35 research outputs found

    Types of triangle in plane Hamiltonian triangulations and applications to domination and k-walks

    Get PDF
    We investigate the minimum number t(0)(G) of faces in a Hamiltonian triangulation G so that any Hamiltonian cycle C of G has at least t(0)(G) faces that do not contain an edge of C. We prove upper and lower bounds on the maximum of these numbers for all triangulations with a fixed number of facial triangles. Such triangles play an important role when Hamiltonian cycles in triangulations with 3-cuts are constructed from smaller Hamiltonian cycles of 4-connected subgraphs. We also present results linking the number of these triangles to the length of 3-walks in a class of triangulation and to the domination number

    Polyhedra with few 3-cuts are hamiltonian

    Get PDF
    In 1956, Tutte showed that every planar 4-connected graph is hamiltonian. In this article, we will generalize this result and prove that polyhedra with at most three 3-cuts are hamiltonian. In 2002 Jackson and Yu have shown this result for the subclass of triangulations. We also prove that polyhedra with at most four 3-cuts have a hamiltonian path. It is well known that for each k≥6k \ge 6 non-hamiltonian polyhedra with kk 3-cuts exist. We give computational results on lower bounds on the order of a possible non-hamiltonian polyhedron for the remaining open cases of polyhedra with four or five 3-cuts.Comment: 21 pages; changed titl

    Hamiltonian-connectedness of triangulations with few separating triangles

    Get PDF
    We prove that 3-connected plane triangulations containing a single edge contained in all separating triangles are hamiltonian-connected. As a direct corollary we have that 3-connected plane triangulations with at most one separating triangle are hamiltonian-connected. In order to show bounds on the strongest form of this theorem, we proved that for any s >= 4 there are 3-connected triangulation with s separating triangles that are not hamiltonian-connected. We also present computational results which show that all `small' 3-connected triangulations with at most 3 separating triangles are hamiltonian-connected

    Polyhedra with few 3-cuts are hamiltonian

    Get PDF
    In 1956, Tutte showed that every planar 4-connected graph is hamiltonian. In this article, we will generalize this result and prove that polyhedra with at most three 3-cuts are hamiltonian. In 2002 Jackson and Yu have shown this result for the subclass of triangulations. We also prove that polyhedra with at most four 3-cuts have a hamiltonian path. It is well known that for each k ≥ 6 non-hamiltonian polyhedra with k 3-cuts exist. We give computational results on lower bounds on the order of a possible non-hamiltonian polyhedron for the remaining open cases of polyhedra with four or five 3-cuts

    Every 4-connected graph with crossing number 2 is Hamiltonian

    Get PDF
    A seminal theorem of Tutte states that 4-connected planar graphs are Hamiltonian. Applying a result of Thomas and Yu, one can show that every 4-connected graph with crossing number 1 is Hamiltonian. In this paper, we continue along this path and prove the titular statement. We also discuss the traceability and Hamiltonicity of 3-connected graphs with small crossing number and few 3-cuts, and present applications of our results

    Rooted structures in graphs: a project on Hadwiger's conjecture, rooted minors, and Tutte cycles

    Get PDF
    Hadwigers Vermutung ist eine der anspruchsvollsten Vermutungen für Graphentheoretiker und bietet eine weitreichende Verallgemeinerung des Vierfarbensatzes. Ausgehend von dieser offenen Frage der strukturellen Graphentheorie werden gewurzelte Strukturen in Graphen diskutiert. Eine Transversale einer Partition ist definiert als eine Menge, welche genau ein Element aus jeder Menge der Partition enthält und sonst nichts. Für einen Graphen G und eine Teilmenge T seiner Knotenmenge ist ein gewurzelter Minor von G ein Minor, der T als Transversale seiner Taschen enthält. Sei T eine Transversale einer Färbung eines Graphen, sodass es ein System von kanten-disjunkten Wegen zwischen allen Knoten aus T gibt; dann stellt sich die Frage, ob es möglich ist, die Existenz eines vollständigen, in T gewurzelten Minors zu gewährleisten. Diese Frage ist eng mit Hadwigers Vermutung verwoben: Eine positive Antwort würde Hadwigers Vermutung für eindeutig färbbare Graphen bestätigen. In dieser Arbeit wird ebendiese Fragestellung untersucht sowie weitere Konzepte vorgestellt, welche bekannte Ideen der strukturellen Graphentheorie um eine Verwurzelung erweitern. Beispielsweise wird diskutiert, inwiefern hoch zusammenhängende Teilmengen der Knotenmenge einen hoch zusammenhängenden, gewurzelten Minor erzwingen. Zudem werden verschiedene Ideen von Hamiltonizität in planaren und nicht-planaren Graphen behandelt.Hadwiger's Conjecture is one of the most tantalising conjectures for graph theorists and offers a far-reaching generalisation of the Four-Colour-Theorem. Based on this major issue in structural graph theory, this thesis explores rooted structures in graphs. A transversal of a partition is a set which contains exactly one element from each member of the partition and nothing else. Given a graph G and a subset T of its vertex set, a rooted minor of G is a minor such that T is a transversal of its branch set. Assume that a graph has a transversal T of one of its colourings such that there is a system of edge-disjoint paths between all vertices from T; it comes natural to ask whether such graphs contain a minor rooted at T. This question of containment is strongly related to Hadwiger's Conjecture; indeed, a positive answer would prove Hadwiger's Conjecture for uniquely colourable graphs. This thesis studies the aforementioned question and besides, presents several other concepts of attaching rooted relatedness to ideas in structural graph theory. For instance, whether a highly connected subset of the vertex set forces a highly connected rooted minor. Moreover, several ideas of Hamiltonicity in planar and non-planar graphs are discussed

    Computing Tutte Paths

    Get PDF
    Tutte paths are one of the most successful tools for attacking problems on long cycles in planar graphs. Unfortunately, results based on them are non-constructive, as their proofs inherently use an induction on overlapping subgraphs and these overlaps prevent any attempt to bound the running time by a polynomial. For special cases however, computational results of Tutte paths are known: For 4-connected planar graphs, Tutte paths are in fact Hamiltonian paths and Chiba and Nishizeki [N. Chiba and T. Nishizeki, 1989] showed how to compute such paths in linear time. For 3-connected planar graphs, Tutte paths have a significantly more complicated structure, and it has only recently been shown that they can be computed in polynomial time [A. Schmid and J. M. Schmidt, 2015]. However, Tutte paths are defined for general 2-connected planar graphs and this is what most applications need. In this unrestricted setting, no computational results for Tutte paths are known. We give the first efficient algorithm that computes a Tutte path (in this unrestricted setting). One of the strongest existence results about such Tutte paths is due to Sanders [D. P. Sanders, 1997], which allows one to prescribe the end vertices and an intermediate edge of the desired path. Encompassing and strengthening all previous computational results on Tutte paths, we show how to compute such a special Tutte path efficiently. Our method refines both, the existence results of Thomassen [C. Thomassen, 1983] and Sanders [D. P. Sanders, 1997], and avoids that the subgraphs arising in the inductive proof intersect in more than one edge by using a novel iterative decomposition along 2-separators. Finally, we show that our algorithm runs in time O(n^2)

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore