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Abstract

This research effort is concerned with identifying and characterizing families of poly-

nomially solvable instances of the celebrated NP-hard quadratic assignment problem (qap).

The approach is novel in that it uses polyhedral methods based on an equivalent mixed 0-1

linear reformulation of the problem. The continuous relaxation of this mixed 0-1 form yields

a feasible region having extreme points that are both binary and fractional. The solvable

instances of concern essentially possess objective function structures that ensure a binary

extreme point must be optimal, so that the linear program solves the qap. The ultimate

contribution of this work is the unification and subsumption of a variety of known solvable

instances of the qap, and the development of a theoretical framework for identifying richer

families of solvable instances.

The qap was introduced over 50 years ago in the context of facility layout and lo-

cation. The underlying mathematical structure, from which the problem draws its name,

consists of the minimization of a quadratic function of binary variables over an assignment

polytope. Since its inception, this structure has received considerable attention from vari-

ous researchers, both practitioners and theoreticians alike, due to the diversity of practical

applications and the resistance to exact solution procedures. Unfortunately, the combina-

torial explosion of feasible solutions to the qap, in terms of the number of binary variables,

creates a significant gap between the sizes of the motivating applications and the instances

that can be solved by state-of-the-art solution algorithms. The most successful algorithms

rely on linear forms of the qap to compute bounds within enumerative schemes.

The inability to solve large qap instances has motivated researchers to seek special
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objective function structures that permit polynomial solvability. Various, seemingly unre-

lated, structures are found in the literature. This research shows that many such structures

can be explained in terms of the linear reformulation which results from applying the level-1

reformulation-linearization technique (RLT) to the qap. In fact, the research shows that

the level-1 RLT not only serves to explain many of these instances, but also allows for

simplifications and/or generalizations. One important structure centers around instances

deemed to be linearizable, where a qap instance is defined to be linearizazble if it can be

equivalently rewritten as a linear assignment problem that preserves the objective function

value at all feasible points. A contribution of this effort is that the constraint structure

of a relaxed version of the continuous relaxation of the level-1 RLT form gives rise to a

necessary and sufficient condition for an instance of the qap to be linearizable. Specifically,

an instance of the qap is linearizable if and only if the given relaxed level-1 RLT form has

a finite optimal solution. For all such cases, an optimal solution must occur at a binary

extreme point. As a consequence, all linearizable qap instances are solvable via the level-1

RLT. The converse, however is not true, as the continuous relaxation of the level-1 RLT

form can have a binary optimal solution when the qap is not linearizable. Thus, the linear

program available from the level-1 RLT theoretically identifies a richer family of solvable

instances. Notably, and as a consequence of this study, the level-1 RLT serves as a unify-

ing entity in that it integrates the computation of linear programming-based bounds with

the identification of polynomially solvable special cases, a relationship that was previously

unnoticed.
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Chapter 1

Introduction

The quadratic assignment problem (qap) is an NP-hard discrete, nonlinear optimiza-

tion program that seeks to minimize a quadratic function of 0-1 variables over an assignment

polytope. The qap was first introduced in the context of facility location over 50 years ago

in [37], where it was desired to situate n facilities in a one-to-one fashion on n location

sites so as to minimize a total cost of construction and material handling. The construction

costs are associated with the individual facility-site pairs in such a manner that a cost is

incurred for each pair selected. The material handling costs are computed using interactions

between facilities on a product per-unit distance basis. Specifically, the material handling

cost between each pair of facilities is computed as the product of the known material flow

interaction with the distance between the selected location sites. The construction costs

give rise to linear objective terms while the material handling costs require quadratic terms.

The assignment restrictions ensure a one-to-one allocation of facilities to sites.

Since its introduction, the qap has been extensively studied. These studies include

both the above-described instances where the quadratic objective coefficients consist of the

products of flows with distances, known as Koopmans-Beckmann forms, and also more gen-

eral instances having arbitrary quadratic objective terms that need not be represented as

products of flows and distances. Applications abound in facility layout and location, includ-

ing college campus planning [24], hospital layout [26], and the assigning of gates at airport
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terminals [31]. Other applications include backboard wiring [52], turbine manufacturing

[39], typewriter keyboard design [17], dartboard design [25], scheduling parallel production

lines [30], analyzing chemical reactions [53], ranking archaeological data [38], and design-

ing the layout of letters on touchscreen devices [23]. Additionally, classical optimization

problems such as the traveling salesman problem and the bandwidth reduction problem are

special cases of the qap. Surveys are found in [14, 18, 42, 45].

The qap has proven itself extremely difficult to solve, with exact solution procedures

generally limited to instances having up to n = 30 facilities [1, 8, 33, 34]. The underlying

difficulty is combinatorial in nature, as the qap with n facilities has n-factorial feasible

solutions. The most successful exact methods attempt to implicitly enumerate these solu-

tions by employing branch-and-bound algorithms that use linear programming relaxations

to obtain bounds for pruning branches of the binary search tree.

Motivated by the need to obtain effective bounding mechanisms for branch-and-

bound algorithms, considerable historic effort has been given to computing equivalent mixed

0-1 linear reformulations. These linearizations use additional variables to substitute for

the nonlinear terms, and additional constraints to ensure that the substituted variables

realize their intended values. A multitude of such forms are available in the literature

[2, 9, 11, 29, 36, 41], and these forms boast different sizes and relaxation strengths. Some

forms are fairly compact in terms of the numbers of auxiliary variables and constraints,

while others are larger in size. Generally speaking, the larger forms give rise to tighter

bounds. An ongoing challenge is to obtain forms that balance the sizes of the linearized

problems with the strengths of the relaxations.

A method that has proven itself extremely effective for constructing favorable linear

reformulations of the qap is the reformulation-linearization technique (RLT) of [4, 5, 6].

The RLT is a general procedure for constructing mixed 0-1 linear reformulations of 0-1

programs. When applied to the qap with n facilities, an n-level hierarchy of mixed 0-1 linear

reformulations results, with each level yielding a relaxation at least as tight as the previous

level, and with the highest level affording the convex hull representation. Unfortunately, as
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one progresses up the hierarchical ladder, the formulations increase in size. The level-1 and

level-2 forms have produced state-of-the-art computational results [1, 2], and the level-3

form is under study [34].

Due to the difficulty associated with solving the qap, researchers have focused

attention on finding special instances that are polynomially solvable. The idea here is

to identify objective function structures that permit efficient solution strategies. Many,

seemingly unrelated, such identifications are available in the literature (see, for example,

[12, 13, 15, 18, 19, 20, 21, 22, 27, 28, 35, 40, 46]). These works deal with both the Koopmans-

Beckmann form and with more general objective structures. Depending on the specific

problem of concern, these works either provide closed-form solutions or provide equivalent,

polynomially solvable reformulations.

This research poses a novel polyhedral approach for identifying polynomially solvable

instances of the qap. In the process, it affords a unifying framework for characterizing

various known solvable instances, and also serves to form a natural linkage between bounding

strategies and the objective function structures of solvable instances. The key insight is

a previously unnoticed relationship between the polyhedral structure of the continuous

relaxation of the level-1 RLT representation and various classes of readily solvable instances.

The level-1 RLT form of the qap is a mixed 0-1 linear representation that was first

studied in [2]. The level-1 RLT augments the binary variables inherent to the qap with a

family of continuous variables in such a manner that a continuous variable is defined for

each distinct nonlinear term. Auxiliary constraints are strategically constructed to ensure

that each continuous variable is equal to its substituted product at every binary solution,

as well as to afford a tight linear programming approximation. The feasible region to the

continuous relaxation, which is obtained by replacing the binary restrictions on the original

variables with nonnegativity, is a polytope having a highly specialized structure. Every

binary solution to the qap is associated with an extreme point of this polytope, and the

objective function value is preserved at each such point. However, there exist extreme points

that do not correspond to binary solutions. Strikingly, we show that a variety of apparently
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unrelated solvable cases of the qap can be categorized in the following sense: each such

case has an objective function which ensures that an optimal solution to the continuous

relaxation of the level-1 RLT form occurs at a binary extreme point. Interestingly, there

exist instances that are solvable by the level-1 RLT form which do not satisfy the conditions

of these cases, so that the level-1 form theoretically identifies a richer family of solvable

instances.

The contributions of this research are grouped into two main emphases, with one

emphasis found in each of Chapters 2 and 3.

In Chapter 2, we examine four different polynomially solvable cases of the qap found

in the literature [13, 18, 27, 28], and show how each can be directly explained in terms of

the continuous relaxation of the level-1 RLT form. Included within the first three forms are

symmetric flow and skew symmetric distances as in [13, 18] and the cost coefficient decom-

positions of [13, 18, 28]. The fourth case involves path structures in the flow data, together

with grid structures in the distance data [27]. These explanations allow for simplifications

and/or generalizations of the conditions defining these cases. The arguments are based on

the Karush-Kuhn-Tucker optimality conditions for linear programs.

The organization of Chapter 2 is as follows. Section 2.2 reviews the level-1 RLT form

that serves as the backbone of the study. It highlights the derivation from the qap, and

identifies instances in which the continuous relaxation affords an optimal binary solution.

A variation of this linear form allows for a much simpler identification criterion, and em-

phasis is placed on this new form and criterion. The section also identifies special objective

transformations for which the optimal solution to the qap and the continuous relaxations of

these forms remain unaffected. Section 2.3 addresses the four readily solvable special cases

of the qap referenced above, detailing each case within a separate subsection. Section 2.4

provides concluding remarks.

Chapter 3 is dedicated to instances of the qap known in the literature as linearizable.

An instance of the qap is defined to be linearizable if and only if the problem can be

equivalently written as a linear assignment problem that preserves the objective function
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value at all feasible solutions. This chapter provides an entirely new perspective on the

concept of linearizable by showing that an instance of the qap is linearizable if and only

if a relaxed version of the continuous relaxation of the level-1 RLT form is bounded. It

also shows that the level-1 RLT form can identify a richer family of solvable instances than

those deemed linearizable by demonstrating that the continuous relaxation of the level-

1 RLT form can have an optimal binary solution for instances that are not linearizable.

A matrix decomposition approach of [35] that provides an alternate set of necessary and

sufficient conditions for an instance of the qap to be linearizable is thus encompassed by

the level-1 RLT form.

Chapter 3 is organized as follows. Section 3.2 briefly summarizes the level-1 RLT

form, presents a more compact representation that is obtained via a substitution of variables,

and provides a roadmap for identifying a maximal set of linearly independent equations

that is implied by the resulting constraints. Section 3.3 identifies the linearly independent

equations, with the identification applying the RLT process to a basis of the assignment

polytope, and also constructing a second set of constraints that has a network substructure.

Section 3.4 provides the main result, showing that an instance of the qap is linearizable if

and only if a relaxed version of the continuous relaxation of the level-1 RLT form is bounded.

This is accomplished in two steps. The first step shows that all equations that are valid

for the level-1 RLT form are implied by the linearly independent equations of Section 3.3,

verifying this set as maximal. The second step establishes the relationship to the notion of

linearizable. A numeric example is given to show that the continuous relaxation of the level-

1 RLT form can provide a binary solution for instances of the qap that are not linearizable.

A byproduct of the first step of Section 3.4 is the characterization of the dimensions of the

level-1 RLT form and various relaxations. These dimensions are given in closed form in

Section 3.5. Section 3.6 gives concluding remarks.

Chapters 2 and 3 are written independently of each other so that the reader can

choose to read either work alone. Thus, each chapter contains its own introduction. How-

ever, an encompassing bibliography is found at the end.
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Chapter 2

Linear Programming Insights into

Solvable Cases of the Quadratic

Assignment Problem

2.1 Introduction

The quadratic assignment problem is a discrete, nonlinear optimization problem

that can be formulated as

QAP: minimize

n∑
k=1

n∑
`=1

ck`xk` +

n∑
i=1
i 6=k

n∑
j=1
j 6=`

n∑
k=1

n∑
`=1

Cijk`xijxk`

subject to x ∈ X, x binary,

where

X ≡



x ∈ Rn2
:

n∑
j=1

xij = 1 ∀ i = 1, . . . , n,

n∑
i=1

xij = 1 ∀ j = 1, . . . , n,

xij ≥ 0 ∀ (i, j), i = 1, . . . , n, j = 1, . . . , n


. (2.1)
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It is so named because the objective function is quadratic in the n2 binary variables xij

and the set X defines an assignment polytope. (We henceforth assume that all indices and

summations run from 1 to n unless otherwise stated.)

This problem was originally introduced within the context of facility location by

Koopmans and Beckmann [37]. In this setting, there exist n facilities and n location sites

upon which the facilities are to be situated. The objective is to assign the facilities to

the sites in a one-to-one fashion so that a total cost is minimized. The cost includes,

for each pair (k, `), a fixed charge ck` associated with assigning facility k to site `, and a

“quadratic” material handling cost incurred between pairs of assigned facilities. Here, each

pair (i, k) has some known material flow fik from facility i to facility k, and each pair (j, `)

has some known distance from site j to site `. (In general, the flows and distances need

not be symmetric so that we can have fik 6= fki and dj` 6= d`j .) The material handling

cost incurred for shipment from facility i on site j to facility k on site ` is computed as

Cijk` = fikdj` in terms of flow times distance. For each (i, j) pair, the decision variable

xij = 1 if facility i is assigned to site j, and 0 otherwise. In this manner, (2.1) enforces

the one-to-one assignment of facilities to sites. The double-sum in the objective function

records the assignment cost, and the quadruple-sum records the cost of material flow. As

that version of Problem QAP having Cijk` = fikdj` was introduced in [37], it has come to

be known as the “Koopmans-Beckmann” form.

Problem QAP has been intensely studied over the past 50 years, both for the

Koopmans-Beckmann form and for more general cases having arbitrary Cijk` quadratic

cost coefficients. Surveys are available in [14, 18, 42]. Applications arise in various con-

texts, including backboard wiring [52], campus planning [24], typewriter keyboard design

[17], hospital layout [26], scheduling parallel production lines [30], analyzing chemical re-

actions [53], and ranking archaeological data [38]. However, it is extremely difficult to

solve, and falls under the class of NP-hard problems. Over the years, test-beds of problems

have emerged [16, 44]. Generally speaking, exact solution strategies are available only for

problems having n as large as 30 [1, 8, 33, 34]. The latest, most successful methods are enu-
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merative in nature, and primarily use linear programming reformulations in higher-variable

spaces for computing bounds to curtail the binary search tree.

Since optimal solutions to instances of Problem QAP are not generally computable

for large values of n, researchers have considered different avenues for attacking the problem.

One avenue is to devise heuristic procedures for generating good-quality solutions. These

solutions are potentially useful, but suffer from not being provably optimal. A second

avenue, and the focus of this chapter, is to identify special objective function structures

that make the problem much simpler to solve.

Different approaches for characterizing objective function structures are available in

the literature. One approach is to identify coefficients Cijk` that reduce Problem QAP to

a linear assignment problem. In this vein, a size n instance of Problem QAP is defined to

be linearizable if there exists a size n linear assignment problem having the same objective

function value as Problem QAP at all n-factorial feasible binary solutions. The paper [28]

gives, in the form of consistency to a specified linear system of O(n3) variables in O(n4)

equations, sufficient conditions for recognizing an instance of Problem QAP as linearizable.

It also shows, for Problem QAP rewritten to have the objective coefficients ck` subsumed

within the quadratic terms by Ck`k` = ck` for all (k, `) that, when the coefficients Cijk` can

be expressed as Cijk` = vijvk` for all (i, j, k, `) with i 6= k, j 6= ` or with i = k, j = `, for

some n× n matrix V whose (i, j)th entry is vij , and when all feasible solutions to Problem

QAP have either nonnegative or nonpositive objective value, then an optimal solution to

Problem QAP can be obtained by solving a linear assignment problem. The work of [35]

builds upon the first contribution by providing conditions that are both necessary and

sufficient for recognizing a linearizable instance of Problem QAP, together with an O(n4)

algorithm for determining whether these conditions hold true. Later, [46] shows that the

special structure of the Koopmans-Beckmann form of Problem QAP allows the conditions

to be checked in O(n2) time. A second approach for characterizing objective function

structure, separate from the concept of linearizable, identifies special flow and distance

structures of the Koopmans-Beckmann form of QAP. Efforts in this regard include certain
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instances having an anti-Monge-Toeplitz objective structure [15], a simple block structure

[20], a Kalmanson-circulant structure [22], a Robinsonian-Toeplitz structure [40], a variation

[19] of the work of [15] motivated by a scheduling problem of [54], and instances having a

path structure in the flow data and a grid structure in the distance data [27]. For each of

these cases, an optimal solution is immediately available, without solving an optimization

problem. The paper [21] shows that a “Wiener maximum quadratic assignment problem,”

while NP-hard, can be solved in pseudo-polynomial time, with a special case solvable in

polynomial time. References [13, 18] survey solvable cases, including classic instances found

in [12].

We expose an unnoticed relationship between a mixed 0-1 linear reformulation of

Problem QAP and four special cases that permit QAP to be solved in polynomial time.

Included within these forms are symmetric flow and skew symmetric distances as in [13, 18],

the flow and/or distance decomposition of [13, 18], the consistency check of the linear system

of equations by [28], and the above-cited work of [27]. The feasible region to the continuous

relaxation of the mixed 0-1 linear form, obtained by relaxing the x binary restrictions

to x ≥ 0, is a polytope having both binary and fractional extreme points. Each of the

n-factorial feasible binary solutions to X is associated with an extreme point, but the

relaxation also has additional, fractional such points. This chapter exploits the structure

of the polytope to make three contributions. The first contribution is to demonstrate that

the linear form is a unifying entity for the four special cases in the sense that each can

be interpreted as restricting the objective coefficients so that a binary extreme point is

optimal. Thus, a necessary condition for any of these special cases to hold true is that the

continuous relaxation of the mixed 0-1 linear form has an optimal binary solution. The

second contribution is to show that the linear form identifies a larger family of solvable

instances of Problem QAP than the four cases combined. The third contribution is to

substantially simplify the third case. All three contributions are based on the Karush-

Kuhn-Tucker (KKT) optimality conditions for linear programs.

The chapter is organized as follows. The next section briefly reviews the linear form
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that serves as the backbone of this study. It highlights the derivation from Problem QAP,

and identifies instances in which the continuous relaxation affords an optimal binary solu-

tion. A variation of this linear form allows for a much simpler identification criterion, and

this form and criterion are studied. The section finishes by showing that certain objective

transformations do not affect the optimal solution set to either QAP or the continuous relax-

ation of either form. Section 2.3 addresses the four readily solvable special cases of Problem

QAP reported in the literature, where each case is encompassed within the framework of

Section 2.2 in a separate subsection. Section 2.4 provides concluding remarks.

2.2 Mixed 0-1 Linear Reformulation: Review and Structure

A variety of mixed 0-1 linear reformulations of Problem QAP exist in the literature

(see, for example, [2, 9, 11, 29, 36, 41]). These forms differ in terms of the numbers of

variables and constraints employed, as well as the strengths of the continuous relaxations.

The particular program of interest to us in this study is the level-1 form [4, 5] resulting

from the reformulation-linearization-technique (RLT) of [50, 49, 51], as specialized for the

quadratic assignment problem in [2]. This section reviews the construction of the level-1

form, and then uses the KKT conditions to identify special cases for which the continuous

relaxation affords optimal binary solutions to Problem QAP. Two versions of this relaxation

are considered separately in two theorems, with the second version obtained from the first

by removing a family of constraints. A third theorem provides objective transformations

that preserve the optimal solution sets of Koopmans-Beckmann instances. These theorems

are collectively used in Section 2.3 to subsume and generalize four published special cases.

The RLT is a general methodology for recasting pure and mixed 0-1 polynomial

programs into higher-variable spaces through the defining of auxiliary continuous variables

and constraints. Given a discrete program, the idea is to construct mixed 0-1 linear forms

whose continuous relaxations form tight polyhedral approximations of the convex hull of

feasible solutions. There are different implementations of the RLT, yielding a hierarchy
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of relaxation levels, and these levels provide successively tighter approximations until the

convex hull is achieved at the highest level. For Problem QAP, there are n levels, with each

level obtained by multiplying the constraints defining X in (2.1) by special monomials in

the variables xk`. A detailed discussion is found in [49, pp. 104-105]. The paper [2] shows

that, for QAP, even the weakest level-1 form affords a tight approximation of the convex

hull.

The level-1 RLT form of Problem QAP is obtained by conducting the two distinct

steps of reformulation and linearization in the following manner. The reformulation step

multiplies every constraint defining the set X in (2.1) by each of the n2 nonnegative variables

xk`, and then substitutes xk` = x2k` for all (k, `). For each (k, `), multiplication of the

equation
∑

i xi` = 1 and the n− 1 inequalities xi` ≥ 0 for i 6= k by xk` yields xi`xk` = 0 for

all i 6= k. Similarly for each (k, `), multiplication of the equation
∑

j xkj = 1 and the n− 1

inequalities xkj ≥ 0 for j 6= ` by xk` yields xkjxk` = 0 for all j 6= `. These products that are

set to 0, and the associated constraints, are not included within the problem. The resulting

(redundant) 2(n− 1)n2 equality and n2(n− 1)2 nonnegativity constraints are appended to

the x ∈ X, x binary, restrictions of Problem QAP. The linearization step then substitutes a

continuous variable yijk` for each resulting xijxk` product; that is, for each (i, j, k, `), i 6= k,

j 6= `. It also enforces that yijk` = yk`ij for all (i, j, k, `), i < k, j 6= `. The level-1 RLT form

of Problem QAP then becomes the following, as provided in [2].

RLT1: minimize
∑
k

∑
`

ck`xk` +
∑
i 6=k

∑
j 6=`

∑
k

∑
`

Cijk`yijk`

subject to
∑
j 6=`

yijk` = xk` ∀ (i, k, `), i 6= k (2.2)

∑
i 6=k

yijk` = xk` ∀ (j, k, `), j 6= ` (2.3)

yijk` = yk`ij ∀ (i, j, k, `), i < k, j 6= ` (2.4)

yijk` ≥ 0 ∀ (i, j, k, `), i 6= k, j 6= ` (2.5)

x binary, x ∈ X

11



The mixed 0-1 linear representation RLT1 is equivalent [2] to QAP in that, given

a feasible solution to either problem, there exists a feasible solution to the other problem

with the same objective value. In fact, Problem RLT1 enforces that, for x binary, we must

have that yijk` = xijxk` for all (i, j, k, `), i 6= k, j 6= `.

Consider the continuous relaxation of RLT1 obtained by removing the x binary

restrictions, and call this problem RLT1. Every feasible solution to RLT1 with x binary is

readily shown to be an extreme point of the feasible region but, as mentioned earlier, there

can exist extreme points with fractional components of x. The task is to identify special

cases of Problem QAP for which RLT1 will be optimal at some extreme point having x

binary. Since RLT1 is polynomial in the size of the input data, such cases will then be

polynomially solvable instances of QAP.

We note here that the size of Problem RLT1 can be reduced without affecting the

equivalence between Problems QAP and RLT1, nor the strength of the relaxation RLT1.

This reduction can be accomplished in two ways. First, and as observed in [2], we can use

(2.4) to eliminate all variables yijk` having i > k and j 6= ` from the problem, and then

remove (2.4) and the nonnegativity restrictions on the associated yijk`. This substitution

lessens the problem size by each of n2(n−1)2
2 variables and equality constraints, and by

the same number of nonnegativity restrictions. Second, since X is an assignment set, any

single equation can be removed prior to applying the reformulation-linearization-technique

without affecting the relaxation strength of the resulting form. The savings from this second

reduction is a single constraint in X and n(n − 1) constraints within either (2.2) or (2.3).

Temporarily ignoring nonnegativity on x and y, the combined effect of the two reductions

is to transform Problem RLT1 from having n2 variables x and n2(n − 1)2 variables y

in 2n2(n − 1) + n2(n−1)2
2 + 2n equality constraints to having n2 variables x and n2(n−1)2

2

variables y in (n2 − n + 1)(2n− 1) equality constraints, for a savings of n2(n−1)2
2 variables

and n2(n−1)2
2 + n(n − 1) + 1 equality constraints. Relative to variable nonnegativity, the

number of restrictions on x is constant at n2 while, as mentioned above, the number of

restrictions on y is reduced from n2(n− 1)2 to n2(n−1)2
2 , for a savings of n2(n−1)2

2 . For ease

12



of presentation, we choose to retain all variables and constraints, keeping in mind that the

problem can be so reduced. (These reductions will allow us in Section 2.3.3 to simplify a

published set of conditions, mentioned earlier as our third overall contribution.)

We write the dual to RLT1, and refer to it as Problem DRLT1. Let u = uik` for all

(i, k, `), i 6= k, v = vjk` for all (j, k, `), j 6= `, w = wijk` for all (i, j, k, `), i < k, j 6= `, and

λ = λijk` for all (i, j, k, `), i 6= k, j 6= `, denote multipliers to (2.2), (2.3), (2.4), and (2.5)

respectively. Further let π1 = π1i for all i and π2 = π2j for all j denote multipliers to the

two families of equality constraints defining X in (2.1), and let π3 = π3ij for all (i, j) denote

multipliers to the nonnegativity restrictions in (2.1). Then the dual is as follows.

DRLT1 : maximize
∑
i

π1i +
∑
j

π2j

subject to−
∑
i 6=k

uik` −
∑
j 6=`

vjk` + π1k + π2` + π3k` = ck` ∀ (k, `)

uik` + vjk` + wijk` + λijk` = Cijk` ∀ (i, j, k, `), i < k, j 6= `

uik` + vjk` − wk`ij + λijk` = Cijk` ∀ (i, j, k, `), i > k, j 6= `

π3 ≥ 0, λ ≥ 0

We find it useful to define a set S consisting of those values (u,v,w,λ) having λ ≥ 0

which are feasible to the last (n− 1)2n2 equations of DRLT1; these equations are the dual

constraints corresponding to the primal variables yijk`. That is,

S ≡


(u,v,w,λ) : λ ≥ 0,

uik` + vjk` + wijk` + λijk` = Cijk` ∀ (i, j, k, `), i < k, j 6= `,

uik` + vjk` − wk`ij + λijk` = Cijk` ∀ (i, j, k, `), i > k, j 6= `

 . (2.6)

Now consider the below result which gives, in terms of S, a necessary and sufficient

condition for a binary point x̂ to be part of an optimal solution (x̂, ŷ) to RLT1, so that x̂

is optimal to QAP.

13



Theorem 2.1

Given an instance of Problem QAP, a binary point x̂ is part of an optimal solution (x̂, ŷ)

to RLT1, so that x̂ is optimal to QAP, if and only if there exists a (û, v̂, ŵ, λ̂) ∈ S such

that x̂ is optimal to

min

∑
k

∑
`

ck` +
∑
i 6=k

ûik` +
∑
j 6=`

v̂jk`

xk` : x ∈ X

 , (2.7)

with λ̂ijk`x̂ij x̂k` = 0 for all (i, j, k, `), i 6= k, j 6= `.

Proof

Suppose a binary point x̂ is part of an optimal solution (x̂, ŷ) to RLT1. The KKT necessary

conditions state that there exists a (û, v̂, ŵ, λ̂, π̂1, π̂2, π̂3) feasible to DRLT1 such that

π̂3k`x̂k` = 0 for all (k, `) and λ̂ijk`ŷijk` = 0 for all (i, j, k, `), i 6= k, j 6= `. Then (û, v̂, ŵ, λ̂) ∈

S. Moreover, (x̂, π̂1, π̂2, π̂3) satisfies the KKT conditions to (2.7) so that x̂ is optimal to

(2.7). Finally, ŷ is defined in terms of x̂ as ŷijk` = x̂ij x̂k` for all (i, j, k, `), i 6= k, j 6= `, so

that λ̂ijk`x̂ij x̂k` = 0, as desired.

Now, given a binary point x̂, suppose there exists a (û, v̂, ŵ, λ̂) ∈ S so that x̂ is

optimal to (2.7) and λ̂ijk`x̂ij x̂k` = 0 for all (i, j, k, `), i 6= k, j 6= `. The point (x̂, ŷ) with

ŷijk` = x̂ij x̂k` for all (i, j, k, `), i 6= k, j 6= `, and the point (û, v̂, ŵ, λ̂, π̂1, π̂2, π̂3) with

(π̂1, π̂2, π̂3) an optimal set of duals to the x ∈ X constraints of (2.7) together satisfy the

KKT sufficiency conditions of RLT1, making (x̂, ŷ) optimal to RLT1. 2

Theorem 2.1 gives, in terms of (2.7) and the set S of (2.6), necessary and sufficient

conditions for RLT1 to have an optimal binary solution (x̂, ŷ). Relationships also exist

between the objective values to RLT1 and (2.7). Given any (x̂, ŷ) satisfying (2.2)–(2.4) and
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any (û, v̂, ŵ, λ̂) ∈ S, we have that

∑
k

∑
`

(
ck` +

∑
i 6=k

ûik` +
∑
j 6=`

v̂jk`

)
x̂k` +

∑
i 6=k

∑
j 6=`

∑
k

∑
`

λ̂ijk`ŷijk`

=
∑
k

∑
`

ck`x̂k` +
∑
i 6=k

∑
j 6=`

∑
k

∑
`

Cijk`ŷijk` +
∑
i 6=k

∑
k

∑
`

ûik`

(
x̂k` −

∑
j 6=`

ŷijk`

)
+
∑
j 6=`

∑
k

∑
`

v̂jk`

(
x̂k` −

∑
i 6=k

ŷijk`

)
+
∑
i<k

∑
j 6=`

∑
k

∑
`

ŵijk` (ŷk`ij − ŷijk`)

=
∑
k

∑
`

ck`x̂k` +
∑
i 6=k

∑
j 6=`

∑
k

∑
`

Cijk`ŷijk`.

(2.8)

The first equation follows from the expression of Cijk` in S of (2.6) and the second is due to

(x̂, ŷ) satisfying (2.2)–(2.4). These equations of (2.8) lead to two consequences, presented

as the first two remarks below.

Remark 2.1

Given any (x̂, ŷ) satisfying (2.2)–(2.4) and any (û, v̂, ŵ, λ̂) ∈ S such that λ̂ijk`x̂ij x̂k` =

λ̂ijk`ŷijk` = 0 for all (i, j, k, `), i 6= k, j 6= `, the following three objective values equal.

1. Problem RLT1 evaluated at (x̂, ŷ),

2. Problem (2.7) evaluated at x̂,

3. Problem QAP evaluated at x̂.

To elaborate on Remark 2.1, the objective values to RLT1 and (2.7) equal by the

first and last expressions of (2.8) because λ̂ijk`ŷijk` = 0 for all (i, j, k, `), i 6= k, j 6= `. The

objective values to (2.7) and QAP also equal, because (2.8) holds true when ŷijk` = x̂ij x̂k`

for all (i, j, k, `), i 6= k, j 6= `, and λ̂ijk`x̂ij x̂k` = 0 for all (i, j, k, `), i 6= k, j 6= `.

Remark 2.2

A modification of the “if” direction of Theorem 2.1 provides a lower bound on the optimal

objective value to RLT1 as well as an upper bound on the optimal objective value to RLT1.

15



Suppose there exists a (û, v̂, ŵ, λ̂) ∈ S so that a binary x̂ is optimal to (2.7), but the

condition that λ̂ijk`x̂ij x̂k` = 0 for all (i, j, k, `), i 6= k, j 6= `, is relaxed. By decreasing within

RLT1 each original objective coefficient Cijk` having x̂ij x̂k` = 1 by the quantity λ̂ijk`, the

conditions of Theorem 2.1 would be satisfied for this revised program. Thus, x̂ would be

part of an optimal solution (x̂, ŷ) to this revised version of RLT1, providing a lower bound

on the optimal objective value to RLT1 itself. But this same (x̂, ŷ) is feasible to RLT1, and

thus gives an upper bound on the optimal objective value to this problem. In summary,

the first expression of (2.8) provides an upper bound on RLT1 while this same expression,

less
∑

i 6=k
∑

j 6=`
∑

k

∑
` λ̂ijk`ŷijk`, provides a lower bound on RLT1. When the condition on

λ̂ is not relaxed, the upper bound to RLT1 equals the lower bound to RLT1, establishing

optimality to both problems.

The first three special cases of Problem QAP considered in the next section focus on

subsets of S having λ = 0. For convenience, we adopt the notation that S0 ≡ {(u,v,w,λ) ∈

S,λ = 0}. Recalling that S was defined in terms of the dual space to RLT1 so that λ rep-

resents the multipliers on inequalities (2.5), restricting (u,v,w,λ) ∈ S0 effectively directs

attention to that relaxed version of RLT1, call it RLT1′, which is obtained by deleting the

y ≥ 0 restrictions. As shown in Theorem 2.2, Problem RLT1′ provides a characterization

of those instances of QAP for which S0 6= ∅ and, as a result, encompasses the optimality

conditions for all three cases.

We restate Remark 2.1 as Remark 2.3 below to accommodate the set S0 and the

linear program RLT1′. Remark 2.3 is simpler than Remark 2.1 because (û, v̂, ŵ, λ̂) ∈ S0

has λ̂ = 0. Also, we are able to replace RLT1 in point 1 of Remark 2.1 with RLT1′ in point

1 of Remark 2.3 because the objective functions to RLT1 and RLT1′ are identical.

Remark 2.3

Given any (x̂, ŷ) satisfying (2.2)–(2.4) and any (û, v̂, ŵ, λ̂) ∈ S0, the following three objec-

tive values equal.
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1. Problem RLT1′ evaluated at (x̂, ŷ),

2. Problem (2.7) evaluated at x̂,

3. Problem QAP evaluated at x̂.

Now consider Theorem 2.2 below that focuses on Problem RLT1′ and the set S0.

Here, unlike the conditions of Theorem 2.1, a point x̂ does not depend on the chosen

(û, v̂, ŵ, λ̂) ∈ S0 in order to satisfy λ̂ijk`x̂ij x̂k` = 0 for all (i, j, k, `), i 6= k, j 6= `. This lack

of dependency permits a stronger relationship between an optimal solution x̂ to RLT1′,

(2.7), and QAP than afforded by Theorem 2.1 for an optimal solution x̂ to RLT1, (2.7),

and QAP.

Theorem 2.2

Given an instance of Problem QAP, Problem RLT1′ has a finite optimal solution if and

only if S0 6= ∅. When S0 6= ∅, the following statements are equivalent for binary x̂ ∈ X.

1. x̂ is part of an optimal solution (x̂, ŷ) to RLT1′,

2. x̂ is optimal to (2.7) at any (û, v̂, ŵ, λ̂) ∈ S0,

3. x̂ is optimal to QAP.

Proof

We begin with the first statement, and then establish the equivalence of points 1 through 3

when S0 6= ∅.

Relative to the first statement, suppose that RLT1′ has a finite optimal solution

(x̂, ŷ). Following the logic of the “only if” direction of the proof of Theorem 2.1, the KKT

necessary conditions state that there exists a (û, v̂, ŵ, λ̂, π̂1, π̂2, π̂3) feasible to DRLT1 with

λ̂ = 0 (since (2.5) is not present in RLT1′). Then (û, v̂, ŵ, λ̂) ∈ S0. Conversely, suppose

that S0 6= ∅. Since RLT1′ is feasible, and every solution (x̂, ŷ) to RLT1′ satisfies (2.2)–(2.4)
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and x̂ ∈ X, we infer from points 1 and 3 of Remark 2.3 that RLT1′ is bounded, as Problem

QAP is bounded.

Relative to points 1 through 3, Remark 2.3 gives us that the optimal objective value

to RLT1′ is greater than or equal to that of both (2.7) and QAP because every (x̂, ŷ) fea-

sible to RLT1′ has x̂ feasible to both (2.7) and QAP, with the same objective value. To

complete the proof, it is sufficient to show that for every x̂ ∈ X, there exists a ŷ having

(x̂, ŷ) feasible to RLT1′. Define ŷ by ŷijk` = x̂ij x̂k` for all (i, j, k, `), i 6= k, j 6= `. This

completes the proof. 2

Recalling from Section 2.1 that an instance of Problem QAP is linearizable if there

exists a size n linear assignment problem having the same objective function value at all

feasible binary solutions, Theorem 2.2 and Remark 2.3 combine to give us that a sufficient

condition for Problem QAP to be linearizable is that RLT1′ be bounded (have a finite

optimal solution) for the given objective function. Given that RLT1′ is bounded, Theorem

2.2 assures that there exists a vector (û, v̂, ŵ, λ̂) ∈ S0, so that Remark 2.3 has (2.7) taking

the same objective function value as Problem QAP at all feasible, binary points.

Observe that, while the conditions of Theorem 2.1 identify a more general family of

solvable instances of Problem QAP than do the conditions of Theorem 2.2, this generality

comes at a price. Theorem 2.1 is more general because, as noted above, every bounded

instance of RLT1′ ensures the existence of a vector (û, v̂, ŵ, λ̂) ∈ S0 by Theorem 2.2,

so that every binary optimal solution x̂ to the assignment problem (2.7), together with

(û, v̂, ŵ, λ̂), satisfies the conditions of Theorem 2.1. Determining whether the conditions

of Theorem 2.2 can be satisfied, that is, determining whether S0 = ∅, is accomplished in

polynomial time. However, checking whether the conditions of Theorem 2.1 can be satisfied

is not such a simple task. A consequence of Theorem 2.2 is that, if an optimal solution

exists to RLT1′, then an optimal solution exists to RLT1′ with x̂ binary. In contrast, there

can exist an optimal solution to RLT1 with no optimal solution having x̂ binary. The

task of determining whether the conditions of Theorem 2.1 can be satisfied is equivalent
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to checking whether such an alternative optimal solution exists. In general, checking the

existence of an alternative optimal binary solution to the continuous relaxation of a 0-1

linear program is NP-complete, as it is equivalent to the 0-1 feasibility problem, which is

NP-complete (see, for example, [43, Proposition 6.6 on p. 133] or [48, Corollary 18.1b on

p. 248]). While RLT1 has special structure, we do not believe this structure is sufficient

to afford a polynomial-time check. Notably, there exist special cases of Theorem 2.1, not

enveloped by Theorem 2.2, which can be solved in polynomial time. Upcoming Corollary

2.4 of Subsection 2.3.4 poses such a case.

The first, second, and fourth special cases of the next section address the Koopmans-

Beckmann form of Problem QAP. These three cases each reduce QAP to an assignment

problem of the form (2.7), but under differing conditions. Theorem 2.3 below exploits the

structure of RLT1′ to make an observation relative to those instances of QAP that are

solvable by Theorem 2.1 or 2.2. Theorem 2.3 allows us, in the next section, to reexpress

the conditions of the first and fourth cases in a more general setting. Of importance in

the proof is that equations (2.8) do not require λ̂ ≥ 0 in order to be valid; these equations

simply require that the chosen (x̂, ŷ) and (û, v̂, ŵ, λ̂) have (x̂, ŷ) satisfying (2.2)–(2.4) and

(û, v̂, ŵ, λ̂) satisfying the equality restrictions of S. This theorem is a slight generalization

of a result found in [18, pp. 113-114], where f∗ = d∗.

Theorem 2.3

Given any scalars f∗ and d∗, every Koopmans-Beckmann instance of Problem QAP that

is identified, by either Theorem 2.1 or Theorem 2.2, as being solvable by an assignment

problem of the form (2.7) is also solvable by (2.7) when f∗ is subtracted from each flow fik

and when d∗ is subtracted from each distance dj`.

19



Proof

Given any scalars f∗ and d∗, it is sufficient to show that every (x̂, ŷ) feasible to RLT1′ has

κ+
∑
i 6=k

∑
j 6=`

∑
k

∑
`

(fik − f∗)(dj` − d∗)ŷijk` =
∑
i 6=k

∑
j 6=`

∑
k

∑
`

fikdj`ŷijk`, (2.9)

where

κ = n(1− n)d∗f∗ + d∗

∑
k

∑
i 6=k

fik

+ f∗

∑
`

∑
j 6=`

dj`

 .

Then the objective value to RLT1′ decreases by the same scalar κ at every feasible (x̂, ŷ),

so that the optimal solution set is unchanged. The optimal solution set to Problem RLT1

is also unchanged because the feasible region to RLT1 is contained within that of RLT1′,

and because the objective functions to RLT1′ and RLT1 are identical.

We begin by defining a (û, v̂, ŵ, λ̂) that satisfies the equality restrictions of the set

S of (2.6) so that we can later invoke (2.8). Let (û, v̂, ŵ, λ̂) have ŵ = 0, and have

ûik` = d∗
(
fik −

f∗

2

)
∀ (i, k, `), i 6= k,

v̂jk` = f∗
(
dj` −

d∗

2

)
∀ (j, k, `), j 6= `,

and

λ̂ijk` = (fik − f∗)(dj` − d∗) ∀ (i, j, k, `), i 6= k, j 6= `.

Then

ûik` + v̂jk` + λ̂ijk` = fikdj` = Cijk` ∀ (i, j, k, `), i 6= k, j 6= `,
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as desired. Now, every (x̂, ŷ) feasible to RLT1′ has

κ+
∑
i 6=k

∑
j 6=`

∑
k

∑
`

(fik − f∗)(dj` − d∗)ŷijk`

= n(1− n)d∗f∗ + d∗

∑
k

∑
i 6=k

fik

+ f∗

∑
`

∑
j 6=`

dj`

+
∑
i 6=k

∑
j 6=`

∑
k

∑
`

λ̂ijk`ŷijk`

= d∗
∑
k

∑
i 6=k

(
fik −

f∗

2

)+ f∗
∑
`

∑
j 6=`

(
dj` −

d∗

2

)+
∑
i 6=k

∑
j 6=`

∑
k

∑
`

λ̂ijk`ŷijk`

= d∗
∑
k

∑
`

∑
i 6=k

(
fik −

f∗

2

)
x̂k`

+ f∗
∑
`

∑
k

∑
j 6=`

dj` −
d∗

2

 x̂k`


+
∑
i 6=k

∑
j 6=`

∑
k

∑
`

λ̂ijk`ŷijk`

=
∑
k

∑
`

∑
i 6=k

d∗
(
fik −

f∗

2

)
+
∑
j 6=`

f∗
(
dj` −

d∗

2

) x̂k` +
∑
i 6=k

∑
j 6=`

∑
k

∑
`

λ̂ijk`ŷijk`

=
∑
i 6=k

∑
j 6=`

∑
k

∑
`

fikdj`ŷijk`,

establishing (2.9). Here, the first equation is by the definitions of κ and λ̂, the second

and fourth equations are algebra, the third equation holds true for all x̂ ∈ X, and the last

equation follows from the first and third expressions of (2.8) without the ck`x̂k` terms, upon

substituting û and v̂ as defined. 2

2.3 Readily Solvable Cases in Terms of RLT1

Four readily solvable cases of Problem QAP available in the literature are shown in

this section to restrict the objective coefficients Cijk` in such a manner that the conditions

of Theorem 2.1 and/or Theorem 2.2 are satisfied. The first three cases are presented as

corollaries to Theorem 2.2, so that RLT1′ (and consequently RLT1) solves QAP. The fourth

case is posed as a corollary to Theorem 2.1, so that RLT1 solves QAP. The following four

subsections examine the four cases, one case per subsection.
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2.3.1 Symmetric Flows and Skew Symmetric Distances

The works of [13, 18] consider instances of the Koopmans-Beckmann form [37] of

QAP described in Section 2.1, where the objective coefficients on the quadratic expressions

have Cijk` = fikdj` for all (i, j, k, `), i 6= k, j 6= `. For the instances of concern, the flows are

symmetric, so that fik = fki for all (i, k), i < k, and the distances are skew symmetric, so

that dj` = −d`j for all (j, `), j < `. (An analogous argument holds for the case where the

flows are skew symmetric and the distances are symmetric.) These works show that, for

such cases, Problem QAP is reducible to the assignment problem

min

{∑
k

∑
`

cklxkl : x ∈ X

}
. (2.10)

Corollary 2.1 and its proof give this result as a special case of Theorem 2.2.

Corollary 2.1

Consider a Koopmans-Beckmann instance of Problem QAP having fik = fki for all (i, k), i <

k, and dj` = −d`j for all (j, `), j < `. Then the following statements are equivalent for binary

x̂ ∈ X.

1. x̂ is part of an optimal solution (x̂, ŷ) to RLT1′,

2. x̂ is optimal to (2.10),

3. x̂ is optimal to QAP.

Proof

By Theorem 2.2, the proof is to define a (û, v̂, ŵ, λ̂) ∈ S0 so that (2.7) takes the form

(2.10). Define û = 0, v̂ = 0, ŵ by ŵijk` = fikdj` for all (i, j, k, `), i < k, j 6= `, and λ̂ = 0.

Then (2.7) takes the form (2.10). Moreover, (û, v̂, ŵ, λ̂) ∈ S0 since

ûik` + v̂jk` + ŵijk` + λ̂ijk` = 0 + 0 + fikdj` + 0 = Cijk` ∀ (i, j, k, `), i < k, j 6= `,
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and

ûik` + v̂jk` − ŵk`ij + λ̂ijk` = 0 + 0− fkid`j + 0 = Cijk` ∀ (i, j, k, `), i > k, j 6= `.

This completes the proof. 2

Two comments are warranted. First, Theorem 2.3 allows us to generalize the dis-

tance structure of Corollary 2.1 to satisfy dj` − d∗ = −(d`j − d∗) for all (j, `), j < `, for any

scalar d∗. Then dj` + d`j = 2d∗ for all (j, `), j < `, for the chosen d∗. This generalization is

also obtainable from [18, pp. 113-114], since decreasing all flows fik by d∗ preserves symme-

try. Second, since the proof sets û = 0 and v̂ = 0, that relaxed version of RLT1′ obtained

by removing equations (2.2) and (2.3) will provide an optimal x̂ to QAP when the specified

conditions are satisfied.

2.3.2 Decomposition of the Flow or Distance

A second solvable instance of the Koopmans-Beckmann form of QAP found in [13,

18] has the n(n − 1) scalars fik expressed in terms of two n-vectors α and β so that

fik = αi + βk, giving Cijk` = (αi + βk) dj` for all (i, j, k, `), i 6= k, j 6= `. (An analogous

argument holds for the case where the scalars dj` can be instead expressed in terms of two

such vectors.) The manuscripts [13, 18] show that, for such cases, Problem QAP is reducible

to the assignment problem

min

∑
k

∑
`

ck` +
∑
j 6=`

(βkdj` + αkd`j)

xk` : x ∈ X

 . (2.11)

Corollary 2.2 and its proof establish this result as a special case of Theorem 2.2.

Corollary 2.2

Consider a Koopmans-Beckmann instance of Problem QAP having fik = αi + βk for all
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(i, k), i 6= k. Then the following statements are equivalent for binary x̂ ∈ X.

1. x̂ is part of an optimal solution (x̂, ŷ) to RLT1′,

2. x̂ is optimal to (2.11),

3. x̂ is optimal to QAP.

Proof

By Theorem 2.2, the proof is to define a (û, v̂, ŵ, λ̂) ∈ S0 so that (2.7) takes the form (2.11).

Define û = 0, v̂ by v̂jk` = βkdj` + αkd`j for all (j, k, `), j 6= `, ŵ by ŵijk` = −αkd`j + αidj`

for all (i, j, k, `), i < k, j 6= `, and λ̂ = 0. Then (2.7) takes the form (2.11). Moreover,

(û, v̂, ŵ, λ̂) ∈ S0 since

ûik` + v̂jk` + ŵijk` + λ̂ijk`

= 0 + (βkdj` + αkd`j) + (−αkd`j + αidj`) + 0

= βkdj` + αidj` = Cijk` ∀ (i, j, k, `), i < k, j 6= `,

and

ûik` + v̂jk` − ŵk`ij + λ̂ijk`

= 0 + (βkdj` + αkd`j)− (−αidj` + αkd`j) + 0

= βkdj` + αidj` = Cijk` ∀ (i, j, k, `), i > k, j 6= `.

This completes the proof. 2

Since the proof sets û = 0, that relaxed version of RLT1′ obtained by removing

equations (2.2) will provide an optimal x̂ to QAP when the conditions of Corollary 2.2 are

satisfied. Theorem 2.3 does not generalize the conditions of Corollary 2.2 because there are

no restrictions on the distances dj`, and because decreasing all flows fik by some scalar f∗

is equivalent to decreasing all scalars αi by ρ and all scalars βk by f∗ − ρ, for any chosen

scalar ρ.
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2.3.3 Vector Decomposition of the Quadratic Cost Coefficients

The paper [28] considers instances of Problem QAP where the quadratic objec-

tive coefficients Cijk` allow a decomposition in terms of vectors γ1,γ2, . . . ,γ15 having

γ1, . . . ,γ4 ∈ Rn3
,γ5, . . . ,γ10 ∈ Rn2

,γ11, . . . ,γ14 ∈ Rn, and γ15 ∈ R so that

Cijk` =γ1ijk + γ2ij` + γ3ik` + γ4jk` + γ5ij + γ6ik + γ7i` + γ8jk + γ9j` + γ10k`

+ γ11i + γ12j + γ13k + γ14` + γ15

∀ (i, j, k, `), (i 6= k, j 6= `) or (i = k, j = `). (2.12)

The subscripts on each vector γp, p ∈ {1, . . . , 14}, are used to denote the individual elements

of the corresponding vector, and the coefficients ck` are represented by Ck`k`. The result

of [28] is that, when a decomposition of the form (2.12) is possible, Problem QAP can be

solved as the assignment problem

K + min

{∑
k

∑
`

ψk`xk` : x ∈ X

}
, (2.13)

where

ψk` =
∑
i

(
γ1k`i + γ2k`i + γ3ik` + γ4ik`

)
+ n(γ5kl + γ10kl ), (2.14)

and

K =
∑
i

∑
j

(
γ6ij + γ7ij + γ8ij + γ9ij

)
+ n

∑
i

(
γ11i + γ12i + γ13i + γ14i

)
+ n2γ15. (2.15)

Here, the optimal x̂ with objective value ẑ solves Problem QAP, also with objective value ẑ.

Corollary 2.3 and its proof show this same result as a special case of Theorem 2.2.

Corollary 2.3

Consider an instance of Problem QAP having objective coefficients ck` and Cijk` such that

25



Cijk` can be expressed as in (2.12) for all (i, j, k, `), i 6= k, j 6= `. Then the following

statements are equivalent for binary x̂ ∈ X.

1. x̂ is part of an optimal solution (x̂, ŷ) to RLT1′,

2. x̂ is optimal to (2.13),

3. x̂ is optimal to QAP.

Proof

By Theorem 2.2, the proof is to define a (û, v̂, ŵ, λ̂) ∈ S0 so that (2.7) has the same optimal

solution set as (2.13). Define û by

ûik` = γ1k`i + γ3ik` + γ5k` + γ6ik + γ7i` + γ10k` + γ11i + γ13k + γ14` + γ15 ∀ (i, k, `), i 6= k,

define v̂ by

v̂jk` = γ2k`j + γ4jk` + γ8jk + γ9j` + γ12j ∀ (j, k, `), j 6= `,

define ŵ by

ŵijk` = (γ1ijk − γ1k`i) + (γ2ij` − γ2k`j) + (γ5ij − γ5k`) ∀ (i, j, k, `), i < k, j 6= `,

and set λ̂ = 0. Then (2.7) becomes

min

{∑
k

∑
`

(
ck` + ψk` − δk` + φk + θ`

)
xk` : x ∈ X

}
, (2.16)

where

δk` =γ1k`k + γ2k`` + γ3kk` + γ4`k` + γ5k` + γ6kk + γ7k` + γ8`k + γ9`` + γ10k`

+ γ11k + γ12` + γ13k + γ14` + γ15 ∀ (k, `), (2.17)

φk =
∑
i

(
γ6ik + γ8ik + γ11i + γ12i

)
+ n(γ13k + γ15) ∀ k, (2.18)

θ` =
∑
i

(
γ7i` + γ9i`

)
+ nγ14` ∀ `, (2.19)

26



and where ψk` is as defined in (2.14). The assignment structure of X allows us to remove φk

and θ` from within the optimization problem of (2.16), so that (2.7) has the same optimal

solution set as

∑
k

φk +
∑
`

θ` + min

{∑
k

∑
`

(
ck` + ψk` − δk`

)
xk` : x ∈ X

}
. (2.20)

But (2.20) has the same optimal solution set as (2.13) because (2.18) and (2.19) have∑
k φk +

∑
` θ` = K, where K is as defined in (2.15), and because (2.12) and (2.17) have

Ck`k` = δk` for all (k, `), where the coefficients ck` are represented by Ck`k`. Thus, (2.7) has

the same optimal solution set as (2.13).

To finish the proof, we must show that (û, v̂, ŵ, λ̂) ∈ S0. We have

ûik`+v̂jk` + ŵijk` + λ̂ijk`

=
(
γ1k`i + γ3ik` + γ5k` + γ6ik + γ7i` + γ10k` + γ11i + γ13k + γ14` + γ15

)
+
(
γ2k`j + γ4jk` + γ8jk + γ9j` + γ12j

)
+
((
γ1ijk − γ1k`i

)
+
(
γ2ij` − γ2k`j

)
+
(
γ5ij − γ5k`

))
+ 0

= γ1ijk + γ2ij` + γ3ik` + γ4jk` + γ5ij + γ6ik + γ7i` + γ8jk + γ9j` + γ10k`

+ γ11i + γ12j + γ13k + γ14` + γ15 = Cijk` ∀ (i, j, k, `), i < k, j 6= `,

and

ûik`+v̂jk` − ŵk`ij + λ̂ijk`

=
(
γ1k`i + γ3ik` + γ5k` + γ6ik + γ7i` + γ10k` + γ11i + γ13k + γ14` + γ15

)
+
(
γ2k`j + γ4jk` + γ8jk + γ9j` + γ12j

)
−
((
γ1k`i − γ1ijk

)
+
(
γ2k`j − γ2ij`

)
+
(
γ5k` − γ5ij

))
+ 0

= γ1ijk + γ2ij` + γ3ik` + γ4jk` + γ5ij + γ6ik + γ7i` + γ8jk + γ9j` + γ10k`

+ γ11i + γ12j + γ13k + γ14` + γ15 = Cijk` ∀ (i, j, k, `), i > k, j 6= `,

where the first equality in each set is due to substitution, the second is algebraic, and the

third follows from (2.12). This completes the proof. 2
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The conditions of Theorem 2.2 have two advantages over those of (2.12). First, in

terms of size, it is much simpler to check whether there exists a (u,v,w,λ) ∈ S0 than to

check feasibility to (2.12). Conditions (2.12) comprise a linear system of n2(n2 − 2n + 2)

equations in 4n3+6n2+4n+1 variables. In contrast, the set S0 is a linear system of n2(n−1)2

equations in 2n2(n− 1) + n2(n−1)2
2 variables, with these two values representing the number

of variables yijk` present within RLT1 and the number of constraints in (2.2)–(2.4), respec-

tively. However, the observation of Section 2.2 that reduces, within RLT1, the number of

variables y to n2(n−1)2
2 and the number of equality constraints involving y to n(n−1)(2n−1)

allows us to reduce the associated set S0 to n2(n−1)2
2 equations in n(n−1)(2n−1) variables,

which is significantly smaller than (2.12) in terms of both equations and variables. The

second advantage of Theorem 2.2 over conditions (2.12) is that the former, in compari-

son to the latter, identifies a richer family of instances of Problem QAP that can be solved

as an assignment problem. To illustrate this second advantage, consider the example below.

Example 1

Consider an instance of Problem QAP having n = 4, and having C1234 = C3214 = 1 and

C1432 = C3412 = −1, and all other objective coefficients equal to 0. The reader can verify

that there exists no solution to (2.12). Yet, define û = 0, v̂ = 0, λ̂ = 0, and ŵ = 0, with

the exceptions that ŵ1234 = 1 and ŵ1432 = −1, to obtain that (û, v̂, ŵ, λ̂) ∈ S0 so that the

conditions of Theorem 2.2 are satisfied. Here, every binary x̂ ∈ X is optimal to Problem

QAP and part of an optimal solution (x̂, ŷ) to Problem RLT1′, with objective value 0.

Interestingly, conditions (2.12) can be interpreted in terms of the dual space to

a suitably defined linear program, and this interpretation leads to an alternate reduction

based on the removal of superfluous variables and constraints. Unlike the richer conditions

of Theorem 2.2, however, the reduced system identifies the same set of solvable instances of

Problem QAP as does (2.12), because consistency of either system implies consistency to
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the other. The first reduction is to discard all variables γj for j ∈ {5, . . . , 15}. The second

reduction is to remove all equations with (i, j, k, `) having i = k, j = `. To elaborate, in a

similar manner to the way in which the set S of (2.6) was motivated in terms of the dual

space to RLT1, conditions (2.12) can be motivated so that each γj corresponds to a des-

ignated family of constraints, and so that each constraint corresponds to a primal variable

yijk`. The constraints associated with γj for j ∈ {5, . . . , 15} turn out to be redundant, mak-

ing the associated variables unnecessary. The equations associated with yijk`, i = k, j = `,

are also unnecessary, as each such yk`k` simplifies to xk`. (The details of the motivating lin-

ear program and the identification of redundant constraints are described in the appendix.)

Upon removing the redundant restrictions and unnecessary variables yijk` from this larger

program, the resulting form is the following representation of Problem QAP due to Frieze

and Yadegar [29], as presented below.

FY: minimize
∑
k

∑
`

ck`xk` +
∑
i 6=k

∑
j 6=`

∑
k

∑
`

Cijk`yijk`

subject to
∑
6̀=j
yijk` = xij ∀ (i, j, k), i 6= k (2.21)

∑
k 6=i

yijk` = xij ∀ (i, j, `), j 6= ` (2.22)

∑
j 6=`

yijk` = xk` ∀ (i, k, `), i 6= k

∑
i 6=k

yijk` = xk` ∀ (j, k, `), j 6= `

yijk` ≥ 0 ∀ (i, j, k, `), i 6= k, j 6= `

x ∈ X, x binary

Let FY denote the continuous relaxation of Problem FY obtained by removing the

x binary restrictions, and let FY′ denote the relaxation of FY obtained by removing the

nonnegativity restrictions on y in FY. The appendix establishes that the dual to FY′ has

a solution if and only if (2.12) has a solution. Then, since FY′ has 4n2(n− 1) equations in
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the n2(n− 1)2 variables y, system (2.12) can be thereby reduced to n2(n− 1)2 equations in

4n2(n−1) variables, as the dual constraints associated with the variables x do not affect dual

feasibility. Of significance here is that the system remains larger than the earlier-described

reduced version of S0, which has n2(n−1)2
2 equations in n(n− 1)(2n− 1) variables.

Notably, RLT1′ identifies a richer family of solvable instances of QAP than FY′,

and RLT1 identifies a richer family of solvable instances of QAP than FY. This dominance

follows from a result of [2] which shows that each of the constraints found within (2.21) and

(2.22) is implied by (2.2)–(2.4). Specifically, given any (i, j, k), i 6= k, summing the equation∑
6̀=j yk`ij = xij of (2.2) with the (n − 1) equations yijk` − yk`ij = 0, ` 6= j, of (2.4) gives

the equation
∑
6̀=j yijk` = xij of (2.21). Similarly, given any (i, j, `), j 6= `, summing the

equation
∑

k 6=i yk`ij = xij of (2.3) with the (n − 1) equations yijk` − yk`ij = 0, k 6= i, of

(2.4) gives the equation
∑

k 6=i yijk` = xij of (2.22). Relative to strict dominance, Example

1 shows that it is possible for RLT1′ to solve QAP when FY′ does not, and a modified

example of [2], presented below as Example 2, shows that it is possible for RLT1 to solve

QAP when FY does not.

Example 2

Consider an instance of Problem QAP having n = 4, and with objective coefficients ck`

and Cijk` defined so that C1233 = C1443 = C2243 = C3112 = C4312 = C3314 = C4114 =

C3322 = C4122 = C3124 = C4324 = C1431 = C2231 = C2433 = C1241 = C2441 = C1422 =

C2214 = C3341 = C4133 = C1224 = C2412 = C3143 = C4331 = 0, and all other coefficients

equal to 1. The conditions of Theorem 2.2 cannot be satisfied so that (2.12) also cannot

be satisfied, making Problems RLT1′ and FY′ unbounded. However, an optimal (x̂, ŷ) to

FY is given by x̂12 = x̂14 = x̂22 = x̂24 = x̂31 = x̂33 = x̂41 = x̂43 = 1
2 , ŷijk` = 1

2 for all

(i, j, k, `), i 6= k, j 6= `, having Cijk` = 0, and all other variables x̂k` and ŷijk` equal to 0.

The optimal objective value is 4. For this same problem, an optimal (x̄, ȳ) to RLT1 has

x̄14 = x̄22 = x̄31 = x̄43 = 1, all other x̄ij = 0, and ȳijk` = x̄ij x̄k` for all (i, j, k, `), i 6= k,

j 6= `. The optimal objective value is 8.
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Before progressing to the next section, we note here that conditions (2.12) of Corol-

lary 2.3 subsume the conditions of Corollary 2.2, but not those of Corollary 2.1. Given that

the conditions of Corollary 2.2 are satisfied so that Cijk` = (αi+βk)dj` for all (i, j, k, `), i 6= k,

j 6= `, we can set γ2ij` = αidj` for all (i, j, `), j 6= `, set γ4jk` = βkdj` for all (j, k, `), j 6= `, and

set all other γp = 0 to satisfy Corollary 2.3. However, Example 1 satisfies the conditions of

Corollary 2.1 with f13 = f31 = d24 = 1, d42 = −1, and all other fik and dj` equal 0 but, as

mentioned within Example 1, there exists no solution to (2.12).

2.3.4 Flow or Distance Reduction

Motivated by the chr18b instance found in the problem test bed of [16], the paper

[27] gives a set of conditions that are sufficient for identifying an optimal solution to a

Koopmans-Beckmann instance of Problem QAP. We restate these conditions as Corollary

2.4 below, and show how these conditions follow from Theorem 2.1.

Corollary 2.4

Consider a Koopmans-Beckmann instance of Problem QAP having ck` = 0 for all (k, `),

and let 0 = min
(i,k),i 6=k

{fik} and d′ = min
(j,`),j 6=`

{dj`} denote the minimum flow and distance,

respectively. If there exists a binary x̂ ∈ X such that for each (i, j, k, `), i 6= k, j 6= `, with

x̂ij = x̂k` = 1, either fik = 0 or dj` = d′, then x̂ is optimal to QAP.

Proof

Suppose that there exists a binary point x̂ satisfying the given conditions. By Theorem 2.1,

it is sufficient to define a (û, v̂, ŵ, λ̂) ∈ S so that x̂ is optimal to (2.7) and so that λ̂ijk` = 0

for all (i, j, k, `), i 6= k, j 6= `, having x̂ij = x̂k` = 1. Define v̂ = 0, ŵ = 0, define û by

ûik` = fikd
′ ∀ (i, k, `), i 6= k,
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and subsequently define λ̂ in terms of û by

λ̂ijk` = Cijk` − ûik` = fik(dj` − d′) ∀ (i, j, k, `), i 6= k, j 6= `,

so that (û, v̂, ŵ, λ̂) satisfies the equality restrictions in S of (2.6). By definition of d′, we have

λ̂ ≥ 0, so that (û, v̂, ŵ, λ̂) ∈ S. Also, for each (i, j, k, `), i 6= k, j 6= `, with x̂ij = x̂k` = 1, we

have λ̂ijk` = 0 by the premise that either fik = 0 or dj` = d′. Finally, for the given (û, v̂),

the linear program (2.7) becomes

min

∑
k

∑
`

∑
i 6=k

fikd
′

xk` : x ∈ X

 . (2.23)

The point x̂ is primal feasible, and the values (π̂1, π̂2, π̂3) given by π̂1k =
∑

i 6=k fikd
′ for all

k, π̂2 = 0, and π̂3 = 0 form a complementary dual solution. Thus, x̂ is optimal to (2.7),

and the proof is complete. 2

From a graph perspective, [27] points out that for those cases in which a “flow

graph” of the positive fik realizes a path structure, and a “distance graph” of the dj` has a

special grid structure, then the conditions of Corollary 2.4 are satisfied.

Theorem 2.3 allows an interesting generalization of the flow structure of Corollary

2.4. Since Theorem 2.3 allows us to subtract any scalar f∗ from all the flows fik without

changing the set of optimal solutions, it is not necessary in Corollary 2.4 to require that

0 = min
(i,k),i 6=k

{fik}; any scalar f ′ will suffice in place of 0. A formal statement of this gener-

alization is presented as a variant of Corollary 2.4 below.

Corollary 2.4 (generalized)

Consider a Koopmans-Beckmann instance of Problem QAP having ck` = 0 for all (k, `),

and let f ′ = min
(i,k),i 6=k

{fik} and d′ = min
(j,`),j 6=`

{dj`} denote the minimum flow and distance,

respectively. If there exists a binary x̂ ∈ X such that for each (i, j, k, `), i 6= k, j 6= `, with
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x̂ij = x̂k` = 1, either fik = f ′ or dj` = d′, then x̂ is optimal to QAP.

Observe that the earlier-referenced result [18, pp. 113-114] allowing all flows and distances

to be changed by the same scalar, without altering the set of optimal solutions, can also be

used to obtain this generalization, since adding the scalar f ′ to all distances dj` does not

change the index pairs (j, `) having the minimum distance.

2.4 Conclusions

While having a large number of applications in various fields of study, the quadratic

assignment problem has proven itself very difficult to solve. General solution procedures are

limited to approximately n = 30 facilities. As a result, researchers have focused attention

on special objective structures that admit more readily (polynomially) solvable instances.

This chapter shows how four such structures can be explained in terms of Problem RLT1,

the level-1 RLT representation. Problem RLT1 is polynomial in size in terms of n and, as is

to be expected since otherwise we would have P = NP, the continuous relaxation, referred

to as RLT1, has fractional extreme points, in addition to n-factorial binary such points.

The theoretical foundation of this effort, found within Theorems 2.1 and 2.2, uses the KKT

conditions to establish necessary and sufficient conditions for RLT1, and also a relaxation

RLT1′, to have an optimal binary solution.

The four special cases, found within [13, 18, 27, 28], are explained in terms of

Corollaries 2.1, 2.2, and 2.3 of Theorem 2.2 and Corollary 2.4 of Theorem 2.1, with one

corollary devoted to each case. These corollaries collectively show that RLT1 subsumes

all cases in the following sense; if the conditions of any of these cases are satisfied, then

RLT1 will have an optimal binary solution. In fact, the first three cases found within

Corollaries 2.1 through 2.3 show the stronger result that RLT1′ will have an optimal binary

solution. Notably, however, RLT1 identifies a richer family of solvable instances than do

these corollaries. Specifically, Example 2 shows that RLT1 can yield an optimal binary
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solution to QAP when (2.12) has no solution, so that the conditions of Corollary 2.3 cannot

be satisfied. In addition, the conditions of none of Corollaries 2.1, 2.2, or 2.4 can be

satisfied, as each considers Koopmans-Beckmann instances. Example 2 cannot be placed

in Koopmans-Beckmann form, as there exist no f13, f14, d23, d24 having C1234 = f13d24 = 1,

C1243 = f14d23 = 1, and C1233 = f13d23 = 0.

This chapter makes two other notable contributions. First, Theorem 2.3 shows

that the optimal solution set for Koopmans-Beckmann instances is invariant under certain

objective transformations, allowing a straightforward generalization of the conditions of

Corollaries 2.1 and 2.4. Second, conditions (2.12) used in the third case are simplified.

Avenues for further research arise. Our results show that boundedness of the linear

program RLT1′ resulting from the level-1 RLT approach is a sufficient condition for an

instance of Problem QAP to be linearizable. We conjecture that this same condition is also

necessary, an idea that is explored in Chapter 3. We are also investigating the utility of the

level-1 and higher-level RLT forms for establishing new, or independently verifying other

known, sets of sufficiency conditions for polynomially solvable instances of Problem QAP.
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2.5 Appendix

Conditions (2.12) can be motivated in terms of a mixed 0-1 linear reformulation of

Problem QAP in such a manner that each γj corresponds to a distinct family of constraints

to a suitable relaxation. A reduction of this formulation leads to a known mixed 0-1 linear

form of QAP, as well as to a simpler version of (2.12).

Consider Problem LP1 that is defined in the same (x,y) variable space as Problem

RLT1, with the following exception. Unlike RLT1, the variables yijk` having i = k and

j = ` are found within LP1 so that, for each (k, `), yk`k` denotes the product xk`xk`. In this

manner, each yijk` in LP1 corresponds to a “compatible” four-tuple (i, j, k, `) as defined in

[28] which, as pointed out below, in turn corresponds to an equation of (2.12). Specifically,

and though not explicitly stated as such for simplicity, only those variables yijk` having

either (i 6= k, j 6= `) or (i = k, j = `) are assumed present in LP1. (An equivalence between

Problems QAP and LP1 is observed at the end of this section.)

LP1: minimize
∑
i

∑
j

∑
k

∑
`

Cijk`yijk`

subject to
∑
`

yijk` = xij ∀ (i, j, k) (2.24a)

∑
k

yijk` = xij ∀ (i, j, `) (2.24b)

∑
j

yijk` = xk` ∀ (i, k, `) (2.24c)

∑
i

yijk` = xk` ∀ (j, k, `) (2.24d)

∑
k

∑
`

yijk` = nxij ∀ (i, j) (2.24e)

∑
j

∑
`

yijk` = 1 ∀ (i, k) (2.24f)

∑
j

∑
k

yijk` = 1 ∀ (i, `) (2.24g)
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∑
i

∑
`

yijk` = 1 ∀ (j, k) (2.24h)

∑
i

∑
k

yijk` = 1 ∀ (j, `) (2.24i)

∑
i

∑
j

yijk` = nxk` ∀ (k, `) (2.24j)

∑
j

∑
k

∑
`

yijk` = n ∀ i (2.24k)

∑
i

∑
k

∑
`

yijk` = n ∀ j (2.24l)

∑
i

∑
j

∑
`

yijk` = n ∀ k (2.24m)

∑
i

∑
j

∑
k

yijk` = n ∀ ` (2.24n)

∑
i

∑
j

∑
k

∑
`

yijk` = n2 (2.24o)

yijk` ≥ 0 ∀ (i, j, k, `) (2.24p)

x ∈ X, x binary (2.24q)

Analogous to the way in which Problem RLT1 was constructed from RLT1 by re-

moving the x binary restrictions, and the way in which Problem RLT1′ was constructed

from RLT1 by removing the y ≥ 0 inequalities, construct Problem LP1 from LP1 by re-

moving the x binary restrictions of (2.24q), and construct Problem LP1′ from LP1 by

removing the y ≥ 0 inequalities of (2.24p). Then conditions (2.12) are the dual equations

corresponding to the variables yijk` of LP1′, where equations (2.24a)–(2.24o) are assigned

dual multipliers γ1 – γ15, respectively. Consequently, the dual to LP1′ has a solution if and

only if (2.12) has a solution, as the x ∈ X constraints of (2.24q) allow dual feasibility with

respect to the variables x regardless of the γ1 – γ15 values.

Problems LP1, LP1, and LP1′ contain redundant constraints and extraneous vari-

ables, allowing the formulations to be reduced in size. Relative to constraints, in the presence

of the restrictions x ∈ X of (2.24q), constraints (2.24a)–(2.24c) imply (2.24e)–(2.24o), and
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so these latter eleven families of restrictions are redundant in each of these three problems.

Observe that for fixed (i, j), summing (2.24a) over the n values of k gives equation (2.24e)

while for fixed (k, `), summing (2.24c) over the n values of i gives equation (2.24j). For

fixed (i, k), summing (2.24a) over j gives (2.24f) while for fixed (j, k), summing (2.24a) over

i gives (2.24h). Similarly, for fixed (i, `), summing (2.24b) over j gives (2.24g) while for

fixed (j, `), summing (2.24b) over i gives (2.24i). Continuing, for each i, summing (2.24a)

over j and k gives (2.24k) while, for each j, summing (2.24b) over i and ` gives (2.24l). For

each k, summing (2.24a) over i and j gives (2.24m) while, for each `, summing (2.24b) over

i and j gives (2.24n). Finally, summing (2.24a) over all i, j, and k gives (2.24o).

Relative to extraneous variables, all yk`k` can be eliminated from these three prob-

lems, as every such variable appears in exactly one constraint of each of (2.24a)–(2.24d),

and each of the four associated constraints individually sets yk`k` = xk`. Thus, we can also

remove all 4n2 such constraints from these formulations.

The reduced versions of Problems LP1, LP1, and LP1′ that are obtained by remov-

ing all redundant constraints and extraneous variables are referred to in Section 2.3.3 as

Problems FY, FY, and FY′, respectively. As the dual to LP1′ clearly has a solution if and

only if the dual to FY′ has a solution, we can use our above observation that the dual to

LP1′ has a solution if and only if (2.12) has a solution to conclude that the dual to FY′

has a solution if and only if (2.12) has a solution. Also of interest is that Problem FY was

earlier shown [29] to be a valid representation of Problem QAP, giving us that Problem LP1

is a valid form.
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Chapter 3

Characterizing Linearizable QAPs

by the Level-1 RLT

3.1 Introduction

The quadratic assignment problem (qap) can be formulated as

P: minimize

∑
k

∑
`

ck`xk` +
∑
i

∑
j

∑
k 6=i

∑
`6=j

Cijk`xijxk` : x ∈X, x binary

 ,

where

X ≡

x ≥ 0 :
∑
j

xij = 1 ∀ i,
∑
i

xij = 1 ∀ j

 (3.1)

is the assignment set. Note that this formulation is equivalent to Problem QAP of Chapter

2 and, like in the previous chapter, we assume that all indices and summations run from 1

to n unless otherwise noted. Since it is desired to minimize a quadratic objective function

over the set X, the problem name results. The qap is NP-hard, and first arose in a facility

location scenario [37]. For this problem, it is desired to situate n facilities on n location sites,

with each site housing exactly one facility, in such a manner as to minimize the combined

cost of construction and material flow. Here, Cijk` = fikdj` to represent the product of the
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flow fik between pairs of facilities i and k with the distance dj` between pairs of location sites

j and `. Then each coefficient Cijk` represents the cost of material flow between facilities

i and k, given that facility i is located on site j and facility k is located on site `. Each

coefficient ck` represents a construction cost for situating facility k on site `. This version

of P is the Koopmans-Beckmann form. More general forms that do not have Cijk` = fikdj`

have also been studied. The qap boasts many applications [17, 24, 26, 30, 38, 52, 53], with

surveys in [14, 18, 42, 45]. The most efficient solution strategies [1, 8, 33, 34] are limited to

problems having n ≤ 30.

Due to the problem difficulty, a strategy for solving Problem P has been to seek out

special objective function structures that allow optimal solutions to be obtained in poly-

nomial time. For Koopmans-Beckmann forms, various works [13, 15, 19, 20, 22, 27, 40]

exploit specific flow and distance structures for this purpose. Other contributions [21] pro-

vide variations of Problem P that can be solved in either polynomial or pseudo-polynomial

time. Of particular interest in this study is the identification of objective coefficients that

allow P to be transformed into an equivalent linear assignment problem; such problems

are referred to as being linearizable. Formally stated, a size n instance of Problem P with

objective coefficients ck` and Cijk` is defined to be linearizable if there exists a scalar κ and

coefficients ĉk` so that

κ+
∑
k

∑
`

ĉk`xk` =
∑
k

∑
`

ck`xk` +
∑
i

∑
j

∑
k 6=i

∑
`6=j

Cijk`xijxk` for all x ∈X, x binary.

(3.2)

Clearly, every instance of P that is expressible in the form (3.2) is polynomially solvable,

because each is reducible to a linear assignment problem. Although not explicitly stated in

these terms, the works [13, 18, 28] essentially provide sufficient conditions for recognizing

such instances of Problem P. The paper [35] extends this body of work by providing condi-

tions that are both necessary and sufficient, and also gives an O(n4) algorithm for checking

whether these conditions are satisfied. The paper [46] shows that, for Koopmans-Beckmann

forms, the conditions can be checked in O(n2) time.
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The primary contribution of this chapter is to give a different, polyhedral-based

necessary and sufficient condition for identifying an instance of Problem P as linearizable

and, in the process, to merge the notion of linearizable with the continuous relaxation of a

known mixed 0-1 linear reformulation of the problem. The linear form is a relaxed version

of the level-1 (reformulation-linearization-technique) RLT representation of Problem P, as

introduced in [2]. The paper [7] shows that the sufficient conditions of [13, 18, 28] are

subsumed by this representation, but no mention is made as to necessity. Specifically, we

show that the qap is linearizable if and only if the dual to this relaxed version has a solution.

Because this version is always feasible, we have that the qap is linearizable if and only if it

is bounded. A consequence of this study is that the level-1 RLT identifies a richer family of

solvable instances of the qap than those which are linearizable in the sense that an optimal

binary solution will exist to the relaxed linear program for every linearizable instance, but

the program can have a binary solution without the qap being linearizable.

This chapter is organized as follows. In the next section, we briefly summarize the

level-1 RLT form, present a more compact representation that is obtained via a substitution

of variables, and provide a roadmap for identifying a maximal set of linearly independent

equations that is implied by the resulting constraints. Section 3.3 identifies the linearly

independent equations, with the identification applying the RLT process to a basis of the

assignment polytope X of (3.1), and also constructing a second set of equations having a

network substructure, to blend with equations defining X. Section 3.4 provides the main

result, showing that an instance of the qap is linearizable if and only if a relaxed version

of the level-1 RLT form is bounded. This is accomplished using two steps. The first step

shows that all equations that are valid for the level-1 RLT form are implied by the linearly

independent equations of Section 3.3, verifying this set as maximal. The second step then

establishes the relationship to (3.2). A numeric example is also given to show that the

relaxed level-1 RLT can provide a binary solution for instances of the qap that are not

linearizable. A consequence of the first step of Section 3.4 is the characterization of the

dimensions of the level-1 RLT and various relaxations. These dimensions are studied in
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Section 3.5, and Section 3.6 provides concluding remarks.

3.2 Level-1 RLT and Overview of Structure

In this section, we review the level-1 RLT form of Problem P, and provide a roadmap

for equivalently rewriting the constraints in a form that is more amenable to our study. The

details of this rewrite are presented in Sections 3.3 and 3.4, with Section 3.3 identifying an

implied set of linearly independent (LI) equations and Section 3.4 showing this set to be

maximal.

3.2.1 Level-1 RLT Form

The RLT methodology was introduced in [4, 5, 6] to reformulate linearly constrained

quadratic 0-1 optimization problems into mixed-binary linear programs that afford a tight

linear programming relaxation. It was later extended (see [3, 50, 49, 51] and their references)

into a broader theory for computing polyhedral outer-approximations of general discrete and

nonconvex sets. Given a mixed-discrete optimization problem, the RLT constructs a hierar-

chy of successively tighter linear programming approximations, culminating at the highest

level with a linear program whose feasible region gives an explicit algebraic description of

the convex hull of feasible solutions. The levels are obtained using the two steps of refor-

mulation and linearization. For mixed-binary programs, the reformulation step multiplies

“product factors” of the problem variables with the constraints, and enforces the binary

identity that x2 = x for binary x. The “linearization” step then substitutes a continuous

variable for each resulting product term.

Relative to the qap, various authors [1, 33, 34] have reported success in using differ-

ent RLT levels to compute bounds within branch-and-bound schemes. Our specific interest

here is with the level-1 form, as detailed in [2] and given below.
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RLT1: minimize
∑
k

∑
`

ck`xk` +
∑
i

∑
j

∑
k 6=i

∑
`6=j

Cijk`yijk`

subject to
∑
j 6=`

yijk` = xk` ∀ (i, k, `), i 6= k (3.3)

∑
i 6=k

yijk` = xk` ∀ (j, k, `), j 6= ` (3.4)

yijk` = yk`ij ∀ (i, j, k, `), i < k, j 6= ` (3.5)

yijk` ≥ 0 ∀ (i, j, k, `), i 6= k, j 6= ` (3.6)

x binary, x ∈X (3.7)

Problem RLT1 derives from Problem P as follows. The reformulation step multi-

plies every constraint defining X in (3.1), including the x ≥ 0 inequalities, by each binary

variable xk`. Then xk` = xk`xk` is substituted for each (k, `). The structure of X enforces

that xijxk` = 0 for all (i, j, k, `) with i = k, j 6= `, or with i 6= k, j = `. For each remaining

xijxk` product, the linearization step then substitutes a continuous variable yijk`. Specifi-

cally, for every (k, `), the n−1 equations found within each of (3.3) and (3.4) are computed

by multiplying the restrictions
∑

j xij = 1 ∀ i and
∑

i xij = 1 ∀ j of X by the variable xk`,

respectively. Equations (3.5) recognize that xijxk` = xk`xij for all (i, j, k, `), i < k, j 6= `.

Inequalities (3.6) result from multiplying the x ≥ 0 inequalities of X by the variables xk`,

upon discarding the products set to 0.

The RLT theory gives us that Problems P and RLT1 are equivalent in that an

optimal solution to either problem yields an optimal solution to the other. This result

[2] follows because, for every x̂ ∈ X, x̂ binary, a point (x̂, ŷ) is feasible to constraints

(3.3)–(3.6) if and only if ŷijk` = x̂ij x̂k` for all (i, j, k, `), i 6= k, j 6= `.

As suggested in [2], we can use (3.5) to remove, via substitution, all variables yijk`

having i > k, j 6= `, from Problem RLT1, and then discard constraints (3.5). The below

formulation results, where C ′ijk` = Cijk` + Ck`ij for all (i, j, k, `), i < k, j 6= `.
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RLT1′: minimize
∑
k

∑
`

ck`xk` +
∑
i

∑
j

∑
k>i

∑
`6=j

C ′ijk`yijk`

subject to
∑
j 6=`

yijk` = xk` ∀ (i, k, `), i < k (3.8)

∑
j 6=`

yk`ij = xk` ∀ (i, k, `), i > k (3.9)

∑
i<k

yijk` +
∑
i>k

yk`ij = xk` ∀ (j, k, `), j 6= ` (3.10)

yijk` ≥ 0 ∀ (i, j, k, `), i < k, j 6= ` (3.11)

x binary, x ∈X (3.12)

Here, equations (3.3) become (3.8) and (3.9), and equations (3.4) become (3.10). Note that

this formulation is different from the Problem RLT1′ of Chapter 2.

Observe the difference in size between Problems RLT1 and RLT1′. Problem RLT1

has n2 variables x and n2(n − 1)2 variables y, for a total of n2(n2 − 2n + 2). Relative

to constraints, RLT1 has 2n2(n − 1) equations in (3.3) and (3.4), n2(n−1)2
2 equations in

(3.5), and 2n equations in X of (3.7), for a total of n2(n−1)(n+3)
2 + 2n, in addition to the

nonnegativity restrictions on x and y. Due to the variable substitution, Problem RLT1′ has

n2(n−1)2
2 fewer variables and constraints than does RLT1, in addition to half the number of

nonnegativity restrictions in (3.6) found in (3.11). Specifically,

RLT1′ has n2 +
n2(n− 1)2

2
variables and 2n2(n− 1) + 2n equations. (3.13)

Problem RLT1′ and a variant introduced in [7] that is obtained by removing the

nonnegativity restrictions on y in (3.11), call this variant RLT1′′, will be of importance

throughout this study. For future reference, we let RLT1
′

and RLT1
′′

be the linear pro-

gramming relaxations of Problems RLT1′ and RLT1′′, respectively, that are obtained by

removing the binary restrictions on x.
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3.2.2 Roadmap for Exploiting RLT Structure

In this section, we present a roadmap for identifying a maximal set of LI equations

that is implied by (3.8)–(3.10) and the equations of X. This identification is the key first

step for establishing a necessary and sufficient condition for an instance of the qap to be

linearizable and, as a consequence, for characterizing the dimension of the the convex hull

of feasible solutions to RLT1′, as well as that of the feasible regions to RLT1
′

and RLT1
′′
.

The roadmap is followed in Sections 3.3 and 3.4.

By the RLT process, restrictions (3.8)–(3.10) and the equations of X form a linearly

dependent (LD) set. Certain redundant constraints have been pointed out in prior works

[7, 47] for RLT1, and these dependencies immediately transfer to RLT1′. The paper [7]

eliminates n(n− 1) + 1 equations by observing that any single equation in X is redundant,

so that the n(n − 1) equations present in either (3.3) or (3.4), which are computed by

multiplying the chosen equation with each variable xk`, are also redundant. In a different

study, the paper [47] explains that either the first or second set of n equations of X is

implied, so that the selected n equations can be removed. We show in the next two sections

that RLT1′ contains a maximal set of 2(n−1)3 +n(n−1) LI equations, so that 3n2−3n+2

of the 2n2(n− 1) + 2n total equations reported in (3.13) are implied. For future reference,

this number of LI equations is computed by

(
2(n− 1)3 + n(n− 1)

)
=
(

2n2(n− 1) + 2n
)
−
(

3n2 − 3n+ 2
)
, (3.14)

with the right side of the expression subtracting the number of LD equations from the total.

In particular, Section 3.3 provides this number of LI constraints that are implied by the

equations of RLT1′, and Section 3.4 shows the number to be maximal.

To illustrate our approach pictorially, consider the linear system of equations in

matrix form found in Figure 3.1 below, which is expressed in terms of the parameters

m1,m2,m3 and n1, n2, n3, n4 as given, where m1 = n2 and m2 = n3, with n1+n2+n3+n4 =

n2 + n2(n−1)2
2 equalling the number of variables in RLT1′ as noted in (3.13), and with
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m1 +m2 +m3 = 2(n− 1)3 + n(n− 1), found in the left expression of (3.14). As indicated

by the multiplication, the first set of n1 variables corresponds to x while the last three sets

of n2 + n3 + n4 variables comprise a partition of y into y1, y2, and y3. The first m1 + m2

equations are constructed to be implied by (3.8)–(3.10), and the equations of X, so as to

satisfy the following properties: the first m1 equations associate the set of n2 variables y1

with an identity matrix Im1 of size m1, and the second m2 equations contain none of these

variables y1, but associate an invertible matrix E with the set of n3 variables y2. The final

m3 equations represent any selection of 2n − 1 equality constraints found in X of (3.1).

The last set of n4 variables y3 are those variables y not present in either y1 or y2.

A Im1
B C

D 0 E F
G 0 0 0



x
y1
y2
y3

 =

00
1

m1{
m2{
m3{

} } } }
n1 n2 n3 n4

with

• m1 = 2(n− 1)3, m2 = (n− 1)(n− 2)− 1, m3 = 2n− 1

• n1 = n2, n2 = 2(n− 1)3, n3 = (n− 1)(n− 2)− 1, n4 = (n−3)(n−2)(n−1)n
2 + 1

Figure 3.1: Linearly independent equations implied by RLT1
′
.

Sections 3.3 and 3.4 relate to Figure 3.1 as follows. Section 3.3 details the system

formation from the constraints of RLT1′, emphasizing the construction of the identity Im1

and the invertibility of E. Since the last m3 = 2n− 1 equations include no variables y, and

sinceG is of full row rank, we will then have that the m1+m2+m3 equations are LI. Section

3.4 uses this LI set to establish the desired necessary and sufficient linearizable condition.

In the process, it shows that the coefficients β on every equation αx+βy = κ that is valid

for RLT1′ can be computed as a linear combination of the first m1 + m2 equations of the

matrix as a stepping stone to proving that the m1 +m2 +m3 LI equations of Figure 3.1 are
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maximal for RLT1
′
.

3.3 Identification of Linearly Independent Equations

In this section, and consistent with equation (3.14) and Figure 3.1, we identify

2(n − 1)3 + n(n − 1) = m1 + m2 + m3 LI equations that are implied by the equations of

RLT1′. The first set of m1 equations and the second set of m2 equations are considered in

Subsections 3.3.1 and 3.3.2, respectively. In these subsections, we emphasize the partitioning

of the variables y to obtain Im1 and the invertible matrix E. Subsection 3.3.3 combines

these equations with the additional m3 = 2n− 1 LI equations associated with G to obtain

the independence of all equations.

3.3.1 First Set of Linearly Independent Equations

To identify the first set of m1 = 2(n− 1)3 LI equations, we exploit a property of the

RLT process relative to elementary row operations. Specifically, given a linear system of

equations, every equation that can be computed by first performing elementary row opera-

tions on the system, and then applying the RLT, can likewise be computed by first apply-

ing the RLT, and then performing elementary row operations. In light of this property, we

rewrite the setX of (3.1) by eliminating any single (redundant) equation, and by expressing

the remaining 2n−1 equations so that the variables (x1n, x2n, . . . , xnn, xn1, xn2 . . . , xn(n−1))

serve as a basis. The below set X ′ results.

X ′ ≡



x ≥ 0 : xin = 1−
∑
j<n

xij ∀ i < n,

xnj = 1−
∑
i<n

xij ∀ j < n,

xnn =
∑
i<n

∑
j<n

xij + (2− n)


(3.15)

The above-stated property assures that every restriction computed by multiplying an equa-

tion of X ′ by a variable xk`, and then performing the substitution xk`xk` = xk` (again
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enforcing xijxk` = 0 for all (i, j, k, `) with i = k, j 6= `, or with i 6= k, j = `), together with

the linearization operation that includes removing all variables yijk` having i > k, j 6= `, is

implied by (3.8)–(3.10).

Bearing this property in mind, compute the m1 = 2(n− 1)3 equations (3.16)–(3.20)

below in the following manner. For each i < n, multiply the equation defining xin by

each xk`, k 6= i, k < n, ` < n, to obtain the (n−1)2(n−2)
2 equations found in each of (3.16)

and (3.17), depending on whether i < k or i > k. For each j < n, multiply the equation

defining the variable xnj by each xk`, ` 6= j, k < n, ` < n, to obtain the (n − 1)2(n − 2)

equations (3.18). Multiply the equation defining xnn by each xk`, k < n, ` < n, to obtain

the (n− 1)2 equations (3.19). Finally, for each i < n, multiply the equation defining xin by

each xn`, ` < n, to obtain the (n− 1)2 equations (3.20).

yink` = xk` −
∑
j 6=`,n

yijk` ∀ (i, k, `), i < k < n, ` < n (3.16)

yk`in = xk` −
∑
j 6=`,n

yk`ij ∀ (i, k, `), k < i < n, ` < n (3.17)

yk`nj = xk` −
∑
i<k

yijk` −
∑
k<i<n

yk`ij ∀ (j, k, `), j 6= `, j < n, k < n, ` < n (3.18)

yk`nn =
∑
i<k

∑
j 6=`,n

yijk` +
∑
k<i<n

∑
j 6=`,n

yk`ij + xk`(3− n) ∀ (k, `), k < n, ` < n (3.19)

yinn` = xn` −
∑
j 6=`,n

yijn` ∀ (i, `), i < n, ` < n (3.20)

Consider the Lemma below.

Lemma 3.1

Equations (3.16)–(3.20) form a LI set.

Proof

Every equation in (3.16)–(3.18) contains a single variable yijk` having exactly one of the

indices j, k, ` equal to n, and these 2(n − 1)2(n − 2) variables are distinct. Thus, (3.16)–
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(3.18) form a LI set. Every equation in (3.19) and (3.20) contains a single variable yijk`

having exactly two of the indices j, k, ` equal to n, and these 2(n−1)2 variables are distinct.

Moreover, none of these variables appear within (3.16)–(3.18). Thus, (3.16)–(3.18), together

with (3.19) and (3.20), form a LI set. 2

Observe the relationship between (3.16)–(3.20) and the first m1 equations of the

matrix of Figure 3.1. The matrix Im1 corresponds to those variables yijk` in RLT1′ such

that

yijk` has at least one index j, k, ` equal to n. (3.21)

A count of these variables is 2(n−1)2(n−2) with a single such subscript and 2(n−1)2 with

two such subscripts, for a total of m1. The matrix A corresponds to the variables x found

within (3.16)–(3.20), while the matrices B and C correspond to the variables yijk` having

no index j, k, ` equal to n. (These matrices B and C are further described in Subsection

3.3.2 following Theorem 3.1.)

3.3.2 Second Set of Linearly Independent Equations

Similar to the first set of m1 equations, the second set of m2 = (n − 1)(n − 2) − 1

equations is implied by (3.8)–(3.10) and the equations of X. In addition, the m1 + m2

equations combine to form a LI set. The explanations follow.

Consider the (n−1)(n−2)
2 linear equations found in each of (3.22) and (3.23) below,

where the notation {·}L is used to denote the previously defined RLT linearization oper-

ation that substitutes a continuous variable yijk`, i < k, j 6= `, for every occurrence of the

quadratic term xijxk` (or equivalently xk`xij).

48



{(
1−

∑
i<n

xij

)(
1−

∑
i<n

xi`

)}
L

= 0 ∀ (j, `), j < ` < n (3.22)


1−

∑
j<n

xij

1−
∑
j<n

xkj


L

= 0 ∀ (i, k), i < k < n (3.23)

Lemma 3.2 below establishes that these equations are implied by the equality constraints

of RLT1′.

Lemma 3.2

The (n−1)(n−2) equations (3.22) and (3.23) are implied by (3.8)–(3.10) and the equations

of X.

Proof

Consider any (j, `), j < ` < n, where the restriction {xnjxn`}L = 0 is enforced, as in the

RLT process applied to Problem P when computing (3.8)–(3.10). We have that

{(
1−

∑
i<n

xij

)(
1−

∑
i<n

xi`

)}
L

=

{(
1−

∑
i<n

xij

)(
1−

∑
i

xi` + xn`

)}
L

=

{(
1−

∑
i<n

xij

)(
1−

∑
i

xi`

)}
L

+

{
xn`

(
1−

∑
i

xij

)}
L

=

(
1−

∑
i

xi`

)
−
∑
i<n

{
xij

(
1−

∑
i

xi`

)}
L

+

{
xn`

(
1−

∑
i

xij

)}
L

where the second equation follows from {xnjxn`}L = 0. The n+1 equations (1−
∑

i xi`) = 0,{
xij

(
1−

∑
i xi`

)}
L

= 0 ∀ i < n, and
{
xn`

(
1−

∑
i xij

)}
L

= 0 appear in (3.8)–(3.10) and

X, so the associated equation in (3.22) is implied by (3.8)–(3.10) and the equations of X.

Similarly, consider any (i, k), i < k < n, where the restriction {xinxkn}L = 0 is
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enforced. We have that
1−

∑
j<n

xij

1−
∑
j<n

xkj


L

=


1−

∑
j<n

xij

1−
∑
j

xkj + xkn


L

=


1−

∑
j<n

xij

1−
∑
j

xkj


L

+

xkn
1−

∑
j

xij


L

=

1−
∑
j

xkj

−∑
j<n

xij
1−

∑
j

xkj


L

+

xkn
1−

∑
j

xij


L

where the second equation follows from {xinxkn}L = 0. The n+1 equations
(

1−
∑

j xkj

)
=

0,
{
xij

(
1−

∑
j xkj

)}
L

= 0 ∀ j < n, and
{
xkn

(
1−

∑
j xij

)}
L

= 0 appear in (3.8)–(3.10)

and X, so the associated equation in (3.23) is implied by (3.8)–(3.10) and the equations of

X. This completes the proof. 2

Equations (3.22) and (3.23) written in terms of the variables x and y of Problem

RLT1′ result in (3.24) and (3.25) below, respectively, since xijxi` = 0 for all (i, j, `), i <

n, j < ` < n, and xijxkj = 0 for all (i, j, k), j < n, i < k < n.

1−
∑
i<n

(xij + xi`) +
n−2∑
i=1

n−1∑
k=i+1

(yijk` + yi`kj) = 0 ∀ (j, `), j < ` < n (3.24)

1−
∑
j<n

(xij + xkj) +

n−2∑
j=1

n−1∑
`=j+1

(yijk` + yi`kj) = 0 ∀ (i, k), i < k < n (3.25)

Equations (3.24) and (3.25) reveal two useful structures of (3.22) and (3.23). First,

each of the (n−1)2(n−2)2
2 variables yijk` found within (3.24) and (3.25) appears once with

coefficient 1 in (3.24) and once with coefficient 1 in (3.25). Consequently, relative to the

variables yijk`, multiplying every equation in (3.25) by the scalar −1 yields a complete bipar-

tite network consisting of arcs directed from the (n−1)(n−2)
2 nodes associated with equations
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(3.24) to the (n−1)(n−2)
2 nodes associated with equations (3.25). Second, a variable yijk`

appears in an equation of (3.24) and (3.25) if and only if the variable yi`kj also appears in

that same equation. Thus, within the graph, each arc is effectively duplicated. Figure 3.2

illustrates the bipartite graph, where the left and right columns of nodes are labeled with

the ordered pairs (j, `), j < `, and (i, k), i < k, consistent with equations (3.24) and (3.25),

respectively, and where an arc incident with nodes (j, `) and (i, k) represents the variables

yijk` and yi`kj . For simplicity, all arcs are drawn undirected.

1,2

1,3

j, `

n − 2, n − 1

1,2

1,3

i, k

n − 2, n − 1

Figure 3.2: Complete, bipartite network motivated by equations (3.24) and (3.25).

Consider Lemma 3.3 below.

Lemma 3.3

Every selection of (n− 1)(n− 2)− 1 equations from (3.24) and (3.25) (equivalently (3.22)

and (3.23)) forms a LI set.

Proof

Since the coefficients on the variables yijk` in equations (3.24) and (3.25) form the node-arc

incidence matrix of a connected graph, the removal of any single equation ensures linear
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independence of the remaining (n− 1)(n− 2)− 1 equations. 2

Now, recall that Lemma 3.1 of Subsection 3.3.1 established that the m1 = 2(n− 1)3

equations (3.16)–(3.20) form a LI set, while Lemma 3.3 showed that every selection of

(n−1)(n−2)−1 equations from (3.24) and (3.25) forms a LI set. We show in Theorem 3.1

below that (3.16)–(3.20), together with any (n − 1)(n − 2) − 1 equations from (3.24) and

(3.25), combine to form a LI set.

Theorem 3.1

The m1 = 2(n − 1)3 equations of (3.16)–(3.20), together with any selection of m2 =

(n− 1)(n− 2)− 1 equations from (3.24) and (3.25), form a LI set.

Proof

Lemma 3.1 established that the m1 equations (3.16)–(3.20) form a LI set while Lemma 3.3

showed that any collection of m2 equations from (3.24) and (3.25) also forms a LI set. Each

of the m1 variables yijk` associated with the matrix Im1 of Figure 3.1 was observed in (3.21)

to have at least one of the indices j, k, ` equal to n. None of these variables appear in any

of the equations (3.24) and (3.25), completing the proof. 2

Lemma 3.3 and Theorem 3.1 follow the roadmap of Figure 3.1 in the sense that

they define the matrices D, 0, E, and F found within the second set of m2 equations, and

also characterize the second and third sets of n3 and n4 variables y2 and y3, respectively.

As a result, the matrices B and C found within the first set of m1 equations can be more

precisely defined. Specifically, Lemma 3.3 states that we can select anym2 = (n−1)(n−2)−1

equations from (3.24) and (3.25) to form the second set of LI equations within Figure 3.1.

Furthermore, from within these equations, we can define the invertible matrix E in terms of

any collection of n3 LI variables y2, and the matrices D and F to represent the coefficients

on the variables x and the coefficients on the remaining n4 variables y3, respectively. The

52



matrices B and C are then accordingly defined to coincide with y2 and y3. The proof of

Theorem 3.1 identifies the m2 × n2 matrix 0, so as to conclude that the first m1 + m2

equations are LI.

For future reference, relative to the selection of the n3 variables y2 to associate with

the matrix E, we choose those yijk` taking either of the two forms

y(n−2),j,(n−1)` with j < ` < n or yi(n−2)k(n−1) with i < k < n. (3.26)

Figure 3.3 graphically depicts these variables, using the same sets of nodes as Figure 3.2,

and a subset of the arcs. Unlike Figure 3.2, each arc of Figure 3.3 represents that single

variable yijk` having j < ` as noted in (3.26). In this manner, the last set of variables y3 in

Figure 3.1 consists of those n4 = (n−1)2(n−2)2
2 −

(
(n − 1)(n − 2) − 1

)
variables yijk` found

within (3.24) and (3.25), but not represented in Figure 3.3. The specific selection of m2

equations from (3.24) and (3.25) is not important to this study, as the deleted equation will

be shown implied by the m1 +m2 +m3 remaining equations.

1,2

1,3

j, `

n − 2, n − 1

1,2

1,3

i, k

n − 2, n − 1

Figure 3.3: Set of n3 basic variables from Figure 3.2 associated with matrix E of Figure
3.1.

3.3.3 Maximal Set of Linearly Independent Equations

Theorem 3.1 shows that the first m1 +m2 equations in the matrix of Figure 3.1, as

identified in Subsections 3.3.1 and 3.3.2, form a LI set. It readily follows that the 2n − 1
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equations of X ′ in (3.15), which define the third set of m3 equations and the matrix G,

continue to yield a LI set when augmented with these m1 + m2 equations. This result is

stated formally in Theorem 3.2 below.

Theorem 3.2

The m1 = 2(n − 1)3 equations of (3.16)–(3.20), together with any selection of m2 =

(n − 1)(n − 2) − 1 equations of (3.24) and (3.25), and the m3 = 2n − 1 equations of

X ′ in (3.15), form a LI set.

Proof

The basis
(
x1n, x2n, · · · , xnn, xn1, xn2, · · · , xn(n−1)

)
of X ′ in (3.15) has the equations defin-

ing X ′ to be LI. Theorem 3.1 established the linear independence of the first m1 + m2

equations. No variables x appear in the matrices Im1 or E of Figure 3.1, completing the

proof. 2

Theorem 3.2 shows that the m1 + m2 + m3 equations associated with Figure 3.1

form a LI set, but it does not prove that this set is maximal for RLT1
′
; that is, Theorem

3.2 does not show that every equation found in (3.8)–(3.10) is implied. Section 3.4 proves

the stronger result that every linear equation which is valid for the convex hull of feasible

solutions to RLT1′ is implied by these same m1 + m2 + m3 equations. It then uses this

result to establish a condition that is both necessary and sufficient for Problem P to be

linearizable.

3.4 Necessary and Sufficient Condition for Linearizable

Section 3.3 set the stage for our establishing a polyhedral-based necessary and suf-

ficient condition for Problem P to be linearizable. In this section, we show that an instance

of Problem P is linearizable if and only if the linear program RLT1
′′

is bounded. Our ar-

54



gument is a two-step approach, with each of Subsections 3.4.1 and 3.4.2 devoted to a step.

Following the discussion at the end of Subsection 3.2.2, the first step is to prove that, given

any equation of the form αx + βy = κ that is satisfied by all (x,y) feasible to RLT1′,

there exists a linear combination of the m1 + m2 + m3 equations of Figure 3.1 that yields

this equation. The second step uses this result to establish a correspondence between the

existence of a dual solution to RLT1
′′

and the desired necessary and sufficient condition for

Problem P to be linearizable.

3.4.1 Characterizing all Equations Valid for Problem RLT1′

Consistent with the LI constraints identified in Section 3.3 and depicted in Figure

3.1, we partition the variables yijk` from Problem RLT1′ into two sets yB and yN . The set

yB consists of the 2(n−1)3 + (n−1)(n−2)−1 variables y1 and y2, and the set yN consists

of the (n−3)(n−2)(n−1)n
2 + 1 variables y3. Accordingly, we partition the index set (i, j, k, `) of

the variables yijk` appearing in RLT1′ in terms of yB and yN so that

IB = {(i, j, k, `) : yijk` ∈ yB} and IN = {(i, j, k, `) : yijk` ∈ yN}. (3.27)

Consider the following Theorem.

Theorem 3.3

Every equation of the form

∑
k

∑
`

αk`xk` +
∑
i

∑
j

∑
k>i

∑
`6=j

βijk`yijk` = κ (3.28)

that is satisfied for all (x,y) feasible to RLT1′ can be computed as a linear combination of

the m1 +m2 +m3 equations of Figure 3.1.

Proof

Consider any equation of the form (3.28) that is satisfied by all (x,y) feasible to RLT1′. As
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Im1 and E are invertible matrices, the first m1 +m2 equations of Figure 3.1 imply a unique

equation of the form

∑
k

∑
`

α̂k`xk` +
∑

(i,j,k,`)∈IB

βijk`yijk` +
∑

(i,j,k,`)∈IN

β̂ijk`yijk` = 0 (3.29)

that is satisfied by all (x,y) feasible to RLT1′, where the coefficients βijk` having (i, j, k, `) ∈

IB are as given in (3.28).

The proof consists of two parts that combine to compute (3.28) as a linear combi-

nation of (3.29) and the m3 equations Gx = 1 of Figure 3.1. The first part shows that the

βijk` of (3.28) and β̂ijk` of (3.29) must have βijk` = β̂ijk` for all (i, j, k, `) ∈ IN . Then (3.29)

will simplify to ∑
k

∑
`

α̂k`xk` +
∑
i

∑
j

∑
k>i

∑
`6=j

βijk`yijk` = 0. (3.30)

This simplification is accomplished by showing that, within any equation of the form (3.28)

that is satisfied by all (x,y) feasible to RLT1′, the coefficients βijk` having (i, j, k, `) ∈ IN

are uniquely defined in terms of the βijk` having (i, j, k, `) ∈ IB. The second part of the

proof shows that there exist multiples λ ∈ Rm3 of the m3 equations Gx = 1 of Figure 3.1

that give the equation ∑
k

∑
`

(αk` − α̂k`)xk` = κ. (3.31)

The sum of (3.30) and (3.31) is (3.28), so that (3.28) can be computed as a linear combi-

nation of the m1 +m2 +m3 equations of Figure 3.1.

The two parts of the proof follow.

1. As the constraints of RLT1′ enforce x ∈X,x binary, yijk` = xijxk` for all (i, j, k, `), i <

k, j 6= `, the first part of the proof is to show that, given an equation of the form

∑
k

∑
`

αk`xk` +
∑
i

∑
j

∑
k>i

∑
` 6=j

βijk`xijxk` = κ (3.32)

that is satisfied for all x ∈X, x binary, the coefficients βijk` having (i, j, k, `) ∈ IN are
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uniquely defined in terms of the βijk` having (i, j, k, `) ∈ IB. As a first step, observe

that each of the n! points satisfying x ∈X, x binary, gives rise to an equation of the

form (3.32) in the coefficients αk` and βijk`, and scalar κ. Moreover, given any (p, q),

the (n−1)! solutions to x ∈X, x binary, having xpq = 1 similarly give rise to (n−1)!

equations of the form (3.32), and these equations are precisely those that result from

a size n− 1 instance of Problem P in the variables xk`, k 6= p, ` 6= q, with the αk` and

κ suitably adjusted. Consistent with (3.21) and (3.26), define the index sets IpqB and

IpqN in the spirit of (3.27), but this time in terms of the reduced variable set. When

(p, q) has p ≤ n− 3, q ≤ n− 3, then

IpqB = {(i, j, k, `), i, k 6= p and j, ` 6= q : yijk` ∈ yB} (3.33)

and

IpqN = {(i, j, k, `), i, k 6= p and j, ` 6= q : yijk` ∈ yN} (3.34)

because, for such cases, we have that IpqB ⊂ IB and IpqN ⊂ IN . Using (3.33) and (3.34),

the proof of the first part is by induction on the size n of RLT1′, with the base cases

having n = 3, n = 4, and n = 5 found in the Appendix. For the inductive step,

consider an instance of RLT1′ having n ≥ 6, and suppose that the result holds true

for all size n− 1 instances.

Arbitrarily select a coefficient βrstu with (r, s, t, u) ∈ IN , and note that there exists

a variable xpq having p ≤ n − 3, p 6= r, p 6= t, and q ≤ n − 3, q 6= s, q 6= u. By the

inductive hypothesis, the coefficients βijk` having (i, j, k, `) ∈ IpqN are uniquely defined

in terms of the βijk` having (i, j, k, `) ∈ IpqB . Therefore, since (r, s, t, u) ∈ IpqN and

IpqB ⊂ IB, we have that βrstu is uniquely defined in terms of those coefficients βijk`

having (i, j, k, `) ∈ IB. This completes the inductive argument.
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2. Since all extreme points of the assignment polytope X are binary, equation (3.31)

holds true for all x ∈ X. In particular, since x̃ defined by x̃ij = 1
n for all (i, j) is in

X, every d ∈ Rn2
satisfying Gd = 0 must have

∑
k

∑
`

(αk` − α̂k`)dk` = 0 because,

for sufficiently small ε > 0, x̃ + εd ∈ X and must therefore satisfy (3.31). Then no

solution exists to Gd = 0 having
∑
k

∑
`

(αk` − α̂k`)dk` > 0, so that Farkas’ Lemma

(see Bazaraa et al. [10, Section 5.3, pp. 234-237], for example) establishes the existence

of multipliers λ ∈ Rn2
of Gx = 1 yielding (3.31).

This concludes the proof. 2

Note that any equation of the form (3.28) that is satisfied by all (x,y) feasible to

RLT1
′
is necessarily satisfied by all (x,y) feasible to RLT1′. Therefore, a direct consequence

of Theorem 3.3 is that any equation valid for RLT1
′
can be computed as a linear combination

of the m1+m2+m3 equations of Figure 3.1, establishing these equations as a maximal LI set

for RLT1
′
. There are two immediate consequences. First, the results found in the papers

[7, 47] that identify redundant equality constraints within Problem RLT1′ are extended

by Theorem 3.3, as Theorem 3.3 identifies a maximal set of implied constraints. Second,

the lower bound to Problem P due to RLT1
′

is equal to that of the much smaller linear

program obtained by replacing (3.8)–(3.10) and the equations of X in (3.12) of RLT1
′
with

the m1 + m2 + m3 equations of Figure 3.1. Since RLT1
′

has been shown to yield strong

bounds [2, 32], the smaller form may prove useful computationally.

3.4.2 The Necessary and Sufficient Linearizable Condition

In order to motivate our necessary and sufficient condition for an instance of Problem

P to be linearizable, let us write the dual region corresponding to the variables yijk` of

RLT1
′′
. Specifically, let φ = φik` for all (i, k, `), i < k, γ = γik` for all (i, k, `), i > k, and

π = πjk` for all (j, k, `), j 6= `, be the dual variables corresponding to constraints (3.8)–
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(3.10), respectively. Then the region is given by

T ≡
{

(φ,γ,π) : φik` + γkij + πjk` + π`ij = C ′ijk` ∀ (i, j, k, `), i < k, j 6= `
}
.

For clarity, we recall from the definition of RLT1′ that C ′ijk` = Cijk`+Ck`ij for all (i, j, k, `), i <

k, j 6= `.

Lemma 3.4

An instance of Problem P is linearizable if and only if T 6= ∅.

Proof

(if)

Suppose that T 6= ∅. Compute a linear combination of the equations (3.8)–(3.10) using any

(φ,γ,π) ∈ T to obtain

∑
k

∑
`

ĉk`xk` +
∑
i

∑
j

∑
k>i

∑
` 6=j

C ′ijk`yijk` = κ ∀ (x,y) feasible to RLT1′,

so that

∑
k

∑
`

ĉk`xk` +
∑
i

∑
j

∑
k>i

∑
`6=j

C ′ijk`xijxk` = κ ∀ x binary, x ∈ X.

Rewriting this last equation, we have

∑
k

∑
`

ck`xk` +
∑
i

∑
j

∑
k>i

∑
6̀=j
C ′ijk`xijxk` = κ+

∑
k

∑
`

(ck` − ĉk`)xk` ∀ x binary, x ∈ X,

meaning that Problem P is linearizable.

(only if)

Now suppose that Problem P is linearizable, so that there exist coefficients ĉk` for all (k, `)
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and a scalar κ satisfying (3.2). It follows that the equation

∑
k

∑
`

(ck` − ĉk`)xk` +
∑
i

∑
j

∑
k>i

∑
`6=j

C ′ijk`yijk` = κ (3.35)

is valid for all (x,y) feasible to RLT1′. From Theorem 3.3, we know that (3.35) can be

computed as a linear combination of the m1 + m2 + m3 equations of Figure 3.1, implying

that T 6= ∅. 2

Lemma 3.5

T 6= ∅ if and only if the linear program RLT1
′′

is bounded.

Proof

Since 0 ≤ x ≤ 1 in RLT1
′′
, this linear program is bounded if and only if there does not

exist an attractive direction d in the variables yijk`, i < k, j 6= `, so that the set

D ≡



d ∈ R
n2(n−1)2

2 :
∑
i

∑
j

∑
k>i

∑
`6=j

C ′ijk`dijk` < 0

∑
j 6=`

dijk` = 0 ∀ (i, k, `), i < k

∑
j 6=`

dk`ij = 0 ∀ (i, k, `), i > k

∑
i<k

dijk` +
∑
i>k

dk`ij = 0 ∀ (j, k, `), j 6= `


has D = ∅. Farkas’ Lemma has D = ∅ if and only if T 6= ∅. 2

Combining Lemmas 3.4 and 3.5 gives Theorem 3.4, as desired.

Theorem 3.4

An instance of Problem P is linearizable if and only if the linear program RLT1
′′

is bounded.
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Proof

Follows directly from Lemmas 3.4 and 3.5. 2

Theorem 3.4 characterizes all linearizable instances of Problem P in terms of RLT1
′′
.

This characterization leads to two notable observations. First, since the feasible region to

RLT1
′
is contained within that of RLT1

′′
, it is reasonable to expect that the former problem

can have an optimal binary solution while the latter does not, thereby identifying more

solvable instances of Problem P. This is indeed the case, as can be verified with [7, Example

2]. Thus, Problem RLT1
′

can identify a richer family of polynomially solvable instances of

Problem P than those that are linearizable. The second observation deals with a computed

optimal solution to Problem RLT1
′
. As noted in [7], if this solution is not binary, the task

of checking whether there exists an optimal solution which is binary may not be simple.

This concern does not arise in using RLT1
′′

to determine linearizable instances, as Theorem

3.4 does not invoke any extreme point structure.

3.5 Dimensions of the Level-1 RLT and Relaxations

In this section, we use the results of Theorems 3.2 and 3.3 to obtain the dimension of

the level-1 RLT form, as well as that of several relaxations. To begin, define the polyhedral

set P1 by

P1 = {(x,y) : (x,y) is feasible to the m1 +m2 +m3 equations of Figure 3.1}.

Furthermore, define the polyhedral sets P2, P3, P4 and P5 relative to the feasible regions of

Problems RLT1
′′
, RLT1

′
, and RLT1′ by

P2 = {(x,y) : (x,y) is feasible to the equality constraints of RLT1
′′},

P3 = {(x,y) : (x,y) is feasible to RLT1
′′},
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P4 = {(x,y) : (x,y) is feasible to RLT1
′}, and

P5 = {(x,y) : (x,y) is feasible to the convex hull of solutions to RLT1′}.

Theorem 3.5

Given the polyhedral sets P1, P2, P3, P4 and P5 defined above,

n+
(n− 1)2(n− 2)2

2
= dim(P1) = dim(P2) = dim(P3) = dim(P4) = dim(P5),

where dim(•) denotes the dimension of the set •.

Proof

Observe that

P1 ⊇ P2 ⊇ P3 ⊇ P4 ⊇ P5,

with the four containments, from left to right, following because all of the equations defining

P1 are implied by the equality constraints of RLT1
′′
, because P3 = {(x,y) ∈ P2 : x ≥ 0},

because P4 = {(x,y) ∈ P3 : y ≥ 0}, and because RLT1
′
is a polyhedral relaxation of RLT1′.

Then

dim(P1) ≥ dim(P2) ≥ dim(P3) ≥ dim(P4) ≥ dim(P5).

Note that there are n2 variables x and n2(n−1)2
2 variables y within them1+m2+m3 =

2(n− 1)3 + n(n− 1) equations defining P1. Since Theorem 3.2 shows that these equations

are LI, we have

dim(P1) =

(
n2 +

n2(n− 1)2

2

)
−
(
2(n− 1)3 + n(n− 1)

)
= n+

(n− 1)2(n− 2)2

2
.

If dim(P5) was strictly less than dim(P1), then there would be some equation valid for the

convex hull of solutions to RLT1′ that is not implied by the equations defining P1. But by

Theorem 3.3, any equation valid for all (x,y) ∈ P5 is implied by the equations defining P1,

meaning that dim(P5) = dim(P1). This completes the proof. 2
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3.6 Conclusions

The quadratic assignment problem is an NP-hard discrete, nonlinear optimization

problem that arises in many diverse applications. The most successful exact solution meth-

ods use linear programming reformulations in higher variable spaces to compute tight lower

bounds that efficiently prune the binary search tree. In particular, the celebrated RLT pro-

cedure has proven to be an extremely important theoretical tool for developing algorithms

that can solve large (up to size n = 30) instances of the qap to optimality. In recent years,

due to the difficulty associated with computing exact solutions, a research trend has been

to identify problem instances that are solvable in polynomial time. One such class of readily

solvable qap instances consists of those that are defined to be linearizable, meaning that

they can be equivalently rewritten as linear assignment problems.

This chapter bridges the gap between these two seemingly unrelated avenues of

research by completely characterizing linearizable instances of the qap in terms of the level-

1 RLT form. Specifically, we show in Theorem 3.4 that an instance of the qap is linearizable

if and only if the linear program RLT1
′′

is bounded. Furthermore, we explain how RLT1
′

can identify a larger family of solvable qaps than just those that are linearizable.

The theoretical backbone of this study is a thorough examination of the polyhedral

structure of RLT1′ and the explicit identification of a maximal set of LI equality constraints,

depicted pictorially in Figure 3.1. Theorem 3.3 establishes that any equation valid for the

convex hull of feasible solutions to RLT1′ can be computed as a linear combination of these

LI equations, which leads to two noteworthy contributions. First, it provides the theory

that is required to prove the necessary and sufficient linearizable condition of Theorem 3.4.

Second, it allows for the specification of the dimensions (given in closed form in Theorem

3.5) of the feasible regions associated with RLT1′ and several relaxations.

As this polyhedral approach to studying readily solvable qap instances is new, there
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are numerous avenues for further research. For example, one could consider using the level-1

and/or higher-level RLT forms to characterize other known conditions that permit the qap

to be solved in polynomial time, such as those mentioned in [13, 15, 19, 20, 22, 40]. Another

interesting study would be to determine whether variations of this approach can be used

to characterize readily solvable instances of related combinatorial optimization problems,

such as the quadratic semi-assignment problem, the three-dimensional assignment problem,

the traveling salesman problem, and the set partitioning problem. Also, as suggested in

Subsection 3.4.1, it would be interesting to explore whether the smaller representation of

RLT1
′

afforded by the LI equations of Figure 3.1 could be exploited to develop efficient

algorithms to compute RLT bounds.
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3.7 Appendix

Theorem 3.3, Part 1 - Base Cases

Consider a size n = 3, n = 4, or n = 5 instance of Problem RLT1′. Given an equation of

the form ∑
k

∑
`

αk`xk` +
∑
i

∑
j

∑
k>i

∑
`6=j

βijk`xijxk` = κ (3.36)

that is satisfied for all x ∈ X, x binary, the coefficients βijk` having (i, j, k, `) ∈ IN are

uniquely defined in terms of the βijk` having (i, j, k, `) ∈ IB.

Proof

Distinguish each of the n! binary x ∈X with a row vector θ ∈ Rn consisting of a permuta-

tion of the numbers 1, · · · , n, so that xθ denotes that binary solution having xiθ(i) = 1 for

all i and xij = 0 otherwise. Then, for example, x(3,1,2) with n = 3 has x13 = x21 = x32 = 1,

and xij = 0 otherwise. Let E(xθ) denote the linear equation obtained by setting x = xθ

within (3.36), and let f(xθ) denote the value of the function f(x) ≡
∑

(i,j,k,`)∈IB βijk`xijxk`

evaluated at x = xθ.

Base Case: n = 3

When n = 3, there are 3! = 6 binary points x ∈ X, and IN = {(1221)}. The 6

points, and the corresponding equations implied by (3.36), are listed below.

(1) E(x(1,2,3)) : α11 + α22 + α33 + f(x(1,2,3)) = κ

(2) E(x(1,3,2)) : α11 + α23 + α32 + f(x(1,3,2)) = κ

(3) E(x(2,1,3)) : α12 + α21 + α33 + f(x(2,1,3)) + β1221 = κ

(4) E(x(2,3,1)) : α12 + α23 + α31 + f(x(2,3,1)) = κ

(5) E(x(3,1,2)) : α13 + α21 + α32 + f(x(3,1,2)) = κ

(6) E(x(3,2,1)) : α13 + α22 + α31 + f(x(3,2,1)) = κ
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Compute the linear combination (1)− (2)− (3)+(4)+(5)− (6) of these equations to obtain

that β1221 = f(x(1,2,3))− f(x(1,3,2))− f(x(2,1,3)) + f(x(2,3,1)) + f(x(3,1,2))− f(x(3,2,1)). This

completes the n = 3 base case.

Base Case: n = 4

When n = 4, there are 4! = 24 binary points x ∈ X. The 24 points, and the

corresponding equations implied by (3.36), are listed below. Here, IN = {(1122), (1123),

(1132), (1133), (1221), (1231), (1321), (1322), (1331), (1332), (2231), (2331), (2332)}.

(1) E(x(1,2,3,4)) : α11 + α22 + α33 + α44 + β1122 + β1133 + f(x(1,2,3,4)) = κ

(2) E(x(1,2,4,3)) : α11 + α22 + α34 + α43 + β1122 + f(x(1,2,4,3)) = κ

(3) E(x(1,3,2,4)) : α11 + α23 + α32 + α44 + β1123 + β1132 + β2332 + f(x(1,3,2,4)) = κ

(4) E(x(1,3,4,2)) : α11 + α23 + α34 + α42 + β1123 + f(x(1,3,4,2)) = κ

(5) E(x(1,4,2,3)) : α11 + α24 + α32 + α43 + β1132 + f(x(1,4,2,3)) = κ

(6) E(x(1,4,3,2)) : α11 + α24 + α33 + α42 + β1133 + f(x(1,4,3,2)) = κ

(7) E(x(2,1,3,4)) : α12 + α21 + α33 + α44 + β1221 + f(x(2,1,3,4)) = κ

(8) E(x(2,1,4,3)) : α12 + α21 + α34 + α43 + β1221 + f(x(2,1,4,3)) = κ

(9) E(x(2,3,1,4)) : α12 + α23 + α31 + α44 + β1231 + β2331 + f(x(2,3,1,4)) = κ

(10) E(x(2,3,4,1)) : α12 + α23 + α34 + α41 + f(x(2,3,4,1)) = κ

(11) E(x(2,4,1,3)) : α12 + α24 + α31 + α43 + β1231 + f(x(2,4,1,3)) = κ

(12) E(x(2,4,3,1)) : α12 + α24 + α33 + α41 + f(x(2,4,3,1)) = κ

(13) E(x(3,1,2,4)) : α13 + α21 + α32 + α44 + β1321 + β1332 + f(x(3,1,2,4)) = κ

(14) E(x(3,1,4,2)) : α13 + α21 + α34 + α42 + β1321 + f(x(3,1,4,2)) = κ

(15) E(x(3,2,1,4)) : α13 + α22 + α31 + α44 + β1322 + β1331 + β2231 + f(x(3,2,1,4)) = κ

(16) E(x(3,2,4,1)) : α13 + α22 + α34 + α41 + β1322 + f(x(3,2,4,1)) = κ

(17) E(x(3,4,1,2)) : α13 + α24 + α31 + α42 + β1331 + f(x(3,4,1,2)) = κ
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(18) E(x(3,4,2,1)) : α13 + α24 + α32 + α41 + β1332 + f(x(3,4,2,1)) = κ

(19) E(x(4,1,2,3)) : α14 + α21 + α32 + α43 + f(x(4,1,2,3)) = κ

(20) E(x(4,1,3,2)) : α14 + α21 + α33 + α42 + f(x(4,1,3,2)) = κ

(21) E(x(4,2,1,3)) : α14 + α22 + α31 + α43 + β2231 + f(x(4,2,1,3)) = κ

(22) E(x(4,2,3,1)) : α14 + α22 + α33 + α41 + f(x(4,2,3,1)) = κ

(23) E(x(4,3,1,2)) : α14 + α23 + α31 + α42 + β2331 + f(x(4,3,1,2)) = κ

(24) E(x(4,3,2,1)) : α14 + α23 + α32 + α41 + β2332 + f(x(4,3,2,1)) = κ

The 13 linear combinations of (1)–(24) listed below use the functions f(x(i,j,k,`)) to recur-

sively express the |IN | = 13 coefficients βijk` having (i, j, k, `) ∈ IN in terms of the βijk`

having (i, j, k, `) ∈ IB.

• (1)− (2)− (3) + (4) + (5)− (6):

β2332 = f(x(1,2,3,4))−f(x(1,2,4,3))−f(x(1,3,2,4))+f(x(1,3,4,2))+f(x(1,4,2,3))−f(x(1,4,3,2))

• (7)− (8)− (9) + (10) + (11)− (12):

β2331 = f(x(2,1,3,4))−f(x(2,1,4,3))−f(x(2,3,1,4))+f(x(2,3,4,1))+f(x(2,4,1,3))−f(x(2,4,3,1))

• (13)− (14)− (15) + (16) + (17)− (18):

β2231 = f(x(3,1,2,4))−f(x(3,1,4,2))−f(x(3,2,1,4))+f(x(3,2,4,1))+f(x(3,4,1,2))−f(x(3,4,2,1))

• −(11) + (12) + (21)− (22):

β1231 = −f(x(2,4,1,3)) + f(x(2,4,3,1)) + f(x(4,2,1,3))− f(x(4,2,3,1)) + β2231

• −(8) + (10) + (19)− (24):

β1221 = −f(x(2,1,4,3)) + f(x(2,3,4,1)) + f(x(4,1,2,3))− f(x(4,3,2,1))− β2332

• −(7) + (12)− (13) + (18):

β1321 = −f(x(2,1,3,4)) + f(x(2,4,3,1))− f(x(3,1,2,4)) + f(x(3,4,2,1))− β1221

• (14)− (16) + (20)− (22):

β1322 = f(x(3,1,4,2))− f(x(3,2,4,1)) + f(x(4,1,3,2))− f(x(4,2,3,1)) + β1321
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• −(9) + (10)− (15) + (16):

β1331 = −f(x(2,3,1,4)) + f(x(2,3,4,1))− f(x(3,2,1,4)) + f(x(3,2,4,1))− β1231− β2331− β2231

• (17)− (18) + (23)− (24):

β1332 = f(x(3,4,1,2))− f(x(3,4,2,1)) + f(x(4,3,1,2))− f(x(4,3,2,1)) + β1331 + β2331 − β2332

• −(1) + (2)− (7) + (8):

β1133 = −f(x(1,2,3,4)) + f(x(1,2,4,3))− f(x(2,1,3,4)) + f(x(2,1,4,3))

• −(3) + (4)− (13) + (14):

β1132 = −f(x(1,3,2,4)) + f(x(1,3,4,2))− f(x(3,1,2,4)) + f(x(3,1,4,2))− β2332 − β1332

• −(3) + (5)− (9) + (11):

β1123 = −f(x(1,3,2,4)) + f(x(1,4,2,3))− f(x(2,3,1,4)) + f(x(2,4,1,3))− β2332 − β2331

• −(1) + (6)− (15) + (17):

β1122 = −f(x(1,2,3,4)) + f(x(1,4,3,2))− f(x(3,2,1,4)) + f(x(3,4,1,2))− β1322 − β2231

This completes the n = 4 base case.

Base Case: n = 5

When n = 5, there are 5! = 120 binary points x ∈ X. Instead of enumerating the

associated equations, we employ an inductive argument on the n = 4 base case. Toward this

end, arbitrarily select a coefficient βrstu with (r, s, t, u) ∈ IN , for which (r, t) 6= (1, 2), (s, u) 6=

(1, 2), and (s, u) 6= (2, 1). This accounts for every variable βijk` with (i, j, k, `) ∈ IN except

for those in the set

R = {β1122, β1123, β1124, β1132, β1142, β1221, β1223, β1224, β1231, β1241, β1321, β1322, β1421,

β1422, β1423, β2132, β2142, β2231, β2241, β3241}.

There exists a variable xpq having p ≤ 2, p 6= r, p 6= t, and q ≤ 2, q 6= s, q 6= u. By the n = 4

base case, the coefficients βijk` having (i, j, k, `) ∈ IpqN are uniquely defined in terms of the
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βijk` having (i, j, k, `) ∈ IpqB , with IpqB and IpqN defined as in (3.33) and (3.34), respectively.

Therefore, since (r, s, t, u) ∈ IpqN and IpqB ⊂ IB, we have that βrstu is uniquely defined in

terms of the coefficients βijk` having (i, j, k, `) ∈ IB.

Now consider an arbitrary coefficient from the set R1 = {β2132, β2142, β2231, β2241,

β3241}. Selecting (p, q) = (1, 3), note that IpqB ⊂ IB ∪ {(2, 2, 3, 4), (2, 2, 4, 4)}, and that β2234

and β2244 were already shown to be uniquely defined in terms of the coefficients βijk` having

(i, j, k, `) ∈ IB. By the n = 4 base case, the coefficients βijk` having (i, j, k, `) ∈ IpqN are

uniquely defined in terms of the βijk` having (i, j, k, `) ∈ IpqB . Therefore, since R1 ⊂ IpqN , our

arbitrary βijk` ∈ R1 is uniquely defined in terms of the coefficients βijk` having (i, j, k, `) ∈

IB.

The argument above can be recursively used to establish the result for the remaining

coefficients βijk` ∈ R as follows.

1. Selecting (p, q) = (2, 3), and noting that IpqB ⊂ IB ∪{(1, 2, 3, 4), (1, 2, 4, 4)}, establishes

the result for an arbitrary coefficient from the set R2 = {β1132, β1142, β1231, β1241}.

2. Selecting (p, q) = (3, 1), and noting that IpqB ⊂ IB ∪{(2, 2, 4, 3), (2, 2, 4, 4)}, establishes

the result for an arbitrary coefficient from the set R3 = {β1223, β1224, β1322, β1422,

β1423}.

3. Selecting (p, q) = (3, 2), and noting that IpqB ⊂ IB ∪{(2, 1, 4, 3), (2, 1, 4, 4)}, establishes

the result for an arbitrary coefficient from the set R4 = {β1123, β1124, β1321, β1421}.

4. Selecting (p, q) = (3, 3), and noting that IpqB ⊂ IB ∪ {(1, 2, 2, 4), (1, 2, 4, 4), (2, 2, 4, 4),

(2, 1, 4, 2), (2, 1, 4, 4)}, establishes the result for an arbitrary coefficient from the set

R5 = {β1122, β1221}.

Since R = ∪5i=1Ri, this completes the n = 5 base case. 2
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[14] R.E. Burkard, E. Çela, P. Pardalos, L. Pitsoulis, The quadratic assignment problem,
Handbook of Combinatorial Optimization, Vol. 3, pp. 241-338, 1998.
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