
International Journal of Computer and Communication International Journal of Computer and Communication 

Technology Technology 

Volume 5 Issue 3 Article 10 

July 2014 

STM: Lock-Free Synchronization STM: Lock-Free Synchronization 

Ryan Saptarshi Ray 
Department of Information Technology Jadavpur University, Kolkata, India, ryan.ray@rediffmail.com 

Follow this and additional works at: https://www.interscience.in/ijcct 

Recommended Citation Recommended Citation 
Ray, Ryan Saptarshi (2014) "STM: Lock-Free Synchronization," International Journal of Computer and 
Communication Technology: Vol. 5 : Iss. 3 , Article 10. 
DOI: 10.47893/IJCCT.2014.1245 
Available at: https://www.interscience.in/ijcct/vol5/iss3/10 

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research 
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology 
by an authorized editor of Interscience Research Network. For more information, please contact 
sritampatnaik@gmail.com. 

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol5
https://www.interscience.in/ijcct/vol5/iss3
https://www.interscience.in/ijcct/vol5/iss3/10
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol5%2Fiss3%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol5/iss3/10?utm_source=www.interscience.in%2Fijcct%2Fvol5%2Fiss3%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com


 
_____________________________________________________________________________________________________________________ 

 

 

 

STM: Lock-Free Synchronization

 
Ryan Saptarshi Ray 

Department of Information Technology 
Jadavpur University, Kolkata, India 
E-mail  : ryan.ray@rediffmail.com

 
 

  

 
 

Abstract— Current parallel programming uses low-level 
programming constructs like threads and explicit 
synchronization (for example, locks, semaphores and monitors) 
to coordinate thread execution which makes these programs 
difficult to design, program and debug.  

In this paper we present Software Transactional Memory (STM) 
which is a promising new approach for programming in parallel 
processors having shared memory. It is a concurrency control 
mechanism that is widely considered to be easier to use by 
programmers than other mechanisms such as locking. It allows 
portions of a program to execute in isolation, without regard to 
other, concurrently executing tasks. A programmer can reason 
about the correctness of code within a transaction and need not 
worry about complex interactions with other, concurrently 
executing parts of the program. 

 
Keywords- Parallel Programming; Locks; Transactional 
Memory; Software Transactional Memory  

I.  INTRODUCTION  
Generally one has the idea that a program will run 

faster if one buys a next-generation processor. But 
currently that is not the case. While the next-generation 
chip will have more CPUs, each individual CPU will be 
no faster than the previous year’s model. If one wants 
programs to run faster, one must learn to write parallel 
programs as currently multi-core processors are becoming 
more and more popular. Parallel Programming means 
using multiple computing resources like processors for 
programming so that the time required to perform 
computations is reduced. [1] 
 

The hardest problem that must be overcome when 
writing parallel programs is that of synchronization. 
Multiple threads may need to access the same locations in 
memory and if careful measures are not taken the result 
can be disastrous. If two threads try to modify the same 
variable at the same time, the data can become corrupt. 
Currently locks are used to solve this problem. 

 
Using locks, when a thread tries to enter a critical 

section, it must first acquire that section's lock. If another 
thread is already holding the lock, the former thread must 
wait until the lock-holding thread releases the lock, which 
it does when it leaves the critical section. Some of the 

drawbacks of locks are priority inversion, convoying and 
deadlocks. [2] 

 
Transactional memory (TM) is an alternative paradigm 

to lock-based concurrent programming. Derived from 
transactional databases, TM uses transactional semantics 
for critical code regions that require synchronization. 
Programmers utilizing Transactional Memory(TM) have 
to enclose segments of code that access shared variables 
in transactions. Consequently, the TM system guarantees 
the atomicity, consistency, isolation and durability of 
executing critical regions. Atomicity means that a critical 
section will execute completely or not at all. No other 
threads will be able to see a state of memory where a 
critical section is only partially complete. Consistency 
means that data will never get corrupted. Isolation means 
that the execution of a critical section of a thread will 
never be affected by the actions of other threads. 
Durability means that any committed memory 
modifications are reliable. Code using transactions is very 
readable and understandable. If the transaction is 
successfully executed, then the “commit” of the 
transaction is performed. If conflict occurs, a contention 
manager is consulted in order to resolve the conflict. After 
conflict resolution, a single conflicting transaction will 
continue execution, while the remaining conflicting ones 
will be “aborted”. [2] 
There are two types of Transactional Memory; Hardware 
Transactional Memory and Software Transactional 
Memory. 
 

Hardware Transactional Memory can be implemented 
by modifying standard processors, multiprocessor cache-
coherence protocols and bus protocols to support 
transactions. But there are some drawbacks to hardware 
transactional memory that are considered major issues. So 
we consider Software Transactional Memory in this 
paper. [3]  

 
Software Transactional Memory (STM) supports 

flexible transactional programming of synchronization 
operations in software. STMs also support lightweight 
transactions in concurrent applications. STM has 
advantages in terms of applicability to today's machines, 
portability and resiliency in the face of timing anomalies 

206

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3



STM : Lock-Free Synchronization 
________________________________________________________________________________________________ 

_____________________________________________________________________________________________________________________ 
 

 

and processor failures. Software Transactional Memory 
(STM) is a concurrency control mechanism that is widely 
considered to be easier to use by programmers than other 
mechanisms such as locking. It allows portions of a 
program to execute in isolation, without regard to other, 
concurrently executing tasks. [2] 

II. TRANSACTIONAL MEMORY  

Transactional memory (TM) is an alternative paradigm to 
lock-based concurrent programming which does not suffer 
from the drawbacks of lock-based concurrent 
programming. The TM system guarantees the atomicity, 
consistency, isolation and durability (the ACID 
properties) of executing critical regions. A “transaction” is 
a form of program execution borrowed from the database 
community. Database systems have successfully been 
exploiting concurrency for decades using transactions. 
Transactional Memory was originally proposed as a 
mechanism for lock-free data synchronization and since 
then has become more and more popular. [2], [4] 

 

A. Transactional Memory General Implementation 
Any critical section of code that is to made atomic 

must be enclosed within a transaction surrounded with, 
for example, xbegin and xend tags. When inside a 
transaction, any attempts to read or write to memory are 
buffered to some kind of log file. When a transaction 
ends, if there is no conflict detected, the transaction 
commits all of its memory modifications from the log file 
and exits, else the transaction wipes the log file clean and 
reverts back to the beginning of the transaction. An 
implementation of transactional memory such as this is 
called optimistic execution. [2] 
 
It is considered to be optimistic because when an xbegin 
tag is reached, the system enters the transaction with the 
hope that it will be able to commit all of its changes at the 
end. Thus a transaction does not worry about obtaining 
any locks. It simply executes right away and records any 
memory reads or writes to the log. The verification step at 
the end checks that the log is valid before the changes are 
committed. To check that the log is valid, the system must 
go through every variable that was read or written to 
ensure that their values are consistent with what they were 
when the transaction began thus ensuring isolation. The 
verification step is done atomically. 
Overall this is a very clean solution to parallel 
programming, as concurrency is dealt with simply by 
surrounding all critical sections with xbegin and xend 
tags. 

B. Pros and Cons of Transactional Memory  
 
1) Pros 
 
Parallel programming poses many difficulties. The most 
serious challenge is coordinating access to data shared by 
several threads. Data races, deadlocks, and poor 

scalability are consequences of trying to ensure mutual 
exclusion with too little or too much synchronization. 
Currently locks are used for synchronization in parallel 
programs. But locks suffer from many drawbacks. TM is 
another approach for performing synchronization in 
parallel programs. TM overcomes all the problems which 
occur while performing synchronization using locking. 
TM offers a simpler alternative to mutual exclusion by 
shifting the burden of correct synchronization from a 
programmer to the TM system. The programmer only 
needs to identify a sequence of operations on shared data 
that should appear to execute atomically to other, 
concurrent threads. After that, through different 
mechanisms, TM ensures that synchronization is 
performed. Transactions also make composition possible. 
TM also overcomes the problems of priority inversion, 
deadlocks and convoying.  
 

2) Cons 
 
Firstly, transactional memory leads to too much overhead 
with respect to performance. Secondly, there is the 
problem of transactional code interacting with non-
transactional code.  There will always be systems with 
legacy code and thus this issue needs to be considered. It 
is unclear how to deal with shared data outside of a 
transaction (i.e. how to tolerate weak atomicity) and how 
to deal with locks being used inside transactions. Thirdly, 
there is the issue of dealing with exceptions. There needs 
to be an elegant mechanism to handle exceptions and 
propagate exception information from within a 
transactional context. Finally, there are some code which 
cannot be transactionalized such as when I/O is required. 
In optimistic TM, a transaction that executed an I/O 
operation may roll back at a conflict. I/O in this case 
consists of any interaction with the world outside of the 
control of the TM system. If a transaction aborts, its I/O 
operations should roll back as well, which may be 
difficult or impossible to accomplish in general. Buffering 
the data read or written by a transaction permits some 
rollbacks, but buffering fails in simple situations, such as 
when a transaction writes a prompt and then waits for user 
input.  
 
Because of all these issues transactional memory has not 
yet matured to the point where it will be widely adopted. 
Better implementation techniques that are likely to 
improve performance of transactional memory are an area 
of active research. [2], [4] 

  

III. SOFTWARE TRANSACTIONAL MEMORY  
Implementation of Transactional Memory entirely in 
software is called Software Transactional Memory (STM). 
In STM it is possible to implement lock-free, atomic, 
multi-location operations entirely in software. STM is a 
novel design that supports flexible transactional 
programming of synchronization operations in software. 

207

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3



STM : Lock-Free Synchronization 
________________________________________________________________________________________________ 

_____________________________________________________________________________________________________________________ 
 

 

STM is a promising technique for controlling concurrency 
in modern multi-processor architectures.  [2], [4] 
 

A. Software Transactional Memory Implementation 
Details  

 
STM also follows optimistic execution. The important 
issues which should be kept in mind while implementing 
STM are contention management and strategies for reads, 
writes, locking and nesting. 
Contention managers in different types of STM follow 
different strategies some of which are backoff, priority, 
greedy, delay, suicide and aggressive.  
Reads in STM can be either visible reads or invisible 
reads. In visible reads the transaction has to establish itself 
as the owner of an object before reading the object. In 
invisible reads the transaction does not have to establish 
itself as the owner of the object before reading it; but for 
every read, consistency till that read is checked. 
Writes in STM can be either write-back or write-through. 
In write-back the new written values are written to the 
write log initially.  After the transaction commits the 
necessary updates are made by checking the values from 
the write log. If a transaction does not commit but aborts 
due to some reason, then this approach is advantageous. 
In write-through the new values are immediately written 
to memory. An undo log is also maintained so that the 
changes can be undone in case the transaction aborts. In 
some cases the conflicting transaction itself may abort due 
to some reason. Then there is no need for the current 
transaction to abort. In these situations the write-through 
approach is advantageous as it prevents the unnecessary 
abort of the current transaction.  
 
 Locking in STM can be done either at commit time or at 
encounter time. In commit-time locking locks are 
acquired when the transaction commits. The advantage of 
this approach is that a conflicting transaction itself may 
abort due to some reason. In that case unnecessary lock 
contention is avoided. In encounter-time locking 
whenever a transaction has to write an object it has to 
acquire a lock on it. The advantage of this approach is that 
it avoids unnecessary work. If locks are acquired at the 
time of commit of the transaction, then in most cases at 
least one of the conflicting transactions has to abort.  
Locks can be either fine-grained or coarse-grained. In 
coarse-grained locking a single lock covers the entire 
memory. But this type of lock is not scalable. In fine-
grained locks there are multiple locks each of which 
covers a different part of memory.  
There are two types of nesting in STM which are open-
nesting and closed-nesting. In open-nesting when the 
inner transaction commits, then the changes it has made 
are visible to all other transactions. In closed-nesting 
when the inner transaction commits, then the changes it 
has made are visible to only the outer transaction which 
encloses it. [5], [6] 
 

B. Pros and Cons of Software Transactional Memory 
 

1) Pros 
 
STM overcomes all the problems which occur while 
performing synchronization using locking. STM is easier 
to use than locks. STM offers a simpler alternative to 
mutual exclusion by shifting the burden of correct 
synchronization from a programmer to the STM system. 
The programmer only needs to identify a sequence of 
operations on shared data that should appear to execute 
atomically to other, concurrent threads. After that through 
different mechanisms the STM system ensures that 
synchronization is performed. STM allows portions of a 
program to execute in isolation, without regard to other, 
concurrently executing tasks. A programmer can reason 
about the correctness of code within a transaction and 
need not worry about complex interactions with other, 
concurrently executing parts of the program. 

 
STM also ensures composition in synchronization. A 
programming abstraction is said to support composition if 
it can be correctly combined with other abstractions 
without needing to understand how the abstractions 
operate. Through different other mechanisms the STM 
system also overcomes the problems of priority inversion, 
deadlocks and convoying which occur while performing 
synchronization using locks. 
STM is more scalable than explicit coarse-grained locking 
and easier to use than fine-grained locking. STMs also 
support lightweight transactions in concurrent 
applications. STM has advantages in terms of 
applicability to today's machines, portability and 
resiliency in the face of timing anomalies and processor 
failures. STM also provides all the advantages which are 
provided by Transactional Memory. [4], [6] 
 

2) Cons 
  
Firstly, there is the problem of transactional code 
interacting with non-transactional code. There will always 
be systems with legacy code and thus this issue needs to 
be considered. It is unclear how to deal with shared data 
outside of a transaction (i.e. how to tolerate weak 
atomicity) and how to deal with locks being used inside 
transactions. Secondly, some code cannot be 
transactionalized, such as when I/O is required. In 
optimistic STM, a transaction that executed an I/O 
operation may roll back at a conflict. I/O in this case 
consists of any interaction with the world outside of the 
control of the TM system. If a transaction aborts, its I/O 
operations should roll back as well, which may be 
difficult or impossible to accomplish in general. Buffering 
the data read or written by a transaction permits some 
rollbacks, but buffering fails in simple situations, such as 
when a transaction writes a prompt and then waits for user 
input. Thirdly, the overhead involved in case a transaction 
has to roll back due to a conflict is also huge. Fourthly, 

208

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3



STM : Lock-Free Synchronization 
________________________________________________________________________________________________ 

_____________________________________________________________________________________________________________________ 
 

 

the performance of code using STM is either equal to or 
worse than that of code using locks and threads.  
 
Because of all these disadvantages STM is still an area of 
active research. 

 

IV. TYPES OF SOFTWARE TRANSACTIONAL 
MEMORY 

Different types of STM are Static STM, Dynamic STM, 
Object-based STM and Word-based STM. 
In static STM the required data set and the inputs to the 
transactions are known in advance. From this information 
the outputs can also be calculated in advance. 
In dynamic STM the data sets and the inputs to the 
transactions can be changed dynamically. Thus dynamic 
STM is more flexible, advantageous and more popular. In 
object-based STM more than one transaction cannot 
access the same object simultaneously. 
In word-based STM more than one transaction cannot 
access the same field of the same object simultaneously. 
Word-based STMs can be easily integrated into different 
programming languages which is not the case with object-
based STM.  
 

V. DIFFERENT IMPLEMENTATIONS OF 
SOFTWARE TRANSACTIONAL MEMORY 

 
Some types of STM implementations are adapt STM, 
Time-based STM, Log-based STM, TL2 and TinySTM. 
 

A. adaptSTM 
 
adaptSTM is a flexible STM library with a non-adaptive 
baseline common to current fast STM libraries to evaluate 
different performance options. The baseline is extended 
by an online evaluation system that enables the 
measurement of key runtime parameters like read-and 
write locations, or commit- and abort-rate. The 
performance data is used by a thread-local adaptation 
system to tune the STM configuration. The system adapts 
different important parameters like write-set hash-size, 
hash-function, and write strategy based on runtime 
statistics on a per-thread basis. 
AdaptSTM uses local adaptivity. This means that the 
different parameters are measured on a per-thread basis. 
The advantage of local adaptivity over global adaptivity is 
that every thread has its local settings, e.g., a reader-thread 
optimizes the transactional parameters for best read 
performance and a writer-thread optimizes for write 
throughput. 
Global adaptivity is a bottleneck for scalability as it 
requires global synchronization and barriers for all threads 
that make frequent changes of the adaptive parameters 
expensive. In local adaptivity each thread can change the 
local transactional settings without synchronization 
overhead every time a transaction is started or restarted. 

Some different parameters which are adapted according to 
the prevailing situation in adaptSTM are discussed below: 

 
1) Write-back vs. write-through 

 
adaptSTM samples the abort rate and decides to switch 
between write-back and write-through, if the abort rate 
reaches a threshold. The adaptation system uses the 
average of the last 64 transactions to calculate the abort 
rate. If the number of aborts is greater, then adaptSTM 
uses write-back. On the other hand if the number of 
commits is higher then adaptSTM uses write-through. 

 
2) Hash-table size 

 
The size of the write-set hash-table is crucial for good 
performance. If the hash-table is too large, then the 
overhead of resetting the table every time a transaction 
starts is high. 
On the other hand, if the table is too small, then the 
lookup will be slow due to many hash collisions. In the 
current implementation of adaptSTM, hash collisions are 
queued in a linked list in the same hash-table slot. The 
adaptation system samples the moving average of unique 
write locations per transaction. If the load of the hash-
table is more than 33% then the size of the table is 
doubled. On the other hand, if the load is below 10% then 
the size of the table is halved.   

 
 

3) Adaptive Contention Management 
 

An extension of the basic contention management is to 
scale the number of yield operations according to the 
overall contention in the system. The current transaction 
is yielded an amount of times relative to the number of 
retries for this transaction. 
This adaptive contention strategy implements a backoff 
strategy that retries immediately if the contention is low, 
or yields an increasing amount of times in contended 
situations. [7] 
 

B. Time-based STM 
 
STMs either rely on visible read designs, which simplify 
conflict detection while pessimistically ensuring a 
consistent view of shared data to the application, or 
optimistic invisible read designs that are significantly 
more efficient but require incremental validation to 
preserve consistency, at a cost that increases quadratically 
with the number of objects read in a transaction. Time-
based STM benefits from the advantage of invisible reads 
without incurring the quadratic overhead of incremental 
validation. The first time-based STM algorithm was the 
Lazy Snapshot Algorithm (LSA). Its performance is 
highly competitive, both for obstruction-free and lock-
based STM designs. [5] 
 

209

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3



STM : Lock-Free Synchronization 
________________________________________________________________________________________________ 

_____________________________________________________________________________________________________________________ 
 

 

C. Log-based STM 
 
Transactional memory (TM) simplifies parallel 
programming by guaranteeing that transactions appear to 
execute atomically and in isolation. Implementing these 
properties includes providing data version management 
for the simultaneous storage of both new (visible if the 
transaction commits) and old (retained if the transaction 
aborts) values. 
Most TM systems leave old values “in place” (the target 
memory address) and buffer new values elsewhere until 
commit. This makes aborts fast, but penalizes the much 
more frequent commits. 
Log-based Transactional Memory (LogTM), makes 
commits fast by storing old values to a per-thread log in 
cacheable virtual memory and storing new values in place. 
[8] 
 

D. TL2 
 
Transactional locking II (TL2) algorithm is a word-based 
software transactional memory (STM) algorithm based on 
a combination of commit-time locking and a novel global 
version-clock based validation technique. TL2 improves 
on state-of-the-art STMs in the following ways:  
 (1) Unlike all other STMs it fits seamlessly with any 
systems memory life-cycle, including those using 
malloc/free.  
(2) Unlike all other lock-based STMs it efficiently avoids 
periods of unsafe execution. This means that using its 
novel version-clock validation, user code is guaranteed to 
operate only on consistent memory states.  
(3) In a sequence of high performance benchmarks, while 
providing these new properties, it delivered overall 
performance comparable to and in many cases better than 
that of all former STM algorithms, both lock-based and 
non-blocking. On various benchmarks, TL2 delivers 
performance that is competitive with the best hand-crafted 
fine-grained concurrent structures. It is ten-fold faster than 
a single lock. 

 
 These characteristics make TL2 a viable candidate for 
deployment of transactional memory today. [9] 
 

E. TinySTM 
 
TinySTM is a word-based and time-based software 
transactional memory implementation that uses locks to 
protect shared memory locations. Its name stems from the 
simplicity and performance of its design. It is lightweight 
and highly efficient. It performs better in many situations 
than TL2 which is currently one of the fastest word-based 
software transactional memories. 
TinySTM uses a single-version, word-based variant of the 
LSA algorithm. It shares many properties with other 
word-based STMs like TL2. But it also follows different 
design strategies on some key aspects. Automatic tuning 
can be performed in TinySTM and it is also adaptive. [10]  

 

 
 

Figure 1: Performance of TinySTM versus TL2  
 

In the above figure, the lowest line shows the throughput 
of TL2 and the other lines show the performance of 
different types of TinySTM in a red-black tree 
application. As can be clearly seen the performance of all 
types of TinySTM are better than that of TL2. [11]  

 

VI. CONCLUSION 
 

STM has been shown in many ways to be a good 
alternative to using locks for writing parallel programs. 
While locks are messy and complicated, STM primitives 
are elegant and allow code synchronization sections to be 
easily implemented and understood by developers. STM 
by itself is unlikely to make multicore computers readily 
programmable. Many other improvements to 
programming languages, tools, runtime systems, and 
computer architecture are also necessary. STM, however, 
does provide a timetested model for isolating concurrent 
computations from each other. This model raises the level 
of abstraction for reasoning about concurrent tasks and 
helps avoid many parallel programming errors. 

 
 This paper has discussed different types and 
implementations of STM and also different issues to be 
considered while implementing STM. It has also 
discussed the benefits and drawbacks of STM. 
Many aspects of the semantics and implementation of 
STM are still the subject of active research. While it may 
still take some time to overcome the various drawbacks, 
the necessity for better parallel programming solutions 
will drive the eventual adoption of STM. Once the 
adoption of STM begins it will have the potential to pick 
up momentum and make a very large impact on software 
development in the long run. In the near future STM will 
become a central pillar of parallel programming. 

APPENDIX 

1     template<class T> void CoarseQ<T>: : enq (T t ) 

     2     { 

210

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3



STM : Lock-Free Synchronization 
________________________________________________________________________________________________ 

_____________________________________________________________________________________________________________________ 
 

 

     3         pthread_mutex_lock (&m) ; 

     4         node _tmp = new node ( t ) ; 

     5         if ( back == NULL)  

     6           { front = back = tmp ;} 

     7         else  

     8           { back−>next = tmp ; 

     9             back = tmp ; 

    10         } 

    11     pthread_mutex_unlock (&m) ; 

    12     } 
 

Code Snippet 1: Enqueue method for a coarse-locked 
linked list implementing a concurrent queue 

 
 Code Snippet 1 shows the enqueue method for a 
concurrent queue implemented as a linked list with a 
single coarse lock. Lock is used (line 3) and a new node is 
allocated (line 4). If the back pointer doesn’t point to 
anything, i.e. the queue is empty (line 5), the queue will 
now have one element, and both the front and back 
pointers will point to it (line 6). Otherwise the new node is 
swung onto the end of the back pointer (line 8) and the 
back pointer points to the new node (line 9). Finally the 
lock is unlocked (line 11). 

 
1     template<class T> void TxQ<T>: : enq (T t ) 

        2     { 
        3         START( 0 , RW) ; 

      4         node _tmp = ( node _) stm_malloc ( sizeof ( 
node ) ) ; 

      5         tmp−>t = t ; 
     6         node _myback = ( node _) LOAD_PTR(&back 

) ; 
     7         i f ( myback == NULL)  
     8           {STORE_PTR(&front , tmp ) ; 
     9            STORE_PTR(&back , tmp ) ; 
    10         } 
    11         e l s e  
    12           { STORE_PTR(&back−>next , tmp ) ; 
    13             STORE_PTR(&back , tmp ) ; 
    14         } 
    15     COMMIT; 
    16     } 
 

Code Snippet 2:Enqueue method for a linked list 
implementing a concurrent queue with TinySTM  

 
1 # define RO 1 
2 # define RW 0 
3 # define START( id , ro ) 
{ \ 
4 sigjmp_buf  * _ e = stm_getenv ( ) ; \ 
5 stm_tx_attr_t  _a = { id , ro } ; \ 
6 sigset_jmp (*_ e , 0 ) ; \ 
7 stm_start ( _e , & a ) 

8 # define COMMIT stm_commit ( ) ; } 
 

Code Snippet 3: Convenience macros for TinySTM 
transactions 

 
 

Code Snippet 2 shows the enqueue method for a 
concurrent queue implemented as a linked list using 
TinySTM transactions. A few macros have been defined 
to make TinySTM a little easier to use. The main idea is 
that a transaction is started (line 3), a new node is 
allocated (line 4), and it is checked if the queue is empty 
(lines 6–7). If it is, both front and back pointers point to 
the new node (lines 8–9). Otherwise the new node is 
swung onto the end of the back pointer (line 12) and the 
back pointer points to the new node (line 13). Finally the 
transaction (line 15) is commited. Thus, the logic of this 
method is identical to that of the coarse-locked queue. The 
main difference is syntactic, because, one has to explicitly 
tell TinySTM which loads and stores inside a transaction 
to monitor. The wrappers.h header provides the functions 
stm_load_ptr and stm_store_ptr , and the LOAD_PTR and 
STORE_PTR macros are wrappers around them, just to 
avoid having to do the type casting each time: 

 
# define LOAD_PTR( addrofptr ) \ 
stm_load_ptr ( ( volatile void __) addrofptr ) 

 
# define STORE_PTR( addrofptr , value ) \ 
Stm_store_ptr ( ( volatile void __) addrofptr , \ 
( void _) v a l u e ) 
 
One also has to be explicit about allocations inside a 
transaction, since TinySTM has to know how to undo 
them in the event that a transaction aborts. Thus in line 4, 
stm_malloc (defined in the mod mem.h header) is used 
instead of malloc or operator new. 
Let us see what the START and COMMIT macros are 
doing (Figure 4). The way that TinySTM implements 
flow of control around a transaction is on top of the old 
setjmp and longjmp standard library functions. The 
START macro just sets up a jump buffer pointing at the 
beginning of the transaction (lines 4–6), so that if the 
transaction aborts, it will automatically retry. If one does 
not want this behavior, TinySTM allows one to pass a null 
jump buffer to stm_start. In this case one has to manually 
check the return from stm_commit to see whether the 
transaction succeeded. The id parameter of START is just 
an identifier for the present transaction that might be 
helpful for debugging, and the ro parameter is a hint about 
whether the transaction is read-only or not. 
There are a couple of other things one has to do to set up 
TinySTM. One has to initialize the library at the outset 
with stm_init, and one has to initialize each thread that 
will perform transactions (including the “main” thread 
that called stm_init, if need be) with stm_init_thread. 
There are also corresponding thread and global shutdown 
functions which are stm_exit_thread and stm_exit 
respectively.  

211

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3



STM : Lock-Free Synchronization 
________________________________________________________________________________________________ 

_____________________________________________________________________________________________________________________ 
 

 

ACKNOWLEDGEMENT 
 

I would like to thank my advisor Prof. Utpal Kumar Ray, 
Associate Professor, Department of Information 
Technology, Jadavpur University whose suggestions, 
guidance and encouragement have helped me immensely 
in understanding the subject and without whose help this 
paper would not have been completed. 

REFERENCES 

[1] Simon Peyton Jones, “Beautiful concurrency”.  
[2] Elan Dubrofsky, “A Survey Paper on Transactional 

Memory”.  
[3] http://en.wikipedia.org/wiki/Transactional_memory 
[4]  James Larus and Christos Kozyrakis. 

“Transactional Memory”  
[5] Pascal Felber, Christof Fetzer, Patrick Marlier, 

Torvald Riegel, “Time-Based Software 
Transactional Memory”  

[6] Tim Harris, James Larus, Ravi Rajwar, 
“Transactional Memory”  

[7] Mathias Payer, Thomas R. Gross, “Performance 
Evaluation of Adaptivity in Software Transactional 
Memory” 

[8] Kevin E. Moore, Jayaram Bobba, Michelle J. 
Moravan, Mark D. Hill, David A. Wood., “LogTM: 
Log-based Transactional Memory”   

[9] Dave Dice , Ori Shalev , Nir Shavit., 
“Transactional Locking II” 

[10]  http://tmware.org 
[11] Pascal Felber, Christof Fetzer, Torvald Riegel, 

“Dynamic Performance Tuning of Word-Based 
Software Transactional Memory”.  

[12] Maurice Herlihy, J. Eliot B. Moss, “Transactional 
Memory: Architectural Support for Lock-Free Data 
Structures”. 

[13] Martin Schindewolf, Albert Cohen, Wolfgang Karl, 
Andrea Marongiu, Luca Benini, “Towards 
Transactional Memory Support for GCC”. 

[14] Virendra J. Marathe, Michael F. Spear, Christopher 
Heriot, Athul Acharya, David Eisenstat, William 
N. Scherer III, Michael L. Scott, “Lowering the 
Overhead of Nonblocking Software Transactional 
Memory”. 

[15] Utku Aydonat, Tarek S. Abdelrahman, Edward S. 
Rogers Sr., “Serializability of Transactions in 
Software Transactional Memory”. 

[16] Maurice Herlihy, Nir Shavit, “The Art of 
Multiprocessor Programming”. 

[17] Brendan Linn, Chanseok Oh, “G22.2631 project 
report: software transactional memory”. 

 
 
 

 
 
 
 
 
 

 

212

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-5, Iss-3


	STM: Lock-Free Synchronization
	Recommended Citation

	STM: Lock-Free Synchronization

