1,517 research outputs found

    The Transactional Conflict Problem

    Full text link
    The transactional conflict problem arises in transactional systems whenever two or more concurrent transactions clash on a data item. While the standard solution to such conflicts is to immediately abort one of the transactions, some practical systems consider the alternative of delaying conflict resolution for a short interval, which may allow one of the transactions to commit. The challenge in the transactional conflict problem is to choose the optimal length of this delay interval so as to minimize the overall running time penalty for the conflicting transactions. In this paper, we propose a family of optimal online algorithms for the transactional conflict problem. Specifically, we consider variants of this problem which arise in different implementations of transactional systems, namely "requestor wins" and "requestor aborts" implementations: in the former, the recipient of a coherence request is aborted, whereas in the latter, it is the requestor which has to abort. Both strategies are implemented by real systems. We show that the requestor aborts case can be reduced to a classic instance of the ski rental problem, while the requestor wins case leads to a new version of this classical problem, for which we derive optimal deterministic and randomized algorithms. Moreover, we prove that, under a simplified adversarial model, our algorithms are constant-competitive with the offline optimum in terms of throughput. We validate our algorithmic results empirically through a hardware simulation of hardware transactional memory (HTM), showing that our algorithms can lead to non-trivial performance improvements for classic concurrent data structures

    Transaction Activation scheduling Support for Transactional Memory

    Get PDF
    Transactional Memory (TM) is considered as one of the most promising paradigms for developing concurrent applications. TM has been shown to scale well on multiple cores when the data access pattern behaves “well,” i.e., when few conflicts are induced. In contrast, data patterns with frequent write sharing, with long transactions, or when many threads contend for a smaller number of cores, produce numerous aborts. These problems are traditionally addressed by application-level contention managers, but they suffer from a lack of precision and provide unpredictable benefits on many workloads. In this paper, we propose a system approach where the scheduler tries to avoid aborts by preventing conflicting transactions from running simultaneously. We use a combination of several techniques to help reduce the odds of conflicts, by (1) avoiding preempting threads running a transaction until the transaction completes, (2) keeping track of conflicts and delaying the restart of a transaction until conflicting transactions have committed, and (3) keeping track of conflicts and only allowing a thread with conflicts to run at low priority. Our approach has been implemented in Linux for Software Transactional Memory (STM) using a shared memory segment to allow fast communication between the STM library and the scheduler. It only requires small and contained modifications to the operating system. Experimental evaluation demonstrates that our approach significantly reduces the number of aborts while improving transaction throughput on various workloads

    A Comparative Analysis of STM Approaches to Reduction Operations in Irregular Applications

    Get PDF
    As a recently consolidated paradigm for optimistic concurrency in modern multicore architectures, Transactional Memory (TM) can help to the exploitation of parallelism in irregular applications when data dependence information is not available up to run- time. This paper presents and discusses how to leverage TM to exploit parallelism in an important class of irregular applications, the class that exhibits irregular reduction patterns. In order to test and compare our techniques with other solutions, they were implemented in a software TM system called ReduxSTM, that acts as a proof of concept. Basically, ReduxSTM combines two major ideas: a sequential-equivalent ordering of transaction commits that assures the correct result, and an extension of the underlying TM privatization mechanism to reduce unnecessary overhead due to reduction memory updates as well as unnecesary aborts and rollbacks. A comparative study of STM solutions, including ReduxSTM, and other more classical approaches to the parallelization of reduction operations is presented in terms of time, memory and overhead.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Adaptive software transactional memory : dynamic contention management

    Get PDF
    This thesis addresses the problem of contention management in Software Transactional Memory (STM), which is a scheme for managing shared memory in a concurrent programming environment. STM views shared memory in a way similar to that of a database; read and write operations are handled through transactions, with changes to the shared memory becoming permanent through commit operations. Research on this subject reveals that there are currently varying methods for collision detection, data validation, and contention management, each of which has different situations in which they become the preferred method. This thesis introduces a dynamic contention manager that monitors current performance and chooses the proper contention manager accordingly. Performance calculations, and subsequent polling of the underlying library, are minimized. As a result, this adaptive contention manager yields a higher average performance level over time when compared with existing static implementations

    Transactional memory for high-performance embedded systems

    Get PDF
    The increasing demand for computational power in embedded systems, which is required for various tasks, such as autonomous driving, can only be achieved by exploiting the resources offered by modern hardware. Due to physical limitations, hardware manufacturers have moved to increase the number of cores per processor instead of further increasing clock rates. Therefore, in our view, the additionally required computing power can only be achieved by exploiting parallelism. Unfortunately writing parallel code is considered a difficult and complex task. Hardware Transactional Memories (HTMs) are a suitable tool to write sophisticated parallel software. However, HTMs were not specifically developed for embedded systems and therefore cannot be used without consideration. The use of conventional HTMs increases complexity and makes it more difficult to foresee implications with other important properties of embedded systems. This thesis therefore describes how an HTM for embedded systems could be implemented. The HTM was designed to allow the parallel execution of software and to offer functionality which is useful for embedded systems. Hereby the focus lay on: elimination of the typical limitations of conventional HTMs, several conflict resolution mechanisms, investigation of real time behavior, and a feature to conserve energy. To enable the desired functionalities, the structure of the HTM described in this work strongly differs from a conventional HTM. In comparison to the baseline HTM, which was also designed and implemented in this thesis, the biggest adaptation concerns the conflict detection. It was modified so that conflicts can be detected and resolved centrally. For this, the cache hierarchy as well as the cache coherence had to be adapted and partially extended. The system was implemented in the cycle-accurate gem5 simulator. The eight benchmarks of the STAMP benchmark suite were used for evaluation. The evaluation of the various functionalities shows that the mechanisms work and add value for the operation in embedded systems.Der immer größer werdende Bedarf an Rechenleistung in eingebetteten Systemen, der für verschiedene Aufgaben wie z. B. dem autonomen Fahren benötigt wird, kann nur durch die effiziente Nutzung der zur Verfügung stehenden Ressourcen erreicht werden. Durch physikalische Grenzen sind Prozessorhersteller dazu übergegangen, Prozessoren mit mehreren Prozessorkernen auszustatten, statt die Taktraten weiter anzuheben. Daher kann die zusätzlich benötigte Rechenleistung aus unserer Sicht nur durch eine Steigerung der Parallelität gelingen. Hardwaretransaktionsspeicher (HTS) erlauben es ihren Nutzern schnell und einfach parallele Programme zu schreiben. Allerdings wurden HTS nicht speziell für eingebettete Systeme entwickelt und sind daher nur eingeschränkt für diese nutzbar. Durch den Einsatz herkömmlicher HTS steigt die Komplexität und es wird somit schwieriger abzusehen, ob andere wichtige Eigenschaften erreicht werden können. Um den Einsatz von HTS in eingebettete Systeme besser zu ermöglichen, beschreibt diese Arbeit einen konkreten Ansatz. Der HTS wurde hierzu so entwickelt, dass er eine parallele Ausführung von Programmen ermöglicht und Eigenschaften besitzt, welche für eingebettete Systeme nützlich sind. Dazu gehören unter anderem: Wegfall der typischen Limitierungen herkömmlicher HTS, Einflussnahme auf den Konfliktauflösungsmechanismus, Unterstützung einer abschätzbaren Ausführung und eine Funktion, um Energie einzusparen. Um die gewünschten Funktionalitäten zu ermöglichen, unterscheidet sich der Aufbau des in dieser Arbeit beschriebenen HTS stark von einem klassischen HTS. Im Vergleich zu dem Referenz HTS, der ebenfalls im Rahmen dieser Arbeit entworfen und implementiert wurde, betrifft die größte Anpassung die Konflikterkennung. Sie wurde derart verändert, dass die Konflikte zentral erkannt und aufgelöst werden können. Hierfür mussten die Cache-Hierarchie und Cache-Kohärenz stark angepasst und teilweise erweitert werden. Das System wurde in einem taktgenauen Simulator, dem gem5-Simulator, umgesetzt. Zur Evaluation wurden die acht Benchmarks der STAMP-Benchmark-Suite eingesetzt. Die Evaluation der verschiedenen Funktionen zeigt, dass die Mechanismen funktionieren und somit einen Mehrwert für eingebettete Systeme bieten

    Stretching Transactional Memory

    Get PDF
    Transactional memory (TM) is an appealing abstraction for programming multi-core systems. Potential target applications for TM, such as business software and video games, are likely to involve complex data structures and large transactions, requiring specific software solutions (STM). So far, however, STMs have been mainly evaluated and optimized for smaller scale benchmarks. We revisit the main STM design choices from the perspective of complex workloads and propose a new STM, which we call SwissTM. In short, SwissTM is lock- and word-based and uses (1) optimistic (commit- time) conflict detection for read/write conflicts and pessimistic (encounter-time) conflict detection for write/write conflicts, as well as (2) a new two-phase contention manager that ensures the progress of long transactions while inducing no overhead on short ones. SwissTM outperforms state-of-the-art STM implementations, namely RSTM, TL2, and TinySTM, in our experiments on STMBench7, STAMP, Lee-TM and red- black tree benchmarks. Beyond SwissTM, we present the most complete evaluation to date of the individual impact of various STM design choices on the ability to support the mixed workloads of large applications

    On the Performance of Software Transactional Memory

    Get PDF
    The recent proliferation of multi-core processors has moved concurrent programming into mainstream by forcing increasingly more programmers to write parallel code. Using traditional concurrency techniques, such as locking, is notoriously difficult and has been considered the domain of a few experts for a long time. This discrepancy between the established techniques and typical programmer's skills raises a pressing need for new programming paradigms. A particularly appealing concurrent programming paradigm is transactional memory: it enables programmers to write correct concurrent code in a simple manner, while promising scalable performance. Software implementations of transactional memory (STM) have attracted a lot of attention for their ability to support dynamic transactions of any size and execute on existing hardware. This is in contrast to hardware implementations that typically support only transactions of limited size and are not yet commercially available. Surprisingly, prior work has largely neglected software support for transactions of arbitrary size, despite them being an important target for STM. Consequently, existing STMs have not been optimized for large transactions, which results in poor performance of those STMs, and sometimes even program crashes, when dealing with large transactions. In this thesis, I contribute to changing the current state of affairs by improving performance and scalability of STM, in particular with dynamic transactions of arbitrary size. I propose SwissTM, a novel STM design that efficiently supports large transactions, while not compromising on performance with smaller ones. SwissTM features: (1) mixed conflict detection, that detects write-write conflicts eagerly and read-write conflicts lazily, and (2) a two-phase contention manager, that imposes little overhead on small transactions and effectively manages conflicts between larger ones. SwissTM indeed achieves good performance across a range of workloads: it outperforms several state-of-the-art STMs on a representative large-scale benchmark by at least 55% with eight threads, while matching their performance or outperforming them across a wide range of smaller-scale benchmarks. I also present a detailed empirical analysis of the SwissTM design, individually evaluating each of the chosen design points and their impact on performance. This "dissection" of SwissTM is particularly valuable for STM designers as it helps them understand which parts of the design are well-suited to their own STMs, enabling them to reuse just those parts. Furthermore, I address the question of whether STM can perform well enough to be practical by performing the most extensive comparison of performance of STM-based and sequential, non-thread-safe code to date. This comparison demonstrates the very fact that SwissTM indeed outperforms sequential code, often with just a handful of threads: with four threads it outperforms sequential code in 80% of cases, by up to 4x. Furthermore, the performance scales well when increasing thread counts: with 64 threads it outperforms sequential code by up to 29x. These results suggest that STM is indeed a viable alternative for writing concurrent code today

    A speculative execution approach to provide semantically aware contention management for concurrent systems

    Get PDF
    PhD ThesisMost modern platforms offer ample potention for parallel execution of concurrent programs yet concurrency control is required to exploit parallelism while maintaining program correctness. Pessimistic con- currency control featuring blocking synchronization and mutual ex- clusion, has given way to transactional memory, which allows the composition of concurrent code in a manner more intuitive for the application programmer. An important component in any transactional memory technique however is the policy for resolving conflicts on shared data, commonly referred to as the contention management policy. In this thesis, a Universal Construction is described which provides contention management for software transactional memory. The technique differs from existing approaches given that multiple execution paths are explored speculatively and in parallel. In the resolution of conflicts by state space exploration, we demonstrate that both concur- rent conflicts and semantic conflicts can be solved, promoting multi- threaded program progression. We de ne a model of computation called Many Systems, which defines the execution of concurrent threads as a state space management problem. An implementation is then presented based on concepts from the model, and we extend the implementation to incorporate nested transactions. Results are provided which compare the performance of our approach with an established contention management policy, under varying degrees of concurrent and semantic conflicts. Finally, we provide performance results from a number of search strategies, when nested transactions are introduced

    STM: Lock-Free Synchronization

    Get PDF
    Current parallel programming uses low-level programming constructs like threads and explicit synchronization (for example, locks, semaphores and monitors) to coordinate thread execution which makes these programs difficult to design, program and debug. In this paper we present Software Transactional Memory (STM) which is a promising new approach for programming in parallel processors having shared memory. It is a concurrency control mechanism that is widely considered to be easier to use by programmers than other mechanisms such as locking. It allows portions of a program to execute in isolation, without regard to other, concurrently executing tasks. A programmer can reason about the correctness of code within a transaction and need not worry about complex interactions with other, concurrently executing parts of the program
    • …
    corecore