
Volume 14, Number 1, Pages 71–79
ISSN 1715-0868

HAMILTONIAN-CONNECTEDNESS OF TRIANGULATIONS

WITH FEW SEPARATING TRIANGLES

NICO VAN CLEEMPUT

Abstract. We prove that 3-connected plane triangulations contain-
ing a single edge contained in all separating triangles are hamiltonian-
connected. As a direct corollary we have that 3-connected plane triangu-
lations with at most one separating triangle are hamiltonian-connected.
In order to show bounds on the strongest form of this theorem, we proved
that for any s ≥ 4 there are 3-connected triangulation with s separating
triangles that are not hamiltonian-connected. We also present compu-
tational results which show that all ‘small’ 3-connected triangulations
with at most 3 separating triangles are hamiltonian-connected.

1. Introduction

Plane triangulations – sometimes also called maximal planar graphs –
are plane graphs where all faces, including the outer face, are triangles. A
hamiltonian cycle, resp. path, is a cycle, resp. path, that visits each vertex
exactly once. A graph is hamiltonian if it contains a hamiltonian cycle.
A graph is hamiltonian-connected if for every pair of vertices there exists
a hamiltonian path having these two vertices as end points. Clearly, be-
ing hamiltonian-connected implies being hamiltonian for graphs on n ≥ 3
vertices.

In 1931, Whitney [9] proved that every 4-connected plane triangulation
is hamiltonian. The condition of being 4-connected was later relaxed by
Böhme, Harant, and Tkáč who proved that 3-connected triangulations with
at most two separating triangles are hamiltonian [1]. An even stronger result
of this form is given by Jackson and Yu [4]. They show that a nonhamil-
tonian triangulation must contain at least 4 separating triangles and even
then they have to be in a specific configuration.

A stronger result of a different form was proved by Thomassen who
showed that every 4-connected plane graph is hamiltonian-connected [8].
Ozeki and Vrána [6] recently proved an even stronger result in function
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of a property called k-edge-hamiltonian-connected. A graph G is k-edge-
hamiltonian-connected if for any X ⊂ {x1x2 : x1, x2 ∈ V (G), x1 6= x2} such
that 1 ≤ |X| ≤ k and the graph induced by X on V (G) is a forest in which
each component is a path, G ∪ X has a hamiltonian cycle containing all
edges in X, where G ∪X is the graph obtained from G by adding all edges
in X. Note that being 1-edge-hamiltonian-connected is equivalent to being
hamiltonian-connected for graphs on n ≥ 3 vertices, since a hamiltonian
cycle in G∪{xy} containing the edge xy corresponds to a hamiltonian path
between x and y in G. Ozeki and Vrána proved the following theorem.

Theorem 1.1 ([6]). Every 4-connected plane graph is 2-edge-hamiltonian-
connected.

The main result of the next section follows from this theorem, but it is
actually sufficient to use the following result by Sanders.

Theorem 1.2 ([7]). For every 4-connected plane graph G with two vertices
x, y and an edge e with e 6= xy, G contains a hamiltonian path from x to y
through e.

In Section 2, we will show that plane triangulations with only one sep-
arating triangle are hamiltonian-connected. We will do this by showing
a stronger result about 3-connected triangulations having an edge that is
contained in all separating triangles. In Section 3 and Section 4 we investi-
gate how much stronger this theorem could be made using an investigation
similar to the one in [2]. We first show that starting with 4 separating trian-
gles there always exist 3-connected triangulations that are not hamiltonian-
connected, and we further specify this in terms of the decomposition tree of a
3-connected triangulation. Finally, in Section 4 we give the results of some
computer searches to check the hamiltonian-connectedness of 3-connected
triangulations with a small number of separating triangles.

2. One separating triangle

The theorem which we will prove here is mainly a corollary of Theo-
rem 1.1. We will show that for triangulations we can relax the restriction on
4-connectedness a bit and still have that the graph is hamiltonian-connected.
More specific we will prove the following theorem.

Theorem 2.1. Let G be a 3-connected triangulation. Let uv be an edge
which is contained in all separating triangles of G. Then G is hamiltonian-
connected.

As an immediate and easy corollary of this theorem, we get that this
property trivially also holds for triangulation with exactly one separating
triangle.

Corollary 2.2. Let G be a 3-connected triangulation with exactly one sep-
arating triangle. Then G is hamiltonian-connected.
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Figure 1. Subdividing the edge shared by all separating triangles.

Proof of Theorem 2.1. Let G be a 3-connected triangulation and let uv be
an edge which is contained in all separating triangles of G. The edge uv is
contained in two facial triangles of G which we denote by uvw1 and uvw2.
We obtain the graph G′ by subdividing the edge uv with the vertex z and
connecting z with the vertices w1 and w2. The graph G′ is shown in Fig-
ure 1. The modification adds a vertex in each separating triangle and no
new separating triangles are created, so G′ is 4-connected.

In order to show that G is hamiltonian-connected, we have to show for
each pair of distinct vertices x, y ∈ V (G) that there is a hamiltonian path
from x to y. Owing to Theorem 1.2, we have that G′ contains a hamiltonian
path P ′ from x to y containing zv. The path P ′ contains at some point the
sequence ∗zv where ∗ ∈ {w1, w2, u} (or ∗ ∈ {w1, w2} if xy = uv). We obtain
the path P from P ′ by replacing the sequence ∗zv by the edge ∗v. Since all
vertices and edges of G′ except for z and its incident edges are also vertices
and edges in G, we have that the path P is a hamiltonian path from x to y
in G. �

3. Decomposition trees with maximum degree ∆(T ) > 3

Jackson and Yu [4] defined a decomposition tree for a 3-connected tri-
angulation as follows: A triangulation with a separating triangle S can be
split into two triangulations: the subgraphs inside and outside of the sepa-
rating triangle with a copy of S contained in both. By iteratively applying
this procedure to a triangulation with k separating triangles, we obtain a
collection of k + 1 triangulations without separating triangles. These trian-
gulations form the vertices of the decomposition tree and we refer to them
as the (4-connected) pieces of the original triangulation. Note that such
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a ‘4-connected’ piece is either a 4-connected triangulation or K4. Jackson
and Yu explain in [4] that this process indeed yields a tree and that this
tree is unique. Two vertices are adjacent if the corresponding pieces share
a separating triangle in the original triangulation.

Reversely it is easily seen that each tree can appear as the decomposition
tree of some triangulation. The basic operation used to construct such a tri-
angulation is that of subdivision. Given two triangulations G1 and G2 with
no separating triangles and a (facial) triangle in both, we can subdivide G1

with G2, or equivalently G2 with G1, by identifying the two triangles (note
that this is not unique) such that G1 and G2 are placed at different sides
of the triangle. This process leads to a triangulation with one separating
triangle and thus K2 as decomposition tree and G1 and G2 as 4-connected
pieces. Given a tree we can construct a triangulation with that tree as its
decomposition tree by picking for each vertex of the tree an arbitrary tri-
angulation without separating triangles with at least as many faces as the
degree of the vertex of the tree, and then repeatedly subdivide the trian-
gulations with each other if the corresponding vertices are adjacent in the
tree.

In [5] the scattering number s(G) of a graph G is defined as

s(G) = max{k(G−X)− |X| : X ⊆ V (G), k(G−X) 6= 1},

where k(H) denotes the number of components of the graph H. In [3] it
is noted that s(G) ≤ −1 is a necessary condition for G to be hamiltonian-
connected.

The wheel graph Wn on n vertices is the plane graph obtained by adding
a vertex in the center of a cycle of length n and connecting it to all vertices
of the cycle.

Theorem 3.1. For each tree T with maximum degree ∆(T ) > 3, there exists
a 3-connected triangulation G with T as decomposition tree such that G is
not hamiltonian-connected.

Proof. Let v be a vertex of T with degree d(v) > 3. Removing v from
T results in d(v) components which we denote by T1, . . . , Td(v). Using the
technique described above, we can construct a triangulation Gi for each of
the trees Ti such that Gi has Ti as a decomposition tree. At this point
we have no requirements for each triangulation Gi except that it has Ti as
decomposition tree and that the piece corresponding to the vertex of Ti that
neighboured v in T has a facial triangle that is not subdivided. Let G be
the graph obtained by subdividing each of the triangular faces of Wd(v) with
one of the Gi’s, and subdividing the outer face with a single vertex.

Since d(v) is strictly greater than three, we have that G is a simple tri-
angulation with decomposition tree T . Note that if d(v) was equal to three,
then G would still be a simple triangulation, but the last step would have
added an extra separating triangle, so G would have had a decomposition
tree different from T .
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We have that k(G− V (Wd(v))) = d(v) + 1 and |V (Wd(v))| = d(v) + 1, so
s(G) ≥ 0. This implies that G is not hamiltonian-connected. �

This technique cannot be used to exclude any subcubic tree as the de-
composition tree of a hamiltonian-connected triangulation. In [2] it is shown
that in a triangulation G with a subcubic decomposition tree, we have for
each splitting set S: k(G − S) < |S|. So the scattering number of G is at
most −1.

4. Computational results

In order to check whether a graph with n vertices is hamiltonian-connected,
we need to check whether there exists a hamiltonian path between n(n− 1)/2
pairs of vertices. If two adjacent vertices in a graph on n ≥ 3 vertices are
connected by a hamiltonian path, then we actually have a hamiltonian cycle,
and we can conclude that all vertices that are adjacent on the cycle are con-
nected by a hamiltonian path. This can be used to eliminates several pairs
while looking for hamiltonian paths. Below we will see some more results
which can further speed up the programs that verify whether a triangulation
is hamiltonian-connected.

We will need a theorem proven by Jackson and Yu in [4].

Theorem 4.1 ([4]). Let G be a 3-connected triangulation with a decompo-
sition tree T such that T has maximum degree at most three. Let H be a
piece of G corresponding to a vertex of degree at most 2 in T , t be a facial
cycle of both H and G, and V (t) = {u, v, w}. Then G has a hamiltonian
cycle through uv and vw.

The next corollary immediately follows from this theorem.

Corollary 4.2. Let G be a 3-connected triangulation with a path as decom-
position tree. Then G has a hamiltonian cycle through any edge.

Proof. Let uv be an edge of G. Pick one of the two faces containing the
edge uv, and label the third vertex w. Since the maximum degree of the
decomposition tree is 2, all conditions for Theorem 4.1 are met, so G has a
hamiltonian cycle through uv and vw, so certainly through uv. �

If a triangulation has two separating triangles, then the decomposition
tree is always a path of length 2. If it has three separating triangles, then
the decomposition tree is either a path of length 3 or K1,3.

The following lemma was useful for faster checking whether a graph is
hamiltonian-connected, since it allows us to decide on the existence of several
other hamiltonian paths based on a single hamiltonian path.

Lemma 4.3. Let G be a graph with n vertices. Let P be a hamiltonian path
in G. Let x1, . . . , xn be the sequence of vertices on this path (so in P we
have that xi is adjacent to xi+1 for 1 ≤ i < n). If xi (1 < i ≤ n) is adjacent
to x1 in G, then there is a hamiltonian path from xi−1 to xn.
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Proof. The path from xi−1 to xn is given by xi−1 . . . x1xi . . . xn. �

The lemma above is obviously more powerful if the degree of the end
points of the paths are large. Therefore we sorted the vertices, so that we
first checked for paths between the vertices with the largest degrees. After
applying this lemma, we get several hamiltonian paths between new pairs
of vertices. For each of these paths, we can again apply this lemma. This
also vastly increased the speed of the program. Applying the lemma a third
time to the new paths did not really deliver a significant increase in speed.

The following two lemmata do not give any information on the existence
of a hamiltonian path between two specific vertices, but reduces the nonex-
istence of such a path to the nonexistence of another path in a different
triangulation.

Lemma 4.4. Let G be a triangulation on n vertices containing s separating
triangles. Let (u, v, w1) and (u, v, w2) be two facial triangles of G such that
w1 and w2 are not adjacent and N(w1) ∩ N(w2) = {u, v}. If each pair
of adjacent vertices in all triangulations on n vertices containing at most
s separating triangles are connected by a hamiltonian path, then G has a
hamiltonian path from w1 to w2.

Proof. Consider the graph G′ obtained from G by removing the edge uv
and adding the edge w1w2. Since w1 and w2 are not adjacent in G, we have
that G′ is a simple triangulation. The intersection of the neighbourhoods
of w1 and w2 is {u, v}, so G′ has at most s separating cycles. Together
we find that the graph G′ is a triangulation on n vertices having at most s
separating cycles, so it contains a hamiltonian path P from w1 to w2. Since
all edges of G′ except for w1w2 are also contained in G, we have that P is
also a hamiltonian path from w1 to w2 in G. �

An edge in a 3-connected simple triangulation is called reducible if it is
not contained in a separating triangle or a chordless separating quadrangle.
The following lemma allows us to skip some pairs of adjacent vertices.

Lemma 4.5. Let G be a triangulation on n vertices with a decomposition
tree D. Let u be a vertex of degree 4, and let uv be a reducible edge of G.
If each pair of adjacent vertices in all triangulations on n− 1 vertices with
decomposition tree D are connected by a hamiltonian path, then G has a
hamiltonian path from u to v.

Proof. Since the edge uv is not contained in a separating triangle or a chord-
less separating quadrangle, the graph obtained by contracting uv in G will
still have the same decomposition tree, even if uv is contained in separating
quadrangle with a chord. Let v, w1, w2, w3 be the cyclic order of the ver-
tices around u. Let G′ be the triangulation obtained from G by removing u
and its incident edges and adding the edge vw2, i.e., G′ is the triangulation
obtained by contracting the edge uv. In G′, there is a hamiltonian path P
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from v to w2. All edges in G′ except the edge vw2 are also contained in G,
so P ∪ {uw2} is a hamiltonian path from u to v in G. �

The lemma above gives no new information for triangulations where the
decomposition tree is a path, since in that case we already know that ad-
jacent vertices are connected by a hamiltonian path. The following two
lemmata prove similar results for triangulations with a path as decomposi-
tion tree, but this time for certain vertices at distance two.

Lemma 4.6. Let G be a triangulation with a path as decomposition tree.
Let u be a vertex of degree 4, and let v1, v2, v3, v4 be the cyclic order of
the vertices around u. Let uv1 be a reducible edge of G. Then G has a
hamiltonian path from v1 to v3.

Proof. Similar to the proof in the previous lemma, we can conclude that
the triangulation G′ obtained by contracting the edge uv1 in G has a path
as decomposition tree. Owing to Theorem 4.1, G′ has a hamiltonian cycle
C through v1v2 and v1v3. A hamiltonian path from v1 to v3 in G is (C \
{v1v2, v1v3}) ∪ {uv1, uv2}. �

Lemma 4.7. Let G be a triangulation with a path as decomposition tree.
Let u be a vertex of degree 5, and let v1, v2, v3, v4, v5 be the cyclic order of
the vertices around u. Let uv1 be a reducible edge of G. Then G has a
hamiltonian path from v1 to v3, and from v1 to v4.

Proof. We will only give the proof for the hamiltonian path from v1 to v3.
The other proof is completely analogous.

Similar to the proof in the previous lemma, we can conclude that the
triangulation G′ obtained by contracting the edge uv1 in G has a path as
decomposition tree. Owing to Theorem 4.1, G′ has a hamiltonian cycle C
through v1v3 and v3v4. A hamiltonian path from v1 to v3 in G is (C \
{v1v3, v3v4}) ∪ {uv3, uv4}. �

The program described above was compared with an independent imple-
mentation which checks for each pair of vertices whether a hamiltonian cycle
exists in the graph obtained by adding a single vertex and connecting it to
the two vertices in the pair. It was tested for 3-connected triangulations
how many are hamiltonian-connected. Owing to Corollary 4.2, only pairs of
nonadjacent vertices need to be checked in case of two separating triangles,
but no further optimisations were used in this implementation for testing
purposes.

The program with the optimisations was used to test 3-connected trian-
gulations with two separating triangles up to 22 vertices. For 22 vertices
it was run on a cluster of Intel Xeon E5-2680 CPU’s at 2.5 GHz. There
were 21 282 658 291 triangulations with two separating triangles and the
computations took about 22.7 CPU years. The result of this computation
is the following lemma:
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Lemma 4.8. On up to 22 vertices all 3-connected triangulations with two
separating triangles are hamiltonian-connected.

The program with the optimisations was also used to test 3-connected
triangulations with three separating triangles up to 21 vertices. For 21
vertices it was run on a cluster of Intel Xeon E5-2680 CPU’s at 2.5 GHz.
There were 8 751 268 952 triangulations with three separating triangles and
the computations took about 6.3 CPU years. The result of this computation
is the following lemma:

Lemma 4.9. On up to 21 vertices all 3-connected triangulations with three
separating triangles are hamiltonian-connected.

We also tested 3-connected triangulations with more than 3 separating
triangles, but with specific decomposition trees. We verified hamiltonian-
connectedness for triangulations with a path as decomposition tree up to
21 vertices. For 21 vertices it was run on a cluster of Intel Xeon E5-2680
CPU’s at 2.5 GHz. There were 10 141 293 048 triangulations with a path
as a decomposition tree and the computations took about 5.4 CPU years.
The result of this computation is the following lemma:

Lemma 4.10. On up to 21 vertices all 3-connected triangulations with a
path as decomposition tree are hamiltonian-connected.

We also verified hamiltonian-connectedness for triangulations with a de-
composition tree with maximum degree 3 up to 20 vertices. For 20 vertices
it was run on a cluster of Intel Xeon E5-2680 CPU’s at 2.5 GHz. There were
23 748 083 814 triangulations with a decomposition tree with maximum de-
gree 3 and the computations took about 8.0 CPU years. The result of this
computation is the following lemma:

Lemma 4.11. On up to 20 vertices all 3-connected triangulations with a
decomposition tree with maximum degree 3 are hamiltonian-connected.

5. Conclusion

It is known that 4-connected triangulations are hamiltonian-connected.
We showed that also 3-connected triangulations with only one separating
triangle are hamiltonian-connected. If we express this in terms of the decom-
position tree, then we have that 3-connected triangulations with a decompo-
sition tree with maximum degree at most 1 are hamiltonian-connected. In
order to show bounds on the strongest form of this theorem, we proved that
any decomposition tree with maximum degree at least 4 can appear as the
decomposition tree of a 3-connected triangulation that is not hamiltonian-
connected. This also means that if s ≥ 4 then there is always a 3-connected
triangulation with s separating triangles that is not hamiltonian-connected.
Finally, we presented some computational results which show that all ‘small’
3-connected triangulations with a decomposition tree with maximum degree
at most 3 are hamiltonian-connected.
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6. Kenta Ozeki and Petr Vrána. 2-edge-hamiltonian-connectedness of 4-connected plane
graphs. European Journal of Combinatorics, 35 (2014), 432–448. Selected Papers of
EuroComb’11.

7. Daniel P. Sanders. On paths in planar graphs. Journal of Graph Theory, 24 (1997),
341–345.

8. Carsten Thomassen. A theorem on paths in planar graphs. Journal of Graph Theory,
7(2) (1983), 169–176.

9. Hassler Whitney. A theorem on graphs. The Annals of Mathematics, 32(2) (1931),
378–390.

Department of Applied Mathematics, Computer Science and Statistics
Ghent University

Krijgslaan 281 - S9 - WE02
9000 Ghent
Belgium

E-mail address: nico.vancleemput@gmail.com


