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VARIATIONAL APPROXIMATION OF FUNCTIONALS DEFINED
ON 1-DIMENSIONAL CONNECTED SETS: THE PLANAR CASE\ast 

MAURO BONAFINI\dagger , GIANDOMENICO ORLANDI\ddagger , AND \'EDOUARD OUDET\S 

Abstract. In this paper we consider variational problems involving 1-dimensional connected sets
in the Euclidean plane, such as the classical Steiner tree problem and the irrigation (Gilbert--Steiner)
problem. We relate them to optimal partition problems and provide a variational approximation
through Modica--Mortola type energies proving a \Gamma -convergence result. We also introduce a suitable
convex relaxation and develop the corresponding numerical implementations. The proposed methods
are quite general and the results we obtain can be extended to n-dimensional Euclidean space or to
more general manifold ambients, as shown in the companion paper [M. Bonafini, G. Orlandi, and
E. Oudet, Variational Approximation of Functionals Defined on 1-Dimensional Connected Sets in
\BbbR n, preprint, 2018].
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1. Introduction. Connected 1-dimensional structures play a crucial role in very
different areas like discrete geometry (graphs, networks, spanning, and Steiner trees),
structural mechanics (crack formation and propagation), and inverse problems (de-
fects identification, contour segmentation), etc. The modeling of these structures is a
key problem both from the theoretical and the numerical points of view. Most of the
difficulties encountered in studying such 1-dimensional objects are related to the fact
that they are not canonically associated to standard mathematical quantities. In this
article we plan to bridge the gap between the well-established methods of multiphase
modeling and the world of 1-dimensional connected sets or networks. Whereas we
strongly believe that our approach may lead to new points of view in quite different
contexts, we restrict here our exposition to the study of two standard problems in
the Calculus of Variations which are, respectively, the classical Steiner Tree Problem
(STP) and the Gilbert--Steiner problem (also called the irrigation problem).

The (STP) [22] can be described as follows: given N points P1, . . . , PN in a metric
space X (e.g., X a graph, with Pi assigned vertices) find a connected graph F \subset X
containing the points Pi and having minimal length. Such an optimal graph F turns
out to be a tree and is thus called a Steiner Minimal Tree (SMT). In case X = \BbbR d,
d \geq 2, endowed with the Euclidean \ell 2 metric, one refers often to the Euclidean or
geometric (STP), while for X = \BbbR d endowed with the \ell 1 (Manhattan) distance or for
X contained in a fixed grid \scrG \subset \BbbR d, one refers to the rectilinear (STP). Here we will
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adopt the general metric space formulation of [31]: given a metric space X, and given
a compact (possibly infinite) set of terminal points A \subset X, find

(STP) inf\{ \scrH 1(S), S connected, S \supset A\} ,

where \scrH 1 indicates the 1-dimensional Hausdorff measure on X. Existence of solutions
for (STP) relies on Golab's compactness theorem for compact connected sets, and it
holds true also in generalized cases (e.g., inf\scrH 1(S), S \cup A connected).

The Gilbert--Steiner problem, or \alpha -irrigation problem [10, 37] consists of finding
a network S along which flow unit masses located at the sources P1, . . . , PN - 1 to
the target point PN . Such a network S can be viewed as S = \cup N - 1

i=1 \gamma i, with \gamma i a
path connecting Pi to PN , corresponding to the trajectory of the unit mass located
at Pi. To favor branching, one is led to consider a cost to be minimized by S which
is a sublinear (concave) function of the mass density \theta (x) =

\sum N - 1
i=1 1\gamma i(x), i.e., for

0 \leq \alpha \leq 1, find

(I\alpha ) inf

\int 
S

| \theta (x)| \alpha d\scrH 1(x).

Notice that (I1) corresponds to the Monge optimal transport problem, while (I0)
corresponds to (STP). As for (STP), a solution to (I\alpha ) is known to exist and the
optimal network S turns out to be a tree [10].

Problems like (STP) or (I\alpha ) are relevant for the design of optimal transport
channels or networks connecting given endpoints, for example, the optimal design
of net routing in VLSI circuits in the case d = 2, 3. The (STP) has been widely
studied from the theoretical and numerical points of view in order to efficiently devise
constructive solutions, mainly through combinatoric optimization techniques. Finding
an SMT is known to be an NP hard problem (and even NP complete in certain cases);
see, for instance, [6, 7] for a comprehensive survey on PTAS algorithms for (STP).

The situation in the Euclidean case for (STP) is theoretically well understood:
given N points Pi \in \BbbR d an SMT connecting them always exists, the solution being, in
general, not unique (think, for instance, of symmetric configurations of the endpoints
Pi). The SMT is a union of segments connecting the endpoints, possibly meeting at
120\circ in at most N  - 2 further branch points, called Steiner points.

Nonetheless, the quest of computationally tractable approximating schemes for
(STP) and for (I\alpha ) has recently attracted a lot of attention in the Calculus of Vari-
ations community. In particular (I\alpha ) has been studied in the framework of optimal
branched transport theory [10, 16], while (STP) has been interpreted as, respectively, a
size minimization problem for 1-dimensional connected sets [27, 20], or even a Plateau
problem in a suitable class of vector distributions endowed with some algebraic struc-
ture [27, 24], to be solved by finding suitable calibrations [25]. Several authors have
proposed different approximations of those problems, whose validity is essentially lim-
ited to the planar case, mainly using a phase field based approach together with some
coercive regularization; see, e.g., [13, 19, 29, 12].

Our aim is to propose a variational approximation for (STP) and for the Gilbert--
Steiner irrigation problem (in the equivalent formulations of [37, 23]) in the Euclidean
case X = \BbbR d, d \geq 2. In this paper we focus on the planar case d = 2 and prove a
\Gamma -convergence result (see Theorem 3.12 and Proposition 3.11) by considering integral
functionals of Modica--Mortola type [26]. In the companion paper [11] we rigorously
prove that certain integral functionals of Ginzburg--Landau type (see [1]) yield a
variational approximation for (STP) and (I\alpha ) valid in any dimension d \geq 3. This
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approach is related to the interpretation of (STP) and (I\alpha ) as a mass minimization
problem in a cobordism class of integral currents with multiplicities in a suitable
normed group as studied by Marchese and Massaccesi in [24, 23] (see also [27] for the
planar case). Our method is quite general and may be easily adapted to a variety of
situations (e.g., in manifolds or more general metric space ambients, with densities or
anisotropic norms, etc.).

The plan of the paper is as follows: in section 2 we reformulate (STP) and (I\alpha ) as
a suitable modification of the optimal partition problem in the planar case. In section
3, we state and prove our main \Gamma -convergence results, respectively Proposition 3.11
and Theorem 3.12. Inspired by [18], in section 4 we introduce a convex relaxation
of the corresponding energies. In section 5 we present our approximating scheme for
(STP) and for the Gilbert--Steiner problem and illustrate its flexibility in different
situations, showing how our convex formulation is able to recover multiple solutions,
whereas \Gamma -relaxation detects any locally minimizing configuration. Finally, in section
6 we propose some examples and generalizations that are extensively studied in the
companion paper [11].

2. Steiner problem for Euclidean graphs and optimal partitions. In this
section we describe some optimization problems on Euclidean graphs with fixed end-
points set A, like (STP) or irrigation type problems, following the approach of [24, 23],
and we rephrase them as optimal partition type problems in the planar case \BbbR 2.

2.1. Rank one tensor valued measures and acyclic graphs. For M > 0,
we consider Radon measures \Lambda on \BbbR d with values in the space of matrices \BbbR d\times M . For
each i = 1, . . . ,M we define as \Lambda i the vector measure representing the ith column
of \Lambda , so that we can write \Lambda = (\Lambda 1, . . . ,\Lambda M ). The total variation measures | \Lambda i| are
defined as usual with respect to (w.r.t.) the Euclidean structure on \BbbR d, while we

set \mu \Lambda =
\sum M
i=1 | \Lambda i| . Thanks to the Radon--Nikodym theorem we can find a matrix

valued density function p(x) = (p1(x), . . . , pM (x)), with entries pki \in L1(\BbbR d, \mu \Lambda ) for

all k = 1, . . . , d and i = 1, . . . ,M , such that \Lambda = p(x)\mu \Lambda and
\sum M
i=1 | pi(x)| = 1 for

\mu \Lambda -almost everywhere (a.e.) x \in \BbbR d (where on vectors of \BbbR d | \cdot | denotes the Euclidean
norm). Whenever p is a rank one matrix \mu \Lambda -a.e. we say that \Lambda is a rank one tensor
valued measure and we write it as \Lambda = \tau \otimes g \cdot \mu \Lambda for a \mu \Lambda -measurable unit vector field
\tau in \BbbR d and g : \BbbR d \rightarrow \BbbR M satisfying

\sum M
i=1 | gi| = 1.

Given \Lambda \in \scrM (\BbbR d,\BbbR d\times M ) and a function \varphi \in C\infty 
c (\BbbR d;\BbbR d\times M ), with \varphi = (\varphi 1, . . . ,

\varphi M ), we have

\langle \Lambda , \varphi \rangle =
M\sum 
i=1

\langle \Lambda i, \varphi i\rangle =
M\sum 
i=1

\int 
\BbbR d

\varphi i d\Lambda i,

and fixing a norm \Psi on \BbbR M , one may define the \Psi -mass measure of \Lambda as

(2.1) | \Lambda | \Psi (B) := sup
\omega \in C\infty 

c (B;\BbbR d)

h\in C\infty 
c (B;\BbbR M )

\{ \langle \Lambda , \omega \otimes h\rangle , | \omega (x)| \leq 1 , \Psi \ast (h(x)) \leq 1\} ,

for B \subset \BbbR d open, where \Psi \ast is the dual norm to \Psi w.r.t. the scalar product on \BbbR M ,
i.e.,

\Psi \ast (y) = sup
x\in \BbbR M

\langle y, x\rangle  - \Psi (x).

Denote | | \Lambda | | \Psi = | \Lambda | \Psi (\BbbR d) to be the \Psi -mass norm of \Lambda . In particular one can see that
\mu \Lambda coincides with the measure | \Lambda | \ell 1 , which from now on will be denoted as | \Lambda | 1, and
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any rank one measure \Lambda may be written as \Lambda = \tau \otimes g \cdot | \Lambda | 1 so that | \Lambda | \Psi = \Psi (g)| \Lambda | 1.
Along the lines of [24] we will rephrase the Steiner and Gilbert--Steiner problems as
the optimization of a suitable \Psi -mass norm over a given class of rank one tensor
valued measures.

Let A = \{ P1, . . . , PN\} \subset \BbbR d, d \geq 2, be a given set of N distinct points, with
N > 2. We define the class \scrG (A) as the set of acyclic graphs L connecting the
endpoints set A such that L can be described as the union L = \cup N - 1

i=1 \lambda i, where \lambda i
are simple rectifiable curves with finite length having Pi as initial point and PN as
final point, oriented by \scrH 1-measurable unit vector fields \tau i satisfying \tau i(x) = \tau j(x)
for \scrH 1-a.e. x \in \lambda i \cap \lambda j (i.e., the orientation of \lambda i is coherent with that of \lambda j on their
intersection).

For L \in \scrG (A), if we identify the curves \lambda i with the vector measures \Lambda i = \tau i \cdot 
\scrH 1 \lambda i, all of the information concerning this acyclic graph L is encoded in the rank
one tensor valued measure \Lambda = \tau \otimes g \cdot \scrH 1 L, where the \scrH 1-measurable vector field
\tau \in \BbbR d carrying the orientation of the graph L satisfies spt \tau = L, | \tau | = 1, \tau = \tau i
\scrH 1-a.e. on \lambda i, and the \scrH 1-measurable vector map g : \BbbR d \rightarrow \BbbR N - 1 has components gi
satisfying gi \cdot \scrH 1 L = \scrH 1 \lambda i = | \Lambda i| , with | \Lambda i| the total variation measure of the
vector measure \Lambda i = \tau \cdot \scrH 1 \lambda i. Observe that gi \in \{ 0, 1\} a.e. for any 1 \leq i \leq N  - 1
and, moreover, that each \Lambda i verifies the property

(2.2) div \Lambda i = \delta Pi
 - \delta PN

.

Definition 2.1. Given any graph L \in \scrG (A), we call the above constructed \Lambda L \equiv 
\Lambda = \tau \otimes g \cdot \scrH 1 L the canonical rank one tensor valued measure representation of
the acyclic graph L.

To any compact connected set K \supset A with \scrH 1(K) < +\infty , i.e., to any candidate
minimizer for (STP), we may associate in a canonical way an acyclic graph L \in \scrG (A)
connecting \{ P1, . . . , PN\} such that \scrH 1(L) \leq \scrH 1(K) (see, e.g., Lemma 2.1 in [24]).
Given such a graph L \in \scrG (A) canonically represented by the tensor valued measure \Lambda ,
the measure \scrH 1 L corresponds to the smallest positive measure dominating \scrH 1 \lambda i
for 1 \leq i \leq N - 1. It is thus given by \scrH 1 L = supi\scrH 1 \lambda i = supi | \Lambda i| , the supremum
of the total variation measures | \Lambda i| . We recall that, for any nonnegative \psi \in C0

c (\BbbR d),
we have\int 

\BbbR d

\psi d

\biggl( 
sup
i

| \Lambda i| 
\biggr) 

= sup

\Biggl\{ 
N - 1\sum 
i=1

\int 
\BbbR d

\varphi i d| \Lambda i| , \varphi i \in C0
c (\BbbR d),

N - 1\sum 
i=1

\varphi i(x) \leq \psi (x)

\Biggr\} 
.

Remark 2.2 (graphs as G-currents). In [24], the rank one tensor measure \Lambda =
\tau \otimes g \cdot \scrH 1 L identifying a graph in \BbbR d is defined as a current with coefficients in
the group \BbbZ N - 1 \subset \BbbR N - 1. For \omega \in \scrD 1(\BbbR d) a smooth compactly supported differential
1-form and \vec{}\varphi = (\varphi 1, . . . , \varphi N - 1) \in [\scrD (\BbbR d)]N - 1 a smooth test (vector) function, one
sets

\langle \Lambda , \omega \otimes \vec{}\varphi \rangle :=
\int 
\BbbR d

\langle \omega \otimes \vec{}\varphi , \tau \otimes g\rangle d\scrH 1 L =

N - 1\sum 
i=1

\int 
\BbbR d

\langle \omega , \tau \rangle \varphi igi d\scrH 1 L

=

N - 1\sum 
i=1

\int 
\BbbR d

\langle \omega , \tau \rangle \varphi i d| \Lambda i| .

Moreover, fixing a norm \Psi on \BbbR N - 1, one may define the \Psi -mass of the current \Lambda 
as it is done in (2.1). In [24] the authors show that classical integral currents, i.e.,
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G = \BbbZ , are not suited to describe (STP) as a mass minimization problem: for example,
minimizers are not ensured to have connected support.

2.2. Irrigation type functionals. In this section we consider functionals de-
fined on acyclic graphs connecting a fixed set A = \{ P1, . . . , PN\} \subset \BbbR d, d \geq 2, by
using their canonical representation as rank one tensor valued measures, in order to
identify the graph with an irrigation plan from the point sources \{ P1, . . . , PN - 1\} to
the target point PN . We focus here on suitable energies in order to describe the ir-
rigation problem and the (STP) in a common framework as in [24, 23]. We observe,
moreover, that the irrigation problem with one point source (I\alpha ) introduced by Xia
[37], in the equivalent formulation of [23], approximates the (STP) as \alpha \rightarrow 0 in the
sense of \Gamma -convergence (see Proposition 2.4).

Consider on \BbbR N - 1 the norms \Psi \alpha = | \cdot | \ell 1/\alpha (for 0 < \alpha \leq 1) and \Psi 0 = | \cdot | \ell \infty . Let
\Lambda = \tau \otimes g \cdot \scrH 1 L be the canonical representation of an acyclic graph L \in \scrG (A), so
that we have | \tau | = 1, gi \in \{ 0, 1\} for 1 \leq i \leq N  - 1, and hence | g| \infty = 1 \scrH 1-a.e. on L.
Let us define for such \Lambda and any \alpha \in [0, 1] the functional

\scrF \alpha (\Lambda ) := | | \Lambda | | \Psi \alpha 
= | \Lambda | \Psi \alpha 

(\BbbR d).

Observe that, by (2.1),

\scrF 0(\Lambda ) =

\int 
\BbbR d

| \tau | | g| \infty d\scrH 1 L = \scrH 1(L)

and

(2.3) \scrF \alpha (\Lambda ) =

\int 
\BbbR d

| \tau | | g| 1/\alpha d\scrH 1 L =

\int 
L

| \theta | \alpha d\scrH 1 ,

where \theta (x) =
\sum 
i gi(x)

1/\alpha =
\sum 
i gi(x) \in \BbbZ , and 0 \leq \theta (x) \leq N  - 1. We thus recognize

that minimizing the functional \scrF \alpha among graphs L connecting P1, . . . , PN - 1 to PN
solves the irrigation problem (I\alpha ) with unit mass sources P1, . . . , PN - 1 and target
PN (see [23]), while minimizing \scrF 0 among graphs L with endpoints set \{ P1, . . . , PN\} 
solves (STP) in \BbbR d.

Since both \scrF \alpha and \scrF 0 are mass type functionals, minimizers do exist in the
class of rank one tensor valued measures. The fact that the minimization problem
within the class of canonical tensor valued measures representing acyclic graphs has
a solution in that class is a consequence of compactness properties of Lipschitz maps
(more generally by the compactness theorem for G-currents [24]; in \BbbR 2 it follows
alternatively by the compactness theorem in the SBV class [5]). Actually, existence
of minimizers in the canonically oriented graph class in \BbbR 2 can be deduced as a by-
product of our convergence result (see Proposition 3.11 and Theorem 3.12) and in \BbbR d,
for d > 2, by the parallel \Gamma -convergence analysis contained in the companion paper
[11].

Remark 2.3. A minimizer of \scrF 0 (resp., \scrF \alpha ) among tensor valued measures \Lambda 
representing admissible graphs corresponds necessarily to the canonical representation
of a minimal graph, i.e., gi \in \{ 0, 1\} for all 1 \leq i \leq N  - 1. Indeed, since gi \in \BbbZ , if
gi \not = 0, we have | gi| \geq 1, hence gi \in \{  - 1, 0, 1\} for minimizers. Moreover, if gi =  - gj
on a connected arc in \lambda i \cap \lambda j , with \lambda i going from Pi to PN and \lambda j going from Pj to
PN , this implies that \lambda i \cup \lambda j contains a cycle and \Lambda cannot be a minimizer. Hence,
up to reversing the orientation of the graph, gi \in \{ 0, 1\} for all 1 \leq i \leq N  - 1.
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We conclude this section by observing in the following proposition that the (STP)
can be seen as the limit of irrigation problems.

Proposition 2.4. The functional \scrF 0 is the \Gamma -limit, as \alpha \rightarrow 0, of the functionals
\scrF \alpha w.r.t. the convergence of measures.

Proof. Let \Lambda = \tau \otimes g \cdot \scrH 1 L be the canonical representation of an acyclic graph
L \in \scrG (A), so that | \tau | = 1 and gi \in \{ 0, 1\} for all i = 1, . . . , N  - 1. The functionals
\scrF \alpha (\Lambda ) =

\int 
\BbbR d | g| 1/\alpha d\scrH 1 L generate a monotonic decreasing sequence as \alpha \rightarrow 0,

because | g| p \leq | g| q for any 1 \leq q < p \leq +\infty , and, moreover, \scrF \alpha (\Lambda ) \rightarrow \scrF 0(\Lambda ) because
| g| q \rightarrow | g| \infty as q \rightarrow +\infty . Then, by elementary properties of \Gamma -convergence (see, for

instance, Remark 1.40 of [15]) we have \scrF \alpha \Gamma  - \rightarrow \scrF 0 .

2.3. Acyclic graphs and partitions of \BbbR \bftwo . This section is dedicated to the
2-dimensional case. The aim is to provide an equivalent formulation of (STP) and
(I\alpha ) in terms of an optimal partition type problem. The equivalence of (STP) with
an optimal partition problem has been already studied in the case where P1, . . . , PN
lie on the boundary of a convex set; see, for instance, [3, 4] and Remark 2.10.

To begin we state a result saying that two acyclic graphs having the same end-
points set give rise to a partition of \BbbR 2, in the sense that their oriented difference
corresponds to the orthogonal distributional gradient of a piecewise integer valued
function having bounded total variation, which in turn determines the partition (see
[5]). This is actually an instance of the constancy theorem for currents or Poincar\'e's
lemma for distributions (see [21]).

Lemma 2.5. Let \{ P,R\} \subset \BbbR 2, and let \lambda , \gamma be simple rectifiable curves from P to
R oriented by \scrH 1-measurable unit vector fields \tau \prime , \tau \prime \prime . Define as above \Lambda = \tau \prime \cdot \scrH 1 \lambda 
and \Gamma = \tau \prime \prime \cdot \scrH 1 \gamma .

Then there exists a function u \in SBV (\BbbR 2;\BbbZ ) such that, denoting Du and Du\bot ,
respectively, the measures representing the gradient and the orthogonal gradient of u,
we have Du\bot = \Gamma  - \Lambda .

Proof. Consider simple oriented polygonal curves \lambda k and \gamma k connecting P to R
such that the Hausdorff distance to, respectively, \lambda and \gamma is less than 1

k and the
length of \lambda k (resp., \gamma k) converges to the length of \lambda (resp., \gamma ). We can also assume
without loss of generality (w.l.o.g.) that \lambda k and \gamma k intersect only transversally in a
finite number of points mk \geq 2. Let \tau \prime k, \tau 

\prime \prime 
k be the \scrH 1-measurable unit vector fields

orienting \lambda k, \gamma k and define the measures \Lambda k = \tau \prime k \cdot \scrH 1 \lambda k and \Gamma k = \tau \prime \prime k \cdot \scrH 1 \gamma k.
For a given k \in \BbbN consider the closed polyhedral curve \sigma k = \lambda k \cup \gamma k oriented by

\tau k = \tau \prime k  - \tau \prime \prime k (i.e., we reverse the orientation of \gamma k). For every x \in \BbbR 2 \setminus \sigma k let us
consider the index of x w.r.t. \sigma k (or winding number) and denote it as

uk(x) = Ind\sigma k
(x) =

1

2\pi i

\oint 
\sigma k

dz

z  - x
.

By Theorem 10.10 in [33], the function uk is integer valued and constant in each
connected component of \BbbR 2 \setminus \sigma k and vanishes in the unbounded one. Furthermore,
for a.e. x \in \sigma k we have

lim
\varepsilon \rightarrow 0+

uk(x+ \varepsilon \tau k(x)
\bot ) - lim

\varepsilon \rightarrow 0 - 
uk(x+ \varepsilon \tau k(x)

\bot ) = 1;

i.e., uk has a jump of +1 whenever crossing \sigma k from ``right"" to ``left"" (cf. [32, Lemma
3.3.2]). This means that

Du\bot k =  - \tau k \cdot \scrH 1 \sigma k = \Gamma k  - \Lambda k.
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Thus, | Duk| (\BbbR 2) = \scrH 1(\sigma k) and \| uk\| L1(\BbbR 2) \leq C| Duk| (\BbbR 2) by Poincar\'e's inequality
in BV . Hence uk \in SBV (\BbbR 2;\BbbZ ) is an equibounded sequence in norm, and by the
Rellich compactness theorem there exists a subsequence still denoted uk converging
in L1(\BbbR 2) to a u \in SBV (\BbbR 2;\BbbZ ). Taking into account that we have Du\bot k = \Gamma k  - \Lambda k,
we deduce, in particular, that Du\bot = \Gamma  - \Lambda as desired.

Remark 2.6. Let A \subset \BbbR 2 as above. For i = 1, . . . , N  - 1, let \gamma i be the segment
joining Pi to PN , denote by \tau i = PN - Pi

| PN - Pi| its orientation, and identify \gamma i with the

vector measure \Gamma i = \tau i \cdot \scrH 1 \gamma i. Then G = \cup N - 1
i=1 \gamma i is an acyclic graph connecting

the endpoints set A and \scrH 1(G) = (supi | \Gamma i| )(\BbbR 2).

Given the set of terminal points A = \{ P1, . . . , PN\} \subset \BbbR 2, let us fix some G \in \scrG (A)
(for example, the one constructed in Remark 2.6). For any acyclic graph L \in \scrG (A),
denoting \Gamma (resp., \Lambda ) the canonical tensor valued representation of G (resp., L), by
means of Lemma 2.5 we have

(2.4) \scrH 1(L) =

\int 
\BbbR 2

sup
i

| \Lambda i| =
\int 
\BbbR 2

sup
i

| Du\bot i  - \Gamma i| 

for suitable ui \in SBV (\BbbR 2;\BbbZ ), 1 \leq i \leq N  - 1. Thus, using the family of measures
\Gamma = (\Gamma 1, . . . ,\Gamma N - 1) of Remark 2.6, we are led to consider the minimization problem
for U \in SBV (\BbbR 2;\BbbZ N - 1) for the functional

(2.5) F 0(U) = | DU\bot  - \Gamma | \Psi 0(\BbbR 2) =

\int 
\BbbR 2

sup
i

| Du\bot i  - \Gamma i| .

Proposition 2.7. There exists U \in SBV (\BbbR 2;\BbbZ N - 1) such that

F 0(U) = inf
V \in SBV (\BbbR 2;\BbbZ N - 1)

F 0(V ).

Moreover, sptU \subset \Omega = \{ x \in \BbbR 2 : | x| < 10maxi | Pi| \} .
Proof. Observe first that for any U \in SBV (\BbbR 2;\BbbZ N - 1) with F 0(U) < \infty , we

can find \~U such that (s.t.) F 0( \~U) \leq F 0(U) and spt \~U \subset \Omega . Indeed, consider r =
8maxi | Pi| , \chi = 1Br(0), and

\~U = (\chi u1, . . . , \chi uN - 1). One has, for 1 \leq i \leq N  - 1,\int 
\BbbR 2\setminus Br(0)

| D\~ui| =
\int 
\partial Br(0)

| u+i | ,

where u+i is the trace on \partial Br(0) of ui restricted to Br(0), and\int 
\BbbR 2

| D\~u\bot i  - \Gamma i| =
\int 
Br(0)

| Du\bot i  - \Gamma i| +
\int 
\partial Br(0)

| u+i | 

\leq 
\int 
Br(0)

| Du\bot i  - \Gamma i| +
\int 
\BbbR 2\setminus Br(0)

| Dui| =
\int 
\BbbR 2

| Du\bot i  - \Gamma i| 

for any i = 1, . . . , N  - 1, i.e., F 0( \~U) \leq F 0(U).
Consider now a minimizing sequence Uk \in SBV (\BbbR 2;\BbbZ N - 1) of F 0. We may

suppose w.l.o.g. spt(Uk) \subset \Omega , so that, for any 1 \leq i \leq N  - 1,

| Duki | (\Omega ) \leq | Duki  - \Gamma i| (\Omega ) +\scrH 1(G) \leq F 0(Uk) +\scrH 1(G) \leq 3\scrH 1(G)

for k sufficiently large. Hence Uk is uniformly bounded in BV by Poincar\'e's inequality
on \Omega , so that it is compact in L1(\Omega ;\BbbR N - 1) and, up to a subsequence, Uk \rightarrow U a.e.,
whence U \in SBV (\Omega ;\BbbZ N - 1), sptU \subset \Omega , and U minimizes F 0 by lower semicontinuity
of the norm.
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We have already seen that to each acyclic graph L \in \scrG (A) we can associate a
function U \in SBV (\BbbR 2;\BbbZ N - 1) such that \scrH 1(L) = F 0(U). On the other hand, for
minimizers of F 0, we have the following proposition.

Proposition 2.8. Let U \in SBV (\BbbR 2;\BbbZ N - 1) be a minimizer of F 0; then there
exists an acyclic graph L \in \scrG (A) connecting the terminal points P1, . . . , PN and such
that F 0(U) = \scrH 1(L).

Proof. Let U = (u1, . . . , uN - 1) be a minimizer of F 0 in SBV (\BbbR 2;\BbbZ N - 1), and
denote \Lambda i = \Gamma i  - Du\bot i . Observe that each Dui has no absolutely continuous part
w.r.t. the Lebesgue measure (indeed, ui is piecewise constant being integer valued)
and so \Lambda i = \tau i \cdot \scrH 1 \lambda i for some 1-rectifiable set \lambda i and \scrH 1-measurable vector field \tau i.
Since we have div \Lambda i = \delta Pi

 - \delta PN
, \lambda i necessarily contains a simple rectifiable curve \lambda \prime i

connecting Pi to PN (use, for instance, the decomposition theorem for rectifiable 1-
currents in cyclic and acyclic parts, as it is done in [23], or the Smirnov decomposition
of solenoidal vector fields [35]).

Consider now the canonical rank one tensor measure \Lambda \prime associated to the acyclic
subgraph L\prime = \lambda \prime 1 \cup \cdot \cdot \cdot \cup \lambda \prime N - 1 connecting P1, . . . , PN - 1 to PN . Then by Lemma 2.5,

there exists U \prime = (u\prime 1, . . . , u
\prime 
N - 1) \in SBV (\BbbR 2;\BbbZ N - 1) such that Du\prime i

\bot 
= \Gamma i - \Lambda \prime 

i and, in
particular, F 0(U \prime ) = \scrH 1(L\prime ) \leq \scrH 1(L) \leq F 0(U). We deduce \scrH 1(L\prime ) = \scrH 1(L), hence
L\prime = L, L is acyclic, and H1(L) = F 0(U).

Remark 2.9. We have shown the relationship between (STP) and the minimiza-
tion of F 0 over functions in SBV (\BbbR 2;\BbbZ N - 1), namely

inf\{ F 0(U) : U \in SBV (\BbbR 2;\BbbZ N - 1)\} = inf\{ \scrF 0(\Lambda L) : L \in \scrG (\{ P1, . . . , PN\} )\} .

A similar connection can be made between the \alpha -irrigation problem (I\alpha ) and mini-
mization over SBV (\BbbR 2;\BbbZ N - 1) of

(2.6) F\alpha (U) = | DU\bot  - \Gamma | \Psi \alpha (\BbbR 2),

namely we have

inf\{ F\alpha (U) : U \in SBV (\BbbR 2;\BbbZ N - 1)\} = inf\{ \scrF \alpha (\Lambda L) : L \in \scrG (\{ P1, . . . , PN\} )\} ,

where \scrF \alpha is defined in (2.3). Indeed, given a norm \Psi on \BbbR N - 1 and F\Psi (U) = | DU\bot  - 
\Gamma | \Psi (\BbbR 2) for U \in SBV (\BbbR 2;\BbbZ N - 1), the proofs of Propositions 2.7 and 2.8 carry over to
this general context: there exists U \in SBV (\BbbR 2;\BbbZ N - 1) realizing inf F\Psi , with sptU \subset 
\Omega and DU\bot  - \Gamma = \Lambda L with \Lambda L = \tau \otimes g \cdot \scrH 1 L the canonical representation of an
acyclic graph L \in \scrG (\{ P1, . . . , PN\} ).

Remark 2.10. In the case P1, . . . , PN \in \partial \Omega with \Omega \subset \BbbR 2 a convex set, we may
choose G = \cup N - 1

i=1 \gamma i with \gamma i connecting Pi to PN and spt \gamma i \subset \partial \Omega . We deduce by
(2.4) that for any acyclic graph L \in \scrG (A)

\scrH 1(L) =

\int 
\Omega 

sup
i

| Du\bot i | 

for suitable ui \in SBV (\Omega ;\BbbZ ) such that (in the trace sense) ui = 1 on \gamma i \subset \partial \Omega and
ui = 0 elsewhere in \partial \Omega , 1 \leq i \leq N  - 1. We recover here an alternative formulation
of the optimal partition problem in a convex planar set \Omega as studied, for instance, in
[3] and [4].

The aim of the next section is then to provide an approximation of minimizers
of the functionals F\alpha (and more generally F\Psi ) through minimizers of more regular
energies of Modica--Mortola type.
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3. Variational approximation of \bfitF \bfitalpha . In this section we state and prove our
main results, namely Proposition 3.11 and Theorem 3.12, concerning the approxima-
tion of minimizers of F\alpha through minimizers of Modica--Mortola type functionals, in
the spirit of \Gamma -convergence.

3.1. Modica--Mortola functionals for functions with prescribed jump.
In this section we consider Modica--Mortola functionals for functions having a pre-
scribed jump part along a fixed segment in \BbbR 2 and we prove compactness and lower-
bounds for sequences having a uniform energy bound. Let P,Q \in \BbbR 2, and let s be
the segment connecting P to Q. We denote by \tau s =

Q - P
| Q - P | its orientation and define

\Sigma s = \tau s \cdot \scrH 1 s. Up to rescaling, suppose max(| P | , | Q| ) = 1, and let \Omega = B10(0) and
\Omega \delta = \Omega \setminus (B\delta (P ) \cup B\delta (Q)) for 0 < \delta \ll | Q  - P | . We consider the Modica--Mortola
type functionals

(3.1) F\varepsilon (u,\Omega \delta ) =

\int 
\Omega \delta 

e\varepsilon (u) dx =

\int 
\Omega \delta 

\varepsilon | Du\bot  - \Sigma s| 2 +
1

\varepsilon 
W (u) dx,

defined for u \in Hs = \{ u \in W 1,2(\Omega \delta \setminus s) \cap SBV (\Omega \delta ) : u| \partial \Omega = 0\} , where W is
a smooth nonnegative 1-periodic potential vanishing on \BbbZ (e.g., W (u) = sin2(\pi u)).

Define H(t) = 2
\int t
0

\sqrt{} 
W (\tau ) d\tau and c0 = H(1).

Remark 3.1. Notice that any function u \in Hs with F\varepsilon (u,\Omega \delta ) <\infty has necessarily
a prescribed jump u+  - u - = +1 across s \Omega \delta in the direction \nu s =  - \tau \bot s in order
to erase the contribution of the measure term \Sigma s in the energy. We thus have the
decomposition

Du\bot = \nabla u\bot \scrL 2 + Ju\bot = \nabla u\bot \scrL 2 +\Sigma s \Omega \delta ,

where \nabla u \in L2(\Omega \delta ) is the absolutely continuous part of Du w.r.t. the Lebesgue
measure \scrL 2, and Ju = (u+  - u - )\nu s \cdot \scrH 1 s = \nu s \cdot \scrH 1 s.

Remark 3.2. Notice that we cannot work directly in \Omega with F\varepsilon due to summability
issues around the points P and Q for the absolutely continuous part of the gradient;
indeed, there are no functions u \in W 1,2(\Omega \setminus s) such that u+  - u - = 1 on s. To avoid
this issue one could consider variants of the functionals F\varepsilon (\cdot ,\Omega ) by relying on suitable
smoothings \Sigma s,\epsilon = \Sigma s \ast \eta \varepsilon of the measure \Sigma s, with \eta \varepsilon a symmetric mollifier.

Proposition 3.3 (compactness). For any sequence \{ u\varepsilon \} \varepsilon \subset Hs such that F\varepsilon (u\varepsilon ,
\Omega \delta ) \leq C, there exists u \in SBV (\Omega \delta ;\BbbZ ) such that (up to a subsequence) u\varepsilon \rightarrow u in
L1(\Omega \delta ).

Proof. By Remark 3.1 we have Du\bot \varepsilon = \nabla u\bot \varepsilon \scrL 2 +\Sigma s \Omega \delta , and using the classical
Modica--Mortola trick one has

C \geq 
\int 
\Omega \delta 

\varepsilon | Du\bot \varepsilon  - \Sigma s| 2 +
1

\varepsilon 
W (u\varepsilon ) dx

=

\int 
\Omega \delta 

\varepsilon | \nabla u\bot \varepsilon | 2 +
1

\varepsilon 
W (u\varepsilon ) dx \geq 2

\int 
\Omega \delta 

\sqrt{} 
W (u\varepsilon )| \nabla u\varepsilon | dx.

Recall that H(t) = 2
\int t
0

\sqrt{} 
W (\tau ) d\tau and c0 = H(1). By the chain rule, we have

| D(H \circ u\varepsilon )| (\Omega \delta ) = 2

\int 
\Omega \delta 

\sqrt{} 
W (u\varepsilon )| \nabla u\varepsilon | dx+

\int 
s

\bigl( 
H(u+\varepsilon ) - H(u - \varepsilon )

\bigr) 
d\scrH 1(x)

\leq C + c0\scrH 1(s).
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We also have (H \circ u\varepsilon )| \partial \Omega = 0 since u\varepsilon vanishes on \partial \Omega , so that, by Poincar\'e's in-
equality, \{ H \circ u\varepsilon \} \varepsilon is an equibounded sequence in BV (\Omega \delta ), thus compact in L1(\Omega \delta ).
In particular, there exists v \in L1(\Omega \delta ) such that, up to a subsequence, H \circ u\varepsilon \rightarrow v
in L1(\Omega \delta ) and pointwise a.e. Since H is a strictly increasing continuous function
with c0(t  - 1) \leq H(t) \leq c0(t + 1) for any t \in \BbbR , then H - 1 is uniformly continuous
and | H - 1(t)| \leq c - 1

0 (| t| + 1) for all t \in \BbbR . Hence, up to a subsequence, the family
\{ u\varepsilon \} \varepsilon \subset L1(\Omega \delta ) is pointwise convergent a.e. to u = H - 1(v) \in L1(\Omega \delta ). By Egoroff's
theorem, for any \sigma > 0 there exists a measurable E\sigma \subset \Omega \delta , with | E\sigma | < \sigma , such that
u\varepsilon \rightarrow u uniformly in \Omega \delta \setminus E\sigma . Then, taking into account that | t| \leq c - 1

0 (| H(t)| +1) for
all t \in \BbbR , we have

| | u\varepsilon  - u| | L1(\Omega \delta ) \leq | | u\varepsilon  - u| | L1(\Omega \delta \setminus E\sigma ) +

\int 
E\sigma 

(| u\varepsilon | + | u| ) dx

\leq | \Omega | | | u\varepsilon  - u| | L\infty (\Omega \delta \setminus E\sigma ) + 2c - 1
0 | E\sigma | + c - 1

0

\int 
E\sigma 

(| H \circ u\varepsilon | + | v| ) dx,

and for \varepsilon , \sigma small enough the right-hand side can be made arbitrarily small thanks
to the uniform integrability of the sequence \{ H \circ u\varepsilon \} \varepsilon . Hence u\varepsilon \rightarrow u in L1(\Omega \delta ).
Furthermore, by Fatou's lemma we have\int 

\Omega \delta 

W (u) dx \leq lim inf
\varepsilon \rightarrow 0

\int 
\Omega \delta 

W (u\varepsilon ) dx \leq lim inf
\varepsilon \rightarrow 0

\varepsilon F\varepsilon (u\varepsilon ,\Omega \delta ) = 0,

whence u(x) \in \BbbZ for a.e. x \in \Omega \delta . Finally, we have

c0| Du| (\Omega \delta ) = | D(H \circ u)| (\Omega \delta ) \leq lim inf
\varepsilon \rightarrow 0

| D(H \circ u\varepsilon )| (\Omega \delta ) \leq C + c0\scrH 1(s),

i.e., u \in SBV (\Omega \delta ;\BbbZ ).
Proposition 3.4 (lower-bound inequality). Let \{ u\varepsilon \} \varepsilon \subset Hs, and let u \in SBV

(\Omega \delta ;\BbbZ ) such that u\varepsilon \rightarrow u in L1(\Omega \delta ). Then

(3.2) lim inf
\varepsilon \rightarrow 0

F\varepsilon (u\varepsilon ,\Omega \delta ) \geq c0| Du\bot  - \Sigma s| (\Omega \delta ).

Proof. Step 1. Let us prove first that for any open ball B \subset \Omega \delta we have

(3.3) lim inf
\varepsilon \rightarrow 0

F\varepsilon (u\varepsilon , B) \geq c0| Du\bot  - \Sigma s| (B).

We distinguish two cases, according to whether B \cap s = \emptyset or not. In the first case we
have

F\varepsilon (u\varepsilon , B) =

\int 
B

\varepsilon | Du\bot \varepsilon | 2 +
1

\varepsilon 
W (u\varepsilon ) dx.

Reasoning as in the proof of Proposition 3.3,

c0| Du| (B) = | D(H \circ u)| (B) \leq lim inf
\varepsilon \rightarrow 0

| D(H \circ u\varepsilon )| (B) \leq lim inf
\varepsilon \rightarrow 0

F\varepsilon (u\varepsilon , B),

and (3.3) follows.
In the case B \cap s \not = \emptyset , we follow the arguments of [8] and consider u0 = 1B+ ,

where B+ = \{ z \in B \setminus s : (z  - z0) \cdot \nu s > 0\} for z0 \in B \cap s and \nu \bot s = \tau s, so that
Du\bot 0 = \Sigma s B. Letting v\varepsilon = u\varepsilon  - u0 we have Dv\bot \varepsilon = Du\bot \varepsilon  - \Sigma s = \nabla u\bot \varepsilon \scrL 2, with
\nabla u\varepsilon \in L2(B) and W (v\varepsilon ) =W (u\varepsilon ) on B by 1-periodicity of the potential W . Hence

F\varepsilon (u\varepsilon , B) =

\int 
B

\varepsilon | Dv\varepsilon | 2 +
1

\varepsilon 
W (v\varepsilon ) dx.
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Let v = u - u0; we then have

c0| Du\bot  - \Sigma s| (B) = c0| Dv| (B) \leq lim inf
\varepsilon \rightarrow 0

\int 
B

\varepsilon | Dv\varepsilon | 2 +
1

\varepsilon 
W (v\varepsilon ) dx = lim inf

\varepsilon \rightarrow 0
F\varepsilon (u\varepsilon , B),

and (3.3) follows.
Step 2. Since | Du\bot  - \Sigma s| is a Radon measure, one has

(3.4) | Du\bot  - \Sigma s| (\Omega \delta ) = sup

\left\{   \sum 
j

| Du\bot  - \Sigma s| (Bj)

\right\}   ,

where the supremum is taken among all finite collections \{ Bj\} j of pairwise disjoint
open balls such that \cup jBj \subset \Omega \delta . Applying (3.3) to each Bj and summing over j we
have

c0
\sum 
j

| Du\bot  - \Sigma s| (Bj) \leq 
\sum 
j

lim inf
\varepsilon \rightarrow 0

F\varepsilon (u\varepsilon , Bj)

\leq lim inf
\varepsilon \rightarrow 0

\sum 
j

F\varepsilon (u\varepsilon , Bj) \leq lim inf
\varepsilon \rightarrow 0

F\varepsilon (u\varepsilon ,\Omega \delta ),

which gives (3.2) thanks to (3.4).

Remark 3.5. The proof of Proposition 3.4 can be easily adapted to prove a weighted
version of (3.2): in the same hypothesis, for any nonnegative \varphi \in C\infty 

c (\BbbR d) we have

lim inf
\varepsilon \rightarrow 0

\int 
\Omega \delta 

\varphi e\varepsilon (u\varepsilon ) dx \geq c0

\int 
\Omega \delta 

\varphi d| Du\bot  - \Sigma s| .

Remark 3.6. Proposition 3.4 holds true also in case the measure \Sigma s is associated
to oriented simple polyhedral (or even rectifiable) finite length curves joining P to Q.

3.2. The approximating functionals \bfitF \bfPsi 
\bfitvarepsilon . We now consider Modica--Mortola

approximations for \Psi -mass functionals such as F\alpha . Let A = \{ P1, . . . , PN\} be our
set of terminal points, and let \Psi : \BbbR N - 1 \rightarrow [0,+\infty ) be a norm on \BbbR N - 1. For any
i \in \{ 1, . . . , N - 1\} let \Gamma i = \tau i \cdot \scrH 1 \gamma i be the measure defined in Remark 2.6. Without
loss of generality suppose maxi(| Pi| ) = 1 and define \Omega = B10(0) and \Omega \delta = \Omega \setminus \cup iB\delta (Pi)
for 0 < \delta \ll minij | Pi  - Pj | . Let

(3.5) Hi = \{ u \in W 1,2(\Omega \setminus \gamma i) \cap SBV (\Omega ) : u| \partial \Omega = 0\} , H = H1 \times \cdot \cdot \cdot \times HN - 1,

and for u \in Hi define

(3.6) ei\varepsilon (u) = \varepsilon | Du\bot  - \Gamma i| 2 +
1

\varepsilon 
W (u).

Denote \vec{}e\varepsilon (U) = (e1\varepsilon (u1), . . . , e
N - 1
\varepsilon (uN - 1)) and consider the functionals

(3.7) F\Psi 
\varepsilon (U,\Omega \delta ) = | \vec{}e\varepsilon (U) dx| \Psi (\Omega \delta ),

or equivalently, thanks to (2.1),

(3.8) F\Psi 
\varepsilon (U,\Omega \delta ) = sup

\varphi \in C\infty 
c (\Omega \delta ;\BbbR N - 1)

\Biggl\{ 
N - 1\sum 
i=1

\int 
\Omega \delta 

\varphi ie
i
\varepsilon (ui) dx, \Psi \ast (\varphi (x)) \leq 1

\Biggr\} 
.

The previous compactness and lower-bound inequality for functionals with a single
prescribed jump extend to F\Psi 

\varepsilon as follows.
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Proposition 3.7 (compactness). Given \{ U\varepsilon \} \varepsilon \subset H such that F\Psi 
\varepsilon (U\varepsilon ,\Omega \delta ) \leq 

C, there exists U \in SBV (\Omega \delta ;\BbbZ N - 1) such that (up to a subsequence) U\varepsilon \rightarrow U in
[L1(\Omega \delta )]

N - 1.

Proof. For each i = 1, . . . , N  - 1, by definition of F\Psi 
\varepsilon we have\int 

\Omega \delta 

ei\varepsilon (u\varepsilon ,i) dx \leq \Psi \ast (ei)F
\Psi 
\varepsilon (U\varepsilon ,\Omega \delta ) \leq C\Psi \ast (ei),

and the result follows applying Proposition 3.3 componentwise.

Proposition 3.8 (lower-bound inequality). Let \{ U\varepsilon \} \varepsilon \subset H and U \in SBV (\Omega \delta ;
\BbbZ N - 1) such that U\varepsilon \rightarrow U in [L1(\Omega \delta )]

N - 1. Then

(3.9) lim inf
\varepsilon \rightarrow 0

F\Psi 
\varepsilon (U\varepsilon ,\Omega \delta ) \geq c0| DU\bot  - \Gamma | \Psi (\Omega \delta ).

Proof. Fix \varphi \in C\infty 
c (\Omega \delta ;\BbbR N - 1) with \varphi i \geq 0 for any i = 1, . . . , N  - 1 and

\Psi \ast (\varphi (x)) \leq 1 for all x \in \Omega \delta . By Remark 3.5 we have

c0

N - 1\sum 
i=1

\int 
\Omega \delta 

\varphi i d| Du\bot i  - \Gamma i| \leq 
N - 1\sum 
i=1

lim inf
\varepsilon \rightarrow 0

\int 
\Omega \delta 

\varphi ie
i
\varepsilon (u\varepsilon ,i) dx

\leq lim inf
\varepsilon \rightarrow 0

N - 1\sum 
i=1

\int 
\Omega \delta 

\varphi ie
i
\varepsilon (u\varepsilon ,i) dx \leq lim inf

\varepsilon \rightarrow 0
F\Psi 
\varepsilon (U\varepsilon ,\Omega \delta ),

and taking the supremum over \varphi we get (3.9).

We now state and prove a version of an upper-bound inequality for the functionals
F\Psi 
\varepsilon which will enable us to deduce the convergence of minimizers of F\Psi 

\varepsilon to minimizers
of F\Psi (U,\Omega \delta ) = c0| DU\bot  - \Gamma | \Psi (\Omega \delta ), for U \in SBV (\Omega \delta ;\BbbZ N - 1).

Proposition 3.9 (upper-bound inequality). Let \Lambda = \tau \otimes g \cdot \scrH 1 L be a rank
one tensor valued measure canonically representing an acyclic graph L \in \scrG (A), and
let U = (u1, . . . , uN - 1) \in SBV (\Omega \delta ;\BbbZ N - 1) such that Du\bot i = \Gamma i  - \Lambda i for any i =
1, . . . , N  - 1. Then there exists a sequence \{ U\varepsilon \} \varepsilon \subset H such that U\varepsilon \rightarrow U in
[L1(\Omega \delta )]

N - 1 and

(3.10) lim sup
\varepsilon \rightarrow 0

F\Psi 
\varepsilon (U\varepsilon ,\Omega \delta ) \leq c0| DU\bot  - \Gamma | \Psi (\Omega \delta ).

Proof. Step 1. We consider first the case \Lambda i = \tau i \cdot \scrH 1 \lambda i with \lambda i a polyhedral
curve transverse to \gamma i for any 1 \leq i < N . Then the support of the measure \Lambda is
an acyclic polyhedral graph (oriented by \tau and with normal \nu = \tau \bot ) with edges
E0, . . . , EM and vertices \{ S0, . . . , S\ell \} \nsubseteq (\cup i\gamma i) \cap \Omega \delta such that Ek = [Sk1 , Sk2 ] for
suitable indices k1, k2 \in \{ 0, . . . , \ell \} . Denote also gk = g| Ek

\in \BbbR N - 1 and recall gki \in 
\{ 0, 1\} for all 1 \leq i < N . By finiteness there exist \eta > 0 and \alpha \in (0, \pi /2) such that
given any edge Ek of that graph the sets

V k = \{ x \in \BbbR 2,dist(x,Ek) < min\{ \eta , cos(\alpha ) \cdot dist(x, Sk1), cos(\alpha ) \cdot dist(x, Sk2)\} \} 

are disjoint and their union forms an open neighborhood of \cup i\lambda i\setminus \{ S0, . . . , S\ell \} (choose,
for instance, \alpha such that 2\alpha is smaller than the minimum angle realized by two edges
and then pick \eta satisfying 2\eta tan\alpha < minj \scrH 1(Ej)).
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Fig. 1. Typical shape of the sets Vk (left) and general construction involved in the definition
of Rk

\varepsilon (right).

For 0 < \varepsilon \ll \delta , let Bm\varepsilon =
\bigl\{ 
x \in \BbbR 2 : | x - Sm| < 3\varepsilon 2/3

sin\alpha 

\bigr\} 
, B\varepsilon = \cup mBm\varepsilon , and define

Rk\varepsilon \subset V k as (see Figure 1)

Rk\varepsilon = \{ y + t\nu : y \in Ek, min\{ dist(y, Sk1),dist(y, Sk2)\} > 3\varepsilon 2/3 cot(\alpha ), 0 < t \leq 3\varepsilon 2/3\} .

Let \varphi 0 be the optimal profile for the 1-dimensional Modica--Mortola functional, which
solves \varphi \prime 

0 =
\sqrt{} 
W (\varphi 0) on \BbbR and satisfies lim\tau \rightarrow  - \infty \varphi 0(\tau ) = 0, lim\tau \rightarrow \infty \varphi 0(\tau ) = 1, and

\varphi 0(0) = 1/2. Let us define \tau \varepsilon = \varepsilon  - 1/3, r+\varepsilon = \varphi 0(\tau \varepsilon ), r
 - 
\varepsilon = \varphi 0( - \tau \varepsilon ), and

\~\varphi \varepsilon (\tau ) =

\left\{               

0, \tau <  - \tau \varepsilon  - r - \varepsilon ,

\tau + \tau \varepsilon + r - \varepsilon ,  - \tau \varepsilon  - r - \varepsilon \leq \tau \leq  - \tau \varepsilon ,
\varphi 0(\tau ), | \tau | \leq \tau \varepsilon ,

\tau  - \tau \varepsilon + r+\varepsilon , \tau \varepsilon \leq \tau \leq \tau \varepsilon + 1 - r+\varepsilon ,

1, \tau > \tau \varepsilon + 1 - r+\varepsilon .

Observe that (1  - r+\varepsilon ) and r - \varepsilon are o(1) as \varepsilon \rightarrow 0. For x = y + t\nu \in Rk\varepsilon let us define
\varphi \varepsilon (x) = \~\varphi \varepsilon 

\bigl( 
t
\varepsilon  - \tau \varepsilon  - r - \varepsilon 

\bigr) 
, so that, as \varepsilon \rightarrow 0,\int 

Rk
\varepsilon \cap \Omega \delta 

\varepsilon | D\varphi \varepsilon | 2 +
1

\varepsilon 
W (\varphi \varepsilon ) dx \leq \scrH 1(Ek \cap \Omega \delta )

\int 2\tau \varepsilon  - r - \varepsilon 

 - \tau \varepsilon  - r - \varepsilon 
| D \~\varphi \varepsilon (\tau )| 2 +W ( \~\varphi \varepsilon (\tau )) d\tau + o(1)

\leq \scrH 1(Ek \cap \Omega \delta )

\int \tau \varepsilon 

 - \tau \varepsilon 
2\varphi \prime 

0(\tau )
\sqrt{} 
W (\varphi 0(\tau )) d\tau + o(1) \leq c0\scrH 1(Ek \cap \Omega \delta ) + o(1).

Define, for x \in \Omega \delta \setminus B\varepsilon ,

u\varepsilon ,i(x) =

\Biggl\{ 
ui(x) + \varphi \varepsilon (x) - 1 if x \in (Rk\varepsilon \setminus B\varepsilon ) \cap \Omega \delta whenever Ek \subset \lambda i,

ui(x) elsewhere on \Omega \delta \setminus B\varepsilon ,

and on B\varepsilon \cap \Omega \delta define u\varepsilon ,i to be a Lipschitz extension of u\varepsilon ,i| \partial (B\varepsilon \cap \Omega \delta ) with the same
Lipschitz constant, which is of order 1/\varepsilon . Note that u\varepsilon ,i has the same prescribed jump
as ui across \gamma i, and thus F\Psi 

\varepsilon (U\varepsilon ,\Omega \delta ) <\infty . Moreover, u\varepsilon ,i \rightarrow ui in L
1(\Omega \delta ).

Observe now that if Ek is contained in \lambda i \cap \lambda j , then by construction

ei\varepsilon (u\varepsilon ,i) = ej\varepsilon (u\varepsilon ,j) = \varepsilon | D\varphi \varepsilon | 2 +
1

\varepsilon 
W (\varphi \varepsilon )
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on \~Rk\varepsilon = (Rk\varepsilon \cap \Omega \delta ) \setminus B\varepsilon . Let \varphi = (\varphi 1, . . . , \varphi N - 1), with \varphi i \geq 0 and \Psi \ast (\varphi ) \leq 1; we
deduce\int 

\Omega \delta 

\sum 
i

\varphi ie
i
\varepsilon (u\varepsilon ,i) dx \leq 

\ell \sum 
k=1

\int 
\~Rk
\varepsilon 

\sum 
i

\varphi ie
i
\varepsilon (u\varepsilon ,i) dx+

\int 
B\varepsilon \cap \Omega \delta 

\sum 
i

\varphi ie
i
\varepsilon (u\varepsilon ,i) dx

\leq 
\ell \sum 

k=1

\int 
\~Rk
\varepsilon 

\sum 
i

\varphi ig
k
i

\biggl( 
\varepsilon | D\varphi \varepsilon | 2 +

1

\varepsilon 
W (\varphi \varepsilon )

\biggr) 
dx+

\int 
B\varepsilon \cap \Omega \delta 

\Psi (\vec{}e\varepsilon (U\varepsilon )) dx

\leq 
\ell \sum 

k=1

\int 
\~Rk
\varepsilon 

\Psi (gk)

\biggl( 
\varepsilon | D\varphi \varepsilon | 2 +

1

\varepsilon 
W (\varphi \varepsilon )

\biggr) 
dx+ C\varepsilon 1/3

\leq 
\ell \sum 

k=1

\Psi (gk)(c0\scrH 1(Ek \cap \Omega \delta ) + o(1)) + C\varepsilon 1/3 \leq c0| DU\bot  - \Gamma | \Psi (\Omega \delta ) + o(1)

as \varepsilon \rightarrow 0. In view of (3.8) we have

F\Psi 
\varepsilon (U\varepsilon ,\Omega \delta ) \leq c0| DU\bot  - \Gamma | \Psi (\Omega \delta ) + o(1),

and conclusion (3.10) follows.
Step 2. Let us now consider the case \Lambda L \equiv \Lambda = \tau \otimes g \cdot \scrH 1 L, L = \cup i\lambda i, and the \lambda i

are not necessarily polyhedral. Let U \in SBV (\Omega \delta ;\BbbZ N - 1) such that DU\bot = \Gamma  - \Lambda L.
We rely on Lemma 3.10 below to secure a sequence of acyclic polyhedral graphs
Ln = \cup i\lambda ni , \lambda ni transverse to \gamma i, and s.t.the Hausdorff distance dH(\lambda ni , \lambda i) <

1
n for all

i = 1, . . . , N  - 1, and | \Lambda Ln
| \Psi (\Omega \delta ) \leq | \Lambda L| \Psi (\Omega \delta ) + 1

n . Let Un \in SBV (\Omega \delta ;\BbbZ N - 1) such
that (DUn)\bot = \Gamma  - \Lambda Ln

. In particular, Un \rightarrow U in [L1(\Omega \delta )]
N - 1, and by Step 1 we

may construct a sequence Un\varepsilon s.t. Un\varepsilon \rightarrow Un in [L1(\Omega \delta )]
N - 1 and

lim sup
\varepsilon \rightarrow 0

F\Psi 
\varepsilon (Un\varepsilon ,\Omega \delta ) \leq c0| (DUn)\bot  - \Gamma | \Psi (\Omega \delta ) = c0| \Lambda Ln

| \Psi (\Omega \delta )

\leq c0| \Lambda L| \Psi (\Omega \delta ) +
c0
n

= c0| DU\bot  - \Gamma | \Psi (\Omega \delta ) +
c0
n
.

We deduce
lim sup
n\rightarrow \infty 

F\Psi 
\varepsilon n(U

n
\varepsilon n ,\Omega \delta ) \leq c0| DU\bot  - \Gamma | \Psi (\Omega \delta )

for a subsequence \varepsilon n \rightarrow 0 as n\rightarrow +\infty . Conclusion (3.10) follows.

Lemma 3.10. Let L \in \scrG (A), L = \cup N - 1
i=1 \lambda i, be an acyclic graph connecting P1, . . . ,

PN . Then for any \eta > 0 there exists L\prime \in \scrG (A), L\prime = \cup N - 1
i=1 \lambda 

\prime 
i, with \lambda \prime i a simple

polyhedral curve of finite length connecting Pi to PN and transverse to \gamma i, such that
the Hausdorff distance dH(\lambda i, \lambda 

\prime 
i) < \eta and | \Lambda L\prime | \Psi (\BbbR 2) \leq | \Lambda L| \Psi (\BbbR 2)+\eta , where \Lambda L and

\Lambda L\prime are the canonical tensor valued representations of L and L\prime .

Proof. Since L \in \scrG (A), we can write L = \cup Mm=1\zeta m, with \zeta m simple Lipschitz
curves such that, for mi \not = mj , \zeta mi

\cap \zeta mj
is either empty or reduces to one common

endpoint. Let \Lambda L = \tau \otimes g \cdot \scrH 1 L be the rank one tensor valued measure canonically
representing L, and let dm = \Psi (g(x)) for x \in \zeta m. The dm are constants because by
construction g is constant over each \zeta m. Consider now a polyhedral approximation \~\zeta m
of \zeta m having its same endpoints, with dH(\~\zeta m, \zeta m) \leq \eta , \scrH 1(\~\zeta m) \leq \scrH 1(\zeta m) + \eta /(CM)
(C to be fixed later) and, for mi \not = mj , \~\zeta mi

\cap \~\zeta mj
is either empty or reduces to one

common endpoint. Observe that whenever \zeta m intersects some \gamma i, such a \~\zeta m can be
constructed in order to intersect \gamma i transversally in a finite number of points. Define
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L\prime = \cup Mm=1
\~\zeta m, and let \Lambda L\prime = \tau \prime \otimes g\prime \cdot \scrH L\prime be its canonical tensor valued measure

representation. Then, by construction \Psi (g\prime (x)) = dm for any x \in \~\zeta m, hence

| \Lambda L\prime | \Psi (\BbbR 2) =

M\sum 
m=1

dm\scrH 1(\~\zeta m) \leq 
M\sum 
m=1

dm

\Bigl( 
\scrH 1(\zeta m) +

\eta 

CM

\Bigr) 
\leq | \Lambda L| \Psi (\BbbR 2) + \eta ,

provided C = max\{ \Psi (g) : g \in \BbbR N - 1, gi \in \{ 0, 1\} for all i = 1, . . . , N  - 1\} . Finally, we
remark that dH(L,L\prime ) < \eta by construction.

Thanks to the previous propositions we are now able to prove the following propo-
sition.

Proposition 3.11 (convergence of minimizers). Let \{ U\varepsilon \} \varepsilon \subset H be a sequence
of minimizers for F\Psi 

\varepsilon in H. Then (up to a subsequence) U\varepsilon \rightarrow U in [L1(\Omega \delta )]
N - 1,

and U \in SBV (\Omega \delta ;\BbbZ N - 1) is a minimizer of F\Psi (U,\Omega \delta ) = c0| DU\bot  - \Gamma | \Psi (\Omega \delta ) in
SBV (\Omega \delta ;\BbbZ N - 1).

Proof. Let V \in SBV (\Omega \delta ;\BbbZ N - 1) such thatDV \bot = \Gamma  - \Lambda , where \Lambda canonically rep-
resents an acyclic graph L \in \scrG (A), and let V\varepsilon \in H such that lim sup\varepsilon \rightarrow 0 F

\Psi 
\varepsilon (V\varepsilon ,\Omega \delta ) \leq 

F\Psi (V,\Omega \delta ). Since F\Psi 
\varepsilon (U\varepsilon ,\Omega \delta ) \leq F\Psi 

\varepsilon (V\varepsilon ,\Omega \delta ), by Proposition 3.7 there exists U \in 
SBV (\Omega \delta ;\BbbZ N - 1) s.t. U\varepsilon \rightarrow U in [L1(\Omega \delta )]

N - 1, and by Proposition 3.8 we have

F\Psi (U,\Omega \delta ) \leq lim inf
\varepsilon \rightarrow 0

F\Psi 
\varepsilon (U\varepsilon ,\Omega \delta ) \leq lim sup

\varepsilon \rightarrow 0
F\Psi 
\varepsilon (V\varepsilon ,\Omega \delta ) \leq F\Psi (V,\Omega \delta ) .

Given a general V \in SBV (\Omega \delta ;\BbbZ N - 1), we can proceed like in Remark 2.9 and find
V \prime such that DV \prime \bot = \Gamma  - \Lambda L\prime with L\prime acyclic, and F\Psi (V \prime ,\Omega \delta ) \leq F\Psi (V,\Omega \delta ). The
conclusion follows.

Let us focus on the case \Psi = \Psi \alpha , where \Psi \alpha (g) = | g| 1/\alpha for 0 < \alpha \leq 1 and
\Psi 0(g) = | g| \infty , and denote F 0

\varepsilon \equiv F\Psi 0
\varepsilon and F\alpha \varepsilon \equiv F\Psi \alpha 

\varepsilon . For U = (u1, . . . , uN - 1) \in H
we have

(3.11) F 0
\varepsilon (U,\Omega \delta ) =

\int 
\Omega \delta 

sup
i
ei\varepsilon (ui) dx, F\alpha \varepsilon (U,\Omega \delta ) =

\int 
\Omega \delta 

\Biggl( 
N - 1\sum 
i=1

ei\varepsilon (ui)
1/\alpha 

\Biggr) \alpha 
dx,

and

(3.12) F 0(U,\Omega \delta ) := c0| DU\bot  - \Gamma | \Psi 0
(\Omega \delta ) and F\alpha (U,\Omega \delta ) := c0| DU\bot  - \Gamma | \Psi \alpha 

(\Omega \delta ),

which are the localized versions of (2.5) and (2.6).

Theorem 3.12. Let \{ P1, . . . , PN\} \subset \BbbR 2 such that maxi | Pi| = 1, 0 < \delta \ll 
maxij | Pi - Pj | , \Omega = B10(0), and \Omega \delta = \Omega \setminus (\cup iB\delta (Pi)). For 0 \leq \alpha \leq 1 and 0 < \varepsilon \ll \delta ,
denote F\alpha ,\delta \varepsilon \equiv F\alpha \varepsilon (\cdot ,\Omega \delta ) and F\alpha ,\delta \equiv F\alpha (\cdot ,\Omega \delta ), with F\alpha \varepsilon (\cdot ,\Omega \delta ) (resp., F\alpha (\cdot ,\Omega \delta )) de-
fined in (3.11) (resp., (3.12)).

(i) Let \{ U\alpha ,\delta \varepsilon \} \varepsilon be a sequence of minimizers for F\alpha ,\delta \varepsilon on H, with H defined
in (3.5). Then, up to subsequences, U\alpha ,\delta \varepsilon \rightarrow U\alpha ,\delta in [L1(\Omega \delta )]

N - 1 as \varepsilon \rightarrow 
0, with U\alpha ,\delta \in SBV (\Omega \delta ;\BbbZ N - 1) a minimizer of F\alpha ,\delta on SBV (\Omega \delta ;\BbbZ N - 1).
Furthermore, F\alpha ,\delta \varepsilon (U\alpha ,\delta \varepsilon ) \rightarrow F\alpha ,\delta (U\alpha ,\delta ).

(ii) Let \{ U\alpha ,\delta \} \delta be a sequence of minimizers for F\alpha ,\delta on SBV (\Omega \delta ;\BbbZ N - 1). Up
to subsequences we have U\alpha ,\delta \rightarrow U\alpha | \Omega \eta 

in [L1(\Omega \eta )]
N - 1 as \delta \rightarrow 0 for every

fixed \eta sufficiently small, with U\alpha \in SBV (\Omega ;\BbbZ N - 1) a minimizer of F\alpha on
SBV (\Omega ;\BbbZ N - 1), and F\alpha defined in (2.5), (2.6). Furthermore, F\alpha ,\delta (U\alpha ,\delta ) \rightarrow 
F\alpha (U\alpha ).
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Proof. In view of Proposition 3.11 it remains to prove item (ii). The sequence
\{ U\alpha ,\delta \} \delta is equibounded in BV (\Omega \eta ) uniformly in \eta , hence U\alpha ,\delta \rightarrow U in [L1(\Omega \eta )]

N - 1 for
all \eta > 0 sufficiently small, with U\alpha \in SBV (\Omega ;\BbbZ N - 1) and F\alpha ,\eta (U\alpha ) \leq lim inf\delta \rightarrow 0 F

\alpha ,\eta 

(U\alpha ,\delta ) by lower semicontinuity of F\alpha ,\eta . On the other hand, let \=U\alpha be a minimizer
of F\alpha on SBV (\Omega ;\BbbZ N - 1). We have F\alpha ,\eta (U\alpha ,\delta ) \leq F\alpha ,\delta (U\alpha ,\delta ) for any \delta < \eta , and by
minimality, F\alpha ,\delta (U\alpha ,\delta ) \leq F\alpha ,\delta ( \=U\alpha ) \leq F\alpha ( \=U\alpha ) \leq F\alpha (U\alpha ). This proves (ii).

4. Convex relaxation. In this section, we propose convex positively 1-homog-
eneous relaxations of the irrigation type functionals \scrF \alpha for 0 \leq \alpha < 1 so as to include
the (STP) corresponding to \alpha = 0 (notice that the case \alpha = 1 corresponds to the
well-known Monge--Kantorovich optimal transportation problem w.r.t.the Monge cost
c(x, y) = | x - y| ).

More precisely, we consider relaxations of the functional defined by

\scrF \alpha (\Lambda ) = \| \Lambda \| \Psi \alpha =

\int 
\BbbR d

| g| 1/\alpha d\scrH 1 L

if \Lambda is the canonical representation of an acyclic graph L with terminal points \{ P1, . . . ,
PN\} \subset \BbbR d, so that, in particular, according to Definition 2.1, we can write \Lambda =
\tau \otimes g \cdot \scrH 1 L with | \tau | = 1, gi \in \{ 0, 1\} . For any other d\times (N  - 1)-matrix valued
measure \Lambda on \BbbR d we set \scrF \alpha (\Lambda ) = +\infty .

As a preliminary remark we observe that, since we are looking for positively
1-homogeneous extensions, any candidate extension \scrR \alpha satisfies

\scrR \alpha (c\Lambda ) = | c| \scrF \alpha (\Lambda )

for any c \in \BbbR and \Lambda of the form \tau \otimes g \cdot \scrH 1 L as above. As a consequence we have
that \scrR \alpha ( - \Lambda ) = \scrR \alpha (\Lambda ), where  - \Lambda represents the same graph L as \Lambda but only with
reversed orientation.

4.1. Extension to rank one tensor measures. First of all let us discuss the
possible positively 1-homogeneous convex relaxations of \scrF \alpha on the class of rank one
tensor valued Radon measures \Lambda = \tau \otimes g \cdot | \Lambda | 1, where | \tau | = 1, g \in \BbbR N - 1 (cf. section
2.1). For a generic rank one tensor valued measure \Lambda = \tau \otimes g \cdot | \Lambda | 1, we can consider
extensions of the form

\scrR \alpha (\Lambda ) =

\int 
\BbbR d

\Psi \alpha (g) d| \Lambda | 1

for a convex positively 1-homogeneous \Psi \alpha on \BbbR N - 1 (i.e., a norm) verifying

(4.1)
\Psi \alpha (g) = | g| 1/\alpha if gi \in \{ 0, 1\} for all i = 1, . . . , N  - 1,

\Psi \alpha (g) \geq | g| 1/\alpha for all g \in \BbbR N - 1.

One possible choice is represented by \Psi \alpha (g) = | g| 1/\alpha for all g \in \BbbR N - 1, while sharper
relaxations are given for \alpha > 0 by

(4.2) \Psi \alpha \ast (g) =

\left(  \sum 
1\leq i\leq N - 1

| g+i | 
1/\alpha 

\right)  \alpha 

+

\left(  \sum 
1\leq i\leq N - 1

| g - i | 
1/\alpha 

\right)  \alpha 

,

and for \alpha = 0 by

(4.3) \Psi 0
\ast (g) = sup

1\leq i\leq N - 1
g+i  - inf

1\leq i\leq N - 1
g - i ,
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with g+i = max\{ gi, 0\} and g - i = min\{ gi, 0\} . In particular, \Psi \alpha \ast represents the maximal
choice within the class of extensions \Psi \alpha satisfying

\Psi \alpha (g) = | g| 1/\alpha if gi \geq 0 for all i = 1, . . . , N  - 1.

Indeed, for \alpha > 0, g \in \BbbR N - 1, and g\pm = (g\pm 1 , . . . , g
\pm 
N - 1), we have

\Psi \alpha (g) \leq \Psi \alpha (g+ + g - ) = 2\Psi \alpha 
\biggl( 
1

2
g+ +

1

2
g - 
\biggr) 

\leq 2

\biggl( 
1

2
\Psi \alpha (g+) +

1

2
\Psi \alpha (g - )

\biggr) 
= \Psi \alpha (g+) + \Psi \alpha (g - ) = | g+| 1/\alpha + | g - | 1/\alpha = \Psi \alpha \ast (g).

The interest in optimal extensions \Psi \alpha on rank one tensor valued measures relies on
the so-called calibration method as a minimality criterion for \Psi \alpha -mass functionals, as
it is done, in particular, in [24] for (STP) using the (optimal) norm \Psi 0

\ast .
According to the convex extensions \Psi \alpha and \Psi 0 considered, when it comes to

finding minimizers of, respectively, \scrR \alpha and \scrR 0 in suitable classes of weighted graphs
with prescribed fluxes at their terminal points, or more generally in the class of rank
one tensor valued measures having divergence prescribed by (2.2), the minimizer is
not necessarily the canonical representation of an acyclic graph. Let us consider the
following example, where the minimizer contains a cycle.

Example 4.1. Consider the (STP) for \{ P1, P2, P3\} \subset \BbbR 2. We claim that a min-
imizer of \scrR 0(\Lambda ) =

\int 
\BbbR 2 | g| \infty d| \Lambda | 1 within the class of rank one tensor valued Radon

measures \Lambda = \tau \otimes g \cdot | \Lambda | 1 satisfying (2.2) is supported on the triangle L = [P1, P2] \cup 
[P2, P3]\cup [P1, P3], hence its support is not acyclic and such a minimizer is not related
to any optimal Steiner tree. Denoting \tau the global orientation of L (i.e., from P1 to
P2, P1 to P3, and P2 to P3) we actually have as minimizer
(4.4)

\Lambda = \tau \otimes 
\biggl( \biggl[ 

1

2
, - 1

2

\biggr] 
\cdot \scrH 1 [P1, P2] +

\biggl[ 
1

2
,
1

2

\biggr] 
\cdot \scrH 1 [P3, P2] +

\biggl[ 
1

2
,
1

2

\biggr] 
\cdot \scrH 1 [P3, P1]

\biggr) 
.

The proof of the claim follows from Remark 4.2 and Lemma 4.3.

Remark 4.2 (calibrations). A way to prove the minimality of \Lambda = \tau \otimes g \cdot \scrH 1 L
within the class of rank one tensor valued Radon measures satisfying (2.2) is to exhibit
a calibration for \Lambda , i.e., a matrix valued differential form \omega = (\omega 1, . . . , \omega N - 1), with

\omega j =
\sum d
i=1 \omega ijdxi for measurable coefficients \omega ij , such that

\bullet d\omega j = 0 for all j = 1, . . . , N  - 1;
\bullet \| \omega \| \ast \leq 1, where \| \cdot \| \ast is the dual norm to \| \tau \otimes g\| = | \tau | \cdot | g| \infty , defined as

\| \omega \| \ast = sup\{ \tau t \omega g : | \tau | = 1, | g| \infty \leq 1\} ;

\bullet \langle \omega ,\Lambda \rangle =
\sum 
i,j \tau i\omega ijgj = | g| \infty pointwise, so that\int 

\BbbR 2

\langle \omega ,\Lambda \rangle = \scrR 0(\Lambda ).

In this way for any competitor \Sigma = \tau \prime \otimes g\prime \cdot | \Sigma | 1 we have \langle \omega ,\Sigma \rangle \leq | g\prime | \infty , and moreover,
\Sigma  - \Lambda = DU\bot for U \in BV (\BbbR 2;\BbbR N - 1), hence\int 

\BbbR 2

\langle \omega ,\Lambda  - \Sigma \rangle =
\int 
\BbbR 2

\langle \omega ,DU\bot \rangle =
\int 
\BbbR 2

\langle d\omega ,U\rangle = 0 .
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It follows that

\scrR 0(\Sigma ) \geq 
\int 
\BbbR 2

\langle \omega ,\Sigma \rangle =
\int 
\BbbR 2

\langle \omega ,\Lambda \rangle = \scrR 0(\Lambda ) ,

i.e., \Lambda is a minimizer within the given class of competitors.

Let us construct a calibration \omega = (\omega 1, \omega 2) for \Lambda in the general case P1 \equiv (x1, 0),
P2 \equiv (x2, 0), and P3 \equiv (0, x3), with x1 < 0, x1 < x2, and x3 > 0.

Lemma 4.3. Let P1, P2, P3 be defined as above, and let \Lambda be as in (4.4). Consider
\omega = (\omega 1, \omega 2) defined as

\omega 1 =
1

2a
[(x1 + a)dx+ x3dy], \omega 2 =

1

2a
[(x1  - a)dx+ x3dy], for (x, y) \in BL

\omega 1 =
1

2b
[(x2 + b)dx+ x3dy], \omega 2 =

1

2b
[(x2  - b)dx+ x3dy], for (x, y) \in BR

with BL the left half-plane w.r.t. the line containing the bisector of vertex P3, BR the
corresponding right half-plane, and a =

\sqrt{} 
x21 + x23, b =

\sqrt{} 
x22 + x23. The matrix valued

differential form \omega is a calibration for \Lambda .

Proof. For simplicity we consider here the particular cases x1 =  - 1
2 , x2 = 1

2 , and

x3 =
\surd 
3
2 (the general case is similar). For this choice of x1, x2, x3 we have

\omega 1 =
1

4
dx+

\surd 
3

4
dy, \omega 2 =  - 3

4
dx+

\surd 
3

4
dy, for (x, y) \in \BbbR 2, x < 0,

\omega 1 =
3

4
dx+

\surd 
3

4
dy, \omega 2 =  - 1

4
dx+

\surd 
3

4
dy, for (x, y) \in \BbbR 2, x > 0.

The piecewise constant 1-forms \omega i for i = 1, 2 are globally closed in \BbbR 2 (on the line
\{ x = 0\} they have continuous tangential component), \| \omega \| \ast \leq 1 (cf. Remark 4.2), and
taking their scalar product with, respectively, (1, 0) \otimes (1/2, - 1/2), ( - 1/2,

\surd 
3/2) \otimes 

(1/2, 1/2) for x < 0, and (1/2,
\surd 
3/2)\otimes (1/2, 1/2) for x > 0 we obtain in all cases 1/2,

i.e., | g| \infty , so that \int 
\BbbR 2

\langle \omega ,\Lambda \rangle = \scrR 0(\Lambda ) .

Hence \omega is a calibration for \Lambda .

Remark 4.4. A calibration always exists for minimizers in the class of rank one
tensor valued measures as a consequence of the Hahn--Banach theorem (see, e.g., [24]),
while it may be not the case, in general, for graphs with integer or real weights. The
classical minimal configuration for (STP) with three endpoints P1, P2, and P3 admits
a calibration w.r.t. the norm \Psi 0

\ast in \BbbR N - 1 (see [24]), and hence it is a minimizer for
the relaxed functional \scrR 0(\Lambda ) = | | \Lambda | | \Psi 0

\ast 
among all real weighted graphs (and all rank

one tensor valued Radon measures satisfying (2.2)). It is an open problem to show
whether or not a minimizer of the relaxed functional \scrR 0(\Lambda ) = | | \Lambda | | \Psi 0

\ast 
has integer

weights.

4.2. Extension to general matrix valued measures. Let us turn next to
the convex relaxation of \scrF \alpha for generic d\times (N  - 1)-matrix valued measures \Lambda =
(\Lambda 1, . . . ,\Lambda N - 1), where \Lambda i, for 1 \leq i \leq N  - 1, are the vector measures corresponding
to the columns of \Lambda . As a first step observe that, due to the positively 1-homogeneous
request on \scrR \alpha , whenever \Lambda = p\cdot \scrH 1 L = \tau \otimes g \cdot \scrH 1 L, with | \tau | =cte. and gi \in \{ 0, 1\} ,
we must have

\scrR \alpha (\Lambda ) =

\int 
\BbbR d

| \tau | | g| 1/\alpha d\scrH 1 L =

\int 
\BbbR d

\Phi \alpha (p) d\scrH 1 L,
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with \Phi \alpha (p) = | \tau | | g| 1/\alpha defined only for matrices p \in K0 (+\infty otherwise), where

K0 = \{ \tau \otimes g \in \BbbR d\times (N - 1), gi \in \{ 0, 1\} , | \tau | = cte.\} .

Following [18], we look for \Phi \ast \ast 
\alpha , the positively 1-homogeneous convex envelope on

\BbbR d\times (N - 1) of \Phi \alpha . Setting q = (q1, . . . , qN - 1), with qi \in \BbbR d its columns, we have that
the convex conjugate function \Phi \ast 

\alpha (q) = sup\{ q \cdot p - \Phi \alpha (p), p \in K0\} is given by

\Phi \ast 
\alpha (q) = sup

\Biggl\{ 
\tau t \cdot q \cdot g  - | \tau | \cdot | g| 1/\alpha , | \tau | = cte., g =

\sum 
i\in J

ei, J \subset \{ 1, . . . , N  - 1\} 

\Biggr\} 

= sup

\left\{   c

\left[  \tau t \cdot 
\left(  \sum 
j\in J

qj

\right)   - | J | \alpha 
\right]  , c \geq 0, | \tau | = 1, J \subset \{ 1, . . . , N  - 1\} 

\right\}   .

Hence \Phi \ast 
\alpha is the indicator function of the convex set

K\alpha =

\left\{   q \in \BbbR d\times (N - 1),

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
j\in J

qj

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq | J | \alpha for all J \subset \{ 1, . . . , N  - 1\} 

\right\}   ,

and in particular, for \alpha = 0, it holds (cf. [18]) that

K0 =

\left\{   q \in \BbbR d\times (N - 1),

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
j\in J

qj

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 1 for all J \subset \{ 1, . . . , N  - 1\} 

\right\}   .

It follows that \Phi \ast \ast 
\alpha is the support function of K\alpha , i.e., for p \in \BbbR d\times (N - 1),

(4.5) \Phi \ast \ast 
\alpha (p) = sup

q\in K\alpha 

p \cdot q = sup

\left\{   p \cdot q ,
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
j\in J

qj

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq | J | \alpha , J \subset \{ 1, . . . , N  - 1\} 

\right\}   .

We are then led to consider, for matrix valued test functions \varphi = (\varphi 1, . . . , \varphi N - 1), the
relaxed functional

\scrR \alpha (\Lambda ) =

\int 
\BbbR d

\Phi \ast \ast 
\alpha (\Lambda ) = sup

\Biggl\{ 
N - 1\sum 
i=1

\int 
\BbbR d

\varphi i d\Lambda i, \varphi \in C\infty 
c (\BbbR d;K\alpha )

\Biggr\} 
.

Observe that for \Lambda a rank one tensor valued measure and \alpha = 0 the above expression
coincides with the one obtained in the previous section choosing \Psi 0 = \Psi 0

\ast .
In the planar case d = 2, consider a 2 \times (N  - 1)-matrix valued measure \Lambda =

(\Lambda 1, . . . ,\Lambda N - 1) such that div\Lambda i = \delta Pi  - \delta PN
. Fix a measure \Gamma as, for instance, in

Remark 2.6. We have div(\Lambda  - \Gamma ) = 0 in \BbbR 2 and by Poincar\'e's lemma there exists
U \in BV (\BbbR 2;\BbbR N - 1) such that \Lambda = \Gamma  - DU\bot . So the relaxed functional reads

(4.6) \scrE \alpha (U) = \scrR \alpha (\Lambda ) for \Lambda = \Gamma  - DU\bot , U \in BV (\BbbR 2;\BbbR N - 1).

The relaxed irrigation problem (I\alpha ) \equiv minBV \scrE \alpha (U) can thus be described in
the following equivalent way, according to (4.5): let q = \varphi be any matrix valued test
function (with columns qi = \varphi i for 1 \leq i \leq N  - 1); then we have

(I\alpha ) \equiv min
U\in BV (\BbbR 2;\BbbR N - 1)

sup

\Biggl\{ \int 
\BbbR 2

N - 1\sum 
i=1

(Du\bot i  - \Gamma i) \cdot \varphi i , \varphi \in C\infty 
c (\BbbR 2;K\alpha )

\Biggr\} 
.
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Notice that w.r.t. the similar formulation proposed in [18], here is the presence of an
additional ``drift"" term; moreover, the constraints set K\alpha is somewhat different.

We now compare the functional \scrE \alpha (U) with the actual convex envelope (F\alpha )\ast \ast (U)
in the space BV (\BbbR 2;\BbbR N - 1), where we set F\alpha (U) = | DU\bot  - \Gamma | \ell 1/\alpha (\BbbR 2) if \Gamma  - 
DU\bot = \Lambda canonically represents an acyclic graph, and F\alpha (U) = +\infty elsewhere
in BV (\BbbR 2;\BbbR N - 1). In the spirit of [18, Proposition 3.1], we have the following.

Lemma 4.5. We have \scrE \alpha (U) \leq (F\alpha )\ast \ast (U) \leq (N  - 1)1 - \alpha \scrE \alpha (U) for any U \in 
BV (\BbbR 2;\BbbR N - 1) and any 0 \leq \alpha < 1.

Proof. Observe that \scrE \alpha (U) \leq (\scrF \alpha )\ast \ast (U) by convexity of \scrE \alpha (U). Moreover, when-
ever \Lambda = \Gamma  - DU\bot canonically represents a graph connecting P1, . . . , PN , we have
(F\alpha )\ast \ast (U) \leq (F 1)\ast \ast (U) since F\alpha (U) \leq F 1(U). For \alpha > 0, denoting \Lambda = \Gamma  - DU\bot ,
we deduce

(F 1)\ast \ast (U) \leq 
N - 1\sum 
i=1

| \Lambda i| (\BbbR d) \leq (N  - 1)1 - \alpha 

\Biggl( 
N - 1\sum 
i=1

| \Lambda i| 1/\alpha 
\Biggr) \alpha 

(\BbbR d) \leq (N  - 1)1 - \alpha \scrE \alpha (U),

and analogously we have (F 1)\ast \ast (U) \leq (N  - 1)\scrE 0(U).

5. Numerical identification of optimal structures.

5.1. Local optimization by \Gamma -convergence. In this section, we plan to il-
lustrate the use of Theorem 3.12 to identify numerically local minima of the Steiner
problem. We base our numerical approximation on a standard discretization of (3.11).
Let \Omega = (0, 1)2 and assume \{ P1, . . . , PN\} \subset \Omega ; thus, as a standard consequence, the
associated Steiner tree is also contained in \Omega . Consider a Cartesian grid covering \Omega 
of step size h = 1

S , where S > 1 is a fixed integer. Dividing every square cell of the
grid into two triangles, we define a triangular mesh \scrT associated to \Omega and replace
each point Pi with the closest grid point.

Fix now \Gamma i an oriented vectorial measure absolutely continuous w.r.t. \scrH 1 as in
Remark 2.6. Assume for simplicity that \Gamma i is supported on \gamma i a union of vertical and
horizontal segments contained in \Omega and covered by the grid associated to the discrete
points \{ (kh, lh), 0 \leq k, l < S\} . Notice that such a measure can be easily constructed
by considering, for instance, the oriented \ell 1-spanning tree of the given points.

To mimic the construction in section 3.2, we define the function space

Hh
i \equiv P1(\scrT ,\Omega \setminus \gamma i) \cap BV (\Omega )

to be the set of functions which are globally continuous on \Omega \setminus \gamma i and piecewise
linear on every triangle of \scrT . Moreover, we require that every function of Hh

i has
a jump through \gamma i of amplitude  - 1 in the orthogonal direction of the orientation of
\Gamma i. Observe that Hh

i is a finite-dimensional space of dimension S2: one element uhi
can be described by S2+ni parameters and ni linear constraints describing the jump
condition where ni is the number of grid points covered by \gamma i.

Then, we define

(5.1) f ih(u
h
i ) = h| Duhi | 2 +

1

h
W (uhi )

if u \in L1(\Omega ) is in Hh
i and extend f ih by letting f ih(u) = +\infty otherwise. Notice

that these discrete energy densities do not contain the drift terms \Gamma i because the
information about the drift has been encoded within the discrete spaces Hh

i , leaving
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us to deal only with the absolutely continuous part of the gradient (see Remark 3.1).
Then, for Uh = (uh1 , . . . , u

h
N - 1) \in Hh

1 \times \cdot \cdot \cdot \times Hh
N - 1 we define

G0
h(U

h) =

\int 
\Omega 

sup
1\leq i\leq N - 1

f ih(u
h
i ) and G\alpha h(U

h) =

\int 
\Omega 

\Biggl( 
N - 1\sum 
i=1

f ih(u
h
i )

1/\alpha 

\Biggr) \alpha 
.

By a similar strategy we used to prove Theorem 3.12, we still also have convergence
of minimizers of G0

h (resp., G\alpha h) to minimizers of c0F
0 (resp., c0F

\alpha ) w.r.t. the strong
topology of L1(\BbbR 2;\BbbR N - 1). Observe that an exact evaluation of the integrals involved
in (5.1) is required to obtain this convergence result (an approximation formula can
also be used but then a theoretical proof of convergence would require one to study
the interaction of the order of approximation with the convergence of minimizers).
We point out that this constraint is not critical from a computational point of view
since every function uih of finite energy has a constant gradient on every triangle of
the mesh. On the other hand, the potential integral can be evaluated formally to
obtain an exact estimate of this term w.r.t. the degrees of freedom which describe a
function of Hh

i .
Based on these results we performed two different numerical experiments. We

first approximated the optimal Steiner trees associated to the vertices of a triangle,
a regular pentagon, and a regular hexagon with its center. To obtain the results
of Figure 3 we discretized the problem on a grid of size 200 \times 200. In the case of
the triangle we used the associated spanning tree to define the measures (\Gamma i)i=1,2.
In the case of the pentagon and of the hexagon we used the rectilinear Euclidean
Steiner trees computed by the Geosteiner's library (see [36], for instance) to initiate
the vectorial measures. We refer the reader to Figure 2 for an illustration of both
singular vector fields. We solved the resulting finite-dimensional problem using an
interior point solver. Notice that in order to deal with the nonsmooth cost function
G0
h we had to introduce standard gap variables to get a smooth nonconvex constrained

optimization problem. Using [17], we have been able to recover the locally optimal
solutions depicted in Figure 3 in less than five minutes on a standard computer.
Whereas the results obtained for the triangle and the pentagon describe globally
optimal Steiner trees, the result obtained for the hexagon and its center is only a
local minimizer.

In a second experiment we focus on simple irrigation problems to illustrate the
versatility of our approach. We applied exactly the same approach to the pentagon
setting minimizing the functional G\alpha h . We illustrate our results in Figure 4 in which
we recover the solutions of Gilbert--Steiner problems for different values of \alpha . Observe
that for small values of \alpha , as expected by Proposition 2.4, we recover an irrigation
network close to an optimal Steiner tree.

5.2. Convex relaxation and multiple solutions. The convex relaxation of
Steiner problem (I0) obtained following [18] reads in our discrete setting as

(5.2) min
(uh

i )1\leq i<N

sup
(\varphi h

i )1\leq i<N\in K0

h2

2

\sum 
t\in \scrT 

N - 1\sum 
i=1

(\nabla uhi )t \cdot (\varphi hi )t,
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Fig. 2. Rectilinear Steiner trees and associated vectorial drifts for five and seven points.

Fig. 3. Local minimizers obtained by the \Gamma -convergence approach applied to three, five and
seven points.

where

K0 =

\biggl\{ 
(\varphi hi )1\leq i<N \in (\BbbR 2\scrT )N - 1 | for all(5.3)

J \subset \{ 1, . . . , N  - 1\} , for all t \in \scrT ,
\bigm| \bigm| \bigm| \sum 
j\in J

(\varphi hj )t

\bigm| \bigm| \bigm| \leq 1

\biggr\} 

and for all 1 \leq i < N , uhi \in Hh
i . Applying conic duality (see, for instance, Lecture

2 of [9]), we obtain that the optimal vector (uhi ) solves the following minimization
problem:

(5.4) min
(uh

i )1\leq i<N\in L, (\psi h
J )J\subset \{ 1,...,N - 1\} \in (\BbbR 2\scrT )2N - 1

h2

2

\sum 
t\in \scrT 

\sum 
J\subset \{ 1,...,N - 1\} 

| (\psi hJ)t| ,

where L is the set of discrete vectors (uhi )1\leq i<N which satisfy for all i = 1, . . . , N  - 1,
for all t \in \scrT ,

(5.5) (\nabla uhi )t =
\sum 

J\subset \{ 1,...,N - 1\} , i\in J

(\psi hJ)t.
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Fig. 4. Gilbert--Steiner solutions associated to parameters \alpha = 0.2, 0.4, 0.6, 0.8 and 1 (from
left to right)

We solved this convex linearly constrained minimization problem using the conic
solver of the library Mosek [28] on a grid of dimension 300 \times 300. Observe that this
convex formulation is also well adapted to the, now standard, large scale algorithms
of proximal type. We studied four different test cases: the vertices of an equilateral
triangle, a square, a pentagon, and finally a hexagon and its center as in previous
sections. As illustrated in the left picture of Figure 5, the convex formulation is
able to approximate the optimal structure in the case of the triangle. Due to the
symmetries of the problems, the three last examples do not have unique solutions.
Thus, the result of the optimization is expected to be a convex combination of all
solutions whenever the relaxation is sharp, as it can be observed in the second and
fourth cases of Figure 5. Notice that we do not expect this behavior to hold for any
configuration of points. Indeed, the numerical solution in the third picture of Figure
5 is not supported on a convex combination of global solutions since the density in
the middle point is not 0. Whereas the local \Gamma -convergence approach of previous
sections was only able to produce a local minimum in the case of the hexagon and its
center, the convexified formulation gives a relatively precise idea of the set of optimal
configurations (see the last picture of Figure 5 where we can recognize within the
figure the two global solutions).

6. Generalizations. In this article we have focused on the optimization of 1-
dimensional structures in the plane in specific, classical cases. A first possible gen-
eralization is to consider the same problems w.r.t. more general norms, for instance,
anisotropic ones: given | \cdot | a an anisotropic norm on \BbbR d and a norm \Psi \alpha on \BbbR N - 1 as
in section 4.1, one could consider, for a matrix valued measure \Lambda \in \scrM (\BbbR d,\BbbR d\times N - 1),
the (\Psi \alpha , a)-mass measures

(6.1) | \Lambda | \Psi \alpha ,a(B) := sup
\omega \in C\infty 

c (B;\BbbR d)

h\in C\infty 
c (B;\BbbR N - 1)

\{ \langle \Lambda , \omega \otimes h\rangle , | \omega (x)| a\ast \leq 1 , (\Psi \alpha )\ast (h(x)) \leq 1\} ,

for B \subset \BbbR d open, and the corresponding (\Psi \alpha , a)-mass norm | | \Lambda | | \Psi \alpha ,a = | \Lambda | \Psi \alpha ,a(\BbbR d).
Then minimizers of \scrF \alpha 

a = | | \cdot | | \Psi \alpha ,a over rank one tensor valued measures representing
graphs L \in \scrG (A) will solve the anisotropic irrigation problem (resp., the anisotropic
(STP) in case \alpha = 0), in particular, if | \cdot | a = | \cdot | 1, \scrF 0

a is related to the rectilinear



6330 M. BONAFINI, G. ORLANDI, AND \'E. OUDET

Fig. 5. Results obtained by convex relaxation for three, four, five, and seven given points

(STP) in \BbbR d. For d = 2, following [14, 30, 2] one may reproduce the \Gamma -convergence
and convex relaxation approach developed here to numerically study the anisotropic
problem (6.1). A further step in this direction would consist of considering size or \alpha -
mass minimization problems in suitable homology and/or oriented cobordism classes
for 1-dimensional chains in manifolds endowed with a Finsler metric.

Another generalization concerns the convex relaxation and the variational approx-
imation of (STP) and (I\alpha ) in the higher dimensional case d \geq 3. This is done in the
companion paper [11], where we obtain a \Gamma -convergence result by using functionals of
Ginzburg--Landau-type in the spirit of [1] and [34]. Moreover, as in the present paper,
we introduce appropriate ``local"" convex envelopes, discuss calibration principles, and
show some numerical simulations.

In parallel to previous theoretical generalizations, we are currently developing
numerical approaches adapted to these new formulations. On the one hand, we are
studying a large scale approach to solve problems analogous to the conic convexified
formulation of section 5.2. Such an extension is definitely required to approximate
realistic problems in dimension three and higher. On the other hand, we want to focus
on refinement techniques which may decrease dramatically the number of degrees of
freedom involved in the optimization process. Observe, for instance, that very few
parameters are required to describe exactly a drift such as the ones given in Figure
2. Based on such observations, a sequential localized approach may provide a very
precise description of, at least locally, optimal structures.

Acknowledgments. We wish to warmly thank Annalisa Massaccesi and Anto-
nio Marigonda for fruitful discussions.
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