12 research outputs found

    Byzantine Approximate Agreement on Graphs

    Get PDF
    Consider a distributed system with n processors out of which f can be Byzantine faulty. In the approximate agreement task, each processor i receives an input value x_i and has to decide on an output value y_i such that 1) the output values are in the convex hull of the non-faulty processors\u27 input values, 2) the output values are within distance d of each other. Classically, the values are assumed to be from an m-dimensional Euclidean space, where m >= 1. In this work, we study the task in a discrete setting, where input values with some structure expressible as a graph. Namely, the input values are vertices of a finite graph G and the goal is to output vertices that are within distance d of each other in G, but still remain in the graph-induced convex hull of the input values. For d=0, the task reduces to consensus and cannot be solved with a deterministic algorithm in an asynchronous system even with a single crash fault. For any d >= 1, we show that the task is solvable in asynchronous systems when G is chordal and n > (omega+1)f, where omega is the clique number of G. In addition, we give the first Byzantine-tolerant algorithm for a variant of lattice agreement. For synchronous systems, we show tight resilience bounds for the exact variants of these and related tasks over a large class of combinatorial structures

    Convexities related to path properties on graphs

    Get PDF
    AbstractA feasible family of paths in a connected graph G is a family that contains at least one path between any pair of vertices in G. Any feasible path family defines a convexity on G. Well-known instances are: the geodesics, the induced paths, and all paths. We propose a more general approach for such ‘path properties’. We survey a number of results from this perspective, and present a number of new results. We focus on the behaviour of such convexities on the Cartesian product of graphs and on the classical convexity invariants, such as the Carathéodory, Helly and Radon numbers in relation with graph invariants, such as the clique number and other graph properties

    Toll convexity

    Get PDF
    A walk W between two non-adjacent vertices in a graph G is called tolled if the first vertex of W is among vertices from W adjacent only to the second vertex of W, and the last vertex of W is among vertices from W adjacent only to the second-last vertex of W. In the resulting interval convexity, a set S ⊂ V(G) is toll convex if for any two non-adjacent vertices x, y ∈ S any vertex in a tolled walk between x and y is also in S. The main result of the paper is that a graph is a convex geometry (i.e. satisfies the Minkowski-Krein-Milman property stating that any convex subset is the convex hull of its extreme vertices) with respect to toll convexity if and only if it is an interval graph. Furthermore, some well-known types of invariants are studied with respect to toll convexity, and toll convex sets in three standard graph products are completely described.Facultad de Ciencias Exacta

    Toll convexity

    Get PDF
    A walk W between two non-adjacent vertices in a graph G is called tolled if the first vertex of W is among vertices from W adjacent only to the second vertex of W, and the last vertex of W is among vertices from W adjacent only to the second-last vertex of W. In the resulting interval convexity, a set S ⊂ V(G) is toll convex if for any two non-adjacent vertices x, y ∈ S any vertex in a tolled walk between x and y is also in S. The main result of the paper is that a graph is a convex geometry (i.e. satisfies the Minkowski-Krein-Milman property stating that any convex subset is the convex hull of its extreme vertices) with respect to toll convexity if and only if it is an interval graph. Furthermore, some well-known types of invariants are studied with respect to toll convexity, and toll convex sets in three standard graph products are completely described.Facultad de Ciencias Exacta

    Toll convexity

    Get PDF
    A walk W between two non-adjacent vertices in a graph G is called tolled if the first vertex of W is among vertices from W adjacent only to the second vertex of W, and the last vertex of W is among vertices from W adjacent only to the second-last vertex of W. In the resulting interval convexity, a set S ⊂ V(G) is toll convex if for any two non-adjacent vertices x, y ∈ S any vertex in a tolled walk between x and y is also in S. The main result of the paper is that a graph is a convex geometry (i.e. satisfies the Minkowski-Krein-Milman property stating that any convex subset is the convex hull of its extreme vertices) with respect to toll convexity if and only if it is an interval graph. Furthermore, some well-known types of invariants are studied with respect to toll convexity, and toll convex sets in three standard graph products are completely described.Facultad de Ciencias Exacta

    Generalized convexities and semismoothness of nonsmooth functions

    Get PDF
    This paper discusses generalizations of convexities for nonsmooth functions, or functions that are not continuously differentiable. The paper starts with some basic definitions of group theory. Next we define a convex set and a convex function and discuss some of their properties. We examine the relation between a convex set and a convex function and define a locally Lipschitz continuous function. After that we discuss the optimization of a convex function. For this we define the subgradient of a function and prove a condition concerning the subgradient which is used to find the minimum of a convex function. In the next chapter we discuss nonsmooth and nonconvex functions. For these functions we define the Clarke generalized directional derivative and go through some of its properties. The generalized subgradient is used to define the generalized subgradient of a function. Next we define pseudo- and quasiconvexity for nonsmooth functions by using the Clarke generalized directional derivative. We also go through the relations between convexities and the optimality conditions of smooth and nonsmooth functions. In the final chapter we define different kinds of semismooth functions and go through their relations between convex and generalized convex functions. We also define functions whose generalized directional derivative is well-behaved and show an important connection between well-behaved functions and generalized convexities

    Fractional Differential Equations, Inclusions and Inequalities with Applications

    Get PDF
    During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering

    Fractional Calculus Operators and the Mittag-Leffler Function

    Get PDF
    This book focuses on applications of the theory of fractional calculus in numerical analysis and various fields of physics and engineering. Inequalities involving fractional calculus operators containing the Mittag–Leffler function in their kernels are of particular interest. Special attention is given to dynamical models, magnetization, hypergeometric series, initial and boundary value problems, and fractional differential equations, among others

    Relaxations and Approximations for Mixed-Integer Optimal Control

    Get PDF
    This thesis treats different aspects of the class of Mixed-Integer Optimal Control Problems (MIOCPs). These are optimization problems that combine the difficulties of underlying dynamic processes with combinatorial decisions. Typically, these combinatorial decisions are realized as switching decisions between the system’s different operations modes. During the last decades, direct methods emerged as the state-of-the-art solvers for MIOCPs. The formulation of a valid, tight and dependable integral relaxation, i.e., the formulation of a model for fractional values, plays an important role for these direct solution methods. We give detailed insight into several relaxation approaches for MIOCPs and compare them with regard to their respective structures. In particular, these are the typical solution’s structures and properties as convexity, problem size and numerical behavior. From these structural properties, we deduce some required specifications of a solver. Additionally, the modeling and subsequent limitation of the switching process directly tackle the class-specific typical issue of chattering solutions. One of the relaxation methods for MIOCPs is the outer convexification, where the binary variables only enter affinely. For the approximation of this relaxation’s solution, we took up on the control approximation problem in integral sense derived by Sager as part of a decomposition approach for MIOCPs with affine binary controls. This problem describes the optimal approximation of fractional controls with binary controls such that the corresponding dynamic process is changed as little as possible. For the multi-dimensional problem, we developed a new heuristic, which for the first time gives a bound that only depends on the control grid and not anymore on the number of the system’s controls. For the generalization of the control approximation problem with additional constraints, we derived a tailored branch-and-bound algorithm, which is based on the properties of the Lagrangian relaxation of the one-dimensional problem. This algorithm beats state-of-the-art commercial solvers for Mixed-Integer Linear Programs (MILPs) for this special approximation problem by several orders of magnitude. Overall, we present several, partially new modeling approaches for MIOCPs together with the accompanying structural properties. On this basis, we develop new theories for the approximation of certain relaxed solutions. We discuss the efficient implementation of the resulting structure exploiting algorithms. This leads to a deeper and better understanding of MIOCPs. We show the practicability of the theoretical observations with the help of four prototypical problems. The presented methods and algorithms allow on their basis the direct development of decision support and analysis tools in practice
    corecore