# Every 4-connected graph with crossing number 2 is Hamiltonian 

Kenta OZEKI* ${ }^{* \dagger}$ and Carol T. ZAMFIRESCU ${ }^{\ddagger \S}$


#### Abstract

A seminal theorem of Tutte states that planar 4-connected graphs are Hamiltonian. Applying a result of Thomas and Yu, one can show that every 4 -connected graph with crossing number 1 is Hamiltonian. In this paper, we continue along this path and prove the titular statement. We also discuss the traceability and Hamiltonicity of 3-connected graphs with small crossing number and few 3 -cuts, and present applications of our results.


Key Words. Hamiltonian cycle, crossing number, 3-cuts
MSC 2010. $05 \mathrm{C} 10,05 \mathrm{C} 38,05 \mathrm{C} 45$

## 1 Introduction

In a graph $G$, a cycle or a path is Hamiltonian if it contains all vertices of $G$. A graph is called Hamiltonian if it has a Hamiltonian cycle, traceable if it contains a Hamiltonian path, and Hamiltonian-connected if there is a Hamiltonian path between any two vertices in the graph. When we speak of a cut, we refer to a set of vertices whose removal disconnects the graph (when the cut is a single vertex, we will emphasise this and write cut-vertex), while edge-cuts will always be explicitly mentioned as such. A cut is trivial when it is the neighbourhood of a vertex.

[^0]Whitney proved in 1931 that 4-connected planar triangulations are Hamiltonian [16], and a quarter century later Tutte extended this to all planar 4-connected graphs [15]. These theorems have had an enormous impact on graph theory as we know it, and have seen an abundance of extensions. Recently, it was investigated what conclusions can be drawn concerning the Hamiltonicity of 3-connected planar graphs if we restrict the number of 3 -cuts. We refer the reader to the survey [6]. The strongest available result in this direction is by Brinkmann and the second author [1] and states that every 3 -connected planar graph with at most three 3 -cuts is Hamiltonian. For plane triangulations with at most three separating triangles, this had been shown by Jackson and Yu [3].

Two important notions to classify non-planar graphs are the crossing number and the genus. For a graph $G$, its crossing number $\operatorname{cr}(G)$ is the minimum number of edge crossings over all plane drawings of $G$. For a rigorous definition and a survey, we refer to work of Richter and Salazar [7]. The genus of a graph is the smallest $k$ such that the graph can be embedded (i.e. drawn without edge crossings) on a sphere with $k$ handles. In the seventies, Grünbaum [2] and Nash-Williams [5] independently conjectured that every 4 -connected graph of genus 1 is Hamiltonian. Forty years later, this problem remains unsolved-we do know, by a result of Thomas, Yu, and Zang, that 4-connected toroidal graphs are traceable [11]. $K_{3,5}$ shows that there exist graphs of genus 1 with exactly one 3 -cut that are non-traceable. We see this abrupt end of the story as further motivation to investigate the Hamiltonian properties of 4 -connected graphs with few crossings.

Kawarabayashi and the first author [4] showed that every 4-connected projectiveplanar graph is Hamiltonian-connected-this strengthens two classic results due to Thomassen [14], and Thomas and Yu [10]. Since any graph with crossing number 1 can be embedded into the projective plane, it follows that every 4-connected graph with crossing number at most 1 is Hamiltonian-connected. Brinkmann (see [17]) showed that if $e$ and $f$ are the crossing edges in a 4-connected graph $G$ with crossing number 1, then $G$ contains a Hamiltonian cycle avoiding $e$ and $f$.

The principal contribution of this article is the following result.
Theorem 1 Every 4-connected graph with crossing number at most 2 is Hamiltonian.

This paper is organised as follows. In the next section we present all ingredients necessary for the proof of Theorem 1, which is then given in Section 3. Thereafter, in Section 4, we give applications of Theorem 1-in particular, we (i) discuss how our results relate to the traceability of 3 -connected graphs with few 3 -cuts and few crossings, (ii) provide, via a toughness argument, 3 -connected non-Hamiltonian and non-traceable graphs with small crossing number and few 3-cuts, (iii) show that every 3 -connected graph with at most one crossing and containing at most one 3 -cut is Hamiltonian (this extends a result of Thomassen [13] which extends the afore-
mentioned result of Tutte [15]), and (iv) comment on hypohamiltonian graphs. The latter includes an extension of a theorem of the second author [17] which extends a theorem of Thomassen [13]. In the last section, we give tabular overviews of certain Hamiltonian properties of 3-connected graphs with few crossings and a small number of 3 -cuts.

## 2 Preliminaries

We shall require the following two results on the Hamiltonicity of 4-connected graphs. (The proof of the latter uses the former.)

Theorem 2 (Thomas and $\mathbf{Y u}$ [10]) For every 4-connected planar graph $G$ and any vertices $u$ and $v$, the graph $G-\{u, v\}$ is Hamiltonian.

Theorem 3 (Brinkmann, see [17]) Let $G$ be a 4-connected graph with one edge crossing formed by the edges $e$ and $f$. Then $G-\{e, f\}$ contains a Hamiltonian cycle.

Let $\mathfrak{h}$ be a subgraph of a graph $G$. An $\mathfrak{h}$-bridge of $G$ is either (i) an edge of $G-E(\mathfrak{h})$ with both ends on $\mathfrak{h}$ or (ii) a subgraph of $G$ induced by the edges in a component of $G-V(\mathfrak{h})$ together with all edges between that component and $\mathfrak{h}$. An $\mathfrak{h}$-bridge satisfying (i) is trivial, while an $\mathfrak{h}$-bridge satisfying (ii) is non-trivial. For an $\mathfrak{h}$-bridge $P$ of $G$, the vertices in $V(P) \cap V(\mathfrak{h})$ are the attachments of $P$ (on $\mathfrak{h}$ ), and those vertices of $P$ that are not attachments are non-attachments. We say that $\mathfrak{h}$ is a Tutte subgraph in $G$ if every $\mathfrak{h}$-bridge of $G$ has at most three attachments on $\mathfrak{h}$. For a subgraph $D$ of $G, \mathfrak{h}$ is a $D$-Tutte subgraph in $G$ if $\mathfrak{h}$ is a Tutte subgraph in $G$ and every $\mathfrak{h}$-bridge of $G$ containing an edge of $D$ has at most two attachments on $\mathfrak{h}$. A Tutte path (respectively, a Tutte cycle) is a path (respectively, a cycle) that is a Tutte subgraph. Similarly, we define a $D$-Tutte path and a $D$-Tutte cycle. By the definition, we see that a Tutte cycle $\mathfrak{h}$ in a 4 -connected graph is nothing but a Hamiltonian cycle if $|V(\mathfrak{h})| \geq 4$.

We use the following result by Sanders. (Note that an earlier but weaker result by Thomassen [14] is sufficient for our proof, but we introduce a more general statement.)

Theorem 4 (Sanders [9]) Let $G$ be a 2-connected plane graph with facial cycle $D$, let $x, y \in V(G)$ and $e \in E(D)$. Then $G$ contains a $D$-Tutte path from $x$ to $y$ through $e$.

The following theorems appear in $[10,(2.8)]$, in $[10,(3.2)]$ and in $[10,(4.1)]$, respectively - see also [8, Lemma 3] for the first one.

Theorem 5 (Thomas and Yu [10]) Let $G$ be a 2-connected plane graph with a facial cycle $D$ and let $e_{1}, e_{2}, e_{3} \in E(D)$. Then $G$ contains a $D$-Tutte cycle passing through $e_{1}, e_{2}$, and $e_{3}$.

Theorem 6 (Thomas and Yu [10]) Let $G$ be a 2-connected plane graph with two facial cycles $D_{1}$ and $D_{2}$, and let $e \in E\left(D_{1}\right)$. Then $G$ contains a $\left(D_{1} \cup D_{2}\right)$-Tutte cycle $\mathfrak{h}$ passing through $e$ such that no $\mathfrak{h}$-bridge contains edges of both $D_{1}$ and $D_{2}$.

Theorem 7 (Thomas and Yu [10]) Let $G$ be a 2-connected graph on the projective plane with a facial cycle $D$, and let $e \in E(D)$. Then $G$ contains a $D$-Tutte cycle $\mathfrak{h}$ passing through e such that every $\mathfrak{h}$-bridge that contains a non-nullhomotopic cycle is edge-disjoint from $D$.

We also need the following lemma. We denote the subgraph of $G$ induced by a vertex set $S \subseteq V(G)$ with $G[S]$.

Lemma 8 Let $G$ be a 4-connected graph, let $S \subseteq V(G)$ be a cut of $G$, let $A$ be a component of $G-S$, and let $G_{A}=G[A \cup S]$. Then for any Tutte subgraph $\mathfrak{h}$ in $G_{A}$, if $|V(\mathfrak{h})| \geq 4$ and $\mathfrak{h}$ contains all vertices in $S$, then $\mathfrak{h}$ contains all vertices in $G_{A}$.

Proof. Suppose to the contrary that for a Tutte subgraph $\mathfrak{h}$ in $G_{A}$, there is a non-trivial $\mathfrak{h}$-bridge $P$ of $G_{A}$. Since $\mathfrak{h}$ is a Tutte subgraph, $P$ has at most three attachments on $\mathfrak{h}$. As $G$ is 4 -connected and $|V(\mathfrak{h})| \geq 4$, the three attachments of $P$ on $\mathfrak{h}$ do not form a cut of $G$, and hence $P$ contains a vertex in $S$ as a non-attachment. However, this contradicts that $\mathfrak{h}$ contains all vertices in $S$.

## 3 Proof of Theorem 1

By Theorem 3, we may assume that $G$ has a drawing in the plane with exactly two edge crossings. Let $e_{1}, f_{1}, e_{2}$, and $f_{2}$ be edges in $G$ such that $e_{i}$ and $f_{i}$ form an edge crossing for $i \in\{1,2\}$.

Claim 1 We may assume that all of $e_{1}, f_{1}, e_{2}$, and $f_{2}$ are distinct edges.
Proof. Suppose that some of them are not distinct. Since trivially $e_{1} \neq f_{1}$ and $e_{2} \neq f_{2}$, we may assume that $e_{1}=e_{2}$. This implies that $G^{\prime}=G-\left\{e_{1}\right\}$ is a plane graph. Let $e_{1}=e_{2}=x_{A} x_{B}$. Specifying an appropriate edge as $e$, by Theorem 4 the graph $G^{\prime}$ contains a Tutte path $\mathfrak{h}$ from $x_{A}$ to $x_{B}$ with $|V(\mathfrak{h})| \geq 4$. (We do not need to consider the facial cycle $D$.) Since $x_{A} x_{B}=e_{1} \in E(G)$, to obtain a Hamiltonian cycle in $G$, it suffices to show that $\mathfrak{h}$ is a Hamiltonian path. Suppose it is not. Then there is a non-trivial $\mathfrak{h}$-bridge $P$ of $G^{\prime}$. Since $\mathfrak{h}$ is a Tutte path, $P$ has at most three attachments. As $G$ is 4 -connected and $|V(\mathfrak{h})| \geq 4$, the attachments of $P$ on $\mathfrak{h}$ do not form a cut of $G$ of order at most three, and hence $P$ must contain $x_{A}$ or $x_{B}$ as a non-attachment. This however contradicts the fact that $x_{A}$ and $x_{B}$ are end-vertices of $\mathfrak{h}$.

We use Claim 1 implicitly in the remaining proof.

Consider the graph $G^{\prime}$ obtained from $G$ by replacing the crossing between $e_{i}$ and $f_{i}$ with a vertex of degree 4 , for $i \in\{1,2\}$. In other words, the plane graph $G^{\prime}$ is obtained from $G-\left\{e_{1}, f_{1}, e_{2}, f_{2}\right\}$ by adding two new vertices $u_{1}$ and $u_{2}$ together with four edges between each of them and the corresponding end-vertices of $e_{1}, f_{1}, e_{2}, f_{2}$. If $G^{\prime}$ is 4connected, then it follows from Theorem 2 that $G^{\prime}-\left\{u_{1}, u_{2}\right\}=G-\left\{e_{1}, f_{1}, e_{2}, f_{2}\right\}$ is Hamiltonian, and hence we are done. So we may assume that $G^{\prime}$ contains a cut $S^{\prime}$ of order at most three. Since $G$ is 4 -connected, $S^{\prime}$ must contain at least one of $u_{1}$ and $u_{2}$. Let $A^{\prime}$ and $B^{\prime}$ be the components of $G^{\prime}-S^{\prime}$. The strategy used in the upcoming proof is as follows. First, by showing four claims, the terrain is prepared to get the graph $G^{\prime \prime}-\left\{e_{2}, f_{2}\right\}$ (where $G^{\prime \prime}$ is obtained from $G$ by replacing the crossing edges $e_{1}$ and $f_{1}$ as shown in Figure 2), which by Theorem 3 has a Hamiltonian cycle $\mathfrak{q}^{\prime \prime}$. Second, by means of a case analysis it is shown that from $\mathfrak{q}^{\prime \prime}$ one can obtain a Hamiltonian cycle of $G$.

The following claim provides useful properties of $S^{\prime}$.
Claim 2 We may assume that $\left|S^{\prime}\right|=3$ and either $u_{1} \notin S^{\prime}$ or $u_{2} \notin S^{\prime}$.
Proof. Suppose first $\left|S^{\prime}\right|=2$. Since $G$ is 4 -connected, we have $S^{\prime}=\left\{u_{1}, u_{2}\right\}$ and each edge of $e_{1}, f_{1}, e_{2}, f_{2}$ connects $A^{\prime}$ and $B^{\prime}$. Let $e_{1}=x_{A} x_{B}, f_{1}=y_{A} y_{B}$, $e_{2}=z_{A} z_{B}$ and $f_{2}=w_{A} w_{B}$ with $x_{A}, y_{A}, z_{A}, w_{A} \in V\left(A^{\prime}\right)$ and $x_{B}, y_{B}, z_{B}, w_{B} \in V\left(B^{\prime}\right)$. By symmetry, we may assume that $x_{A}, y_{A}, z_{A}, w_{A}$ appear in the boundary of $A^{\prime}$ in counterclockwise order. Since $e_{i}$ and $f_{i}$ form an edge crossing for $i \in\{1,2\}$ but no other pairs form an edge crossing, the vertices $y_{B}, x_{B}, w_{B}, z_{B}$ appear in the boundary of $B^{\prime}$ in clockwise order (see the left-hand side of Figure 1, ignoring $Q_{A}, Q_{B}, s$ ). However, if we flip $B^{\prime}$ vertically, then we obtain a planar embedding of $G$ (see the right-hand side of Figure 1, ignoring $\left.Q_{A}, Q_{B}, D_{1}, D_{2}, u, v\right)$, and hence Tutte's result implies that $G$ is Hamiltonian. Therefore, we may assume $\left|S^{\prime}\right|=3$.

Suppose next that $u_{1}, u_{2} \in S^{\prime}$. Since $G$ is 4 -connected, each edge of $e_{1}, f_{1}, e_{2}, f_{2}$ connects $A^{\prime}$ and $B^{\prime}$. As above, let $e_{1}=x_{A} x_{B}, f_{1}=y_{A} y_{B}, e_{2}=z_{A} z_{B}$, and $f_{2}=$ $w_{A} w_{B}$ with $x_{A}, y_{A}, z_{A}, w_{A} \in V\left(A^{\prime}\right)$ and $x_{B}, y_{B}, z_{B}, w_{B} \in V\left(B^{\prime}\right)$, and assume that $x_{A}, y_{A}, z_{A}, w_{A}$ appear in the boundary of $A^{\prime}$ in counterclockwise order. Then the vertices $y_{B}, x_{B}, w_{B}, z_{B}$ appear in the boundary of $B^{\prime}$ in clockwise order. We may also assume that all neighbours of $s$, which is the vertex in $S^{\prime}$ with $s \neq u_{1}, u_{2}$, in $A^{\prime}$ (respectively in $B^{\prime}$ ) appear in $Q_{A}$ (respectively in $Q_{B}$ ), where $Q_{A}$ is the subpath of the boundary of $A^{\prime}$ from $w_{A}$ to $x_{A}$ in counterclockwise order (respectively $Q_{B}$ is the subpath of the boundary of $B^{\prime}$ from $z_{B}$ to $y_{B}$ in clockwise order). See the left-hand side of Figure 1.

Note that $G-s$ behaves as described in the first paragraph of this proof. Therefore, by flipping $B^{\prime}$ vertically, we obtain a plane embedding of $G-s$. Since $G$ is 4 -connected, the vertex $s$ has at least two neighbours in $Q_{A}$ or in $Q_{B}$. By symmetry, we may assume that the former occurs. Take two neighbours $u$ and $v$ of $s$ so that they are as close on $Q_{A}$ as possible, and add an edge between them if they are not


Figure 1: Vertical flipping of $B^{\prime}$ in $G-s$ to obtain the plane graph.
consecutive in $Q_{A}$. Let $H$ be the resulting (plane) graph, let $D_{1}$ be the facial cycle of $H$ containing the edge $u v$ and the vertices $w_{A}, x_{A}, x_{B}, w_{B}$, and let $D_{2}$ be the facial cycle of $H$ containing the path $Q_{B}$ and the vertices $y_{A}, z_{A}, z_{B}, y_{B}$. See the right-hand side of Figure 1.

By Theorem 6, $H$ contains a $\left(D_{1} \cup D_{2}\right)$-Tutte cycle $\mathfrak{h}$ with $u v \in E(\mathfrak{h})$. It is easy to see that $|V(\mathfrak{h})| \geq 4$. Suppose that there is a non-trivial $\mathfrak{h}$-bridge $P$ of $H$. Since $\mathfrak{h}$ is a Tutte subgraph, $P$ has at most three attachments on $\mathfrak{h}$. As $G$ is 4connected, the three attachments of $P$ on $\mathfrak{h}$ do not form a cut of $G$, and hence $P$ contains a neighbour of $s$ in $G$ as a non-attachment. By the choice of $Q_{A}, Q_{B}, u, v$, all neighbours of $s$ are contained in $D_{1}$ or $D_{2}$. Thus, $P$ contains an edge in $D_{1} \cup D_{2}$. Since $\mathfrak{h}$ is a $\left(D_{1} \cup D_{2}\right)$-Tutte subgraph, $P$ has at most two attachments on $\mathfrak{h}$, but these two attachments, together with $s$, form a cut of order at most three in $G$, a contradiction.

Therefore, there is no non-trivial $\mathfrak{h}$-bridge of $H$, and hence $\mathfrak{h}$ is a Hamiltonian cycle of $H$. Then by adding the path usv to $\mathfrak{h}$ instead of the edge $u v$, we obtain a Hamiltonian cycle of $G$. This completes the proof of Claim 2.

By Claim 2 and symmetry, we may assume that there exists a cut $S^{\prime}$ of $G^{\prime}$ with $\left|S^{\prime}\right|=3$ and $u_{2} \notin S^{\prime}$. Since $G$ is 4 -connected, we have $u_{1} \in S^{\prime}$ and both $e_{1}$ and $f_{1}$ connect $A^{\prime}$ and $B^{\prime}$. Let $e_{1}=x_{A} x_{B}$, and $f_{1}=y_{A} y_{B}$ with $x_{A}, y_{A} \in V\left(A^{\prime}\right)$ and $x_{B}, y_{B} \in V\left(B^{\prime}\right)$. In this case $S=S^{\prime}-\left\{u_{1}\right\}$ is a 2-cut in $G-\left\{e_{1}, f_{1}\right\}$, and let $A$ and $B$ be the components of $G-\left\{e_{1}, f_{1}\right\}-S$, corresponding to $A^{\prime}$ and $B^{\prime}$, respectively. Let $\left\{s_{1}, s_{2}\right\}=S, G_{A}=G[A \cup S]$ and $G_{B}=G[B \cup S]$. For $G_{A}$ and $G_{B}$, we show the following claim.

Claim 3 At least one of $G_{A}$ and $G_{B}$ does not contain an edge crossing.
Proof. If neither $e_{2}$ nor $f_{2}$ connects $s_{1}$ and $s_{2}$, then clearly at least one of $G_{A}$ and $G_{B}$ does not contain the edge crossing by $e_{2}$ and $f_{2}$. Suppose that either $e_{2}$ or $f_{2}$, say $e_{2}$ by symmetry, connects $s_{1}$ and $s_{2}$. Since $S$ is a 2-cut in $G-\left\{e_{1}, f_{1}\right\}, f_{2}$ does not connect $A$ and $B$. Since the end-vertices of $f_{2}$ are distinct from those of $e_{2}$,


Figure 2: Replacement of the edge crossing with five new vertices and twelve new edges.
either $f_{2} \in E(A)$ or $f_{2} \in E(B)$ holds. Then $G_{B}$ or $G_{A}$ contains no edge crossing, respectively.

By Claim 3 and symmetry, we may assume that $G_{A}$ does not contain an edge crossing, i.e. $G_{A}$ is a plane graph. Let $D_{A}$ be the boundary of $G_{A}$. By symmetry, we may further assume that the vertices $s_{1}, s_{2}, x_{A}$, and $y_{A}$ appear in $D_{A}$ in this order. Now, we take a cut $S^{\prime}$ as in Claim 2 so that $|A|$ is as small as possible. This choice gives the following:

Claim $4 G_{A}$ is 2-connected.
Proof. Suppose that $G_{A}$ contains a cut-vertex $t$. Then there is a component $C$ of $G_{A}-t$ that contains at most two vertices in $\left\{s_{1}, s_{2}, x_{A}, y_{A}\right\}$. Furthermore, if $C$ contains two vertices in the set, then we may assume that one of them is $x_{A}$ or $y_{A}$.

If $C$ contains $x_{A}$ or $y_{A}$, say $x_{A}$ by symmetry, then $t$ and $x_{B}$ possibly together with $y_{A}$ or $s_{1}$ or $s_{2}$ form a cut of order at most three in $G$, a contradiction. Therefore, we may assume that $C$ contains neither $x_{A}$ nor $y_{A}$. By the choice of $C, C$ contains exactly one of $s_{1}$ and $s_{2}$, say $s_{1}$ by symmetry. If $C$ contains a vertex other than $s_{1}$, then $\left\{s_{1}, t\right\}$ is a 2 -cut of $G$, a contradiction again. Thus, we may assume that $C$ consists of only $s_{1}$. However $\left\{t, s_{2}, u_{1}\right\}$ is also a cut of $G^{\prime}$, contradicting the choice of $S^{\prime}$.

Let $G^{\prime \prime}$ be the graph obtained from $G-\left\{e_{1}, f_{1}\right\}$ by adding five new vertices $x_{A}^{\prime}, y_{A}^{\prime}, x_{B}^{\prime}, y_{B}^{\prime}$, and $u$ together with the twelve edges $x_{A} x_{A}^{\prime}, y_{A} y_{A}^{\prime}, x_{B} x_{B}^{\prime}, y_{B} y_{B}^{\prime}, x_{A}^{\prime} y_{A}^{\prime}$, $y_{A}^{\prime} x_{B}^{\prime}, x_{B}^{\prime} y_{B}^{\prime}, y_{B}^{\prime} x_{A}^{\prime}, x_{A}^{\prime} u, y_{A}^{\prime} u, x_{B}^{\prime} u$, and $y_{B}^{\prime} u$; see Figure 2. The graph $G^{\prime \prime}$ has a drawing in the plane with only one edge crossing, which is formed by $e_{2}$ and $f_{2}$. We regard $G-\left\{e_{1}, f_{1}\right\}$ as a subgraph of $G^{\prime \prime}$. Let $R$ be the subgraph of $G^{\prime \prime}$ induced by the added twelve edges. We now show the following.

Claim 5 The graph $G^{\prime \prime}$ is 4-connected.
Proof. To show this claim, we use Menger's theorem and prove that for every pair of vertices $a$ and $b$ of $G^{\prime \prime}$ there exist four pairwise internally disjoint paths connecting them, depending where $a$ and $b$ lie.

We first prove the case $a, b \in V(G)$. Since $G$ is 4 -connected, there exist four pairwise internally disjoint paths in $G$ connecting $a$ and $b$. If they use neither $e_{1}$ nor $f_{1}$, then they are also paths in $G^{\prime \prime}$. If they use exactly one of $e_{1}$ and $f_{1}$, then we obtain the desired paths by replacing $e_{1}$ or $f_{1}$ with an appropriate path in $R$. Thus, we may assume that they use both $e_{1}$ and $f_{1}$. In this case, replacing the two edges $e_{1}$ and $f_{1}$ with either the two paths $x_{A} x_{A}^{\prime} y_{A}^{\prime} y_{A}$ and $x_{B} x_{B}^{\prime} y_{B}^{\prime} y_{B}$ or the two paths $x_{A} x_{A}^{\prime} y_{B}^{\prime} y_{B}$ and $y_{A} y_{A}^{\prime} x_{B}^{\prime} x_{B}$, we obtain the paths we are looking for.

Next, consider the case $a, b \in V\left(G^{\prime \prime}\right)-V(G)$. Now we only prove the case $a=u$ and $b=x_{A}^{\prime}$, but the other cases can be shown in the same way. For the vertices $u$ and $x_{A}^{\prime}$, we have the three paths $u x_{A}^{\prime}, u y_{A}^{\prime} x_{A}^{\prime}$, and $u y_{B}^{\prime} x_{A}^{\prime}$ in $R$. Furthermore, since $G-\left\{e_{1}, f_{1}\right\}$ is 2-connected, we can find a path $Q$ in $G-\left\{e_{1}, f_{1}\right\}$ connecting $x_{A}$ and $x_{B}$. Then the extension of $Q$ using the paths $x_{A}^{\prime} x_{A}$ and $x_{B} x_{B}^{\prime} u$ gives a fourth path, and we are done.

So, by symmetry, it only remains to treat the case $a \in V(G)$ and $b \in V\left(G^{\prime \prime}\right)-$ $V(G)$. Since $G$ is 4 -connected, there exist four paths in $G$ from $a$ to the set $\left\{x_{A}, y_{A}, x_{B}, y_{B}\right\}$ that share only $a$. Extending these paths to $b$ in $R$, we obtain the desired paths.

This completes the proof of Claim 5.
By Claim 5 and Theorem 3, $G^{\prime \prime}-\left\{e_{2}, f_{2}\right\}$ contains a Hamiltonian cycle $\mathfrak{q}^{\prime \prime}$. Note that $\mathfrak{q}^{\prime \prime}$ uses exactly two or four edges in $F=\left\{x_{A} x_{A}^{\prime}, y_{A} y_{A}^{\prime}, x_{B} x_{B}^{\prime}, y_{B} y_{B}^{\prime}\right\}$, which is a 4-edge-cut in $G^{\prime \prime}$. Let $\mathfrak{q}_{G}=\mathfrak{q}^{\prime \prime}-\left\{u, x_{A}^{\prime}, y_{A}^{\prime}, x_{B}^{\prime}, y_{B}^{\prime}\right\}$ and $\mathfrak{q}_{B}=\mathfrak{q}_{G}-V(A)$. Observe that both $\mathfrak{q}_{G}$ and $\mathfrak{q}_{B}$ are subgraphs of $G$, consisting of one path or two disjoint paths.

We divide the remaining proof into a brief discussion of the situations which can be dealt with fairly straightforwardly, followed by three more involved cases, depending on how $\mathfrak{q}^{\prime \prime}$ passes through $F$. In the former cases, adding $e_{1}$ or $f_{1}$ to $\mathfrak{q}_{G}$ immediately gives a Hamiltonian cycle in $G$, while in the latter three cases we can only use $\mathfrak{q}_{B}$ and need to modify $\mathfrak{q}^{\prime \prime}$ inside of $G_{A}$. Such modifications are allowed by Theorems 4 and 5 by specifying appropriate edges.

If $E\left(\mathfrak{q}^{\prime \prime}\right) \cap F=\left\{x_{A} x_{A}^{\prime}, x_{B} x_{B}^{\prime}\right\}$, we obtain a Hamiltonian cycle of $G$ by adding the edge $e_{1}$ to $\mathfrak{q}_{G}$. Symmetrically, if $E\left(\mathfrak{q}^{\prime \prime}\right) \cap F=\left\{y_{A} y_{A}^{\prime}, y_{B} y_{B}^{\prime}\right\}$, we obtain a Hamiltonian cycle in $G$ by adding the edge $f_{1}$ to $\mathfrak{q}_{G}$. Furthermore, assume all of the edges in $F$ are used in $\mathfrak{q}^{\prime \prime}$. In this situation, $\mathfrak{q}_{G}$ consists of two disjoint paths with end-vertices $x_{A}, y_{A}, x_{B}$ and $y_{B}$. In particular, since $G^{\prime \prime}-\left\{e_{2}, f_{2}\right\}$ is a plane graph, there are only the following two possibilities:

- One path connects $x_{A}$ and $y_{A}$, and the other connects $x_{B}$ and $y_{B}$.
- One path connects $x_{A}$ and $y_{B}$, and the other connects $y_{A}$ and $x_{B}$.

In either case, a Hamiltonian cycle in $G$ can be obtained by adding the two edges $e_{1}$ and $f_{1}$. Now we deal with each of the other cases.

Case 1. $E\left(\mathfrak{q}^{\prime \prime}\right) \cap F=\left\{x_{A} x_{A}^{\prime}, y_{A} y_{A}^{\prime}\right\}$.

In this case $\mathfrak{q}_{B}$ is a Hamiltonian path in $G_{B}$ connecting $s_{1}$ and $s_{2}$. Let $G_{A}^{(1)}$ be the graph obtained from $G_{A}$ by adding the edge $s_{1} s_{2}$ on the outer facial cycle $D_{A}$ of $G_{A}$. Note that the added edge $s_{1} s_{2}$ and the vertices $x_{A}$ and $y_{A}$ are contained in a new facial cycle $D_{A}^{(1)}$ of $G_{A}^{(1)}$. Take any edges $e_{x}$ and $e_{y}$ in $D_{A}^{(1)}$ that are incident with $x_{A}$ and $y_{A}$, respectively. By Theorem $5, G_{A}^{(1)}$ contains a $D_{A}^{(1)}$-Tutte cycle $\mathfrak{h}_{A}^{(1)}$ with $s_{1} s_{2}, e_{x}, e_{y} \in E\left(\mathfrak{h}_{A}^{(1)}\right)$. Then $\mathfrak{h}_{A}^{(1)}-\left\{s_{1} s_{2}\right\}$ is a Tutte path in $G_{A}$ connecting $s_{1}$ and $s_{2}$ and containing $x_{A}$ and $y_{A}$. Thus, by Lemma 8 , it contains all vertices of $G_{A}$. Combining $\mathfrak{q}_{B}$ and $\mathfrak{h}_{A}^{(1)}-\left\{s_{1} s_{2}\right\}$ with the vertices $s_{1}$ and $s_{2}$, we obtain a Hamiltonian cycle in $G$.

Case 2. $E\left(\mathfrak{q}^{\prime \prime}\right) \cap F=\left\{x_{A} x_{A}^{\prime}, y_{B} y_{B}^{\prime}\right\}$.
Here $\mathfrak{q}_{B}$ is a path in $G_{B}$ connecting $y_{B}$ and $s_{i}$ for some $i \in\{1,2\}$. We need to find a suitable path $\mathfrak{h}_{A}^{(2)}$ in $G_{A}$, considering two subcases depending on whether $\mathfrak{q}_{B}$ passes through $s_{3-i}$.

Suppose first that $\mathfrak{q}_{B}$ passes through $s_{3-i}$. Let $G_{A}^{(2)}$ be the graph obtained from $G_{A}$ by adding the edge $s_{1} s_{2}$ on $D_{A}$. Note that the added edge $s_{1} s_{2}$ and the vertices $x_{A}$ and $y_{A}$ are contained in a new facial cycle $D_{A}^{(2)}$ of $G_{A}^{(2)}$. By Theorem 4, $G_{A}^{(2)}$ contains a $D_{A}^{(2)}$-Tutte path $\mathfrak{h}_{A}^{(2)}$ from $y_{A}$ to $s_{3-i}$ passing through the edge $s_{1} s_{2}$.

Suppose next that $\mathfrak{q}_{B}$ does not pass through $s_{3-i}$. Let $G_{A}^{(2)}=G_{A}$ and $D_{A}^{(2)}=D_{A}$, and let $e_{s}$ be an edge of $D_{A}$ that is incident with $s_{3-i}$. By Theorem $4, G_{A}^{(2)}$ contains a $D_{A}^{(2)}$-Tutte path $\mathfrak{h}_{A}^{(2)}$ from $y_{A}$ to $s_{i}$ passing through the edge $e_{s}$.

We remark that in either case, $\mathfrak{h}_{A}^{(2)}$ contains $y_{A}, s_{1}$ and $s_{2}$, and we now show that it also contains $x_{A}$. Suppose to the contrary that $\mathfrak{h}_{A}^{(2)}$ does not contain $x_{A}$. Then there exists a non-trivial $\mathfrak{h}_{A}^{(2)}$-bridge $P$ of $G_{A}^{(2)}$ containing $x_{A}$ as non-attachment. Since $x_{A}$ is contained in $D_{A}^{(2)}$ and $\mathfrak{h}_{A}^{(2)}$ is a $D_{A}^{(2)}$-Tutte path in $G_{A}^{(2)}, P$ has at most two attachments. However, those attachments together with $x_{B}$ form a cut of $G$ of order at most three, a contradiction. Therefore $\mathfrak{h}_{A}^{(2)}$ also contains $x_{A}$.

By Lemma 8, $\mathfrak{h}_{A}^{(2)}$ contains all vertices of $G_{A}$. Then combining $\mathfrak{q}_{B}$ and $\mathfrak{h}_{A}^{(2)}-s_{3-i}$ (when $\mathfrak{q}_{B}$ passes through $s_{3-i}$ ) or $\mathfrak{h}_{A}^{(2)}$ (otherwise) with the vertex $s_{i}$ and the edge $f_{1}$, we obtain a Hamiltonian cycle in $G$.

If $E\left(\mathfrak{q}^{\prime \prime}\right) \cap F=\left\{y_{A} y_{A}^{\prime}, x_{B} x_{B}^{\prime}\right\}$, we may proceed as in Case 2-simply switch the names of $x$ 's and $y$ 's.

Case 3. $E\left(\mathfrak{q}^{\prime \prime}\right) \cap F=\left\{y_{B} y_{B}^{\prime}, x_{B} x_{B}^{\prime}\right\}$.
In this case, $\mathfrak{q}_{B}$ consists of two disjoint paths connecting $\left\{x_{B}, y_{B}\right\}$ and $\left\{s_{1}, s_{2}\right\}$. Let $G_{A}^{(3)}$ be the graph obtained from $G_{A}$ by adding the edge $y_{A} s_{1}$ on $D_{A}$. Note that the added edge and the two vertices $x_{A}$ and $s_{2}$ are contained in a new facial cycle $D_{A}^{(3)}$ of $G_{A}^{(3)}$. By Theorem 5, $G_{A}^{(3)}$ contains a $D_{A}^{(3)}$-Tutte path $\mathfrak{h}_{A}^{(3)}$ from $x_{A}$ to $s_{2}$ passing through the edge $y_{A} s_{1}$. By Lemma $8, \mathfrak{h}_{A}^{(3)}$ contains all vertices of $G_{A}$. By planarity of $G_{A}, \mathfrak{h}_{A}^{(3)}-\left\{y_{A} s_{1}\right\}$ consists of two disjoint paths in $G_{A}$ such that one path connects $x_{A}$ and $y_{A}$ and the other connects $s_{1}$ and $s_{2}$. Therefore, combining $\mathfrak{q}_{B}$
and $\mathfrak{h}_{A}^{(3)}-\left\{y_{A} s_{1}\right\}$ with the vertices $s_{1}$ and $s_{2}$ and the edges $e_{1}$ and $f_{1}$, we obtain a Hamiltonian cycle in $G$.

## 4 Applications

### 4.1 Traceability

In this section we give an application of Theorem 1 concerning traceability by using the following proposition. For a 3-connected graph $G$, let $\phi(G)$ denote the number of 3 -cuts present in $G$.

Proposition 9 Let $k, \ell \geq 0$. If every 3 -connected graph with crossing number at most $k$ and at most $\ell$ 3-cuts is Hamiltonian, then every 3-connected graph with crossing number at most $k+1$ and at most $\ell 3$-cuts is traceable.

Proof. Let $G$ be a 3-connected graph with $\operatorname{cr}(G) \leq k+1$ and $\phi(G) \leq \ell$. We replace one of the edge crossings as depicted in Figure 2. Note that other edges of $G$ may cross $e_{1}$ or $f_{1}$; we perform the transformation such that these edge crossings remain unchanged. Thus we obtain a graph $G^{\prime}$ with $\operatorname{cr}\left(G^{\prime}\right) \leq k$ and $\phi\left(G^{\prime}\right) \leq \ell$; the latter follows by using the same argument as in Claim 5 from the proof of Theorem 1. Therefore, by assumption, $G^{\prime}$ contains a Hamiltonian cycle q. Let $F=\left\{x_{A} x_{A}^{\prime}, y_{A} y_{A}^{\prime}, x_{B} x_{B}^{\prime}, y_{B} y_{B}^{\prime}\right\}$, which is a 4-edge-cut in $G^{\prime}$.

Suppose that exactly two of the edges in $F$ are used in $\mathfrak{q}$. If $E(\mathfrak{q}) \cap F=$ $\left\{x_{A} x_{A}^{\prime}, y_{A} y_{A}^{\prime}\right\}$, then we remove from $\mathfrak{q}$ the vertices $\left\{u, x_{A}^{\prime}, x_{B}^{\prime}, y_{A}^{\prime}, y_{B}^{\prime}\right\}$ and obtain a Hamiltonian path in $G$ from $x_{A}$ to $y_{A}$. Similarly we find a Hamiltonian path in $G$ for all other cases.

Assume next that all of the edges in $F$ are used in $\mathfrak{q}$. Then removing the vertices $\left\{u, x_{A}^{\prime}, x_{B}^{\prime}, y_{A}^{\prime}, y_{B}^{\prime}\right\}$ from $\mathfrak{q}$ and adding the edges $e_{1}$ and $f_{1}$, we obtain either a Hamiltonian cycle in $G$ or two disjoint cycles containing all vertices in $G$. In the former case, we are done, while in the latter case, by adding an edge between the two cycles and deleting a suitable edge from each of the two cycles, we obtain a Hamiltonian path in $G$.

We shall use this proposition to give a tabular overview in the final section, concerning the Hamiltonicity of 3 -connected graphs with few 3 -cuts and small crossing number.

### 4.2 Crossing number and number of 3-cuts

In this section, we discuss the Hamiltonicity of 3 -connected graphs featuring both a small crossing number and few 3 -cuts. We begin with a negative result on their Hamiltonicity and traceability.

Proposition 10 There exist infinitely many 3-connected graphs $G$ which are

- non-Hamiltonian and satisfy $\operatorname{cr}(G)+\phi(G)=6$, and
- non-traceable and satisfy $\operatorname{cr}(G)+\phi(G)=8$.

Proof. Consider a quadrilateral $Q=a b c d$. Inserting into $Q$ a vertex $w$ and adding the edges $a w, b w, c w$, and $d w$, we say that we 1 -augment $Q$. If we insert into $Q$ two vertices $u$ and $v$ and eight edges $a u, b u, c u, d u, a v, b v, c v$, and $d v$, then we say that we 2 -augment $Q$. Note that if $Q$ is a quadrangular face, then by 1 -augmenting $Q$, the new vertex $w$ can be added without creating any edge crossings, while by 2-augmenting $Q$, the new vertices $u$ and $v$ can be added with two edge crossings.

Let $G$ be a 3 -connected quadrangulation with three pairwise disjoint quadrilaterals $Q_{1}, Q_{2}$, and $Q_{3}$. Let $G^{\prime}$ be the graph obtained by 2 -augmenting $Q_{1}, Q_{2}$, and $Q_{3}$ and 1-augmenting all other quadrilaterals. Then $G^{\prime}$ is a 4-connected graph with $\operatorname{cr}\left(G^{\prime}\right) \leq 6$. We now show that in fact $\operatorname{cr}\left(G^{\prime}\right)=6$. Let $F$ be a set of edges of $G^{\prime}$ with $|F| \leq 5$, and for $i \in\{1,2,3\}$, let $Q_{i}=a_{i} b_{i} c_{i} d_{i}$, and $u_{i}$ and $v_{i}$ be the two new vertices obtained by 2-augmenting $Q_{i}$. Since $Q_{1}, Q_{2}$, and $Q_{3}$ are pairwise disjoint, one of them, say $Q_{1}$ by symmetry, satisfies that the subgraph induced by $\left\{a_{1}, b_{1}, c_{1}, d_{1}, u_{1}, v_{1}\right\}$ contains at most one edge in $F$. By symmetry, we may assume that all of the edges $a u_{1}, b u_{1}, c u_{1}, a v_{1}, b v_{1}$, and $c v_{1}$ exist in $G^{\prime}-F$. Then we can find a minor of $K_{3,3}$ such that $a_{1}, b_{1}$, and $c_{1}$ form the vertices in one partite set and $u_{1}, v_{1}$, and the remaining vertices form those in the other partite set. Therefore, $G^{\prime}-F$ is not planar. Since such an edge-set $F$ can be chosen arbitrarily, we see that $\operatorname{cr}\left(G^{\prime}\right)=6$.

We next show that $G^{\prime}$ is non-Hamiltonian. By Euler's formula, the number of faces in $G$ is $n-2$, where $n$ is the number of vertices of $G$. In $G^{\prime}$ we colour blue the vertices originally belonging to $G$, and red the vertices added when augmenting. Then no two red vertices are adjacent and we have in $G^{\prime}$ exactly $n$ blue vertices and $3 \cdot 2+(n-2-3)=n+1$ red vertices. Thus, removing all $n$ blue vertices, we obtain $n+1$ components, so $G^{\prime}$ is not 1-tough. Thus $G^{\prime}$ is non-Hamiltonian.

Since we can choose arbitrary 3 -connected quadrangulations with three pairwise disjoint quadrilaterals as $G$, this shows that there exist infinitely many 3-connected graphs $G$ which are non-Hamiltonian and satisfy $\operatorname{cr}(G)=6$ and $\phi(G)=0$. It is easy to check that when removing an edge which decreases the crossing number (by one), one new (trivial) 3-cut appears, and hence the first statement holds for any $0 \leq \phi(G) \leq 6$.

For the non-traceable case we proceed in the same manner, but we 2 -augment four pairwise disjoint quadrilaterals and 1-augment all other quadrilaterals of a given quadrangulation.

It may come as a surprise that there exists a graph with $\operatorname{cr}(G)+\phi(G)=3$ which is, as the graphs described above, also not 1-tough, namely $K_{3,4}$. In contrast to

Proposition 10, Theorem 1 guarantees the Hamiltonicity for 3 -connected graphs $G$ with $\operatorname{cr}(G) \leq 2$ and $\phi(G)=0$. Let us now give another positive result.

Theorem 11 Every 3-connected graph with crossing number at most 1 and containing at most one 3-cut is Hamiltonian.

Proof. If $G$ is a 3 -connected graph satisfying $\operatorname{cr}(G)+\phi(G) \leq 1$, then $G$ is Hamiltonian by theorems of Thomas and Yu [10] or Thomassen [13]. Henceforth, let $G$ be a 3-connected graph with $\operatorname{cr}(G)=\phi(G)=1$. Denote the unique 3-cut of $G$ with $S$.

Observe that $G$ can be embedded into the projective plane without edge crossings. If there are two vertices $u$ and $v$ in $S$ with $u v \notin E(G)$, then there exists a facial cycle $D$ with $u, v \in V(D)$, and let $G^{\prime}=G$. On the other hand, if $S$ forms a triangle, then let $G^{\prime}=G-\{u v\}$ for some $u, v \in S$ and let $D$ be the new facial cycle. In either case $G^{\prime}$ is 3 -connected and any 3 -cut $S^{\prime \prime}$ satisfies either
(1) $S^{\prime}=S$ or
(2) each component of $G^{\prime}-S^{\prime}$ contains one of $u$ and $v$.

In either case, for any 3 -cut $S^{\prime}$ of $G^{\prime}$, the choice of $D$ implies that $D$ contains a vertex in both components of $G^{\prime}-S^{\prime}$. We choose an arbitrary edge $e$ in $D$ that is incident with $u$. By Theorem $7, G^{\prime}$ contains a $D$-Tutte cycle $\mathfrak{h}$ passing through $e$. We show that $\mathfrak{h}$ is a Hamiltonian cycle in $G^{\prime}$ and hence in $G$.

Suppose to the contrary that there is a non-trivial $\mathfrak{h}$-bridge $P$ of $G^{\prime}$. Since $\mathfrak{h}$ is a Tutte subgraph, $P$ has at most three attachments on $\mathfrak{h}$. Since $G^{\prime}$ is 3-connected, $P$ has exactly three attachments and they form a 3 -cut in $G^{\prime}$. So, either (1) or (2) above is satisfied, and $P$ contains an edge in $D$. Since $\mathfrak{h}$ is a $D$-Tutte cycle, $P$ has at most two attachments, a contradiction.

### 4.3 Hypohamiltonian Graphs

A graph $G$ is hypohamiltonian if $G$ is non-Hamiltonian yet $G-v$ is Hamiltonian for every vertex $v$ in $G$. Using a result of Tutte [15], Thomassen [13] showed that planar hypohamiltonian graphs always contain a cubic vertex-put in a different, perhaps more appealing way, Thomassen's result states that if in a planar graph with minimum degree at least 4 every vertex-deleted subgraph is Hamiltonian, then the graph itself must be Hamiltonian. (We cannot replace the " 4 " with a " 3 ", since by another result of Thomassen planar cubic hypohamiltonian graphs exist [12].) The second author strengthened this result in several directions [17], one of which states that every hypohamiltonian graph with crossing number 1 contains at least one cubic vertex. We here present an extension of this theorem, but first need two more definitions.

Every non-complete graph $G$ of connectivity exactly $k$ has non-empty induced subgraphs $G_{1}, G_{2}$ such that $G=G_{1} \cup G_{2},\left|V\left(G_{1}\right)\right| \geq k+1,\left|V\left(G_{2}\right)\right| \geq k+1$, and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=S$, where $|S|=k$. Then $G_{1}$ (and also $G_{2}$ ) is called a $k$-fragment of $G$ and $S$ is the set of ends of $G_{1}$.

Corollary 12 Let $G$ be a graph with crossing number 1 in which every vertexdeleted subgraph is Hamiltonian. If $G$ contains at most one cubic vertex, then $G$ is Hamiltonian.

Proof. Since every vertex-deleted subgraph of $G$ is Hamiltonian, we have that $G$ is 3-connected, and thus has minimum degree at least 3. Assume $G$ is non-Hamiltonian. Since every vertex-deleted subgraph of $G$ is Hamiltonian, $G$ is hypohamiltonian. By Theorem 11, $G$ contains at least two 3 -cuts. Since $G$ has at most one cubic vertex, one of these 3 -cuts must be non-trivial. We denote this 3 -cut with $S$. Let $H$ and $H^{\prime}$ be the 3 -fragments with ends $S$. By a lemma of the second author [17], no vertex in $S$ is cubic, so any cubic vertex present in $G$ lies either in $V(H) \backslash S$ or $V\left(H^{\prime}\right) \backslash S$-say the former. Clearly we have $\operatorname{cr}(H) \leq 1$. If $H$ is planar, by using a result of Thomassen [13] we identify the ends of $H$ and a copy thereof. We obtain a planar hypohamiltonian graph with at most two cubic vertices. This, however, contradicts [17, Theorem 3]. If $\operatorname{cr}(H)=1$, then we glue two copies of $H^{\prime}$ and are led, in the same way, to a contradiction.

We would very much like to extend above result to the case of crossing number 2. Unfortunately, we did not succeed. We were however able to prove the following.

Theorem 13 Every hypohamiltonian graph $G$ with crossing number 2 containing at least two 3 -cuts must contain a cubic vertex.

Proof. In addition to above properties, let $G$ have minimum order. Now assume that $G$ has minimum degree at least 4 . Let $S$ be one of the (necessarily non-trivial) 3-cuts present in $G$. Let $H$ and $H^{\prime}$ be the two 3-fragments with ends $S$. Arguing as in [17, Lemma 9], we obtain that either one of the two 3 -fragments is planar, or both have crossing number 1. In the former case, let $H$ be the planar 3-fragment. Glue $H$ and a copy of itself using [17, Lemma 2]. We obtain a planar hypohamiltonian graph with no cubic vertices, contradicting a theorem of Thomassen [13]. In the latter case, by [13, Lemma 3], w.l.o.g. $H$ has order strictly less than $\frac{1}{2}(|V(G)|+3)$ since $G$ contains at least two 3 -cuts. Gluing two copies of $H$ yields a hypohamiltonian graph with crossing number 2 with fewer vertices than $G$, a contradiction. (Would there be only one 3 -cut in $G$, the fragment $H$ could have exactly $\frac{1}{2}(|V(G)|+3)$ vertices and no contradiction would occur.)

We derive that if there exists a hypohamiltonian graph with crossing number 2 which has minimum degree at least 4 , then it contains exactly one non-trivial 3-cut $S$ such that each of the two 3 -fragments with ends $S$ has crossing number 1.

## 5 Conclusion

By Theorem 1, as well as Propositions 9 and 10 we obtain Table 1, which shows the known results on the Hamiltonicity and traceability of 4-connected graphs with given crossing number. Question marks indicate open problems, which are interesting but challenging.

| cr | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Hamiltonian | $\boldsymbol{\checkmark}(\mathrm{A})$ | $\boldsymbol{\checkmark}(\mathrm{B})$ | $\boldsymbol{\checkmark}(\mathrm{C} 1)$ | $\boldsymbol{?}$ | $\boldsymbol{?}$ | $\boldsymbol{?}$ | $\boldsymbol{x} \boldsymbol{x}$ | $\boldsymbol{x} \boldsymbol{x}$ | $\boldsymbol{x} \boldsymbol{x}$ |
| Traceable | $\boldsymbol{\checkmark}(\mathrm{A})$ | $\boldsymbol{\checkmark}(\mathrm{B})$ | $\boldsymbol{\checkmark}(\mathrm{C} 1)$ | $\boldsymbol{\checkmark}(\mathrm{C} 2)$ | $\boldsymbol{?}$ | $\boldsymbol{?}$ | $\boldsymbol{?}$ | $\boldsymbol{?}$ | $\boldsymbol{x} \boldsymbol{x}$ |

(A) Tutte [15]
(C1) This paper, Theorem 1
(B) Thomas and Yu [10]
(C2) This paper, Proposition 9

Table 1: On the Hamiltonicity and traceability of 4 -connected graphs with small crossing number. Green cells (marked $\boldsymbol{\checkmark}$ ) signify that the corresponding graphs are Hamiltonian and traceable, respectively, while red cells (marked $\boldsymbol{X X}$ ) represent that not all graphs in the respective family are Hamiltonian or traceable.

| $\phi \backslash \mathrm{cr}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\checkmark(\mathrm{A})$ | $\checkmark(\mathrm{C})$ | $\checkmark$ (F1) | ? | ? | ? | $x x$ |
| 1 | $\checkmark$ (B) | $\checkmark$ (F2) | $\boldsymbol{x} K_{3,4}$ | $x$ | x $K_{3,5}$ | $x x$ |  |
| 2 | $\checkmark(\mathrm{C})$ | ? | $x$ | $x$ | XX |  |  |
| 3 | $\checkmark(\mathrm{D})$ | ? | $x$ | $x x$ |  |  |  |
| 4 | ? | $x(\mathrm{E})$ | $x x$ |  |  |  |  |
| 5 | ? | $x x$ |  |  |  |  |  |
| 6 | $x x$ |  |  |  |  |  |  |

(A) Tutte [15]
(F1) This paper, Theorem 1
(B) Thomassen [14]
(F2) This paper, Theorem 11
(C) Thomas and Yu [10]
(D) Brinkmann and Zamfirescu [1]
(E) Barish (personal communication)

Table 2: On the Hamiltonicity of 3-connected graphs with small crossing number and few 3 -cuts. Green cells (marked $\boldsymbol{\checkmark}$ ) signify that the corresponding graphs are Hamiltonian, while orange (marked $\boldsymbol{X}$ ) and red cells (marked $\boldsymbol{X X}$ ) represent that not all graphs in the respective family are Hamiltonian, because of graphs related to $K_{3,4}, K_{3,5}$ or $K_{4,5}$, and Proposition 10, respectively.

Considering Theorem 11 and Proposition 10, one may think that Table 1 can be extended to 3 -connected graphs with few 3 -cuts, but the situation is more complicated, see Table 2. The complete bipartite graph $K_{3,4}$ is not Hamiltonian, while $\phi\left(K_{3,4}\right)=1$ and it is easy to check that $\operatorname{cr}\left(K_{3,4}\right)=2$. However, we do not know
of any other 3-connected non-Hamiltonian graphs $G$ with $\phi(G)=1$ and $\operatorname{cr}(G)=2$. On the other hand, for any $(i, j) \in\{(1,3),(1,4),(2,2),(2,3),(3,2)\}$, suitable combinations of $K_{3,4}$ with 4 -connected plane graphs give infinitely many 3 -connected non-Hamiltonian graphs $G$ with $\phi(G)=i$ and $\operatorname{cr}(G)=j$. Furthermore, we can construct infinitely many 3 -connected non-Hamiltonian graphs $G$ with $\phi(G)=4$ and $\operatorname{cr}(G)=1$; this can be achieved by considering as base graph $K_{4,5}$ with a slightly modified edge-set, as pointed out by Robert Barish in personal correspondence. We leave the details to the reader.

Note that a similar situation occurs for traceability, as well. Proposition 10 shows that for any $(i, j)$ with $i+j \leq 8$, there are infinitely many non-traceable graphs $G$ with $\phi(G)=i$ and $\operatorname{cr}(G)=j$, but there exist 3-connected non-traceable graphs for which the sum of crossing number and number of 3 -cuts is less than 8 . The simplest example is $K_{3,5}$, which is not traceable and satisfies $\phi\left(K_{3,5}\right)=1$ and $\operatorname{cr}\left(K_{3,5}\right)=4$. We can modify $K_{3,5}$ with non-traceable graphs $G$ with $\phi(G)=i$ and $\operatorname{cr}(G)=j$ for certain pairs $(i, j)$. Since the situation seems much more complicated, we leave this as future work.

Acknowledgement. We thank Roman Soták for showing us the "flip trick" described in the first paragraph of the proof of Claim 1, as well as Robert Barish, who constructed several interesting examples, one of which settles the case of $\phi(G)=4$ and $\operatorname{cr}(G)=1$ in Table 2. We are also grateful to the referees for their helpful comments.

## References

[1] G. Brinkmann and C. T. Zamfirescu. Polyhedra with few 3-cuts are hamiltonian. Submitted, arXiv:1606.01693 [math.CO].
[2] B. Grünbaum. Polytopes, graphs and complexes. Bull. Amer. Math. Soc. 76 (1970) 1131-1201.
[3] B. Jackson and X. Yu. Hamilton cycles in plane triangulations. J. Graph Theory 41 (2002) 138-150.
[4] K. Kawarabayashi and K. Ozeki. 4-connected projective-planar graphs are Hamiltonian-connected. J. Combin. Theory, Ser. B 112 (2015) 36-69.
[5] C. St. J. A. Nash-Williams. Unexplored and semi-explored territories in graph theory, in: New directions in the theory of graphs, pp. 149-186, Academic Press, New York, 1973.
[6] K. Ozeki, N. Van Cleemput, and C. T. Zamfirescu. Hamiltonian properties of polyhedra with few 3-cuts-A survey. Discrete Math. 341 (2018) 2646-2660.
[7] R. B. Richter and G. Salazar. Crossing numbers, in: Handbook of Graph Theory, Second Edition (eds.: J. L. Gross, J. Yellen, and P. Zhang), Chapman and Hall, 2013.
[8] D. P. Sanders. On Hamilton cycles in certain planar graphs. J. Graph Theory 21 (1996) 43-50.
[9] D. P. Sanders. On paths in planar graphs. J. Graph Theory 24 (1997) 341-345.
[10] R. Thomas and X. Yu. 4-connected projective-planar graphs are Hamiltonian. J. Combin. Theory, Ser. B 62 (1994) 114-132.
[11] R. Thomas, X. Yu, and W. Zang. Hamilton paths in toroidal graphs. J. Combin. Theory, Ser. B 94 (2005) 214-236.
[12] C. Thomassen. Planar and infinite hypohamiltonian and hypotraceable graphs. Discrete Math. 14 (1976) 377-389.
[13] C. Thomassen. Hypohamiltonian graphs and digraphs. In: Proc. Internat. Conf. Theory and Appl. of Graphs, Kalamazoo, 1976, LNCS 642, Springer, Berlin (1978) 557-571.
[14] C. Thomassen. A theorem on paths in planar graphs. J. Graph Theory 7 (1983) 169-176.
[15] W. T. Tutte. A theorem on planar graphs. Trans. Amer. Math. Soc. 82 (1956) 99-116.
[16] H. Whitney. A theorem on graphs. Ann. Math. 32 (1931) 378-390.
[17] C. T. Zamfirescu. Cubic vertices in planar hypohamiltonian graphs. To appear in: J. Graph Theory.


[^0]:    *Faculty of Environment and Information Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan. E-mail address: ozeki-kenta-xr@ynu.ac.jp
    ${ }^{\dagger}$ This work was partially supported by JSPS KAKENHI Grant Number 18K03391 and JST ERATO Grant Number JPMJER1201, Japan.
    ${ }^{\ddagger}$ Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281 - S9, 9000 Ghent, Belgium and Department of Mathematics, Babeş-Bolyai University, Cluj-Napoca, Roumania. E-mail address: czamfirescu@gmail.com
    ${ }^{\S}$ Zamfirescu's research is supported by a Postdoctoral Fellowship of the Research Foundation Flanders (FWO). He would also like to thank the hospitality of the National Institute of Informatics in Tokyo, where part of this research was done.

