free to rotate in the

vertical plane passing through its basal joint, in order

to ensure unconstrained kinematic motion of the rig.

Hence, when the DSS contains only one SPi, with

one type of force excitation, it is said that it has a

single-mode (SiM) of operation. Two or more SPi

with the same type of force excitation constitute a

multi-mode (MuM) of operation. If the DSS has

several SPi, but with different types of force excita-

tion, it is called a mixed-mode (MiM) operation. To

complete the set in a logical way, a DSS that is

comprised entirely of SPi, of any type, is said to have

a physical mode (PhM) of operation and one that has

entirely SNi is said to have a numerical mode (NuM)

of operation. The NuM is the only member of this set

that does not need to be executed in real-time.

Although the PhM and the NuM can be considered

to be extensions to the normal concept of a DSS,

each of them is of significant practical interest in

their own right. Thus, controllers that are being

developed for the PhM will, for example, enable

geographically remote physical experiments to be

synchronized to form a seamless whole. Similarly,

controllers that are being developed for the NuM are

leading to methods of stable synchronization for

decentralized numerical problems.

Table 1 summarizes the application of five sub-

structuring MO to the QM system. These MO are

typical within mechanical and structural testing

environments and are not intended to be an

exhaustive taxonomy. The table also indicates that

the SiM can be subdivided into SiM1 and SiM2, since

the single SP can be in S3 (as SP3) or in either of S1

(as SP1) or S2 (as SP2).

3 DEVELOPMENT OF GENERALIZED DSS
CONTROL SYSTEMS

A discussion follows of the basic problem of DSS

controller synthesis for the generalized framework

with the five MO and then the results are applied to

the QM in section 4.

Fig. 4 The illustration of substructured MOs and components for the QM

Table 1 Five MO for the QM DSS (P 5 physical; N 5 numerical)

MO 1a SiM1 MO 1b SiM2 MO 2 MuM MO 3 MiM MO 4 NuM MO 5 PhM

S1 N P(N) P P(N) N P
S2 N N(P) P N(P) N P
S3 P N N P N P
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3.1 Linear substructuring controller (LSC)

Following the discussion in section 1, LSC is the first

DSS controller candidate to be investigated. LSC is

based upon a linear model of the underlying

dynamics and, from Fig. 1, its control signal is given

by

u sð Þ~Kd sð Þd sð ÞzKe sð Þe sð Þ ð1Þ

so that the substructuring error signal can be written

as

e sð Þ~G0 sð Þd sð Þ{ G1 sð ÞzG2 sð Þ½ �u sð Þ

~Gd sð Þd sð Þ{Gu sð Þu sð Þ ð2Þ

where Gd 5 G0 and Gu 5 G1 + G2. Substituting equa-

tion (1) into (2), the substructuring error can be re-

written as

e sð Þ~ IzGu sð ÞKe sð Þ½ �{1 Gd sð Þ{Gu sð ÞKd sð Þ½ �d sð Þ ð3Þ

It can be seen that equation (3) implies a two-DOF

control solution. The first part of the solution, which

assumes perfect knowledge of the DSS dynamics,

ensures that e R 0 when

Kd sð Þ~G{1
u sð ÞGd sð Þ ð4Þ

given that Gu is a non-minimum phase and non-

singular. Inevitably, parameter variations in SP will

result in a degraded response from the open-loop

solution of equation (4), so that closed-loop stability

and robustness must be guaranteed via appropriate

synthesis of Ke to yield desirable roots of the MIMO

closed-loop characteristic equation

IzGu sð ÞKe sð Þ~0 ð5Þ

There are many methods to solve for Ke in equation

(5); a simple method is introduced in sections 4.2

and 5.2 that results in a decoupled closed-loop

response for all DOFs within SP. The diagonal

entries of Ke can then be determined via classical

SISO techniques, such as the root loci method.

3.2 Adaptive substructuring controller using an
additional minimal control synthesis with
error feedback

The minimal control synthesis with error feedback

(MCSEF) algorithm is a derivative of the original

MCS algorithm [5]. MCS is an adaptive, model-

referenced control strategy, which requires no a

priori information on the plant dynamic parameters.

Direct online computation of the adaptive, time-

varying gains enables the controller to accommodate

parameter variations and uncertainties. Concep-

tually, therefore, MCS is ideally suited to the control

of DSS problems. Normally, the MCS algorithm

includes a parallel reference model, so that the state

error between the model and the plant is ensured to

be globally asymptotically stable. SISO MCSEF was

developed specifically for substructuring control, in

order to mirror the structure of the LSC algorithm [1]

(see also Fig. 5). MCSEF does not include a reference

model per se, but the numerical substructure(s) can

be considered to be a replacement for it.

Time-varying MCSEF gains, {Kd(t), Ke(t)}, were

synthesized in reference [1] to completely replace

the LSC gains and to ensure global asymptotic

stability of e, irrespective of the unknown parameters

in SP. However, in this current work there is a need

to retain the beneficial properties of the model-

based LSC controller, while having the option of an

additional MCSEF controller within the loop, to cater

for unknown parameter variations within SP. In

effect, the LSC gains can be thought of as initial

conditions for the adaptive gains. Hence in Fig. 5 the

three TFMs, {G90, G91, G93}, are assumed to represent

the combined dynamics of the original DSS together

with those of the LSC. The subsequent discussion of

MIMO LSC + MCSEF stability is based upon the

following principles: (a) the LSC component is

designed to be a decoupling controller, and (b) SISO

MCSEF has already been shown to be stable when

applied to the original DSS framework of Fig. 1 [1].

Hence, writing the MCSEF control signal as u9, the

combined LSC + MCSEF control signal is given by

u sð Þ~Kd sð Þd sð ÞzKe sð Þe sð Þzu’ sð Þ ð6Þ

Substituting equation (6) into (2) gives

e sð Þ~Gd sð Þd sð Þ{Gu sð Þ Kd sð Þd sð ÞzKe sð Þe sð Þzu’ sð Þ½ �
ð7Þ

Fig. 5 MCSEF within a substructured environment
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which can be rewritten as

e sð Þ~G’0 sð Þd sð Þ{ G’1 sð ÞzG’2 sð Þ½ �u’ sð Þ

~G’d sð Þd sð Þ{G’u sð Þu’ sð Þ ð8Þ

where

G’d sð Þ~G’0 sð Þ~ IzG’u sð ÞKe sð Þ½ �{1 Gd sð Þ{Gu sð ÞKd sð Þ½ �

G’u sð Þ~G’1 sð ÞzG’2 sð Þ~ IzGu sð ÞKe sð Þ½ �{1Gu sð Þ
ð9Þ

Note that equations (2) and (8) have identical

structures; therefore the original MCSEF synthesis

of reference [1] is also valid for the control of DSS

when decoupling LSC is already incorporated into

the loop.

To complete this section, the form is summarized

of the SISO MCSEF algorithm from reference [1]. The

control signal and adaptive gains are generated

according to the following equations

u’ tð Þ~Kd tð Þd tð ÞzKe tð Þe tð Þ ð10Þ

Kd tð Þ~a

ðt

0

ye tð ÞdT tð Þdtzbye tð ÞdT tð Þ ð11Þ

Ke tð Þ~a

ðt

0

ye tð ÞeT tð Þdtzbye tð ÞeT tð Þ ð12Þ

where {a, b} are fixed scalar adaptive weights, which

are selected empirically; (for example, see reference [5]

and the comments in section 4.3). The term ye is the

output error, generated directly from e, according to

ye tð Þ~Cee tð Þ ð13Þ

where Ce is selected to ensure a strictly positive real

dynamic in the hyperstability proof for the MCSEF

controller [1, 6, 7]. Further comments on these issues

are given in the relevant sections 4.3 and 5.3.

4 COMPARATIVE IMPLEMENTATION STUDIES
ON A HALF-BODY QUASI-MOTORCYCLE SIM
DSS

To illustrate the concept of substructuring frame-

work and controller design, in this section the DSS

control of a simplified half-body version of the QM

system is presented by way of implementation tests.

This is the first experimental verification of the

methods developed in reference [1]. A more structu-

rally complex MIMO investigation of the QM MiM

DSS then follows in section 5.

4.1 Half-body SIM DSS dynamics

Figure 6 shows the half-body emulated system, SE,

and the corresponding substructured decomposi-

tion, {SP1, SN2}. In comparison with Figs 3 and 4, the

half-body system of Fig. 6 is seen to be equivalent to

the front half of the original QM system. In this

single-mode substructuring framework, the wheel/

tyre is arbitrarily taken to be the physical substruc-

ture, SP1, and a single suspension strut/translational

half-mass as the numerical substructure, SN2. The

parameters for the half-mass and strut are derived

from the original QM system and are shown in

Table 2. In the absence of the 3:1 leverage swing-

arm, the spring and damper constants have been

reduced to one-ninth of their original (averaged)

values, in order to preserve dynamic similarity.

Fig. 6 The half-body QM DSS
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In the physical substructure, SP1, the contact point

on the tyre surface would ideally reproduce the road

disturbance, d1. The displacement response of the

wheel hub, in terms of d1 and the measured hub

force fp1, would then be described by

yp1 sð Þ~ c1szk1

m1s2zc1szk1

� �
d1 sð Þ

{
1

m1s2zc1szk1

� �
fp1 sð Þ ð14Þ

where {m1, k1, c1} are the parameters associated with

the linearized dynamics of the wheel and tyre. This

configuration would require two actuators. However,

in tests a simplified configuration is used for SP1,

requiring just one actuator and a rigid, non-moving

support for the tyre, as shown in Fig. 6. (Note that

this simplification could not be used if the dynamics

associated with d1 are unknown.) The wheel hub

displacement is measured as ya1

ya1 sð Þ~{
1

m1s2zc1szk1

� �
fp1 sð Þ ð15Þ

so that from equation (14), the effect of the road
displacement is replicated as

yp1 sð Þ~ c1szk1

m1s2zc1szk1

� �
d1 sð Þzya1 sð Þ ð16Þ

The reconstructed yp1(s) is then fed back to SN2 as

the interaction constraint. The dynamics of SP1 are

completed via the linear description of the transfer

system, which was obtained via a conventional

system identification technique

fp1 sð Þ~ b1

sza1

� �
|fflfflfflfflffl{zfflfflfflfflffl}

Ga1

u1 sð Þ ð17Þ

where a1 < b1 < 8 s21 in the nominal case. In tests,

the inner-loop P-controller gain is used to provide a

quantifiable parameter variation within the DSS

dynamics; for example, halving the nominal gain

leads to a1 < b1 < 4 s21. However, only nominal

parameters are used in the synthesis procedures

for all LSC controllers.

Correspondingly, the dynamics of the numerical

substructure, SN2, are described by

yn31 sð Þ~ c31szk31

m31s2zc31szk31

� �
yp1 sð Þ ð18Þ

fn31 sð Þ~ c31szk31ð Þ yp1 sð Þ{ys31 sð Þ
� �

~
m31s2 c31szk31ð Þ c1szk1ð Þ

m31s2zc31szk31ð Þ m1s2zc1szk1ð Þd1 sð Þ

{
m31s2 c31szk31ð ÞGa1

m31s2zc31szk31ð Þ m1s2zc1szk1ð Þu1 sð Þ

ð19Þ

Hence, in terms of the original DSS shown in Fig. 1,

the forces fn31 and fp1 are chosen as the substructure

outputs z1 and z2 respectively. This implies that the

controlled DSS synchronization error is ef1, where

ef1 sð Þ~z1 sð Þ{z2 sð Þ~fn31 sð Þ{fp1 sð Þ~ m31s2 c31szk31ð Þ c1szk1ð Þ
m31s2zc31szk31ð Þ m1s2zc1szk1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gd sð Þ

d1 sð Þ

{
m31s2 c31szk31ð Þ

m31s2zc31szk31ð Þ m1s2zc1szk1ð Þz1

� �
Ga1 sð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gu sð Þ

u1 sð Þ

ð20Þ

Table 2 Notation and parameters for the half-body QM DSS

Parameter Description Values

m31 Rigid-body mass 102 kg
k31 Suspension spring stiffness 32.3 kN/m
c31 Suspension damping constant 665 N s/m
m1 Wheel/tyre mass 12.3 kg
k1 Tyre radial stiffness 384 kN/m
c1 Tyre radial damping constant 700 N s/m
a1 Actuator/P-controller denominator coefficient 8.00 s21

b1 Actuator/P-controller numerator coefficient 8.00 s21
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4.2 LSC synthesis

Using equation (4) the SISO LSC feedforward gain,

Kd, is determined from the corresponding expres-

sions for Gu and Gd in equation (20)

Figure 7(a) shows the Bode plot for this expression,

clearly indicating its phase advance characteristics.

In practice, the non-proper form of equation (21) is

implemented in discrete-time via the inclusion of an

approximate differentiation term, with due regard to

noise suppression at high frequencies. The feedback

component, Ke, is a constant gain to be determined,

for example, by the root loci method applied to the

characteristic equation (5). The resulting loci are

shown in Fig. 7(b), where Ke 5 15 at the selected root

locations, yielding a relatively fast dominant pair of

underdamped roots, with a settling time of approxi-

mately 0.11 s.

4.3 MCSEF synthesis

Synthesis of the adaptive component of the DSS

controller is a relatively simple matter of choosing

the scalar weights {a, b} in equations (11) and (12),

and determining the output error matrix, Ce, in

equation (13). The initial conditions for the adaptive

gains in equations (11) and (12) are arbitrary; when

used in conjunction with LSC, a typical choice is

Kd(0) 5 0 and Ke(0) 5 0, reflecting the lack of any

prior knowledge of these values.

The choice of the adaptive weights has been

discussed in many previous papers on this subject.

Essentially, the choice is based on physical or

simulation experiments, with the ratio of the weights

fixed so that a 5 10b, while a is initially chosen to be

a relatively low value, for example a5 0.01. This

initial choice presupposes that all input/output

signals to the adaptive component are scaled to be

within a ¡10 V range. Then, if the resulting adaptive

convergence is slow, a is increased by a factor of 10;

however, if the convergence is fast but noisy, a is

decreased by a factor of 10. This process is repeated

until a satisfactory convergence is achieved. In the

tests described in this section, suitable values of the

weights were rapidly determined as a 5 1 and b 5 0.1.

As was indicated in reference [1], a reference

model and its associated parameter matrix, Am, are

not necessary in the explicit synthesis of the DSS

MCSEF component. However, the concept of an

implicit reference model for the stability proof and the

synthesis of the error feedback matrix, Ce, is necessary.

The solution for Ce is given by the positive definite

solution to the well-known Lyapunov equation

AT
mPzPAm~{Q, Ce~BT

e P ð22Þ

where Q is an arbitrary positive definite matrix and Be

is a known input matrix reflecting the structure of the

DSS dynamics, for example Be 5 [0 1]T [1]. A pragmatic

Kd sð Þ~G{1
u sð ÞGd sð Þ~ m31s2 c31szk31ð Þ c1szk1ð Þ sza1ð Þ

b1 m31s2 c31szk31ð Þz m31s2zc31szk31ð Þ m1s2zc1szk1ð Þ½ �
ð21Þ

Fig. 7 The LSC design for the half-body QM DSS

Generalized dynamically substructured systems 379

JSCE635 F IMechE 2009 Proc. IMechE Vol. 223 Part I: J. Systems and Control Engineering



solution to equation (22), described in reference [1], is

used here, that is Ce 5 4/ts, where ts is the step-

response time of the implicit reference model. In this

case, the choice of ts 5 0.01 s yields Ce 5 400.

4.4 Comparative implementation studies

Tests were conducted on the DSS system in order to

compare the performance of LSC and LSC+MCSEF,

subject to nominal and changed parameters within

the transfer system. Changes were achieved by

reducing the inner-loop controller gain by a factor

of two, effectively reducing both parameters {a1, b1}

in equation (17) from ,8.0 to ,4.0 s21 and thereby

significantly reducing the performance of the actua-

tor system in SP. The road disturbance, d1, was

chosen to be a linear sweep sinusoid, designed to

excite the DSS across its sensible frequency spec-

trum. Parameters associated with this signal were a

start frequency of 10 Hz, a final frequency of 0.01 Hz,

a span of 20 s, and an amplitude of 2.0 mm. The

signal amplitude was initially ramped from 0 to

2 mm over a period of 3.0 s, thus providing a smooth

transition in the initial stages of the tests. Figures 8

and 9 show the corresponding results.

The principal comparators of response were

chosen as the DSS force error, ef1, the control signals,

{u1, u91}, and the adaptive gains, {Kd(t), Ke(t)}. The

DSS controllers, LSC and LSC + MCSEF, were both

implemented via an outer-loop dSpace 1103 system

with a control frequency of 10 kHz and a data

recording frequency of 1 kHz. All input–output

analogue signals to this controller operated over a

range of ¡10 V, with calibration constants of 10 mm/V

on displacement and 500 N/V on force.

Thus, the left column of Fig. 8 shows the DSS force

error and control under the action of LSC, for the

nominal case. The maximum amplitude of error was

measured as ,0.05 V (25 N), a relatively small value

when compared with the static load of 1000 N. LSC

had therefore performed very satisfactorily, indicat-

ing the high level of accuracy in both the dynamic

modelling and LSC synthesis procedures. As a

consequence, the required input from the adaptive

component of the LSC + MCSEF controller was also

relatively small (see the right column of Fig. 8). It

can be observed that a minor improvement was

achieved, the peak error being reduced to ,0.04 V

(20 N), due to the action of the adaptive gains shown

in the bottom graph.

Introducing the parameter changes into SP1

resulted in the responses shown in Fig. 9. Again,

the LSC responses are in the left column and the

LSC + MCSEF in the right. It is evident from the gain

trajectories that the adaptive component was now

more active than before, with a corresponding

reduction of peak force error from ,0.11 V (55 N)

to ,0.08 V (40 N).

A better indication of controller performance is

given in Fig. 10, which shows the integral square

error (ISE) curves for each of the four tests described

above. Clearly, there was little difference between

the controllers in the nominal case. However, when

the SP parameters were changed, an increase in the

LSC ISE (as measured at the end of the tests) of ,5.5

resulted. With the addition of the adaptive compo-

nent, this reduced to a factor of ,1.8 – a significant

improvement.

It can be noted that the above implementation

tests were repeated in a purely simulation environ-

ment, with very similar results being obtained. These

simulation results are not included here, for the sake

of brevity. However, they constituted a major part of

a model verification programme that permitted the

use of simulated testing of a more complex DSS on

the QM rig. One such development, on the MiM DSS,

is described in the next section.

5 COMPARATIVE SIMULATION STUDIES ON
THE QUASI-MOTORCYCLE MIM DSS

Following the successful SISO implementation tests

conducted on the half-body SiM DSS, this section

illustrates the application of the MIMO substructur-

ing framework and LSC + MCSEF controller design to

a more complex MiM DSS. This is the first verifica-

tion of the control methodology to be provided,

when applied to an MIMO DSS consisting of a mixed

MO. Comparative simulation results are presented,

illustrating the successful and essential nature of the

adaptive component of the controller.

5.1 MiM DSS dynamics

The selection of the QM MiM DSS for the investiga-

tions in this section provides a general extension of

the previous results from reference [1] and from

section 4 of this paper. In this new configuration,

there is a reaction-force physical substructure SP1

(the front wheel/tyre), an inertial-force physical

substructure SP3 (the rigid-body/suspension strut

system), and a single numerical substructure SN2

(the rear wheel/tyre). Furthermore, the overall

problem has a MIMO structure with mixed sub-

structuring error signals; that is, one force and two
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displacement pairs of outputs must be synchronized

in order to achieve satisfactory DSS performance.

As shown in Fig. 11, a single actuator is again used

within SP1 to generate the front wheel hub motion,

yp1, via dynamic compensation of the road distur-

bance term, d1. In the rigid-body/suspension strut

substructure, SP3, there are two actuators, resulting

in displacement signals {yp31, yp32} and force signals

Fig. 8 LSC and LSC + MCSEF responses with nominal parameter values
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(fp31, fp32). The interaction constraint in the system is

between the rear wheel/tyre numerical substruc-

tures SN2 and SP3, with fp32 being fed back from SP3

to SN2. Hence, the synchronization pairs are {yp31,

yp1}, {yp32, yn2}, and {fp31, fp1}, so that the DSS control

problem is to reduce the associated errors, ey1 5

yp1 2 yp31, ey2 5 yn2 2 yp32, and ef1 5 fp31 2 fp1, to-

wards zero.

Fig. 9 LSC and LSC + MCSEF responses with changed parameter values
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In the rest of this section linear relationships are

generated, which are then used in the synthesis of the

LSC controller in section 5.2. However, full non-linear

expressions are used in the corresponding simula-

tions of the DSS control in section 5.4. Expressions for

the DSS dynamics can be obtained in a similar

manner to those for the half-body system. First of

all, the equations of motion are obtained for the front

wheel/tyre physical substructure, SP1

yp1 sð Þ~ c1szk1

m1s2zc1szk1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G11 sð Þ

d1 sð Þ{ 1

m1s2zc1szk1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G12 sð Þ

fp1 sð Þ

ð23Þ

where the actuator force, fp1, is determined via the

model identified for the inner-loop P-controller/

actuator 1

fp1 sð Þ~ b1

sza1

� �
|fflfflfflfflffl{zfflfflfflfflffl}

Ga1

u1 sð Þ ð24Þ

Similarly, the equation of motion for the rear wheel/

tyre numerical substructure, SN2, is

yn2 sð Þ~ c2szk2

m2s2zc2szk2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G21 sð Þ

d2 sð Þ

{
1

m2s2zc2szk2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G22 sð Þ

fp32 sð Þ
ð25Þ

Turning to the rigid-body component of the

physical substructure, SP3, the fact is used that the

3:1 leverage in the swing-arms reduces the suspen-

sion struts’ spring and damper constants by a factor

of 9. Assuming that all other dynamic effects due to

the swing-arm rotations are negligible, a linearized

model of SP3 is then equivalent to the model

synthesized in reference [4], where no swing-arms

were present and where the suspension struts were

connected directly to the actuators. The simplified

rigid-body system shown in Fig. 12 is then used to

generate the equations of motion for SP3. Note that

Fig. 10 ISE curves for the DSS errors shown in Figs 8
and 9

Fig. 11 The mixed-mode substructured system
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the coordinate pair {ys31, ys32} refers to the vertical

displacements of the body, measured along the

projected longitudinal axes of actuators 31 and 32.

Hence for small angles of rotation, the linearized

equations in heave and pitch of the rigid body, about

its centre of mass, are given by

m3€yy3~fp31zfp32{m3g ð26Þ

J3
€hh3~L32fp32{L31fp31 ð27Þ

and the corresponding linearized equations for the
kinematics are

h3~
ys32{ys31

L3
ð28Þ

y3~
L32

L3
ys31z

L31

L3
ys32 ð29Þ

Using linear suspension strut models, {ys31, ys32} can

be written in terms of {yp31, yp32} as

ys3j sð Þ~ c3jszk3j

m3js2zc3jszk3j

� �
yp3j sð Þ, j~1, 2 ð30Þ

In a manner similar to the above, the dynamics of

the inner-loop controllers/actuators 31 and 32 can

be written as

yp3j sð Þ~ b3j

sza3j

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Ga3j

u3j sð Þ, j~1, 2 ð31Þ

where Ga3j(s) (j 5 1, 2) are the corresponding transfer
system dynamics. Rearranging equation (26) to (31)
results in the following expressions for the forces
{fp31, fp32}

fp31 sð Þ~P2s2ys31 sð ÞzP3s2ys32 sð Þ

~P2
s2 c31szk31ð Þ

m31s2zc31szk31

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G31 sð Þ

Ga31 sð Þu31 sð Þ

zP3
s2 c32szk32ð Þ

m32s2zc32szk32

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G32 sð Þ

Ga32 sð Þu32 sð Þ

ð32Þ
fp32 sð Þ~P3s2ys31 sð ÞzP1s2ys32 sð Þ

~P3
s2 c31szk31ð Þ

m31s2zc31szk31

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G31 sð Þ

Ga31 sð Þu31 sð Þ

zP1
s2 c32szk32ð Þ

m32s2zc32szk32

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G32 sð Þ

Ga32 sð Þu32 sð Þ

ð33Þ

where P1, P2, and P3 are equivalent masses given by

P1~
m3L2

31

L2
3

z
J3

L2
3

� �
, P2~

m3L2
32

L2
3

z
J3

L2
3

� �

P3~
m3L31L32

L2
3

{
J3

L2
3

� �
ð34Þ

Accordingly, equation (33) can be substituted into
equation (25) to obtain yn2, which is required in the
formulation of the numerical substructure, SN2.

In summary, the expression for the MiM DSS

generalized output z1 (see Fig. 1) can be defined as

z1 sð Þ~
fp31 sð Þ
yp1 sð Þ
yn2 sð Þ

2
64

3
75~G0 sð Þ

d1 sð Þ
d2 sð Þ

� �
|fflfflfflfflffl{zfflfflfflfflffl}

d sð Þ

{G1 sð Þ
u1 sð Þ
u31 sð Þ
u32 sð Þ

2
64

3
75

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
u sð Þ
ð35Þ

where, from the expressions given in equations (23)
to (25) and (31) to (33)

G0~

0 0

G11 sð Þ 0

0 G21 sð Þ

2
64

3
75 ð36Þ

G1 sð Þ~
0 {P2G31 sð ÞGa31 sð Þ {P3G32 sð ÞGa32 sð Þ

G12 sð ÞGa1 sð Þ 0 0

0 P3G22 sð ÞG31 sð ÞGa31 sð Þ P1G22 sð ÞG32 sð ÞGa32 sð Þ

2
64

3
75 ð37Þ

Fig. 12 The simplified free-body diagram of the QM
rigid-body system

384 D P Stoten, J Y Tu, and G Li

Proc. IMechE Vol. 223 Part I: J. Systems and Control Engineering JSCE635 F IMechE 2009



Similarly, the MiM DSS generalized output z2 can

be determined from equations (24) and (31) as

z2 sð Þ~
fp1 sð Þ

yp31 sð Þ
yp32 sð Þ

2
64

3
75~G2 sð Þ

u1 sð Þ
u31 sð Þ
u32 sð Þ

2
64

3
75

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
u sð Þ

ð38Þ

where

G2 sð Þ~
Ga1 sð Þ 0 0

0 Ga31 sð Þ 0

0 0 Ga32 sð Þ

2
64

3
75 ð39Þ

In this case, z1 is composed of both numerical and

physical substructure responses, whereas z2 is

composed of entirely physical substructure re-

sponses. Now {G0, G1, G2} can be used to generate

the transfer function matrices {Gd, Gu} in equation

(2), which constitute the basis of the LSC design

Gd sð Þ~G0 sð Þ, Gu sð Þ~G1 sð ÞzG2 sð Þ ð40Þ

5.2 LSC synthesis

Using equations (35) and (38), the error given by

e 5 z1 2 z2 can be written in the form of equation (2),

so that the MIMO LSC equation is (see equation (1))

u1

u31

u32

2
664

3
775

|fflfflfflffl{zfflfflfflffl}
u

~

Kd11 Kd12

Kd21 Kd22

Kd31 Kd32

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Kd

d1

d2

" #
|fflffl{zfflffl}

d

z

Ke11 Ke12 Ke13

Ke21 Ke22 Ke23

Ke31 Ke32 Ke33

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ke

ef1

ey1

ey2

2
664

3
775

|fflfflffl{zfflfflffl}
e

ð41Þ

It can be verified from equations (37), (39), and (40)

that Gu is non-minimum phase and non-singular, so

that the six entries of the LSC forward gain matrix,

Kd, can be determined from equation (4) and the

parameter values in Table 3. For example, the

resulting Bode plot of Kd11 is shown in Fig. 13(a),

which is typical of the entire set. Again, the phase

advance nature of the forward gain is evident.

As before, closed-loop stability is guaranteed by

the LSC error feedback gain matrix, Ke. In this MIMO

case, the terms Keii (i 5 1, 2, 3) on the leading

diagonal can be simple proportional gains, for

example determined by the root loci method. The

decoupled closed-loop characteristic equations are

then given by

1zFi sð ÞKeii~0, i~1, 2, 3 ð42Þ

In equation (42)

Table 3 Notation and parameters for the QM DSS

Parameter Description Values

Vehicle rigid body
m3 Mass 212 kg
m31, m32 Effective masses at the front and rear ends 102 kg, 110 kg
J3 Moment of inertia about the centre of mass 75.0 kg m2

L3 Length 1.70 m
L31, L32 Lengths from the front and rear ends to the centre of mass 0.882 m, 0.818 m
Lb Swing-arm length 0.300 m
Ls Length between the strut base and actuator attachment 0.200 m

Front and rear suspension struts
k31, k32 Suspension spring constants 32.3 kN/m, 29.4 kN/m
c31, c32 Suspension damping constants 665 N s/m, 306 N s/m

Front and rear wheels/tyres
m1, m2 Masses 12.3 kg, 15.7 kg
k1, k2 Tyre radial stiffnesses 384 kN/m, 405 kN/m
c1, c2 Tyre radial damping constants 700 N s/m, 816 N s/m

Inner-loop (P) controllers and actuators
a31, a32, a1 Denominator coefficients 25.8 s21, 25.8 s21, 8.00 s21

b31, b32, b1 Numerator coefficients 25.8 s21, 25.8 s21, 8.00 s21
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F1 sð Þ
F2 sð Þ
F3 sð Þ

2
64

3
75~

Gu11{
Gu12 Gu21Gu33{Gu23Gu31ð ÞzGu13 Gu31Gu22{Gu32Gu21ð Þ

Gu22Gu33{Gu23Gu32

� �

Gu22{
Gu21 Gu12Gu33{Gu13Gu32ð ÞzGu23 Gu32Gu11{Gu31Gu12ð Þ

Gu11Gu33{Gu13Gu31

� �

Gu33{
Gu31 Gu13Gu22{Gu12Gu23ð ÞzGu32 Gu23Gu11{Gu21Gu13ð Þ

Gu11Gu22{Gu12Gu21

� �

2
66666664

3
77777775

ð43Þ

where, to achieve decoupling, the off-diagonal

entries of Ke are assigned in terms of the gains Keii

(i 5 1, 2, 3), as follows

Fig. 13 Examples of the MiM DSS LSC designs: (a) Bode plot for Kd11(s); (b) Root loci plot for
Ke11; (c) Bode plot for Ke12(s); (d) Bode plot for Ke32(s)
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Ke12 sð Þ
Ke13 sð Þ
Ke21 sð Þ
Ke23 sð Þ
Ke31 sð Þ
Ke32 sð Þ

2
666666664

3
777777775
~{

0
Gu12Gu33{Gu13{Gu32

Gu11Gu33{Gu13Gu31
0

0 0
Gu13Gu22{Gu12Gu23

Gu11Gu22{Gu12Gu21

Gu21Gu33{Gu23Gu31

Gu22Gu33{Gu23Gu32
0 0

0 0
Gu11Gu23{Gu13Gu21

Gu11Gu22{Gu12Gu21

Gu22Gu31{Gu21Gu32

Gu22Gu33{Gu23Gu32
0 0

0
Gu11Gu32{Gu12Gu31

Gu11Gu33{Gu13Gu31
0

2
666666666666666666664

3
777777777777777777775

Ke11

Ke22

Ke33

2
64

3
75 ð44Þ

Examples of some of the corresponding designs

from equations (42) to (44) are shown in Figs 13(b)

to (d). Thus, in Fig. 13(b), the root loci design for Ke11

is shown; this design is very similar to the half-body

case, with a value of Ke11 5 15 yielding a dominant

pair of roots and an associated ts , 0.12 s. Arbitrarily,

Figs 13(c) and (d) show the Bode plots for Ke12 and

Ke32 respectively; yet again, the phase advance

characteristic in the filter designs is evident.

5.3 MCSEF synthesis

As in section 4.3, synthesis for the adaptive compo-

nent of the DSS controller involves the selection of

the scalar weights {a, b} in equations (11) and (12),

and the determination of the output error matrix, Ce,

in equation (13). Simulation studies indicated that

the choice of a 5 1, b 5 0.1 was again suitable for this

case. Furthermore, the decoupled nature of the

adaptive synthesis allows for the same pragmatic

solution for Ce, when ts 5 0.01 s

Ce~
4

ts

� �
I3~400I3 ð45Þ

5.4 Comparative simulation studies

In a similar manner to section 4.4, tests were

conducted on the MiM DSS system in order to

compare the performance of LSC and LSC + MCSEF,

subject to nominal and changed parameters within

the transfer system. As indicated in sections 5.1 and

5.2, a linear model of the DSS dynamics was used for

the LSC synthesis, but a non-linear model of the DSS

dynamics was used to generate the simulated results

described below.

Changes were implemented by reducing all three

inner-loop controller gains by a factor of two. For the

MiM DSS, there were two road disturbances, {d1, d2},

which were both chosen to be swept sinusoids with

start frequencies of 10 Hz, final frequencies of

0.01 Hz, spans of 20 s, amplitudes of 2.0 mm, and a

0.85 s pure delay between the signals, giving

d2(t) 5 d1(t 2 0.85). Again, the signal amplitudes were

initially ramped from 0 to 2 mm over a period of

3.0 s, providing a smooth transition in the initial

stages of test. Figures 14 and 15 show the corre-

sponding results.

As before, in the nominal case, the left-hand

column of Fig. 14 shows the DSS errors and controls

under the action of LSC. The maximum amplitudes

of the errors, {ef1, ey1 ey2}, were measured as ,0.04 V

(20 N), ,0.025 V (0.25 mm), and ,0.02 V (0.2 mm)

respectively. LSC had therefore performed very

satisfactorily, the relatively small DSS errors reflect-

ing the mismatch between the LSC design, based

upon a linear model of the underlying dynamics and

the non-linear model used in the simulation.

The right-hand column of Fig. 14 shows the errors

under LSC + MCSEF control. Although the peak

errors are of similar magnitudes (equivalent to

,20 N; ,0.15 mm; ,0.1 mm) to those under LSC

control, it is clear that the error trajectories them-

selves are much improved. Hence, the adaptive

component of the controller has a significant role,

even in this nominal case, since it is required to

compensate for the non-linear effects in the system,

which LSC alone is unable to do.

Introducing the parameter changes into all three

actuator dynamics within SP resulted in the re-

sponses shown in Fig. 15, with LSC in the left

column and LSC + MCSEF in the right. A noticeable

decrease in the resulting DSS error amplitudes

occurred with LSC + MCSEF and, as is evident from

the control and gain trajectories, a significant

increase in adaptive effort was necessary to achieve

this.
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The corresponding ISE curves in Fig. 16 again

provide a clearer demonstration of performance,

with each curve showing the sum of the individual

ISEs for the errors, {ef1, ey1, ey2}. It is evident that

LSC + MCSEF has provided an approximately 2.5-

fold decrease in ISE when compared with the LSC

only case, in both the nominal and changed

parameter cases.

Fig. 14 LSC and LSC + MCSEF responses with nominal parameter values
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Fig. 15 LSC and LSC + MCSEF responses with changed parameter values
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6 CONCLUSIONS AND FUTURE WORK

The main conclusions to be drawn from this work

are as follows.

1. A generalized framework for dynamically sub-

structured systems (DSS) has been established,

based upon the modes of operation of the

physical substructures, SP. The new substructur-

ing framework encompasses MIMO dynamics,

either in TFM or in state-space form. In this

paper, the focus has been on the TFM form.

2. It has been shown that the DSS framework can be

used to synthesize a linear substructuring con-

troller (LSC) via classical SISO techniques, thus

providing a basis for achieving the exacting levels

of substructure synchronization that are required.

However, it was also established that LSC perfor-

mance degrades as parameter uncertainty within

SP increases.

3. An extension of the adaptive minimal control

synthesis (MCS) algorithm, which incorporates

error feedback (EF), has been synthesized for the

DSS problem. The new algorithm, MCSEF, can be

viewed as an adaptive version of LSC, which

mirrors the configuration of the original LSC

scheme.

4. LSC and MCSEF are normally used in parallel

with one another for DSS control.

5. Experimental implementations and simulations

of the proposed methods, on a quasi-motorcycle

test rig, showed that the addition of an adaptive

MCSEF component enabled excellent synchroni-

zation of DSS substructures, despite the presence

of significant parameter uncertainties in the

actuator dynamics. The combined LSC + MCSEF

controller outperformed LSC in every case.

A discussion of the authors’ future work in this

field now follows. This work will primarily focus on

the further development of the generalized dynamic

framework of DSS and the corresponding synthesis

and analysis of new LSC- and MCSEF-based con-

trollers, using both TFM and state-space descrip-

tions. In particular, further experimental verification

of the new DSS concepts will feature significantly in

future work. Also to be addressed is the development

of the NuM for solving decentralized numerical

problems.

The effect of dynamic parameter variations within

the experimental programme have so far centred on

the SP actuator dynamics, since such variations are

relatively simple to implement, they are repeatable,

and they represent a commonly encountered

problem in DSS testing. Effects of parameter

variations elsewhere in the DSS system have been

extensively studied via simulations, which are not

reported here. As with the experimental investiga-

tions, the overall result of changing mass distribu-

tion or suspension compliance was found to have a

minimal effect on the DSS synchronization error

when MCSEF was included within the loop. Part of

the future work will include a systematic experi-

mental investigation of such effects on the quasi-

motorcycle rig.

In this paper, the size of permissible substructur-

ing error has not been addressed. In practice, the

constraint on maximum error will depend on the

specific application and the minimum error achiev-

able will depend on the system dynamics (including

non-linearities), the actuation bandwidth, sensor

noise, and the control algorithm. Ongoing work by

the authors using the framework presented here,

combined with H‘ and other optimal robust control

methods, will place the permissible substructuring

error as a key design parameter, an approach that is

expected to provide additional insights.

Finally, the issue of whether to use displacement

synchronization (with force as an interaction con-

straint) or force synchronization (with displacement

as an interaction constraint), or a combination of

these, has not yet been resolved. Preliminary results

show that different modes of operation yield

different levels of conditioning of the controllers,

depending on the synchronization variables that are

used. Thus, another objective of our future research

will be to solve this problem and thereby generate

best-conditioned DSS control strategies.

Fig. 16 ISE curves for the DSS errors shown in Figs 14
and 15
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APPENDIX

Notation

ai inner-loop system denominator

coefficient

Am reference model parameter matrix

bi inner-loop system numerator

coefficient

Be structural input matrix

ci, cij viscous damper coefficients

Ce output error matrix

di disturbance

e, ei, eij substructuring errors

fi, fij non-specific force outputs

fni, fnij numerical substructure force outputs

fpi, fpij physical substructure force outputs

g acceleration constant due to gravity

Gai, Gaij transfer system transfer functions

Gi non-specific substructure transfer

function matrix

I identity matrix

Ji moment of inertia

ki, kij linear spring coefficients

Kd forward gain/transfer function

Ke feedback gain/transfer function

Li, Lij lengths

mi, mij masses

P symmetric positive-definite solution

to a Lyapunov equation

Pi equivalent mass

Q symmetric positive-definite term in a

Lyapunov equation

s Laplace transform variable

t continuous time

ts step-response settling time

ui, uij linear control inputs

u9i, u9ij total control inputs (adaptive +
linear)

yai, yaij transfer system (actuator)

displacement outputs

ye output error

yi, yij non-specific displacement outputs

yni, ynij numerical substructure

displacement outputs

ypi, ypij physical substructure displacement

outputs

zi generalized substructure output

a weight on integral adaption

b weight on proportional adaption

hi angle

SE emulated system

Si non-specific substructure

Sn, Sni numerical substructure

Sp, Spi physical substructure

Abbreviations

ACGDSS adaptive control of generalized

dynamically substructured systems

ACTLab (University of Bristol) Advanced

Control and Test Laboratory

DOF degree of freedom

DSS dynamically substructured system

EF error feedback

EPSRC (UK) Engineering and Physical

Sciences Research Council

ISE integral square error

LSC linear substructuring controller

LVDT linear variable displacement

transformer

MCS minimal control synthesis
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MCSEF minimal control synthesis with error

feedback

MiM mixed mode

MIMO multi-input/multi-output

MuM multi mode

MO mode of operation

PhM physical mode

NuM numerical mode

QM quasi-motorcycle (experimental rig)

SiM single mode

SISO single-input/single-output

TFM transfer function matrix
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