181 research outputs found

    Trip-Based Public Transit Routing Using Condensed Search Trees

    Get PDF
    We study the problem of planning Pareto-optimal journeys in public transit networks. Most existing algorithms and speed-up techniques work by computing subjourneys to intermediary stops until the destination is reached. In contrast, the trip-based model focuses on trips and transfers between them, constructing journeys as a sequence of trips. In this paper, we develop a speed-up technique for this model inspired by principles behind existing state-of-the-art speed-up techniques, Transfer Pattern and Hub Labelling. The resulting algorithm allows us to compute Pareto-optimal (with respect to arrival time and number of transfers) 24-hour profiles on very large real-world networks in less than half a millisecond. Compared to the current state of the art for bicriteria queries on public transit networks, this is up to two orders of magnitude faster, while increasing preprocessing overhead by at most one order of magnitude

    The Multiobjective Average Network Flow Problem: Formulations, Algorithms, Heuristics, and Complexity

    Get PDF
    Integrating value focused thinking with the shortest path problem results in a unique formulation called the multiobjective average shortest path problem. We prove this is NP-complete for general graphs. For directed acyclic graphs, an efficient algorithm and even faster heuristic are proposed. While the worst case error of the heuristic is proven unbounded, its average performance on random graphs is within 3% of the optimal solution. Additionally, a special case of the more general biobjective average shortest path problem is given, allowing tradeoffs between decreases in arc set cardinality and increases in multiobjective value; the algorithm to solve the average shortest path problem provides all the information needed to solve this more difficult biobjective problem. These concepts are then extended to the minimum cost flow problem creating a new formulation we name the multiobjective average minimum cost flow. This problem is proven NP-complete as well. For directed acyclic graphs, two efficient heuristics are developed, and although we prove the error of any successive average shortest path heuristic is in theory unbounded, they both perform very well on random graphs. Furthermore, we define a general biobjective average minimum cost flow problem. The information from the heuristics can be used to estimate the efficient frontier in a special case of this problem trading off total flow and multiobjective value. Finally, several variants of these two problems are discussed. Proofs are conjectured showing the conditions under which the problems are solvable in polynomial time and when they remain NP-complete

    Speeding up Martins' algorithm for multiple objective shortest path problems

    Get PDF
    The latest transportation systems require the best routes in a large network with respect to multiple objectives simultaneously to be calculated in a very short time. The label setting algorithm of Martins efficiently finds this set of Pareto optimal paths, but sometimes tends to be slow, especially for large networks such as transportation networks. In this article we investigate a number of speedup measures, resulting in new algorithms. It is shown that the calculation time to find the Pareto optimal set can be reduced considerably. Moreover, it is mathematically proven that these algorithms still produce the Pareto optimal set of paths

    Bicriteria Network Design Problems

    Full text link
    We study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a <subgraph \from a given subgraph-class that minimizes the second objective subject to the budget on the first. We consider three different criteria - the total edge cost, the diameter and the maximum degree of the network. Here, we present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, we develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same %(note that the cost functions continue to be different) we present a ``black box'' parametric search technique. This black box takes in as input an (approximation) algorithm for the unicriterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs we use a cluster-based approach to devise a approximation algorithms --- the solutions output violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. We show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.Comment: 24 pages 1 figur

    Trip-Based Public Transit Routing

    Get PDF
    We study the problem of computing all Pareto-optimal journeys in a public transit network regarding the two criteria of arrival time and number of transfers taken. We take a novel approach, focusing on trips and transfers between them, allowing fine-grained modeling. Our experiments on the metropolitan network of London show that the algorithm computes full 24-hour profiles in 70 ms after a preprocessing phase of 30 s, allowing fast queries in dynamic scenarios.Comment: Minor corrections, no substantial changes. To be presented at ESA 201

    Extensive facility location problems on networks with equity measures

    Get PDF
    AbstractThis paper deals with the problem of locating path-shaped facilities of unrestricted length on networks. We consider as objective functions measures conceptually related to the variability of the distribution of the distances from the demand points to a facility. We study the following problems: locating a path which minimizes the range, that is, the difference between the maximum and the minimum distance from the vertices of the network to a facility, and locating a path which minimizes a convex combination of the maximum and the minimum distance from the vertices of the network to a facility, also known in decision theory as the Hurwicz criterion. We show that these problems are NP-hard on general networks. For the discrete versions of these problems on trees, we provide a linear time algorithm for each objective function, and we show how our analysis can be extended also to the continuous case

    Constructing minimal cost/minimal SRLG spanning trees Over optical networks - An exact approach

    Get PDF
    The construction of overlay or broadcast networks, based on spanning trees, over WDM optical networks with SRLG information has important applications in telecommunications. In this paper we propose a bicriteria optimisation model for calculating communication spanning trees over WDM networks the objectives of which are the minimisation of the total number of different SRLGs of the tree links (seeking to maximise reliability) and the minimisation of the total bandwidth usage cost. An exact algorithm for generating the whole set of non-dominated solutions and methods for selecting a final solution in various decision environments, are put forward. An extensive experimental study on the application of the model, including two sets of experiments based on reference transport network topologies, with random link bandwidth occupations and with random SRLG assignments to the links, is also presented, together with a discussion on potential advantages of the model

    Analysis of FPTASes for the Multi-Objective Shortest Path Problem

    Get PDF
    We propose a new FPTAS for the multi-objective shortest path problem. The algorithm uses elements from both an exact labeling algorithm and an FPTAS proposed by Tsaggouris and Zaroliagis (2009). We analyze the running times of these three algorithms both from a the- oretical and a computational point of view. Theoretically, we show that there are instances for which the new FPTAS runs an arbitrary times faster than the other two algorithms. Fur- thermore, for the bi-objective case, the number of approximate solutions generated by the proposed FPTAS is at most the number of Pareto-optimal solutions multiplied by the number of nodes. By performing a set of computational tests, we show that the new FPTAS performs best in terms of running ti

    The smoothed number of {P}areto-optimal solutions in bicriteria integer optimization

    Get PDF
    • …
    corecore