Currently, diagnosis of skin diseases is based primarily on visual pattern
recognition skills and expertise of the physician observing the lesion. Even
though dermatologists are trained to recognize patterns of morphology, it is
still a subjective visual assessment. Tools for automated pattern recognition
can provide objective information to support clinical decision-making.
Noninvasive skin imaging techniques provide complementary information to the
clinician. In recent years, optical coherence tomography has become a powerful
skin imaging technique. According to specific functional needs, skin
architecture varies across different parts of the body, as do the textural
characteristics in OCT images. There is, therefore, a critical need to
systematically analyze OCT images from different body sites, to identify their
significant qualitative and quantitative differences. Sixty-three optical and
textural features extracted from OCT images of healthy and diseased skin are
analyzed and in conjunction with decision-theoretic approaches used to create
computational models of the diseases. We demonstrate that these models provide
objective information to the clinician to assist in the diagnosis of
abnormalities of cutaneous microstructure, and hence, aid in the determination
of treatment. Specifically, we demonstrate the performance of this methodology
on differentiating basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)
from healthy tissue