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Abstract
Tutte paths are one of the most successful tools for attacking problems on long cycles in planar
graphs. Unfortunately, results based on them are non-constructive, as their proofs inherently
use an induction on overlapping subgraphs and these overlaps prevent any attempt to bound the
running time by a polynomial.

For special cases however, computational results of Tutte paths are known: For 4-connected
planar graphs, Tutte paths are in fact Hamiltonian paths and Chiba and Nishizeki [5] showed how
to compute such paths in linear time. For 3-connected planar graphs, Tutte paths have a signific-
antly more complicated structure, and it has only recently been shown that they can be computed
in polynomial time [24]. However, Tutte paths are defined for general 2-connected planar graphs
and this is what most applications need. In this unrestricted setting, no computational results
for Tutte paths are known.

We give the first efficient algorithm that computes a Tutte path (in this unrestricted setting).
One of the strongest existence results about such Tutte paths is due to Sanders [23], which allows
one to prescribe the end vertices and an intermediate edge of the desired path. Encompassing and
strengthening all previous computational results on Tutte paths, we show how to compute such
a special Tutte path efficiently. Our method refines both, the existence results of Thomassen [29]
and Sanders [23], and avoids that the subgraphs arising in the inductive proof intersect in more
than one edge by using a novel iterative decomposition along 2-separators. Finally, we show that
our algorithm runs in time O(n2).
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1 Introduction

The question whether a graph G = (V,E) is Hamiltonian, i.e. contains a cycle of length
n := |V |, is among the most fundamental graph problems. For planar graphs and graphs
embeddable on higher surfaces, Tutte paths have proven to be one of the most successful tools
for attacking Hamiltonicity problems and problems on long cycles. For this reason, there is a
wealth of existential results in which Tutte paths serve as main ingredient; in chronological
order, these are [31, 29, 26, 4, 22, 23, 27, 33, 16, 28, 11, 13, 18, 21, 20, 17, 24, 7, 2].

As a historical starting point to these results, Whitney [32] proved that every 4-connected
maximal planar graph is Hamiltonian. Tutte extended this to arbitrary 4-connected planar
graphs by showing that every 2-connected planar graph G contains a Tutte path [30, 31]
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98:2 Computing Tutte Paths

(for a definition of Tutte paths, see Section 2). Thomassen [29] in turn proved the following
generalization, which also implies that every 4-connected planar graph is Hamiltonian-
connected, i.e. contains a path of length n− 1 between any two vertices. For a plane graph
G, let CG be its outer face.

I Theorem 1 (Thomassen [29]). Let G be a 2-connected plane graph, x ∈ V (CG), α ∈ E(CG)
and y ∈ V (G)− x. Then G contains a Tutte path from x to y through α.

Sanders [23] then generalized Thomassen’s result further by allowing to choose the start
vertex x of the Tutte path arbitrarily.

I Theorem 2 (Sanders [23]). Let G be a 2-connected plane graph, x ∈ V (G), α ∈ E(CG)
and y ∈ V (G)− x. Then G contains a Tutte path from x to y through α.

On top of the above series of fundamental results, Tutte paths have been used in
two research branches: While the first deals with the existence of Tutte paths on graphs
embeddable on higher surfaces [26, 3, 27, 33, 28, 17], the second [15, 9, 3, 10, 16, 11, 19]
investigates generalizations or specializations of Hamiltonicity such as k-walks, long cycles
and Hamiltonian connectedness.

Unfortunately, in all the results mentioned so far, very little is known about the complexity
of finding a Tutte path. This is crucial, as the task of finding Tutte paths is almost always the
only reason that hinders the computational tractability of the problem. The main obstruction
so far is that Tutte paths are found by decomposing the input graph into overlapping
subgraphs, on which induction is applied. Although this is enough to prove existence results,
these overlapping subgraphs do not allow to bound the running time polynomially (as argued
in [12, 24]). The only known computational results on Tutte paths [12, 1, 5, 21, 24] deal
therefore with very restricted settings, such as the case that Tutte paths are just Hamiltonian
paths: While it is known how to compute Tutte paths for planar 4-connected graphs [5]
efficiently (in which case Tutte paths are just Hamiltonian paths), for planar 3-connected
graphs a first polynomial-time algorithm was only recently shown [24].

However, no efficient algorithm is published so far that computes Tutte paths in general
2-connected planar graphs (i.e. the ones of Theorem 1 or 2). In fact, the claimed algorithmic
results in [26, 27] require polynomial running times for computing such Tutte paths, without
giving proofs that such algorithms exist. Given the subtlety of the arguments inherent to
Tutte paths, we feel that giving such a proof is necessary. Indeed, history shows that even for
the much easier setting that Tutte paths are Hamiltonian paths, an existence result for Tutte
paths has been incorrectly claimed to imply a polynomial-time algorithm [29, 4] (again, due
to overlapping subgraphs). For finding Tutte paths in certain restrictions of 2-connected and
3-connected planar graphs, the related results in [22, 17] claim polynomial running times as
well.

Our Results

Our motivation is two-fold. First, we want to make Tutte paths accessible to algorithms. We
will show that Tutte paths can be computed in time O(n2). This has impact on almost all
the applications using Tutte paths listed above.

For several of them, e.g. [26, 22, 27, 17], we immediately obtain polynomial-time algorithms
where no efficient algorithms were published before. In addition, Tutte paths were also used
in [7, 8] to show that every essentially 4-connected polyhedral graph contains a cycle of
length proportional to n. As the existence proofs in this paper are constructive, our result
directly implies a efficient (in fact, an O(n2)-time) algorithm for the computation of these
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cycles. Furthermore, [2] showed that every 3-connected planar graph having at most three
3-separators is Hamiltonian. If a 3-connected planar graph contains at most one 3-separator,
our algorithm shows that a Hamiltonian cycle can be computed in O(n2) time, by using a
suitable choice of the intermediate edge α.

Second, we aim for computing the strongest possible known variant of Tutte paths,
encompassing the many incremental improvements on Tutte paths made over the years. We
will therefore develop an algorithm for Sander’s existence result [23], which was proven to be
best possible in many aspects. Sanders result has also an immediate extension to connected
planar graphs [20], which can be computed simply and efficiently from our result by using
block-cut trees.

We will first give a decomposition that refines the original ones used for Theorems 1 and 2,
and allows to decompose G into graphs that pairwise intersect in at most one edge. We
then show that this small overlap does not prevent us from achieving a polynomial running
time. All graphs will be simple. We proceed by showing how this decomposition can be
computed efficiently in order to find the Tutte paths of Theorem 2. Our main result is hence
the following, giving the first polynomial-time algorithm for computing Tutte paths.

I Theorem 3. Let G be a 2-connected plane graph, x ∈ V (G), α ∈ E(CG) and y ∈ V (G)−x.
Then a Tutte path of G from x to y through α can be computed in time O(n2).

Section 3 presents the decomposition with small overlap that proves the existence of
Tutte paths. On the way to our main result, we give full algorithmic counterparts of the
approaches of Thomassen and Sanders; for example, we describe small overlap variants of
Theorem 1 and of the Three Edge Lemma [26, 22], which was used in the purely existential
result of Sanders [23] as a black box.

Our Techniques

We broadly follow the idea of [5] and construct a Tutte path that is based on certain
2-separators of the graphs constructed during our decomposition. This depends on many
structural properties of the given graph. In [5], the necessary properties follow from the
restriction to the class of internally 4-connected planar graphs, the restriction on the endpoints
of the desired Tutte path, and the fact that the Tutte paths computed recursively are actually
Hamiltonian. In contrast, here we give new insights into the much wilder structure of Tutte
paths of 2-connected planar graphs, allow x, y /∈ CG, and hence extend this technique. We
show that based on the prescribed vertices and edge, there are always unique non-interlacing
2-separators that are contained in every possible Tutte path of the given graph. We then use
this set of 2-separators to iteratively construct a preliminary Tutte path and use this iterative
procedure to avoid overlaps of more than one edge in the decomposition of the input graph.

2 Preliminaries

We assume familiarity with standard graph theoretic notations as in [6]. Let deg(v) be the
degree of a vertex v. We denote the subtraction of a graph H from a graph G by G−H,
and the subtraction of a vertex or edge x from G by G− x.

A k-separator of a graph G = (V,E) is a subset S ⊆ V of size k such that G − S is
disconnected. A graph G is k-connected if |V | > k and G contains no (k − 1)-separator. For
a path P and two vertices x, y ∈ P , let xPy be the smallest subpath of P that contains
x and y. For a path P from x to y, let inner(P ) := V (P ) − {x, y} be the set of its inner
vertices. Paths that intersect pairwise at most at their endvertices are called independent.

ICALP 2018



98:4 Computing Tutte Paths

A connected graph without a 1-separator is called a block. A block of a graph G is an
inclusion-wise maximal subgraph that is a block. Every block of a graph is thus either
2-connected or has at most two vertices. It is well-known that the blocks of a graph partition
its edge-set. A graph G is called a chain of blocks if it consists of blocks B1, B2, . . . , Bk such
that V (Bi) ∩ V (Bi+1), 1 ≤ i < k, are pairwise distinct 1-separators of G and G contains no
other 1-separator. In other words, a chain of blocks is a graph, whose block-cut tree [14] is a
path.

A plane graph is a planar embedding of a graph. Let C be a cycle of a plane graph G.
For two vertices x, y of C, let xCy be the clockwise path from x to y in C. For a vertex x
and an edge e of C, let xCe be the clockwise path in C from x to the endvertex of e such
that e /∈ xCe (define eCx analogously). Let the subgraph of G inside C consist of E(C) and
all edges that intersect the open set inside C into which C divides the plane. For a plane
graph G, let CG be its outer face.

A central concept for Tutte paths is the notion of H-bridges (see [31] for some of their
properties): For a subgraph H of a 2-connected plane graph G, an H-bridge of G is either
an edge that has both endvertices in H but is not itself in H or a component K of G−H
together with all edges (and the endvertices of these edges) that join vertices of K with
vertices of H. An H-bridge is called trivial if it is just one edge. A vertex of an H-bridge L
is an attachment of L if it is in H, and an internal vertex of L otherwise. An outer H-bridge
of G is an H-bridge that contains an edge of CG.

A Tutte path (Tutte cycle) of a plane graph G is a path (a cycle) P of G such that
every outer P -bridge of G has at most two attachments and every P -bridge at most three
attachments. In most of the cases we consider, G will be 2-connected, so that every P -bridge
has at least two attachments. For vertices x, y and an edge α ∈ CG, let an x-α-y-path be
a Tutte path from x to y that contains α. An x-y-path is an x-α-y-path for an arbitrarily
chosen edge α ∈ CG.

3 Decomposition with Small Overlap

After excluding several easy cases of the decomposition, we prove Thomassen’s Theorem 1
constructively and then show how to use this for a proof of the Three Edge Lemma. The
Three Edge Lemma, in turn, allows us to give a constructive proof of Sander’s Theorem 2 in
which only small overlaps occur in the induction. Due to space constraints, we have to omit
this proof, it however derived from [23] in a similar way as Theorem 1 from [29].

We will use induction on the number of vertices. In all proofs about Tutte paths of
this section, the induction base is a triangle, in which the desired Tutte path can be found
trivially; thus, we will assume in these proofs by the induction hypothesis that graphs with
fewer vertices contain Tutte paths. All graphs in the induction will be simple.

The following sections cover different cases of the induction steps of the three statements
to prove, starting with some easy cases for which a decomposition into edge disjoint subgraphs
was already given [29]. For the remainder of the article, let G be a simple plane 2-connected
graph with outer face CG and let x ∈ V (G), α ∈ E(CG) and y ∈ V (G)− x. If α = xy, the
desired path is simply xy; thus, assume α 6= xy. Since G is 2-connected, CG is a cycle.

3.1 The Easy Cases
We say that G is decomposable into GL and GR if it contains subgraphs GL and GR such
that GL ∪ GR = G, V (GL) ∩ V (GR) = {c, d}, x ∈ V (GL), α ∈ E(GR), V (GL) 6= {x, c, d}
and V (GR) 6= {c, d} (or the analogous setting with y taking the role of x) (see Figure 1). In
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Figure 1 a) shows a graph G that is decomposable into GL and GR. The figures b) to d) show
the graphs G′L, G′R and G∗R (in this order) that are constructed to process G in [29] .

particular, GL 6= {c, d}, even if x ∈ {c, d}. Hence {c, d} is a 2-separator of G. There might
exist multiple pairs (GL, GR) into which G is decomposable; we will always choose a pair
that minimizes |V (GR)|. Note that GR intersects CG (for example, in α), but GL does not
have to intersect CG. In [29], it was shown that every decomposable graph G contains a
Tutte path, without using recursion on overlapping subgraphs.

I Lemma 4 ([29]). If G is decomposable into GL and GR, then G contains an x-α-y-path.

Even if G is not decomposable into GL and GR, G may contain other 2-separators
{c, d} that allow for a similar reduction as in Lemma 4 (for example, when modifying its
prerequisites to satisfy {x, α, y} ⊆ GR − {c, d}).

I Lemma 5 ([29]). Let {c, d} be a 2-separator of G and let J be a {c, d}-bridge of G having
an internal vertex in CG such that x, y and α are not in J . Then G contains an x-α-y-path.

3.2 Proof of Theorem 1
We now prove that G contains a Tutte path from x ∈ V (CG) to y ∈ V (G) − x through
α ∈ E(CG). For simplicity, if y is not in V (CG) but has degree two and both of its neighbors
are in V (CG), then we change the embedding of G (and therefore CG) such that y belongs
to the outer face. If Lemma 4 or 5 can be applied, we obtain such a Tutte path directly, so
assume their prerequisites are not met. Let lα be the endvertex of α that appears first when
we traverse CG in clockwise order starting from x, and let rα be the other endvertex of α. If
y ∈ xCGlα, we interchange x and y (this does not change lα); hence, we have y /∈ xCGlα. If
y = rα, we mirror the embedding such that y becomes lα and proceed as in the previous
case; hence, y /∈ xCGrα.

We define two paths P and Q in G, whose union will, step by step, be modified into a
Tutte path of G. Let Q := xCGlα and let H := G− V (Q); in particular, y /∈ Q and, if x is
an endvertex of α, Q = {x}. Since G is not decomposable, we have deg(rα) ≥ 3, as otherwise
the neighborhood of rα would be the 2-separator of such a decomposition. Since deg(rα) ≥ 3,
rα is incident to an edge e /∈ CG that shares a face with α. Let B1 be the block of H that
contains e. It is straight-forward to prove the following about B1 (see Thomassen [29]),
which shows that every vertex of CG is either in Q or in B1.

I Lemma 6 ([29]). B1 contains CG − V (Q) and is the only block of H containing rα.

Consider a component A of H that does not contain B1. Then the neighborhood of A in
G is in Q and must contain a 2-separator of G due to planarity. Hence, either y ∈ A and
we can apply Lemma 4 or y /∈ A and we can apply Lemma 5. Since both contradicts our
assumptions, H is connected and contains B1 and y. Let K be the minimal plane chain of
blocks B1, . . . , Bl of H that contains B1 and y (hence, y ∈ Bl). Let vi be the intersection of
Bi and Bi+1 for 1 ≤ i ≤ l − 1; in addition, we set v0 := rα and vl := y.

ICALP 2018



98:6 Computing Tutte Paths

Consider any (K ∪CG)-bridge J . Since Lemma 5 cannot be applied, J has an attachment
vJ ∈ K. Further, J cannot have two attachments in K, as this would contradict the
maximality of the blocks in K. Let C(J) be the shortest path in CG that contains all vertices
in J ∩CG and does not contain rα as inner vertex (here, rα serves as a reference vertex of CG
that ensures that the paths C(J) are chosen consistently on CG). Let lJ be the endvertex
of C(J) whose counterclockwise incident edge in CG is not in C(J) and let rJ be the other
endvertex of C(J).

3.2.1 Decomposing along Maximal 2-Separators
At this point we will deviate from the original proof of Theorem 1 in [29], which continues
with an induction on every block of K that leads to overlapping subgraphs in a later step of
the proof. Instead, we will show that a v0-vl-path P of K can be found iteratively such that
the graphs in the induction have only small overlap.

For every block Bi 6= B1 of K, we choose an arbitrary edge αi = lαi
rαi

in CBi
. In B1 we

choose α1 such that α1 is incident to the endvertex of CB1 ∩ CG that is not rα. As done for
G, we may assume for every Bi that lαi is the endvertex of αi that is contained in vi−1CBiαi
and that vi /∈ vi−1CBi

rαi
and (by mirroring the planar embedding and interchanging vi and

vi−1 if necessary). However, unlike G, every Bi may satisfy the prerequisites of Lemmas 4
and 5. By the induction hypothesis of Theorem 1, Bi contains a vi−1-αi-vi-path Pi. In [29],
the outer Pi-bridges of Bi are not only being processed during this induction step, but also
in a later induction step when modifying Q. We avoid such overlapping subgraphs by using
a new iterative structural decomposition of Bi along certain 2-separators on CBi

. This
decomposition allows us to construct Pi iteratively such that the outer Pi-bridges of Bi are
not part of the induction applied on Bi. Eventually, P :=

⋃
1≤i≤l Pi will be the desired

v0-vl-path of K.
The outline is as follows. After explaining the basic split operation that is used by our

decomposition, we give new insights into the structure of the Tutte paths Pi of the blocks
Bi. These are used in Section 3.2.2 to define the iterative decomposition of every block Bi
into a modified block η(Bi), which will in turn allow to compute every Pi step-by-step. This
gives the first part P of the desired Tutte path x-α-y of G. Subsequently, we will show how
the remaining path Q can be modified to obtain the second part.

For a 2-separator {c, d} ⊆ CB of a block B, let B+
cd be the {c, d}-bridge of B that contains

cCBd and let B−cd be the union of all other {c, d}-bridges of B (note that B+
cd contains the

edge cd if and only if B+
cd is trivial). For a 2-separator {c, d} ⊆ CB, let splitting off B+

cd

(from B) be the operation that deletes all internal vertices of B+
cd from B and adds the edge

cd if cd does not already exist in B. Our decomposition proceeds by iteratively splitting
off bridges B+

cd from the blocks Bi of K for suitable 2-separators {c, d} ⊆ CBi
(we omit

the subscript i in such bridges B+
cd, as it is determined by c and d). The following lemma

restricts these 2-separators to be contained in specific parts of the outer face.

I Lemma 7. Let P ′ be a Tutte path of a block B such that P ′ contains an edge α′ and two
vertices a, b ∈ CB. Then every outer P ′-bridge J of B has both attachments in aCBb or
both in bCBa. If additionally J is non-trivial and P ′ 6= α′, the attachments of J form a
2-separator of B.

Proof. Let e be an edge in J ∩CB and assume without loss of generalization that e ∈ aCBb.
Let c and d be the last and first vertices of the paths aCBe and eCBb, respectively, that are
contained in P ′ (these exist, as a and b are in P ′). Then J has attachments c and d and no
further attachment, as P ′ is a Tutte path. This gives the first claim. For the second claim,
let z be an internal vertex of J . Since P ′ 6= α′, P ′ contains a third vertex c /∈ {a, b}. As c is
not contained in J , {c, d} separates z and c and is thus a 2-separator of B. J
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Figure 2 a) The boundary points and -parts of a block Bi 6= Bl. b) An instance in which the
block Bl contains a 2-separator {w1, wp} that splits off vl.

For every block Bi 6= Bl of K, let the boundary points of Bi be the vertices vi−1, lαi , rαi , vi
and let the boundary parts of Bi be the inclusion-wise maximal paths of CBi

that do not
contain any boundary point as inner vertex (see Figure 2a; note that boundary parts may be
single vertices). Hence, every boundary point will be contained in any possible vi−1-αi-vi-path
Pi, and there are exactly four boundary parts, one of which is αi. Now, if Pi 6= αi, applying
Lemma 7 for all boundary points a, b ∈ {vi−1, lαi , rαi , vi} and α′ := αi implies that the two
attachments of every outer non-trivial Pi-bridge of Bi form a 2-separator that is contained in
one boundary part of Bi. For this reason, our decomposition will split off only 2-separators
that are contained in boundary parts.

In principle, we will do the same for the block Bl. If vl ∈ CBl
, we define the boundary

points of Bl just as before for i < l. However, Bl is special in the sense that vl may not be
in CBl

. Then we have to ensure that we do not loose vl when splitting off a 2-separator, as
vl is supposed to be contained in Pl (see Figure 2b). To this end, consider for vl /∈ CBl

the 2-
separator {w1, wp} ⊆ CBl

of Bl such that B+
w1,wp

contains vl, the path w1CBl
wp is contained

in one of the paths in {vl−1CBl
αl, αl, αlCBl

vl−1} and w1CBl
wp is of minimal length if such

a 2-separator exists. The restriction to these three parts of the boundary is again motivated
by Lemma 7: If Pl 6= αl and there is an outer non-trivial Pl-bridge of Bl, its two attachments
are in Pl and thus we only have to split off 2-separators that are in one of these three paths
to avoid these Pl-bridges in the induction. If the 2-separator {w1, wp} exists, let w1, . . . , wp
be the p ≥ 2 attachments of the w1CBl

wp-bridge of Bl that contains vl, in the order of
appearance in w1CBi

wp; otherwise, let for notational convenience w1 := · · · := wp := lαi
.

In the case vl /∈ CBl
, let the boundary points of Bl be vl−1, lαl

, rαl
, w1, . . . , wp and let the

boundary parts of Bl be the inclusion-wise maximal paths of CBl
that do not contain any

boundary point as inner vertex.

I Lemma 8. If the 2-separator {w1, wp} exists, it is unique and every vl−1-αl-vl-path Pl of
Bl contains the vertices w1, . . . , wp.

Proof. Let J ⊂ B+
w1,wp

be the w1CBl
wp-bridge of Bl that contains vl and has attachments

w1, . . . , wp. For the first claim, assume to the contrary that there is a 2-separator {w′1, w′p′} 6=
{w1, wp} of Bl having the same properties as {w1, wp}. By the connectivity of J and the
property that restricts {w′1, w′p′} to the three parts of the boundary of Bl, {w′1, w′p′} may
only split off a subgraph containing vl if w1CBl

wp ⊂ w′1CBl
w′p′ . This however contradicts

the minimality of the length of w′1CBl
w′p′ .

For the second claim, let Pl be any vl−1-αl-vl-path of Bl. Assume to the contrary that
wj 6∈ Pl for some j ∈ {1, . . . , p}. Then wj is an internal vertex of an outer Pl-bridge J ′ of Bl.
By Lemma 7, both attachments of J ′ are in CBl

. However, since J contains a path from
wj /∈ Pl to vl ∈ Pl in which only wj is in CBl

, at least one attachment of J ′ is not in CBl
,

which gives a contradiction. J

ICALP 2018



98:8 Computing Tutte Paths

Lemma 8 ensures that the boundary points of any Bi are contained in every Tutte path
Pi of Bi. Every block Bi 6= Bl has exactly four boundary parts and Bl has at least three
boundary parts (three if vl /∈ CBl

and {w1, wp} does not exist), some of which may have
length zero. For every 1 ≤ i ≤ l, the boundary parts of Bi partition CBi , and one of them
consists of αi. This implies in particular that Bi has at least two boundary parts of length
at least one unless Bi = αi. We need some notation to break symmetries on boundary parts.
For a boundary part Z of a block B, let {c, d}∗ ⊆ Z denote two elements c and d (vertices
or edges) such that cCBd is contained in Z (this notation orders c and d consistently to the
clockwise orientation of CB); if cCBd is contained in some boundary part of B that is not
specified, we just write {c, d}∗ ⊆ CB .

We now define which 2-separators are split off in our decomposition. Let a 2-separator
{c, d}∗ ⊆ CB of B be maximal in a boundary part Z of B if {c, d} ⊆ Z and Z does not
contain a 2-separator {c′, d′} of B such that cCBd ⊂ c′CBd′. Let a 2-separator {c, d}∗ ⊆ CB
of B be maximal if {c, d}∗ is maximal with respect to at least one boundary part of B.
Hence, every maximal 2-separator is contained in a boundary part, and 2-separators that
are contained in a boundary part are maximal if they are not properly “enclosed” by other
2-separators on the same boundary part.

Let two maximal 2-separators {c, d}∗ and {c′, d′}∗ of B interlace if {c, d} ∩ {c′, d′} = ∅
and their vertices appear in the order c, c′, d, d′ or c′, c, d′, d on CB (in particular, both 2-
separators are contained in the same boundary part of B). In general, maximal 2-separators
of a block Bi of K may interlace; for example, consider the two maximal 2-separators when
Bi is a cycle on four vertices in which vi−1 and vi are adjacent. However, the following
lemma shows that such interlacing is only possible for very specific configurations.

I Lemma 9. Let {c, d}∗ and {c′, d′}∗ be interlacing 2-separators of Bi in a boundary part
Z such that c′ ∈ cCBi

d and at least one of them is maximal. Then d′CBi
c = vi−1vi = αi.

Proof. Since {c, d} is a 2-separator, Bi − {c, d} has at least two components. We argue
that there are exactly two. Otherwise, Bi − {c, d} has a component that contains the inner
vertices of a path P ′ from c to d in Bi − (CBi

− {c, d}). Then Bi − {c′, d′} has a component
containing (P ′ ∪ CBi

)− {c′, d′} and no second component, as this would contain the inner
vertices of a path from c′ to d′ in Bi − ((P ′ ∪ CBi)− {c′, d′}), which does not exist due to
planarity. Since this contradicts that {c′, d′} is a 2-separator, we conclude that Bi − {c, d},
and by symmetry Bi − {c′, d′}, have exactly two components.

By the same argument, inner(cCBid) and inner(dCBic) are contained in different compon-
ents of Bi−{c, d} and the same holds for inner(c′CBi

d′) and inner(d′CBi
c′) in Bi−{c′, d′}.

Hence, the component of Bi − {c, d′} that contains inner(cCBid
′) 6= ∅ does not intersect

inner(d′CBi
c). If inner(d′CBi

c) 6= ∅, this implies that {c, d′} ⊆ Z is a 2-separator of Bi,
which contradicts the maximality of {c, d} or of {c′, d′}. Hence, inner(d′CBic) = ∅, which
implies that d′CBi

c is an edge. As Z is not an edge, d′CBi
c = αi. Since c and d′ are the only

boundary points of Bi, either {c, d′} = {vi−1, vi} or Bi = Bl, vl /∈ CBl
, {c, d′} = {vi−1, w2},

vi−1 = w1 and w2 = wp. However, the latter case is impossible, as then {c, d′} would be a
2-separator that separates inner(cCBi

d′) 6= ∅ and vl, which contradicts the maximality of
{c, d} or of {c′, d′}. This gives the claim. J

If two maximal 2-separators interlace, Lemma 9 thus ensures that these two are the only
maximal 2-separators that may contain vi−1 and vi, respectively. This gives the following
direct corollary.

I Corollary 10. Every block of K has at most two maximal 2-separators that interlace.
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Note that any boundary part may nevertheless contain arbitrarily many (pairwise non-
interlacing) maximal 2-separators. The next lemma strengthens Lemma 7.

I Lemma 11. Let Pi be a vi−1-αi-vi-path of Bi. Let J be a non-trivial outer Pi-bridge of
Bi and let e be an edge in J ∩CBi

. Then the attachments of J are contained in the boundary
part of Bi that contains e.

Proof. Let c and d be the attachments of J such that e ∈ cCBi
d and let Z be the boundary

part of Bi that contains e. If Pi = αi, vi−1 = lαi
and vi = rαi

are the only boundary points
of Bi. Then c and d are the endvertices of Z = viCBi

vi−1 3 e, which gives the claim.
Otherwise, let Pi 6= αi. By applying Lemma 7 with a = lαi and b = rαi , {c, d} is a

2-separator of Bi that is contained in CBi
. By definition of w1, . . . , wp, there are at least three

independent paths between every two of these vertices in Bi; thus, {c, d} does not separate
two vertices of {w1, . . . , wp}. Since all other possible boundary points (vi−1, lαi , rαi , vi) are
contained in Pi, applying Lemma 7 on these implies that {c, d} does not separate two vertices
of these remaining boundary points. Hence, if {c, d} 6⊆ Z, we have Bi = Bl and vl /∈ CBl

such
that {c, d} separates {w1, . . . , wp} from the remaining boundary points. Since the Pi-bridge
J does not contain αl ∈ Pi, cCBl

d ⊆ J contains {w1, . . . , wp}, but inner(cCBl
d) does not

contain any other boundary point. As vl ∈ Pi, at least one of {w1, wp} must be in Pi, say
wp by symmetry. Then d = wp, as wp ∈ Pi cannot be an internal vertex of J . Now, in
both cases p = 2 (which implies c 6= w1, as {c, d} 6⊆ Z = w1CBl

w2) and p ≥ 3, J contains
the edge of Pi that is incident to vl. As this contradicts that J is a Pi-bridge, we conclude
{c, d} ⊆ Z. J

Now we relate non-trivial outer Pi-bridges of Bi to maximal 2-separators of Bi. In the
next section, we will use this lemma as a fundamental tool for a decomposition into subgraphs
having only small overlaps, which will eventually construct P .

I Lemma 12. Let Pi be a vi−1-αi-vi-path of Bi such that Pi 6= αi. Then the maximal
2-separators of Bi are contained in Pi and do not interlace pairwise. If J is a non-trivial
outer Pi-bridge of Bi, there is a maximal 2-separator {c, d}∗ of Bi such that J ⊆ B+

cd.

3.2.2 Construction of P
We do not know Pi in advance. However, Lemma 12 ensures under the condition Pi 6= αi
that we can split off every non-trivial outer bridge J of Pi by a maximal 2-separator, no
matter how Pi looks like. This allows us to construct Pi iteratively by decomposing Bi
along its maximal 2-separators. Since maximal 2-separators only depend on the graph Bi (in
contrast to the paths Pi, which depend for example on the K ∪ CG-bridges), we can access
them without knowing Pi itself. We now give the details of such a decomposition.

I Definition 13. For every 1 ≤ i ≤ l, let η(Bi) be αi if αi = vi−1vi and otherwise the
graph obtained from Bi as follows: For every maximal 2-separator {c, d}∗ of Bi, split off B+

cd.
Moreover, let η(K) := η(B1) ∪ · · · ∪ η(Bl).

If αi 6= vi−1vi, αi cannot be a vi−1-αi-vi-path of Bi; hence, the maximal 2-separators of
K that were split in this definition do not interlace due to Lemma 12. This implies that the
order of the performed splits is irrelevant. In any case, we have V (Cη(Bi)) ⊆ V (CBi

) and the
only 2-separators of η(Bi) must be contained in some boundary part of Bi, as there would
have been another split otherwise. See Figure 3 for an illustration of η(Bl). The following
lemma highlights two important properties of every η(Bi).
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a) b)
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d 

d

vl-1Pl
η

Figure 3 a) A block Bl with boundary points vl−1, lαl , rαl , w1, . . . , w3 that has two maximal
2-separators on the same boundary part. b) The graph η(Bl).

I Lemma 14. Every η(Bi) is a block. Let P ηi be a vi−1-αi-vi-path of some η(Bi) such that
P ηi 6= αi. Then every outer P ηi -bridge of η(Bi) is trivial.

The next lemma shows how we can construct a Tutte path P of K iteratively using
maximal 2-separators. We will provide the details of an efficient implementation in Section 4.

I Lemma 15 (Construction of P ). For every 1 ≤ i ≤ l, a vi−1-αi-vi-path Pi of Bi can be
constructed such that no non-trivial outer Pi-bridge of Bi is part of an inductive call of
Theorem 1.

Proof. The proof proceeds by induction on the number of vertices in Bi. If Bi is just an
edge or a triangle, the claim follows directly. For the induction step, we therefore assume
that Bi contains at least four vertices. If αi = vi−1vi, we set Pi := αi, so assume αi 6= vi−1vi.
In particular, η(Bi) 6= αi and αi is no vi−1-αi-vi-path of η(Bi). As |V (η(Bi))| < n, we may
apply an inductive call of Theorem 1 to η(Bi), which returns a vi−1-αi-vi-path P ηi 6= αi of
η(Bi). This does not violate the claim, since η(Bi) does not contain any non-trivial outer
P ηi -bridge by Lemma 14.

Now we extend P ηi iteratively to the desired vi−1-αi-vi-path Pi of Bi by restoring the
subgraphs that were split off along maximal 2-separators one by one. For every edge
cd ∈ Cη(Bi) such that {c, d}∗ is a maximal 2-separator of Bi (in arbitrary order), we
distinguish the following two cases: If cd /∈ P ηi , we do not modify P ηi , as in Bi the subgraph
B+
cd will be a valid outer bridge. If otherwise cd ∈ P ηi , we consider the subgraph B+

cd of Bi.
Clearly, B := B+

cd ∪ {cd} is a block. Define that the boundary points of B are c, d and the
two endpoints of some arbitrary edge αB 6= cd in CB . This introduces the boundary parts of
B in the standard way, and hence defines η(B). Note that B may contain several maximal
2-separators in cCBd that in Bi were suppressed by {c, d}∗, as {c, d}∗ is not a 2-separator
of B. In consistency with Lemma 12, which ensures that no two maximal 2-separators of
Bi interlace, we have to ensure that no two maximal 2-separators of B interlace in our case
αi 6= vi−1vi, as otherwise η(B) would be ill-defined. This is however implied by Lemma 9, as
αB 6= cd. Since |V (η(B))| < |V (Bi)|, a c-αB-d-path PB of B can be constructed such that
no non-trivial outer PB-bridge of B is part of an inductive call of Theorem 1. Since αB 6= cd,
PB does not contain cd. We now replace the edge cd in P ηi by PB. This gives the desired
path Pi after having restored all subgraphs B+

cd. J

Applying Lemma 15 on all blocks of K and taking the union of the resulting paths gives
P . In the next step, we will modify Q such that P ∪ {α} ∪ Q becomes the desired Tutte
path of G. By Lemma 15, no non-trivial outer P -bridge of K was part of any inductive
call of Theorem 1 so far, which allows us to use these bridges inductively for the following
modification of Q (the existence proof in [29] used these arbitrarily large bridges in inductive
calls for both constructing P and modifying Q).
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3.2.3 Modification of Q
We show how to modify Q such that P ∪{α}∪Q is an x-α-y-path of G. To this end, consider
a (P ∪ {α} ∪Q)-bridge J of G. Since Lemma 5 cannot be applied, J does not have all of
its attachments in Q. On the other hand, if J has all of its attachments in P ⊆ K, J ⊆ K
follows from the maximality of blocks and therefore J satisfies all conditions for a Tutte path
of G. Hence, it suffices to consider (P ∪ {α} ∪Q)-bridges that have attachments in both P
and Q. The following lemma showcases some of their properties.

I Lemma 16. Let J be a (P ∪ {α} ∪ Q)-bridge of G that has an attachment in P . Then
J ∩K is either exactly one vertex in P or exactly one non-trivial outer P -bridge L of K. In
particular, J has at most two attachments in P .

Let J be a (P ∪ {α} ∪ Q)-bridge of G that has attachments in both P and Q and
recall that C(J) = lJCGrJ . Because Lemma 5 is not applicable to G, there is no other
(P ∪{α}∪Q)-bridge than J that intersects (J ∪C(J))−P −{lJ , rJ}; in other words, J ∪C(J)
is everything that is enclosed by the attachments of J in G. In order to obtain the Tutte
path of Theorem 1, we will thus replace the subpath C(J) with a path QJ ⊆ (J ∪C(J))−P
from lJ to rJ such that any (QJ ∪ P )-bridge of G that intersects (J ∪ C(J))− P − {lJ , rJ}
has at most three attachments and at most two if it contains an edge of CG. Since lJ and
rJ are contained in Q, no other (P ∪ {α} ∪Q)-bridge of G than J is affected by this “local”
replacement, which proves its sufficiency for obtaining the desired Tutte path.

We next show how to obtain QJ . If C(J) is a single vertex, we do not need to modify Q
at all (hence, QJ := C(J)), as then J ∪ C(J) does not contain an edge of CG and has at
most three attachments in total (one in Q and at most two in P by Lemma 16). If C(J) is
not a single vertex, we have the following lemma.

I Lemma 17 ([29, 4]). Let J be a (P ∪ {α} ∪Q)-bridge of G that has an attachment in P
and at least two in Q. Then (J ∪C(J))− P contains a path QJ from lJ to rJ such that any
(QJ ∪P )-bridge of G that intersects (J ∪C(J))−P −{lJ , rJ} has at most three attachments
and at most two if it contains an edge of CG.

By Lemma 16, any (P ∪ {α} ∪Q)-bridge J of G intersects K in at most one non-trivial
P -bridge of K having attachments c and d. By Lemma 15, this non-trivial P -bridge was never
part of an inductive call of Theorem 1 before (in fact, at most its edge cd was). Replacing
C(J) with QJ for every such J , as described in Lemma 17 and before, therefore concludes
the constructive proof of Theorem 1.

4 A Quadratic Time Algorithm

In this section, we give an algorithm based on the decomposition shown in Section 3 (see
Algorithm 1). It is well known that there are algorithms that compute the blocks of a graph
and the block-cut tree of G in linear time, see [25] for a very simple one. Using this on G−Q,
we can compute the blocks B1, . . . , Bl of K in time O(n).

We now check if Lemma 4 or 5 is applicable at least once to G; if so, we stop and apply
the construction of either Lemma 4 or 5. Checking applicability involves the computation of
special 2-separators {c, d} of G that are in CG (e.g., we did assume minimality of |V (GR)| in
Lemma 4). In order to find such a {c, d} in time O(n), we first compute the weak dual G∗ of
G, which is obtained from the dual of G by deleting its outer face vertex, and note that such
pairs {c, d} are exactly contained in the faces that correspond to 1-separators of G∗. Once
more, these faces can be found by the block-cut tree of G∗ in time O(n) using the above
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Algorithm 1 TPATH(G, x, α, y) . method, running time without induction
1: if G is a triangle or α = xy then return the trivial x-α-y path of G . O(1)
2: if Lemma 4 or 5 is applicable at least once to G then. weak dual block-cut tree, O(n)
3: apply TPATH on GL and GR as described and return the resulting path . O(1)
4: if there is a 2-separator {c, d} ∈ CG of G then
5: do simple case 2
6: Compute the minimal plane chain K of blocks of G . block-cut tree of G−Q, O(n)
7: Compute η(K) . dyn. progr. on weak dual block-cut tree, O(n)
8: Compute P by the induction of Lemma 15 . dyn. prog. precomputes all possible B+

cd,
O(n)

9: Modify Q by the induction of Lemma 17 . traversing outer faces of bridges, O(n)
10: return P ∪ {α} ∪Q

algorithm. Since the block-cut tree is a tree, we can perform dynamic programming on all
these 1-separators bottom-up the tree in linear total time, in order to find one desired {c, d}
that satisfies the respective constraints (e.g. minimizing |V (GR)|, or separating x and α).

Now we compute η(K). Since the boundary points of every Bi are known from K, all
maximal 2-separators can be computed in time O(n) by dynamic programming as described
above. We compute in fact the nested tree structure of all 2-separators on boundary parts
due to Lemma 12, on which we then apply the induction described in Lemma 15. Hence, no
non-trivial outer P -bridge of K is touched in the induction, which allows to modify Q along
the induction of Lemma 17.

In our decomposition, every inductive call is invoked on a graph having less vertices than
the current graph. The key insight is now to show a good bound on the total number of
inductive calls to Theorem 2. In order to obtain good upper bounds, we will restrict the
choice of αi for every block Bi of K such that αi is an edge of CBi − vi−1vi. This prevents
several situations in which the recursion stops because of the case α = xy, which would
unease the following arguments. The next lemma shows that only O(n) inductive calls are
performed. Its argument is, similarly to one in [5], based on a subtle summation of the Tutte
path differences that occur in the recursion tree.

I Lemma 18. The number of inductive calls for TPATH(G, x, α, y) is at most 2n− 3.

Hence, Algorithm 1 has overall running time O(n2), which proves our main Theorem 3.

I Corollary 19. Let G be a 2-connected plane graph and let α, β, γ be edges of CG. Then a
Tutte cycle of G that contains α, β and γ can be computed in time O(n2).
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