74 research outputs found

    Variational approximation of functionals defined on 1-dimensional connected sets: the planar case

    Full text link
    In this paper we consider variational problems involving 1-dimensional connected sets in the Euclidean plane, such as the classical Steiner tree problem and the irrigation (Gilbert-Steiner) problem. We relate them to optimal partition problems and provide a variational approximation through Modica-Mortola type energies proving a Γ\Gamma-convergence result. We also introduce a suitable convex relaxation and develop the corresponding numerical implementations. The proposed methods are quite general and the results we obtain can be extended to nn-dimensional Euclidean space or to more general manifold ambients, as shown in the companion paper [11].Comment: 30 pages, 5 figure

    The traveling repairman problem

    Get PDF
    Diese Magisterarbeit gibt einen Überblick über das Traveling Repairman Problem (TRP), das eine Spezialform des Problems des Handlungsreisenden (Traveling Salesman Problem – TSP) darstellt. Beide Modelle werden benutzt, um die Tour eines Handlungsreisenden zu planen, der in einer vorgegebenen Zeitspanne eine bestimmte Anzahl von Kunden besuchen soll. Während das TSP sich darauf konzentriert, die Länge der Tour zu minimieren, versucht das TRP, die Summe der Wartezeiten der Kunden so gering wie möglich zu halten. Der Hauptteil der Arbeit beschäftigt sich mit der Definition und den Varianten des TRP und beschreibt mögliche Modelle und Verfahren, mit deren Hilfe diese zu lösen sind. Dabei werden zuerst die Problemstellungen definiert und dann die mathematischen Formulierungen bzw. die Algorithmen dargestellt. Zu Beginn der Arbeit werden das TSP und das TRP näher definiert und kurz anhand eines Beispiels illustriert (in Kapitel 2). Danach werden das allgemeine TRP und einige Lösungsverfahren dazu näher erläutert (in Kapitel 3). Im Hauptteil werden zuerst einige Variationen des TRP mit einem einzelnen Repairman und Algorithmen zur Lösung dieser Modelle beschrieben (in Kapitel 4). Dann werden das TRP mit mehreren Repairmen sowie einige Spezialformen hierzu erläutert (in Kapitel 5). Zusätzlich werden in dieser Arbeit Anwendungsmöglichkeiten beschrieben, von denen zwei genauer untersucht werden (in Kapitel 6). Schließlich werden noch einige Basisbegriffe und Lösungsmethoden erläutert (in Kapitel 7)

    Open Shop Scheduling with Synchronization

    Get PDF
    In this paper, we study open shop scheduling problems with synchronization. This model has the same features as the classical open shop model, where each of the n jobs has to be processed by each of the m machines in an arbitrary order. Unlike the classical model, jobs are processed in synchronous cycles, which means that the m operations of the same cycle start at the same time. Within one cycle, machines which process operations with smaller processing times have to wait until the longest operation of the cycle is finished before the next cycle can start. Thus, the length of a cycle is equal to the maximum processing time of its operations. In this paper, we continue the line of research started by Weiß et al. (Discrete Appl Math 211:183–203, 2016). We establish new structural results for the two-machine problem with the makespan objective and use them to formulate an easier solution algorithm. Other versions of the problem, with the total completion time objective and those which involve due dates or deadlines, turn out to be NP-hard in the strong sense, even for m=2 machines. We also show that relaxed models, in which cycles are allowed to contain less than m jobs, have the same complexity status

    Quadratic assignment problem : linearizations and polynomial time solvable cases

    Get PDF
    Cataloged from PDF version of article.The Quadratic Assignment Problem (QAP) is one of the hardest combinatorial optimization problems known. Exact solution attempts proposed for instances of size larger than 15 have been generally unsuccessful even though successful implementations have been reported on some test problems from the QAPLIB up to size 36. In this dissertation, we analyze the binary structure of the QAP and present new IP formulations. We focus on “flow-based” formulations, strengthen the formulations with valid inequalities, and report computational experience with a branch-and-cut algorithm. Next, we present new classes of instances of the QAP that can be completely or partially reduced to the Linear Assignment Problem and give procedures to check whether or not an instance is an element of one of these classes. We also identify classes of instances of the Koopmans-Beckmann form of the QAP that are solvable in polynomial time. Lastly, we present a strong lower bound based on Bender’s decomposition.Erdoğan, GüneşPh.D

    Linear Programming Methods for Identifying Solvable Cases of the Quadratic Assignment Problem

    Get PDF
    This research effort is concerned with identifying and characterizing families of polynomially solvable instances of the celebrated NP-hard quadratic assignment problem (qap). The approach is novel in that it uses polyhedral methods based on an equivalent mixed 0-1 linear reformulation of the problem. The continuous relaxation of this mixed 0-1 form yields a feasible region having extreme points that are both binary and fractional. The solvable instances of concern essentially possess objective function structures that ensure a binary extreme point must be optimal, so that the linear program solves the qap. The ultimate contribution of this work is the unification and subsumption of a variety of known solvable instances of the qap, and the development of a theoretical framework for identifying richer families of solvable instances. The qap was introduced over 50 years ago in the context of facility layout and location. The underlying mathematical structure, from which the problem draws its name, consists of the minimization of a quadratic function of binary variables over an assignment polytope. Since its inception, this structure has received considerable attention from various researchers, both practitioners and theoreticians alike, due to the diversity of practical applications and the resistance to exact solution procedures. Unfortunately, the combinatorial explosion of feasible solutions to the qap, in terms of the number of binary variables, creates a significant gap between the sizes of the motivating applications and the instances that can be solved by state-of-the-art solution algorithms. The most successful algorithms rely on linear forms of the qap to compute bounds within enumerative schemes. The inability to solve large qap instances has motivated researchers to seek special objective function structures that permit polynomial solvability. Various, seemingly unrelated, structures are found in the literature. This research shows that many such structures can be explained in terms of the linear reformulation which results from applying the level-1 reformulation-linearization technique (RLT) to the qap. In fact, the research shows that the level-1 RLT not only serves to explain many of these instances, but also allows for simplifications and/or generalizations. One important structure centers around instances deemed to be linearizable, where a qap instance is defined to be linearizazble if it can be equivalently rewritten as a linear assignment problem that preserves the objective function value at all feasible points. A contribution of this effort is that the constraint structure of a relaxed version of the continuous relaxation of the level-1 RLT form gives rise to a necessary and sufficient condition for an instance of the qap to be linearizable. Specifically, an instance of the qap is linearizable if and only if the given relaxed level-1 RLT form has a finite optimal solution. For all such cases, an optimal solution must occur at a binary extreme point. As a consequence, all linearizable qap instances are solvable via the level-1 RLT. The converse, however is not true, as the continuous relaxation of the level-1 RLT form can have a binary optimal solution when the qap is not linearizable. Thus, the linear program available from the level-1 RLT theoretically identifies a richer family of solvable instances. Notably, and as a consequence of this study, the level-1 RLT serves as a unifying entity in that it integrates the computation of linear programming-based bounds with the identification of polynomially solvable special cases, a relationship that was previously unnoticed

    Variational Approximation of Functionals Defined on 1-dimensional Connected Sets: The Planar Case

    Get PDF
    In this paper we consider variational problems involving 1-dimensional connected sets in the Euclidean plane, such as the classical Steiner tree problem and the irrigation (Gilbert--Steiner) problem. We relate them to optimal partition problems and provide a variational approximation through Modica--Mortola type energies proving a GammaGamma-convergence result. We also introduce a suitable convex relaxation and develop the corresponding numerical implementations. The proposed methods are quite general and the results we obtain can be extended to nn-dimensional Euclidean space or to more general manifold ambients, as shown in the companion paper [M. Bonafini, G. Orlandi, and E. Oudet, Variational Approximation of Functionals Defined on 1-Dimensional Connected Sets in mathbbRnmathbb{R}^n, preprint, 2018]
    corecore