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a b s t r a c t

AwalkW between two non-adjacent vertices in a graph G is called
tolled if the first vertex of W is among vertices from W adjacent
only to the second vertex of W , and the last vertex of W is among
vertices fromW adjacent only to the second-last vertex ofW . In the
resulting interval convexity, a set S ⊂ V (G) is toll convex if for any
two non-adjacent vertices x, y ∈ S any vertex in a tolled walk be-
tween x and y is also in S. Themain result of the paper is that a graph
is a convex geometry (i.e. satisfies the Minkowski–Krein–Milman
property stating that any convex subset is the convex hull of its ex-
treme vertices) with respect to toll convexity if and only if it is an
interval graph. Furthermore, some well-known types of invariants
are studied with respect to toll convexity, and toll convex sets in
three standard graph products are completely described.
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1. Introduction

Theory of convex structures has considerably developed in the last few decades; cf. the seminal
monograph due to van de Vel [28]. Several classical theorems of combinatorial flavor on convex
sets in Euclidean spaces have been studied in a more general context. In abstract convexity theory
three axioms determine the pair (X, C), where C is a collection of subsets (called convex sets) of
X , as a convex space: (i) ∅ and X are convex, (ii) intersection of any two convex sets is convex, and
(iii) nested unions of convex sets are convex. All these axioms hold in particular for the so-called
interval-convexities, where an interval I : X × X → 2X has the property that x, y ∈ I(x, y), and convex
sets are defined as the sets S such that I(x, y) ∈ S for any x, y ∈ S, see Calder [7]. Intervals in graphs
usually arise from some types of paths, like the shortest (also called geodesic) or the induced (also
calledmonophonic) paths; see the recentmonograph [26] on geodesic convexity in graphs. Some early
influential papers in the area were published by Farber and Jamison [16,17], and Duchet [14]. They
considered various types of graph invariants and other properties (like the Carathéodory, Tietze, Helly
and Radon type theorems), which arise from the prototypical Euclidean convexity, in relation with
geodesic andmonophonic paths in graphs. Later several other types of paths and intervals were used,
yielding other types of convexities, like the all-paths convexity [9], the triangle path convexity [10],
the longest path convexity [11], and many others (see Mulder [25]).

In [16] the authors study the problem from the abstract convexity theory, which is some times
referred to as Minkowski–Krein–Milman property or convex geometry property. Recall that a vertex
s from a convex set S is an extreme vertex of S, if S − {s} is also convex. A graph G is called a convex
geometry with respect to a given convexity, if any convex set of G is the convex hull of its extreme
vertices. An alternative definition of convex geometries, using the so-called anti-exchange axiom is
also often used (cf. [1], where convex geometries are studied in the context of lattices). In the case of
monophonic convexity exactly chordal graphs are convex geometries, while in the geodesic convexity
these are precisely Ptolemaic graphs (i.e. distance-hereditary chordal graphs). In a similar way, totally
balanced hypergraphs and strongly chordal graphs have been characterized as convex geometries
of some particular (hyper)graph convexities [16]. More recently, the so-called Steiner convexity was
introduced, and it was shown that precisely 3-fan-free chordal graphs are convex geometries with
respect to this convexity [6].

In this paper we focus on thewell-known class of interval graphs, i.e. the intersection graphs of the
real-line intervals. Following the concept from [2], where tolled paths were used in a characterization
of interval graphs, we introduce the so-called tolled walks, which are walks, having a special
restriction on their two end-vertices. In the resulting toll convexity the interval graphs are precisely
the graphs which are convex geometry. Then we focus on two standard invariants, in relation with
this newly introduced type of graph convexity (for a study of these invariants in relationwith geodesic
convexity see the survey [5]). Finally, we describe the structure of toll convex sets in three graph
products, which has also been done for some other types of convexities [3,27].

In the following section we present main definitions, needed in the sequel, in particular the defini-
tion of tolledwalks and toll convexity. Then, in Section 3,weprove themain result that a graph is a con-
vex geometry with respect to toll convexity if and only if it is an interval graph. In Section 4 we study
some invariants that arise from toll convexity, notably the so-called toll number and t-hull number.
In particular, we determine these two numbers in arbitrary trees. Unlike as for the monophonic con-
vexity (see [16]) we prove that the Carathéodory number for toll convexity can be bigger than 2 even
in chordal graphs. Finally, in Section 5, we give a full description of the structure of the proper convex
subsets of three standard graph products, the lexicographic, the strong and the Cartesian product.

2. Basic and main concepts

Let G be a graph (by which we mean an undirected graph without loops or multiple edges). The
distance dG(u, v) between vertices u, v ∈ V (G) is the length of a shortest path (alias geodesic) between
u and v in G. The geodesic interval IG(u, v) between vertices u and v is the set of all vertices that lie on
some shortest path between u and v in G, i.e. IG(u, v) = {x ∈ V (G) : dG(u, x)+dG(x, v) = dG(u, v)}. A
subset S of V (G) is geodesically convex (or g-convex) if IG(u, v) ⊆ S for all u, v ∈ S. Similarly one defines
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JG(u, v) = {x ∈ V (G) : x lies on an induced path between u and v} to be the monophonic interval
between u and v in G. In the resulting monophonic convexity a subset S of V (G) is monophonically
convex (or m-convex) if JG(u, v) ⊆ S for all u, v ∈ S. (Indices above may be omitted, whenever the
graph G is understood from the context.)

Next, we introduce the concept of toll convexity. Let u and v be two different non adjacent vertices
in G. A tolled walk T between u and v in G is a sequence of vertices of the form

T : u, w1, . . . , wk, v,

where k ≥ 1, which enjoys the following three conditions:

• wiwi+1 ∈ E(G) for all i,
• uwi ∈ E(G) if and only if i = 1,
• vwi ∈ E(G) if and only if i = k.

In other words, a tolled walk is any walk between u and v such that u is adjacent only to the second
vertex of the walk, and v is adjacent only to the second-to-last vertex of the walk. The name tolled
arises from understanding that the edges uw1 and wkv may be passed only by ‘‘paying the toll’’ that
no other vertex of the walk, except for w1 (resp. wk), will be adjacent to u (resp. to v). For uv ∈ E(G)
we let T : u, v be a tolled walk as well and the only tolled walk that starts and ends in the same vertex
v is v itself. We define TG(u, v) = {x ∈ V (G) : x lies on a tolled walk between u and v} to be the toll
interval between u and v in G. Finally, a subset S of V (G) is toll convex (or t-convex) if TG(u, v) ⊆ S for
all u, v ∈ S.

Note that any vertex and any adjacent pair of vertices form a convex subset in any of the above
convexities, as does thewhole vertex set of a graph. Also, any toll convex subset is alsomonophonically
convex subset, and anymonophonically convex subset is also geodesically convex. On the other hand,
for instance, a set S of vertices inducing a P3 in C5 is geodesically convex, but not monophonically
convex. To see that monophonic convexity is not the same as toll convexity, consider the graph
obtained from P5 : x0x1x2x3x4 by attaching additional leaf a to the central vertex x2 of P5. The set of
vertices S which induces P5 is monophonically convex, but is not toll convex, as x0, x1, x2, a, x2, x3, x4
is a tolled walk between x0 and x4 that contains a ∉ S.

A graph G is chordal if it contains no induced cycles of length greater than 3. A vertex v of a graph
G is called simplicial if N(v) is a clique (i.e. a complete subgraph) in G. A perfect elimination ordering of
G is an ordering v1, . . . , vn of V (G) in which for every i ∈ {1, . . . , n}, vi is simplicial in the subgraph
of G induced by vi, . . . , vn.

Theorem 2.1 ([13,18]). A graph is chordal if and only if it has a perfect elimination ordering.

An interval representation of a graph is a family of intervals of the real line assigned to vertices so
that vertices are adjacent if and only if the corresponding intervals intersect. A graph is an interval
graph if it has an interval representation. See the monographs [4,24] for more on interval graphs,
chordal graphs and related classes of graphs.

Three vertices of a graph form an asteroidal triple if between any pair of them there exists a path
that avoids the neighborhood of the third vertex.

Theorem 2.2 ([23]). A graph is an interval graph if and only if it is a chordal graph with no asteroidal
triple.

We start with two basic observations on t-convex sets that will be used several times in the paper.
Recall that the set S ⊂ V (G) separates a vertex a ∈ V (G) from a vertex b ∈ V (G) if every path from a
to b passes through a vertex from S.

Lemma 2.3. A vertex v is in some tolled walk between two non-adjacent vertices x and y if and only if
N[x] − {v} does not separate v from y and N[y] − {v} does not separate v from x.

Proof. It suffices to notice that there exists a tolled walk between x and y containing v if and only if x
and y are nonadjacent and there exists a path between x and v in G− (N[y]−{v}) and a path between
v and y in G − (N[x] − {v}). �
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The following general result on t-convex sets in graphs follows from Lemma 2.3.

Proposition 2.4. Let G be a graph. A subset C of V (G) is t-convex if and only if for every x, y ∈ C and
every v ∈ V (G) − C the set N[x] − {v} separates v from y or the set N[y] − {v} separates v from x.

Proof. Let C be a t-convex set in a graph G, and let x, y ∈ C and v ∈ V (G) − C be arbitrary vertices.
Since C is t-convex there is no tolled walk between x and y that contains v. By Lemma 2.3 we derive
that N[x] − {v} separates v from y or N[y] − {v} separates v from x, as desired.

Conversely, suppose that C is not t-convex. Thus there exists a tolled walkW from x to y for some
x, y ∈ C that contains some v ∈ V (G)−C . SinceW is tolled, the subwalk ofW that lies between x and
v does not pass through N[y] − {v}. Hence N[y] − {v} does not separate v from x. By the same reason
N[x] − {v} does not separate v from y. �

The t-convex hull of a set S ⊆ V (G) is the smallest set of vertices in G that contains S and is t-convex
(alternatively, it is the intersection of all t-convex sets that contain S). As mentioned above, a vertex s
from a t-convex set S of a graph G is an extreme vertex of S if S − {s} is also a t-convex set in G. The set
of extreme vertices of V (G) will be denoted by Ext(G).

3. Interval graphs as convex geometry

In order to prove that a graphG is a convex geometrywith respect to some convexity, it is important
to know what are extreme vertices of convex sets in that convexity. This is easy in the case of
g-convexity andm-convexity, as the extreme vertices of a convex set are exactly the simplicial vertices
with respect to this set. However, this is not always the casewith t-convexity. For instance, letG be the
graph obtained from the triangle by adding two leaves, say, a and b, adjacent to two distinct vertices
of the triangle. Note that the simplicial vertices in G are both leaves a and b, and also the third vertex
x of the triangle, i.e. the unique vertex of degree 2 in G. Clearly, V (G) is a t-convex set in G, but x is
not its extreme vertex, since there is a tolled walk from a to b, which passes through x, implying
V (G) − {x} is not t-convex. Nevertheless, we can prove the following observation about extreme
vertices.

Lemma 3.1. Let C be a toll convex set of a graph G. If x is an extreme vertex in C, then x is a simplicial
vertex in C.

Proof. For the purpose of getting a contradiction, suppose that x is an extreme vertex of C that is not
simplicial in C . Then there exist two neighbors of x in C, say u and v, which are not mutually adjacent.
But then u, x, v is a tolledwalk inG. Hence C−{x} is not convex,which is the desired contradiction. �

For the proof of the main result we need several lemmas.

Lemma 3.2. Let vertices a, b and c form an asteroidal triple in a graph G. If C is the t-convex hull of the
set {a, b, c}, then C has no extreme vertices.

Proof. Since vertices a, b and c form an asteroidal triple in G, there exists a path Pca from c to a such
that none of its vertices belong to the closed neighborhood of b; also there exists a path Pab from a to
b, so that none of its vertices belong to the closed neighborhood of c. We may assume that Pca and Pab
are induced paths. Consider thewalkW from c to b, obtained by concatenating Pca with Pab. Since both
paths are induced, c is adjacent only to one vertex of Pca and to no vertices of Pab, and b is adjacent only
to one vertex of Pab and to no vertices of Pca. We deduce thatW is a tolled walk from c to b that passes
a. Clearly,W lies in the t-convex hull C of the set {a, b, c}, and so a is not an extreme vertex of C . In an
analogous way we prove that b and c are not extreme vertices of C . Let x be any vertex of C , different
from a, b and c . If x is an extreme vertex in C , then C − {x} is also a convex set, properly included
in C , and containing a, b and c. This is in a contradiction with C being the t-convex hull of {a, b, c},
thus x is not an extreme vertex in C . As x was arbitrarily chosen, we derive that C has no extreme
vertices. �
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Fig. 1. An interval graph G and its canonical representation C3, C4, C1, C2, C5 (note that C4, C3, C1, C2, C5 is another canonical
representation of G).

Fig. 2. Forbidden induced subgraphs for end-simplicial vertex y. (Note that inH2 , x1 is adjacent to all other xi; it is allowed that
n = 2, and so the smallest H2 is a triangle with two pendant vertices added.)

Let C(G) be the set of all maximal cliques in G. A canonical representation of an interval graph G is
a linear order C1, . . . , Ck of the set C(G) in which, for each vertex v of G, the set {C ∈ C(G) : v ∈ C}

occurs consecutively in the linear order. Note that every canonical representation provides an interval
representation of G by considering for each vertex v ∈ V (G), the interval Pv = {C ∈ C(G) : v ∈ C}

of the total order C1, . . . , Ck. Cliques C1 and Ck are called end-cliques of the representation. Clearly
every end-clique contains a simplicial vertex. Every interval graph admits a canonical representation
[18,22], usuallymore than one. A simplicial vertex v ofG is called end-simplicialwhenever it belongs to
an end-clique of some canonical representation of G. (Fig. 1 presents an example of an interval graph,
together with one of its canonical representations. Note that the representation implies that vertices e
and g are end-simplicial vertices of G. An alternative canonical representation C4, C3, C1, C2, C5 yields
that f is also end-simplicial in G.)

Theorem 3.3 ([19]). A simplicial vertex y of an interval graph G is end-simplicial if and only if G contains
as an induced subgraph none of the graphs in Fig. 2 with y as the designated vertex.

It follows from Theorem 3.3 that in an interval graph G every extreme vertex of the t-convex set
V (G) is end-simplicial. We now prove that the converse of this statement is also true.

Lemma 3.4. Every end-simplicial vertex of an interval graph G is an extreme vertex of the t-convex set
V (G).

Proof. Let C1, . . . , Ck be a canonical representation of G and let v1 be a simplicial vertex such that
C1 = N[v1]. Assume, in order to obtain a contradiction, that V (G) − v1 is not t-convex. Then there
exists a tolled walk T between two non-adjacent vertices x and y of G − v1 containing v1. Since x and
y are non-adjacent, we can assume 1 ≤ min{i : x ∈ Ci} ≤ max{i : x ∈ Ci} < min{i : y ∈ Ci} ≤ k;
thus any path between v1 and y contains some neighbor of x. This implies that N[x] − {v1} separates
v1 from y, contradicting Lemma 2.3. �

From the above two results we derive the following.
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Fig. 3. The case in the proof of Lemma 3.6 when H is isomorphic to H1 .

Corollary 3.5. A vertex v of an interval graph G is an extreme vertex of the t-convex set V (G) if and only
if v is end-simplicial.

Lemma 3.6. Let C1, . . . , Ck be a canonical representation of an interval graph G. If for some s < t < k
there exists x ∈ Cs − Ct such that Ct ∩ Ct+1 ⊆ N(x), then Ct contains a simplicial vertex y. Even more, if
x is end-simplicial then y is end-simplicial.

Proof. Let C1, . . . , Ck be a canonical representation of an interval graphG, and let Cs, Ct and x ∈ Cs−Ct
be as in the statement of the lemma. Since Ct is a maximal clique, there exists y ∈ Ct − Ct−1.
We claim that y is simplicial, and in order to obtain a contradiction, suppose that y ∈ Ct+1. Since
y ∈ Ct ∩ Ct+1 ⊆ N(x) and x ∉ Ct it follows that y ∈ Ct−1 which contradicts the choice of y. Hence
N[y] = Ct and y is simplicial.

Assume that x is an end-simplicial vertex, while y is not. It follows from Theorem 3.3 that G has an
induced subgraph H isomorphic either to H1 or H2 depicted in Fig. 2, where y is the designated vertex.
Note that y is an end-simplicial vertex of the graph G′, obtained from G by removing the vertices
from (∪i≥t+1 Ci) − N(x). Thus H is not an induced subgraph of G′, which means that some vertex u
of H belongs to (∪i≥t+1 Ci) − N(x). It is clear that u is not adjacent to y. On the other hand, since
Ct ∩ Ct+1 ⊆ N(x), every path in G (and thus in H) between any vertex of (∪i≥t+1 Ci) − N(x) and y (in
particular, between u and y) contains some vertex v adjacent to both y and x.

We will consider two cases: H is isomorphic to H1 or H is isomorphic to H2.
In the first case, it is clear that v = x2 and thus x2 is adjacent to x. Since x is simplicial, one of the

three graphs depicted in Fig. 3 appear as an induced subgraph in G. Observe that the graph on the left
has H1 as an induced subgraph with x as the designated vertex; the other two graphs contain H2 as
an induced subgraph with x as the designated vertex. As x is an end-simplicial vertex of G we get a
contradiction with Theorem 3.3.

When H is isomorphic to H2, we get in an analogous way that x1 or x2 is adjacent to x. Note that
here it is also possible that both x1 and x2 are adjacent to x.

First let x be adjacent to x1 and to no other vertex xi, 2 ≤ i ≤ n, ofH2. Then vertices xi, i ∈ {2, . . . , n}
and b are contained in G′, since there exists a path between any such vertex and y that has no vertex
adjacent to both x and y. This implies that the graph depicted in Fig. 4(i) is an induced subgraph of G′.
Since y is an end-simplicial vertex of G′ we get a contradiction with Theorem 3.3.

Now let x be adjacent to x1 and to another vertex xi, 2 ≤ i ≤ n, of H2. If x is adjacent to more than
one such vertex, then let xi be the vertex adjacent to x with i > 1 as big as possible. Hence the graph
depicted in Fig. 4(ii), is an induced subgraph ofG and is isomorphic toH2. This contradicts Theorem3.3,
since x is an end-simplicial vertex of G.

Finally, if x is not adjacent to x1, then there is a path between any vertex of H2 − {v} and ywith no
vertex adjacent to both x and y. This means that every vertex of H2 (also v, as v is adjacent to both x
and y) belongs to G′, which again contradicts the fact y is an end-simplicial vertex of G′. �

Two vertices u and v of a graph G are called twins if N[u] = N[v].

Theorem 3.7. A graph is a convex geometry with respect to toll convexity if and only if it is an interval
graph.

Proof. Let us assume that G is a graph which is a convex geometry with respect to toll convexity. We
start the proof by showing that G is a chordal graph, for which we use induction on the order of G. The
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Fig. 4. The case in the proof of Lemma 3.6 when H is isomorphic to H2: (i) induced subgraph of G′ , (ii) induced subgraph of G.

claim is trivially true if G has only one or two vertices. Let us assume that G has n vertices and that the
claim is true for all graphs with fewer that n vertices. Note that V (G) itself (as all its t-convex subsets)
is the convex hull of its extreme vertices. In particular, this implies that V (G) has extreme vertices,
and let x be any extreme vertex of V (G). As x is extreme, the subset V (G) − {x} is also t-convex in G,
and so the graph G − x is a convex geometry (using that any subset of V (G) − {x} is t-convex in G − x
if and only if it is t-convex in G). Thus, by induction hypothesis G − x is chordal. By Lemma 3.1, x is
a simplicial vertex in G, so G is also chordal by Theorem 2.1. Now, we claim that G has no asteroidal
triples. Indeed, if there is an asteroidal triple in G, then by Lemma 3.2, the convex hull C of the triple
has no extreme vertices. This readily implies that C is not the convex hull of its extreme vertices, which
is a contradiction with G being a convex geometry. Thus G is a chordal graph with no asteroidal triple,
and so it is an interval graph, by Theorem 2.2.

Every convex subset of an interval graph G induces an interval graph. Thus it suffices to show that
V (G) is the convex hull of its extreme vertices. We will prove that every vertex of V (G) − Ext(G)
belongs to a tolled walk between two vertices of Ext(G). Let x and y be twins. If x is an extreme vertex,
then also y ∈ Ext(G). If x ∈ V (G) − Ext(G) and x ∈ T (a, b) for a, b ∈ Ext(G), then also y ∈ T (a, b).
Hence we may assume without loss of generality that G contains no twins.

Let C1, . . . , Ck be a given canonical representation of G. Denote by I ′ = {i : there exists x ∈

Ext(G) such that Ci = N[x]}. It is clear that {1, k} ⊆ I ′. Since there are no twins and since for ev-
ery x ∈ Ext(G) there exists a unique i ∈ I ′ such that N[x] = Ci, we can write Ext(G) = {xi : i ∈ I ′}. Let
u be any vertex of V (G) − Ext(G). Let im = min{i : u ∈ Ci} and iM = max{i : u ∈ Ci}. Observe that u
is simplicial if and only if im = iM .

Let s = max{i ∈ I ′ : i ≤ im} and r = min{i ∈ I ′ : iM ≤ i}. We can assume s ≠ r , and note that
1 ≤ s ≤ im ≤ iM ≤ r ≤ k.

Assume that u is in no tolled walk between xs and xr . Then, by Lemma 2.3, we can assume without
loss of generality that N[xs]−u separates u from xr . In particular, u is not adjacent to xr , which implies
that iM < r . It follows that there exists t with iM ≤ t < r such that Ct ∩ Ct+1 ⊆ N(xs). Thus, by
Lemma 3.6, there exists an end-simplicial vertex y such that N[y] = Ct . Then t ∈ I ′ and iM ≤ t < r ,
this contradicts the fact that r = min{i ∈ I ′ : iM ≤ i}. It follows that u is in a tolled walk between xs
and xr , and the proof is complete. �

4. Some invariants arising from toll convexity

In this section we consider some standard invariants with respect to toll convexity that have been
extensively studied for other (graph) convexities. We first consider the so-called t-hull number and
toll number of a graph, and at the endwe give some remarks on the Carathéodory numberwith respect
to toll convexity.

Recall that a set S of vertices of a graph G is a geodetic (resp.monophonic) set if every vertex of G lies
in a geodetic (resp. monophonic) interval between two vertices from S. (See the survey on geodetic
sets in graphs [5].) The geodetic (monophonic) number g(G) (mn(G)) of a graph G is the minimum
cardinality of a geodetic (monophonic) set in G.

Toll interval is defined on pairs of vertices. The definition can be generalized to an arbitrary subset
S of V (G), so that TG(S) = ∪u,v∈S TG(u, v). If TG(S) = V (G), we call S a toll set of a graph G. The order
of a minimum toll set in G is called the toll number of G and is denoted by tn(G).
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Since every geodetic set is monophonic, and every monophonic set is a toll set, we have tn(G) ≤

mn(G) ≤ g(G). For any non-trivial connected graph G we obviously have 2 ≤ tn(G) ≤ n. Moreover,
tn(G) = n if and only if G is a complete graph Kn.

Asmentioned earlier the t-convex hull of a set S ⊆ V (G) is defined as the intersection of all t-convex
sets that contain S, and we will denote this set by [S]t . A set S is a t-hull set of G if its t-convex hull [S]t
coincides with V (G). The t-hull number of G, denoted by th(G), is theminimum among all cardinalities
of t-hull sets. (Compare these definitions with those of the hull set and the monophonic hull set
and corresponding hull numbers, which were defined analogously for the geodetic, respectively
monophonic convexity in graphs [21].) Given a set S ⊂ V (G) we define T k(S) as follows: T 0(S) = S
and T k+1(S) = T (T k(S)) for any k ≥ 1. Note that [S]t =


k∈N T k(S). From definitionswe immediately

infer that every toll set is a t-hull set, and hence th(G) ≤ tn(G).
Let S be a toll set of G and let x be an extreme vertex of V (G) (i.e. V (G) − {x} is convex). If x ∉ S,

then, as S is a toll set, there exist u, v ∈ S such that x ∈ TG(u, v). But then V (G) − {x} is not t-convex,
which is a contradiction with x being an extreme vertex. Hence all extreme vertices of a graph G are
contained in every toll set of G. (This holds for extreme vertices in any convexity, see e.g. [12].) In a
similar way one can show that each extreme vertex of G belongs to every t-hull set of G (see [15] for
the case of geodetic and monophonic convexities).

From the proof of Theorem 3.7 follows that the toll number (as well as the t-hull number) of an
interval graph coincideswith the number of its extreme vertices. Indeed, it is proved that every vertex,
which is not extreme (i.e. end-simplicial), lies on the toll interval between two extreme vertices. We
infer the following:

Proposition 4.1. Let G be an interval graph. Then tn(G) = th(G) = |Ext(G)|.

A caterpillar is a tree for which the set of vertices obtained by deleting all leaves induces a path,
called the spine of the caterpillar. It is well known that among trees only caterpillars are interval
graphs. By the above proposition the toll number of a caterpillar equals the cardinality of its extreme
vertices which are exactly the leaves adjacent to the end-vertices of the caterpillar’s spine.

To consider the toll number of trees that are not interval graphs we need the notion of a support
vertex in a tree, which is defined as a vertex, adjacent to at least one leaf of the tree.

Theorem 4.2. Let G be a tree not isomorphic to a caterpillar. We have,

(i) if G has at least two support vertices of degree 2 then tn(G) = 2, otherwise tn(G) = 3;
(ii) th(G) = 2.

Proof. (i) Let G be a tree not isomorphic to a caterpillar. Suppose that there exist two support vertices
u and v in G of degree 2, and let a and b be the two leaves such that av, bu ∈ E(T ). Clearly every vertex
of V (G)−{a, b} lies on some tolled walk between a and b, hence tn(G) ≤ 2, and since G is a nontrivial
graph, tn(G) = 2.

Now consider the case when G has at most one support vertex of degree 2. First, we claim that
tn(G) > 2. Suppose to the contrary that S = {ℓ1, ℓ2} is a toll set of G, and assume that one of ℓ1 and ℓ2,
say ℓ1, is not a leaf. Then for the neighbor v of ℓ1, for which the v, ℓ2-path contains ℓ1, we have that
N[ℓ1]−{v} separates v from ℓ2. By Lemma 2.3 this implies that v does not lie on a tolledwalk between
ℓ1 and ℓ2, a contradiction. Hence we derive that both ℓ1 and ℓ2 are leaves. It is also clear that ℓ1 and
ℓ2 cannot be adjacent to the same support vertex (this would only be possible if T was isomorphic to
a path on three vertices, which is not the case). We may assume without loss of generality that the
degree of the support vertex x of ℓ1 is at least 3. Let y be a neighbor of x that does not lie on the shortest
path between ℓ1 and ℓ2. Since N[ℓ1] separates y from ℓ2, Lemma 2.3 implies that y does not lie on a
tolled walk between ℓ1 and ℓ2, again a contradiction, which proves the claim.

To conclude the proof we will show that tn(G) ≤ 3. Note that G is a chordal graph that is not an
interval graph, hence it has an asteroidal triple by Theorem2.2.Wewill show that the set S = {a, b, c},
consisting of vertices that form an asteroidal triple in G, is a toll set of G. Let v ∈ V (G)−S. If N[a]−{v}

separates v from b and c , then v ∈ T (b, c). Similarly, ifN[b]−{v} separates v from a and c orN[c]−{v}

separates v from a and b, then v ∈ T (a, c) or v ∈ T (a, b), respectively. In the still remaining case v lies
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Fig. 5. A chordal graph with Carathéodory number equal to 3.

on a tolledwalk between any two vertices in S. Combining tn(T ) > 2 and S is a toll set with cardinality
3, we get tn(T ) = 3.

(ii) Let G be a tree not isomorphic to a caterpillar. Then, as above, we find that G has an asteroidal
triple a, b, c . We claim that S = {a, b} is a t-hull set of G. In the proof of Lemma 3.2, we showed that
c ∈ T (a, b). Thus c lies in the t-convex hull of {a, b}. Moreover, from the proof of Theorem 4.2(i) it
follows that the t-convex hull of {a, b, c} is V (G), and therefore th(T ) = 2. �

We propose a further study of these two invariants in general graphs. In particular, we pose the
question, in which graphs G, |Ext(G)| = tn(G), and when is |Ext(G)| = th(G). Note that |Ext(G)| is a
lower bound for both invariants as is number 2.

Next we focus on the invariant that arises from the classical theorem in geometry, due to
Carathéodory [8]. The Carathéodory number c is the smallest integer (if it exists) such that for any
subset S of V (G) and any vertex p ∈ [S]t , there exists F ⊆ S with |F | ≤ c and p ∈ [F ]t . For the mono-
phonic convexity it was first proved that this number is 2 in chordal graphs [16], and then this result
was extended to all connected graphs, except complete graphs [14]. For the case of toll convexity we
show that this is not the case and present an example of a chordal graph with Carathéodory number
bigger than 2.

First let us recall a general property of Carathéodory number,which holds in any interval-convexity
space. (Note that the toll convexity is an instance of an interval-convexity.) It uses a so-called
redundant set A ⊆ V (G), which is defined as a nonempty set with the following property (we use
the t-hull here, although it is applicable for the convex hull in any convexity):

[A]t =


a∈A

[A − a]t .

The following connection between Carathéodory number and redundant sets was proved in [14].

Proposition 4.3. In any convexity space, the Carathéodory number is the smallest integer c such that
every (c + 1)-element set is redundant.

Consider the graph G from Fig. 5, and its vertices a, b, c. Note that [a, c]t = {a, c, x}, [b, c]t =

{b, c, x} and [a, b]t = V (G)−{y, c}. On the other hand [a, b, c]t contains also y, hence the set {a, b, c}
is not redundant. This implies that the Carathéodory number of this graph is at least 3 (it is easy to see
that is in fact equal to 3).

Another two graph convexity invariants, which arise from classical convexity theorems are the
Radon number and the Helly number. For instance in the monophonic convexity context they were
considered by Duchet [14]. We leave the study of these and other known invariants, set in the context
of toll convexity, for future work.

5. Toll convex sets in product graphs

In this section we study the structure of t-convex sets in some standard graph products. In fact,
among the four standard graph products we consider all, except the direct product.

Recall that for all of the standard graph products, the vertex set of the product of graphs G and H is
equal to V (G) × V (H), In the lexicographic product G ◦ H (also denoted by G[H]), vertices (g1, h1) and
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(g2, h2) are adjacent if either g1g2 ∈ E(G) or (g1 = g2 and h1h2 ∈ E(H)). In the strong product G � H
of graphs G and H vertices (g1, h1) and (g2, h2) are adjacent whenever (g1g2 ∈ E(G) and h1 = h2) or
(g1 = g2 and h1h2 ∈ E(H)) or (g1g2 ∈ E(G) and h1h2 ∈ E(H)). Finally, in the Cartesian product G�H
of graphs G and H two vertices (g1, h1) and (g2, h2) are adjacent when (g1g2 ∈ E(G) and h1 = h2) or
(g1 = g2 and h1h2 ∈ E(H)). Hence in general we have E(G�H) ⊆ E(G � H) ⊆ E(G ◦ H).

Let G and H be graphs and ∗ be one of the three graph products under consideration. For a vertex
h ∈ V (H), we call the set Gh

= {(g, h) ∈ V (G ∗ H) : g ∈ V (G)} a G-layer of G ∗ H . By abuse of
notation we will also consider Gh as the corresponding induced subgraph. Clearly Gh is isomorphic to
G. For g ∈ V (G), the H-layer gH is defined as gH = {(g, h) ∈ V (G ∗ H) : h ∈ V (H)}. We will again also
consider gH as an induced subgraph and note that it is isomorphic to H . A map pG : V (G ∗H) → V (G),
pG(g, h) = g is the projection onto G and pH : V (G ∗ H) → V (H), pH(g, h) = h the projection onto H .
We say that G ∗ H is nontrivial if both factors are graphs on at least two vertices.

The lexicographic product G ◦ H is associative but not commutative. The one-vertex graph is the
unit for the operation and nontrivial graph G ◦ H is connected if and only if G is connected. For more
fundamental properties of the lexicographic product see [20]. In [3] all nontrivial g-convex and m-
convex subsets in lexicographic product of graphs have been characterized. We continue this line of
research by studying t-convexity in lexicographic products.

We need yet another definition of a property of subsets of V (G ◦ H), obtained in a similar, yet
modified fashion, as in [3]. A setY , whereY ⊂ V (G◦H), is said to benon-extreme complete if gH∩Y =

gH
holds for all non-extreme vertices g of pG(Y ).

Theorem 5.1. Let G ◦ H be a nontrivial, connected lexicographic product. A proper subset Y of V (G ◦ H),
which does not induce a complete graph, is t-convex if and only if the following conditions hold:

(a) pG(Y ) is t-convex in G,
(b) Y is non-extreme complete, and
(c) H is complete.

Proof. Suppose first that (a), (b) and (c) hold for a proper subset Y of V (G ◦ H). Since H is complete,
any two vertices (g, h1) and (g, h2) from Y are adjacent and thus form a t-convex subset of Y. Consider
non adjacent vertices (g1, h1), (g2, h2) ∈ Y . Let W be a tolled walk between (g1, h1) and (g2, h2) in
G ◦ H . Then pG(W ) is a tolled walk between g1 and g2 in G. Let (g, h) be an arbitrary inner vertex of
W . We would like to see that (g, h) ∈ Y . Since pG(Y ) is t-convex, gH ∩ Y ≠ ∅. Moreover, gH ∩ Y =

gH ,
since (g, h) is an inner vertex of a tolled walkW and Y is non-extreme complete. Therefore (g, h) ∈ Y
and hence W ⊆ Y . We conclude that Y is t-convex.

Conversely, let Y be a t-convex subset of G ◦ H . Since Y does not induce a complete graph (by
theorem’s assumption), Y contains three vertices that induce a path, say P = (g1, h1)(g2, h2)(g3, h3).
First we will show that g1 ≠ g3.

Assume g1 = g3. Since dY ((g1, h1), (g3, h3)) = 2, H is not complete in this case. Let g be an arbi-
trary neighbor of g1 in G. Then gH is a subset of TG◦H((g1, h1), (g3, h3)) and hence, since Y is t-convex,
gH ⊆ Y . Also, for any neighbor x of g ∈ NG(g1), the layer xH is a subset of Y . SinceG◦H is connected and
thus G is connected, we can prove by using induction on the distance from g1 in G that Y = V (G ◦ H),
which is a contradiction with theorem’s assumption.

We may thus assume that g1 ≠ g3. Since P is induced and g2 is a common neighbor of g1 and g3
in G, we have dG(g1, g3) = 2. In particular, G is not complete. Clearly g2H is included in TG◦H((g1, h1),
(g3, h3)) and thus g2H ⊆ Y . If H is not complete there exists an induced path of length 2 in g2H and we
can continue as above by concluding that Y = V (G ◦ H), a contradiction. Thus H is complete.

To prove that Y is non-extreme complete, consider a non-extreme vertex g of pG(Y ). As g is non-
extreme in pG(Y ), there exists a tolled walk W in pG(Y ) between g ′ and g ′′ that contains g , and there
exist vertices (g ′, h′), (g, h), (g ′′, h′′) that belong to Y for some h, h′, h′′

∈ V (H). Clearly, a walk W ′

from (g ′, h′) to (g ′′, h′′) such that the first coordinates of vertices from W ′ coincide with W in G is a
tolled walk in G ◦ H . In particular, for any y ∈ V (H), (g, y) can lie in such W ′. Hence (g, y) ∈ Y for all
y ∈ V (H) and so Y is non-extreme complete.

Finally, if pG(Y ) would not be t-convex in G, Y would clearly not be t-convex. �
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Next we focus on the strong product of graphs G and H . The commutativity of G � H follows
from symmetry in the definition of adjacency. All g-convex sets among strong product of graphs have
been recently characterized in [27], however as one can see from the next theorem, the result on the
t-convexity does not generalize the result on g-convexity as in the case of lexicographic product. Since
G ◦ Kn is isomorphic to G � Kn, Theorem 5.1 already gives a hint for the strong product.

Recall that a vertex of a graph G is universal if it is adjacent to all other vertices of G.

Theorem 5.2. Let G � H be a nontrivial, connected strong product of graphs G and H, and let UG and UH
be the sets of all universal vertices of G and H, respectively. A proper subset Y of V (G � H), which does
not induce a complete graph, is t-convex if and only if

(i) pG(Y ) is t-convex in G, Y is non-extreme complete and H is complete; or
(ii) both UG and UH are nonempty proper subsets of V (G) and V (H), respectively, Y = (UG × V (H)) ∪

(V (G)×UH) and every component of the graphs induced by V (G)−UG and by V (H)−UH is isomorphic
to a complete graph.

Proof. If (i) is true for Y , thenG�H is isomorphic toG◦H and Y is t-convex by Theorem 5.1. So assume
that (ii) is fulfilled. Let (g, h) and (g ′, h′) be arbitrary nonadjacent vertices of Y . Note that both must
be either in UG × (V (H) − UH) or in (V (G) − UG) × UH . Since both possibilities are symmetric we can
assume that (g, h), (g ′, h′) ∈ UG × (V (H) − UH). In this case we have that h ≠ h′ and hh′

∉ E(H).
If there exists a vertex (g ′′, h′′) from V (G � H) − Y which is adjacent to both (g, h) and (g ′, h′), then
hh′′, h′h′′

∈ E(H), and h, h′, h′′ are distinct vertices that belong to the same component of the graph
induced by V (H) − UH , which is not possible by assumption since hh′

∉ E(H). Hence every vertex
(g ′′, h′′) from V (G � H) − Y is adjacent to at most one of (g, h) and (g ′, h′). If (g ′′, h′′) is adjacent to
(g, h), then N[(g, h)] − {(g ′′, h′′)} separates (g ′′, h′′) from (g ′, h′) and if (g ′′, h′′) is adjacent to (g ′, h′),
then N[(g ′, h′)] − {(g ′′, h′′)} separates (g ′′, h′′) from (g, h). If (g ′′, h′′) is adjacent to none of (g, h)
and (g ′, h′), then h, h′, h′′ lie in different components C, C ′, C ′′, respectively, of the graph induced by
V (H) − UH . Note that

N[(g, h)] − {(g ′′, h′′)} = N[(g, h)] = V (G) × UH ∪ V (G) × V (C).

Therefore G � H −N[(g, h)] is not connected and it consists of components induced by V (G) × V (Ci),
where Ci is a component of the graph induced by V (H) − UH . Thus N[(g, h)] − {(g ′′, h′′)} separates
(g ′′, h′′) from (g ′, h′) (and by symmetric argumentation alsoN[(g ′, h′)]−{(g ′′, h′′)} separates (g ′′, h′′)
from (g, h)). Hence Y is t-convex by Proposition 2.4.

Conversely let Y be a proper t-convex subset of V (G�H) which does not induce a complete graph.
Strong product of two complete graphs is complete, henceG andH are not both complete. If one factor,
sayH , is complete, then (i) follows by Theorem5.1. So let us assume that both factors are not complete.
There exist at least three vertices in Y , since Y does not induce a complete graph. Let (g, h), (g ′, h′) and
(g ′′, h′′) be these vertices and in addition, we may assume that (g, h) and (g ′′, h′′) are not adjacent,
but have (g ′, h′) as their common neighbor. We split the remaining part of the proof into three cases,
in which we omit two symmetric cases due to commutativity.
Case 1: g = g ′′ and dH(h, h′′) = 2.

If there exists x ∈ V (G) which is at distance 2 from g with y as a common neighbor of g and x, then
(g, h), (y, h), (x, h), (x, h′), (x, h′′), (y, h′′), (g, h′′) as well as (g, h), (y, h′), (g, h′′) and (g, h), (g, h′),
(g, h′′) are tolled walks, see Fig. 6. Hence {g, y, x} × {h, h′, h′′

} ⊆ Y and we call this the A-argument
for (g, h) and (g, h′′). The product G � H is connected, which yields that both G and H are connected.
If we apply A-argument for any (w, h) and (w, h′′) already in Y , we get V (G) × {h, h′, h′′

} ⊆ Y . Hence
Gh,Gh′

,Gh′′

⊆ Y . Nowwe can repeat the process forH , since (g, h), (y, h), (x, h) ∈ Y and dG(g, x) = 2.
As G is connected and is not complete every vertex of V (G) lies on an induced path of length two.
Therefore, by repeating this process for every such path, we derive that Y = V (G�H), a contradiction
with the assumption.

Thus there is no vertex in G at the distance 2 to g , which yields that g ∈ UG. Moreover there
are at least two nonadjacent vertices a and b in V (G) − UG, since G is not complete. Clearly (g, h),
(w, h′), (g, h′′) is a tolled walk for every w ∈ V (G) and we have that Gh′

⊂ Y . But then (a, h′), (b, h′)
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Fig. 6. Tolled walks for A-argument. (Square vertices are in t-convex set and black vertices form a tolled walk between them.)

Fig. 7. Tolled walks from Case 2 and Case 3. (Square vertices are in t-convex set and black vertices form a tolled walk between
them.)

∈ Y and dG(a, b) = 2. By repeating A-argument for (a, h′) and (b, h′) we get the same contradiction
as above if there exists any vertex in H at distance 2 to h′. Therefore h′

∈ UH and gH ⊂ Y . Also any
common neighbor z of h and h′′ in H must be a universal vertex and Gz

⊂ Y as well as any common
neighbor t of a and b in Gmust be a universal vertex and tH ⊂ Y . With this we have

(UG × V (H)) ∪ (V (G) × UH) ⊆ Y .

Suppose, in order to get a contradiction, that there exists a component C of the graph induced by
V (H) − UH which is not complete. Let h1, h2, h3 ∈ V (C) where h1h2, h2h3 ∈ E(C) and h1h3 ∉ E(C).
This yields a tolled walk (g, h1), (w, h2), (g, h3) for every w ∈ V (G) and so the whole layer Gh2 is
contained in Y . Since h2 ∉ UH there exists a vertex h4 ∈ V (H) with dH(h2, h4) = 2 and we can
use A-argument for any pair (g1, h2) and (g2, h2), where g1 and g2 are any nonadjacent vertices from
V (G) − UG (note that such vertices exist since G is not complete). After using A-argument for all pairs
of such vertices in V (G) − UG we have that Gh4 is contained in Y . Repeating this process for all ver-
tices in H at distance 2 from h2 and at distance 2 from h4 ∈ V (H), we obtain a contradiction with
the assumption that Y ≠ V (G � H). We get the same contradiction by symmetry of all arguments if
there exists such a component in the graph induced by V (G)−UG. Therefore all components in graphs
induced by V (G) − UG and V (H) − UH must be isomorphic to complete graphs.

To finish the proof of Case 1 suppose, in order to get a contradiction, that there exists (p, q) ∈ Y
where p and q are not universal vertices of G and H , respectively. Suppose that p′

∈ V (G) is not ad-
jacent to p in G and q′

∈ V (H) is not adjacent to q in H . Since (p, q), (g, q), (p′, q), (p′, h′), (g, q′) is
a tolled walk, also (p′, q) ∈ Y and we can apply A-argument for (p, q) and (p′, q) since q′

∈ V (H)
is not adjacent to q. This again results in Y = V (G � H) which is not possible by assumption. Hence
Y = (UG × V (H)) ∪ (V (G) × UH) and (ii) follows.
Case 2: gg ′′

∈ E(G) and dH(h, h′′) = 2.
Clearly (g, h′), (g ′′, h′) ∈ Y . If there exists a neighbor a of g which is nonadjacent to g ′′, then

(g ′′, h′′), (g, h′′), (a, h′′), (a, h′), (g, h) is a tolled walk, see the left graph in Fig. 7. We can start to
use A-argument on vertices (a, h′′) and (g ′′, h′′) as in Case 1, which finally results in Y = V (G � H)
which is not possible. If there exists a neighbor b of g ′′ which is nonadjacent to g , then (g ′′, h′′), (b, h′),
(b, h), (g ′′, h), (g, h) is a tolled walk. We can again start to use A-argument on vertices (b, h) and
(g, h) which finally results in the same contradiction. Hence NG[g] = NG[g ′′

]. If g is not a univer-
sal vertex, then there exists x ∈ V (G) with dG(g, x) = 2 and y is a common neighbor of g and
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x. Note that also g ′′ is not adjacent to x since NG[g] = NG[g ′′
]. A walk (g, h), (y, h), (x, h), (x, h′),

(x, h′′), (y, h′′), (g ′′, h′′) is tolled, see the second to the left graph of Fig. 7, and (x, h), (x, h′), (x, h′′) ∈

Y . Thuswe can start withA-argument on (x, h) and (x, h′′), which yields the same contradiction again.
Thus g, g ′′

∈ UG and consequently Gh′

⊂ Y . Since G is not complete there exists an induced path
(u, h′)(v, h′)(w, h′) and we have symmetric version of Case 1 for these three vertices.
Case 3: dG(g, g ′′) = 2 = dH(h, h′′).

Walks (g, h), (g ′, h), (g ′′, h), (g ′′, h′), (g ′′, h′′) and (g, h), (g, h′), (g, h′′), (g ′, h′′), (g ′′, h′′) are
tolled, see the two graphs on right of Fig. 7. Thus we see that {g, g ′, g ′′

} × {h, h′, h′′
} ⊆ Y . We can

apply A-argument for (g, h) and (g, h′′) since dG(g, g ′′) = 2. By repeating A-argument for any other
pair that occurs as in Case 1we endwith Y = V (G�H)which gives a final contradiction and completes
the proof. �

As the strong product, the Cartesian product operation is also commutative and associative,
see [20].

Theorem 5.3. Let G�H be a nontrivial, connected Cartesian product. A proper subset Y of V (G�H)which
does not induce a complete graph is t-convex if and only if Y = V (G1) × V (H1) where one factor, say H1,
equals H, which is a complete graph, and G1 is isomorphic to Pk, k ≥ 2, where every inner vertex of Pk has
degree 2 in G.

Proof. Let Y be a proper t-convex subset of V (G�H), which does not induce a complete graph. If
Y ≠ V (G1�H1) for some subgraphs G1 and H1 of G and H , respectively, then there exists (g, h) ∉ Y
such that (g, h′), (g ′, h) ∈ Y for some h′

∈ V (H) − {h} and g ′
∈ V (G) − {g}. Let P be a shortest

(g, h), (g ′, h)-path in Gh and Q be a shortest (g, h), (g, h′)-path in gH . Concatenation of P and Q gives
a shortest (g, h′), (g ′, h)-path in G�H , which is also a tolled walk, a contradiction with t-convexity of
Y . Hence Y = V (G1�H1).

Suppose next that |V (G1)| = 1. Since Y induces a non-complete graph, we have |V (H1)| ≥ 3
and at least two vertices of V (H1) are nonadjacent. Suppose that h, h′, h′′

∈ V (H1), h and h′′ are
nonadjacent and h′ is their common neighbor. For a neighbor g ′ of g ∈ V (G) is (g, h), (g ′, h), (g ′, h′),
(g ′, h′′), (g, h′′) a tolled walk in G�H which starts and ends in Y , but is not contained in Y , see the left
graph of Fig. 8. This is a contradiction, which implies that |V (G1)| > 1 and by commutativity of the
Cartesian product also |V (H1)| > 1.

Suppose now that V (G1) ≠ V (G) and V (H1) ≠ V (H). We may choose the notation in such a way,
that g has a neighbor g ′′ outside of V (G1) and h a neighbor h′′ outside of V (H1). Let gg ′

∈ E(G1) and
hh′

∈ E(H1). If h′h′′
∈ E(H), then (g ′, h), (g ′, h′′), (g, h′′), (g, h′) is a tolled walk violating t-convexity

of Y , see the middle graph of Fig. 8. Similarly, if h′h′′
∉ E(H), then

(g ′, h), (g ′, h′′), (g, h′′), (g ′′, h′′), (g ′′, h), (g ′′, h′), (g, h′)

is a tolled walk contradicting t-convexity of Y , see the right graph of Fig. 8. Hence the set of vertices
of one factor, say V (H1), equals V (H), and consequently V (G1) is a proper subset of V (G) by the
assumption. Also if there exist h, h′′

∈ V (H) which are not adjacent (and have h′ as a common
neighbor) and gg ′

∈ E(G) where g ∈ V (G1) and g ′
∈ V (G − G1), then the tolled walk

(g, h), (g ′, h), (g ′, h′), (g ′, h′′), (g, h′′)

violates t-convexity of Y , see the left graph of Fig. 8. Therefore, H must be a complete graph.
If G1 is not a path, then it is a cycle or there exists a vertex of G1 with at least three neighbors in

G1. First, suppose G1 is isomorphic to Ck for k ≥ 3, and let v ∈ V (G1) be a vertex with a neighbor
u in G − G1. Let x and y be neighbors of v on G1. If x and y are nonadjacent with u, then the walk
W : (x, h), (v, h), (u, h), (u, h′), (v, h′), (y, h′) is a tolled walk which violates t-convexity of Y for any
hh′

∈ E(H), see the upper left graph of Fig. 9. If x or y are adjacent to u, then we shorten W for (v, h)
or (v, h′), respectively, and still get the contradiction with t-convexity of Y .

If there exists v ∈ V (G1) with degG1(v) ≥ 3, then let u, x, y be the neighbors of v in G1. We can
assume without loss of generality that either v has a neighbor z ∉ V (G1) or v is the closest to a vertex
w outside G1 among all vertices in G1 with more than three neighbors from G1. In addition we may
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Fig. 8. Square vertices are in t-convex set and black vertices form a tolled walk between them.

Fig. 9. Square vertices are in t-convex set and black vertices form a tolled walk between them.

also choose the notation so that the shortest v, w-path P contains u. First, let vz ∈ E(G) for z ∉ V (G1).
The walkW : (y, h), (v, h), (z, h), (z, h′), (v, h′), (x, h′) is a tolled walk contradicting the t-convexity
of Y whenever y and x are not adjacent to z, see the upper right graph of Fig. 9. If x or y are adjacent
to z, then we shortenW for (v, h′) or (v, h), respectively, and get the same contradiction.

In the second case we let the walk W start with (x, h), (v, h), (u, h), and then continue along the
vertices of P in the layer Gh to reach (w, h), then move to (w, h′), and follow P back in the layer Gh′

to
(u, h′), and end with (v, h′), (y, h′), see the lower graph of Fig. 9. Note that, since P is a shortest path,
x and y can be adjacent (in addition to v) only to u and to the neighbor t ≠ v of u on P . If none of these
edges appears, thenW is a tolled walk (by the choice of v) that contradicts t-convexity of Y whenever
hh′

∈ E(G). If some of the pairs xu, xt, yu, yt form edges in G, then we shorten W in a similar way as
in the above cases and again obtain a contradiction. We derive that G1 is isomorphic to Pk.

If there exists an inner vertex v ∈ V (Pk)with degG(v) ≥ 3, then let x, y, u be neighbors of v, where
x, y ∈ Pk and u ∉ Pk. A walk

W : (x, h), (v, h), (u, h), (u, h′), (v, h′), (y, h′),

hh′
∈ E(H), is again a tolled walk whenever y and x are not adjacent to u, see the upper left graph

of Fig. 8. Again we can shorten this walk if ux or uy are edges of G and obtain a tolled walk, which
provides the final contradiction with t-convexity of Y for the proof of this implication.

For the converse suppose that Y = V (G1�H) where H ∼= Kn, G1 is isomorphic to Pk and every
inner vertex of G1 has degree 2 in G. Let P = v1, . . . , vk. Clearly TG�H((vi, h), (vi, h′)) ⊆ Y for any
h, h′

∈ V (H) and every i ∈ {1, . . . , k} since H is complete. So let i < j and let (u, v) be an arbitrary
vertex of V (G�H)−Y . If u is closer to vi than to vj in G, then N[(vi, h)]−{(u, v)} separates (u, v) from
(vj, h′). Otherwise, if u is closer to vj than to vi in G, then N[(vj, h′)] − {(u, v)} separates (u, v) from
(vi, h). Hence Y is t-convex by Proposition 2.4. �
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Note that a proper non-complete t-convex set of vertices of G�H does not contain any extreme
vertices with respect to t-convexity.

6. Concluding remarks

In this paper we introduce a new type of interval-convexity in graphs that we call toll convexity.
The main result of the paper is that a graph is a convex geometry with respect to toll convexity if and
only if it is an interval graph. Thus a new convexity type characterization of the well-known class of
interval graphs is presented. In addition, we prove that the toll number of every tree different than
caterpillar equals 2 or 3, and that the toll hull number of every tree different than caterpillar equals 2.
We also present an example of a non-complete graph showing that the Carathéodory number can be
greater than 2, which differs from the situation in geodesic and monophonic convexity. It would be
interesting to investigate other convexity type invariants with respect to the new convexity, such
as the convexity number, the Radon number, and the Helly number. In addition, the concepts of
Carathéodory number, the toll number, and the toll hull number should be further explored.

At the end of the paper we characterize toll convex sets of several products of graphs, i.e. the
lexicographic, the strong, and the Cartesian product. We conclude the paper with the open problem
of characterizing proper toll convex subsets in the direct product of two graphs.
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