54,725 research outputs found

    Extraction of coherent structures in a rotating turbulent flow experiment

    Full text link
    The discrete wavelet packet transform (DWPT) and discrete wavelet transform (DWT) are used to extract and study the dynamics of coherent structures in a turbulent rotating fluid. Three-dimensional (3D) turbulence is generated by strong pumping through tubes at the bottom of a rotating tank (48.4 cm high, 39.4 cm diameter). This flow evolves toward two-dimensional (2D) turbulence with increasing height in the tank. Particle Image Velocimetry (PIV) measurements on the quasi-2D flow reveal many long-lived coherent vortices with a wide range of sizes. The vorticity fields exhibit vortex birth, merger, scattering, and destruction. We separate the flow into a low-entropy ``coherent'' and a high-entropy ``incoherent'' component by thresholding the coefficients of the DWPT and DWT of the vorticity fields. Similar thresholdings using the Fourier transform and JPEG compression together with the Okubo-Weiss criterion are also tested for comparison. We find that the DWPT and DWT yield similar results and are much more efficient at representing the total flow than a Fourier-based method. Only about 3% of the large-amplitude coefficients of the DWPT and DWT are necessary to represent the coherent component and preserve the vorticity probability density function, transport properties, and spatial and temporal correlations. The remaining small amplitude coefficients represent the incoherent component, which has near Gaussian vorticity PDF, contains no coherent structures, rapidly loses correlation in time, and does not contribute significantly to the transport properties of the flow. This suggests that one can describe and simulate such turbulent flow using a relatively small number of wavelet or wavelet packet modes.Comment: experimental work aprox 17 pages, 11 figures, accepted to appear in PRE, last few figures appear at the end. clarifications, added references, fixed typo

    Universal in vivo Textural Model for Human Skin based on Optical Coherence Tomograms

    Full text link
    Currently, diagnosis of skin diseases is based primarily on visual pattern recognition skills and expertise of the physician observing the lesion. Even though dermatologists are trained to recognize patterns of morphology, it is still a subjective visual assessment. Tools for automated pattern recognition can provide objective information to support clinical decision-making. Noninvasive skin imaging techniques provide complementary information to the clinician. In recent years, optical coherence tomography has become a powerful skin imaging technique. According to specific functional needs, skin architecture varies across different parts of the body, as do the textural characteristics in OCT images. There is, therefore, a critical need to systematically analyze OCT images from different body sites, to identify their significant qualitative and quantitative differences. Sixty-three optical and textural features extracted from OCT images of healthy and diseased skin are analyzed and in conjunction with decision-theoretic approaches used to create computational models of the diseases. We demonstrate that these models provide objective information to the clinician to assist in the diagnosis of abnormalities of cutaneous microstructure, and hence, aid in the determination of treatment. Specifically, we demonstrate the performance of this methodology on differentiating basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) from healthy tissue

    Massive and refined: a sample of large galaxy clusters simulated at high resolution. I:Thermal gas and shock waves properties

    Full text link
    We present a sample of 20 massive galaxy clusters with total virial masses in the range of 6 10^14 M_sol<M(vir)< 2 10^15M_sol, re-simulated with a customized version of the 1.5. ENZO code employing Adaptive Mesh Refinement. This technique allowed us to obtain unprecedented high spatial resolution (25kpc/h) up to the distance of 3 virial radii from the clusters center, and makes it possible to focus with the same level of detail on the physical properties of the innermost and of the outermost cluster regions, providing new clues on the role of shock waves and turbulent motions in the ICM, across a wide range of scales. In this paper, a first exploratory study of this data set is presented. We report on the thermal properties of galaxy clusters at z=0. Integrated and morphological properties of gas density, gas temperature, gas entropy and baryon fraction distributions are discussed, and compared with existing outcomes both from the observational and from the numerical literature. Our cluster sample shows an overall good consistency with the results obtained adopting other numerical techniques (e.g. Smoothed Particles Hydrodynamics), yet it provides a more accurate representation of the accretion patterns far outside the cluster cores. We also reconstruct the properties of shock waves within the sample by means of a velocity-based approach, and we study Mach numbers and energy distributions for the various dynamical states in clusters, giving estimates for the injection of Cosmic Rays particles at shocks. The present sample is rather unique in the panorama of cosmological simulations of massive galaxy clusters, due to its dynamical range, statistics of objects and number of time outputs. For this reason, we deploy a public repository of the available data, accessible via web portal at http://data.cineca.it.Comment: 26 pages, 20 figures, New Astronomy accepted. Reference list updated. Higher quality versions of the paper can be found at: http://www.ira.inaf.it/~vazza/papers A public archive of galaxy clusters data is accessible at http://data.cineca.it

    On the complexity and the information content of cosmic structures

    Full text link
    The emergence of cosmic structure is commonly considered one of the most complex phenomena in Nature. However, this complexity has never been defined nor measured in a quantitative and objective way. In this work we propose a method to measure the information content of cosmic structure and to quantify the complexity that emerges from it, based on Information Theory. The emergence of complex evolutionary patterns is studied with a statistical symbolic analysis of the datastream produced by state-of-the-art cosmological simulations of forming galaxy clusters. This powerful approach allows us to measure how many bits of information are necessary to predict the evolution of energy fields in a statistical way, and it offers a simple way to quantify when, where and how the cosmic gas behaves in complex ways. The most complex behaviors are found in the peripheral regions of galaxy clusters, where supersonic flows drive shocks and large energy fluctuations over a few tens of million years. Describing the evolution of magnetic energy requires at least a twice as large amount of bits than for the other energy fields. When radiative cooling and feedback from galaxy formation are considered, the cosmic gas is overall found to double its degree of complexity. In the future, Cosmic Information Theory can significantly increase our understanding of the emergence of cosmic structure as it represents an innovative framework to design and analyze complex simulations of the Universe in a simple, yet powerful way.Comment: 15 pages, 14 figures. MNRAS accepted, in pres
    • …
    corecore