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Abstract

A feasible family of paths in a connected graphG is a family that contains at least one path between
any pair of vertices inG. Any feasible path family defines a convexity onG. Well-known instances
are: the geodesics, the induced paths, and all paths. We propose a more general approach for such
‘path properties’. We survey a number of results from this perspective, and present a number of new
results. We focus on the behaviour of such convexities on the Cartesian product of graphs and on the
classical convexity invariants, such as the Carathéodory, Helly and Radon numbers in relation with
graph invariants, such as the clique number and other graph properties.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In [13], the notion of transit function is introduced as a means to study how to move
around in discrete structures. Basically, it is a function satisfying three simple axioms on a
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setV, which is provided with a structure�. Prime examples of such a structure are: a set of
edgesE, so that we are considering a graphG= (V ,E), or a partial ordering� , so that we
are considering a partially ordered set(V , �). Then the idea is to study transit functions
that have additional properties defined in terms of the structure�. For instance, the transit
function may be defined in terms of paths in the graphG = (V ,E). Such transit functions
are calledpath transit functionson G in [13]. A prime example is the interval function
I : V × V → 2V of a connected graphG, whereI (u, v) is the set of the vertices lying
on shortest paths betweenu andv. Other examples are the induced-path transit function,
and the all-paths transit function. Any transit function on(V ,�) defines a natural convex-
ity on V. The convexities associated with the three mentioned path transit functions have
already been studied extensively. Some relevant references are: for the geodesic convexity
[6,10,12,15,21], for the induced-path convexity[5,14], and for the all-paths convexity (or
the coarse convexity)[2,4,17]. In [13], a wide variety of prototype problems to be studied
for transit functions and their convexities is presented. In this paper, we focus on one such
type of problems.
Paths transit functions are the topic of this paper, in particular the above-mentioned

three examples and transit functions constructed from these. By choosing the perspective of
transit functions, we propose a unifying approach for the study of such path properties. This
approach suggests also various new questions for future research. We study the behaviour
of these functions under Cartesian products of graphs, and we study the various invariants
of the associated convexities, such as the Carathéodory, Helly, and Radon numbers. Along
the way, we survey some results in the literature related to these topics.

2. Preliminaries

In this section,wepresent someof the basic ideas from[13] on transit functions.Through-
out the paperG= (V ,E) is a connected, simple, loopless graph. Atransit functiononG is
a functionR : V × V → 2V satisfying the following three axioms:

(t1) u ∈ R(u, v) for all u andv in V,
(t2) R(u, v) = R(v, u) for all u andv in V,
(t3) R(u, u) = {u}.
Axioms of the type (t1)–(t3), which are in terms ofR only, are calledtransit axioms.

LetRandSbe transit functions on the graphG. The join of RandS is the transit function
R ∨ S defined by(R ∨ S)(u, v) = R(u, v) ∪ S(u, v). Themeetof R andS is the transit
functionR ∧ S defined by(R ∧ S)(u, v) = R(u, v) ∩ S(u, v). With this join and meet the
family of all transit functions onG is a lattice. We denote this lattice byLG. Note that the
structure ofG is not relevant forLG. But our interest is in substructures ofLG that reflect
the structure ofG. The partial ordering� of this lattice can simply be described byR�S

if and only ifR(u, v) ⊆ S(u, v), for all u, v in V. The universal lower bound of this lattice
is thediscrete transit function0 defined by 0(u, u)={u}, for all u inV, and 0(u, v)={u, v},
for all distinctuandv inV. The universal upper bound is thetrivial transit function1 defined
by 1(u, u) = {u}, for all u in V, and 1(u, v) = V , for all distinctu andv in V.
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A subsetWof V isR-convexif R(u, v) ⊆ W , for all u, v inW. The familyCR of all R-
convex sets inV is an abstract convexity: it is closed under intersections and nested unions,
and both∅ andV areR-convex. Note that, in the finite case, the condition on nested unions
can be deleted. The convexityC0 of the discrete transit function 0 is thediscrete convexity:
every subset is convex. The convexityC1 of the trivial transit function 1 is thetrivial
convexity. Note that we assume that singletons are always convex. This is no real restriction
of the notion of a convexity, because if we add all missing singletons to a convexity, then it
remains a convexity. Thus the empty set∅, the singletons{u} and the whole setV are the
trivial convex setsof a convexity. The smallestR-convex subset containing a subsetW of
V is denoted by〈W 〉R and is called theR-convex hullofW. Note that two different transit
functionsR andSmay give rise to the same convexity, that is,CR = CS . An R-convex
subgraph Hof a graphG is a subgraph induced by anR-convex set inG. Since no confusion
can arise, we will not always distinguish between a convex subset and the convex subgraph
induced by this set. Convexities defined by a transit function are called interval convexities,
or interval spaces in e.g.[1,21]. For a detailed account on abstract convexities, see, for
example[21].
Let � be a property of paths inG, for instance the property of being ageodesic, i.e. a

shortest path. A�-path is a path having property�. Formally, we take apath property
� to be a subset of the set of all paths inG. Thus, ifP is a�-path, then we may denote
that also asP ∈ �. Let u andv be vertices ofG. Then�(u, v) denotes the subset of all
u, v-paths in�. We will only considerfeasiblepath properties, that is, path properties�
such that�(u, v) �= ∅, for all u, v inV. So all path properties in the sequel are presumed to
be feasible without mention. The�-path transit function, or�-path functionfor short, on
G is the transit functionR� defined by

R�(u, v) = {x ∈ V | x is on some�-path inG}.
Note that the subgraph induced byR�(u, v) is a connected subgraph ofG. If no confusion

arises, we call a�-path transit function a path transit function. The convexityCR� will also
be denoted asC�. If R�1 andR�2 are two path transit functions, thenR�1 ∧ R�2 need
not be a path transit function. For example, if�1 = ‘shortest’ and�2 = ‘longest’, then
R�1 ∧R�2 usually will not be a path transit function. However,R�1 ∨R�2 is always a path
transit function, namely of the path property� = �1 ∪ �2. Hence, the family of the path
transit functions onG is a join semi-lattice ofLG, denoted byLp(G). Clearly, theall-paths
transit functiononG defined by

AG(u, v) = {x ∈ V | x lies in someu, v-path inG},
is a universal upper bound ofLp(G).

3. The lattice of convexities

In this section,we study the relation between the lattice of transit functions on a connected
graphG = (V ,E) and the lattice of associated convexities.
LetLG be the family ofR-convexitiesCR onV with R in LG. ForR andS in LG, we

defineCR ∧ CS = CR ∩ CS andCR ∨ CS = {U ∩ W |U ∈ CR,W ∈ CS}. ThenLG is a
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lattice with joinCR ∨CS and meetCR ∧CS . The partial order� of this lattice is defined
byC1�C2 if C1 ⊆ C2. Note that, for any two transit functionsRandSonG, we have

if R�S thenCS�CR.

The relation between meets and joins in the latticesLG andLG is given in Theorem 1.
Note that the structure ofG does not play a role in this result. But it may when we consider
subposets of the lattice.

Theorem 1. LetRandSbe transit functions ona connectedgraphG.ThenCR∧CS=CR∨S
andCR ∨ CS ⊆ CR∧S .

Proof. First we prove the formula for the meetCR ∧ CS :

W ∈ CR∨S ⇔ (R ∨ S)(u, v) ⊆ W for all u, v ∈ W

⇔R(u, v) ∪ S(u, v) ⊆ W for all u, v ∈ W

⇔R(u, v) ⊆ W andS(u, v) ⊆ W for all u, v ∈ W

⇔W ∈ CR andW ∈ CS

⇔W ∈ CR ∩ CS = CR ∧ CS.

Next, we prove the formula for the joinCR ∨ CS . Choose any subsetW ∈ CR ∨ CS .
By definition, there exist subsetsX ∈ CR andY ∈ CS such thatW =X ∩ Y . Now, for any
u, v ∈ W = X ∩ Y , we haveu, v ∈ X as well asu, v ∈ Y , so thatR(u, v) ⊆ X as well
asS(u, v) ⊆ Y . This implies thatR(u, v) ∧ S(u, v) = R(u, v) ∩ S(u, v) ⊆ X ∩ Y = W ,
whenceW ∈ CR∧S . �

The following example shows that we may have proper inclusion in the case of the join
in Theorem 1.We take the complete graphK5 on the vertex set{1,2,3,4,5}.We define the
transit functionsRandSas follows:R(u, u) = S(u, u) = {u}, for all verticesu; R(1,2) =
{1,2,3},R(2,3)={2,3,4}; S(1,2)={1,2,5}, S(2,5)={2,4,5}; andR(u, v)=S(u, v)=
{u, v} for any other pair of distinct verticesu andv. Then, we have〈{1,2}〉R = {1,2,3,4},
〈{1,2}〉S ={1,2,4,5}. Hence, we have〈{1,2}〉CR∨CS

=〈{1,2}〉R∩〈{1,2}〉S ={1,2,3,4}∩
{1,2,4,5} = {1,2,4}. On the other hand, we have(R ∧ S)(1,2) = R(1,2) ∩ S(1,2) =
{1,2,3} ∩ {1,2,5} = {1,2}, so that〈{1,2}〉R∧S = {1,2}. Note that, since the graph was
complete, the transit functions are trivially path transit functions.

4. Examples of path properties

In this section, we collect a number of specific path transit functions and list some basic
facts. LetG = (V ,E) be a connected graph. If no confusion arises, then we may writeF
instead ofFG, for any functionFG onG.

4.1. The geodesic transit function

Let� be the family of all geodesics inG, and letdbe the distance function ofG. Then the
geodesic transit functionR� of G is the well-knowninterval functionIG of G (see[12]),
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which is defined as follows:

IG(u, v) = {x ∈ V | d(u, x) + d(x, v) = d(u, v)}.
for u, v inV. The functionI and the geodesic convexity of a connected graphGare important
tools for the study of metric properties ofG, see e.g.[4,12].An example of a class of graphs
where these tools are indispensable, is that of median graphs. These are defined by the
property that, for any triple of vertices, the intervals between the pairs of the triple intersect
in exactly one vertex. Prime examples are trees, hypercubes and grid graphs. There is by
now a rich structure theory available for median graphs, see e.g.[10,12]. The definition
of I is in terms of the distance function ofG. In [15,16], Nebeský gave an interesting
characterization of the interval function using transit axioms only. Thus,I is characterized
without any reference to metric notions. It may be noted that no simple characterizations
are available for the geodesically convex sets in a graph.

4.2. The induced-path transit function

The induced-path transit functionJG of G is defined as follows:

JG(u, v) = {z ∈ V | z lies on some inducedu, v-path inG}
for eachu, v ∈ V . The convexity ofJ is also known as theminimal path convexity, see
e.g.[5,8]. The analogue of median graphs in the case of the functionJ is studied in[14].
The characterization of this transit function in terms of transit axioms alone seems to be
difficult, but its convex sets are nicely characterized. Recall that acliqueofG is a subset of
V of pairwise adjacent vertices. We say that a cliqueS separatesa vertexv from a subset
Wof V if every path betweenv andWpasses throughS. Note that, ifW is a clique in itself,
then, by definition,W is a clique separatingv fromW. The following characterization of
theJ-convex hull is due to Duchet[5]: in a connected graph G a vertex v belongs to the
J-convex hull of a subset W of V if and only if no clique ofG − v separates v andW.

4.3. The all-paths transit function

Theall-paths transit functionAG of Gwas already defined above in Section 2:

AG(u, v) = {x ∈ V | x lies on someu, v-path inG}
foru, v inV. It is theuniversal upperbound in the join-semilatticeof all path transit functions.
The convexity generated byAwas studied in[5,17], where it is called thecoarsest convexity.
A characterization ofA in terms of transit axioms only was recently established in[2]. The
all-paths function has a nice structure reflecting the block-cut-vertex structure of the graph.
Recall that ablockof a graph is a maximal 2-connected subgraph. IfG is 2-connected or if
G isK1 orK2, thenA is the trivial transit function 1G ofG. If G contains a cut-vertex, then
A is a non-trivial transit function. In this caseG can be considered to be a tree of blocks. A
‘subtree of blocks’ is a non-trivial connected subgraph such that if it contains two vertices
of a block then it contains the whole block. The non-trivialA-convex subgraphs are the
proper subtrees of blocks.
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4.4. TheIj -path transit function

For j�0, the path transit functionIj is defined by

Ij (u, v) = {z ∈ V | x lies on au, v-path of length�d(u, v) + j in G}
for anyu, v ∈ V . Clearly, we haveIk�Ik+1, for everyk�0. Not much is known about this
path transit function or its associated convexity.We present it here mainly because it seems
to be a natural transit function for further study.

4.5. The triangle-path transit functions

LetP =u1 → u2 → · · · → uk be a path inG. Letzi be a vertex not onPbut adjacent to
two consecutive verticesui, ui+1 of P. Then we say that the pathQ = u1 → u2 → · · · →
ui → zi → ui+1 → · · · → uk is obtained fromP by replacing the edgeui → ui+1 by a
triangle. Atriangular extensionof a pathP is a pathQ obtained fromP by replacing some
of the edges ofP by triangles. We will callP a triangular extension of itself as well. Let�
be a (feasible) path property onG. Then�$ is the path property defined by

�$ = {Q |Q is a triangular extension of some path in�}.
Note that we have� ⊆ �$, with equality if and only if no path in� is involved in a triangle.
In particular, we have equality in the case of a triangle-free graph. The path property�k$

is defined recursively by�0$ = � and�k$ = (�(k−1)$)$, for k�1.
Let R be a�-path transit function onG. ThenR$ is the path transit function onG

defined by

R$ = R�$ .

The transit functionR$ is atriangle-path transit function. Note thatR$=R if no path in�
is involved in a triangle. Recursively, we defineRk$ byR0$=R andRk$= (R(k−1)$)$,
for k�1, see[13]. Clearly,Rk$ is a path transit function as well. The following lemma
follows immediately from the definitions.

Lemma 2. Rk$
� = R�k$ , andRk$�R(k+1)$ for k�0.

Note that we trivially haveA$ = A. But in general we will haveR(k−1)$<Rk$ if
G contains triangles andk is not too large. For the associated convexities however, the
situation can be quite different as is shown by the transit functionsIj , with j�0, and the
transit functionJ.

Proposition 3. Let G be a graph, and let� be a path property such that the pathu → v

is in�, for any edge uv of G. Then, for k�1,CRk$ = CR(k+1)$ .

Proof. Using Lemma 2, we deduce thatCR(k+1)$ ⊆ CRk$ . To prove thatCRk$ ⊆ CR(k+1)$ ,
letWbeaset inCRk$ . Takeany twoverticesuandv inW. Letzbeavertex inR(k+1)$(u, v)−
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Rk$(u, v). Then, there exists au, v-pathP in�k$ such thatz is adjacent to two consecutive
verticesxandyonP. Note thatxandyare inW. Nowx → y is a path in�. Sincek�1, we
know thatR$(x, y) ⊆ Rk$(x, y) ⊆ W . Clearly, we havez ∈ R$(x, y), whencez ∈ W .
Thus, it follows thatR(k+1)$(u, v) ⊆ W , by which we have shown thatW ∈ CR(k+1)$ . �

All path properties in this section satisfy the condition in the Proposition. But it leaves
open the question whether it holds for any other path property:

For which other path transit functions R on G do the triangular path functionsRk$

define the same convexity on G, for all k�1?

Since theI-convex sets are difficult to characterize, we may expect that theI$-convex
sets are also difficult to characterize. ForJ$ we have the following characterization, see
[3]: letG = (V ,E) be a connected graph, and letW ⊆ V ; then a vertexv does not belong
to theJ$-convex hull ofW if and only if there exists a cliqueM separatingvandW in such
a way that any two paths connectingv to two distinct vertices ofM contain vertices that
induce a cycle of length at least 4 inG.
Clearly, we haveI k$�Ik, for everyk�0.

5. Path transit functions of Cartesian products of graphs

In this section, we discuss path transit functions on Cartesian products of graphs. First,
we recall the definition of Cartesian product. LetG1 = (V1, E1) andG2 = (V2, E2) be two
connected graphs. TheCartesian productG1�G2 ofG1 andG2 is the graph with vertex set
V1 × V2, where two vertices(u1, u2), (v1, v2) in V1 × V2 are joined by an edge if and only
if eitheru1 = v1 andu2v2 ∈ E2 or u2 = v2 andu1v1 ∈ E1. Thei-th projectionof G1�G2
is the mapping�i defined by�i (u1, u2) = ui , for i = 1,2. Note that these projections are
graph homomorphisms. Also note that paths need not be projected on paths. If, say,G2 is
thetrivial graphK1, then�1 is an isomorphism betweenG1 andG1�G2.
Let R1 be a transit function onG1, and letR2 be a transit function onG2. Then the

functionR1�R2 : V (G1�G2) × V (G1�G2) → V (G1�G2) defined by

R1�R2((u1, u2), (v1, v2)) = R1(u1, v1) × R2(u2, v2)

is a transit function onG1�G2.
LetC1 andC2 be two convexities on the setsV1 andV2, respectively. Then

C1�C2 = {X × Y |X ∈ C1, Y ∈ C2},
is a convexity as well, see e.g.[18,19,21]. Moreover, also the following equality holds (see
e.g.[21]):

CR1�R2 = CR1�CR2.

We want to specialize these equalities for the case of path properties. Let�1 be a path
property onG1, and let�2 be a path property onG2. Now the question is how to construct
a path property onG1�G2 starting from�1 and�2. Let ui andvi be vertices inGi and
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let Pi be a path in�i (ui, vi), for i = 1,2. Then, intuitively, a(u1, u2), (v1, v2)-path in
(�1��2)((u1, u2), (v1, v2)) should be constructed in some way from pathsP1 andP2, or
otherwise stated, should be some path between(u1, u2) and(v1, v2) in P1�P2. Note that,
for any such pathQ, we have�i (Q)=Pi , for i=1,2.There aremany possible choices. Some
choices make more sense than others. A choice that would certainly make sense is all paths
Q such that the lengthl(Q) equalsl(P1)+ l(P2). But when we look from the perspective of
the associated transit functions, it turns out that, loosely speaking, it does not matter what
choicewemake.This ismadeprecise in the followingway. Let(�1��2)((u1, u2), (v1, v2))

be the set of pathsQ in G1�G2 such that the projection�i (Q) of Q is a�i-path inGi

betweenui andvi , for i = 1,2. Note that, for anyP1 in �1(u1, v1) andP2 in �2(u2, v2),
all paths inP1�P2 between(u1, u2) and(v1, v2) are in(�1��2)((u1, u2), (v1, v2)). It is
obvious that,�1 and�2 being feasible,�1��2 is a feasible path property onG1�G2. The
following proposition tells us that our choice of�1��2 does not contain ‘too many’ paths.

Proposition 4. LetG1 andG2 be two connected graphs, and let�1 be a path property on
G1 and�2 be a path property onG2. Then

R�1��2 = R�1�R�2.

Proof. Take two vertices(u1, u2) and (v1, v2) in G1�G2. Let (z1, z2) be a vertex in
R�1��2((u1, u2), (v1, v2)). Let Q be a path in�1��2((u1, u2), (v1, v2)) containing
(z1, z2) such thatP1 = �1(Q) is a�1-path inG1 andP2 = �2(Q) is a�2-path inG2.
ThenPi containszi , so thatzi lies in R�i

(ui, vi), for i = 1,2. Hence(z1, z2) lies in
R�1�R�2((u1, u2), (v1, v2)).
Conversely, let(z1, z2) be a vertex inR�1�R�2((u1, u2), (v1, v2)). Then there exists a

�i-pathPi betweenui andvi inGi containingzi , for i =1,2. LetQbe the path inG1�G2
constructed as follows: loosely speaking, we start in(u1, u2). Now, we walk along the copy
of P1 fixing u2 until we arrive at(z1, u2). Then we continue along the copy ofP2 fixing z1
until we arrive at(z1, v2). Along the way we passed through(z1, z2). Finally, we continue
alongP1 fixing v2 until we arrive at(u2, v2). Clearly, we have�1(Q)=P1 and�2(Q)=P2.
This implies that(z1, z2) lies inR�1��2((u1, u2), (v1, v2)), and we are done.�

Corollary 5. LetG1 andG2 be two connected graphs, and let�1 be a path property on
G1 and�2 be a path property onG2. Then

C�1��2 = C�1�C�2.

Proof. By definition,R�1��2 is the transit function ofC�1��2. It is straightforward to
check thatR�1�R�2 is the transit function ofC�1�C�2. �

Let G1 andG2 be two non-trivial connected graphs. The following equality is part of
folklore and follows immediately from the definitions:

IG1�G2 = IG1�IG2. (1)

We could formulate this feature as follows.As before let� be the path property ‘shortest’, by
which we formally mean that� is the set of all geodesics in a graphG. In this terminology
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we can writeIG =R�(G). Then (1) could be written asR�(G1�G2)=R�(G1)�R�(G2).
Hence, by Proposition 4, we haveR�(G1�G2)=R���(G1�G2)). Loosely speaking, for
the property� = ‘shortest’we haveR� =R���. This gives rise to the following question.
Let� be a graph property that can be defined on any graph similar to ‘shortest’. Instances
are the path functions given in Section 4. Which graph properties in this sense are ‘product
stable’? By this we mean

For which such path properties� does the following equality hold:

R�(G1)�R�(G2) = R�(G1�G2)?.

Equality for the transit functions yields trivially equality for the associated convexities.
But, inequality for the transit functions does not necessarily imply inequality for the asso-
ciated convexities. So, we have also the following question:

For which such path properties� does the following equality hold:

C�(G1�G2) = C�(G1)�C�(G2)?.

First let� be the property ‘all-paths’, that is,R� = AG. Note that, for any two non-
trivial connected graphsG1 andG2, their Cartesian productG1�G2 is 2-connected. Hence,
AG1�G2 is the trivial transit function onG1�G2. On the other hand, if at least one ofG1
andG2 contains a cut-vertex, sayG1 contains a cut-vertex, thenAG1 is not the trivial
transit function, whence alsoAG1�AG2 is not the trivial transit function. So, as soon
as at least one of the factors of a Cartesian product contains a cut-vertex, then we have
AG1�AG2 <AG1�G2. But if each of the factors is eitherK2 or 2-connected, then we have
AG1�AG2 = AG1�G2 = 1G1�G2. Summarizing, for non-trivial connected graphsG1 and
G2 we have

AG1�AG2 �AG1�G2 = 1G1�G2.

Note that any block of a graphG is AG-convex. Assume that bothG1 andG2 contain a
cut-vertex, and letB1 be a block inG1 andB2 in G2. ThenBi isAGi

-convex, fori = 1,2,
soB1�B2 is AG1�AG2-convex, but it is notAG1�G2-convex, sinceAG1�G2 is the trivial
transit function.
For the induced-path functionJ the answer on the above questions is also negative. Let�

be the property ‘induced’, so thatJG=R�(G). Take an edgeuv inG1 and an edgexy inG2.
ThenJG1(u, v)�JG2(x, y)={u, v}×{x, y}. But in generalJG1�G2((u, x), (v, y)) is amuch
larger set, because we may find many induced paths going out of{u, v}× {x, y}. If we take
the edgesuvandxyto be such that they are not in a triangle, thenwe haveJ k$

G1
(u, v)={u, v}

andJ k$
G2

(x, y) = {x, y}. And again we will have that, in general,J k$
G1�G2

((u, x), (v, y)) is
a much larger set. To show that we have inequality for the convexities, just note that any
edge isJ-convex, and any edge not on a triangle isJ k$-convex.
On the other hand, take any vertex(z1, z2) in J k$

G1
�J k$

G2
((u1, u2), (v1, v2)). Thenz1 is

on an�k$
G1

-pathP1 betweenu1 andv1 in G1 andz2 is on an�k$
G2

-pathP2 betweenu2 and

v2 in G2. From these two paths we easily construct an�k$
G1�G2

-path between(u1, u2) and
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(v1, v2) in G1�G2 containing(z1, z2). Hence we have

J k$
G1

�J k$
G2

�J k$
G1�G2

for k�0.
It is obvious thatIj is not product stable, for anyj�1. But in this case we can say even

more. Letd, j, k be positive integers, letG1 be the pathPd+1 of lengthd, and letG2 be the
cycleCn onn=d+j+k vertices. Note that onG1 we haveIj =I . Letu, v be the end points
ofG1, and letx, y be two vertices onG2 at distanced. Then we haveIk(x, y)= I (x, y). So
the Cartesian product of these two intervals is a proper subset of the vertex set ofG1�G2.
On the other hand,Ij+k((u, x), (v, y)) in G1�G2 is the whole vertex set. It is easy to see
that we have

Ij�Ik(G1�G2)�Ij+k(G1�G2).

LetG1 andG2 both be the triangle graphK3 on the verticesu, v,w. ThenI$G1
(u, v) ×

I$G2
(u, v) is the whole vertex set ofG1�G2. On the other hand, the vertex(w,w) is not in

I$
G1�G2

((u, u), (v, v)). So alsoI$ is not product stable. Similar examples can be used to

show thatI k$ is not product stable, for anyk�1. However, in this case, the situation for
the convexities is different.

Theorem 6. LetG1 = (V1, E1) andG2 = (V2, E2) be connected graphs, and letk�0.
ThenCI k$(G1�G2) = CI k$(G1)�CI k$(G2).

Proof. The casek=0 is a special case: it follows immediately fromI (G1�G2)= I (G1)�
I (G2), which is part of folklore. The proof fork�1 is by induction onk. First we prove
thatCI$(G1�G2) = CI$(G1)�CI$(G2).
Choose any setW in CI$(G1)�CI$(G2). ThenW = X × Y with X in CI$(G1) andY

in CI$(G2). Take any two vertices(u1, u2) and(v1, v2) inW, and let(z1, z2) be a vertex
in I$

G1�G2
((u1, u2), (v1, v2)). If (z1, z2) is on some geodesic between(u1, u2) and(v1, v2)

in G1�G2, then(z1, z2) is in IG1(u1, v1) × IG2(u2, v2), whence inW, and we are done.
Otherwise, there exists a geodesicP between(u1, u2) and(v1, v2) in G1�G2, such that
(z1, z2) is adjacent to two consecutive vertices(x1, x2) and(y1, y2) on P. Now (z1, z2),
(x1, x2) and(y1, y2) form a triangle inG1�G2. This is only possible if eitherx1, y1, z1
form a triangle inG1 andx2 = y2 = z2 in G2, or x2, y2, z2 form a triangle inG2 and
x1 = y1 = z1 inG1. In the first case we havez1 in X, sinceX is I$G1

-convex, and triviallyz2
inY. In the second case we havez2 inY, sinceY is I$G2

-convex, and triviallyz1 in X. So we
conclude that in both cases that(z1, z2) lies inW. This shows thatW is inCI$(G1�G2).
Conversely, choose any setW in CI$(G1�G2). We will prove that�i (W) is I$Gi

-convex
in Gi , for i = 1,2, and thatW = �1(W) × �2(W).
Choose any two verticesu1 andv1 in �1(W). Then, by the definition of projections,

there exist verticesu2, v2 in �2(W) such that(u1, u2) and(v1, v2) are vertices inW. Let
P2 be a geodesic betweenu2 andv2 in G2. Take any vertexz1 in I$G1

(u1, v1). Then there
is a geodesicP1 betweenu1 andv1 in G1 such that eitherz1 is onP1 or z1 is adjacent to
two consecutive verticesx1, y1 onP1. NowQ = (P1�{u2}) ∪ ({v1}�P2) is a subgraph of
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G1�G2, which is a geodesic between(u1, v1) and(u2, v2). Then either(z1, u2) lies onQ
or (z1, u2) is adjacent to the two consecutive vertices(x1, u2), (y1, u2) onQ. SinceW is
I$
G1�G2

-convex, it follows in both cases that(z1, u2) lies inW. But this implies thatz1 lies

in �1(W). Hence�1(W) is I$G1
-convex. Similarly, we deduce that�2(W) is I$G2

-convex.
Clearly, we haveW ⊆ �1(W) × �2(W). So let(z1, z2) be a vertex in�1(W) × �2(W).

By the definition of projections, there exists a vertexx2 in �2(W) such that(z1, x2) lies
in W, and there exists a vertexx1 in �1(W) such that(x1, z2) lies inW. Let P1 be a
geodesic betweenx1 andz1 in G1, and letP2 be a geodesic betweenz2 andx2 in G2.
ThenQ = (P1�{z2}) ∪ ({z1}�P2) is a geodesic between(x1, z2) and(z1, x2) in G1�G2
containing(z1, z2). SinceW is I$

G1�G2
-convex, it follows that(z1, z2) lies inW. This shows

thatW = �1(W) × �2(W), which concludes the proof in the casek = 1.
Finally, letk >1. Then we have

CI k$(G1�G2) =CI (k−1)$(G1�G2) (by Proposition 3)
=CI (k−1)$(G1)�CI (k−1)$(G2) (by induction)
=CI k$(G1)�CI k$(G2) (by Proposition 3).

This concludes the proof.�

6. Convexity invariants

In this section,wesurvey theclassical convexity invariantssuchas theHelly,Carathéodory,
and Radon numbers and the exchange number (see[7,11,20]) for the path properties of Sec-
tion 4, except forIj , of which not much is known as yet. Along the way we give improve-
ments of some of the known bounds.We start with shortly recalling the various definitions.
Let � be a path property. A�-copointof a pointp of V is a maximal�-convex subset of
V not containingp. TheCarathéodory number cof the convexity spaceC is the smallest
integer (if it exists) such that for any finite subsetF ofV, 〈F 〉C =⋃{〈S〉C |S ⊆ F, |S|�c}.
Theexchange number eof C is the smallest integer (if it exists) such that for any subsetF
ofVwith |F |�e and any pointp in F, we have〈F −p〉C ⊆ ⋃{〈F −a〉C | a ∈ F −p}. The
Helly number hof C is the smallest integer (if it exists) such that every family of convex
sets with an empty intersection contains a subfamily of at mosthmembers with an empty
intersection. Equivalently,h is the smallest natural number such that

⋂
s∈F 〈F − s〉C �= ∅

for every(h+1)-element subsetF ofV. TheRadon number rofC is the smallest integer (if
it exists) such that everyr-element setS ⊆ V admits a Radon partition, that is, a partition
S = S1 ∪ S2,(S1 ∩ S2 = ∅) with 〈S1〉C ∩ 〈S2〉C �= ∅. Them-thRadon number, denoted by
rm, is the smallest number (if it exists) such that everyrm-element setW ⊆ V admits a
Radonm-partition, that is a partition ofSintompairwise disjoint subsetsW1,W2, . . . ,Wm

such that〈W1〉C ∩ 〈W2〉C ∩ · · · ∩ 〈Wm〉C �= ∅.
Theclique number� is the cardinality of the largest clique inG.A subsetS ⊆ V is called

aconvex-independent setif x /∈ 〈S − x〉C for everyx ∈ S. Therankof C is the supremum
of the cardinalities of the independent subsets ofV. Thehull number uof C is the infimum
of the cardinalities of subsetsSof V such that〈S〉C = V .
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6.1. The geodesic convexity

The geodesic convexity is in some sense “universal” with respect to the abovementioned
invariants, namely in[6] it is observed that for every convexity on a finite setV, with Helly,
Radon andm-th Radon numbersh, r andrm, respectively, there is a finite connected graph
Gwhose geodesic convexity has Helly numberh, Radon numberr andm-th Radon number
at leastrm. So far no relationships between the invariants Carathéodory, Helly and Radon
numbers and any known graph parameter are known. Note that then-cubeQn hash = 2,
c = n andr = �log2(n + 1)� + 2.

6.2. The induced-path convexity

For the induced-path convexity, Duchet determined in[5] the relationships between the
Helly andRadonnumbersand thecliquenumber. It is also shown there that theCarathéodory
numberc satisfiesc�2. Using the inequalitye�c + 1 [18], it follows that the exchange
number satisfiese�3. Duchet’s result is as follows.

Theorem (Duchet, 1988). For the J-convexity, the Carathéodory number satisfiesc�2,
the Helly number satisfiesh = � and the Radon number satisfiesr = � + 1 if ��3 and
r�4 if ��2.

In Theorem 8, we will characterize the casesr = 3 and 4 for triangle-free graphs, i.e.
graphs with��2. First we need some preliminaries. Acut-edgeis an edge inG such that
the removal of its end-vertices disconnectsG.

Lemma 7. LetG= (V ,E) be a2-connected, triangle-free graph without cut-edges. Then
the J-convex hull of any two non-adjacent vertices in G equals V.

Proof. Note that,G being triangle-free and 2-connected, there are non-adjacent vertices.
Let u andv be any pair of non-adjacent vertices inG, and letSbe the convex hull of{u, v}.
Assume thatS �= V . Choose any vertexw in V − S. By Menger’s theorem we can find two
internally disjoint pathsPx andPy starting inw and ending in distinct verticesx andy in S.
We may takex to be the first vertex ofPx in Sandy to be the first vertex ofPy in S. Now
we deduce thatxy is an edge. For, otherwise, we can find an induced path withinPx ∪ Py

betweenx andy going out ofS. And this would contradict the fact thatS is J-convex.
SinceG does not contain cut-edges, there must be a pathPz from w to a vertexz in

Sdistinct fromx andy such thatz is the first vertex ofPz in S. As in the case ofxy, we
deduce thatxzandyzare edges as well. But now we have created a triangle onx, y, and
z, which is impossible. This implies thatS = V , so that the convex hull ofu andv is the
whole graph. �

Let G be a 2-connected, triangle-free graph. Anatomof G is a maximal 2-connected
subgraph ofG not having a cut-edge. Theatom-cut-edge treeT (G) of G is the graph
with the atoms and the cut-edges ofG as its vertices, and two vertices inT (G) are
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adjacent whenever one of them is a cut-edge and the other is an atom containing that edge.
Note that, within that atom, the edge isnot a cut-edge. It is straightforward to verify that
T (G) is indeed a tree.

Theorem 8. Let G be a connected triangle-free graph with at least three vertices. The
Radon number r of the J-convexity of G is3 if and only if either G is a path or G is
2-connected and the atom-cut-edge tree of G is a path. In all other casesr = 4.

Proof. If G is a path of length at least 3, then clearlyr = 3. If G is not a path and not 2-
connected, then letvbe a cut-vertex ofGof degree at least three.Any set of three neighbors
of vwith two neighbors belonging to distinct components ofG− v has no Radon partition.
So we haver = 4.
So letG be 2-connected. First, we determine theJ-convex hull of two non-adjacent

verticesuandv. If they lie in the same atomH ofG, then, by Lemma 7, their convex hull is
H. So suppose that they lie in different atomsHu andHv. In the case thatu is on a cut-edge
uu′, then we chooseHu to be the atom such that any inducedu, v-path contains vertices of
Hu different fromu andu′. We make a similar choice in casev is on a cut-edge. LetP be
the path inT (G) betweenHu andHv, and letHu,H1, . . . , Hk,Hv be the atoms onP in the
order that we encounter them while going fromHu toHv alongP. LetH be the subgraph
consisting of the union of these atoms.We will show thatH is theJ-convex hull ofu andv.
By Lemma 7, it suffices to show that theJ-convex hull contains two non-adjacent vertices
of every atom inH.
By the choice ofHu, the vertexu does not lie on the cut-edgexy betweenHu andH1.

There exists an induced path inHu betweenuandx. This path can be extended to an induced
u, v-path, so thatx is in theJ-convex hull of{u, v}. Similarly, the same holds fory. Since
G is triangle-free,u cannot be adjacent to bothx andy. So there are two non-adjacent
vertices ofHu in theJ-convex hull of{u, v}. Now, we replaceHu andu byH1 andx (or y),
respectively, and deduce that alsoH1 is in theJ-convex hull of{u, v}. Proceeding in this
way, we deduce thatH is precisely theJ-convex hull of{u, v}.
From these observations we easily deduce that, ifT (G) is a path, then any three vertices

of G admit a Radon partition, so thatr = 3.
Finally, if T (G) is not a path, then take three different end vertices ofT (G). In each of the

corresponding atoms ofG, choose a vertex that is not on a cut-edge. Then our observations
above tell us that there is no Radon partition for these three vertices. Hence we haver = 4.
This concludes the proof.�

From the characterization of theJ-convex hull in Section 4.2 we know that, for any
connected graphG and any vertexp, any two distinct copoints ofp are non-intersecting.
For, consider two distinct copointsUp andWp of a vertexp of G. SinceUp andWp are
distinctJ-convex sets, they are separated by a clique and hence have no vertex in common.
ThereforeUp andWp are non-intersecting. Letm, k�1. A convexityC onV has theC-
copoint intersection propertyCIP (m, k) if and only if for eachp in V, it holds that any
set ofmdistinctC-copoints atp contains ak-subset with an empty intersection. In[9], the
following result was proved.
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Theorem (Jamison, 1981). Let the convexityC on V satisfyCIP (3,2) with finite Helly
number h. Then for eachm�1, rm�2m if h = 2,andrm = (m − 1)h + 1 if h�3.

By the above observations, theJ-convexity satisfiesCIP (3,2). Therefore, we have the
following result.

Corollary 9. The J-convexity on a connected graph satisfiesrm�2m if � = 2 and rm =
(m − 1)� + 1 if ��3.

6.3. Triangle-path convexities

By Proposition 3, we need to consider onlyI$ andJ$. As in the case of the geodesic
convexity, noboundor relationshipbetween the invariants of theI$-convexity andanyother
known graph parameter is known. But, for theJ$-convexity, the bounds for the invariants
are known. The following result can be found in[3]: theJ$-convexity has Carathéodory
numberc=2, exchange numbere=3, Helly numberh=2 and Radon numberr satisfying
3�r�4.
From the characterization of theJ$-convex hullmentioned inSection 4.5,weget, similar

to theJ-convexity, the following result for theJ$-convexity in a connected graphG: for the
J$-convexity, given any vertex p of G, any two distinct copoints of p are non-intersecting.
TheJ$-convexity satisfiesCIP (3,2), by the previous discussion. Therefore as a corol-

lary of the theorem of Jamison[9], we have the following theorem.

Theorem 10. Letm�1.ThemthRadon number for theJ$-convexity satisfiesrm�2m.

6.4. The all-paths convexity

TheCarathéodory,Helly andRadonnumbers for theall-paths convexitywere investigated
in [17]. Recall that theblock-cut-vertex treeB(G) of a connected graphG has the blocks
and cut-vertices ofG as its vertices and two vertices ofB(G) are adjacent whenever one of
them is a cut-vertex and the other a block such that the cut-vertex is a vertex of the block.
The hull numberuand the rank of the all-paths convexity can be phrased in terms ofB(G).
We summarize these results in the following theorem.

Theorem 11. For the all-paths convexity, the Carathéodory number satisfiesc = 2, the
exchange number satisfiese = 3, the Helly number satisfiesh = 2, the Radon number
satisfies3�r�4, and themth Radon number satisfiesrm�2m. The hull number and the
rank are both equal to the number of end vertices inB(G).
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