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Abstract

A feasible family of paths in a connected grapis a family that contains at least one path between
any pair of vertices irG. Any feasible path family defines a convexity @GnWell-known instances
are: the geodesics, the induced paths, and all paths. We propose a more general approach for such
‘path properties’. We survey a number of results from this perspective, and present a number of new
results. We focus on the behaviour of such convexities on the Cartesian product of graphs and on the
classical convexity invariants, such as the Carathéodory, Helly and Radon numbers in relation with
graph invariants, such as the clique number and other graph properties.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In [13], the notion of transit function is introduced as a means to study how to move
around in discrete structures. Basically, it is a function satisfying three simple axioms on a
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setV, which is provided with a structure Prime examples of such a structure are: a set of
edged, so that we are considering a gra@h= (V, E), or a partial ordering<, so that we

are considering a partially ordered $&t <). Then the idea is to study transit functions
that have additional properties defined in terms of the struetuF®r instance, the transit
function may be defined in terms of paths in the grépk (V, E). Such transit functions

are calledpath transit function®n G in [13]. A prime example is the interval function
I:V xV — 2V of a connected grap@, wherel (u, v) is the set of the vertices lying

on shortest paths betweerandv. Other examples are the induced-path transit function,
and the all-paths transit function. Any transit function(@n o) defines a natural convex-

ity on V. The convexities associated with the three mentioned path transit functions have
already been studied extensively. Some relevant references are: for the geodesic convexity
[6,10,12,15,21]for the induced-path convexif$,14], and for the all-paths convexity (or

the coarse convexityp,4,17] In [13], a wide variety of prototype problems to be studied

for transit functions and their convexities is presented. In this paper, we focus on one such
type of problems.

Paths transit functions are the topic of this paper, in particular the above-mentioned
three examples and transit functions constructed from these. By choosing the perspective of
transit functions, we propose a unifying approach for the study of such path properties. This
approach suggests also various new questions for future research. We study the behaviour
of these functions under Cartesian products of graphs, and we study the various invariants
of the associated convexities, such as the Carathéodory, Helly, and Radon numbers. Along
the way, we survey some results in the literature related to these topics.

2. Preliminaries

In this section, we present some of the basic ideas fi@jon transit functions. Through-
out the papeG = (V, E) is a connected, simple, loopless graphransit functionon G is
afunctionR: V x V — 2" satisfying the following three axioms:

(t1) u € R(u, v) foralluandvinV,
(t2) R(u,v) = R(v,u) foralluandvinV,
(t3) R(u, u) = {u}.

Axioms of the type (t1)—(t3), which are in terms Bfonly, are calledransit axioms
Let RandSbe transit functions on the graggh Thejoin of RandSis the transit function
R Vv S defined by(R v S)(u, v) = R(u, v) U S(u, v). Themeetof R andSis the transit
functionR A S defined by(R A S)(u, v) = R(u, v) N S(u, v). With this join and meet the
family of all transit functions oIt is a lattice. We denote this lattice ly;. Note that the
structure ofG is not relevant for. ;. But our interest is in substructures b that reflect
the structure ofs. The partial ordering< of this lattice can simply be described By S
if and only if R(u, v) € S(u, v), for allu, v in V. The universal lower bound of this lattice
is thediscrete transit functio@® defined by Qu, u) = {u}, foralluinV, and Qu, v) = {u, v},
for all distinctuandvin V. The universal upper bound is thi&vial transit functionl defined
by 1(u, u) = {u}, foralluinV, and Xu, v) = V, for all distinctu andvin V.
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A subsetW of V is R-convexf R(u,v) € W, for all u, v in W. The family%'x of all R-
convex sets iV is an abstract convexity: it is closed under intersections and nested unions,
and boths andV areR-convex. Note that, in the finite case, the condition on nested unions
can be deleted. The convexitsy of the discrete transit function 0 is tkéscrete convexity
every subset is convex. The convexity of the trivial transit function 1 is thérivial
convexity Note that we assume that singletons are always convex. This is no real restriction
of the notion of a convexity, because if we add all missing singletons to a convexity, then it
remains a convexity. Thus the empty gethe singletongu} and the whole se¥ are the
trivial convex set®f a convexity. The smalle®-convex subset containing a subgéof
Vis denoted by W), and is called th&-convex hullof W. Note that two different transit
functionsR and S may give rise to the same convexity, that#®; = 5. An R-convex
subgraph Hof a graphG is a subgraph induced by &iconvex set irG. Since no confusion
can arise, we will not always distinguish between a convex subset and the convex subgraph
induced by this set. Convexities defined by a transit function are called interval convexities,
or interval spaces in e.¢1,21]. For a detailed account on abstract convexities, see, for
example21].

Let @ be a property of paths i, for instance the property of beinggeodesici.e. a
shortest path. Ab-pathis a path having propertg. Formally, we take gath property
® to be a subset of the set of all pathsGnThus, ifP is a ®-path, then we may denote
that also as? € @. Letu andv be vertices ofG. Then®(u, v) denotes the subset of all
u, v-paths in®. We will only considerfeasiblepath properties, that is, path propertiés
such thatb(u, v) # ¥, for all u, v in V. So all path properties in the sequel are presumed to
be feasible without mention. The-path transit functionor @-path functionfor short, on
G is the transit functiorR defined by

Rp(u,v) = {x € V| x is on somedb-path inG}.

Note that the subgraph induced By (u, v) is a connected subgraph®fIf no confusion
arises, we call &@-path transit function a path transit function. The conve¥ify, will also
be denoted a¥¢. If Rp, and Rg, are two path transit functions, thety, A Rp, need
not be a path transit function. For example®f = ‘shortest’ and®, = ‘longest’, then
R, A Rg, usually will not be a path transit function. Howev&g, v R4, is always a path
transit function, namely of the path propedy= @1 U ®,. Hence, the family of the path
transit functions o1& is a join semi-lattice of., denoted by , (). Clearly, theall-paths
transit functionon G defined by

Ag(u,v) ={x € V|x liesin someu, v-path inG},

is a universal upper bound &f, g, .

3. The lattice of convexities

In this section, we study the relation between the lattice of transit functions on a connected
graphG = (V, E) and the lattice of associated convexities.

Let Z be the family ofR-convexitiesér onV with Rin L. ForRandSin Lg, we
definebr ANCs=CrNEsandbr Vv Cs={UNW|U € 6, W € s}. ThenZs is a
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lattice with join%k v ¢s and meet'x A €s. The partial ordex of this lattice is defined
by €1 <% if €1 C %». Note that, for any two transit functiofsandSon G, we have

if R<S then%y <%y.

The relation between meets and joins in the latticesand % ¢ is given in Theorem 1.
Note that the structure @ does not play a role in this result. But it may when we consider
subposets of the lattice.

Theorem 1. LetR and S be transit functions on a connected graph G. Bhext s =% gy s
and%r vV s C Crnas.

Proof. First we prove the formula for the megt A @s:

WeCrvs < (RVS)u,v) CWiorallu,vew
< R, v)USu,v) C Wiorallu,ve W
< Ru,v) CWandSu,v) C Wforallu,ve w
S We@randW € €y
SWebrNEs=Cr NECs.

Next, we prove the formula for the joiig v 5. Choose any subsé¥ € % v €.
By definition, there exist subsels € ¥ andY € %5 such thatV = X N Y. Now, for any
u,v € W=XnNY,wehaveu,v € X aswell asu,v € Y, so thatR(u, v) C X as well
asS(u,v) C Y. This implies thatR (u, v) A S(u,v) = R, v) N Sw,v) S XNY =W,
whenceW € @ras. [

The following example shows that we may have proper inclusion in the case of the join
in Theorem 1. We take the complete graphon the vertex seftl, 2, 3, 4, 5}. We define the
transit functiondR andSas follows:R (u, u) = S(u, u) = {u}, for all verticesu; R(1, 2) =
{1,2,3},R(2,3)={2,3,4}; S(1,2)={1, 2,5}, S(2,5) ={2, 4, 5}; andR (u, v) = S(u, v) =
{u, v} for any other pair of distinct verticasandv. Then, we have{l, 2}), = {1, 2, 3, 4},

({1, 2})s={1, 2, 4,5}. Hence, we hav{{1, 2}) ¢, ¢, = ({1, 2}) kN ({1, 2}) s ={1, 2,3, 4N
{1,2,4,5} = {1, 2, 4}. On the other hand, we ha¥& A $)(1,2) = R(1,2) N S(1,2) =
{1,2,3) n{1,2,5 = {1, 2}, so that{{1, 2}) g5 = {1, 2}. Note that, since the graph was
complete, the transit functions are trivially path transit functions.

4. Examples of path properties

In this section, we collect a number of specific path transit functions and list some basic
facts. LetG = (V, E) be a connected graph. If no confusion arises, then we may Rrite
instead ofF;, for any functionFg; onG.

4.1. The geodesic transit function

Let I" be the family of all geodesics @, and letd be the distance function &. Then the
geodesic transit functioR of G is the well-knowninterval function/s of G (seg[12]),
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which is defined as follows:
Ig(u,v)={x € V|d(u,x)+d(x,v) =d(u,v)}.

foru, vinV. The function and the geodesic convexity of a connected g@pine important

tools for the study of metric properties Gf see e.g4,12]. An example of a class of graphs
where these tools are indispensable, is that of median graphs. These are defined by the
property that, for any triple of vertices, the intervals between the pairs of the triple intersect
in exactly one vertex. Prime examples are trees, hypercubes and grid graphs. There is by
now a rich structure theory available for median graphs, seqd¥gL2] The definition

of | is in terms of the distance function @. In [15,16] Nebesky gave an interesting
characterization of the interval function using transit axioms only. Thisscharacterized
without any reference to metric notions. It may be noted that no simple characterizations
are available for the geodesically convex sets in a graph.

4.2. The induced-path transit function

Theinduced-path transit functior; of G is defined as follows:
Jg(u,v) ={z € V |z lies on some induced, v-path inG}

for eachu, v € V. The convexity of] is also known as theninimal path convexitysee
e.g.[5,8]. The analogue of median graphs in the case of the fundtisrstudied in[14].

The characterization of this transit function in terms of transit axioms alone seems to be
difficult, but its convex sets are nicely characterized. Recall tkligae of G is a subset of

V of pairwise adjacent vertices. We say that a cliuseparates vertexv from a subset

W of V if every path betweer andW passes througB Note that, ifWis a clique in itself,

then, by definitionW is a clique separating from W. The following characterization of

the J-convex hull is due to Duchgb]: in a connected graph G a vertex v belongs to the
J-convex hull of a subset W of V if and only if no cliqu&of v separates vand W

4.3. The all-paths transit function

Theall-paths transit functiom g of G was already defined above in Section 2:
Ag(u,v) ={x € V|x lies on some, v-path inG}

foru, vinV. Itisthe universal upper bound in the join-semilattice of all path transit functions.
The convexity generated i®ywas studied iffi5,17], where itis called theoarsest convexity

A characterization of in terms of transit axioms only was recently establishe@jnThe
all-paths function has a nice structure reflecting the block-cut-vertex structure of the graph.
Recall that ablockof a graph is a maximal 2-connected subgrapks i$ 2-connected or if

Gis K1 or K», thenAis the trivial transit function & of G. If G contains a cut-vertex, then

A’is a non-trivial transit function. In this cas&can be considered to be a tree of blocks. A
‘subtree of blocks’ is a non-trivial connected subgraph such that if it contains two vertices
of a block then it contains the whole block. The non-trivdatonvex subgraphs are the
proper subtrees of blocks.
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4.4. Thel;-path transit function

For j >0, the path transit functiofy is defined by
I;(u,v) ={z € V|x lies on au, v-path of length<d (u, v) + j in G}

foranyu, v € V. Clearly, we havd; < I1, for everyk > 0. Not much is known about this
path transit function or its associated convexity. We present it here mainly because it seems
to be a natural transit function for further study.

4.5. The triangle-path transit functions

LetP=u1 — up — --- — uy be apathirG. Letz; be a vertex not oR but adjacent to
two consecutive verticag, u; 1 of P. Then we say thatthe pa=u1 — up — -+ —
uj — z; —> uj+1 —> --- — uy is obtained fronP by replacing the edge; — u;+1 by a
triangle. Atriangular extensiorof a pathP is a pathQ obtained fronP by replacing some
of the edges oP by triangles. We will calP a triangular extension of itself as well. Lét
be a (feasible) path property @ Then®? is the path property defined by

L = {Q| Q is a triangular extension of some pathdi.

Note that we have € &%, with equality if and only if no path i is involved in a triangle.
In particular, we have equality in the case of a triangle-free graph. The path prdﬁ@rty
is defined recursively bgp?2 = @ and @2 = (@* DA fork>1.

Let R be a®-path transit function orG. Then R2 is the path transit function o6
defined by

R® =Ry.

The transit functiorR 2 is atriangle-path transit functionNote thatR> = R if no path in®

is involved in a triangle. Recursively, we defiRé2 by RO® = R and R¥® = (RE-DA) A,

for k >1, se€[13]. Clearly, R~ is a path transit function as well. The following lemma
follows immediately from the definitions.

Lemma 2. RE® = R yxn, and R4 < RED2 for k> 0.

Note that we trivially haveA” = A. But in general we will haveR*~D4 < REA jf
G contains triangles anHd is not too large. For the associated convexities however, the
situation can be quite different as is shown by the transit functipneith j >0, and the
transit functiond.

Proposition 3. Let G be a graphand let® be a path property such that the path— v
is in @, for any edge uv of G. Thefor k >1, % pia = € garva.

Proof. Using Lemma 2, we deduce théik s S € gea. TO prove that pin S € v,
letWbe a setil . . Take any two verticesandvin W. Letzbe a vertex iR+ (i, v) —
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R (u, v). Then, there existsia v-pathP in @“ such thatis adjacent to two consecutive
verticesx andy on P. Note thatx andy are inW. Nowx — y is a path ind. Sincek > 1, we
know thatR” (x, y) € R*®(x, y) € W. Clearly, we have € R (x, y), whencez € W.
Thus, it follows thatR **D% (u, v) € W, by which we have shown théit € % puiva. O

All path properties in this section satisfy the condition in the Proposition. But it leaves
open the question whether it holds for any other path property:

For which other path transit functions R on G do the triangular path functighs
define the same convexity onfGr all k >1?

Since thel-convex sets are difficult to characterize, we may expect thattheonvex
sets are also difficult to characterize. BBt we have the following characterization, see
[3]: let G = (V, E) be a connected graph, and 1€t C V; then a vertex does not belong
to theJ2-convex hull ofWif and only if there exists a cliquiél separating andWin such
a way that any two paths connectiugo two distinct vertices oM contain vertices that
induce a cycle of length at least 4@

Clearly, we hava**> < Iy, for everyk >0.

5. Path transit functions of Cartesian products of graphs

In this section, we discuss path transit functions on Cartesian products of graphs. First,
we recall the definition of Cartesian product. et = (V1, E1) andG2 = (Vo, E2) be two
connected graphs. Tigartesian product 101G, of G; andG> is the graph with vertex set
V1 x Vo, where two verticesu1, u2), (v1, v2) in V1 x Vo are joined by an edge if and only
if eitherus = v1 anduzv € E2 Orup = v2 anduivy € Ej. Thei-th projectionof G1JG>2
is the mappingr; defined byr; (11, u2) = u;, fori =1, 2. Note that these projections are
graph homomorphisms. Also note that paths need not be projected on paths.; $ay,
thetrivial graph K1, thenn is an isomorphism betwedr; andG10G>.

Let Ry, be a transit function o7, and letR> be a transit function orz2. Then the
functionR1{JR2: V(G10G>2) x V(G1G2) — V(G1G>2) defined by

R1OR2((u1, u2), (v1, v2)) = R1(u1, v1) x Ro(uz, v2)

is a transit function oG 1JG».
Let ¥1 and%» be two convexities on the se¥g and V>, respectively. Then

1€ ={X x Y | X € ¥1,Y € 62},

is a convexity as well, see €[d.8,19,21] Moreover, also the following equality holds (see
e.g.[21)):
€ RiOR, = C R, G R,
We want to specialize these equalities for the case of path propertie®; I a path

property onG1, and let®, be a path property oG2. Now the question is how to construct
a path property oy 1[]G> starting from@®1 and @,. Letu; andv; be vertices inG; and
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let P; be a path in®; (u;, v;), for i = 1, 2. Then, intuitively, a(u1, u2), (v1, v2)-path in
(@100D2) ((u1, u2), (v1, v2)) should be constructed in some way from pathsand P,, or
otherwise stated, should be some path betweenuz) and(vy, v2) in P1JP,. Note that,

for any such patl, we haver; (Q)= P;, fori=1, 2. There are many possible choices. Some
choices make more sense than others. A choice that would certainly make sense is all paths
Q such that the lengti( Q) equald (P1) +1(P2). But when we look from the perspective of

the associated transit functions, it turns out that, loosely speaking, it does not matter what
choice we make. This is made precise in the following way (et 1®2) (u1, u2), (v1, v2))

be the set of path® in G1JG2 such that the projection; (Q) of Q is a ®;-path inG;
betweeru; andv;, fori =1, 2. Note that, for anyP; in @1(u1, v1) and Pz in @2(u2, v2),

all paths inP, P> between(u1, up) and(vy, vo) are in(@100®2) (11, uz), (v1, v2)). Itis
obvious that®, and®, being feasible@1[1®;, is a feasible path property @m[1G2. The
following proposition tells us that our choice @f[J®, does not contain ‘too many’ paths.

Proposition 4. Let G, and G be two connected graphand let®; be a path property on
G1 and @; be a path property oi62. Then

Rp,00, = R, 1R g,.

Proof. Take two verticequ1, u2) and (vy, v2) in G1JGo2. Let (z1, z2) be a vertex in
Rop,00, (1, u2), (v1, v2)). Let Q be a path in®10Po((ug, uo), (v1, v2)) containing
(z1, z2) such thatP; = n1(Q) is a ®1-path inG1 and P, = m2(Q) is a @-path inGa.
Then P; containsz;, so thatz; lies in Rg, (u;, v;), for i = 1, 2. Hence(zy, z2) lies in
R, LR, ((u1, uz), (v1, v2)).

Conversely, letzy, z2) be a vertex inR¢, [IR¢, ((11, u2), (v1, v2)). Then there exists a
@;-path P; between:; andv; in G; containingz;, fori =1, 2. LetQ be the path irG1JG2
constructed as follows: loosely speaking, we statt:inn u2). Now, we walk along the copy
of P fixing u2 until we arrive at(z1, u2). Then we continue along the copy Bj fixing z1
until we arrive at(z1, v2). Along the way we passed through, z2). Finally, we continue
along P; fixing v2 until we arrive atuz, v2). Clearly, we haver; (Q) = P, andnz(Q) = Po.
This implies that(zy, zo) lies in Re,0¢, ((11, u2), (v1, v2)), and we are done. [

Corollary 5. Let G1 and G2 be two connected graphand let®; be a path property on
G1 and @, be a path property oid72. Then

C 00, = Co,1C¢,.

Proof. By definition, Re,¢, is the transit function of6¢,04,. It is straightforward to
check thatRg, [IR¢, is the transit function o¥¢,[1%¢,. U

Let G1 andG» be two non-trivial connected graphs. The following equality is part of
folklore and follows immediately from the definitions:

Ig,06, = I6,01c,. 1)

We could formulate this feature as follows. As befordléte the path property ‘shortest’, by
which we formally mean thal is the set of all geodesics in a gra@hlin this terminology
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we can writelg = R (G). Then (1) could be written aB(G10G2) = R (G1)OR(G2).

Hence, by Proposition 4, we hawy (G1G2) = Rror(G10G?2)). Loosely speaking, for

the propertyl” = ‘shortest’ we haveR; = Rrr. This gives rise to the following question.

Let ¥ be a graph property that can be defined on any graph similar to ‘shortest’. Instances
are the path functions given in Section 4. Which graph properties in this sense are ‘product
stable? By this we mean

For which such path propertie® does the following equality hald

Ry(G1)URy(G2) = Ry(G1G2)?.

Equality for the transit functions yields trivially equality for the associated convexities.
But, inequality for the transit functions does not necessarily imply inequality for the asso-
ciated convexities. So, we have also the following question:

For which such path propertie® does the following equality hald

Cw(G1UG2) = Gy (G1)UCw(G2)?.

First let ¥ be the property ‘all-paths’, that i®y = Ag. Note that, for any two non-
trivial connected graphS1 andG», their Cartesian produc¢t1LJG> is 2-connected. Hence,
Ag,06, is the trivial transit function orG1JG». On the other hand, if at least one G
and G, contains a cut-vertex, saf/; contains a cut-vertex, theAg, is not the trivial
transit function, whence alsdg,[JA¢, is not the ftrivial transit function. So, as soon
as at least one of the factors of a Cartesian product contains a cut-vertex, then we have
Ag,0Aq, < Ag,06,- But if each of the factors is eithéf, or 2-connected, then we have
Ag,0Ag, = Ag,06, = 16,06,. Summarizing, for non-trivial connected graptis and
G2 we have

AG1|:|AG2 < AG1DG2 = 1G1|jG2-

Note that any block of a grapB is Ag-convex. Assume that botfi; and G, contain a
cut-vertex, and leB1 be a block inG1 and Bz in G2. ThenB; is Ag,-convex, fori =1, 2,

so B1B; is Ag,[JAg,-convex, but it is not ¢,og,-CoNvex, sinCed g, 0, IS the trivial

transit function.

For the induced-path functiahthe answer on the above questions is also negative2 Let
be the property ‘induced’, so thdg = Ro(G). Take an edgavin G1 and an edggyin G».
ThenJg, (u, v)UJg,(x, y)={u, v} x{x, y}. Butingenerals,0s,((«, x), (v, y)) isamuch
larger set, because we may find many induced paths going ¢utof x {x, y}. If we take
the edgesivandxyto be such that they are notin a triangle, then we h@@(u v)={u, v}
andJ¢2 (x, y) = {x, y}. And again we will have that, in generdl(’,}lADGZ((u, x), (v, y)) is
a much larger set. To show that we have inequality for the convexities, just note that any
edge isJ-convex, and any edge not on a triangle'{$*-convex.

On the other hand, take any vertex, z») in Jck;fDJézA((ul, u), (v1, v2)). Thenzy is

on anQ"é—path P71 betweernu1 andvy in G andzz is on anQ’é%—path P> betweernu, and
v2 in G2. From these two paths we easily construcﬂ%ﬁmcz—path betweeniu1, u2) and
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(v1, v2) in G10G, containing(z1, z2). Hence we have
kA kA - 7kA
JGl DJGz < JG1E|G2

for k>0.

Itis obvious that/; is not product stable, for any> 1. But in this case we can say even
more. Letd, j, k be positive integers, l&t; be the pathP,; 1 of lengthd, and letG, be the
cycleC, onn=d+ j+k vertices. Note that 061 we havel; =1. Letu, v be the end points
of G1, and letx, y be two vertices otr; at distancel. Then we haveéy (x, y)=1(x, y). So
the Cartesian product of these two intervals is a proper subset of the vertexGséil6h.

On the other hand); 1 ((u, x), (v, y)) in G1[1G is the whole vertex set. It is easy to see
that we have

L0 (G1UG2) <144 (G1G2).

Let G1 andG» both be the triangle grapkiz on the vertices, v, w. Thenlé(u, v) X
Ié(u, v) is the whole vertex set a¥1[JG». On the other hand, the vertéx, w) is notin
IGAlmGz((u, u), (v, v)). So also/~ is not product stable. Similar examples can be used to

show that/*2 is not product stable, for anty>1. However, in this case, the situation for
the convexities is different.

Theorem 6. Let G1 = (V1, E1) and G2 = (Vo, E3) be connected graphsnd letk > 0.
Then®% ;12 (G10G2) = 6 112 (G1)UIE 1o (G2).

Proof. The casd& =0 is a special case: it follows immediately franG1JG2) =1(G1)O
1(G2), which is part of folklore. The proof fok >1 is by induction ork. First we prove
that® ;. (G10G2) = 6,2 (G)UE ;4 (G2).

Choose any s&Vin ;. (G1)U% ;A (G2). ThenW = X x Y with Xin €, (G1) andY
in €, (G2). Take any two vertice&s1, up) and(vy, v2) in W, and let(z1, z2) be a vertex
in IGAIDGZ((ul, u2), (v1, v2)). If (z1, z2) is on some geodesic between, u2) and(v1, v2)
in G10G2, then(z1, z2) is in I, (u1, v1) x Ig,(u2, v2), whence inW, and we are done.
Otherwise, there exists a geodeBibetween(u1, up) and (v, v2) in G1JG>, such that
(z1, z2) is adjacent to two consecutive verticeg, x2) and (y1, y2) on P. Now (z1, z2),
(x1, x2) and (y1, y2) form a triangle inG1[JG>. This is only possible if eitheks, y1, z1
form a triangle inG1 andxz = y» = z2 in G, Or x2, y2, z2 form a triangle inG, and
x1=y1=2z1in G1. Inthe first case we hawg in X, sinceXis IGAl—convex, and triviallyz

inY. In the second case we haygin Y, sinceY is I(% -convex, and triviallyz; in X. So we
conclude that in both cases thai., z») lies inW. This shows thatVis in 4,4 (G10G>).

Conversely, choose any 8&fin €, (G10G>2). We will prove thatr; (W) is IGAI, -convex
in G;, fori =1, 2, and thatW = n1(W) x ma(W).

Choose any two vertices; and vy in ©1(W). Then, by the definition of projections,
there exist vertices,, vy in mo(W) such that(uq, us) and (v, vp) are vertices inW. Let
P> be a geodesic between andvz in G,. Take any vertexs in Ié(ul, v1). Then there
is a geodesi®®; betweeru1 andv; in G1 such that eithegs is on Py or z1 is adjacent to
two consecutive vertices, y1 on P1. Now Q = (P1[{uz}) U ({v1}dP>) is a subgraph of
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G10G>, which is a geodesic betweém;, v1) and(uz, v2). Then either(z1, uy) lies onQ
or (z1, up) is adjacent to the two consecutive verti¢es, u2), (y1, u2) on Q. SinceW is
IéDGz-convex, it follows in both cases théd;, u») lies inW. But this implies that lies

in t1(W). Henceny (W) is Ié-convex. Similarly, we deduce thap(W) is IGAZ-convex.

Clearly, we haveV C 11(W) x ma(W). So let(z1, z2) be a vertex inty (W) x ma(W).
By the definition of projections, there exists a vertexin 72(W) such that(zy, x2) lies
in W, and there exists a vertex in 1 (W) such that(x1, z2) lies in W. Let P, be a
geodesic betweem andzi in G1, and letP, be a geodesic between andx; in G.
ThenQ = (P10{z2}) U ({z1}0Py) is a geodesic betwedn1, z2) and(z1, x2) in G10G>2
containing(z1, z2). SinceWis IGA G, CONVex, it follows thatzy, z2) lies inW. This shows
thatW = (W) x ma(W), Whinl‘I concludes the proof in the calse- 1.

Finally, letk > 1. Then we have

Cnn(G1UG2) =% ;06-14(G10G>) (by Proposition 3
=% ;62 (GDUG w-12(G2) (byinduction
=% 110 (G)UEC 2 (G2) (by Proposition 3.

This concludes the proof.[]

6. Convexity invariants

Inthis section, we survey the classical convexity invariants such as the Helly, Carathéodory,
and Radon numbers and the exchange numbef{skk 20) for the path properties of Sec-
tion 4, except forl ;, of which not much is known as yet. Along the way we give improve-
ments of some of the known bounds. We start with shortly recalling the various definitions.
Let @ be a path property. A-copointof a pointp of V is a maximal®-convex subset of
V not containingp. The Carathéodory number of the convexity spac® is the smallest
integer (if it exists) such that for any finite subgedf V, (F)¢ = J{(S)¢ | S C F, |S|<c}.
Theexchange numberaf % is the smallest integer (if it exists) such that for any subset
of Vwith | F| > e and any poinpin F, we have(F — p)¢ € |J{{F —a)g |a € F — p}. The
Helly number hof € is the smallest integer (if it exists) such that every family of convex
sets with an empty intersection contains a subfamily of at moasémbers with an empty
intersection. Equivalentlyy is the smallest natural number such tht_ . (F — s)¢ # ¢
for every(h + 1)-element subsét of V. TheRadon number of ¢ is the smallest integer (if
it exists) such that evemrelement sef € V admits a Radon partition, that is, a partition
S = 851U 82,(51 N Sz =0) with (S1)¢ N (S2)¢ # @. Them-th Radon numberdenoted by
rm, iS the smallest number (if it exists) such that evegyelement seW C V admits a
Radonm-patrtition, that is a partition dBinto mpairwise disjoint subset#’y, Wo, ..., W,
such that Wi N (Wae N - - N (W) # 0.

Thecliqgue numbeu is the cardinality of the largest clique @ A subsets C V is called
aconvex-independent sétx ¢ (S — x)¢ for everyx € S. Therankof 4 is the supremum
of the cardinalities of the independent subsetg.dfthe hull number wf € is the infimum
of the cardinalities of subse®&of V such thatS), = V.
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6.1. The geodesic convexity

The geodesic convexity is in some sense “universal” with respect to the above mentioned
invariants, namely ifi6] it is observed that for every convexity on a finite 8etvith Helly,
Radon andn-th Radon numbers, r andr,,, respectively, there is a finite connected graph
G whose geodesic convexity has Helly numbhgRadon numberandm-th Radon number
at leastr,,. So far no relationships between the invariants Carathéodory, Helly and Radon
numbers and any known graph parameter are known. Note thatdhbe Q,, hash = 2,
c=nandr = [log,(n + 1)1 + 2.

6.2. The induced-path convexity

For the induced-path convexity, Duchet determinefbirthe relationships between the
Helly and Radon numbers and the clique number. Itis also shown there that the Carathéodory
numberc satisfiesc < 2. Using the inequality <c + 1 [18], it follows that the exchange
number satisfies < 3. Duchet’s result is as follows.

Theorem (Duchet, 1988 For the J-convexitythe Carathéodory number satisfies: 2,
the Helly number satisfidgs = w and the Radon number satisfies= w + 1if >3 and
r<4ifw<?2.

In Theorem 8, we will characterize the cases 3 and 4 for triangle-free graphs, i.e.
graphs withw < 2. First we need some preliminariescAt-edges an edge irG such that
the removal of its end-vertices disconne@Gts

Lemma 7. LetG = (V, E) be a2-connectegtriangle-free graph without cut-edges. Then
the J-convex hull of any two non-adjacent vertices in G equals V

Proof. Note that,G being triangle-free and 2-connected, there are non-adjacent vertices.
Letu andv be any pair of non-adjacent verticesGnand letSbe the convex hull ofu, v}.
Assume thaf # V. Choose any vertewin V — S. By Menger’s theorem we can find two
internally disjoint paths?, and P, starting inw and ending in distinct verticesandy in S
We may takex to be the first vertex oP, in Sandy to be the first vertex oP, in S Now
we deduce thaty is an edge. For, otherwise, we can find an induced path withia P,
betweerx andy going out ofS. And this would contradict the fact th&tis J-convex.

Since G does not contain cut-edges, there must be a patfrom w to a vertexz in
Sdistinct fromx andy such thatz is the first vertex ofP, in S As in the case oky, we
deduce thakzandyz are edges as well. But now we have created a triangbe gnand
z, which is impossible. This implies that= V, so that the convex hull af andv is the
whole graph. O

Let G be a 2-connected, triangle-free graph. &omof G is a maximal 2-connected
subgraph ofG not having a cut-edge. Thatom-cut-edge tred (G) of G is the graph
with the atoms and the cut-edges @Gfas its vertices, and two vertices Ih(G) are
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adjacent whenever one of them is a cut-edge and the other is an atom containing that edge.
Note that, within that atom, the edgerist a cut-edge. It is straightforward to verify that
T (G) isindeed a tree.

Theorem 8. Let G be a connected triangle-free graph with at least three vertices. The
Radon number r of the J-convexity of G3df and only if either G is a path or G is
2-connected and the atom-cut-edge tree of G is a path. In all other ¢cases

Proof. If Gis a path of length at least 3, then clearly 3. If G is not a path and not 2-
connected, then letbe a cut-vertex o6 of degree at least three. Any set of three neighbors
of v with two neighbors belonging to distinct componentgof v has no Radon partition.
So we have =4.

So letG be 2-connected. First, we determine theonvex hull of two non-adjacent
verticesu andv. If they lie in the same atord of G, then, by Lemma 7, their convex hull is
H. So suppose that they lie in different atofg and H,,. In the case thatis on a cut-edge
uu’, then we choosél, to be the atom such that any induagd-path contains vertices of
H, different fromu andu’. We make a similar choice in cases on a cut-edge. LR be
the path inT' (G) betweenH, andH,,, and letH,, Hi, ..., Hy, H, be the atoms oR in the
order that we encounter them while going frdip to H, alongP. LetH be the subgraph
consisting of the union of these atoms. We will show tHas$ theJ-convex hull ofu andv.

By Lemma 7, it suffices to show that tdeconvex hull contains two non-adjacent vertices
of every atom irH.

By the choice ofH,, the vertexu does not lie on the cut-edgg betweenH, and H;.
There exists an induced path#f betweeruandx. This path can be extended to an induced
u, v-path, so thak is in theJ-convex hull of{u, v}. Similarly, the same holds faor. Since
G is triangle-free,u cannot be adjacent to bothandy. So there are two non-adjacent
vertices ofH, in theJ-convex hull of{u, v}. Now, we replaced, andu by H; andx (ory),
respectively, and deduce that alfe is in the J-convex hull of{u, v}. Proceeding in this
way, we deduce thad is precisely theJ-convex hull of{u, v}.

From these observations we easily deduce th&t(df) is a path, then any three vertices
of G admit a Radon partition, so that= 3.

Finally, if 7 (G) is not a path, then take three different end verticeB(@f). In each of the
corresponding atoms @, choose a vertex that is not on a cut-edge. Then our observations
above tell us that there is no Radon patrtition for these three vertices. Hence we-hdve
This concludes the proof.[]

From the characterization of thkconvex hull in Section 4.2 we know that, for any
connected grapls and any vertex, any two distinct copoints gb are non-intersecting.
For, consider two distinct copoint$, and W, of a vertexp of G. SinceU, andW, are
distinctJ-convex sets, they are separated by a clique and hence have no vertex in common.
ThereforeU, and W, are non-intersecting. Le#, k> 1. A convexity% onV has the%-
copoint intersection propert I P (m, k) if and only if for eachp in V, it holds that any
set ofmdistincté-copoints ap contains &-subset with an empty intersection.[B], the
following result was proved.
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Theorem (Jamison, 198] Let the convexity on V satisfyC1 P (3, 2) with finite Helly
number h. Thenforeach>1,r, <2mif h=2,andr,, = (m — Dh + 1if h > 3.

By the above observations, theconvexity satisfie€' I P (3, 2). Therefore, we have the
following result.

Corollary 9. The J-convexity on a connected graph satisfies. 2m if o =2 andr,, =
m—-1Dow+1ifw>=3.

6.3. Triangle-path convexities

By Proposition 3, we need to consider orl} andJ2. As in the case of the geodesic
convexity, no bound or relationship between the invariants aftheonvexity and any other
known graph parameter is known. But, for thé -convexity, the bounds for the invariants
are known. The following result can be found[8]: the J©-convexity has Carathéodory
numberc = 2, exchange number= 3, Helly number: = 2 and Radon numbersatisfying
3<r<4.

From the characterization of tié*-convex hull mentioned in Section 4.5, we get, similar
to theJ-convexity, the following result for thé~-convexity in a connected gragh for the
J%-convexity given any vertex p of Gany two distinct copoints of p are non-intersecting

The J2-convexity satisfie€' I P(3, 2), by the previous discussion. Therefore as a corol-
lary of the theorem of Jamisdf], we have the following theorem.

Theorem 10. Letm > 1. Themth Radon number for thé 2-convexity satisfies, < 2m.
6.4. The all-paths convexity

The Carathéodory, Helly and Radon numbers for the all-paths convexity were investigated
in [17]. Recall that theblock-cut-vertex tree(G) of a connected grapG has the blocks
and cut-vertices oF as its vertices and two vertices Bf G) are adjacent whenever one of
them is a cut-vertex and the other a block such that the cut-vertex is a vertex of the block.
The hull numbeu and the rank of the all-paths convexity can be phrased in terrB$@j.
We summarize these results in the following theorem.

Theorem 11. For the all-paths convexitythe Carathéodory number satisfies= 2, the
exchange number satisfies= 3, the Helly number satisfies = 2, the Radon number
satisfies3<r <4, and themth Radon number satisfies, <2m. The hull number and the
rank are both equal to the number of end verticeB(i@).
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