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ABSTRACT 
 
 

QUADRATIC ASSIGNMENT PROBLEM: LINEARIZATIONS 
AND POLYNOMIAL TIME SOLVABLE CASES 

 
 

Güneş Erdoğan 

Ph.D. in Industrial Engineering 

Supervisor: Prof. Barbaros Tansel 

October 2006 

 
 

The Quadratic Assignment Problem (QAP) is one of the hardest 

combinatorial optimization problems known. Exact solution attempts proposed 

for instances of size larger than 15 have been generally unsuccessful even though 

successful implementations have been reported on some test problems from the 

QAPLIB up to size 36. In this dissertation, we analyze the binary structure of the 

QAP and present new IP formulations. We focus on “flow-based” formulations, 

strengthen the formulations with valid inequalities, and report computational 

experience with a branch-and-cut algorithm. Next, we present new classes of 

instances of the QAP that can be completely or partially reduced to the Linear 

Assignment Problem and give procedures to check whether or not an instance is 

an element of one of these classes. We also identify classes of instances of the 

Koopmans-Beckmann form of the QAP that are solvable in polynomial time. 

Lastly, we present a strong lower bound based on Bender’s decomposition. 

 

Keywords: Quadratic Assignment Problem, Linearization, Computational 

Complexity, Polynomial Time Solvability 
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ÖZET 
 
 

KARESEL ATAMA PROBLEMİ: DOĞRUSALLAŞTIRMALAR 
VE POLİNOM ZAMANDA ÇÖZÜLEBİLİR DURUMLAR 

 
 

Güneş Erdoğan 

Endüstri Mühendisliği Bölümü Doktora 

Tez Yöneticisi: Prof. Barbaros Tansel 

Ekim 2006 

 

Karesel Atama Problemi (KAP) bilinen en zor kombinatoryal eniyileme 

problemlerinden biridir. QAPLIB’deki boyutu 36’yı bulan bazı test 

problemlerinde başarılı çözümler elde edilmiş olsa da, tam çözüm yöntemleri 

boyutu 15’i geçen problemlerde genel olarak başarısız olmuştur. Bu tezde, 

KAP’ın ikili yapısını inceleyip yeni tamsayı programlar sunmaktayız. “Akış-

tabanlı” formülasyonlara odaklanıp, bunları geçerli eşitsizliklerle kuvvetlendirip, 

dallan-ve-kes algoritması ile edindiğimiz hesapsal tecrübeyi sunmaktayız. 

Devamla, KAP’ın Doğrusal Atama Problemine tamamen veya kısmen 

indirgenebilen özel hallerini sunmakta ve verilen bir problemin bu sınıfların bir 

elemanı olup olmadığını kontrol eden prosedürler vermekteyiz. Ayrıca KAP’ın 

Koopmans-Beckmann formuülasyonunun polinom zamanda çözülebilir sınıflarını 

ortaya çıkartmaktayız. Son olarak, Bender ayrışımına dayanan kuvvetli bir alt 

sınır sunmaktayız.  

     

Anahtar Kelimeler: Karesel Atama Problemi, Doğrusallaştırma, Hesaplama 

Zorluğu, Polinom Zamanlı Çözülebilirlik 
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C h a p t e r  1  

 
INTRODUCTION 
 
  

The Quadratic Assignment Problem (QAP) was introduced by Koopmans 

and Beckmann in 1957 as a mathematical model for the location of a set of 

indivisible economic activities. The decision to be made is a one-to-one 

assignment of n facilities to n locations, which is exactly the same as the Linear 

Assignment Problem (LAP) except for the objective function. The term 

“quadratic” describes the cost function, which is the sum of the products of 

distances between locations and the amounts of flows between the facilities 

assigned to the locations.  

 

Generating a feasible solution for the QAP is a trivial task. Let a = (a(1), 

a(2), …, a(n)) be a permutation of the integers {1,...,n} with a(i) denoting the 

index of the location to which facility i is assigned. Any such vector a is a 

feasible solution to the QAP. Similarly, devising a heuristic for the QAP is not a 

major task. A greedy k-exchange algorithm that starts with a random assignment 

is a valid (and surprisingly high quality) heuristic for the QAP. On the contrary, 

proving computationally the optimality of a given solution is next to impossible 

for large instances of the QAP. It has been shown that the QAP is NP-Hard in the 

strong sense (Sahni and Gonzales, 1976).  

 

Despite 49 years of academic effort, from its initial formulation in 1957 to 

date, it remains as yet one of the hardest combinatorial optimization problems. 

Even though faster computers, specialized data structures, and algorithmic 

improvements have led to significant progress in solvable sizes of many NP-

Hard problems (e.g. the Traveling Salesman, Vehicle Routing, Set Covering, 
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Uncapacitated Facility Location, etc.), the QAP has been defiantly resisting all 

solution attempts beyond the size of n > 15 when the cost data is arbitrary. The 

largest solved instance of the QAP to date is of size 36 (Nyström, 1999; Brixius 

and Anstreicher, 2001) while the largest solved size of, for example, the 

Traveling Salesman Problem has close to 25000 cities (Applegate et al., 2001).  

 

For a better understanding of the current computational status of the QAP, 

we now give a historical sketch of the computational progress. A collection of 

instances and respective solutions, QAPLIB (Burkard, Karisch, and Rendl, 

1997), is available online to benchmark efficiency of solution methods for the 

QAP. Although many different classes of instances exist in the QAPLIB, the 

computational improvement for the QAP may best be explained by the progress 

in solving the notoriously difficult instances of Nugent, Vollmann, and Ruml 

(1968). These are the most used instances for testing computational efficiency. 

The original set consists of 8 instances of sizes 5, 6, 7, 8, 12, 15, 20, and 30. 

Distance matrices for sizes 5 and 7 represent almost rectangular grid graphs. For 

sizes 6, 8, 12, 15, 20, and 30, the distance matrix represents grids of 2*3, 2*4, 

3*4, 3*5, 4*5, and 5*6, respectively. Later, instances of sizes 14, 16, 17, 18, 21, 

22, 24, and 25 were added to the original set by Clausen and Perregaard (1997) 

by deleting certain rows and columns of flow and distance matrices of larger 

instances. Likewise, Anstreicher et al. (2002) constructed instances of sizes 27 

and 28 in the same way.  

 

Nugent, Vollmann, and Ruml (1968) solved instances nug05, nug06, 

nug07, and nug08 to optimality using complete enumeration. Burkard and 

Stratmann (1978) solved nug12 and Burkard and Derigs (1983) solved nug15. 

Clausen and Perregaard were able to solve instances up to size 20 for the first 

time in 1994. Their results were published in 1997. Bruengger et al. were the 

first ones to solve nug21 and nug22 in 1996. In the same year, Clausen et al. 

reportedly solved nug24. Marzetta and Brüngger managed to solve nug25 in 
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1999. Finally, Anstreicher et al. (2002) were able to solve nug27, nug28, and 

nug30 to optimality in the year 2002. The progress is summarized in Figure 1. 
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Figure 1: Computational Progress for Instances of Nugent, Vollmann, and Ruml 

 

This set of instances is not fully representative of the overall computational 

state of the art for the QAP. As of this writing, the largest instances reportedly 

solved are ste36a, ste36b, and ste36c that are of size 36. These instances 

were proposed by Steinberg in 1961. Solving ste36a required 180 hours on a 

PIII 800 Mhz PC, while ste36b and ste36c took approximately 60 days and 

200 days of CPU time, respectively. However, instances proposed by Burkard 

and Offermann in 1977 of size 26 have remained unsolved until recently (March 

2004), at which time they were solved by the method of Hahn et al. (2001).  

There are still instances of size 30 waiting to be solved in the QAPLIB. We 

emphasize the fact that most successful applications are parallel implementations 

that rely on high amounts of computing power. 
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The computational status of the QAP poses a challenge: What new 

perspectives do we need to solve larger sizes of the QAP without having to rely 

on the high computing power of parallel processing? In this dissertation we pick 

up the challenge and devise an exact solution technique for the QAP that can 

solve large instances in a reasonable amount of computing time. Our search for 

such techniques has led us to identify instances which can be solved in 

polynomial time, which we also present. 

 

We start by giving the formal definition of the QAP. 

 

1. 1 Problem Definition 

 

Although a brief description of the problem was given in the beginning of the 

chapter, we believe that the QAP can best be expressed in terms of compact 

formulations. The original formulation of the QAP by Koopmans and Beckmann 

(1957), where the decision variable xij is defined to be equal to 1 if facility i is 

assigned to location j and 0 otherwise, follows: 

 

ij

n

ji

ij

n

lkji

klijjlik xcxxdf ∑∑
==

+
1,1,,,

min      (1) 

s.t. 

nix
n

j

ij ,...,1,1
1

=∀=∑
=

       (2) 

njx
n

i

ij ,...,1,1
1

=∀=∑
=

       (3) 

{ } njixij ,...,1,,1,0 =∀∈       (4) 

 

where fik denotes the amount of flow between facilities i and k, djl denotes the 

distance between locations j and l, and cij denotes the cost of locating facility i at 
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location j. The linear cost coefficients may be added to certain quadratic cost 

coefficients to yield a pure quadratic problem and were ignored in later studies. 

 

Lawler (1963) studied the case of generalized cost coefficients where a four 

dimensional matrix that defines all the costs is the input data instead of two n by 

n coefficient matrices. The following is the formulation for the Lawler QAP: 

 

∑
=

n

lkji

klijijkl xxC
1,,,

min        (5) 

 

s.t. 

(2), (3), and (4) 

 

where Cijkl denotes the cost incurred when facility i is located at j and facility k is 

located at l simultaneously. 

 

A third formulation by Edwards (1977), also known as the trace formulation 

and is useful for certain derivations, is as follows: 

 

)(min TT

X
XFXDtr

Π∈
       (6) 

 

where F is the n by n flow matrix, D is the n by n distance matrix, X is an n by n 

permutation matrix, ∏ represents the set of n by n permutation matrices, and 

RRtr
n →

2

:  is the trace operator that returns the sum of the diagonal elements 

of a square matrix. 

 

A fourth formulation known as the Kronecker product formulation (Lawler, 

1963) is as follows. Kronecker product of two matrices mnRA∈ and pqRB ∈  is 

defined by 
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
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     (7) 

 

and the operation 〈,〉 for two matrices mnRA ∈ and mnRB ∈ is defined by 

 

〈A,B〉 = ∑∑
= =

m

i

n

j

ijijba
1 1

       (8) 

 

The Kronecker product formulation for the QAP is: 

 

min 〈C,Y〉        (9) 

s.t. 

Y = XX ⊗         (10) 

X ∈ Π         (11) 

 

where C = [Cijkl] is the four dimensional generalized cost coefficient matrix, and 

X and ∏ are as defined above. 

 

The fifth and final formulation, referred to as the combinatorial formulation, 

is as follows: Let a = (a(1), a(2), …, a(n)) be a permutation of the integers 

{1,...,n} with a(i) denoting the index of the location to which facility i is 

assigned. Define A to be the set of all such permutations. The combinatorial form 

of the Koopmans-Beckmann QAP is defined as: 

 

∑
∈

ji

jaiaij
Aa

df
,

)()(min        (12) 

 

while the formulation for the general cost coefficients becomes 
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∑
∈

ji

jjaiia
Aa

C
,

)()(min        (13) 

 

In the next section, we provide a brief literature review. 

 

1. 2 Literature Review 

 

In this section we briefly go over the studies in the literature that deal with 

exact solution techniques or identify polynomially solvable cases. For a more 

complete exposition to the literature on the QAP, we refer the reader to the 

following surveys: 

 

Pardalos, Rendl, and Wolkowicz (1994) gave an extensive survey about the 

developments in methods and applications regarding the QAP. They presented 

various formulations, respective representations of the feasible set of solutions, 

theoretical and practical applications, discussions about computational 

complexity issues, and a survey of numerical methods for the QAP. Burkard et 

al. (1997) presented a survey that focus on the polynomially solvable cases that 

have been identified. They tried to draw a line between the NP-Hard and 

polynomially solvable cases of the QAP. They analyzed coefficient matrices with 

special properties (sum, product, Monge, Anti-Monge, Kalmanson, Toeplitz, and 

circulant matrices) and gave computational complexity results for many of the 

resulting cases and posed questions for open cases. Burkard et al. (1998) gave an 

extensive survey about the QAP. They provided various formulations, polytope 

analysis of formulations, lower bounding techniques, exact solution methods, 

instances that can be solved in polynomial time, and the studies about the 

asymptotic behavior of QAP. Çela (1998) published a book named “The 

Quadratic Assignment Problem, Theory and Algorithms” covering many topics 

about the QAP.  
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One of the main tracks of research on the exact solution techniques for the 

QAP has been Mixed Integer Programming (MIP) formulations. Since the QAP 

has originally been stated as a nonlinear optimization problem, the MIP 

formulations for the QAP are known as linearizations. Many linearization 

attempts have been made the first of which is given by Lawler in 1963. This was 

also the first formulation involving the pair assignment variables (yijkl = xijxkl) and 

exploiting the relation between the pair assignment and the single assignment 

variables. The formulation involves n4 + n2 variables and n4 + 2n + 1 constraints, 

and is valid for the general cost coefficient case. Love and Wong (1976) 

proposed a mixed integer formulation for the case when one of the matrices is 

the distance matrix of a grid graph. Their formulation requires n
2 binary 

variables, 4n
2 + 2n continuous variables, and n

2 + 3n constraints. Their 

formulation aims at exploiting the rectilinear structure embedded into the 

distance matrix. The largest problem size they could cope with was n = 8. 

Kaufman and Broeckx (1978) proposed a linearization involving 2n
2
 variables 

and n
2
 + 2n constraints. They defined the cost incurred by each assignment 

variable as a decision variable ( ∑
=

=
n

lk

kljlikijij xdfxw
1,

). Although the number of 

variables and constraints of Kaufman and Broeckx is much less than the 

linearization of Lawler, lower bounds generated by the formulation were too 

weak to be of use. Balas and Mazzola (1980) proposed an exponential-sized 

linearization that involved a constraint for every possible permutation matrix. 

They adapted a constraint generation approach to cope with the huge number of 

constraints. Their formulation was not usable for instances of size n ≥ 10. 

Bazaraa and Sherali (1980) applied a cutting plane algorithm by applying 

Bender’s decomposition on a linearized formulation for the QAP. Although they 

could not prove the optimality of their solutions, they conjectured that their 

method yielded high quality suboptimal results at the early stages. Kettani and 

Oral (1993) presented a linearization for the QAP based on the formulation of 
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Kaufman and Broeckx, together with a method to decrease the number of binary 

variables. Their linearization required nlogn binary variables, n
2 continuous 

nonnegative variables, and 2n
2 + 4n constraints. They were able to solve 

instances of size n ≤ 15. Adams and Johnson (1994) presented a linearization that 

generalized previous linearizations involving the pair assignment variables of 

Lawler. They proved that lower bounds generated by the LP relaxation of their 

formulation are always as strong as the Gilmore-Lawler Bound (GLB), which 

will be mentioned in detail below. Resende, Ramakrishnan, and Drezner (1995) 

performed a computational test of the lower bounds generated by the relaxation 

of the formulation by Adams and Johnson (1994). Failing to solve the resulting 

LP with commercial solvers, they used an experimental interior point method 

code, called ADP. Problems of size n ≤ 30 taken from the QAPLIB were used for 

the experimentation. They reported that, in 87% of the instances they have tested, 

the formulation yielded the best lower bound known until then. Ramakrishnan, 

Resende, and Pardalos (1995) implemented a branch-and-bound algorithm for 

the formulation by Adams and Johnson (1994), and extensively tested the 

algorithm using instances in QAPLIB. They were able to solve all instances with 

size n ≤ 15. Ramachandran and Pekny (1996) provided a formulation involving 

the so called three-body interaction variables. The number of variables in the 

formulation was O(n6) and the number of constraints was O(n5). Ball, Kaku, and 

Vakhutinsky (1998) presented two network based linearizations, the first one 

with O(n3) nodes and O(n4) arcs, and the second one with O(n) nodes and O(n2) 

arcs. Both linearizations involved the single assignment variables. They made 

computational experiments with a branch-and-bound algorithm using the first 

formulation, and a constraint generation approach for the second formulation. 

They were not able to solve instances of size n > 8. Ramakrishnan et al. (2002) 

performed an empirical analysis of the three-body formulation of Ramachandran 

and Pekny, and reported that all instances from QAPLIB that are of size n ≤ 12 

are solved at the root node of the branch-and-bound tree. They were not able to 
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solve larger size problems because of the exceedingly large number of variables 

and constraints. 

 

There have been a few attempts to analyze the polyhedral structure of the 

QAP in order to discover valid inequalities that could lead to IP formulations 

with tighter relaxations. Unfortunately, the results were unfruitful because of the 

large number of variables. Jünger and Kaibel (2001) analyzed the formulation by 

Adams and Johnson (1994) and interpreted the formulation as the problem of 

finding a minimum weighted n-clique. They constructed a projection of the 

original formulation and proved that finding a minimum weighted n-clique in the 

original problem is equivalent to finding a minimum weighted n-1 or n-2 clique 

in the projected problem. Furthermore, they claimed that polyhedral 

investigations were much easier for the projected problem. In their subsequent 

work (Jünger and Kaibel, 2001), the authors identified a large class of facet 

defining inequalities which they refer to as box inequalities. Their computational 

experiments showed that adding the box inequalities tightened the relaxation 

considerably, but the resulting linear problems were hard to solve. 

 

Another relevant track of research on the QAP has been the search for strong 

lower bounds to be used in a branch-and-bound setting. The first and most 

famous lower bound, proposed independently by Gilmore (1962) and Lawler 

(1963), depended on the idea of solving n2 + 1 LAPs of size n. First n2 LAPs 

answer the following question: “What is the minimum objective function value 

for ∑
=

n

lk

kljlikij xdfx
1,

when xij = 1 ?”. Each answer is recorded in the corresponding 

parameter lij. A final LAP is solved to obtain the bound for the QAP, for which 

the objective function cost coefficients are the lij’s. The complexity of the lower 

bounding technique is O(n5) for the case of the general cost coefficients that can 

be reduced to O(n3) for the Koopmans–Beckmann form. The bound is very 

strong for small sized problems but quickly deteriorates as the instance size 
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increases. Kaku and Thompson (1986) proposed a branch and bound algorithm 

that use LAPs to calculate certain lower bounds that are similar to Gilmore-

Lawler Bound (GLB). As preprocessing, they solved n2 LAPs of size (n-1)*(n-

1). At each node of the branch-and-bound tree, they solved another LAP whose 

objective coefficients were determined by the branches until that node and the 

data available from preprocessing. They were able to solve problems up to size n 

= 10. Finke, Burkard, and Rendl (1987), in their survey, elaborated on lower 

bounding techniques and presented an eigenvalue based bound. Using the trace 

formulation by Edwards (1977), they proved that the minimal product of 

eigenvalues of coefficient matrices constitutes a lower bound for the QAP with 

symmetric matrices. For obtaining tighter lower bounds, they studied the so 

called reduction techniques that transfer a part of the quadratic terms to linear 

terms. They analyzed the constant row and column reductions and diagonal 

reductions, and proved that diagonal reductions are unnecessary. They devised 

an optimal reduction scheme to transform the quadratic coefficients to the linear 

coefficients.  Carraressi and Malucelli (1992) proposed a way of reformulating 

QAP so as to transfer the quadratic cost coefficients to linear cost coefficients 

that is effectively another form of reduction. At the end of the transfer, they 

solved the linear part to obtain a lower bound. They applied the transfer 

algorithm iteratively to get a strong lower bound. Although they were able to 

produce good quality lower bounds, computational complexity of lower bound 

generation method was O(kn
5) , where k is the number of iterations per transfer 

sequence. Rendl and Wolkowicz (1992) improved the eigenvalue-based lower 

bound proposed by Finke, Burkard, and Rendl (1987). Using the reduction 

scheme proposed before, they used a steepest ascent algorithm to find a reduction 

that would yield a stronger lower bound. Their approach was computationally 

expensive. On the average, they had to perform 70 eigenvalue computations to 

find a stronger lower bound. Consequently, the lower bounding mechanism was 

still too slow for an effective branch and bound approach. Hadley, Rendl, and 

Wolkowicz (1992) used an orthogonal relaxation of the QAP to come up with 

improved eigenvalue based bounds. Building upon the trace formulation by 
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Edwards (1977), they transformed the feasible set of solution matrices from 

permutation matrices to orthogonal and doubly stochastic (sum of elements each 

row and column is 1) matrices. They successfully computed bounds that are 

almost as strong as those of Rendl and Wolkowicz (1992) and computationally 

not more demanding than the original eigenvalue based bound. Hahn, Grant and 

Hall (1998) presented a branch-and-bound algorithm based on the Kronecker 

product formulation for the QAP. Their algorithm employed a dual procedure to 

compute lower bounds. The dual procedure performed a series of reductions on 

cost elements Cijkl to decrease the elements while preserving the optimal 

solutions and nonnegativity of the elements. Anstreicher and Brixius (1999) 

announced a new lower bounding technique for the QAP, based on convex 

quadratic programming. Simply, they reinterpreted the derivation of the 

projected eigenvalue bound by Hadley, Rendl, and Wolkowicz (1992), and added 

a previously ignored quadratic term. Next, they used an interior point algorithm 

to approximate the quadratic term. The quality of the resulting lower bound was 

high and computational complexity was not very high compared to its quality. 

This lower bound proved to have the best performance among those listed above, 

in terms of the trade-off between the strength of the bound and the computation 

time of the bound.  

 

Yet another relevant track of research has been the identification of classes of 

instances that can be solved easily, though it has been rather limited compared to 

the rest of the studies on the QAP. Christofides and Benavent (1989) studied the 

case when the flow matrix represents a tree, and proved that the QAP was NP-

Hard even for this special case. They presented a branch-and-bound algorithm, 

which uses the Lagrangean relaxation of an integer programming formulation of 

the tree QAP. To solve the relaxation, they used a dynamic programming 

algorithm. They were able to solve problems up to size 25, in no more than 350 

seconds. Chen (1995) proposed three special cases of the general form of the 

QAP that can be represented as parametric LAPs. The complexity status of these 

classes is open, but computational results have been reported by Chen (1995) for 
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test problems up to size 50. Burkard et al. (1995) provided three polynomial time 

solvable classes of the Koopmans-Beckmann form where one input matrix is 

monotone Anti-Monge while the other is either symmetric Toeplitz generated by 

a benevolent (or a k-benevolent) function, or symmetric with bandwidth one. 

They show that certain assignments qualify as optimal for these cases.  Deineko 

and Woeginger (1998) provided another polynomially solvable class for the 

Koopmans-Beckmann form with one matrix being Kalmanson and the other 

being symmetric decreasing circulant. They proved that identity permutation was 

the optimal solution for this case. They also stated that permuted Kalmanson 

matrices could be recognized in O(n2) time and proved that permuted symmetric 

decreasing circulant matrices could be recognized in O(n2) time. Burkard et al. 

(1997) analyzed in their aforementioned survey coefficient matrices with special 

properties (sum, product, Monge, Anti-Monge, Kalmanson, Toeplitz, circulant) 

and gave complexity results for many of the resulting cases. 

 

1. 3 Outline of the Dissertation 

 

In this chapter we gave the definition of the problem and provided a brief 

literature review. We focused on the studies about the exact solution techniques 

and the classes of instances of the QAP with special structure. In Chapter 2, we 

present an in-depth analysis of the existing linearization paradigm in the 

literature and present new linearizations based on our findings. In Chapter 3, we 

focus on one of the new linearizations and present sets of valid inequalities. We 

describe a branch-and-cut algorithm that solves problems up to size n = 30 and 

provide extensive experimental results using data from the QAPLIB. In Chapter 

4, we shift our focus to classes of instances of the QAP with special structure and 

provide new polynomially solvable classes. In Chapter 5, we present a lower 

bounding method that returns lower bounds that are provably at least as strong as 

the GLB. Finally, in Chapter 6, we present our conclusions and address 

directions possible future work. 
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C h a p t e r  2  

 
LINEARIZATIONS 
 

 
In this chapter, we analyze the existing Mixed Integer Programming (MIP) 

formulations for the QAP and construct new MIP formulations for the QAP 

based on our findings. In Section 1, we state our tools of analysis. In Section 2, 

we perform the analysis and uncover new ways of linearizing the QAP based on 

our analysis. In Section 3, we construct the IP models based on the observations 

stated in Section 2. In Section 4, we present our computational experience with 

the models presented. In Section 5, we give our concluding remarks. 

 

2. 1 Tools of Analysis 

 

Recall that for any feasible solution to the QAP, the decision variables form a 

permutation matrix each corresponding to a one-to-one onto assignment of 

facilities to locations. In Figure 2, a small example for n = 3 is depicted, where 

the entry (i,j) of the matrix denotes the value of the assignment variable xij. The 

Assignment Matrix in the example represents the solution where facility 1 is 

assigned to location 1 (x11 = 1), facility 2 is assigned to location 3 (x23 = 1), and 

facility 3 is assigned to location 2 (x32 = 1). 

 

 

 

 

 

 



 15 

  Location 

j 

  1 2 3 
 1 1 0 0 

Facility i 2 0 0 1 
 3 0 1 0 

 

Figure 2: An Example of Assignment Matrix 

 

Perhaps more important than the Assignment Matrix is the Pairwise 

Assignment Matrix that represents the values of the quadratic terms xijxkl. 

Although the assignment variables represent the core decisions, the costs are 

incurred by pairs of assignment variables. It is not an easy task to represent these 

n
4 values in two dimensions in a structured way. Hahn et al. (1998) use the 

scheme depicted in Figure 3 that enables us to better understand the structure of 

the pairwise interactions of assignment decisions. The rows of the Pairwise 

Assignment Matrix are labeled with facility pairs (i,k) and the columns are 

labeled with location pairs (j,l). The entry in row (i,k) and column (j,l) of the 

Pairwise Assignment Matrix is the value of the quadratic term xijxkl. In Figure 3, 

the row (and column) labels are 11, 12, 13, 21, 22, 23, 31, 32, and 33 where the 

leading index is shown as a header in the leftmost column and the topmost row. 

Observe that whenever the ij-entry is 1 in the assignment matrix (of Figure 2), a 

copy of the assignment matrix is reproduced in the Pairwise Assignment Matrix 

(of Figure 3) in the submatrix corresponding to the header indices i and j. 

Observe also that whenever xij = 0 in the Assignment Matrix, all the entries in the 

submatrix corresponding to header indices i and j are also zero. We note that this 

matrix is the result of the Kroenecker product of an assignment / permutation 

matrix X with itself. Simply put, if we denote the Assignment Matrix as X, then 

submatrix (i,j) of the Pairwise Assignment Matrix is equal to xijX. The objective 

function value for a given solution is returned by the sum of the cost coefficients 

corresponding to the 1’s in the Pairwise Assignment Matrix (Cijkl for the entry in 

row (i, k) and column (j,l)). 
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 j 1 2 3  
i k\l 1 2 3 1 2 3 1 2 3 

Location  
pairs  

1 1 0 0 0 0 0 0 0 0   
2 0 0 1 0 0 0 0 0 0   1 
3 0 1 0 0 0 0 0 0 0   
1 0 0 0 0 0 0 1 0 0   
2 0 0 0 0 0 0 0 0 1   2 
3 0 0 0 0 0 0 0 1 0   
1 0 0 0 1 0 0 0 0 0   
2 0 0 0 0 0 1 0 0 0   3 
3 0 0 0 0 1 0 0 0 0   

Facility            
pairs            

 

Figure 3: Pairwise Assignment Matrix and its Submatrices 

 

These two matrices play a crucial role in our forthcoming analysis. In the 

next section, we will demonstrate that the auxiliary variables of the linearizations 

available in the literature correspond to simultaneous effects of decisions in two 

subsets of the Assignment Matrix. As a consequence, the auxiliary variables 

represent the cost incurred by certain subsets of the Pairwise Assignment Matrix. 

Each such subset corresponds to a subset sum of the quadratic objective 

function ∑
=

n

lkji

klijijkl xxC
1,,,

. In brief, we will be using the Assignment Matrix, the 

Pairwise Assignment Matrix, and the quadratic objective function to analyze the 

patterns of the models in the literature. 

 

2. 2 Analysis of the Formulations in the Literature 

 

As stated in Chapter 1, linear MIP models for the QAP are customarily 

referred to as linearizations. The QAP is originally stated as a nonlinear problem 
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while any attempt to describe it by linear inequalities and a linear objective 

function transforms it to a linear MIP. To be able to linearize the QAP, we need 

to define auxiliary variables that describe the cost contribution of the quadratic 

interactions. Thus, the core structure of the linearization process is shaped by the 

way that the auxiliary variables are defined. Generally, each type of auxiliary 

variable describes the total cost of the simultaneous effects of decisions in some 

two subsets of the Assignment Matrix. The models we are about to analyze differ 

in the level of aggregation of these costs.  

 

We now proceed to demonstrate our foregoing observation on the models in 

the literature. Even though many different linearization techniques have been 

proposed for various special cases (Love and Wong, 1976; Christofides and 

Benavent, 1989), models based on Lawler’s pairwise assignment variables have 

dominated the literature. The author defined the variables yijkl = xijxkl so as to 

represent the simultaneous effect of every pair of the assignment decisions.  

 

Later, many other authors used this variable definition to construct 

linearizations of the QAP (Frieze and Yadegar, 1983; Resende, Ramakrishnan, 

and Drezner, 1994; Adams and Johnson, 1994). One of these studies by Adams 

and Johnson (1994) includes a proof of the fact that their linearization is at least 

as strong as the well-known GLB. The authors also show that many lower bound 

generation methods may be perceived as Lagrangean relaxations of their 

formulation. The formulation by Adams and Johnson (1994), which is known to 

yield the strongest lower bound among the formulations with O(n4) variables, 

follows: 

 

(IP1) 

∑
=

n

lkji

ijklijkl yC
1,,,

min        (14) 
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s.t. 

nix
n

j

ij ,...,11
1

=∀=∑
=

      (15) 

njx
n

i

ij ,...,11
1

=∀=∑
=

      (16) 

nljixy ij

n

k

ijkl ,...,1,,
1

=∀=∑
=

     (17) 

nkjixy ij

n

l

ijkl ,...,1,,
1

=∀=∑
=

     (18) 

nlkjxy kl

n

i

ijkl ,...,1,,
1

=∀=∑
=

     (19) 

nlkixy kl

n

j

ijkl ,...,1,,
1

=∀=∑
=

     (20) 

ljkinlkjiyy klijijkl ≠<=∀= ,:,...,1,,,     (21) 

{ } njixij ,...,1,1,0 =∀∈       (22) 

{ } nlkjiyijkl ,...,1,,,1,0 =∀∈      (23) 

 

Lawler’s linearization with auxiliary variables yijkl accounts for the 

simultaneous effect of the pair of assignment variables xij and xkl. The pairs of 

subsets of the Assignment Matrix under consideration are the pairs of assignment 

variables. Any such pair corresponds to a single cell of the Pairwise Assignment 

Matrix, as depicted in Figure 4. 
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  Location    Location   j  1   2   3  
  j    l  i k\l 1 2 3 1 2 3 1 2 3 
  1 2 3    1 2 3   1 1 0 0 0 0 0 0 0 0 

Facility 1 1 0 0  Facility 1 1 0 0  1 2 0 0 1 0 0 0 0 0 0 
i 2 0 0 1  k 2 0 0 1   3 0 1 0 0 0 0 0 0 0 
 3 0 1 0   3 0 1 0   1 0 0 0 0 0 0 1 0 0 
            2 2 0 0 0 0 0 0 0 0 1 
             3 0 0 0 0 0 0 0 1 0 
             1 0 0 0 1 0 0 0 0 0 
            3 2 0 0 0 0 0 1 0 0 0 
             3 0 0 0 0 1 0 0 0 0 

 

Figure 4: Lawler’s Linearization 

 

Kaufman and Broeckx (1978) defined the variables ∑=
lk

klijklijij xCxw
,

 to 

represent by wij the contribution of each assignment variable xij to the overall 

cost. This linearization is somehow less favored in the literature, due to its 

weaker lower bound. Observe that, in terms of our tools of analysis, the relevant 

subsets of the Assignment Matrix under consideration are the pairings of each 

assignment variable with the overall Assignment Matrix. Hence, the variable wij 

stands for the simultaneous effect of the assignment variable xij with the rest of 

the Assignment Matrix. Figure 5 illustrates such a pairing corresponding to ij = 

23 in 5(a) with the entire Assignment Matrix in 5(b). The resulting submatrix in 

the Pairwise Assignment Matrix corresponding to header indices 2,3 is marked in 

5(c). The cost contribution that results from this interaction is the sum of the cost 

elements that correspond to the 1’s in the darkest colored submatrix of Figure 

5(c). The formulation by Kaufman and Broeckx follows: 

 

(IP2) 

∑
=

n

ji

ijw
1,

min         (24) 
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s.t. 

njixMxCw
n

lk

ijklijklij ,...,1,)1(
1,

=∀−−≥ ∑
=

    (25) 

njiwij ,...,1,0 =∀≥       (26) 

and (15), (16), (22) 

where M is a sufficiently large constant. 

                      
                      
  Location    Location   j  1   2   3  
  j    l  i k\l 1 2 3 1 2 3 1 2 3 
  1 2 3    1 2 3   1 1 0 0 0 0 0 0 0 0 

Facility 1 1 0 0  Facility 1 1 0 0  1 2 0 0 1 0 0 0 0 0 0 
i 2 0 0 1  k 2 0 0 1   3 0 1 0 0 0 0 0 0 0 
 3 0 1 0   3 0 1 0   1 0 0 0 0 0 0 1 0 0 
            2 2 0 0 0 0 0 0 0 0 1 
             3 0 0 0 0 0 0 0 1 0 
             1 0 0 0 1 0 0 0 0 0 
            3 2 0 0 0 0 0 1 0 0 0 
             3 0 0 0 0 1 0 0 0 0 
                     
  (a)    (b)      (c)     

 

Figure 5: Kaufman and Broeckx’s Linearization 

 

An even less favored formulation is that of Balas and Mazzola (1980), for 

which they define a single auxiliary variable, ∑=
lkji

klijijkl xxCw
,,,

, to represent the 

overall cost.  

 

(IP3) 

wmin          (27) 
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n

kl

x

lk

x

lkji

klijijkl QAPxxMxxCw

klkl

∈∀−≥ ∑∑
=

∀

=

∀

*

0
:,

1
:,,,

*

**

    (28) 

0≥w          (29) 

and (15), (16), (22) 

where QAP
n denotes the set of all feasible solutions for a QAP of size n. 

 

Constraint set (28) forces the single auxiliary variable to be greater than or 

equal to the objective function value yielded by x*, if x = x*
, and has no effect 

otherwise. In this case, the authors define a single variable that pairs up the 

Assignment Matrix with itself. Figure 6(a)(b) identify the submatrices 

corresponding to the auxiliary variable w while the interaction of these 

submatrices yields the entire Pairwise Assignment Matrix shown in 6(c). 

                      
                      
  Location    Location   j  1   2   3  
  j    l  i k\l 1 2 3 1 2 3 1 2 3 
  1 2 3    1 2 3   1 1 0 0 0 0 0 0 0 0 

Facility 1 1 0 0  Facility 1 1 0 0  1 2 0 0 1 0 0 0 0 0 0 
i 2 0 0 1  k 2 0 0 1   3 0 1 0 0 0 0 0 0 0 
 3 0 1 0   3 0 1 0   1 0 0 0 0 0 0 1 0 0 
            2 2 0 0 0 0 0 0 0 0 1 
             3 0 0 0 0 0 0 0 1 0 
             1 0 0 0 1 0 0 0 0 0 
            3 2 0 0 0 0 0 1 0 0 0 
             3 0 0 0 0 1 0 0 0 0 
                     
  (a)    (b)      (c)     

 

Figure 6: Balas and Mazzola’s Linearization 

 

From our observations up to this point, we can see that any possible 

partitioning of the Pairwise Assignment Matrix into any two subsets would result 

in a different linearization. An auxiliary variable is introduced by each such 
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pairing. In order to better model the QAP, we feel the need to identify certain 

patterns in the foregoing formulations. We can easily observe that there are two 

types of subsets of the Assignment Matrix that have been used in the literature in 

the modeling process. One type is a single entry of the Assignment Matrix (i.e. 

single assignment variables) and the other type is the whole Assignment Matrix. 

Pairings of type I or type II with type I or type II yield the linearizations of 

Lawler, of Kaufman and Broeckx, and of Balas and Mazzola. Even though not 

seen in the literature (except Erdoğan and Tansel, 2005), the columns and the 

rows of the Assignment Matrix are also eligible to be used for constructing 

linearizations. The four types of subsets (single entry, column, row, and the 

whole Assignment Matrix) seem to yield the best physical interpretations for the 

corresponding cost aggregations. So, we base our analysis on these subsets. The 

graph in Figure 7 depicts the current situation of the literature. Each subset is 

denoted as a node and the arcs (solid lines) denote the interactions analyzed in 

the literature. The arcs depicted by broken lines in the figure are linearizations 

that have not yet been analyzed in the literature except for the linearizations 

introduced in a recent work of ours (Erdoğan and Tansel, 2005). We want to 

emphasize that each arc implies a unidirectional relation. For example, one can 

define the variables of Kaufman and Broeckx as the interaction of the 

Assignment Matrix and a single assignment variable ( ∑=
ji

ijijklklkl xCxw
,

) and 

still construct the same formulation. In the next section, we focus on the 

interactions corresponding to broken lines and present the resulting new 

formulations for the QAP. 

 

2. 3 New Formulations 

 

To complete the picture in Figure 7, let us start with the interaction between a 

variable and a column. The corresponding submatrix in the Pairwise Assignment 

Matrix is a column of the submatrix corresponding to the assignment variable, as 
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depicted in Figure 8. Following the examples above, we define the 

variable ∑
=

=
n

k

klijklijijl xCxy
1

. This nonlinear representation shows that the variable 

yijl represents the interaction between the assignment variable xij and the l’th 

column of the Assignment Matrix. Using this variable definition, the following 

formulation is constructed: 

 

 

Figure 7: An Overview of the Literature 

(IP4) 

∑
=

n

lji

ijly
1,,

min         (30) 

nljixMxCy ij

n

k

klijklijl ,...,1,,)1(
1

=∀−−≥∑
=

   (31) 

nljiyijl ,...,1,,0 =∀≥       (32) 

and (15), (16), (22) 

Variable Row 

Column Matrix 

Lawler 

Balas & 
Mazzola 

Kaufman 
& Broeckx 



 24 

where M is a large constant. Observe that constraint (31) forces the variable ijly  

to be greater than or equal to ∑
=

n

k

klijkl xC
1

 whenever 1=ijx , and has no effect 

otherwise. 

                      
                      
  Location    Location   j  1   2   3  
  j    l  i k\l 1 2 3 1 2 3 1 2 3 
  1 2 3    1 2 3   1 1 0 0 0 0 0 0 0 0 

Facility 1 1 0 0  Facility 1 1 0 0  1 2 0 0 1 0 0 0 0 0 0 
i 2 0 0 1  k 2 0 0 1   3 0 1 0 0 0 0 0 0 0 
 3 0 1 0   3 0 1 0   1 0 0 0 0 0 0 1 0 0 
            2 2 0 0 0 0 0 0 0 0 1 
             3 0 0 0 0 0 0 0 1 0 
             1 0 0 0 1 0 0 0 0 0 
            3 2 0 0 0 0 0 1 0 0 0 
             3 0 0 0 0 1 0 0 0 0 

 

Figure 8: Multicommodity Flow Formulation 

 

The way we construct constraint (31) will serve as an example for the 

formulations to follow in this section. Whenever one of the subsets is a single 

assignment variable, the simultaneous effect of the subsets is linearized as soon 

as the variable is decided. For this case, ∑
=

=
n

k

klijklijl xCy
1

if 1=ijx , and 0=ijly  

if 0=ijx . Hence, we have constructed constraint (31) by enumeration on possible 

values xij can take, i.e. to force a lower bound of ∑
=

n

k

klijkl xC
1

 on ijly  whenever 

1=ijx , and to have no effect whenever 0=ijx . The same constraint construction 

method may be used if one of the subsets is a column or a row, by enumeration 

on the possible assignments in the column or row. For example the linearization 

above can be recast as: 
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nlkjixMxCy klijijklijl ,...,1,,,)1( =∀−−≥    (33) 

 

Notice that constraint set (33) is constructed by enumeration on the 

decisions in column l, i.e. for each possible decision xkl. It forces a lower bound 

of ijijkl xC  on ijly  whenever 1=klx , and has no effect whenever 0=klx . 

 

Although this formulation is quite similar to the formulation of Kaufman 

and Broeckx, this modeling paradigm gives us a structure to exploit for the 

Koopmans-Beckmann form. For the Koopmans-Beckmann form, the variable 

definition becomes ∑
=

=
n

k

kljlikijijl xdfxy
1

 which can further be simplified to 

∑
=

=
n

k

klikijijl xfxy
1

' , with the term jld  becoming the objective function coefficient 

of '
ijly . The variable '

ijly  also has a physical meaning: it represents the total 

material flow from location j to location l whenever facility i is located at j. This 

flow based interpretation suggests adding flow conservation constraints into the 

formulation: 

(IP4’) 

∑
=

n

lji

ijljl yd
1,,

'min        (34) 

s.t.  

njifxy
n

l

n

k

ikijijl ,...,1,,
1 1

' =∀







=∑ ∑

= =

     (35) 

nlixfy
n

j

kl

n

k

ikijl ,...,1,,
1 1

' =∀=∑ ∑
= =

     (36) 
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nljixMxfy ij

n

k

klikijl ,...,1,,)1(
1

' =∀−−≥∑
=

   (37) 

nljiyijl ,...,1,,,0' =∀≥       (38) 

and (15), (16), (22) 

 

We now prove the validity of IP4’. 

 

Theorem 1: Let x be a feasible solution to an instance of the QAP defined by 

matrices F and D with objective value zQAP(x). Then, there exists a unique vector 

'y  such that (x, 'y ) is feasible to IP4’ with objective value zIP4’(x, 'y ) = zQAP(x). 

Proof: With x being feasible to the QAP, constraints (15), (16), and (22) are 

satisfied. For each i ∈ {1,…,n}, let a(i) be the location index j for which xij = 1. 

Similarly, for each location j, let a-1(j) be the facility index i for which xij = 1. 

Since xij = 0 ∀ j ≠ a(i), (35) and (38) imply that 0' =ijly  ∀ j ≠ a(i) and i ∈ 

{1,…,n}. Consequently, the left side of (36) gives '
)( liiay  (because all terms 

except for j = a(i) are zero), while the right side of (36) gives 
)(1

lia
f − (because all 

terms except for l = a
-1(j) are zero). Hence, 'y  is uniquely determined by the 

equations  

},...,1{,
)(

'
)( 1 nlify

lialiia ∈∀= −       (39) 

and 

'
ijly  = 0 ∀ j ≠ a(i) and i, l ∈ {1,…,n}     (40) 

 

Solution 'y  constructed in this way satisfies (38). It also satisfies (36) by 

construction. The only remaining possibility to be checked is constraint (35). If j 

≠ a(i), then (35) gives zero on both sides. If j = a(i),  the left side of (35) is 
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∑
=

n

l

liiay
1

'
)( while the right side is ∑

=

n

k

ikf
1

. Since 
)(

'
)( 1 lialiia fy −=  by construction, the 

left side is ∑
=

−

n

l
lia

f
1

)(1 , which is the same as ∑
=

n

k

ikf
1

. This proves the uniqueness 

and feasibility of (x, 'y ) to IP4’ for each feasible x to QAP. 

 

To prove zIP4’(x,y) = zQAP(x), observe that klijjlik xxdf  = 0, unless i = a-1(j) and               

k = a-1(l), in which case it is jllaja
df

)()( 11 −− . Since the objective value of IP4’ gives 

∑
=

−−

n

lj
lajajl fd

1,
)()( 11 , it is the same as ∑

=

n

lkji

klijjlik xxdf
1,,,

. □ 

 

IP4 and IP4’ has O(n3) variables and O(n3) constraints. Both formulations are 

valid for arbitrary distance data. Notice that the proof of Theorem 1 does not 

involve the constraint set (37). This formulation will be referred as the 

Multicommodity Flow Formulation for the rest of this study. Next, we focus on 

the interaction between a variable and a row. The corresponding reflection on the 

Pairwise Assignment Matrix is a row of the submatrix corresponding to the 

assignment variable, as depicted in Figure 9. 

 

Following the examples above, we define the variable ∑
=

=
n

l

klijklijijk xCxt
1

. 

This representation shows that the variable tijk represents the interaction between 

the assignment variable xij and k’th row of the Assignment Matrix. Using this 

variable definition, a formulation conjugate to IP4 may be constructed. Similarly, 

the extension of this formulation to the Koopmans-Beckmann form results in 

variables representing the induced distance between two facilities (and another 

formulation conjugate to IP4’). Although the word “commodity” does not make 

sense when we speak of distances, since this formulation is the conjugate of the 
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Multicommodity Flow Formulation presented above, it will be referred to as the 

Multicommodity Distance Formulation in the rest of this study. We omit these 

formulations for the sake of brevity. 

                      
                      
  Location    Location   j  1   2   3  
  j    l  i k\l 1 2 3 1 2 3 1 2 3 
  1 2 3    1 2 3   1 1 0 0 0 0 0 0 0 0 

Facility 1 1 0 0  Facility 1 1 0 0  1 2 0 0 1 0 0 0 0 0 0 
i 2 0 0 1  k 2 0 0 1   3 0 1 0 0 0 0 0 0 0 
 3 0 1 0   3 0 1 0   1 0 0 0 0 0 0 1 0 0 
            2 2 0 0 0 0 0 0 0 0 1 
             3 0 0 0 0 0 0 0 1 0 
             1 0 0 0 1 0 0 0 0 0 
            3 2 0 0 0 0 0 1 0 0 0 
             3 0 0 0 0 1 0 0 0 0 

 

Figure 9: Multicommodity Distance Formulation 

 

Next we focus on the interactions of columns of the Assignment Matrix. As 

depicted in Figure 10, the reflection of this interaction is a column of the 

Pairwise Assignment Matrix.  

                      
                      
  Location    Location   j  1   2   3  
  j    l  i k\l 1 2 3 1 2 3 1 2 3 
  1 2 3    1 2 3   1 1 0 0 0 0 0 0 0 0 

Facility 1 1 0 0  Facility 1 1 0 0  1 2 0 0 1 0 0 0 0 0 0 
i 2 0 0 1  k 2 0 0 1   3 0 1 0 0 0 0 0 0 0 
 3 0 1 0   3 0 1 0   1 0 0 0 0 0 0 1 0 0 
            2 2 0 0 0 0 0 0 0 0 1 
             3 0 0 0 0 0 0 0 1 0 
             1 0 0 0 1 0 0 0 0 0 
            3 2 0 0 0 0 0 1 0 0 0 
             3 0 0 0 0 1 0 0 0 0 

 

Figure 10: Single Commodity Flow Formulation 
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We define the corresponding variable as ∑=
ki

klijijkljl xxCy
,

. The variable yjl 

represents the interaction between the j’th and l’th columns of the Assignment 

Matrix. The resulting formulation follows: 

 

(IP5) 

∑
=

n

lj

jly
1,

min         (41) 

s.t.  

nljixMxCy ij

n

k

klijkljl ,...,1,,)1(
1

=∀−−≥∑
=

   (42) 

nljy jl ,...,1,,0 =∀≥        (43) 

and (15), (16), (22) 

 

Constraint (42) forces the variable jly  to be greater than or equal to 

∑
=

n

k

klijkl xC
1

whenever 1=ijx , and has no effect otherwise. As in the case of (IP4), 

this modeling paradigm allows us to move towards a more specific formulation 

for the Koopmans-Beckmann form. For this form, the variable definition 

becomes ∑
=

=
n

ki

klijjlikjl xxdfy
1,

 which can be further simplified to 

∑
=

=
n

ki

klijikjl xxfy
1,

'  where the term jld  becomes the objective function coefficient 

of the variable '
jly . This variable definition also has a physical meaning: it 

defines (gives) the total material flow from location j to location l. This gives us 

the opportunity to add flow conservation constraints to the formulation: 
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(IP5’) 

∑
=

n

lj

jljl yd
1,

'min         (44) 

s.t.  

njxfy
n

l

n

i

ij

n

k

ikjl ,...,1,
1 1 1

' =∀







=∑ ∑ ∑

= = =

     (45) 

nlxfy
n

j

n

k

kl

n

i

ikjl ,...,1,
1 1 1

' =∀







=∑ ∑ ∑

= = =

     (46) 

nljixMxfy ij

n

k

klikjl ,...,1,,)1(
1

' =∀−−≥∑
=

    (47) 

nljy jl ,...,1,,0' =∀≥        (48) 

and (15), (16), (22) 

 

Constraint (47) forces the variable '
jly  to be greater than or equal to 

∑
=

n

k

klik xf
1

whenever 1=ijx , and has no effect otherwise. We now prove the 

validity of the formulation. 

 

Theorem 2: Let x be a feasible solution to an instance of the QAP. Then, there 

exists a unique 'y  such that (x, 'y ) is feasible to IP5’ with objective function 

value )(),( '
'5 xzyxz QAPIP = . 

Proof: With x being feasible to the QAP, constraints (15), (16), and (22) are 

satisfied. With a-1(j) denoting the facility index i for which xij = 1, (45) and (46) 

give, respectively, that ∑ ∑
= =

−=
n

l

n

k
kjajl fy

1 1
)(

'
1  and ∑ ∑

= =

−=
n

j

n

i
liajl fy

1 1
)(

'
1 . Constraint 
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(47) sets the exact lower bound of each flow as '
ily  ≥ 

)()( 11
laja

f −− . This upper 

bound must be satisfied as equality, otherwise constraints (45) and (46) are 

violated. This proves the uniqueness and feasibility of (x, 'y ) to IP5’ for each 

feasible x to QAP.  

 

To prove zIP5’(x,y) = zQAP(x), observe that '
ily  = 

)()( 11
laja

f −− , implying that the 

objective value of IP5’ is ∑
=

−−

n

lj
lajajl fd

1,
)()( 11  which is the same as 

∑
=

n

lkji

klijjlik xxdf
1,,,

.□ 

 

This formulation will be referred to as the Single Commodity Flow 

Formulation in the rest of this study. IP5 and IP5’ has O(n2) variables and O(n3) 

constraints. Note that both formulations are valid for arbitrary distance data. 

Unlike the Multicommodity Flow Formulation, the flow conservation constraints 

are not sufficient to define the set of feasible solutions. As stated in the proof, '
ily  

= 
)()( 11

laja
f −−  for every permutation a, which implies that variables 'y take 

permuted values of the flow matrix. This provides an opportunity to exploit any 

structure that may be available in the flow matrix. 

 

We next focus on the interactions between the rows of the Assignment 

Matrix. In this case, the induced subset is a row of the Pairwise Assignment 

Matrix, as depicted in Figure 11. 
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  Location    Location   j  1   2   3  
  j    l  i k\l 1 2 3 1 2 3 1 2 3 
  1 2 3    1 2 3   1 1 0 0 0 0 0 0 0 0 

Facility 1 1 0 0  Facility 1 1 0 0  1 2 0 0 1 0 0 0 0 0 0 
i 2 0 0 1  k 2 0 0 1   3 0 1 0 0 0 0 0 0 0 
 3 0 1 0   3 0 1 0   1 0 0 0 0 0 0 1 0 0 
            2 2 0 0 0 0 0 0 0 0 1 
             3 0 0 0 0 0 0 0 1 0 
             1 0 0 0 1 0 0 0 0 0 
            3 2 0 0 0 0 0 1 0 0 0 
             3 0 0 0 0 1 0 0 0 0 

 

Figure 11: Single Commodity Distance Formulation 

 

Following the scheme above, we define the variable ∑
=

=
n

lj

klijijklik xxCt
1,

. The 

variable tik represents the interaction between the i’th and k’th rows of the 

Assignment Matrix. Using this variable definition, a formulation conjugate to 

IP5 may be constructed. Similar to the Multicommodity Flow Formulation case, 

the extension of this formulation to the Koopmans-Beckmann form results in 

variables representing the induced distance between two facilities (and another 

formulation conjugate to IP5’). Hence, these formulations will be referred to as 

the Single Commodity Distance Formulation in the rest of this study. We omit 

this formulation as it is straightforward to derive it. 

 

We now focus on the interactions between the row of the Assignment Matrix 

and the whole Assignment Matrix. In this case, the induced submatrix in the 

Pairwise Assignment Matrix is a submatrix consisting of all rows associated with 

the header index of the chosen row in the Assignment Matrix (depicted in Figure 

12). 

                      



 33 

                      
  Location    Location   j  1   2   3  
  j    l  i k\l 1 2 3 1 2 3 1 2 3 
  1 2 3    1 2 3   1 1 0 0 0 0 0 0 0 0 

Facility 1 1 0 0  Facility 1 1 0 0  1 2 0 0 1 0 0 0 0 0 0 
i 2 0 0 1  k 2 0 0 1   3 0 1 0 0 0 0 0 0 0 
 3 0 1 0   3 0 1 0   1 0 0 0 0 0 0 1 0 0 
            2 2 0 0 0 0 0 0 0 0 1 
             3 0 0 0 0 0 0 0 1 0 
             1 0 0 0 1 0 0 0 0 0 
            3 2 0 0 0 0 0 1 0 0 0 
             3 0 0 0 0 1 0 0 0 0 

 

Figure 12: Facility-Based Formulation 

 

For this case, we define the variable ∑
=

=
n

lkj

klijijkli xxCw
1,,

. The variable wi 

represents the interaction between the i’th row of the Assignment Matrix the 

whole Assignment Matrix. Using this variable definition, the following 

formulation may be constructed: 

 

 

(IP6) 

∑
=

n

i

iw
1

min         (49) 

njixMxCw ij

n

lk

klijkli ,...,1,)1(
1,

=∀−−≥ ∑
=

    (50) 

niwi ,...,10 =∀≥        (51) 

and (15), (16), (22) 
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Constraint (50) forces the variable iw  to be greater than or equal to 

∑
=

n

lk

klijkl xC
1,

whenever 1=ijx , and has no effect otherwise. The physical 

interpretation of wi is the cost incurred by the i’th facility. For this reason, we 

refer to this formulation as the Facility-Based formulation. This formulation 

resembles that of Kaufman and Broeckx to a great extent. The main difference is 

in the number of variables. In essence, our iw  is their ij
j

wmax . 

We now focus on the interactions between the columns of the Assignment 

Matrix and the whole Assignment Matrix. In this case, the induced submatrix in 

the Pairwise Assignment Matrix is a submatrix consisting of all columns 

associated with the header index of the chosen column in the Assignment Matrix 

(Figure 13). 

 

                      
                      
  Location    Location   j  1   2   3  
  j    l  i k\l 1 2 3 1 2 3 1 2 3 
  1 2 3    1 2 3   1 1 0 0 0 0 0 0 0 0 

Facility 1 1 0 0  Facility 1 1 0 0  1 2 0 0 1 0 0 0 0 0 0 
i 2 0 0 1  k 2 0 0 1   3 0 1 0 0 0 0 0 0 0 
 3 0 1 0   3 0 1 0   1 0 0 0 0 0 0 1 0 0 
            2 2 0 0 0 0 0 0 0 0 1 
             3 0 0 0 0 0 0 0 1 0 
             1 0 0 0 1 0 0 0 0 0 
            3 2 0 0 0 0 0 1 0 0 0 
             3 0 0 0 0 1 0 0 0 0 

 

Figure 13: Location-Based Formulation 

 

For this case, we define the variable ∑
=

=
n

lki

klijijklj xxCw
1,,

' . The variable '
jw  

represents the interaction between the j’th column of the Assignment Matrix and 
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the whole Assignment Matrix. Using this variable definition, a formulation 

similar to IP6 may be constructed directly. Since the physical interpretation of 

'
jw  is the cost incurred by the j’th location, we will be referring to this 

formulation as the Location-Based formulation. 

 

Our final focus is on the interactions between columns and rows of the 

Assignment Matrix. In this case, the induced submatrix in the Pairwise 

Assignment Matrix is a set of parallel rows in the submatrix of the Pairwise 

Assignment Matrix corresponding to the header index of the chosen column of 

the Assignment Matrix (Figure 14). 

 

                      
                      
  Location    Location   j  1   2   3  
  j    l  i k\l 1 2 3 1 2 3 1 2 3 
  1 2 3    1 2 3   1 1 0 0 0 0 0 0 0 0 

Facility 1 1 0 0  Facility 1 1 0 0  1 2 0 0 1 0 0 0 0 0 0 
i 2 0 0 1  k 2 0 0 1   3 0 1 0 0 0 0 0 0 0 
 3 0 1 0   3 0 1 0   1 0 0 0 0 0 0 1 0 0 
            2 2 0 0 0 0 0 0 0 0 1 
             3 0 0 0 0 0 0 0 1 0 
             1 0 0 0 1 0 0 0 0 0 
            3 2 0 0 0 0 0 1 0 0 0 
             3 0 0 0 0 1 0 0 0 0 

 

Figure 14: Facility-Location Formulation 

 

For this case, we define the variable ∑
=

=
n

kj

klijijklil xxCr
1,

. The variable ril 

represents the interaction between the i’th column of the Assignment Matrix and 

the l’th row of the Assignment Matrix. Using this variable definition, the 

following formulation is constructed: 
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(IP7) 

∑
=

n

li

ilr
1,

min         (52) 

nljixMxCr ij

n

k

klijklil ,...,1,,)1(
1

=∀−−≥∑
=

   (53) 

nliril ,...,1,0 =∀≥        (54) 

and (15), (16), (22) 

 

Constraint (53) forces the variable ilr  to be greater than or equal to 

∑
=

n

k

klijkl xC
1

whenever 1=ijx , and has no effect otherwise. In the foregoing 

formulations, the physical meanings of the auxiliary variables were either related 

to the facilities, or to the locations but not both. For IP7, the auxiliary variables 

denote the interaction cost that arises from assignment of a facility to a location. 

Hence we name this formulation as the Facility-Location based formulation. 

 

2. 4 Computational experience 

 

In this section, we present our results on selected instances of the QAP. 

We have implemented all the formulations presented in this chapter, except that 

of Balas and Mazzola (1980). The most succesful formulations that use Lawler’s 

and Kaufman and Broeckx’s variables are given by Adams and Johnson (1994), 

and Kettani and Oral (1993), respectively. Hence, we used those formulations in 

our implementations. To avoid excessively large run times, we have constructed 

five instances of size 8 (chr08’, had08’, nug08’, rou08’, 

scr08’) by removing four rows and columns from the flow and distance 
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matrices of corresponding instance in QAPLIB. CPLEX 9.1 MIP solver was 

used for optimizing the resulting integer programs. The runs were conducted on 

a single PC (3.0 Ghz Dell OPTIPLEX with 2GB RAM). The results are 

presented in Table 1. 

 

It can be observed that the lower bounds yielded by the formulations that do 

not involve equalities (Kettani-Oral, Facility-Based, Location-Based, and 

Facility-Location) are 0. Although the run times for these formulations are short 

for certain instances, the large number of nodes traversed makes them poor 

candidates for solving large instances. To the contrary, Adams-Johnson 

formulation yields the strongest lower bounds without exception, but the number 

of variables (O(n4)) and constraints (O(n3)) it involves is too high to be used for 

larger instances. Notably, Multicommodity Flow and Single Commodity Flow 

formulations yield a relatively strong lower bound and consequently traverse a 

relatively small number of nodes. 

 

Table 1: Computational Results 

 

 

Data File Formulation 

Optimum 

Solution Value

LP Relaxation 

Value 

Number 

of nodes 

CPU Time 

(sec) 

chr08’ Adams-Johnson 7638.00 7638.00 0 0.28 

chr08’ Kettani-Oral 7638.00 0.00 357 0.22 

chr08’ Multicommodity Flow 7638.00 6942.62 0 0.08 

chr08’ Multicommodity Distance 7638.00 0.00 1106 19.12 

chr08’ Single Commodity Flow 7638.00 6572.85 5 0.19 

chr08’ Single Commodity Distance 7638.00 0.00 696 3.70 

chr08’ Facility-Based formulation 7638.00 0.00 1474 0.52 

chr08’ Location-Based formulation 7638.00 0.00 428 0.22 

chr08’ Facility-Location formulation 7638.00 0.00 2722 1.56 

had08’ Adams-Johnson 556.00 556.00 0 1.55 

had08’ Kettani-Oral 556.00 0.00 23820 11.91 

had08’ Multicommodity Flow 556.00 368.12 2504 29.34 

had08’ Multicommodity Distance 556.00 334.22 326 6.03 

had08’ Single Commodity Flow 556.00 419.86 10842 35.19 

had08’ Single Commodity Distance 556.00 459.84 2474 8.36 



 38 

had08’ Facility-Based formulation 556.00 0.00 46742 19.26 

had08’ Location-Based formulation 556.00 0.00 48380 17.80 

had08’ Facility-Location formulation 556.00 0.00 1309413 1382.93 

nug08’ Adams-Johnson 214.00 203.50 12 10.41 

nug08’ Kettani-Oral 214.00 0.00 16633 7.23 

nug08’ Multicommodity Flow 214.00 154.00 532 5.30 

nug08’ Multicommodity Distance 214.00 0.00 4996 43.75 

nug08’ Single Commodity Flow 214.00 154.00 1993 4.83 

nug08’ Single Commodity Distance 214.00 48.00 9109 19.81 

nug08’ Facility-Based formulation 214.00 0.00 21811 8.67 

nug08’ Location-Based formulation 214.00 0.00 20953 7.74 

nug08’ Facility-Location formulation 214.00 0.00 47921 50.55 

rou08’ Adams-Johnson 126894.00 126264.57 6 4.52 

rou08’ Kettani-Oral 126894.00 0.00 27552 13.69 

rou08’ Multicommodity Flow 126894.00 37247.50 1156 25.84 

rou08’ Multicommodity Distance 126894.00 58937.48 1044 21.88 

rou08’ Single Commodity Flow 126894.00 95117.51 3859 14.81 

rou08’ Single Commodity Distance 126894.00 97766.92 3232 13.23 

rou08’ Facility-Based formulation 126894.00 0.00 38147 19.61 

rou08’ Location-Based formulation 126894.00 0.00 39370 16.49 

rou08’ Facility-Location formulation 126894.00 0.00 >600000 >3600.00 

scr08’ Adams-Johnson 21586.00 20974.00 4 5.74 

scr08’ Kettani-Oral 21586.00 0.00 2391 1.02 

scr08’ Multicommodity Flow 21586.00 18676.00 142 1.92 

scr08’ Multicommodity Distance 21586.00 0.00 3786 33.86 

scr08’ Single Commodity Flow 21586.00 18676.00 419 1.99 

scr08’ Single Commodity Distance 21586.00 2424.00 7293 21.94 

scr08’ Facility-Based formulation 21586.00 0.00 4420 1.78 

scr08’ Location-Based formulation 21586.00 0.00 2467 1.06 

scr08’ Facility-Location formulation 21586.00 0.00 125481 43.11 

 

2. 5 Concluding Remarks 

 

In this chapter, we have analyzed the existing literature with respect to the 

way the auxiliary variables are defined and presented seven new linearizations 

for the QAP based on the viewpoint we proposed. All seven new formulations 

involve big M’s, which are known to weaken the LP relaxation. Since our focus 

is on modeling rather than solving, possible values of the big M’s are not 

computed. Big M’s were not unexpected, since the formulations involve 

continuous variables that are not restricted to the interval [0,1]. A final view of 
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the linearizations, organized with respect to the variable definitions, is given in 

Figure 15. Existing formulations have been emphasized using boldface 

characters and shading. 

 

The formulations that stand out are Multicommodity and Single Commodity 

Flow Formulations (and conjugate distance formulations), which involve flow 

conservation equations. Specifically the auxiliary variables of the Single 

Commodity Flow Formulation (and conjugate distance formulation) take 

permuted values of the entries of the flow (and distance) matrix. This fact 

presents us with the opportunity to exploit any available special structure in the 

input matrices that may be in line with the auxiliary variables. In the next 

chapter, we focus on the Single Commodity Flow and Distance Formulations, 

present valid inequalities, and give a branch-and-cut algorithm. 

 

 

Figure 15: A Final View of the Literature 
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Additional Insights 

� Although the linearization of Adams and Johnson yields the best lower 

bounds, the formulation is not only huge but also highly degenerate. The 

LP relaxation of the formulation for nug12 requires 453.80 CPU seconds 

to be solved by the dual simplex solver of CPLEX 9.1 on a 2.0 GHZ PC 

with 2 GB RAM. 

� The Facility-Location Formulation may be used as an example of the 

pathological cases where a Mixed Integer Programming model fails 

entirely. The run was stopped after an hour at which time more than 

600000 nodes were traversed and the memory requirement was about 120 

MB. 

� Generic cuts are usually not very effective for the linearizations of QAP. 

However, for Multicommodity Flow Formulation the flow cover 

inequalities generated by CPLEX were quite useful. The Single 

Commodity Flow Formulation was selected for experiments with larger 

instances since it is smaller and the valid inequalities proposed in Chapter 

3 are experimentally observed to be stronger. 

� The linearizations given in this chapter may be used for checking if a 

solution with a given objective function value exists. For example, let us 

name the formulation obtained by adding '
1,,

'
zyd

n

lji

ijljl ≤∑
=

 to IP4’ as IP4’’. 

If  IP4’’ has a feasible solution, then the solution is also feasible for the 

QAP. If this feasibility problem can be solved efficiently, a bisection on 

possible values of 'z  can lead to an efficient solution method. The flow 

structure of IP4’ (and IP4’’) seems suitable for such an experiment, at 

first glance. However, initial experimental results were not encouraging, 

so the idea is later abondoned. 

 

 



 41 

C h a p t e r  3  

 
FLOW BASED FORMULATIONS  
 

 

In operations research, the common approach is to model the problem on 

hand in a way that is as independent from the problem instance as possible. 

Modelers often tend to dump the data into the objective function and focus on 

solving a well-defined, static constraint matrix. As stated in the introduction 

chapter, this paradigm has been unfruitful beyond certain sizes for the QAP, due 

to the large number of variables required. In our opinion, to be able to solve the 

QAP exactly, one needs to incorporate the data into the model, and exploit a 

pattern that may exist in the data. The Single Commodity Flow and Distance 

Formulations we have presented in the previous chapter seem to be well-suited 

for this task, as the auxiliary variables in these formulations take permuted 

values of the entries of the flow and distance matrices, respectively. This 

provides an opportunity to exploit special properties of the flow or distance 

matrices that may be consistent with definitions of auxiliary variables. 

 

Before going into details, we find it useful to give a brief introduction to 

valid inequalities and branch-and-cut. In solving an integer (or mixed integer) 

programming problem, it is desirable to have the description of the convex hull 

of feasible integral solutions to be able to obtain the solution by solving an 

associated linear program whose feasible set coincides with this convex hull. The 

exact description of the convex hull by means of linear inequalities is not 

possible in general using a polynomial number of variables and constraints. In 

practice, a formulation that closely approximates the convex hull (without 
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leaving out any feasible integer solutions) by a larger polyhedral set and uses a 

manageable number of variables and constraints is considered to be a good 

formulation. The linear programming relaxation of the integer program gives a 

feasible set that contains the convex hull. This outer approximation can be 

improved by adding valid inequalities that slice off portions of the feasible 

region of the LP relaxation without cutting off any portion of the convex hull (of 

the feasible integer solutions). Adding all possible valid inequalities at once may 

inflate the problem size beyond the computational reach, so it is desirable to 

work with a subset of valid inequalities and add a new one whenever a valid 

inequality is identified that is violated by the current outer approximation. The 

generic algorithm consisting of the well known branch-and-bound method 

together with the detection and addition of violated valid inequalities is called 

branch-and-cut. We refer the interested reader to Wolsey (1998) for a complete 

exposition. 

 

In this chapter, we elaborate on the Single Commodity Distance Formulation 

of the QAP with variables representing induced distances between facilities, and 

present sets of valid inequalities. For completeness, we restate the Single 

Commodity Flow Formulation and also give the Single Commodity Distance 

Formulation that was previously omitted. In Section 2.1, we present sets of valid 

inequalities. In Section 2.2, we present the results of our computational 

experiments together with the details of the implementation. In Section 2.3, we 

give concluding remarks.   

 

The Single Commodity Flow Formulation that was introduced in Chapter 2 is 

given below: 

 (IP5’) 

∑
=

n

lj

jljl yd
1,

'min         (44) 
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and (15), (16), (22) 

 

Note that the minimum possible value for the parameter M is computed 

as dependent on the facility i. Let imik

mk

nmk
i ffM −=

≠

∈ ],...,1[,
max . The conjugate Single 

Commodity Distance Formulation is as follows: 

 

(IP8) 

∑
=

n

ki
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min         (55) 
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and (15), (16), (22) 

 

Note that the minimum possible value for M in IP8 is computed as 

dependent on the location j, where jmjl

ml

nml
j ddM −=

≠

∈ ],...,1[,
max . 

 

3.1 Valid Inequalities 

 

3.1.1 Triangle inequalities: 

 

We now restrict attention to distance matrices D that are symmetric and 

triangulated. That is, we assume dab = dba ∀a,b = 1,...,n and that 

ncbaddd cbacab ,...,1,,, =∀+≤ . As stated in the previous chapter, the induced 

distances will be a permutation of the original distances. Consequently, the 

triangle inequalities are still valid when expressed in terms of the t variables 

representing the induced distances. 

 

Theorem 3: For an instance of the QAP whose distance matrix obeys the 

triangle inequalities, the inequalities mkimkittt mkimik ≠≠∀+≤ :,,,  are valid 

for instances of the QAP with symmetric and triangulated distance matrices. 

Proof: Let (x,t) be any feasible solution and consider an arbitrary triplet of 

distinct facility indices i, k, m. Let a, b, c be the location indices for which xia = 

xkb = xmc = 1. Then tik = dab, tim = dac, and tmk = dcb. Since the original distance 

matrix satisfies the triangle inequalities, we have dab ≤  dac +  dcb, which implies 

that tik ≤  tim +  tmk. □ 

 

Another interpretation of the triangle inequality is 

ncddd cbacab

ba
nba

..1,0)(max
,...,1,

=∀≤−−
≠

=
. Let 
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ncdddT cbacab

ba
nba

c ,...,1),(max
,...,1,

=∀−−=
≠

=
. A more general form of triangle 

inequalities is defined using Tc as follows. 

 

Theorem 4: The inequalities mkimkixTttt
n

c

mccmkimik ≠≠∀≤−− ∑
=

:,,,
1

 are 

valid for instances of the QAP with arbitrary distance matrices. 

Proof: Let (x,t) be any feasible solution, and consider an arbitrary triplet of 

distinct facility indices i, k, m. Let a, b, c be the location indices, for which xia = 

xkb = xmc = 1. Then tik = dab, tim = dac, and tmk = dcb. Since the original distance 

matrix satisfies the inequality dab - dac - dcb ≤ Tc (by definition of Tc), we 

conclude that ∑
=

≤−−
n

c

mccmkimik xTttt
1

. □ 

 

Note that violated triangular inequalities can be identified in O(n3) time by 

simply checking all the inequalities. Violation of the generalized form of triangle 

inequalities can be identified by computing and storing ∑
=

n

c

mcc xT
1

 for each m in 

O(n2) time and then checking all the inequalities in a time bound of O(n3) and a 

space requirement of O(n). 

 

3.1.2 Upper Bound Inequalities: 

 

Let I = {1,…,n} and Ij = I \ {j} ∀ j ∈ I. For p ∈ {1,…,n-1}, define 

∑
∈

=

⊂
=

Ll

jl

pL

IL
jp dTD

j

||

max . With this definition, TDjp gives the sum of the largest p 

distances from location j. 
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Theorem 5: The inequalities JixTDt ij

n

j

Jj

Jk

ik ,,
1

∀≤∑∑
=∈

 are valid for IP8, where J 

⊆ Ii. 

Proof: Assume the contrary. Then, there exists a feasible solution (x*,t*), for 

which there exists a facility i and a set J ⊆ Ii, such that *

1

*
ij

n

j

Jj

Jk

ik xTDt ∑∑
=∈

> . Let 

x
*
ij’ = 1, and let L be the set of locations assigned to the set of facilities J. Note 

that |J| = |L|. Then 
Jj

Ll

lj

Jk

ik TDdt ''
* ≤=∑∑

∈∈

, contradicting the assumed violation. □ 

 

Violated upper bound inequalities can be identified by sorting and storing *
ikt  

values for all i and k (O(n2
logn)), computing and storing *

1
ij

n

j

Jj
xTD∑

=

 for all i and 

|J| (O(n3)), and comparing the sum of minimum |J| *
ikt  values with *

1
ij

n

j

Jj
xTD∑

=

 

for all i and |J| (O(n2)), at a total cost of O(n3) time and O(n2) space. 

 

3.1.3 Constructed Inequalities: 

 

The valid inequalities we have given so far have exploited certain properties 

of the distance matrix. We now switch attention to arbitrary distance (and flow) 

matrices. Suppose that we want to construct a valid inequality of the form 

 

∑∑
==

+≤
n

l

kll

n

j

ijjik xxt
11

βα       (60) 

 

where αj, βl are constants to be determined.  
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Theorem 6: If αj and βl obey the constraints ljljd jllj ≠∀≥+ :,,βα , then the 

constraint set kixxt
n

l

kll

n

j

ijjik ,,
11

∀+≤ ∑∑
==

βα  is valid for IP8. 

Proof: Assume the contrary. Then, αj and βl obey the constraints 

ljljd jllj ≠∀≥+ :,,βα , but there exists a solution (x*,t*) of IP8 such that 

kixxt
n

l

kll

n

j

ijjik ,,
1

*

1

** ∀+> ∑∑
==

βα for some i and k, where i ≠k. Let x*
ij = 1 and x*

kl = 

1, where j ≠ l. Then jllj

n

l

kll

n

j

ijjjlik dxxdt ≥+=+>= ∑∑
==

βαβα
1

*

1

** , which is a 

contradiction. □ 

 

For a given fractional solution (x*,t*) to IP8, a most violated valid inequality 

can be computed by solving the following linear program (LP). 

 

(LP1) 

∑∑
==

−−=
n

l

kll

n

j

ijjikLP xxtz
1

*

1

***
1 max βα      (61) 

s.t. ljljd jllj ≠∀≥+ :,,βα      (62) 

 

All violated inequalities of the form (60) can be identified by solving LP1 










2

n
 times, with corresponding objective function coefficients. A violated 

inequality is found if 0*
1 >LPz . LP1 consists of 2n variables and 2 









2

n
 

constraints, and provides an upper bound on the distance between two facilities. 

A total of 








2

n
 instances must be solved for complete identification. The idea 

may be generalized to impose bounds on the sum of distances between p 
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facilities, where 








p

n
 instances of similar linear programs with pn variables and 

p! 








p

n
 constraints must be solved. In our implementation, we have resorted to a 

heuristic way of identification to avoid solving exponentially many linear 

programs. Details of the heuristic are given below. 

 

For p = 2, we solve a single instance of LP1 for each facility i, with -x*
ij as  

the cost coefficient for αj, and -(1- x*
ij)/(n – 1) as the cost coefficient for βj. Cost 

coefficients of β describe an imaginary facility which is partially assigned to 

every possible location in a way that does not contradict facility i. The optimum 

solution (α*,β*) of this particular instance, in a sense, gives the best linearization 

for the current assignment of locations to facility i. We apply this valid inequality 

to facility pairs (i,k) ∀k ≠ i. Valid inequalities constructed in this way require 

solving n instances of LP1 (instead of 








2

n
). Violated valid inequalities of this 

type can be identified by computing and storing *

1
ij

n

j

j x∑
=

α for each i and *

1
kl

n

l

l x∑
=

β  

for i ≠ k (O(n2)), and comparing tik
* with *

1

*

1
kl

n

l

lij

n

j

j xx ∑∑
==

+ βα  (O(n3)), resulting in 

a time bound of O(n3)  and a space requirement of O(n). 

 

Note that, to decrease the computational burden of solving linear programs, 

one may assume equality of variables with the same subscript (i.e. αj = βj ∀k), 

which decreases the number of variables by 1/p and the number of constraints by 

1/(p!). The resulting valid inequalities constructed by solving these reduced 

linear programs are slightly weaker. For p = 3, we solve a single linear program 

with this assumption, and with all objective function coefficients being equal to –

1/n. This way, we compute a single set of coefficients that give the best possible 

linearization for the case when assignment variables are equally divided. 
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Inequalities constructed in this way can be identified by computing and storing 

*

1
ij

n

j

j x∑
=

α  for all i (O(n2)), and comparing the sum of distances between every 

three facility (i,k,m) (i.e. ******
mkkmmiimkiik tttttt +++++ ) with 

*

1

*

1

*

1
cj

n

j

jbj

n

j

jaj

n

j

j xxx ∑∑∑
===

++ ααα  (O(n3)), resulting in a time bound of O(n3) and a 

space requirement of O(n). For p > 3, construction and identification processes 

become computationally prohibitive. Hence, we have disregarded valid 

inequalities corresponding to p > 3. 

 

The valid inequalities presented in this section impose upper bounds on 

linear combinations of the decision variables. Variants of valid inequalities, in 

which the same combinations are bounded below, can be similarly constructed. 

As a final note, we note that, in terms of improving the optimum LP relaxation 

value, the most effective one among the proposed valid inequalities we have 

presented is the one that uses the triangle inequalities. 

 

3.2 Computational Results: 

 

We have implemented a depth-first branch-and-cut algorithm using IP8 and 

the valid inequalities presented in Section 2.1. A flow diagram of the algorithm 

is given in Figure 16.  
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Figure 16: Flow Diagram for the Proposed Branch-and-Cut Algorithm 

 INITIALIZATION 
Use GRASP to compute an incumbent solution 

Form the valid inequality templates 
Form the root node using the LP relaxation and add to Nodelist 

ADD CUTS 
Use the separation algorithms outlined in Section 3.1 to identify violated  

valid inequalities and add them to the constraints of the LP relaxation 
If at least one inequality is added, go to SOLVE LP 

Else, go to INTEGRALITY CHECK 

INTEGRALITY CHECK 
If the current solution is integral, update the incumbent value, 

prune the node and go to SELECT NODE 
Else, go to BRANCHING 

BRANCHING 
Select an unassigned facility to branch on, say i.  

For every unassigned location, say location j, add a new node to the 
Nodelist formed by adding the branching constraint xij = 1 to the LP of 

the current node. Prune the node and go to SELECT NODE 

EXIT 
Current incumbent is the 

optimal solution 

SELECT NODE 
If Nodelist is empty, go to EXIT 

Else, choose and remove the newest node from the Nodelist 
and go to SOLVE LP 

SOLVE LP 
Solve the LP corresponding to the chosen node 

If the LP is infeasible or the optimum solution value exceeds 
the incumbent value, prune the node and go to SELECT NODE 

Else, go to ADD CUTS 
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For instances with symmetric distance matrices, we have made use of the 

facts djl = dlj ∀j,l and djj = 0 ∀j that imply tik = tki ∀i,k, and tii = 0 ∀i, to decrease 

the number of t variables by more than one half. Recall that tij represents the 

induced distance between facilities i and j and the nonlinear representation of tij 

in terms of the assignment variables is ∑
=

=
n

lj

klijjlik xxdt
1,

. If we were able to 

completely linearize the objective function, the equality above would hold for all 

i, k for the solution of the LP relaxation of IP8. When that is not the case, we can 

compute the violation of *
ikt  as ∑

=

−=
n

lj

klijjlikik xxdtv
1,

**** . Notice that vik 

approximates the error of linearization, and that the error becomes more severe 

as |vik| increases. Similarly, the error of the distance between facilities i and k 

becomes more important as the amount of flow between the facilities deviates 

from the average flow. We compute the value aik = |vik|*(|fik – avg(F)| + avg(F)) 

for all i, k, where avg(F) denotes the average flow, as an indicator of the 

importance of linearization.  

 

All distances from and to facility i are completely linearized, as soon as 

facility i is assigned to some location. Consequently, we select as our branching 

rule an unassigned facility i with the largest sum of∑
=

n

k

ika
1

. We use row 

branching where child problems are formed by assigning an unassigned facility 

to all unassigned locations (Anstreicher et al., 2002). 

 

For computational testing of our algorithm, we used problem instances 

available from the QAPLIB. We have attempted to solve all sets of problems 

with the exception of the two sets of data supplied by Eschermann and 

Wunderlich (1990), and Li and Pardalos (1992). The former set involves a high 

level of symmetry in both flow and distance matrices, which renders branching 
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efforts fruitless, and is unsuitable for computational testing. The latter set 

consists of asymmetric instances with known optimal solutions. This set of 

problems is not used in the literature for computational testing, hence we leave it 

out due to lack of a basis of comparison with other methods. In addition to the 

instances from the QAPLIB, we have created 5 new instances of sizes 22, 24, 26, 

28, and 30, referred to as erd22, erd24, erd26, erd28, erd30, 

respectively, in exactly the same way as the instances hadxx are created.  

 

For instances representing symmetric grid graphs, namely nugxx and 

scrxx, we have implemented a symmetry test proposed by Mautor and 

Roucairol (1994) that aims to reduce the number of subproblems at each node of 

the branch-and-cut tree by identifying sets of symmetric locations and branching 

on a single element from each set. Even though the symmetry test of Mautor and 

Roucairol is not generally valid for all distance matrices, it is known to be valid 

for grid graphs with Manhattan metric. This class includes instances nugxx and 

scrxx. The test proved to be very useful, effectively decreasing the CPU time 

to one quarter of the original or less. 

 

We have used GRASP (Li and Resende, 1994) with 10000 restarts as the 

startup heuristic. In 89% of the instances, GRASP found the optimum solution. 

For the cases when the initial incumbent was not optimal, the gap between the 

optimal solution and the incumbent was at most 2.3%. The application of 

GRASP did not take more than a few minutes for any of the instances, so we 

report only the CPU times for the branch-and-cut algorithm. CPLEX 8.11 LP 

solver was used for optimizing the resulting linear programs. The runs were 

conducted on a single PC (1133 Mhz Dell PowerEdge with 256MB RAM). 

Memory requirement was not more than 15MB for even the largest instances. 

The constraint (58) was removed from the formulation and added to the valid 

inequality pool, to benefit from a smaller (O(n)) static constraint set. As 
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empirical proof of the strength of the valid inequalities we have proposed we 

give, in Table 2, the number of cuts added at the root node and the effect on the 

optimum relaxation value. The separated values in columns 2,3, and 4 are the 

objective values corresponding, respectively, to the initial relaxation, final 

relaxation, and the optimal solution of IP8. 

 

Table 2: Effect of Valid Inequalities on Lower Bound 

 

Data  

File 

Number 

of Cuts  

Added 

Initial  

Relaxation 

Value 

Final  

Relaxation  

Value 

Optimum  

Solution  

Value 

Initial  

Gap 

Final  

Gap 

Data 

Type 

bur26a 737 5321819.20 5333986.45 5426670.00 1.93% 1.71% General 

bur26b 784 3725027.10 3748891.39 3817852.00 2.43% 1.81% General 

bur26c 741 5320676.00 5333544.83 5426795.00 1.96% 1.72% General 

bur26d 790 3725693.80 3747069.19 3821225.00 2.50% 1.94% General 

bur26e 687 5310894.40 5318727.83 5386879.00 1.41% 1.27% General 

bur26f 774 3713578.20 3732885.17 3782044.00 1.81% 1.30% General 

bur26g 677 9991175.90 10010200.17 10117172.00 1.25% 1.06% General 

bur26h 793 6994747.10 7030401.88 7098658.00 1.46% 0.96% General 

        

chr12a 53 8448.70 8840.10 9552.00 11.55% 7.45% General 

chr12b 57 7298.40 8966.50 9742.00 25.08% 7.96% General 

chr12c 46 9784.40 9909.80 11156.00 12.29% 11.17% General 

chr15a 85 7607.70 8084.00 9896.00 23.12% 18.31% General 

chr15b 93 5063.20 6127.20 7990.00 36.63% 23.31% General 

chr15c 70 8823.00 9129.70 9504.00 7.17% 3.94% General 

chr18a 104 9014.60 9611.70 11098.00 18.77% 13.39% General 

chr18b 0 1534.00 1534.00 1534.00 0.00% 0.00% General 

chr20a 216 2156.00 2156.00 2192.00 1.64% 1.64% General 

chr20b 134 2236.90 2241.70 2298.00 2.66% 2.45% General 

chr20c 159 9134.40 12029.50 14142.00 35.41% 14.94% General 

chr22a 177 5952.90 6021.70 6156.00 3.30% 2.18% General 

chr22b 159 6018.70 6066.50 6194.00 2.83% 2.06% General 

chr25a 174 3136.70 3328.10 3796.00 17.37% 12.33% General 

        

els19 234 6090771.50 15822114.20 17212548.00 64.61% 8.08% General 

        

erd22 369 7780.30 8556.90 8608.00 9.62% 0.59% Partial Grid 

erd24 429 9486.60 10511.80 10596.00 10.47% 0.79% Partial Grid 

erd26 439 10859.00 12102.00 12222.00 11.15% 0.98% Partial Grid 

erd28 486 13661.70 15185.80 15334.00 10.91% 0.97% Partial Grid 
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erd30 554 17188.20 19070.00 19238.00 10.65% 0.87% Partial Grid 

        

had12 104 1568.00 1640.30 1652.00 5.08% 0.71% Partial Grid 

had14 137 2536.40 2710.50 2724.00 6.89% 0.50% Partial Grid 

had16 193 3392.70 3690.70 3720.00 8.80% 0.79% Partial Grid 

had18 230 4853.60 5287.00 5358.00 9.41% 1.33% Partial Grid 

had20 284 6290.20 6852.80 6922.00 9.13% 1.00% Partial Grid 

        

nug12 133 457.50 548.70 578.00 20.85% 5.07% Grid 
nug14 166 815.80 966.90 1014.00 19.55% 4.64% Grid 
nug15 168 910.10 1099.40 1150.00 20.86% 4.40% Grid 
nug16a 192 1257.00 1534.90 1610.00 21.93% 4.66% Grid 
nug16b 164 914.00 1195.00 1240.00 26.29% 3.63% Grid 
nug17 222 1293.70 1627.70 1732.00 25.31% 6.02% Grid 
nug18 241 1436.60 1808.20 1930.00 25.56% 6.31% Grid 
nug20 268 1851.70 2416.70 2570.00 27.95% 5.96% Grid 
nug21 346 1673.50 2270.90 2438.00 31.36% 6.85% Grid 
nug22 319 2256.80 3395.20 3596.00 37.24% 5.58% Grid 
nug24 418 2255.50 3272.90 3488.00 35.34% 6.17% Grid 

nug25 443 2504.00 3498.30 3744.00 33.12% 6.56% Grid 
nug27 447 3326.30 4896.34 5236.00 36.47% 6.49% Grid 
nug28 604 3168.10 4815.96 5166.00 38.67% 6.78% Grid 
nug30 615 3745.20 5693.97 6124.00 38.84% 7.02% Grid 
        

rou12 121 161123.80 211372.80 235528.00 31.59% 10.26% General 

rou15 211 222087.20 307352.50 354210.00 37.30% 13.23% General 

        

scr12 114 26152.00 30793.60 31410.00 16.74% 1.96% Grid 

scr15 221 39898.20 50222.50 51140.00 21.98% 1.79% Grid 

scr20 329 75420.00 98995.80 110030.00 31.46% 10.03% Grid 

        

tai12a 123 158216.70 207774.30 224416.00 29.50% 7.42% General 

tai12b 105 11426178.00 36789487.70 39464925.00 71.05% 6.78% General 

tai15a 205 244239.70 340869.50 388214.00 37.09% 12.20% General 

tai15b 187 50094649.20 51485572.30 51765268.00 3.23% 0.54% General 

 

In some cases, especially when the optimality gap of the initial relaxation is 

large, the valid inequalities are very effective. For example, for els19 the gap is 

reduced from 64.61% to 8.08%, and for tai12b, the gap is reduced from 

71.05% to 6.78%. In cases when the optimality gap is smaller, varying effects of 

0.1 to 20 percent is observed. When the distance matrix represents a grid or a 

partial grid (namely for the instances erdxx, hadxx, nugxx, and scrxx) the 
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effect is stronger.  We note that no more than a few hundred inequalities are 

required even for the largest instances, after removing redundant inequalities. 

Details of the branch-and-cut applied to the same problems are given in Table 3. 

 

Table 3: Problems Solved to Optimality by Branch-and-Cut 

Data  

file 

Problem  

Size 

Number  

of Nodes 

CPU  

Time (sec) 

Initial 

Incumbent 

Value 

Optimum  

solution  

value 

Data  

Type 

bur26e 26 59761 81731.28 5386879.00 5386879.00 General 

bur26f 26 10439 25154.93 3782044.00 3782044.00 General 

bur26g 26 118782 98666.64 10117172.00 10117172.00 General 

bur26h 26 4618 10709.26 7098658.00 7098658.00 General 

       

chr12a 12 34 0.96 9552.00 9552.00 General 

chr12b 12 12 0.35 9742.00 9742.00 General 

chr12c 12 89 2.25 11156.00 11156.00 General 

chr15a 15 321 15.98 9896.00 9896.00 General 

chr15b 15 165 9.19 7990.00 7990.00 General 

chr15c 15 15 1.57 9504.00 9504.00 General 

chr18a 18 196 18.91 11098.00 11098.00 General 

chr18b 18 0 0.01 1534.00 1534.00 General 

chr20a 20 1152 264.32 2192.00 2192.00 General 

chr20b 20 1198 259.53 2352.00 2298.00 General 

chr20c 20 469 96.77 14142.00 14142.00 General 

chr22a 22 2141 394.57 6266.00 6156.00 General 

chr22b 22 3340 617.37 6314.00 6194.00 General 

chr25a 25 9885 2941.85 4250.00 3796.00 General 

       

els19 19 161 66.29 17212548.00 17212548.00 General 

       

erd22 22 393 199.75 8608.00 8608.00 Partial Grid 

erd24 24 3634 1946.51 10596.00 10596.00 Partial Grid 

erd26 26 19759 14978.78 12222.00 12222.00 Partial Grid 

erd28 28 74923 83504.84 15334.00 15334.00 Partial Grid 

erd30 30 90444 127158.06 19238.00 19238.00 Partial Grid 

       

had12 12 12 0.85 1652.00 1652.00 Partial Grid 

had14 14 27 1.83 2724.00 2724.00 Partial Grid 

had16 16 76 10.06 3720.00 3720.00 Partial Grid 

had18 18 717 110.44 5358.00 5358.00 Partial Grid 

had20 20 743 156.32 6922.00 6922.00 Partial Grid 

       

nug12 12 43 3.17 578.00 578.00 Grid 
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nug14 14 747 49.82 1014.00 1014.00 Grid 

nug15 15 315 27.45 1150.00 1150.00 Grid 

nug16a 16 1856 185.45 1610.00 1610.00 Grid 

nug16b 16 334 43.20 1240.00 1240.00 Grid 

nug17 17 7652 1020.04 1732.00 1732.00 Grid 

nug18 18 20353 3551.20 1930.00 1930.00 Grid 

nug20 20 50862 13859.07 2570.00 2570.00 Grid 

nug21 21 18537 6019.89 2438.00 2438.00 Grid 

nug22 22 10370 3314.30 3596.00 3596.00 Grid 

nug24 24 322443 208288.91 3488.00 3488.00 Grid 

       

rou12 12 392 46.98 235528.00 235528.00 General 

rou15 15 23469 7248.02 354210.00 354210.00 General 

       

scr12 12 22 1.38 31410.00 31410.00 Grid 

scr15 15 23 5.95 51140.00 51140.00 Grid 

scr20 20 5161 1467.80 110030.00 110030.00 Grid 

       

tai12a 12 132 15.74 224416.00 224416.00 General 

tai12b 12 157 6.82 39464925.00 39464925.00 General 

tai15a 15 56406 16490.41 388214.00 388214.00 General 

tai15b 15 402 116.65 51765268.00 51765268.00 General 

 

We solved all instances of chrxx, including chr25a, in less than one hour 

of CPU time. For this set of instances only, we have used IP5’ instead of IP8, 

since these instances have a special flow matrix that represents a tree, which can 

be exploited. All instances of hadxx, for which the distance matrix represents a 

partial grid network (a subgraph of a grid), are solved within 3 minutes of CPU 

time. The instance els19, which consists of real world data and exhibits a 

distance pattern that is quite close to being planar, is solved in about one minute 

of CPU time. The instances nugxx, especially nug20 and nug24 proved to be 

harder. For example, nug20 took about 4 hours of CPU time and nug24 took 

approximately 58 hours of CPU time. Notably, computing time requirement 

decreased for instances nug20, nug21, and nug22 as the size of the problem 

increased. This is mainly because of the decreasing level of symmetry in 4*5, 

3*7, and 2*11 grids. The instances scrxx were solved relatively easily due to 

the erratic structure of the flow matrix, which is sparse and helps us to branch 

efficiently. The instances rouxx and taixx, being randomly generated and 
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exhibiting no discernible patterns, are the hardest of all. We solved rou15 in 

close to 2 hours of CPU time and tai15a in about 4.5 hours of CPU time, while 

sizes of n > 15 exceed computational reach for these two classes of instances.  

 

The instances erdxx were solved quite easily with respect to their size. The 

largest of them, erd30, took about one and a half days to complete. The 

computational success mainly depends on the structure of the distance and flow 

matrices; the former is the shortest distance matrix of a partial grid, and the latter 

is uniformly drawn from the interval [1,n]. This structure, in turn, yields a strong 

lower bound and results in a small branch-and-cut tree.  

 

There are also instances, not reported in Table 3, that are attempted but not 

solved to optimality. For example, branch-and-cut trees of the instances 

bur26a-d and nug25-30 could not be entirely fathomed. For these problems, 

we have imposed a depth limit of 3 and fathomed the reduced trees to collect 

further data about the strength of the lower bound at the lower nodes of the tree. 

Instances bur26a-d were not solved despite the fact that instances bur26e-

h, which have the same distance matrix but different flow matrices, were solved 

relatively easily. This suggests that our branching rule performs better for 

instances bur26e-h, since the branching rule is the only part that depends on 

the flow matrix. Instances nug25-30 do not yield good lower bounds even in 

the lower branches due to the high level of symmetry in the distance matrix. 

These instances simply require more computing power. The data for 

suboptimally solved problems is summarized in Table 4. 
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Table 4: Suboptimally Solved Problems 

 

Data File Gap Depth: 0 Depth: 1 Depth: 2 Depth: 3 CPU Time (sec) 

bur26a 1.71% 1.37% 1.18% 0.91% 75711.46 

bur26b 1.81% 1.49% 1.18% 0.76% 74572.85 

bur26c 1.72% 1.47% 1.26% 1.02% 132849.90 

bur26d 1.94% 1.61% 1.08% 0.75% 59443.98 

      

nug25 6.56% 6.22% 5.56% 4.20% 16267.40 

nug27 6.49% 5.85% 4.68% 3.90% 43729.22 

nug28 6.78% 6.37% 5.50% 4.42% 66432.41 

nug30 7.02% 6.82% 6.15% 5.04% 130163.14 

 

Even though the instances nugxx are considered to be a benchmark, drastic 

improvements in computing hardware and inherent differences between 

sequential and parallel implementations increase the difficulty of comparison. 

For example, nug20 required 811440.0 CPU seconds of a state of the art 

computer in 1994, when it was solved for the first time by Clausen and 

Perregaard (1997). Our method required 13859.07 CPU seconds for the same 

instance on a PC, but it should be noted that the computing technology has 

doubled the speed of computation a few times in the past decade. To date, the 

most successful study in terms of dealing with the instances nugxx has been 

that of Anstreicher et al. (2002), which is a parallel branch-and-bound 

implementation that uses the bound presented in the study by Brixius and 

Anstreicher (2001). Since our implementation is sequential, we compare our 

results with the results presented in the latter paper. The authors report solution 

times for the instances nug16b, nug18, nug20, nug21, nug22, and nug24 

as CPU minutes of a HP9000 C3000 workstation whereas our solution times are 

for a single PC (1133 Mhz Dell PowerEdge with 256MB RAM). The CPU’s 

under consideration are different in terms of architecture and speed. For an 

accurate comparison, we have used the results of a benchmarking study of Guest 

(2005) to scale the run times. Relative to the benchmark computer, our system is 

cited to have 19% CPU performance for floating point operations, whereas 
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HP9000 C3000 is cited to have 17% performance. Hence, we have multiplied 

our CPU times by 19/17 to have a scaled comparison. 

 

Table 5: Comparison of scaled CPU times (in minutes) for instances nugxx 

Data File 

Erdogan and 

Tansel  

Brixius and 

Anstreicher 

nug16b 0.80 0.90 
nug18 66.15 69.20 
nug20 258.15 145.80 
nug21 112.13 212.30 
nug22 61.74 134.30 
nug24 3879.89 5829.90 

 

Table 5 gives the comparison of the two studies in terms of CPU time 

requirements. While Brixius and Anstreicher can solve nug20 with greater 

efficiency, our method performs better for the larger instances nug21, nug22, 

and nug24. Note that the CPU time requirement of our method is no more than 

65% of the method of Brixius and Anstreicher for these instances. Our personal 

communication with Anstreicher (2005) revealed that, such benchmarking 

studies generally produce approximations within a 30% error margin. Even 

allowing a 30% error margin for the results of the benchmarking study, Table 5 

gives us reason to claim that our method can compete with the state of the art 

methods in the literature. 

 

To have a better understanding of the performance of the branch-and-cut 

algorithm, we have disabled the GRASP heuristic for a few instances that seem 

to be representative of their corresponding problem sets, and analyzed the change 

in CPU time and number of nodes traversed. The results are given in Table 6. 
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Table 6: Run Times with Different Initial Upper Bound Values 

Data file  ub: infinity  ub:GRASP 

  

Number of 

Nodes 

CPU Time 

(sec.)  

Number of 

Nodes 

CPU Time 

(sec.) 

chr12a  67 1.69  34 0.96 

had12  45 1.77  12 0.85 

nug12  53 3.39  43 3.17 

rou12  1066 99.13  392 46.98 

scr12  82 3.34  22 1.38 

       

chr15a  381 20.61  321 15.98 

had16  166 19.45  76 10.06 

nug15  647 51.41  315 27.45 

rou15  35803 10618.13  23469 7248.02 

scr15  184 16.59  23 5.95 

       

chr20a  7197 1253.72  1152 264.32 

had20  12877 2660.57  743 156.32 

nug20  86399 21874.33  50862 13859.07 

scr20  8163 2202.93  5161 1467.80 

 

As expected, CPU times are longer when the initial upper bound value is set 

to infinity as compared to the case where the initial upper bound is supplied by 

the GRASP heuristic. However, characteristics of each instance dictate the order 

and quality of the integral solutions found by the branch-and-cut algorithm. 

Hence, the results are somewhat erratic, even among the members of the same 

instance set. For example, while chr15a suffers a 29% increase in CPU time 

and 19% increase in the number of nodes traversed, CPU time required by the 

instance chr20a increases more than 4 times and the number of nodes traversed 

increases more than 6 times when the initial upper bound is set to infinity. In 

contrast, scr20 performs much better than scr15, resulting in 50% increase in 

CPU time versus a 179% increase. We emphasize the fact that the algorithm we 

have presented is designed to prove optimality rather than to find high quality 

solutions and depends heavily on the quality of the initial solution. In fact, the 

quality of the initial solutions supplied by the GRASP heuristic encouraged us to 

use the depth-first node selection rule. A more robust branch-and-cut algorithm 
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may be implemented by switching the node selection rule to breadth-first or best-

first. 

 

To better understand the cases in which our algorithm performs best, we have 

computed the standard complexity measure for the QAP, namely flow 

dominance and distance dominance (Vollmann and Buffa, 1966) of the instances 

we have attempted to solve. We have also included some metrics (indices) that 

we have devised. Namely, we have computed the ratio of number of feasible 

solutions for which the valid inequalities are binding to the total number of 

feasible solutions. The results are given in Table 7.  

 

Table 7:Indices Computed for the Instances from QAPLIB 

Data file 

Flow 

Dominance 

Distance 

Dominance 

Distance 

Lower 

Bound  

Index 

Distance 

Upper 

Bound 

Index 

Triangle 

Sum 

Lower 

Bound 

Index 

Triangle 

Sum 

Upper 

Bound 

Index 

Triangle 

Diff. 

Lower 

Bound 

Index 

Triangle 

Diff. 

Upper 

Bound 

Index 

         

bur26a 274.744 15.074 0.197 0.614 0.232 0.074 0.087 0.093 

bur26b 274.744 15.901 0.262 0.614 0.302 0.068 0.259 0.093 

bur26c 228.227 15.074 0.245 0.614 0.232 0.074 0.087 0.093 

bur26d 228.227 15.901 0.226 0.614 0.302 0.068 0.259 0.093 

bur26e 253.807 15.074 0.191 0.629 0.232 0.074 0.087 0.093 

bur26f 253.807 15.901 0.235 0.726 0.302 0.068 0.259 0.093 

bur26g 279.687 15.074 0.215 0.614 0.232 0.074 0.087 0.093 

bur26h 279.687 15.901 0.257 0.614 0.302 0.068 0.259 0.093 

         

chr12a 63.206 307.980 0.182 0.833 0.564 0.155 0.071 0.018 

chr12b 63.206 307.980 0.485 0.833 0.605 0.055 0.092 0.018 

chr12c 63.206 307.980 0.250 0.833 0.545 0.064 0.042 0.018 

chr15a 69.735 326.951 0.262 0.867 0.635 0.053 0.051 0.011 

chr15b 69.735 326.951 0.433 0.867 0.651 0.095 0.073 0.012 

chr15c 69.735 326.951 0.143 0.867 0.629 0.037 0.027 0.012 

chr18a 63.098 350.595 0.248 0.889 0.692 0.088 0.046 0.007 

chr18b 56.863 356.319 0.176 0.889 0.686 0.032 0.019 0.007 

chr20a 59.385 345.940 0.197 0.900 0.723 0.040 0.038 0.006 

chr20b 59.385 345.940 0.124 0.900 0.716 0.036 0.015 0.006 

chr20c 65.630 345.940 0.447 0.900 0.736 0.335 0.059 0.006 

chr22a 66.887 420.620 0.273 0.909 0.747 0.057 0.045 0.005 
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chr22b 66.887 420.620 0.199 0.909 0.742 0.034 0.024 0.005 

chr25a 57.925 423.928 0.267 0.920 0.776 0.098 0.041 0.006 

         

els19 530.281 52.030 0.164 0.129 0.022 0.029 0.007 0.014 

         

erd22 45.955 64.209 0.541 0.216 0.038 0.362 0.009 0.267 

erd24 46.502 63.699 0.554 0.217 0.033 0.313 0.017 0.270 

erd26 45.756 61.711 0.502 0.209 0.030 0.291 0.010 0.253 

erd28 44.751 62.042 0.545 0.196 0.021 0.290 0.015 0.254 

erd30 44.053 63.933 0.547 0.182 0.023 0.284 0.008 0.260 

         

had12 50.679 63.130 0.682 0.364 0.109 0.418 0.018 0.333 

had14 49.456 66.622 0.560 0.297 0.071 0.451 0.013 0.328 

had16 48.403 64.829 0.542 0.292 0.050 0.454 0.014 0.300 

had18 47.132 63.681 0.542 0.255 0.048 0.397 0.012 0.272 

had20 45.957 64.243 0.553 0.221 0.042 0.385 0.006 0.277 

         

nug12 116.580 56.891 0.576 0.424 0.155 0.382 0.055 0.255 

nug14 103.566 56.749 0.582 0.374 0.113 0.352 0.043 0.244 

nug15 106.476 56.582 0.562 0.362 0.101 0.255 0.040 0.245 

nug16a 100.737 57.334 0.542 0.325 0.086 0.325 0.020 0.257 

nug16b 115.595 54.772 0.500 0.342 0.093 0.371 0.019 0.238 

nug17 104.827 56.259 0.522 0.324 0.078 0.344 0.021 0.236 

nug18 104.211 54.935 0.529 0.301 0.072 0.348 0.019 0.229 

nug20 103.646 54.102 0.489 0.284 0.061 0.309 0.014 0.228 

nug21 117.061 57.385 0.514 0.267 0.053 0.264 0.018 0.235 

nug22 114.216 64.086 0.459 0.216 0.038 0.291 0.010 0.262 

nug24 112.783 54.130 0.457 0.243 0.043 0.261 0.008 0.221 

nug25 110.763 53.033 0.480 0.240 0.041 0.257 0.010 0.217 

nug27 111.402 58.614 0.487 0.211 0.032 0.194 0.010 0.229 

nug28 112.999 54.499 0.450 0.212 0.032 0.260 0.007 0.217 

nug30 112.417 52.725 0.448 0.202 0.029 0.227 0.006 0.210 

         

rou12 67.053 71.538 0.182 0.182 0.055 0.055 0.018 0.018 

rou15 68.739 69.073 0.148 0.143 0.033 0.035 0.011 0.011 

rou20 65.569 64.352 0.105 0.105 0.018 0.018 0.006 0.006 

        

scr12 256.487 56.891 0.576 0.424 0.155 0.382 0.055 0.255 

scr15 247.750 54.921 0.533 0.371 0.103 0.404 0.040 0.236 

scr20 254.333 54.102 0.489 0.284 0.061 0.309 0.014 0.228 

         

tai12a 74.765 69.307 0.182 0.174 0.055 0.055 0.021 0.018 

tai12b 299.606 79.211 0.212 0.189 0.055 0.082 0.024 0.045 

tai15a 70.563 63.777 0.152 0.143 0.035 0.033 0.012 0.013 

tai15b 312.935 262.313 0.324 0.176 0.035 0.068 0.015 0.092 
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The column labeled “Distance Upper Bound Index” denotes the ratio of the 

number of strict inequalities to the total number of inequalities in the optimum 

solution of LP1, when solved to optimality with objective function coefficients 

of –1/n. This index value is a measure of the strength of the constructed 

inequalities for m = 2, and can be easily computed by solving a single instance of 

LP1. Remember that the constructed inequalities for m = 3 consist of a single set 

of coefficients that is applied to all facility triplets. Consider any three facilities 

and all possible location assignments to these facilities, and count the cases for 

which the constructed inequalities are strict. The column labeled “Triangle Sum 

Upper Bound Index” denotes the ratio of this count to the total number of 

assignments ( 








3

n
). In other words, this index value measures the strength of the 

constructed valid inequalities for p = 3. This index can be computed by solving a 

single linear program with n variables and 








3

n
 constraints, and executing the 

counting process (O(n3)). Finally, the column labeled “Triangle Diff. Upper 

Bound Index” denotes the ratio of the number of location triplets for which the 

triangle inequalities are strict to the total number of triplets. Computation of this 

index requires O(n3) time. The rest of the columns consist of the indices for the 

lower bound counterparts of the same valid inequalities. Note that, a higher value 

means a stronger effect, but the values across the columns are not comparable, 

since the corresponding valid inequalities differ in strength. 

 

Notice that for the instances chrxx the values of Distance Upper Bound 

Index and Triangle Sum Lower Bound Index are very high, justifying the ease of 

solution for these instances. For the instances erdxx and hadxx, the values of 

the indices for Distance Lower Bound, Triangle Sum Upper Bound, and Triangle 

Difference Upper Bound are notably high. Although the same indices are 

remarkably high for the instances nugxx and scrxx, the symmetry factor 

comes into play and increases the level of difficulty. Instances burxx exhibit 
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high values for Distance Upper Bound Index and Triangle Sum Lower Bound 

Index. Consequently, the lower bounds generated at the root node are close to the 

optimum solution value. Instances rouxx and taixx do not exhibit any high 

values for any of the indices, and hence, are the hardest of all. 

  

The flow and distance dominance values do not mean much without the rest 

of the data. For example, the instances chrxx exhibit large distance dominance 

values, the instances scrxx exhibit large flow dominance values, and finally the 

instances erdxx exhibit low values for both and distance dominance. All three 

sets of instances have been solved with reasonable efficiency, so the dominance 

values seem irrelevant. However, further analysis of the instances scr12, 

scr15, scr20 and nug12, nug15, nug20 that have the same distance 

matrices reveals that the scrxx instances are solved with greater efficiency. The 

only apparent reason for this is the higher flow dominance value of these 

instances. Likewise the instance els19, which does not yield high values for 

any of the indices but has the highest flow dominance value, is solved efficiently. 

We find it appropriate to conclude that a higher value of flow dominance helps 

our branching strategy to find the decisions that are more important than the 

others. 

 

We can conclude that our method performs best when one or more of the 

following occur: 

1) A value of 0.5 or higher for at least one of Distance Upper Bound and 

Distance Lower Bound indices. 

2) A value of 0.3 or higher for at least one of Triangle Sum Upper Bound 

and Triangle Sum Lower Bound indices. 

3) A value of 0.3 or higher for at least one of Triangle Diff. Upper Bound 

and Triangle Diff. Lower Bound indices. 

4) A Flow Dominance value of 200 or more. 
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3.3 Concluding Remarks 

 

In this chapter, we have analyzed the Single Commodity Distance 

Formulation, presented valid inequalities, and gave the results and details of the 

implementation of a branch-and-cut algorithm. Our main motivation was to 

exploit the special structure inherent to the data, by using auxiliary variables that 

inherit the same structure. We were able to solve certain classes of problems for 

which certain structures were dominant. 

 

An unforeseen consequence of incorporating the data into the constraint 

matrix is the need to solve auxiliary problems in order to identify valid 

inequalities. To be more precise, for the Traveling Salesman Problem, for 

example, one can logically identify the subtour elimination constraints. However, 

in our case, we need to solve LPs to identify or to construct valid inequalities. 

Thus, we observed that with a constraint matrix dependent on the problem 

instance at hand, the act of building more information into the model becomes a 

problem of its own. 

 

We have tried to analyze the behavior of the algorithm we have presented 

using different metrics we have devised, as well as metrics from the literature. 

We have observed that our algorithm performs best when one or more of the 

proposed metrics is significantly high. Using the formulations and valid 

inequalities we have presented, we have been able to solve an instance of size 30 

that exhibits high values for the metrics we have presented. In contrast, we have 

failed to solve instances from the randomly created sets of problems that are of 

size larger than 15. 

 

We have focused on identifying all violated valid inequalities, for the 

sake of a better analysis. It is our belief that with high performance heuristics to 
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identify violated valid inequalities, and access to higher amounts of computing 

power, the proposed formulation may be used to solve larger problem instances. 

 

In the next chapter, we turn our attention to flow, distance, and general 

cost coefficient matrices with special structure and uncover polynomially 

solvable classes of instances for the QAP. Before doing so, we repeat some 

additional insights that we have gained during our computational 

experimentation. 

 

Additional Insights 

� The valid inequalities proposed in this chapter are also applicable to 

Multicommodity Distance Formulation, by using the fact that ik

n

j

ijk tt =∑
=1

, 

where tijk is the variable definition for the Multicommodity Distance 

Formulation, and tik is the variable definition for the Single Commodity 

Distance Formulation. A brief computational experiment showed that 

introducing only a few triangle inequalities to the Multicommodity 

Distance Formulation results in a formulation that exhibits high levels of 

degeneracy. 

� The constraint set (57) is a subset of lower bounding counterpart of valid 

inequalities (60). Hence (57) can be discarded if all violated lower 

bounding counterpart of valid inequalities of type (60) are to be identified 

and added to the formulation. 

� The decreasing CPU times for the instances nug20, nug21, and nug22 

suggest that symmetry plays a great role in determining the CPU time. 

Developing a more sophisticated and general symmetry test may be a 

good field of research. 

� Two other branching strategies were used, the first one being the 

traditional 0/1 branching, and the second one being a hybrid of 0/1 

branching, row branching, and column branching (where child problems 
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are formed by assigning an unassigned location to all unassigned 

facilities). Both rules performed significantly worse than row branching. 

� Three other branching rules were carried out, the first one being “branch 

on the unassigned location with the largest total distance to other 

unassigned locations”, the second one being “branch on the unassigned 

facility with the largest total flow to other unassigned facilities”, and the 

third one being “branch on the facility or location for which the 

assignment variables are farthest away from integrality”. For the third 

rule, the value ∑
=

=
n

j

iji xa
1

21 )(  was computed for every unassigned facility 

and ∑
=

=
n

i

ijj xa
1

22 )(  was computed for every unassigned location. If the 

maximum value among 1
ia  and 2

ja  is attained by a facility, row 

branching is used. Else, column branching is used. 

� Let  ik∆  denote the change in objective function value when the locations 

of facilities i and k are exchanged. Denote the induced distance between 

facilities i and k as d(i)(k). Then, for an instance with symmetric flow and 

distance matrices 







+=∆ ∑

≠ kim

mkkmmiimik dfdf
,

))(())(( )(  









+− ∑

≠ kim

mikmmkim dfdf
,

))(())(( )(  where the second part stands for the 

decrease in cost when we “unassign” i and k and the first part stands for 

the increase in cost when we “reassign” i and k. Further derivation yields 

∑
≠

−−=∆
kim

kmimmimkik ffdd
,

))(())(( ))(( . Obviously, for a solution to be 2-

optimal, the set of conditions kinkiik <=∀≥∆ ,..1,:0  is necessary and 

sufficient. For the formulations with Lawler’s variables, 

∑
=

=
n

lj

ijkljlki ydd
1,

))(( . Similarly for IP8, ikki td =))(( . Thus, the condition 

0≥∆ ik  can be expressed as a linear inequality and may be used for 
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reducing the search space. However, experimentation showed that 

fractional solutions of the subproblems in the branch-and-cut tree do not 

usually violate these inequalities. Use of the inequalities results in an 

insignificant decrease in the number of nodes traversed, together with an 

increase in the run times. 
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C h a p t e r  4  

 
CLASSES OF POLYNOMIAL TIME 

SOLVABLE INSTANCES  
 

 

We have stated in the introduction chapter that the formulations exploiting 

the binary structure of the QAP involve too many variables to be 

computationally effective. In the previous chapter we have attempted to exploit 

the possible structures existing in the flow and distance matrices using the single 

Commodity Flow and Distance Formulations. In this chapter we take one more 

step and we restrict our attention to the classes of instances that exhibit special 

structures that lead to polynomial time solution techniques. In Sections 4.1 and 

4.2, we present our findings on instances with additively and multiplicatively 

decomposable cost coefficients, respectively. In Section 4.3, we identify the class 

of problems which are partially reducible to LAPs. In Section 4.4 we focus on 

the graphs associated with the flow and distance matrices. In Section 4.5, we 

give a result on instances with specially ordered entries. Finally, in Section 4.6, 

we present our concluding remarks. 

 

4.1 Additive Decomposition 

 

For the Koopmans-Beckmann form with flow and distance matrices F = [fik] 

and D = [djl], Burkard et al. (1997) showed that if 2n 

numbers }),...,1{(, niff c

i

r

i ∈  can be found associated, respectively, with the n 

rows and the n columns of the flow matrix such 
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that },...,1{, nkifff c

k

r

iik ∈∀+= , the problem is reducible to the LAP. The result 

is also valid if a similar decomposition is available for D. 

 

We now give a significant generalization of this class for the case of general 

costs Cijkl. The decomposition we propose requires solving a linear system of 

equations with O(n3) variables and O(n4) equations. Because the system is 

overdetermined, it may or may not have a solution. Whenever it does, the QAP 

instance on hand is solved as a LAP in polynomial time. 

 

Let I = {1,2,…,n} and Ik be the k-fold Cartesian product of I by itself. Denote 

by q any quadruplet in I
4. We define a quadruplet ijkl to be incompatible if 

),(),( lkji ≠  and either i = k or j = l; and compatible otherwise. Incompatible 

quadruplets correspond to the cases where either two distinct facilities are 

assigned to the same location or one facility is assigned to two distinct locations. 

Such assignments are infeasible in the QAP. Define I  to be the subset of I
4 

consisting of all quadruplets in I4 that are compatible. Note that there are n4 - 2n
3 

+ 2n
2 compatible quadruplets. We write Cq to mean the cost Cijkl for which q = 

ijkl. For a nonempty subset S of {1,2,3,4}, we define q(S) to be the ordered |S|-

tuple obtained from the quadruplet q by retaining the indices in q that correspond 

to positions in S while deleting all other indices. For example, if 4321 kkkkq =  

and S = {1,2,4}, then 421)( kkkSq = . If S = {2,4} then 42)( kkSq = . Define also 

q(φ) = φ 4Iq ∈∀ . 

 

Corresponding to each proper subset S of {1,2,3,4} and each t ∈ I|S| (if S = φ, 

take t = φ), define a variable S

tu . There are 4n
3 + 6n

2 + 4n + 1 such variables. Let 

A be the n4 - 2n
3 + 2n

2  by 4n
3 + 6n

2 + 4n + 1 matrix of zeros and ones where the 

element in row q (with q being a compatible quadruplet) and column 

corresponding to the pair (S,t) (with S being a proper subset of {1,2,3,4} and t ∈ 

I
|s|) is denoted by tS

qa , . Define tS

qa , = 1 if q(S) = t and 0 otherwise. Let ][ ,tS

qaA =  
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and u be the vector of S

tu  values where the columns of A and the elements of u 

are assumed to be identically ordered by (S,t). Let C  be the vector of costs Cijkl, 

4Iijkl ∈ , and C  be the vector obtained from C  by deleting all cost components 

Cijkl corresponding to incompatible quadruplets 4Iijkl ∈ . We assume the rows of 

A and the elements of C  are identically ordered by Iq ∈ . 

 

Theorem 7: If the linear equality system 

CAu =         (63) 

has a solution, then the instance of the QAP defined by C can be solved as a 

LAP. 

Proof: Assume )ˆ(ˆ S

tuu =  solves (63). Then CuA =ˆ  implies that 

 ∑
=

∈=
tSqtS

q

S

t IqCu
)(:),(

,ˆ       (64) 

Using (64), the objective function value of the QAP for any feasible solution 

( )
ıjxX =  can be rewritten as: 

 

∑∑

∑

∈∈

∈















++++++++

++++++
=

=

Iijkl

klij

lkjikljljk

ilikijjkliklijlijk

Iijkl

klijijkl

Iijkl

klijijkl

xx
uuuuuuuu

uuuuuuu
xxC

xxC

0
0

4321342423

141312234134124123

ˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆ

4

 (65) 

 

∑∑
∈∈

++=
Iijkl

klij

Iijkl

klijijk xxuxxu
0
0

123 ˆ...ˆ     (66) 

 

where the first equality follows from the fact that feasibility ensures 0=klıj xx  for 

any incompatible quadruplet ijkl. Each of the fifteen summations in (66) can be 

written in such a way as to separate out the omitted index (indices) from s

tu  

terms. For example, the first summation gives 
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∑∑∑
∈∈∈

=
Iijkll

kl

Iijk

ijijk

Iijkl

klijijk xxuxxu
:

123123

3

ˆˆ .     (67) 

 

We will analyze the last summation of (67) in two cases. If i = k, then 

compatibility of ijkl implies }{}:{ jIijill =∈ . This gives 

 ij

Iijill

il

Iijkll

kl xxx == ∑∑
∈∈ ::

       (68) 

in which case (67) becomes 

 ∑∑∑
∈∈∈

==
33

1232123123 ˆ)(ˆˆ
Iijk

ijijk

Iijk

ijijk

Iijkl

klijijk xuxuxxu     (69) 

where the last equality follows from the fact that jixij ,}1,0{ ∀∈ . Similarly, if i ≠ 

k, then compatibility of ijkl implies }{}:{ jIIijkll −=∈ . This gives 

 kj

Iijkll

kl xx −=∑
∈

1
:

       (70) 

and consequently (67) becomes 

 ∑∑∑
∈∈∈

=−=
33

123123123 ˆ)1(ˆˆ
Iijk

ijijk

Iijk

kjijijk

Iijkl

klijijk xuxxuxxu    (71) 

where the last equality follows from the fact that if xij = 1, then xkj = 0 by the 

assignment constraints. Hence, we can conclude that  

 ∑∑
∈∈

=
3

123123 ˆˆ
Iijk

ijijk

Iijkl

klijijk xuxxu       (72) 

The other summations can be similarly processed (see Appendix A for details) 

using the assignment constraints and the fact that jixij ,}1,0{ ∀∈  to obtain the 

following equality: 
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The resulting LAP has the following cost coefficient for the variable xij: 

 

 3412234134124123 ˆ.ˆ.ˆˆˆˆˆ
ijij

Ir

rij

Ir

rij

Ir

ijr

Ir

ijrij ununuuuuc +++++= ∑∑∑∑
∈∈∈∈

  (74) 

 

so that the objective function ∑
∈ 4

Iijkl

klijijkl xxC  of the QAP is equal to the objective 

function ∑
∈ 2

ˆ
Iij

ijij xc  of the resulting LAP plus the constant K̂  where 

 









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i

Ii
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Ijl

jl
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Iil

il

Iik

ik

.    (75) 

 

Thus, the instance of the QAP defined by C  is solvable as a LAP whenever the 

system CAu =  has a solution. □ 

 

Theorem 7 has a generalization for a larger class of problems that includes 

the QAP that we give in Appendix B. The result also extends to the related 

problems of Axial 3D Assignment Problem and Planar 3D Assignment Problem 

that we give in Appendix C. 

 

Define Class 1 to be the set of instances of the QAP for which (63) has a 

solution. The following algorithm checks whether or not an instance belongs to 

Class 1 and solves it whenever it does: 

 

Step 1. Solve CAu =  to obtain a solution û , if it exists. If no solution exists, 

stop. The instance does not belong to Class 1. Else, continue. 
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Step 2. Define the cost coefficients ijĉ using û  in (74). 

 

Step 3. Solve the resulting LAP to get an optimal solution )ˆ(ˆ
ijxX = . Then X̂  

solves the QAP instance and its optimal objective value is 

 

 KxcxxC
Iij

ijij

Iijkl

klijijkl
ˆˆˆˆˆ

24

+= ∑∑
∈∈

      (76) 

 

where K̂  is as defined in (75). 

 

It would be unreasonable to expect arbitrary costs to be additively 

decomposable. For example, QAPLIB instances tabulated in Table 8 are not 

additively decomposable. An additively decomposable instance closest in some 

sense to a given instance can be found by solving a linear program that 

minimizes a predefined distance between the two instances. For example, an ∞L  

norm between a given instance C and an additively decomposable instance, say, 

C' of the same dimension can be found by minimizing )inf(SL  subject to 

CDAX =+  where the vector D defines the coordinatewise deviations between 

the instance C and the approximating instance C' defined by C-D and objective 

function selects X and D in such a way that the maximum deviation is 

minimized. We may solve the instance C' as a LAP (using the accompanying 

decomposition X) and compare the optimal objective value Z(C) of the QAP 

instance C by the objective value Z'(C') where Z' gives the QAP objective value 

corresponding to the solution for C'. The deviations )(/))()'('( CZCZCZ −  for 

the listed QAPLIB problems are given in Table 8. The tabulated results show 

that the deviation from optimality via an approximating additive decomposition 

could be quite high and it would be misleading to suggest that the decomposition 

proposed in this study can provide heuristically good approximations to QAP 

instances that do not conform to additive decomposition. Nevertheless, whenever 
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a large QAP instance is encountered that is not solvable using known methods, it 

can be solved as a LAP if an attempt to decompose it additively is successful. 

 

Table 8: Deviations of the objective function values of the solutions obtained by 

solving the closest element of Class 1, from the optimal objective function values 

 

Instance Z'(C') Z(C) (Z'(C') - Z(C))/Z(C) 
chr12a 45362.00 9552.00 374.90% 
had12 1764.00 1652.00 6.78% 
nug12 782.00 578.00 35.29% 
rou12 295208.00 235528.00 25.34% 
scr12 52784.00 31410.00 68.05% 
tai12a 303494.00 224416.00 35.24% 

 

4.2 Multiplicative Decomposition 

 

We now propose another way of decomposing the general cost coefficients. 

This decomposition requires solving a nonlinear system of equations with O(n2) 

variables and O(n4) equations. Chen (1995) gave a similar decomposition that 

results in a parametric LAP whose complexity status is open whereas our 

decomposition implies polynomial time solvability of the QAP whenever the 

decomposition proposed in Theorem 8 is valid. 

 

Define first )(cz  and )(cz  to be the minimum and maximum objective 

values of the LAP, respectively, for which the cost data is )( ijcc = .  

 

Theorem 8: If there exists ),( 2Iijvv ij ∈=  that satisfies 

,, IijklCvv ijklklij ∈=       (77) 

and if )(0 vz≤  or 0)( ≤vz , then the instance of the QAP defined by costs 

,, 4IijklCijkl ∈  is equivalent to the LAP with costs 2, Iijvij ∈ , for the case 

)(0 vz≤ , and to the LAP with costs 2, Iijvij ∈− , for the case 0)( ≤vz . 
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Proof: Assume that such 2, Iijvij ∈ , exist. Then the objective function becomes: 

∑∑
∈∈

=
Iijkl

klijklij

Iijkl

klijklij xxvvxxvv
4

     (78) 

Reorganizing the terms, (78) can be rewritten as: 

 2)(
222

∑∑∑
∈∈∈

=
Iij

ijij

Ikl

klkl

Iij

ijij xvxvxv      (79) 

 

If )(0 vz≤ , all feasible assignments induce a nonnegative objective value in 

the LAP with cost vector )( ijvv =  so that any feasible assignment that 

minimizes∑
∈ 2Iij

ijij xv  also minimizes 2)(
2
∑
∈Iij

ijij xv .  

 

If 0)( ≤vz , all feasible assignments yield a nonpositive objective value in the 

LAP so that any feasible assignment that minimizes ∑
∈

−
2Iij

ijij xv  also minimizes 

2)(
2
∑
∈Iij

ijij xv . □ 

 

Theorem 8 also has a generalization for a larger class of problems that 

includes the QAP. This is given in Appendix B. 

 

Define Class 2 to be the set of instances of the QAP that fulfills the 

assumptions of Theorem 2. Notice that every element of this class must satisfy 

ijijij Cv =
2  (or equivalently ijijij Cv ±= ), implying that an instance for which 

0<ijijC  for some 2Iij ∈  is not an element of Class 2. Note that if all  

2, IijCijij ∈ , are nonnegative, two possible values can be assigned to each  ijv  

corresponding to the plus or minus roots so that there are 
2

2n  possible choices of 

the multipliers ( 2, Iijvij ∈ ). Despite the exponential number of possibilities, the 
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following procedure identifies the correct values of the multipliers in O(n2) time 

(followed by an O(n4) secondary check). The procedure determines whether or 

not a given instance belongs to Class 2. 

 

Step 1. Pick an arbitrary facility-location pair ij. Set ijijij Cv = . Note that 

whenever a multiplicative decomposition with multipliers 2, Iijvij ∈ exists, 

another multiplicative decomposition with multipliers 2, Iijvij ∈− , also exists. 

Hence, setting 
ijijij Cv =  for a single pair ij does not result in a loss of 

generality. 

 

Step 2. For every facility-location pair ab where i ≠ a and j ≠ b, go to a) or b) 

depending on if 0<ijabC  or 0≥ijabC , respectively. 

a) Case with 0<ijabC : Check the equality ijabababij CCv =− ).( . If the 

equality fails, then stop (no multiplicative decomposition exists), else set 

ababab Cv −= . 

b) Case with 0≥ijabC : Check the equality ijabababij CCv =).( . If the 

equality fails, then stop (no multiplicative decomposition exists), else set 

ababab Cv = . 

If termination has not occurred for any of the pairs checked in Step 2, continue to 

Step 3. 

 

Step 3. For the facility-location pairs }{,2 jIlIil −∈∈ , pick a facility-location 

pair 2
Iab ∈ , where a ≠ i and { }ljb ,∉ . Check the equality ilababilil CvC =).( . If 

the equality is satisfied, set ililil Cv = . Else, check the 

equality ilababilil CvC =− ).( . If the equality is satisfied, set ililil Cv −= ; else, 

stop (no multiplicative decomposition exists). 
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If termination has not occurred for any of the pairs checked in Step 3, continue to 

Step 4. 

 

Step 4. For the facility-location pairs }{,2 iIkIkj −∈∈ , pick a facility-location 

pair 2
Iab ∈ , where { }kia ,∉  and jb ≠ . Check the equality kjababkjkj CvC =).( . 

If the equality is satisfied, set kjkjkj Cv = . Else, check the 

equality kjababkjkj CvC =− ).( . If the equality is satisfied, set kjkjkj Cv −= ; else, 

stop (no multiplicative decomposition exists). 

If termination has not occurred for any of the pairs checked in Step 4, continue to 

Step 5. All multipliers 2, Ipqv pq ∈ , have now been determined. 

 

Step 5. Check the set of equalities pqststpq Cvv =  for any of the quadruplets pqst  

in I  not checked yet in the previous steps. If all equations are satisfied, a 

multiplicative decomposition is on hand (found at the end of Step 4), else no 

multiplicative decomposition exists with multipliers 2, Iijvij ∈ . 

 

 The steps of the algorithm above take O(1), O(n2), O(n), O(n), and O(n4) 

time, respectively. If a multiplicative decomposition has been found, the next 

step of the procedure is to solve the LAPs with the objective function 

∑
∈ 2

min
Iij

ijij xv  and ∑
∈

−
2

min
Iij

ijij xv  to get the values )(vz  and )(vz , respectively. If 

)(0 vz≤  or 0)( ≤vz , then the solution of the corresponding LAP qualifies as 

optimal for the QAP instance on hand. If the last condition does not hold, then 

the QAP on hand is equivalent to what we refer to as “the absolute Linear 

Assignment Problem” which we prove to be NP-Hard (see Theorem 9). 

 

We note here that if a multiplicative decomposition exists for a QAP with 

nonnegative costs, then Theorem 2 applies without requiring  )(0 vz≤  or 
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0)( ≤vz . This follows from the fact that all 2, Iijvij ∈ , must be of the same sign, 

otherwise there is a negative cost klijijkl vvC = with multipliers of opposite signs. 

Consequently, ∑
∈ 2Iij

ijij xv  is either nonnegative or nonpositive regardless of the 

assignment. Hence, all assumptions of Theorem 2 are satisfied. 

 

Note also that any QAP with arbitrary costs can be transformed into an 

equivalent QAP with nonnegative costs by adding a sufficiently large constant to 

each cost term. If a multiplicative decomposition exists for the transformed costs, 

the transformed as well as the original QAP on hand are polynomial time 

solvable. If no multiplicative decomposition exists for the transformed QAP, it is 

still possible that there exists a multiplicative decomposition for the original 

QAP with arbitrary costs. In this case, the multipliers may be of mixed signs and 

it is necessary to check the condition )(0 vz≤  or 0)( ≤vz . If this condition does 

not hold, then we have )(0)( vzvz <<  and the QAP on hand is equivalent to the 

minimization of  2)(
2
∑
∈Iij

ijij xv  subject to (2), (3), and (4) which is equivalent, in 

turn, to the minimization of ∑
∈ 2Iij

ijij xv  subject to the same constraints. This last 

problem, which we refer to as the absolute LAP, seeks an assignment where the 

objective value is as close to 0 in absolute value as possible. We prove now the 

absolute LAP is NP-Hard. 

 

Theorem 9: ∑
∈ 2

min
Iij

ijij xv  subject to (15), (16), and (22) is NP-Hard. 

Proof: Consider the problem of finding an assignment which has a specified 

value of the LAP. That is, find a solution ( )
ijx=Χ , if it exists, such that Χ  

satisfies (15), (16), and (22) while also satisfying rxc
Iij

ijij =∑
∈ 2

 for a given 
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constant r. This problem is NP-Complete when cij and r are general integers 

(Chandrasekaran, Kabadi, and Murty, 1982). To reduce this problem to the 

absolute LAP, observe that rxc
Iij

ijij =∑
∈ 2

 is equivalent to 0)(
2

=−∑
∈Iij

ijij x
n

r
c  since 

the sum of the assignment variables is n. The last equality is equivalent to 

0)(
2

≤−∑
∈Iij

ijij x
n

r
c . Thus, finding an assignment for which rxc

Iij

ijij =∑
∈ 2

 is 

equivalent to the recognition form of the absolute LAP with an upper bound of 0 

on the objective value ∑
∈ 2Iij

ijij xv  where 
n

r
cv ijij −= . Consequently, the 

recognition form of the absolute LAP is NP-Complete and the optimization form 

is NP-Hard. □ 

 

 As a consequence, whenever there is a multiplicative decomposition for 

which )(0)( vzvz << , the QAP on hand reduces to an absolute LAP which is 

also NP-Hard. Despite that, it may be easier, on the average, to solve the absolute 

LAP than the QAP. 

 

 We now focus on the Koopmans-Beckmann form and specialize Theorem 

8 to this case. It suffices to decompose the flow and distance matrices separately. 

Çela (1998) proved that the instances with multiplicatively decomposable flow 

and distance matrices are NP-Hard in general. We prove that the nonnegativity of 

both flow and distance data guarantees reduction to the LAP whenever a 

multiplicative decomposition exists for the flow and distance matrices. 

 

Corollary 1 to Theorem 8: For an instance of the Koopmans-Beckmann form of 

the QAP with nonnegative flow and distance data )( ijfF =  and )( ijdD = , 

respectively, if two n-vectors ),...,( 1 nuuu =  and ),...,( 1 nvvv =  exist such that 
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2, Iijuuf jiij ∈= , and 2, Iijvvd jiij ∈= , then this instance is equivalent to an 

instance of the LAP with costs 2, Iijvu ji ∈ . 

Proof: When such u and v exist, the objective function of the QAP becomes 

 ∑
∈ 4

Iijkl

klijljki xxvvuu        (80) 

Reorganizing the terms, (80) can be rewritten as 

 2)(
222
∑∑∑
∈∈∈

=
Iij

ijji

Ikl

kllk

Iij

ijji xvuxvuxvu      (81) 

 

Because ijf  and ijd  are nonnegative, u and v are also nonnegative (by 

multiplying either vector by -1 as necessary). It follows that the minimization of 

2)(
2
∑
∈Iij

ijji xvu is equivalent to the minimization of ∑
∈ 2

Iij

ijji xvu  since the objective 

value is nonnegative for every feasible assignment. Hence, the QAP on hand is 

solvable as a LAP. □ 

 

We define Class 3 to be the set of instances of the Koopmans-Beckmann 

form of the QAP for which Corollary 1 to Theorem 8 is valid. Note that Class 3 

is a subclass of Class 2. Because the Koopmans-Beckmann form of the QAP is a 

sufficiently important special form of the QAP, Class 3 is in similar standing 

relative to the Koopmans-Beckmann form as Class 2 is relative to the general 

form. 

 

4.3 Instances Partially Reducible to LAPs 

 

We now turn our attention to a class of instances of the QAP that reduce to 

LAPs after a set of assignments are made. If the number of required assignments 

is small, the instance on hand can be solved efficiently by solving a series of 

LAPs. 
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Let 1=ikc  if there exist locations j and l such that 0≠ijklC , and 0=ikc , 

otherwise. 

 

Theorem 10: For a size n instance of the QAP, consider a set S ⊆ I, if it exists, 

such that the following property holds: Iki ∈,  and 1=ikc  ⇒  

φ≠∩ Ski },{ .Then the instance can be solved by solving !p
p

n








 LAPs, each of 

size pn − , where Sp = . 

Proof: The objective function of the Lawler form can be rewritten as 

 

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∉∉ ∈

∈∉ ∈

∉∈ ∈

∈∈ ∈

+

+

+

SkSi Ijl

klijijkl

SkSi Ijl

klijijkl

SkSi Ijl

klijijkl

SkSi Ijl

klijijkl

xxC

xxC

xxC

xxC

,

,

,

,

2

2

2

2

       (82) 

The last summation is zero since SISki c −≡∈,  implies 0=ikc . If the 

facilities in S are assigned to some p (=|S|) locations in I, then the values of xij are 

fixed ∀ i ∈ S and j ∈ I so that the first summation becomes a constant while the 

second and the third summations become linear in the remaining variables. 

Hence, the resulting subproblem is a LAP of size pn − . Since there are !p
p

n








 

possible assignments of the p facilities (in S) to some p of n available locations, 

one can find the optimal solution of the instance on hand by solving !p
p

n








 

LAPs each of size pn − . □ 
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Remark: It is desirable to have the cardinality p of S as small as possible to 

minimize the number of LAPs to be solved. 

  

We now specialize the foregoing theorem to the Koopmans-Beckmann form. 

We may apply the theorem to either F or D. We only analyze the case with F. 

The remaining case is similar. 

 

Theorem 11: For a size n instance of the Koopmans-Beckmann form of the 

QAP, consider a set S ⊆ I for which the following property holds: Iji ∈,  and 

0>ijf  ⇒  φ≠∩ Sji },{  . If |S| = p, then the instance can be solved by solving 

!p
p

n








 LAPs of size pn − . 

Proof: The objective function of the Koopmans-Beckmann form can be 

rewritten as: 

 

 

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∉∉ ∈

∈∉ ∈

∉∈ ∈

∈∈ ∈

+

+

+

SkSi Ijl

klijjlik

SkSi Ijl

klijjlik

SkSi Ijl

klijjlik

SkSi Ijl

klijjlik

xxdf

xxdf

xxdf

xxdf

,

,

,

,

2

2

2

2

      (83) 

 

The last summation is zero since cc

ij SSjif ×∈∀= ),(0 . If the facilities in S are 

assigned to some p locations in I, then the values of xij are fixed ∀ i ∈ S and j ∈ I 

so that the first summation becomes a constant while the second and the third 

summations become linear. Hence, the resulting subproblem is a LAP of size 

pn − . Since there are !p
p

n








 possible assignments of p facilities to n locations, 
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one can find the optimal solution of the instance on hand by solving !p
p

n








 

LAPs each of size pn − . □ 

 

A set S that fulfills the assumptions of Theorem 11 can be computed by 

constructing a graph as follows. 

 

1. For each pair of facility indices 2
Iik ∈ , compute ikc . 

2. Construct the undirected graph G = (I, E) with node set I and edge set E 

where the edge set is defined as follows: 1),( =⇔∈ ikcEki . 

3. A subset of the nodes of G defines a set S if every edge in E has at least 

one node in S. Note that any such set S is referred to as a covering by 

nodes (Wolsey, 1998).  

 

A covering by nodes with minimum cardinality can be found by solving the 

following set covering problem. Let yi be 1 if i is an element of the set S, and 0 

otherwise. 

 

∑
∈Ii

iymin         (84) 

Ekiyy ki ∈≥+ ),(,1        (85) 

Iiyi ∈∈ },1,0{        (86) 

 

For the Koopmans-Beckmann form, we define the edge set E of G as 

follows: Ekif ik ∈⇔> ),(0 . 

 

Note that although the set covering problem is NP-Hard, it is well studied 

and can be solved quite efficiently for instances of size up to 50. If the minimum 

covering set has, say, no more than 5 facilities, then the resulting series of LAPs 
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is not too many. Hence, the proposed method for solving the QAP is quite 

efficiently handled (even though non-polynomial in general). The minimum 

covering set of facilities (or locations) can also be used as a branching list for 

other exact solution methods.  

 

4.4 Flow and Distance Matrices with Special Structure 

 

During a recent study of ours (Erdoğan and Tansel, 2005), we have noticed 

that a naïve lower bound on the objective value of the QAP has been attained by 

one of the test problems, chr18b (Christofides and Benavent, 1989), available 

in the QAPLIB. A close examination of chr18b has revealed that the “flow” 

data can be characterized by a Hamiltonian path while the “distance” data can be 

characterized by that of a “grid” graph. While the structure of the flow data for 

chr18b can be extracted quite directly, it is not at all obvious that its distance 

data comes from a grid structure. In this section, we present results that explain 

why and how chr18b (and similar instances) can be solved in polynomial time. 

We note that the polynomial time solvability of chr18b has gone unnoticed for 

many years until our work in this dissertation and Erdoğan and Tansel (2005). 

 

Let F = [fik] and D = [djl] be the n by n matrices specifying the problem data. 

Let GF = (I, AF) be the undirected graph with node set I and edge set AF = {(i,j): fij 

> 0 or fji > 0}. We refer to GF as the flow graph induced by F. We also associate 

a graph with the distance data D.  

 

Theorem 12:  Let *
d  be the smallest positive element of D and G

* be the 

undirected graph with node set I and arc set A* consisting of arcs (j,l) for which 

djl = *
d . If the flow graph GF is isomorphic to a subgraph of G

*, then an 

assignment defined by this isomorphism is optimal.  
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Proof:  Since every entry of the flow matrix fik is to be mapped to some entry djl 

of the distance matrix, ∑
∈ FAki

ikfd
),(

*  is a valid lower bound on the objective value. 

The objective function value of the solution defined by the isomorphism 

described above attains this lower bound, and qualifies as an optimal solution. □ 

 

Theorem 12 is a general result concerning subgraph isomorphishm between 

GF and G
*. In the following two subsections, we observe this result for two 

special cases. 

 

4.4.1 GF has a Path Structure and D is Induced by a Grid Graph 

 

We say the flow graph has a path structure if it has no cycles and every 

node has a degree of 0, 1, or 2. A path structure implies each component of the 

graph is either a path or an isolated node. If the graph is connected, then a path 

structure is equivalent to a Hamiltonian path.  

 

Given two positive integers a and b, we define an a by b grid graph Gab to be 

an undirected graph with ab nodes such that the nodes are arranged in a rows and 

b columns and the node in row i and column j is labeled ij (i=1,…,a; j=1,…,b). 

The arc set consists of arcs that connect nodes ij and kl if and only if either i=k 

and }1,1{ +−∈ jjl  or j = l and }1,1{ +−∈ iik . Assign the length 1 to each arc 

of a grid graph. We say an n by n matrix D=[djl] is induced by a grid graph if 

there exists two positive integers a and b such that n=ab and that the n by n 

distance matrix (defined by shortest path lengths) Dab of the grid graph is 

identical to D up to a positive multiplier; that is, D=hDab for some positive 

constant h. 
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Theorem 13: A size n instance of the QAP defined by flow and distance 

matrices F and D, respectively, is solvable in O(n) time if the flow graph GF has 

a path structure and D is induced by an a by b grid graph with ab=n. 

Proof: Theorem 12 implies that whenever GF has a path structure and G
* is 

Hamiltonian (a graph in which a Hamiltonian path can be identified in 

polynomial time), GF is a subgraph of such a Hamiltonian path in G* so that the 

QAP instance is solvable in polynomial time. A special case occurs when D is 

induced by a grid graph Gab since G* in this case is Gab itself. Finding a 

Hamiltonian path in Gab is done in constant time and the evaluation of the 

objective value takes O(n) time that completes the proof. □ 

 

We now construct a solution that attains the lower bound ∑
∈ FAki

ikfd
),(

* . 

Renumber the nodes of Gab so that the new node number for node ij 

(i=1,…,a;j=1,…,b) is (i-1)b + j. If GF is a Hamiltonian path that traverses the 

nodes in the order, say, j1, j2, …, jn, then construct a solution to the QAP on hand 

by assigning facilities j1, j2, …, jb to nodes 1, 2, …, b of Gab, respectively; then 

assigning facilities jb+1,…,j2b to nodes 2b,2b-1,…,b+1, respectively; and 

continuing in like manner so that for each odd integer },...1{ ak ∈ , the facilities 

j(k-1)b+1, j(k-1)b+2,…,j(k-1)b+b are assigned to the nodes (k-1)b+1, (k-1)b+2,…, (k-

1)b+b respectively, while for each even integer },...1{ ak ∈ , they are assigned to 

the nodes (k-1)b+b, (k-1)b+b-1,…,(k-1)b+1, respectively. Figure 17 illustrates 

the type of solution constructed in this manner. We may call this a “serpentine” 

solution since it is obtained by laying out the Hamiltonian path GF on the grid 

graph Gab in the form of a serpentine starting from node 11 and ending in node 

ab where all horizontal arcs of Gab are covered by the Hamiltonian path while all 

vertical arcs are uncovered except those in the last column or the first column 

where the transitions are made from one row to the next one. 
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If GF is not Hamiltonian, then we set the order j1, j2,…, jn by merging the 

given disjoints paths, and isolated nodes (if any) in an arbitrary order (while 

preserving the order of the nodes in any given path). The assignment of j1,…, jn 

to nodes of the grid graph is done as in the previous case. 

 

 

Figure 17: Hamiltonian Path on a Grid Graph (a is odd) 

 

Assign now the length *
d  to each arc of the grid graph Gab. The objective 

function value of the constructed solution is:  

∑∑
−

=∈
+

=
1

1

*

,,,
1

n

i

jj

Ilkji

klijjlik dfxxdf
ii

      (87) 

since any two consecutive nodes ji and ji+1 in the Hamiltonian path occupy two 

adjacent locations (nodes) in the grid graph so that their separation distance is 

*
d . The right side of (87) equals the lower bound, proving that the constructed 

solution attains the lower bound. Observe that we have constructed the solution 

in O(1) time.  

 

We define Class 4 to be the set of instances of the Koopmans-Beckmann 

form of the QAP for which GF has a path structure and D is induced by a grid 

graph. The test problem chr18b from the QAPLIB qualifies as a member of 

a 

b 

1 

2 

1 2 3 
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Class 4. We have found that its flow graph is a Hamiltonian path and its distance 

matrix is induced by a grid graph (with a = 6 and b = 3).  

 

We now turn our attention to the problem of identifying the members of 

Class 4. If GF  has more than n-1 arcs, it is not a forest and cannot have a path 

structure. In the remaining case, a breadth-first search (Cormen, Leiserson, and 

Rivest, 2000) identifies a path structure in O(n) time whenever such a structure 

exists. Determining if G
* has a grid structure or not is relatively more 

complicated but is still done in O(n) time by a procedure that we outline next. If 

G
* is a path, it has a grid structure with a = 1 and b = n. If not, there must be four 

nodes of degree 2 and all remaining nodes must have degrees of 3 or 4. Nodes of 

degree 2 and 3 make up the border while the remaining nodes make up the inner 

nodes. Initially, mark all nodes of degree 4 and their incident arcs as colored. If 

the uncolored subgraph is a Hamiltonian cycle, then it uniquely qualifies as the 

border. A one-pass traversal along this cycle beginning at a node of degree 2 

determines in linear time both the labels of the nodes on the border and the 

dimensions a and b. Begin now uncoloring the colored subgraph by first 

uncoloring the colored arcs that are incident to border nodes and then uncoloring 

their colored end nodes. Next, uncolor the colored arcs whose both ends are 

incident to already uncolored nodes. This last step defines a new border that 

consists of the most recently uncolored arcs and nodes. Repeat this process 

relative to the new border until all colored arcs and nodes are uncolored. In this 

process, every arc is processed once. Since the number of arcs in a grid graph is 

bounded above by 2n, the whole process is done in O(n) time. 

 

It follows that determining whether or not a given QAP instance qualifies as 

a polynomial time solvable case is done in O(n) time whenever GF and G
* 

(equivalently, the positions of the positive entries in F and of the minimal 

positive elements in D) are available as part of the input. If this is not the case, 

constructing GF and G
* directly from F and D is done in O(n2)  time, thereby 

dominating the time bound of the subsequent steps.  
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4.4.2 GF is a Hamiltonian Cycle and D is Induced by an a by b Grid Graph 

with a > 1, b > 1, and at least one of a and b is even 

 

Theorem 14: A size n instance of the QAP defined by flow and distance 

matrices F and D, respectively, is solvable in O(n) time if the flow graph GF is a 

Hamiltonian cycle and D is induced by an a by b grid graph with ab=n, a > 1, b 

> 1, and at least one of a and b is even. 

Proof: Without loss of generality, assume that a is even. We know that GF 

traverses the nodes in the order, say, j1, j2, …, jn, j1. Construct an optimal solution 

by first constructing a serpentine solution for facilities j2 to jn-a+1 and the subgrid 

consisting of rows 1 to a and columns 2 to b of the grid graph (such a subgrid 

exists since b > 1, and since a is even, the serpentine path will end at the node 

(a,2)). Next, assign facilities jn-a+2, jn-a+3,…,jn to nodes (a,1), (a-1,1),…,(2,1). 

Finally, assign facility j1 to node (1,1). The last a assignments merge the path 

P={(a,2),(a,1), (a-1, 1),…,(2,1),(1,1), (1,2)} with the serpentine path, yielding a 

Hamiltonian cycle, which satisfies the given lower bound (Figure 18). Thus, it is 

optimal. □ 

 

Similar to the previous case, if |AF|  is not equal to n, GF cannot be a 

Hamiltonian cycle. If |AF|  = n, a breadth-first search identifies the Hamiltonian 

cycle in O(n) time whenever such a structure exists, or concludes that the graph 

is not a Hamiltonian cycle. 

 

We define Class 5 to be the set of instances of the Koopmans-Beckmann 

form of the QAP for which GF is a Hamiltonian cycle and D is induced by an a 

by b grid graph with a > 1, b > 1, and at least one of a and b is even. 
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Figure 18: Hamiltonian Cycle on a Grid Graph (a is even) 

 

4.4.3 GF is a Star Graph 

 

Theorem 15: A size n instance of the QAP defined by flow and distance 

matrices F and D, respectively, is solvable in O(n4) time if the flow graph GF is a 

star graph. 

Proof: If the flow graph is a star graph, then there exists a node to which every 

edge on the graph is incident. Denote the facility corresponding to the node as f. 

Using Theorem 11 with S = {f}, one can find the optimal solution by solving n 

LAPs of size n – 1, in O(n4) time. □ 

 

For a graph to qualify as a star graph, there must be exactly one node with 

degree greater than one, which must be connected to all other nodes. This 

property can be checked in O(n) time using breadth-first search. We define Class 

6 to be the set of instances of the Koopmans-Beckmann form of the QAP for 

which GF is a star graph. 

a 

b 

1 

2 

1 2 3 
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4.4.4 D is Induced by a Star Graph 

 

Theorem 16: A size n instance of the QAP defined by flow and distance 

matrices F and D, respectively, is solvable in O(n3) time if D is induced by a star 

graph. 

Proof: If D is induced by a star graph, then the equality system dj + dl = djl ∀j,l 

∈ I has a solution, where dj denotes the distance of location j from the central 

node. Hence, by applying the result of Burkard et al. (1997) stated in the 

beginning of the section on additive decomposition, this problem can be solved 

as a LAP in O(n3) time. □ 

 

We define Class 7 to be the set of instances of the Koopmans-Beckmann 

form of the QAP for which D is induced by a star graph. Note that checking if 

the equality system dj + dl = djl ∀j,l ∈ I has a solution can be done in O(n3) time 

using Gaussian elimination. 

 

4.5 Flow and Distance Matrices with Ordered Entries 

 

Theorem 17:  Let ),,( jiAr  denote the rank of the entry ),( ji  (for ji < ) of 

matrix A among the entries of the upper triangular region of the matrix, and let p 

denote the number of entries in this region (
2

)1( −
=

nn
p ). A size n instance of 

the QAP defined by symmetric flow and distance matrices F and D, respectively, 

is solvable in O(1) time if the following relation holds: 
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jiIjijiDrpjiFr <∈∀+−= ,,1),,(),,(     (88) 

 

Proof: We first give a lower bound for the QAP and then show that it is attained 

by a certain solution of this class. Remember that every entry of the flow matrix 

is to be multiplied with some entry of the distance matrix. It is known (Hardy, 

Littlewood, and Polya, 1952) that sorting the elements of one vector in 

increasing order, and the other in decreasing order minimizes the result of the dot 

product of the vectors. Hence, the following lower bound is valid for an instance 

of the Koopmans-Beckmann form of the QAP with symmetric flow and distance 

matrices: 

∑∑
=

+−
∈

≥
q

i

iqi

Ilkji

klijjlik dfxxdf
1

]1[][
,,,

2 ,     (89) 

 

where f[i] and d[i] denote the i’th smallest off-diagonal entry of the flow and 

distance matrices, respectively. 

 

We now show that the solution IixX ii ∈∀= ,1: ** attains the lower bound in 

(89). This solution yields the following objective function value: 

∑∑∑∑
=

+−

<
∈∈∈

===
p

k

kpk

ji
Iji

ijij

Iji

ijij

Ilkji

klijjlik dfdfdfxxdf
1

]1[][
,,,,,

** 22   (90) 

where the last equality results from the assumption of the theorem. Hence, the 

solution *
X  attains the lower bound. □ 

 

We define Class 8 to be the set of instances of the Koopmans-Beckmann 

form of the QAP that fulfill the necessary conditions of Theorem 17. Members of 

this class can be identified by first constructing vectors containing the off-

diagonal entries of flow and distance matrices, sorting one in ascending and the 

other in descending order, and checking if the indices of the corresponding 

elements of the vector match. This procedure takes O(n2logn) time. On the other 
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hand, identifying the members of this class whose flow and distance matrices are 

permuted appears to be a nontrivial task.  

 

4.6 Concluding Remarks: 

 

In this chapter, we have identified eight classes of instances that are solvable 

in polynomial time. We have also given an exact solution procedure that is based 

on identifying a subset S of facilities which, when fixed at specified locations, 

result in a LAP. Identifying and exploiting special structure of the input data 

seems to be a fertile ground for research. 

 

The classes of problems we have presented may also be used to devise new 

measures of hardness for the instances of the QAP based, for example, on the 

deviation of the cost coefficient matrix from a “closest” easy instance. The result 

of the set covering problem in Section 4.3 may also be used as a measure of the 

complexity of an instance. The greater the size of the set S, the harder the 

instance.  

 

It is unrealistic to expect randomly generated data to fall into one of these 

classes. However, more often than not, optimization problems encountered in the 

real world exhibit definite structures. The results we have presented suggest new 

directions to explore for discovering possibly exploitable structures.  

 

We note here that, even if it is possible to use Theorems 7 and 8 jointly by 

adding the multiplicative terms vijvkl to the equation system (63). The resulting 

equation system would be nonlinear and will not be solved in polynomial time in 

general. Hence, there is no point in doing so. 

 

In the next chapter, we present a lower bound generation method based on 

Bender’s decomposition. 
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C h a p t e r  5  

 
STRONG LOWER BOUNDS BASED 

ON BENDER’S DECOMPOSITION 
 

 

In this chapter, we present our results on a new exact solution method for the 

QAP. We devise a valid inequality generation method, based on decomposing a 

weaker form of the formulation by Adams and Johnson (1994). We prove that if 

all violated valid inequalities are added, the resulting formulation yields lower 

bounds that are at least as strong as the well known Gilmore-Lawler bound 

(GLB), proposed independently by Gilmore (1962) and Lawler (1963).  

 

Recall that the MIP formulation that yields the tightest lower bounds 

presented by Adams and Johnson (1994) was given in Chapter 2 as IP1. We 

restate the formulation: 

 

(IP1) 

∑
=

n

lkji

ijklijkl yC
1,,,

min        (14) 

s.t. 

 

nix
n

j

ij ,...,11
1

=∀=∑
=

      (15) 

njx
n

i

ij ,...,11
1

=∀=∑
=

      (16) 
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nljixy ij

n

k

ijkl ,...,1,,
1

=∀=∑
=

     (17) 

nkjixy ij

n

l

ijkl ,...,1,,
1

=∀=∑
=

     (18) 

nlkjxy kl

n

i

ijkl ,...,1,,
1

=∀=∑
=

     (19) 

nlkixy kl

n

j

ijkl ,...,1,,
1

=∀=∑
=

     (20) 

ljkinlkjiyy klijijkl ≠<=∀= ,:,...,1,,,     (21) 

{ } njixij ,...,1,1,0 =∀∈       (22) 

{ } nlkjiyijkl ,...,1,,,1,0 =∀∈      (23) 

 

Now consider the following constraint set: 

 

nlkjixy klijkl ,...,1,,, =∀≤       (91) 

 

Let us remove the constraint sets (19), (20), and (21); and add the constraint 

set (91) to IP1, to obtain a new formulation which we refer to as IP9. We now 

prove that IP9 is a valid formulation for the QAP.  

 

Theorem 18: Let x be a feasible solution to an instance of the QAP with 

objective value zQAP(x). Then, there exists a unique vector y  such that (x, y ) is 

feasible to IP9 with objective value  zIP9(x, y ) = zQAP(x). 

Proof:  It suffices to show that for any integral solution (x,y) of IP9 the equality 

yijkl = xijxkl holds. Let 4
Iabcd ∈ . There are two cases depending on if xabxcd = 0 

or 1. This results in the following subcases. 

a) xab = 0. Constraint set (17) implies 0
1

=∑
=

n

k

abkdy  which in turn 

forces 0=abcdy  (by nonnegativity). 
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b) xcd = 0. Constraint set (91) forces 0≤abcdy  which in turn forces 0=abcdy  

(by nonnegativity).  

c) xab = 1 and xcd = 1. Constraint set (17) implies 1
1

=∑
=

n

k

abkdy  and constraint 

sets (15) and (91) imply ckkyabkd ≠∀≤ :,0 , which together 

force 1=abcdy . 

Since yijkl = xijxkl, we can conclude that zIP9(x, y ) = zQAP(x). Note also that the 

equalities 4
Iijklxxy klijijkl ∈∀=  imply that y is uniquely determined by x.□ 

 

Obviously, IP9 is weaker than IP1, since (19) and (20) imply (91). Although 

it seems counterintuitive to replace a formulation with a weaker one, IP9 has a 

block angular structure that leads to decomposition. An example of the constraint 

structure of IP9 for n = 3 is depicted in Figure 19. We now propose a way of 

generating valid inequalities, using the idea of Bender’s decomposition on IP9, 

for a formulation based on the variables of Kaufman and Broeckx (see Chapter 

2).  Before going into the details, we present a brief description of Bender’s 

decomposition. We refer the reader to Lasdon (1970) and Bazaraa and Sherali 

(1990) and for a more complete exposition. 

 

Consider an LP of the following form: 

 

(P) 

fycx +min         (92) 

s.t.    

bEyAx ≥+         (93) 

0, ≥yx         (94) 
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Figure 19: Block angular structure of IP9 

 

Observe that if y is fixed at some arbitrary value, we obtain an LP in the 

variables x. This leads to the idea of partitioning the problem P in the following 

manner: 

 

(P1) 

{ }}0,|min{min
0

≥−≥+
≥

yAxbEyfycx
x

    (95) 

 

Taking the dual of the inner optimization problem, we may rewrite P1 as: 

 

(P2) 

1 

y12kl 

y13kl 

y21kl 

y22 

y23kl 

y31kl 

y32kl 

y33kl 

y11kl 

 
0 

x 
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{ }}0,|)(max{min
0

≥≤−+
≥

wfwEAxbwcx
x

    (96) 

 

Assume that the polyhedron }0,:{ ≥≤ wfwEw  is nonempty and bounded. Then 

P2 can be restated as: 

 

(P3) 

)}({max{min
,...,10

Axbwcx i

qix
−+

=≥
      (97) 

 

where q denotes the number of extreme points of the polyhedron 

}0,:{ ≥≤ wfwEw  and w
i denotes the i’th extreme point. Let z denote the 

objective function of P3. P3 may be rewritten as: 

 

(P4) 

zmin          (98) 

s.t. 

qiAxbwcxz i ,...,1)( =∀−+≥      (99) 

0≥x          (100) 

 

P4 is called the master problem. Since the number of constraints (99) is 

typically too many, they are usually relaxed. The relaxed master problem is then 

solved to find (x*, z*). Then the subproblem }0,|)(max{ * ≥≤− wfwEAxbw is 

solved to identify any violated inequalities of type (99). If there are no violated 

inequalities, then the algorithm stops. Else, the inequality is added to the relaxed 

master problem and the algorithm starts over. Note that more than one 

subproblem may exist if the original problem has a block angular structure: a 

variable zi and a corresponding subproblem for the i’th block. 

 

Following the ideas presented above, we form the following relaxed master 

problem: 
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(MP) 

∑
=

n

ji

ijw
1,

min         (101) 

s.t. 

njiwij ,...,1,0 =∀≥       (102) 

(15), (16), (22) 

 

We refer to the variables ijw  as Kaufman-Broeckx variable since they have 

the same meaning, the cost contribution of assignment variable xij. The master 

problem involves the following subproblem for every i,j pair: 

 

(SPij) 

∑
=

n
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ijklijkl yC
1,

min        (103) 

s.t. 
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k

ijkl ,...,1
1

=∀=∑
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      (104) 

nkxy ij
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ijkl ,...,1
1

=∀=∑
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      (105) 

nlkxy klijkl ,...,1, =∀≤       (106) 

nlkyijkl ,...,1,0 =∀≥       (107) 

where x is taken as a given vector of zeroes and ones. The dual of SPij is: 

 

(DSPij) 

∑∑∑
===
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n

lk

klkl

n

k

kij

n
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lij xxx
1,

3
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2

1

1max πππ      (108) 

s.t. 

nlkCijklklkl ,...,1,321 =∀≤++ πππ      (109) 
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By weak duality,  

∑∑∑
===

++≥
n

lk

klkl

n

k

kij

n

l

lijij xxxw
1,

3

1

2

1

1 πππ      (110) 

for every 321 ,, πππ  feasible for DSPij. 

 

Since IP9 is a valid formulation, SPij must have a solution for every integral 

solution x. The assignment constraints (15) and (16) together with nonnegativity 

of x defines a polytope whose extreme points are the zero/one solutions of the 

assignment constraints (since no zero/one solution to the assignment constraints 

can be expressed as a convex combination of other feasible solutions). It follows 

that every fractional solution x
* that satisfies the assignment constraints is a 

convex combination of a set of zero/one solutions. This last fact implies that SPij 

(and DSPij) has a solution for every fractional solution x*. Hence, the infeasibility 

cuts mentioned in the generic Bender’s decomposition are not required. 

 

The valid inequality generation algorithm we propose is: 

 

1. Solve the relaxed master problem (contrary to original Bender’s 

decomposition that requires solving the master problem to integrality) to 

find x*. 

2. Using the x
*, solve the dual subproblems DSPij and add any violated 

inequalities of the form (110) to the master problem. 

3. If at least one inequality is added, go to step 1; else, the optimal objective 

value of the relaxed master problem is a valid lower bound for the 

optimal solution of the QAP instance on hand. 

 

Now we focus on another formulation that we form by removing the 

constraint set (90) from IP9. We refer to this formulation as IP10. We prove that 

the application of our foregoing algorithm to IP10 produces the GLB. 
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Theorem 19: The GLB for a given instance of QAP is equal to the lower bound 

generated by applying Bender’s decomposition based method to IP10. 

Proof: Recall from Chapter 1 that GLB is based on solving n2 + 1 LAPs of size 

n. The first n
2 LAPs answer the following question: “What is the minimum 

objective function value for ∑
=

n

lk

kljlikij xdfx
1,

when xij = 1 ?”. Each answer is 

recorded in the corresponding parameter lij. A final LAP is solved to obtain the 

bound for the QAP, with lij’s as objective function cost coefficients. Now assume 

that we apply Bender’s decomposition to IP10. The subproblems will be 

 

(SP’ij) 

∑
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n
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ijklijkl yC
1,

min        (111) 

s.t. 
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ijkl ,...,1
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      (113) 

nlkjiyijkl ,...,1,,,0 =∀≥       (114) 

 

and the master problem will be 

 

(MP’) 

∑
=

n

ji

ijw
1,

min         (115) 

s.t. 

nix
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j

ij ,...,11
1

=∀=∑
=

      (116) 
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njx
n

i

ij ,...,11
1
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      (117) 

njiwij ,...,1,0 =∀≥       (118) 

 

The dual of subproblem SP’ij is 

 

(DSP’ij) 

∑∑
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+
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ijl xx
1
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1

1max ππ       (119) 

s.t. 

nlkCijklkl ,...,1,21 =∀≤+ ππ      (120) 

 

Using the dual solution π* of SPij, we will be adding a valid inequality of the 

form: 

 

njixxw
n

k
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n

l

ijlij ,...,1,)()(
1

*2

1
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==
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Notice that all the objective function coefficients of (DSPij) are the same. 

Consequently, the valid inequality returned by (DSPij) will be of the form 

 

njixw
n

k

k

n

l

lijij ,...,1,))()((
1

*2

1

*1 =∀+≥ ∑∑
==

ππ    (122) 

 

regardless of the value of xij, where ij

n

k

k

n

l

l l=+∑∑
== 1

*2

1

*1 )()( ππ . In other words, 

every subproblem can return at most one valid inequality. After adding all such 

inequalities, the master problem will become: 

 

(MP’’) 
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∑
=

n

ji

ijw
1,

min         (123) 

s.t. 

nix
n

j

ij ,...,11
1
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njx
n

i

ij ,...,11
1

=∀=∑
=

      (125) 

njiwij ,...,1,0 =∀≥       (126) 

njixlw ijijij ,...,1, =∀≥       (127) 

{ } njixij ,...,1,1,0 =∀∈       (128) 

 

Observe that taking constraint (127) as an equality gives a feasible solution 

that produces the GLB in the objective function of MP’’.□ 

 

For any configuration of the decision variables in the master problem, the 

valid inequalities generated by the subproblems return exactly the same value as 

their counterparts in the original problem (by the strong duality theorem of 

Linear Programming). Hence, the lower bound generated by applying the 

algorithm above to IP9 (IP10) is equal to the lower bound generated by the LP 

relaxation of IP9 (IP10). 

 

Theorem 20: Applying the valid inequality generation algorithm to IP9 

generates a lower bound at each node of a branch-and-bound tree that is at least 

as strong as the GLB. 

Proof: Since IP9 incorporates additional constraints, the LP relaxation of IP9 is 

stronger than that of IP10. Hence, our lower bound will be at least as strong as 

the GLB at the root node. Finally, since at every node of a branch-and-bound tree 

identical branching constraints will be added to both IP9 and IP10, the 

relationship between the bounds will not change. □ 
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Using a set of problems from the QAPLIB, we have performed a brief 

computational experiment with a branch-and-cut algorithm using MP and the 

valid inequality generation algorithm we have proposed above. CPLEX 9.1 

hybrid network/primal simplex solver was used for optimizing the resulting 

network flow subproblems. The runs were conducted on a single PC (3.0 Ghz 

Dell OPTIPLEX with 2GB RAM). The results are presented in Table 9. The first 

column lists the problems solved from the QAPLIB. The lower bound generated 

by an algorithm is given in the second column while the GLB is given in the 

third column. It can be seen that the lower bounds generated by our algorithm are 

much closer to the optimal objective value than GLB. 

 

Table 9: Computational results for the branch-and-cut algorithm using Kaufman-

Broeckx formulation, and the proposed valid inequalities 

 

Data 

 File 

Lower Bound 

 at the 

 Root Node 

GLB 

at the 

 Root Node 

Optimum  

Solution 

 value 

B&C 

Nodes 

 Traversed 

CPU  

Time 

 (sec) 

chr12a 9028.90 7245.00 9552.00 20 4.09 
chr15a 7465.78 5625.00 9896.00 1335 536.55 
had12 1559.65 1536.00 1652.00 1890 999.57 
had14 2538.63 2492.00 2724.00 17181 20200.55 
nug12 496.86 493.00 578.00 2040 1159.18 
nug14 864.02 852.00 1014.00 27183 34850.07 
rou12 209397.70 202272.00 235528.00 1500 2642.61 
scr12 28337.25 27858.00 31410.00 630 272.72 
scr15 45558.25 44737.00 51140.00 2076 3344.30 
tai12a 204868.64 195918.00 224416.00 264 752.81 

 

Although the lower bounds returned from our algorithm are stronger than the 

GLB, they are still not strong enough for large instances. For example rou12, 

one of the smallest instances in the QAPLIB, requires about 45 minutes of 

computing time with our lower bound generation scheme. Although the 

computational results are not encouraging enough yet, this study shows that there 

are still structures within the Pairwise Assignment Matrix that are waiting to be 

exploited. 
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Additional Insights 

� IP9 exhibits the same degenerate behavior as IP1. 

� We have made two attempts to use Dantzig-Wolfe decomposition for 

IP1. In our first attempt, we decomposed the assignment variables xij 

using the assignment constraints (2) and (3). In our second attempt, 

we have introduced the redundant equalities nkiy
n

lj

ijkl ,...,1,,1
1,

=∀=∑
=

 

and nljy
n

ki

ijkl ,...,1,,1
1,

=∀=∑
=

 to be used for Dantzig-Wolfe 

decomposition. Both attempts were failures. The introduction of the 

second column introduces high levels of degeneracy which makes 

solving the LP relaxations for instances for size 12 extremely 

difficult. 

� Computing the GLB for general cost coefficients takes O(n5) time 

which can be reduced to O(n3) for the Koopmans-Beckmann costs. 

Our algorithm requires the solution of n2 minimum cost network flow 

problems with 2n nodes and n
2 arcs for every pass of our valid 

inequality generation procedure regardless of the form of the cost 

coefficients. The complexity of minimum cost network flow is known 

to be O(m×log n×(m + log n)) (Orlin, 1988), which translates to 

O(n4×log n) for our case. This brings the complexity of our algorithm 

to O(k×n
4×log n) at each node, where k is the number of passes. Note 

that there is no theoretical limit on the number of passes. The GLB 

should be computed independently at each node of a branch-and-

bound tree, whereas the effect of a valid inequality persists once it is 

added to the constraint set. Hence, it is hard to compare the 

theoretical complexities of the methods in an objective way. 
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C h a p t e r  6  

 
CONCLUSION 
 
 

 

In this dissertation, we have performed an analysis of existing and new exact 

solution methods for the QAP. We first focused on the Pairwise Assignment 

Matrix, and devised seven new variable definitions describing the cost 

contribution of different subsets of pairwise assignment variables. Based on our 

observations, we next focused on a flow-based variable definition and the 

corresponding formulation, presented sets of valid inequalities, implemented a 

branch-and-cut algorithm, and provided the results of the algorithm for the 

instances in the QAPLIB. Our results suggested that while instances that have an 

apparent structure could be solved relatively easily, randomly created instances 

were out of our computational reach. Next, we analyzed the instances with 

structures that allow a polynomial time solution. Finally, we gave a lower bound 

generation scheme based on Bender’s decomposition that produces bounds that 

are at least as strong as the GLB at each node of a branch-and-bound tree. 

 

Linear Integer Programming proved to be very useful for a class of hard 

problems including the Traveling Salesman, Uncapacitated Facility Location, 

and Hub Location problems. This success mainly depends on binary 

formulations with strong valid inequalities. The variables representing the binary 

structure of the QAP, namely the pairwise assignment variables of Lawler, are 

too many (O(n4)) for an efficient implementation. In addition, a high degree of 

degeneracy has been observed in the corresponding formulations. This led us to 

concentrate on smaller formulations, the variable definitions of which represent 
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the cost incurred by certain subsets of the binary variables. Our track of research 

in turn resulted in new formulations that heavily depend on the instance data. 

Instead of the general paradigm that puts more emphasis on solution methods 

independent from the instance data, we have concentrated on finding methods 

that find and exploit case-specific structures. Although we were able to solve 

large instances with definite structures, we failed to solve randomly generated 

instances of size larger than n > 15. This result may seem discouraging, but 

research in this field is far from complete. We suggest the following tracks of 

research for developing exact algorithms that may take into account special 

structures in data. 

 

� To search for different partitionings of the Pairwise Assignment 

Matrix that can result in better linearizations. 

� To determine the dominance relationships between the linearizations 

presented in Chapter 2. 

� To conduct a polyhedral analysis of the linearizations, determining 

the dimensions and if possible, facets of the corresponding polyhedra. 

� To construct hybrid formulations involving variables from one or 

more of the linearizations. 

� To identify which formulations perform better for certain classes of 

instances.  

� To determine which linearization is the best choice for a given class 

of instances in QAPLIB. 

� To devise identification heuristics for detecting violated valid 

inequalities presented in Chapter 2. 

� To implement a parallel branch-and-cut algorithm that can compete in 

the race for solving larger instances from the QAPLIB. 

 

Our studies on the polynomially solvable classes of the QAP revealed that 

this field is a fertile ground for research. The following tracks of research on 

polynomial solvability are suggested. 
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� Although it may be overly optimistic to encounter a definite structure 

in every instance, subproblems encountered during a branch-and-

bound algorithm may exhibit certain properties that can be exploited. 

A library of known polynomially solvable cases may be constructed, 

together with exact and heuristic identification algorithms, to be 

applied in a branch-and-bound setting to prune subproblems that 

conform with one of the cases in the library. 

� The construction of a metric that measures the distance between the 

instance at hand and the closest “easy” instance, as a measure of the 

complexity of a given instance. 

� The construction of “branching lists” at the end of which every 

resulting subproblem would be polynomially solvable. 

� To apply the results related to grid graphs in the parallel processing 

domain, where grids are common structures. 

 

Our computational experience showed that the branching efforts for large 

instances are rendered useless by symmetry inherent in QAP. Theoretical studies 

for formally establishing the symmetry and devising a metric that can measure it 

would be an interesting field of research. 

 

All in all, we tried to analyze how to exploit the cost data of a given instance 

to achieve a provably optimal solution in a reasonable time. We believe that this 

track of research requires further attention and insights gained through such 

studies would result in discovering new discrete optimization methods. 
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APPENDIX 

 

A. Derivation for Additive Decomposition  

 

The derivations below use the following pattern: The assignment variables 

which include indices that are not contained in the û term are factored out by the 

use of assignment constraints and integrality. A detailed example is given in 

Chapter 4, Section 1. 
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B. p’th power problem 

 

Let the p’th power assignment problem be defined as the generic problem of 

minimizing the sum of costs incurred by the simultaneous effect of subsets of 

assignments with cardinality p or less i.e. 
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Theorem B1: An instance of the p’th power problem involving at least one 

nonzero cost coefficient SC  for which 2242 ... −∪∪∪∈ p
IIIS  can be recast as a 

p’th power problem where all nonzero cost coefficients are associated with 

elements p
IS

2∈ . 

Proof: Let 0≠SC  for a subset S where q
IS

2∈  for some 11: −≤≤ pqq . Let ij 

be a pair in S. Define S’ to be the 2p-tuple whose first 2q components are 

identical to S while the last 2(p-q) components are the p-q repetitions of the pair 

ij. That is, ),...,,(' ijijsS =  where ij is repeated p-q times. Put SS CC =' . Observe 

that ∏∏∏
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from }1,0{∈ijx . Hence, the objective term corresponding to S can be replaced by 

the term corresponding to S’. Doing this for each such S gives the desired result. 

□ 

 

Corollary 1 to Theorem B1: For p ≥ 3, any instance of the p’th power problem 

can be cast as a p’th power assignment problem with nonzero objective function 

coefficients only for terms involving p assignment variables. 

 

For a nonempty subset s of P = {1,2,...,2p}, we define q(S) to be the ordered 

|S|-tuple obtained from the 2p-tuple q by retaining the indices in q that 

correspond to positions in s while deleting all other indices. For example, if 

4321 kkkkq =  and S = {1,2,4}, then 421)( kkkSq = . If S = {2,4} then 42)( kkSq = . 

Define also q(φ) = φ pIq 2∈∀ . Define a subset S of P to be feasible if there is at 

most one odd integer sk ∈  for which k+1 is also in S. Let 

}:{ feasibleisSandPSSR ⊂= . Corresponding to each element S of R and 

each t ∈ I
|S| (if S = φ, take t = φ), define a variable S

tu . We say pIq 2∈  is 

compatible if pp aaaaaaq 2124321 ... −=  and the assignments defined by the pairs 

),(),...,,(),,( 2124321 pp aaaaaa −  are feasible (satisfy (B2), (B3), and (B4)). Let A 

be a matrix of zeros and ones where the element in row q (with q being a 

compatible 2p-tuple) and column corresponding to the pair (S,t) (with S being a 

proper subset of  P and t ∈ I|S|) is denoted by tS

qa , . Define tS

qa , = 1 if q(S) = t and 

0 otherwise. Let ][ ,tS

qaA =  and u be the vector of S

tu  values where the columns 

of A and the elements of u are assumed to be identically ordered by (S,t). Let C  

be the vector of costs and C  be the vector obtained from C  by deleting all cost 

components corresponding to incompatible 2p-tuples. We assume the rows of A 

and the elements of C  are identically ordered. 

 

Theorem B2: If the linear equality system 
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CAu =         (B5) 

has a solution, then the instance of the p’th power problem defined by C can be 

solved as a LAP. 

 

Proof: Assume )ˆ(ˆ S

tuu =  solves (B5). Then CuA =ˆ  implies that 

 p

tSqtS

q

S

t IIqCu
2

)(:),(

,ˆ ⊂∈=∑
=

      (B6) 

where I  is the set of 2p-tuples that correspond to compatible assignments. Using 

(B6), the objective function of the p’th power problem can be rewritten as a 

linear function of the assignment variables, as in Theorem 7 (see Chapter 4).□ 

 

As an example, for p = 3,  R = { {1,2,3,5}, {1,2,3,6}, {1,2,4,5}, {1,2,4,6}, 

{1,3,4,5}, {2,3,4,5}, {1,3,4,6}, {2,3,4,6}, {1,3,5,6}, {2,3,5,6}, {1,4,5,6}, 

{2,4,5,6}, {1,3,5}, {1,3,6}, {1,4,5}, {1,4,6}, {2,3,5}, {2,3,6}, {2,4,5}, {2,4,6}, 

{1,3}, {1,4}, {2,3}, {2,4}, {1,5}, {1,6}, {2,5}, {2,6}, {3,5}, {3,6}, {4,5}, {4,6}, 

{1}, {2}, {3}, {4}, ∅}. 

 

Theorem B3: If there exists 2, IijRvij ∈∈ , that satisfies 

 

p

yzijklyzklij IyzijklCvvv 2
... ...,... ∈=      (B7) 

 

and the optimal solution value of the LAP with the objective function 

∑
∈ 2

min
Iij

ijij xv is nonnegative, then the instance of the p’th power problem defined 

by the cost matrix C can be solved as a LAP with cost coefficients 

2, IijRvij ∈∈ .  

Proof: Assume that such a v exists. Then the objective function becomes: 

∑
∈ p

Iyzijkl

yzklijyzklij xxxvvv
2...

......       (B8) 
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Reorganizing the terms, (B8) can be rewritten as: 

 p

Iij

ijij

Iyz

yzyz

Ikl

klkl

Iij

ijij xvxvxvxv )(...
2222

∑∑∑∑
∈∈∈∈

=     (B9) 

 

By assumption, the optimal solution of the LAP with the objective function 

∑
∈ 2

min
Iij

ijij xv is nonnegative. Since minimizing a nonnegative function and its 

p’th power (p > 1) are equivalent, the optimal solution of the LAP with the 

objective function ∑
∈ 2

min
Iij

ijij xv  is also the optimal solution for the instance of 

the p’th power problem defined by the cost matrix C. □ 

 

Remark: We do not need nonnegativity of ∑
∈ 2

min
Iij

ijij xv for odd values of p. 

  

C. Polynomially solvable cases of Axial 3D Assignment Problem 

and Planar 3D Assignment Problem 

 

A well-known formulation for the Axial 3D Assignment Problem is given 

below: 

∑
=

n

kji

ijkijk xc
1,,

min        (C1) 

s.t. 

nix
n

kj

ijk ,...,11
1,

=∀=∑
=

      (C2) 

njx
n

ki

ijk ,...,11
1,

=∀=∑
=

      (C3) 

nkx
n

ji

ijk ,...,11
1,

=∀=∑
=

      (C4) 
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nkjixijk ,...,1,,}1,0{ =∀∈       (C5) 

 

An equivalent combinatorial formulation is: 

 

)()(
,

min iiic ϕφ
ϕφ Π∈

        (C6) 

 

where ∏ denotes the set of all possible permutations of the integers {1,…,n}. 

This second formulation suggests that two sets of assignment decisions are being 

taken simultaneously. A nonlinear model can be constructed using (C6). 

∑
=

n

kji

ikijijk xxc
1,,

21min        (C7) 

s.t. 

nix
n

j

ij ,...,11
1

1 =∀=∑
=

      (C8) 

njx
n

i

ij ,...,11
1

1 =∀=∑
=

      (C9) 

nix
n

j

ij ,...,11
1

2 =∀=∑
=

      (C10) 

njx
n

i

ij ,...,11
1

2 =∀=∑
=

      (C11) 

njixx ijij ,...,1,}1,0{, 21 =∀∈       (C12) 

 

Theorem C1: If the linear equality system 

nkjicuuuuuu ijkkjiikij ,...,1,,0
0

3211312 =∀=+++++    (C13) 

has a solution, then the instance of the Axial 3D Assignment Problem defined by 

c can be solved by solving two Linear Assignment Problems. 

Proof: Assume û  solves (C13). Then, (C7) can be rewritten as: 
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∑∑∑

∑∑∑

===

===

++

+++

n

kji

ikij

n

kji

ikijk

n

kji

ikijj

n

kji

ikiji

n

kji

ikijik

n

kji

ikijij

xxuxxuxxu

xxuxxuxxu

1,,

210
0

1,,

213

1,,

212

1,,

211

1,,

2113

1,,

2112

ˆˆˆ

ˆˆˆ

min    (C14) 

which becomes: 

0
0

1

3

1

2

1

1

1,

213

1,

112 ˆˆˆˆˆˆ unuuuxuxu
n

k

k

n

j

j

n

i

i

n

ki

ikik

n

ji

ijij +++++ ∑∑∑∑∑
=====

   (C15) 

using the assignment constraints and integrality of assignment variables. Notice 

that the final form of the objective function is a constant plus two objective 

functions for two independent assignment problems. Hence, the original problem 

can be solved by solving two independent LAPs. □ 

 

Let 1
x̂  and 2

x̂  denote the optimal solutions of the resulting LAPs, 

respectively. Then the optimal solution *
x  for the original problem can be 

computed in O(n3) time using the following formula: 

 

nkjixxx ikijijk ,...,1,,ˆˆ 21* =∀=       (C16) 

 

The formulation for the Planar 3D Assignment Problem is similar to the 

Axial 3D Assignment Problem: 

∑
=

n

kji

ijkijk xc
1,,

min        (C17) 

s.t. 

njix
n

k

ijk ,...,1,1
1

=∀=∑
=

      (C18) 

nkix
n

j

ijk ,...,1,1
1

=∀=∑
=

      (C19) 

nkjx
n

i

ijk ,...,1,1
1

=∀=∑
=

      (C20) 

nkjixijk ,...,1,,}1,0{ =∀∈       (C21) 
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A similar linear decomposition is possible for the Planar 3D Assignment 

Problem. 

 

Theorem C2: If the linear equality system 

nkjicvvvvvvv ijkkjijkikij ,...,1,,0
0

321231312 =∀=++++++   (C22) 

has a solution, then every solution is optimal for the instance of the Planar 3D 

Assignment Problem defined by c. 

Proof: Assume v̂  solves (C22). Then, (C17) can be rewritten as: 

 

∑

∑∑∑

∑∑∑

=

===

===

+++

+++

n

kji

ijk

n

kji

ijkk

n

kji

ijkj

n

kji

ijki

n

kji

ijkjk

n

kji

ijkik

n

kji

ijkij

xv

xvxvxv

xvxvxv

1,,

0
0

1,,

3

1,,

2

1,,

1

1,,

23

1,,

13

1,,

12

ˆ

ˆˆˆmin

ˆˆˆ

    (C23) 

which becomes: 

0
0

2

1

3

1

2

1

1

1,

23

1,

13

1,

12 ˆˆˆˆˆˆˆ vnvnvnvnvvv
n

k

k

n

j

j

n

i

i

n

kj

jk

n

ki

ik

n

ji

ij ++++++ ∑∑∑∑∑∑
======

  (C24) 

using the constraints (C18)-(C20). Notice that the final form of the objective 

function is a constant. Hence every solution is optimal for the original problem. 

□ 

 

Since the constraint set of the Planar 3D Assignment Problem is 

fundamentally different from the LAP, the transformation of this problem to a 

LAP does not seem likely. 

 

 


