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Abstract. A seminal theorem of Tutte states that planar 4-connected

graphs are Hamiltonian. Applying a result of Thomas and Yu, one

can show that every 4-connected graph with crossing number 1 is

Hamiltonian. In this paper, we continue along this path and prove the

titular statement. We also discuss the traceability and Hamiltonicity

of 3-connected graphs with small crossing number and few 3-cuts, and

present applications of our results.
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1 Introduction

In a graph G, a cycle or a path is Hamiltonian if it contains all vertices of G. A

graph is called Hamiltonian if it has a Hamiltonian cycle, traceable if it contains

a Hamiltonian path, and Hamiltonian-connected if there is a Hamiltonian path be-

tween any two vertices in the graph. When we speak of a cut, we refer to a set of

vertices whose removal disconnects the graph (when the cut is a single vertex, we

will emphasise this and write cut-vertex ), while edge-cuts will always be explicitly

mentioned as such. A cut is trivial when it is the neighbourhood of a vertex.
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Whitney proved in 1931 that 4-connected planar triangulations are Hamilto-

nian [16], and a quarter century later Tutte extended this to all planar 4-connected

graphs [15]. These theorems have had an enormous impact on graph theory as we

know it, and have seen an abundance of extensions. Recently, it was investigated

what conclusions can be drawn concerning the Hamiltonicity of 3-connected planar

graphs if we restrict the number of 3-cuts. We refer the reader to the survey [6].

The strongest available result in this direction is by Brinkmann and the second au-

thor [1] and states that every 3-connected planar graph with at most three 3-cuts is

Hamiltonian. For plane triangulations with at most three separating triangles, this

had been shown by Jackson and Yu [3].

Two important notions to classify non-planar graphs are the crossing number and

the genus. For a graph G, its crossing number cr(G) is the minimum number of edge

crossings over all plane drawings of G. For a rigorous definition and a survey, we refer

to work of Richter and Salazar [7]. The genus of a graph is the smallest k such that

the graph can be embedded (i.e. drawn without edge crossings) on a sphere with

k handles. In the seventies, Grünbaum [2] and Nash-Williams [5] independently

conjectured that every 4-connected graph of genus 1 is Hamiltonian. Forty years

later, this problem remains unsolved—we do know, by a result of Thomas, Yu, and

Zang, that 4-connected toroidal graphs are traceable [11]. K3,5 shows that there exist

graphs of genus 1 with exactly one 3-cut that are non-traceable. We see this abrupt

end of the story as further motivation to investigate the Hamiltonian properties of

4-connected graphs with few crossings.

Kawarabayashi and the first author [4] showed that every 4-connected projective-

planar graph is Hamiltonian-connected—this strengthens two classic results due to

Thomassen [14], and Thomas and Yu [10]. Since any graph with crossing number 1

can be embedded into the projective plane, it follows that every 4-connected graph

with crossing number at most 1 is Hamiltonian-connected. Brinkmann (see [17])

showed that if e and f are the crossing edges in a 4-connected graph G with crossing

number 1, then G contains a Hamiltonian cycle avoiding e and f .

The principal contribution of this article is the following result.

Theorem 1 Every 4-connected graph with crossing number at most 2 is Hamilto-

nian.

This paper is organised as follows. In the next section we present all ingredients

necessary for the proof of Theorem 1, which is then given in Section 3. Thereafter,

in Section 4, we give applications of Theorem 1—in particular, we (i) discuss how

our results relate to the traceability of 3-connected graphs with few 3-cuts and few

crossings, (ii) provide, via a toughness argument, 3-connected non-Hamiltonian and

non-traceable graphs with small crossing number and few 3-cuts, (iii) show that ev-

ery 3-connected graph with at most one crossing and containing at most one 3-cut

is Hamiltonian (this extends a result of Thomassen [13] which extends the afore-
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mentioned result of Tutte [15]), and (iv) comment on hypohamiltonian graphs. The

latter includes an extension of a theorem of the second author [17] which extends a

theorem of Thomassen [13]. In the last section, we give tabular overviews of certain

Hamiltonian properties of 3-connected graphs with few crossings and a small number

of 3-cuts.

2 Preliminaries

We shall require the following two results on the Hamiltonicity of 4-connected graphs.

(The proof of the latter uses the former.)

Theorem 2 (Thomas and Yu [10]) For every 4-connected planar graph G and

any vertices u and v, the graph G− {u, v} is Hamiltonian.

Theorem 3 (Brinkmann, see [17]) Let G be a 4-connected graph with one edge

crossing formed by the edges e and f . Then G−{e, f} contains a Hamiltonian cycle.

Let h be a subgraph of a graph G. An h-bridge of G is either (i) an edge of

G − E(h) with both ends on h or (ii) a subgraph of G induced by the edges in a

component of G− V (h) together with all edges between that component and h. An

h-bridge satisfying (i) is trivial, while an h-bridge satisfying (ii) is non-trivial. For

an h-bridge P of G, the vertices in V (P ) ∩ V (h) are the attachments of P (on h),

and those vertices of P that are not attachments are non-attachments. We say that

h is a Tutte subgraph in G if every h-bridge of G has at most three attachments on

h. For a subgraph D of G, h is a D-Tutte subgraph in G if h is a Tutte subgraph

in G and every h-bridge of G containing an edge of D has at most two attachments

on h. A Tutte path (respectively, a Tutte cycle) is a path (respectively, a cycle) that

is a Tutte subgraph. Similarly, we define a D-Tutte path and a D-Tutte cycle. By

the definition, we see that a Tutte cycle h in a 4-connected graph is nothing but a

Hamiltonian cycle if |V (h)| ≥ 4.

We use the following result by Sanders. (Note that an earlier but weaker re-

sult by Thomassen [14] is sufficient for our proof, but we introduce a more general

statement.)

Theorem 4 (Sanders [9]) Let G be a 2-connected plane graph with facial cycle

D, let x, y ∈ V (G) and e ∈ E(D). Then G contains a D-Tutte path from x to y

through e.

The following theorems appear in [10, (2.8)], in [10, (3.2)] and in [10, (4.1)],

respectively—see also [8, Lemma 3] for the first one.

Theorem 5 (Thomas and Yu [10]) Let G be a 2-connected plane graph with a

facial cycle D and let e1, e2, e3 ∈ E(D). Then G contains a D-Tutte cycle passing

through e1, e2, and e3.
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Theorem 6 (Thomas and Yu [10]) Let G be a 2-connected plane graph with two

facial cycles D1 and D2, and let e ∈ E(D1). Then G contains a (D1 ∪ D2)-Tutte

cycle h passing through e such that no h-bridge contains edges of both D1 and D2.

Theorem 7 (Thomas and Yu [10]) Let G be a 2-connected graph on the projec-

tive plane with a facial cycle D, and let e ∈ E(D). Then G contains a D-Tutte cycle

h passing through e such that every h-bridge that contains a non-nullhomotopic cycle

is edge-disjoint from D.

We also need the following lemma. We denote the subgraph of G induced by a

vertex set S ⊆ V (G) with G[S].

Lemma 8 Let G be a 4-connected graph, let S ⊆ V (G) be a cut of G, let A be a

component of G−S, and let GA = G[A∪S]. Then for any Tutte subgraph h in GA,

if |V (h)| ≥ 4 and h contains all vertices in S, then h contains all vertices in GA.

Proof. Suppose to the contrary that for a Tutte subgraph h in GA, there is a

non-trivial h-bridge P of GA. Since h is a Tutte subgraph, P has at most three

attachments on h. As G is 4-connected and |V (h)| ≥ 4, the three attachments of P

on h do not form a cut of G, and hence P contains a vertex in S as a non-attachment.

However, this contradicts that h contains all vertices in S. □

3 Proof of Theorem 1

By Theorem 3, we may assume that G has a drawing in the plane with exactly two

edge crossings. Let e1, f1, e2, and f2 be edges in G such that ei and fi form an edge

crossing for i ∈ {1, 2}.

Claim 1 We may assume that all of e1, f1, e2, and f2 are distinct edges.

Proof. Suppose that some of them are not distinct. Since trivially e1 ̸= f1 and

e2 ̸= f2, we may assume that e1 = e2. This implies that G′ = G − {e1} is a plane

graph. Let e1 = e2 = xAxB. Specifying an appropriate edge as e, by Theorem 4 the

graph G′ contains a Tutte path h from xA to xB with |V (h)| ≥ 4. (We do not need

to consider the facial cycle D.) Since xAxB = e1 ∈ E(G), to obtain a Hamiltonian

cycle in G, it suffices to show that h is a Hamiltonian path. Suppose it is not. Then

there is a non-trivial h-bridge P of G′. Since h is a Tutte path, P has at most three

attachments. As G is 4-connected and |V (h)| ≥ 4, the attachments of P on h do not

form a cut of G of order at most three, and hence P must contain xA or xB as a

non-attachment. This however contradicts the fact that xA and xB are end-vertices

of h. □

We use Claim 1 implicitly in the remaining proof.
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Consider the graphG′ obtained fromG by replacing the crossing between ei and fi
with a vertex of degree 4, for i ∈ {1, 2}. In other words, the plane graphG′ is obtained

from G−{e1, f1, e2, f2} by adding two new vertices u1 and u2 together with four edges

between each of them and the corresponding end-vertices of e1, f1, e2, f2. If G′ is 4-

connected, then it follows from Theorem 2 that G′ − {u1, u2} = G − {e1, f1, e2, f2}
is Hamiltonian, and hence we are done. So we may assume that G′ contains a cut

S ′ of order at most three. Since G is 4-connected, S ′ must contain at least one of

u1 and u2. Let A′ and B′ be the components of G′ − S ′. The strategy used in the

upcoming proof is as follows. First, by showing four claims, the terrain is prepared

to get the graph G′′−{e2, f2} (where G′′ is obtained from G by replacing the crossing

edges e1 and f1 as shown in Figure 2), which by Theorem 3 has a Hamiltonian cycle

q′′. Second, by means of a case analysis it is shown that from q′′ one can obtain a

Hamiltonian cycle of G.

The following claim provides useful properties of S ′.

Claim 2 We may assume that |S ′| = 3 and either u1 ̸∈ S ′ or u2 ̸∈ S ′.

Proof. Suppose first |S ′| = 2. Since G is 4-connected, we have S ′ = {u1, u2}
and each edge of e1, f1, e2, f2 connects A′ and B′. Let e1 = xAxB, f1 = yAyB,

e2 = zAzB and f2 = wAwB with xA, yA, zA, wA ∈ V (A′) and xB, yB, zB, wB ∈ V (B′).

By symmetry, we may assume that xA, yA, zA, wA appear in the boundary of A′ in

counterclockwise order. Since ei and fi form an edge crossing for i ∈ {1, 2} but no

other pairs form an edge crossing, the vertices yB, xB, wB, zB appear in the boundary

of B′ in clockwise order (see the left-hand side of Figure 1, ignoring QA, QB, s).

However, if we flip B′ vertically, then we obtain a planar embedding of G (see the

right-hand side of Figure 1, ignoring QA, QB, D1, D2, u, v), and hence Tutte’s result

implies that G is Hamiltonian. Therefore, we may assume |S ′| = 3.

Suppose next that u1, u2 ∈ S ′. Since G is 4-connected, each edge of e1, f1, e2, f2
connects A′ and B′. As above, let e1 = xAxB, f1 = yAyB, e2 = zAzB, and f2 =

wAwB with xA, yA, zA, wA ∈ V (A′) and xB, yB, zB, wB ∈ V (B′), and assume that

xA, yA, zA, wA appear in the boundary of A′ in counterclockwise order. Then the

vertices yB, xB, wB, zB appear in the boundary of B′ in clockwise order. We may

also assume that all neighbours of s, which is the vertex in S ′ with s ̸= u1, u2, in A′

(respectively in B′) appear in QA (respectively in QB), where QA is the subpath of

the boundary of A′ from wA to xA in counterclockwise order (respectively QB is the

subpath of the boundary of B′ from zB to yB in clockwise order). See the left-hand

side of Figure 1.

Note that G− s behaves as described in the first paragraph of this proof. There-

fore, by flipping B′ vertically, we obtain a plane embedding of G − s. Since G is

4-connected, the vertex s has at least two neighbours in QA or in QB. By symmetry,

we may assume that the former occurs. Take two neighbours u and v of s so that

they are as close on QA as possible, and add an edge between them if they are not
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Figure 1: Vertical flipping of B′ in G− s to obtain the plane graph.

consecutive in QA. Let H be the resulting (plane) graph, let D1 be the facial cycle

of H containing the edge uv and the vertices wA, xA, xB, wB, and let D2 be the facial

cycle of H containing the path QB and the vertices yA, zA, zB, yB. See the right-hand

side of Figure 1.

By Theorem 6, H contains a (D1 ∪ D2)-Tutte cycle h with uv ∈ E(h). It is

easy to see that |V (h)| ≥ 4. Suppose that there is a non-trivial h-bridge P of H.

Since h is a Tutte subgraph, P has at most three attachments on h. As G is 4-

connected, the three attachments of P on h do not form a cut of G, and hence P

contains a neighbour of s in G as a non-attachment. By the choice of QA, QB, u, v,

all neighbours of s are contained in D1 or D2. Thus, P contains an edge in D1 ∪D2.

Since h is a (D1 ∪ D2)-Tutte subgraph, P has at most two attachments on h, but

these two attachments, together with s, form a cut of order at most three in G, a

contradiction.

Therefore, there is no non-trivial h-bridge of H, and hence h is a Hamiltonian

cycle of H. Then by adding the path usv to h instead of the edge uv, we obtain a

Hamiltonian cycle of G. This completes the proof of Claim 2. □

By Claim 2 and symmetry, we may assume that there exists a cut S ′ of G′ with

|S ′| = 3 and u2 ̸∈ S ′. Since G is 4-connected, we have u1 ∈ S ′ and both e1 and

f1 connect A′ and B′. Let e1 = xAxB, and f1 = yAyB with xA, yA ∈ V (A′) and

xB, yB ∈ V (B′). In this case S = S ′ − {u1} is a 2-cut in G− {e1, f1}, and let A and

B be the components of G− {e1, f1} − S, corresponding to A′ and B′, respectively.

Let {s1, s2} = S, GA = G[A∪ S] and GB = G[B ∪ S]. For GA and GB, we show the

following claim.

Claim 3 At least one of GA and GB does not contain an edge crossing.

Proof. If neither e2 nor f2 connects s1 and s2, then clearly at least one of GA and

GB does not contain the edge crossing by e2 and f2. Suppose that either e2 or f2,

say e2 by symmetry, connects s1 and s2. Since S is a 2-cut in G − {e1, f1}, f2 does

not connect A and B. Since the end-vertices of f2 are distinct from those of e2,
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Figure 2: Replacement of the edge crossing with five new vertices and twelve new

edges.

either f2 ∈ E(A) or f2 ∈ E(B) holds. Then GB or GA contains no edge crossing,

respectively. □

By Claim 3 and symmetry, we may assume that GA does not contain an edge

crossing, i.e. GA is a plane graph. Let DA be the boundary of GA. By symmetry, we

may further assume that the vertices s1, s2, xA, and yA appear in DA in this order.

Now, we take a cut S ′ as in Claim 2 so that |A| is as small as possible. This choice

gives the following:

Claim 4 GA is 2-connected.

Proof. Suppose that GA contains a cut-vertex t. Then there is a component C

of GA − t that contains at most two vertices in {s1, s2, xA, yA}. Furthermore, if C

contains two vertices in the set, then we may assume that one of them is xA or yA.

If C contains xA or yA, say xA by symmetry, then t and xB possibly together with

yA or s1 or s2 form a cut of order at most three in G, a contradiction. Therefore,

we may assume that C contains neither xA nor yA. By the choice of C, C contains

exactly one of s1 and s2, say s1 by symmetry. If C contains a vertex other than s1,

then {s1, t} is a 2-cut of G, a contradiction again. Thus, we may assume that C

consists of only s1. However {t, s2, u1} is also a cut of G′, contradicting the choice of

S ′. □

Let G′′ be the graph obtained from G − {e1, f1} by adding five new vertices

x′
A, y

′
A, x

′
B, y

′
B, and u together with the twelve edges xAx

′
A, yAy

′
A, xBx

′
B, yBy

′
B, x

′
Ay

′
A,

y′Ax
′
B, x

′
By

′
B, y

′
Bx

′
A, x

′
Au, y

′
Au, x

′
Bu, and y′Bu; see Figure 2. The graph G′′ has a

drawing in the plane with only one edge crossing, which is formed by e2 and f2. We

regard G − {e1, f1} as a subgraph of G′′. Let R be the subgraph of G′′ induced by

the added twelve edges. We now show the following.

Claim 5 The graph G′′ is 4-connected.

Proof. To show this claim, we use Menger’s theorem and prove that for every pair

of vertices a and b of G′′ there exist four pairwise internally disjoint paths connecting

them, depending where a and b lie.
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We first prove the case a, b ∈ V (G). Since G is 4-connected, there exist four

pairwise internally disjoint paths in G connecting a and b. If they use neither e1
nor f1, then they are also paths in G′′. If they use exactly one of e1 and f1, then

we obtain the desired paths by replacing e1 or f1 with an appropriate path in R.

Thus, we may assume that they use both e1 and f1. In this case, replacing the two

edges e1 and f1 with either the two paths xAx
′
Ay

′
AyA and xBx

′
By

′
ByB or the two paths

xAx
′
Ay

′
ByB and yAy

′
Ax

′
BxB, we obtain the paths we are looking for.

Next, consider the case a, b ∈ V (G′′)− V (G). Now we only prove the case a = u

and b = x′
A, but the other cases can be shown in the same way. For the vertices u

and x′
A, we have the three paths ux′

A, uy
′
Ax

′
A, and uy′Bx

′
A in R. Furthermore, since

G− {e1, f1} is 2-connected, we can find a path Q in G− {e1, f1} connecting xA and

xB. Then the extension of Q using the paths x′
AxA and xBx

′
Bu gives a fourth path,

and we are done.

So, by symmetry, it only remains to treat the case a ∈ V (G) and b ∈ V (G′′) −
V (G). Since G is 4-connected, there exist four paths in G from a to the set

{xA, yA, xB, yB} that share only a. Extending these paths to b in R, we obtain

the desired paths.

This completes the proof of Claim 5. □

By Claim 5 and Theorem 3, G′′ −{e2, f2} contains a Hamiltonian cycle q′′. Note

that q′′ uses exactly two or four edges in F = {xAx
′
A, yAy

′
A, xBx

′
B, yBy

′
B}, which is a

4-edge-cut in G′′. Let qG = q′′ − {u, x′
A, y

′
A, x

′
B, y

′
B} and qB = qG − V (A). Observe

that both qG and qB are subgraphs of G, consisting of one path or two disjoint paths.

We divide the remaining proof into a brief discussion of the situations which

can be dealt with fairly straightforwardly, followed by three more involved cases,

depending on how q′′ passes through F . In the former cases, adding e1 or f1 to qG
immediately gives a Hamiltonian cycle in G, while in the latter three cases we can

only use qB and need to modify q′′ inside of GA. Such modifications are allowed by

Theorems 4 and 5 by specifying appropriate edges.

If E(q′′)∩F = {xAx
′
A, xBx

′
B}, we obtain a Hamiltonian cycle of G by adding the

edge e1 to qG. Symmetrically, if E(q′′)∩F = {yAy′A, yBy′B}, we obtain a Hamiltonian

cycle in G by adding the edge f1 to qG. Furthermore, assume all of the edges in F

are used in q′′. In this situation, qG consists of two disjoint paths with end-vertices

xA, yA, xB and yB. In particular, since G′′ − {e2, f2} is a plane graph, there are only

the following two possibilities:

• One path connects xA and yA, and the other connects xB and yB.

• One path connects xA and yB, and the other connects yA and xB.

In either case, a Hamiltonian cycle in G can be obtained by adding the two edges e1
and f1. Now we deal with each of the other cases.

Case 1. E(q′′) ∩ F = {xAx
′
A, yAy

′
A}.

8



In this case qB is a Hamiltonian path in GB connecting s1 and s2. Let G
(1)
A be

the graph obtained from GA by adding the edge s1s2 on the outer facial cycle DA

of GA. Note that the added edge s1s2 and the vertices xA and yA are contained in

a new facial cycle D
(1)
A of G

(1)
A . Take any edges ex and ey in D

(1)
A that are incident

with xA and yA, respectively. By Theorem 5, G
(1)
A contains a D

(1)
A -Tutte cycle h

(1)
A

with s1s2, ex, ey ∈ E(h
(1)
A ). Then h

(1)
A − {s1s2} is a Tutte path in GA connecting s1

and s2 and containing xA and yA. Thus, by Lemma 8, it contains all vertices of GA.

Combining qB and h
(1)
A −{s1s2} with the vertices s1 and s2, we obtain a Hamiltonian

cycle in G. □

Case 2. E(q′′) ∩ F = {xAx
′
A, yBy

′
B}.

Here qB is a path in GB connecting yB and si for some i ∈ {1, 2}. We need to

find a suitable path h
(2)
A in GA, considering two subcases depending on whether qB

passes through s3−i.

Suppose first that qB passes through s3−i. Let G
(2)
A be the graph obtained from

GA by adding the edge s1s2 on DA. Note that the added edge s1s2 and the vertices

xA and yA are contained in a new facial cycle D
(2)
A of G

(2)
A . By Theorem 4, G

(2)
A

contains a D
(2)
A -Tutte path h

(2)
A from yA to s3−i passing through the edge s1s2.

Suppose next that qB does not pass through s3−i. Let G
(2)
A = GA and D

(2)
A = DA,

and let es be an edge of DA that is incident with s3−i. By Theorem 4, G
(2)
A contains

a D
(2)
A -Tutte path h

(2)
A from yA to si passing through the edge es.

We remark that in either case, h
(2)
A contains yA, s1 and s2, and we now show that

it also contains xA. Suppose to the contrary that h
(2)
A does not contain xA. Then

there exists a non-trivial h
(2)
A -bridge P of G

(2)
A containing xA as non-attachment.

Since xA is contained in D
(2)
A and h

(2)
A is a D

(2)
A -Tutte path in G

(2)
A , P has at most

two attachments. However, those attachments together with xB form a cut of G of

order at most three, a contradiction. Therefore h
(2)
A also contains xA.

By Lemma 8, h
(2)
A contains all vertices of GA. Then combining qB and h

(2)
A − s3−i

(when qB passes through s3−i) or h
(2)
A (otherwise) with the vertex si and the edge f1,

we obtain a Hamiltonian cycle in G. □

If E(q′′) ∩ F = {yAy′A, xBx
′
B}, we may proceed as in Case 2—simply switch the

names of x’s and y’s.

Case 3. E(q′′) ∩ F = {yBy′B, xBx
′
B}.

In this case, qB consists of two disjoint paths connecting {xB, yB} and {s1, s2}.
Let G

(3)
A be the graph obtained from GA by adding the edge yAs1 on DA. Note that

the added edge and the two vertices xA and s2 are contained in a new facial cycle

D
(3)
A of G

(3)
A . By Theorem 5, G

(3)
A contains a D

(3)
A -Tutte path h

(3)
A from xA to s2

passing through the edge yAs1. By Lemma 8, h
(3)
A contains all vertices of GA. By

planarity of GA, h
(3)
A − {yAs1} consists of two disjoint paths in GA such that one

path connects xA and yA and the other connects s1 and s2. Therefore, combining qB

9



and h
(3)
A − {yAs1} with the vertices s1 and s2 and the edges e1 and f1, we obtain a

Hamiltonian cycle in G. □

4 Applications

4.1 Traceability

In this section we give an application of Theorem 1 concerning traceability by using

the following proposition. For a 3-connected graph G, let ϕ(G) denote the number

of 3-cuts present in G.

Proposition 9 Let k, ℓ ≥ 0. If every 3-connected graph with crossing number at

most k and at most ℓ 3-cuts is Hamiltonian, then every 3-connected graph with

crossing number at most k + 1 and at most ℓ 3-cuts is traceable.

Proof. Let G be a 3-connected graph with cr(G) ≤ k + 1 and ϕ(G) ≤ ℓ. We

replace one of the edge crossings as depicted in Figure 2. Note that other edges of

G may cross e1 or f1; we perform the transformation such that these edge crossings

remain unchanged. Thus we obtain a graph G′ with cr(G′) ≤ k and ϕ(G′) ≤ ℓ;

the latter follows by using the same argument as in Claim 5 from the proof of

Theorem 1. Therefore, by assumption, G′ contains a Hamiltonian cycle q. Let

F = {xAx
′
A, yAy

′
A, xBx

′
B, yBy

′
B}, which is a 4-edge-cut in G′.

Suppose that exactly two of the edges in F are used in q. If E(q) ∩ F =

{xAx
′
A, yAy

′
A}, then we remove from q the vertices {u, x′

A, x
′
B, y

′
A, y

′
B} and obtain

a Hamiltonian path in G from xA to yA. Similarly we find a Hamiltonian path in G

for all other cases.

Assume next that all of the edges in F are used in q. Then removing the vertices

{u, x′
A, x

′
B, y

′
A, y

′
B} from q and adding the edges e1 and f1, we obtain either a Hamil-

tonian cycle in G or two disjoint cycles containing all vertices in G. In the former

case, we are done, while in the latter case, by adding an edge between the two cycles

and deleting a suitable edge from each of the two cycles, we obtain a Hamiltonian

path in G. □

We shall use this proposition to give a tabular overview in the final section, con-

cerning the Hamiltonicity of 3-connected graphs with few 3-cuts and small crossing

number.

4.2 Crossing number and number of 3-cuts

In this section, we discuss the Hamiltonicity of 3-connected graphs featuring both

a small crossing number and few 3-cuts. We begin with a negative result on their

Hamiltonicity and traceability.
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Proposition 10 There exist infinitely many 3-connected graphs G which are

• non-Hamiltonian and satisfy cr(G) + ϕ(G) = 6, and

• non-traceable and satisfy cr(G) + ϕ(G) = 8.

Proof. Consider a quadrilateral Q = abcd. Inserting into Q a vertex w and adding

the edges aw, bw, cw, and dw, we say that we 1-augment Q. If we insert into Q

two vertices u and v and eight edges au, bu, cu, du, av, bv, cv, and dv, then we say

that we 2-augment Q. Note that if Q is a quadrangular face, then by 1-augmenting

Q, the new vertex w can be added without creating any edge crossings, while by

2-augmenting Q, the new vertices u and v can be added with two edge crossings.

Let G be a 3-connected quadrangulation with three pairwise disjoint quadrilat-

erals Q1, Q2, and Q3. Let G′ be the graph obtained by 2-augmenting Q1, Q2, and

Q3 and 1-augmenting all other quadrilaterals. Then G′ is a 4-connected graph with

cr(G′) ≤ 6. We now show that in fact cr(G′) = 6. Let F be a set of edges of

G′ with |F | ≤ 5, and for i ∈ {1, 2, 3}, let Qi = aibicidi, and ui and vi be the

two new vertices obtained by 2-augmenting Qi. Since Q1, Q2, and Q3 are pairwise

disjoint, one of them, say Q1 by symmetry, satisfies that the subgraph induced by

{a1, b1, c1, d1, u1, v1} contains at most one edge in F . By symmetry, we may assume

that all of the edges au1, bu1, cu1, av1, bv1, and cv1 exist in G′ − F . Then we can

find a minor of K3,3 such that a1, b1, and c1 form the vertices in one partite set and

u1, v1, and the remaining vertices form those in the other partite set. Therefore,

G′−F is not planar. Since such an edge-set F can be chosen arbitrarily, we see that

cr(G′) = 6.

We next show that G′ is non-Hamiltonian. By Euler’s formula, the number of

faces in G is n − 2, where n is the number of vertices of G. In G′ we colour blue

the vertices originally belonging to G, and red the vertices added when augmenting.

Then no two red vertices are adjacent and we have in G′ exactly n blue vertices and

3 · 2+ (n− 2− 3) = n+1 red vertices. Thus, removing all n blue vertices, we obtain

n+ 1 components, so G′ is not 1-tough. Thus G′ is non-Hamiltonian.

Since we can choose arbitrary 3-connected quadrangulations with three pairwise

disjoint quadrilaterals as G, this shows that there exist infinitely many 3-connected

graphs G which are non-Hamiltonian and satisfy cr(G) = 6 and ϕ(G) = 0. It is

easy to check that when removing an edge which decreases the crossing number (by

one), one new (trivial) 3-cut appears, and hence the first statement holds for any

0 ≤ ϕ(G) ≤ 6.

For the non-traceable case we proceed in the same manner, but we 2-augment

four pairwise disjoint quadrilaterals and 1-augment all other quadrilaterals of a given

quadrangulation. □

It may come as a surprise that there exists a graph with cr(G)+ϕ(G) = 3 which

is, as the graphs described above, also not 1-tough, namely K3,4. In contrast to
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Proposition 10, Theorem 1 guarantees the Hamiltonicity for 3-connected graphs G

with cr(G) ≤ 2 and ϕ(G) = 0. Let us now give another positive result.

Theorem 11 Every 3-connected graph with crossing number at most 1 and con-

taining at most one 3-cut is Hamiltonian.

Proof. If G is a 3-connected graph satisfying cr(G) + ϕ(G) ≤ 1, then G is Hamil-

tonian by theorems of Thomas and Yu [10] or Thomassen [13]. Henceforth, let G be

a 3-connected graph with cr(G) = ϕ(G) = 1. Denote the unique 3-cut of G with S.

Observe that G can be embedded into the projective plane without edge crossings.

If there are two vertices u and v in S with uv ̸∈ E(G), then there exists a facial cycle

D with u, v ∈ V (D), and let G′ = G. On the other hand, if S forms a triangle, then

let G′ = G−{uv} for some u, v ∈ S and let D be the new facial cycle. In either case

G′ is 3-connected and any 3-cut S ′ satisfies either

(1) S ′ = S or

(2) each component of G′ − S ′ contains one of u and v.

In either case, for any 3-cut S ′ of G′, the choice of D implies that D contains a vertex

in both components of G′ − S ′. We choose an arbitrary edge e in D that is incident

with u. By Theorem 7, G′ contains a D-Tutte cycle h passing through e. We show

that h is a Hamiltonian cycle in G′ and hence in G.

Suppose to the contrary that there is a non-trivial h-bridge P of G′. Since h is

a Tutte subgraph, P has at most three attachments on h. Since G′ is 3-connected,

P has exactly three attachments and they form a 3-cut in G′. So, either (1) or (2)

above is satisfied, and P contains an edge in D. Since h is a D-Tutte cycle, P has

at most two attachments, a contradiction. □

4.3 Hypohamiltonian Graphs

A graph G is hypohamiltonian if G is non-Hamiltonian yet G − v is Hamiltonian

for every vertex v in G. Using a result of Tutte [15], Thomassen [13] showed that

planar hypohamiltonian graphs always contain a cubic vertex—put in a different,

perhaps more appealing way, Thomassen’s result states that if in a planar graph

with minimum degree at least 4 every vertex-deleted subgraph is Hamiltonian, then

the graph itself must be Hamiltonian. (We cannot replace the “4” with a “3”, since

by another result of Thomassen planar cubic hypohamiltonian graphs exist [12].)

The second author strengthened this result in several directions [17], one of which

states that every hypohamiltonian graph with crossing number 1 contains at least

one cubic vertex. We here present an extension of this theorem, but first need two

more definitions.
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Every non-complete graph G of connectivity exactly k has non-empty induced

subgraphs G1, G2 such that G = G1 ∪ G2, |V (G1)| ≥ k + 1, |V (G2)| ≥ k + 1, and

V (G1) ∩ V (G2) = S, where |S| = k. Then G1 (and also G2) is called a k-fragment

of G and S is the set of ends of G1.

Corollary 12 Let G be a graph with crossing number 1 in which every vertex-

deleted subgraph is Hamiltonian. If G contains at most one cubic vertex, then G is

Hamiltonian.

Proof. Since every vertex-deleted subgraph of G is Hamiltonian, we have that G is

3-connected, and thus has minimum degree at least 3. Assume G is non-Hamiltonian.

Since every vertex-deleted subgraph of G is Hamiltonian, G is hypohamiltonian. By

Theorem 11, G contains at least two 3-cuts. Since G has at most one cubic vertex,

one of these 3-cuts must be non-trivial. We denote this 3-cut with S. Let H and

H ′ be the 3-fragments with ends S. By a lemma of the second author [17], no

vertex in S is cubic, so any cubic vertex present in G lies either in V (H) \ S or

V (H ′) \ S—say the former. Clearly we have cr(H) ≤ 1. If H is planar, by using a

result of Thomassen [13] we identify the ends of H and a copy thereof. We obtain

a planar hypohamiltonian graph with at most two cubic vertices. This, however,

contradicts [17, Theorem 3]. If cr(H) = 1, then we glue two copies of H ′ and are

led, in the same way, to a contradiction. □

We would very much like to extend above result to the case of crossing number 2.

Unfortunately, we did not succeed. We were however able to prove the following.

Theorem 13 Every hypohamiltonian graph G with crossing number 2 containing

at least two 3-cuts must contain a cubic vertex.

Proof. In addition to above properties, let G have minimum order. Now assume

that G has minimum degree at least 4. Let S be one of the (necessarily non-trivial)

3-cuts present in G. Let H and H ′ be the two 3-fragments with ends S. Arguing as

in [17, Lemma 9], we obtain that either one of the two 3-fragments is planar, or both

have crossing number 1. In the former case, let H be the planar 3-fragment. Glue H

and a copy of itself using [17, Lemma 2]. We obtain a planar hypohamiltonian graph

with no cubic vertices, contradicting a theorem of Thomassen [13]. In the latter

case, by [13, Lemma 3], w.l.o.g. H has order strictly less than 1
2
(|V (G)|+3) since G

contains at least two 3-cuts. Gluing two copies of H yields a hypohamiltonian graph

with crossing number 2 with fewer vertices than G, a contradiction. (Would there

be only one 3-cut in G, the fragment H could have exactly 1
2
(|V (G)| + 3) vertices

and no contradiction would occur.) □

We derive that if there exists a hypohamiltonian graph with crossing number 2

which has minimum degree at least 4, then it contains exactly one non-trivial 3-cut

S such that each of the two 3-fragments with ends S has crossing number 1.
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5 Conclusion

By Theorem 1, as well as Propositions 9 and 10 we obtain Table 1, which shows the

known results on the Hamiltonicity and traceability of 4-connected graphs with given

crossing number. Question marks indicate open problems, which are interesting but

challenging.

cr 0 1 2 3 4 5 6 7 8

Hamiltonian 3(A) 3(B) 3(C1) ? ? ? 77 77 77

Traceable 3(A) 3(B) 3(C1) 3(C2) ? ? ? ? 77

(A) Tutte [15] (C1) This paper, Theorem 1

(B) Thomas and Yu [10] (C2) This paper, Proposition 9

Table 1: On the Hamiltonicity and traceability of 4-connected graphs with small

crossing number. Green cells (marked 3) signify that the corresponding graphs are

Hamiltonian and traceable, respectively, while red cells (marked 77) represent that

not all graphs in the respective family are Hamiltonian or traceable.

ϕ⧹cr 0 1 2 3 4 5 6

0 3(A) 3(C) 3(F1) ? ? ? 77

1 3(B) 3(F2) 7 K3,4 7 7 K3,5 77

2 3(C) ? 7 7 77

3 3(D) ? 7 77

4 ? 7 (E) 77

5 ? 77

6 77

(A) Tutte [15] (F1) This paper, Theorem 1

(B) Thomassen [14] (F2) This paper, Theorem 11

(C) Thomas and Yu [10]

(D) Brinkmann and Zamfirescu [1]

(E) Barish (personal communication)

Table 2: On the Hamiltonicity of 3-connected graphs with small crossing number

and few 3-cuts. Green cells (marked 3) signify that the corresponding graphs are

Hamiltonian, while orange (marked 7) and red cells (marked 77) represent that not

all graphs in the respective family are Hamiltonian, because of graphs related to

K3,4, K3,5 or K4,5, and Proposition 10, respectively.

Considering Theorem 11 and Proposition 10, one may think that Table 1 can

be extended to 3-connected graphs with few 3-cuts, but the situation is more com-

plicated, see Table 2. The complete bipartite graph K3,4 is not Hamiltonian, while

ϕ(K3,4) = 1 and it is easy to check that cr(K3,4) = 2. However, we do not know
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of any other 3-connected non-Hamiltonian graphs G with ϕ(G) = 1 and cr(G) = 2.

On the other hand, for any (i, j) ∈ {(1, 3), (1, 4), (2, 2), (2, 3), (3, 2)}, suitable com-

binations of K3,4 with 4-connected plane graphs give infinitely many 3-connected

non-Hamiltonian graphs G with ϕ(G) = i and cr(G) = j. Furthermore, we can

construct infinitely many 3-connected non-Hamiltonian graphs G with ϕ(G) = 4 and

cr(G) = 1; this can be achieved by considering as base graph K4,5 with a slightly

modified edge-set, as pointed out by Robert Barish in personal correspondence. We

leave the details to the reader.

Note that a similar situation occurs for traceability, as well. Proposition 10 shows

that for any (i, j) with i + j ≤ 8, there are infinitely many non-traceable graphs G

with ϕ(G) = i and cr(G) = j, but there exist 3-connected non-traceable graphs for

which the sum of crossing number and number of 3-cuts is less than 8. The simplest

example is K3,5, which is not traceable and satisfies ϕ(K3,5) = 1 and cr(K3,5) = 4.

We can modify K3,5 with non-traceable graphs G with ϕ(G) = i and cr(G) = j for

certain pairs (i, j). Since the situation seems much more complicated, we leave this

as future work.
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[2] B. Grünbaum. Polytopes, graphs and complexes. Bull. Amer. Math. Soc. 76

(1970) 1131–1201.

[3] B. Jackson and X. Yu. Hamilton cycles in plane triangulations. J. Graph Theory

41 (2002) 138–150.

[4] K. Kawarabayashi and K. Ozeki. 4-connected projective-planar graphs are

Hamiltonian-connected. J. Combin. Theory, Ser. B 112 (2015) 36–69.

[5] C. St. J. A. Nash-Williams. Unexplored and semi-explored territories in graph

theory, in: New directions in the theory of graphs, pp. 149–186, Academic Press,

New York, 1973.

[6] K. Ozeki, N. Van Cleemput, and C. T. Zamfirescu. Hamiltonian properties of

polyhedra with few 3-cuts—A survey. Discrete Math. 341 (2018) 2646–2660.

15



[7] R. B. Richter and G. Salazar. Crossing numbers, in: Handbook of Graph Theory,

Second Edition (eds.: J. L. Gross, J. Yellen, and P. Zhang), Chapman and Hall,

2013.

[8] D. P. Sanders. On Hamilton cycles in certain planar graphs. J. Graph Theory

21 (1996) 43–50.

[9] D. P. Sanders. On paths in planar graphs. J. Graph Theory 24 (1997) 341–345.

[10] R. Thomas and X. Yu. 4-connected projective-planar graphs are Hamiltonian.

J. Combin. Theory, Ser. B 62 (1994) 114–132.

[11] R. Thomas, X. Yu, and W. Zang. Hamilton paths in toroidal graphs. J. Combin.

Theory, Ser. B 94 (2005) 214–236.

[12] C. Thomassen. Planar and infinite hypohamiltonian and hypotraceable graphs.

Discrete Math. 14 (1976) 377–389.

[13] C. Thomassen. Hypohamiltonian graphs and digraphs. In: Proc. Internat. Conf.

Theory and Appl. of Graphs, Kalamazoo, 1976, LNCS 642, Springer, Berlin

(1978) 557–571.

[14] C. Thomassen. A theorem on paths in planar graphs. J. Graph Theory 7 (1983)

169–176.

[15] W. T. Tutte. A theorem on planar graphs. Trans. Amer. Math. Soc. 82 (1956)

99–116.

[16] H. Whitney. A theorem on graphs. Ann. Math. 32 (1931) 378–390.

[17] C. T. Zamfirescu. Cubic vertices in planar hypohamiltonian graphs. To appear

in: J. Graph Theory.

16


