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Preface to "Fractional Differential Equations,
Inclusions and Inequalities with Applications ”

In the past forty years, fractional calculus and its applications have gained significant
importance, mainly because it has become a powerful tool with more accurate and successful results
in modeling several complex phenomena in various fields of science and engineering. Fractional
derivatives and integrals provide a much better tool for the description of memory and hereditary
properties of various materials and processes than integer derivatives.

It is our great pleasure to publish this book. This selection of 33 papers focuses on recent
developments in the area of fractional differential equations, inclusions, and inequalities. All contents
were peer-reviewed by multiple referees and published as papers in the Special Issue “Fractional
Differential Equations, Inclusions and Inequalities with Applications” in the journal Mathematics.
They provide new and interesting results in different branches of fractional differential equations so
that the readers will be able to obtain the latest developments in the fields of fractional differential
equations and inequalities. We would like to thank the editors for their kind support on the
publication of this Special Issue. We also wish to express our appreciation to the authors of all articles
in this Special Issue for their excellent contributions as well as the reviewers for their work on

analyzing the manuscripts.
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Abstract: This paper studies the existence of mild solutions and the compactness of a set of mild
solutions to a nonlocal problem of fractional evolution inclusions of order « € (1,2). The main
tools of our study include the concepts of fractional calculus, multivalued analysis, the cosine family,

method of measure of noncompactness, and fixed-point theorem. As an application, we apply the
obtained results to a control problem.

Keywords: fractional evolution inclusions; mild solutions; condensing multivalued map

MSC: 26A33; 34G25; 47D09

1. Introduction

In the past several decades, there has been a significant development in the theory and applications
for fractional evolution equations and inclusions; for example, see the monographs by Miller and
Ross [1], Podlubny [2], Kilbas et al. [3], Zhou [4], and the recent papers [5,6]. More recently,
time-fractional diffusion and wave equations have been attracting the widespread attention of many
fields of science and engineering [7,8]. The interest in the study of these topics arises from the fact
that fractional diffusion equations a € (0,1) or fractional wave equations « € (1,2) can capture some
nonlocal aspects of phenomena or systems. Examples of these phenomena include porous media,
memory effects, anomalous diffusion, viscoelastic media, and so on. The papers [9-11] cover many of
these applications.

By virtue of semigroup theory and the operator theoretical method, some fractional diffusion
and wave equations can be abstracted as fractional evolution equations. Bajlekova [12] exploited the
concept of the fractional resolvent solution operator to investigate the associated fractional abstract
Cauchy problem. A number of papers [13-17] and the references therein were inspired by this concept,
and the topic of the existence of mild solutions to fractional abstract equations of order & € (1,2)
was also studied. For further discussion in [18], the authors considered the controllability results
for fractional evolution equations of order a € (1,2) by applying the concepts of Mainardi’s Wright
function (a probability density function) and strongly continuous cosine families.

The study of fractional evolution inclusions of order & € (0,1) also gained significant importance
(see, e.g., [19,20]). However, the study of fractional evolution inclusions of order « € (1,2)
supplemented with nonlocal conditions is yet to be initiated. We need to point out that the work
spaces are of finite dimension if the strongly continuous cosine families are compact (see, e.g., [21,22]).
Motivated by this fact and the above-mentioned works and relying on the known material, we

Mathematics 2019, 7, 209; doi:10.3390 / math7020209 1 www.mdpi.com/journal /mathematics
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aim to develop a suitable definition for mild solutions of fractional evolution equations in terms of
Mainardi’s Wright function. For this purpose, we consider the following nonlocal problem of fractional
evolution inclusions without further assumptions regarding the compactness of the cosine families or
the associated sine families.

{CDf‘x(t) € Ax(t) + F(t,x(t)), te€]=1[0,a],a>0, M

x2(0) +g(x) = xo, x'(0) = x1,

where “D¥ is a Caputo fractional derivative of order 1 < & < 2; A is the infinitesimal generator of
a strongly continuous cosine family {C(t)};>¢ of uniformly bounded linear operators in a Banach
space X; F : [0,a] x X — X is a multivalued map; g is a given appropriate function; and x,, x; are
elements of space X.

Here, we emphasize that the present work is also motivated by an inclusion of the following
partial differential model:

u(t,z) € Bult,z) + F(t,zu(t,z)), z€[0,7], t €]0,a],
u(t,0) = u(t, ) =0, te0,a],
u(0,z) + g(u) = up(z), u'(0,z) = u1(z), z€0,n),

where 0f is a Caputo fractional partial derivative. This model includes a class of fractional wave
equations that have a memory effect and are not observed in integer-order differential equations;
further, this class of equations indicates the coexistence of finite wave speed and absence of a wavefront
(see, e.g., [9]). It is interesting that for the case of # = 2, the above fractional partial differential
inclusion reduces to a second-order differential inclusion involving one-dimensional wave equations
with nonlocal initial-boundary conditions. For the case of « = 1 or & € (0,1) with the initial value
u1(z) vanished, the model contains the classical diffusion equations or fractional diffusion equations.
In addition, these types of equations can be handled by the method of semigroup theory (see, e.g., [20])
but not cosine families.

The rest of this paper is organized as follows. In Section 2, we recall some preliminary concepts
related to our study. In Section 3, we establish an existence result for mild solutions of Equation (1) and
discuss the compactness of the set of mild solutions. In Section 4, we show the utility of the obtained
work by applying it to a control problem.

2. Preliminaries

Let X be a Banach space with the norm || - ||. Denote by £(X) the space of all bounded linear
operators from X to X equipped with the norm | - || £(x)- Let C(], X) denote the space of all continuous
functions from J into X equipped with the usual sup-norm ||x||c = sup¢; [[x(t)||, where | = [0,a],a >
0. A measurable function f : ] — X is Bochner integrable if || f|| is Lebesgue integrable. Let L? (], X)
(p > 1) be the Banach space of measurable functions (defined in the sense of Bochner integral)

endowed with the norm .
P
I, = ([ 1soirar)

Definition 1. The fractional integral with the lower limit zero for a function u : [0, 00) — X is given by

1 £ .
I, u(t) = ) ./0 (t—s)"u(s)ds, t>0, a €Ry,

provided the right side is point-wise defined on [0, co), where T'(+) is the gamma function.
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Definition 2. The Riemann—Liouville derivative with the lower limit zero for a function u : [0,00) — X is
defined by

1 dr

L
Do ult) = T(n—a)det

t
/ (t—9)"*Lu(s)ds, t>0,n—1<a<n, acRy.
0

Definition 3. The Caputo derivative with the lower limit zero for a function u is defined by

n—1 (k)
CD('3‘+u(t) :LD(‘}Jr (u(t) - Z " k|(0) tk), t>0,n—-1<a<nacRy.
k=0 "

Definition 4. [23] A family of bounded linear operators {C(t) };cr mapping the Banach space X into itself is
called a strongly continuous cosine family if and only if C(0) = I, C(s +t) + C(s — t) = 2C(s)C(t) for all
s,t € R, and the map t — C(t)x is strongly continuous for each x € X.

Let {S(t) }+er denote the strongly continuous sine families associated with the strongly continuous
cosine families {C(t) };cr, where

S(t)x = /[:C(s)xds, xeX, teR ()

In addition, an operator A is said to be an infinitesimal generator of cosine families {C(t) };cp if

2
Ax d C(t)x) , forallx € D(A),

T dr t=0
where the domain of A is given by D(A) = {x € X: C(t)x € C2(R,X)}.

A multivalued map G is called upper semicontinuous (u.s.c.) on X if, for each x, € X, the set
G(x4) is a nonempty subset of X, and for every open set B C X such that G(x.) C B, there exists
a neighborhood V of x, with the property that G(V(x.)) C B. G is convex-valued if G(x) is convex
for all x € X. Gis closed if its graph I'c = {(x,y) € X x X : y € G(x)} is a closed subset of the space
X x X. The map G is bounded if G(B) is bounded in X for every bounded set B C X. We say that G is
completely continuous if G(B) is relatively compact for every bounded subset B of X. Furthermore,
if G is completely continuous with nonempty values, then G is u.s.c. if and only if G has a closed
graph. If there exists an element x € X such that x € G(x), then G has a fixed point.

Let B be a subset of X. Then, we define

P(X) ={B C X:Bisnonempty}, P(X)={B e P(X): Bisconvex},
Pa(X) ={B € P(X):Bisclosed}, Pu(X)={B € P(X):Bisbounded},
Pep(X) = {B € P(X) : Bis compact}, P eo(X) = Py(X) N Peo(X).
In addition, let co(B) be the convex hull of a subset B, and let ¢o(B) be the closed convex hull in X.
A multivalued map G : | — P (X) is said to be measurable if, for each x € X, the function Z : | — X

defined by Z(t) = d(x,G(t)) = inf{||x —z|| : z € G(t)} is Lebesgue measurable. Let G : ] — P(X).
A single-valued map f : | — X is called a selection of G if f(t) € G(t) forevery t € J.

Definition 5. A multivalued map F : | x X — P(X) is called L'-Carathéodory if

(i)  the map t — F(t,x) is measurable for each x € X;
(i) the map u s F(t,x) is upper semicontinuous on X for almost all t € J;
(iii) for each positive real number r, there exists hy € L'(J,R..) such that

IF(t,2) o) = sup{lloll = o(t) € F(t,x)} < Iu(t), for x|l <7, forae.te].
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For every Q) € P(X), the Hausdorff measure of noncompactness (MNC) is defined by
x(Q) = inf{e > 0: O has a finite e-net},
and the Kuratowski MNC is defined by
n
7(Q) =inf{d >0: Q c |J M; and diam(M;) < d},
j=1

where the diameter of M; is given by diam(M;) = sup{|x —y| : xy € M;}, j = 1,...,n
The Hausdorff and Kuratowski MNCs are connected by the relations:

x(Q) < 7(Q) < 2x(Q).

A measure of noncompactness x (or 7) is called: monotone if (3, Oy € P(X) with O C
implies x (1) < x(Q2); nonsingular if x({c} U Q) = x(Q) for every ¢ € X, Q € P(X); regular if
x(Q) = 0is equivalent to the relative compactness of Q).

We now introduce the MNC v as follows: for a bounded set D C C(], X), we define

v(D) = P (stlgx(D(t)), modc(D)> ,

where ©(D) is the collection of all denumerable subsets of D and modc (D) is the modulus of
equicontinuity of the set of functions D that have the following form

modc(D) = limsup max |[x(t2) — x(t1)]|-
0=0yeD [ta—t[<é

It is known that the MNC v is monotone, nonsingular, and regular. For more details on the MNC,
we refer to [24,25].

Lemma 1. ([24]). Let W C X be bounded. Then, for each ¢ > 0, there exists a sequence {x, }5_y C W such
that

x(W) < 2x ({xa}y) +e.

Lemma 2. ([26]). Let xc be the Hausdorff MNC on C(J, X), and let W(t) = {x(t) : x € W}. If W C C(], X)
is bounded, then for every t € |,

x(W(t)) < xc(W).

Furthermore, if W is equicontinuous, then the map t — x (W (t)) is continuous on | and

Xc(W) = Sttelgx(w(t))

Lemma 3. ([26]). Let {x,,}5_, be a sequence of Bochner integrable functions from | into X. If there exists
a function () € L'(J,Ry) satisfying ||xn(t)|| < p(t) for almost all t € | and for every n > 1, then the
function p(t) = x({xa(t)}5_) € L1(J,Ry) satisfies

X ({/Ot xp(s)ds: n > 1}) < Z/Otw(s)ds.

Lemma 4. ([27, Lemma 4]). Let {f,}5, C LP(J, X) (p > 1) be an integrable bounded sequence satisfying

x{futier) < o(t), ae,te],
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where v(-) € LY(J,R.). Then, for each € > 0, there exists a compact K. C X, a measurable set . C |
with measure less than €, and a sequence of functions {g5}0° ; C LP(],X) such that {g5(t)}5_; € Ke,
fort e ], and

Ifu(t) — gn(t)|| < 29(t) +€, foreachn >1and foreveryt € | — Je.

Lemma 5. ([28]) Let x be the Hausdorff MNC on X. If {W,}%_, C X is a nonempty decreasing closed
sequence and limy, o X(Wy) = 0, then N;_; Wy, is nonempty and compact.

Definition 6. Let D be a subset of a Banach space X. A multivalued function F : D — P(X) is said to be
v-condensing if v(F(Q)) z v(Q) for every bounded and not relatively compact set ) C D.

Lemma 6. ([25, Corollary 3.3.1]). Let () be a convex closed subset of a Banach space X and v be a nonsingular
MNC defined on subsets of Q0. If F : Q) — Pey,cp(Q) is a closed v-condensing multivalued map, then F has
a fixed point.

Lemma 7. ([25, Proposition 3.5.1]). Let Q) be a closed subset of a Banach space X and F : Q) — Pep(X) be
a closed multivalued function that is v-condensing on every bounded subset of 0, where v is a monotone MNC
in X. If the set of fixed points of F is bounded, then it is compact.

Throughout this paper, we suppose that A is the infinitesimal generator of a strongly continuous
cosine family of uniformly bounded linear operators {C(t)};>¢ in a Banach space X: that is, there
exists M > 1 such that [|C(t)||z(x) < M for t > 0. In the sequel, we always set g = 5 for a € (1,2).

As argued in [18], we define a mild solution of Equation (1) as follows.

Definition 7. A function x € C(J,X) is said to be a mild solution of Equation (1) if x(0) + g(x) = xo,
x'(0) = x1 and there exists f € L'(J, X) such that f(t) € F(t,x(t)) onae. t € ] and

x(t) = Cy(t)(x0 — g(x)) + Ky(t)x1 + /(:(t — s)q_qu(t —s)f(s)ds,

where
Gt = [ my@cwere, Kyt = [ Cyos, pyo)= [ gemy@ses
My() = o7 heg0h), 2400) = i (117 T ED i g, 01 (0,00),

and Mg (-) is the Mainardi’s Wright-type function defined on (0, ) such that
M,(8) >0 for 8 € (0,00) and /O M, (0)d6 = 1.

Remark 1. In considering the case of « € (0,1), we know from the references that there is a similar
representation of mild solutions if the initial value x; = 0 for the case of & € (1,2). However, the biggest
difference is that the operator A (typically the Laplacian operator) generates a Co-semigroup, and one can use the
method of semigroup theory to obtain some well-known results for the case of a € (0,1) instead of cosine families.
Further, if a tends to 1, the method of semigroup theory can be also used to deal with first-order evolution
problems; if a tends to 2, we can directly solve an evolution problem by using the concept of cosine families. Thus,
the studied evolution problem in Equation (1) is more different from the case of & € (0, 1], and it is valuable to
consider the existence of Equation (1).
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Remark 2. The setting q = a/2 for o € (1,2) is derived from the constraint of the Laplace transform of
Mainardi’s Wright-type function and the resolvent of cosine families (see [18]). This reflects the fact that the
probability density function is closely related to the mild solutions of the corresponding evolution problems.

Lemma 8. ([18]) The operators Cy(t), K4(t), and Py(t) (appearing in Definition 7) have the following
properties:

(i)  Foranyt > 0, the operators Cy(t), K;(t), and Py(t) are linear operators;

(ii) Forany fixed t > 0 and for any x € X, the following estimates hold:

M
1€ (D]l < Ml Ky ()]l < Mt 1Py (x| < Ty I+

(i) {Cq(t),t >0}, {Ky(t),t > 0}, and {#171P,(t),t > 0} are strongly continuous.
Lemma 9. ([29]) Let X be a separable metric space and let G : Q) — Py(X) be a multivalued map with

nonempty closed images. Then, G is measurable if and only if there exist measurable single-valued maps
gn + QO — X such that

G(w) = W, for every w € Q.

Lemma 10. ([30, Theorem 8.2.10]) Let (Q, A, ) be a complete o-finite measurable space, and let X, Y be
two complete separable metric spaces. If F : Q) — P(X) is a measurable multivalued map with nonempty
closed images and G : Q) x X + Y is a Carathéodory map (that is, for every x € X, the multivalued map
w +— G(w, x) is measurable, and for every w € Q, the multivalued map x — G(w, x) is continuous), then
for every measurable map h : Q — Y satisfying h(w) € G(w, F(w)) for almost all w € Q, there exists
a measurable selection f(w) € F(w) such that h(w) = G(w, f(w)) for almost all w € Q).

3. Main Results

We need to state the following hypotheses for the forthcoming analysis.

Hypothesis 1. The operator A is the infinitesimal generator of a uniformly bounded cosine family
{C(t)} 0 in X.

Hypothesis 2. The multivalued map F : | x X — Pe oo(X) is an L'-Carathéodory multivalued map satisfying
the following conditions:

(@) Foreveryt e J, themap F(t,-) : X — P ep(X) is us.c.;
(ii) Foreach x € X, themap F(-,x) : | = Py (X) is measurable and the set

Spy={f€L}J,X): f(t) € F(t,x(t)) forae.t € J}
is nonempty.
Hypothesis 3. There exists a function k¢(-) € LY(J,Ry.) such that
IF(t x)|| = sup{lIfll : f€F(tx)} <ke(t)(1+]x]), foraa.te Jandallx € X.

Hypothesis 4. There exists a function B(-) € L'(J,R.) such that x(F(t, D)) < B(t)x(D) for every bounded
subset D C C(],X).

Hypothesis 5. ¢ : C(J, X) — X is a continuous and compact function, and there exist constants Ng1, Ng2
such that [|g(x)[| < Ng1|lx||c + Nga for x € C(], X).
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Remark 3. If X is a finite dimension Banach space, then for each x € C(],X), Sgx # © (see, e.g., Lasota
and Opial [31]). If X is an infinite dimension Banach space and x € C(J,X), it follows from Hu and
Papageorgiou [32] that Sg» # @ if and only if the function ¢ : | — Ry given by ¢(t) := inf{||v]| : v €
F(t,x)} belongs to L' (J,R).

Lemma 11. ([31]). Let X be a Banach space, let F : ] x X — Pep,co(X) be a L'-Carathéodory multivalued
map with Sgx # O (see (H2)), and let ¥ be a linear continuous operator from L'(], X) to C(J, X). Then,

YoSp:C(J,X) = Pepeo(C(J, X)), x> (¥oSp)(x):=Y(Skq),
is a closed graph operator in C(], X) x C(J, X).

Theorem 1. Assume that (H1)—(H5) are satisfied. Then, Equation (1) has at least one mild solution provided
that |[k¢|l1 < (1 — MNg1)M~'a'=29T(2q) and ||B||; < (8M) 'a' 1T (2g).

Proof. By (H2), we can define a multivalued map & : C(],X) — P(C(J, X)) as follows: for x €
C(J, X), 2(x) is the set of all functions y € &(x) satisfying

VD = Colt)(x0 ~ 30) + Kaft)a + [ =5 Pyt =)o), te

where f € Sr .. It will be verified in several steps, claims and parts that the operator 27 has fixed
points that correspond to mild solutions of Equation (1).

Step 1. & maps a bounded closed convex set into a bounded closed convex set.

By the hypothesis of function k¢ (-) in (H3), there exists » > 0 such that

Manfl ¢ Ma2‘771
g M g

Furthermore, we introduce Wy = {x € C(J,X) : ||x|[c < r} and observe that W is a nonempty
bounded closed and convex subset of C(], X). Let x € Wy and y € Z(x), then, there exists f € Sg
such that for each t € | and for any x € Wy, we have

M| xp|| + MNg1r + MNg + Ma||x1|| + ksllar <. (3)

() = Cy(6) (0 — 80 + Ky + [ (= 9)1 Ryt = 5)f(s)as.

By (H3) and (H4), we have

YOI <N1Cq (D)l £(x) 1 ¥0 = g+ [1Kg (D) £x0) %01 + /Ot(t = )17 Py(t = 5)f(s) | ds

<M+ MIg(a)]|+ Ml + 5 [ (6= 9% ey (6)(1+ (o))

Mt M-

<M|xg| + MNg [|x||c + MNgz 4 Mt||xq || +
¢ § I(29) T(29)
Manfl Manfl
<Ml|xq|| + MNg17 + MNgo + Mal|x1|| + — [kl + 5+
§ § T(2g) "1 T(2g)

1 1
kel + lIkfllallxllc

kg llar

<r.

Therefore, ||y||c < r, which implies that 22(Wy) C Wy.
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Define Wy = co(Wy). Clearly, W; C C(J,X) is a nonempty bounded closed and convex set.
Repeating the arguments employed in the previous step, for any x € Wy, y € Z(x), it follows that
there exists f € Sg,, such that for each t € | and for any x € Wy,

(1) = Cy(6) (0 — () + Kyt + [ (=91 Ry = 5)f(s)as.

By (H3) and (H4), together with Lemma 8 (ii), we have

t
ly(ON <NCq(#)(x0 — gG) | + 1Kg ()1 ]| + /0 (=) 1[Py(t = 5) f(s)]|ds
2q—1 2q—1
<M|xo]| -+ MNg1r+ MNgz + Mal[x1 |+ Sz kgl -+ Sz glar < v

which implies that Z2(W;) € Wy and Wy C Wp.

Next, for every n > 1, we define W, ;1 = c0.(W;,,). From the above proof, it is easy to see that
W, is a nonempty bounded closed and convex subset of C(J, X). Furthermore, W, = co 2 (W;) C W;.
By induction, we know that the sequence {W,,}$_, is a decreasing sequence of nonempty bounded
closed and convex subsets of C(], X). Furthermore, we set W = 5_; W,, and note that W is bounded
closed and convex since W, is bounded closed and convex for every n > 1.

Now, we establish that (W) C W. Indeed, Z(W) C Z(W,,) C c0?(W,) = W, for every
n > 1. Therefore, Z(W) C N, Wy. On the other hand, W, C Wj for every n > 1. Hence,

@(W)g ﬂwn: ﬂWn:W,
n=2 n=1

Step 2. The multivalued map & is v-condensing.
Let B C W be such that
v(B) < V(2 (B)). )

We show below that B is a relatively compact set; that is, v(B) = 0.
Let 0(B) = sup,; x(B(t)), and let v(2(B)) be achieved on a sequence {yn}, € 2 (B); thatis,

v({wada) = max (o({ynka), mode({ynkiy) ).

Then,
Yn(t) = Cq()(xo — g(xn)) + Ky(£)x1 + ./0 (t— s)”]’lpq(t —s)fa(s)ds, te],

where {x,}? ; C Band f, € Selr, for every n > 1.
Since g is compact, the set {g(x,;) : n > 1} is relatively compact and Cy(t), K,(t) are strongly
continuous for t > 0. Hence, for every ¢ € |, we have

v({Cy(t)(xo — g(xn)) + Ky(t)x1, n > 1}) = 0.

Therefore, it is enough to estimate that

v ({/Ot(t7s)q*1pq(tfs)fn(s)ds, n> 1}) —0.

Claim I o({y.}5>,) = 0.
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For any t € |, using (H4), Lemma 3, and Lemma 8 (ii), we have

() 50) =58P x( ()52 < 250 (6= ({Ple =)o) )

2M it _ 00
<suproor [, (6= B ((an(s) ) s
Si‘é?r%) /0 (t— )21 B(s)dse ({xn} )
2q—1
< [ Py < ot{ni).

On the other hand, Equation (4) implies that o({yx}5 ;) > o({xx}; ;). In consequence, we have

o({yn}iy) = 0.
Claim II. mod¢ ({y, }5_1) = 0; that is, the set B is equicontinuous.
Let

()= [ (= )T By =) fus)ds

Therefore, it remains to be verified that modc ({¥,}5—;) = 0. Then, for any ty,t, € ] with t; < fp, we
have

170(62) = G0l < [ 62 =907 By 12 = ) o)

[ =9 By = 9) = (11— )T Byt = 9) () s
=0+ .

According to Lemma 8 (ii), we get

L s%q) /f(tz — 52Tk (s)(1+ an(s) 1) ds

M
r'(29

t
< )(tz—tl)zqfl/zkf(s)ds(uuxnuc)—>o, asty — t.
ty

Let T, (t) = 771D, (t) for t € ]. Then, we know from Lemma 8 (iii) that T, () is a strongly continuous
operator. For I, taking £ > 0 to be small enough, we obtain

B [T ) = Ty~ D@ s+ [Tyt =) = Ty = )l

< /;1 kp(s)(1+ [lxn(s)[)ds  sup  [|Ty(t2 = 5) — Ty(ts = 5)ll¢(x)

s€[0,t1—¢]
Me2=1 Mty — t; +€)21 h
( I'(29) I'(2q) )/tﬁgkf(s)(l + llxn(s)[)ds
<[kplli(T+llxallc) sup [Tyt —s) = Ty(tr — )|l 2x)
se€(0,t;—¢]
M=t M(ty—t +€)2! b
( T(29) T'(2q) )(1+ Hanc)/ka(s)ds

—0, asty —ty, e—0.



Mathematics 2019, 7, 209

Consequently, we have

modc <{/Ot(t —s)qfqu(t—s)fy,(s)ds, n> 1}) =0.

As a conclusion, it follows that modc ({1 }5_;) = 0. Hence, the multivalued map £ is v-condensing.
Step 3. The multimap Z?(x) is convex and compact for each x € W.
Part I. #(x) has convex values for each x € W.
In fact, if y1, y» belong to & (x) for each x € W, then there exist fi, fo € S such that for each
t € J, we have

t
(1) = Gy (o0 — 50) + Ky + [ (1= ) By (1 —9)fis)ds, i =1,2.
Let 6 € [0,1]. Then, for each t € ], we get

(Oy1 + (1= 0)y2)(t) =Cy(t) (x0 — &(x)) + Ky(£)x1
t
[T (= ) OA + (1 0)f2) ().
As F has convex values by the definition of Sy, we deduce that 0f1(s) + (1 — ) f2(s) € Sg. Thus,
Oy + (1 —0)yr € P(x).

Part II. &7 has compact values. In view of the foregoing facts, it is enough to show that W is
nonempty and compact in C(J, X): that is, by Lemma 5, we need to show that

lim v(W,) = 0. )

n—o00

As in Step 2, we can show that modc(W,,) = 0; that is, W, is equicontinuous. Hence, it remains to
be shown that (W, ) = 0. By Lemma 1, for each & > 0, there exists a sequence {y;}{*; in Z(W,_1)
such that

c(Wn) = 0(2(Wy)) <20({yr}izy) +e

Therefore, by Lemma 2 and the nonsingularity of o, it follows that
c(Wi) <20({yr}izy) +e= ZSugJ)(({yk(t)},‘le) +e (6)
te

Since yx € P (Wy—1) (k > 1), there exists x; € W,_1 such that y, € Z(x;). Hence, from the
compactness of ¢ and the strong continuity of C;(t) and K,(t) for t € ], there exists f; € Sfx, such
that for every t € J,

A{ye(®) 1) <x({Cq(8) (xo — 8({xi}ily)) + Ky (B)x1})
+x <{/O'f(t —$)17IP, (¢ — ) fi(s)ds : k> 1})

. ({/Ot(t TR (t— 5) f(s)ds < k > 1}) .

By (H5) and Lemma 1, for a.e. t € ], we have

x({f()}i21) < x(F(EA{x(O)}120)) < BOX{x(B)1iZ) < B(E)T(Woo1) := 7 (8).

On the other hand, by (H3), for almost all ¢ € ], [|fi(t)|| < kf(t)(1 +7) for every k > 1. Hence,
fi € LY(J,X), k > 1. Note that y(-) € L1(J,R.) from (H4). It follows from Lemma 4 that there exists

10
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a compact K C X, a measurable set [ C | with measure less than €, and a sequence of functions
{g¢} C L(J, X) such that {g¢(s)}$>; C K foralls € ], and

Ilfi(s) — 85 (s)|| < 27y(s) +e, foreveryk>1landeverys € J. =] — Je.

Then, using Minkowski’s inequality and the property of the MNC, we obtain

x({ =9 m -0 - sionas: k= 1})

“e

<oy (=9 XU E) ~s56) ¢ k> 118
S A sup fs) — (5 s
2Ma?1-1
g 010+
AMa27-1 2Ma?1~1
=Teg " Ty
201 2q—1
§4]\1f1(112;) o(Wa-)lIBllx + zj\r/l(uz;) “ v
and
X <{/] (= )11, (t — ) fic(s)ds : k> 1}) S%/, (t=9)2 X ({fi(s) 22y ds
s%/, (=1 sup [ is)llds
< Afé;l (1+7) /; ky(s)ds. ®

Using Equations (7) and (8), we have
' <{/°t(t_S)qilpq(t_s)fk(s)ds: . ) =X ({/,é(t—s>"*qu(t—s>fk(s)ds: k> 1})
X ({/,e(t — )T 1Py (t =) fi(s)ds : k> 1})
= ({/,,“ — 1Ry (¢~ 3)(fls) — g§(5))ds : k > 1})

€

+x ({ J (= B = g s)as : k> 1})

€

4 ({/ (t—s)T71B, (t —5) fi(s)ds : k > 1})
Je
<4Ma2‘f’1 2Ma?1  Ma?1

ST a(Wu_1)|1Bllh + T2q) €+ T(2q)

(1+ r)/ Ky (s)ds.
]E
As € is arbitrary, for all t € ], we get

' 2q—1
X ({/Ot(l‘fs)qflpq(l‘fs)fk(s)ds}> < %nﬁula(w,,_l).

11
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Therefore, for each t € |, we have

2g9—1
XN < S 1Bl W)

By the above inequality, together with Equation (6) and the arbitrary nature of ¢, we can deduce that

8Ma21-1
c(Wu) < WH,B”W(WWI)-
Then, by induction, we find that
8Ma21-1 "
0<o(Wy) < <WH5H1> o(Wp), foralln >1.

Since this inequality is true for every n > 1, passing on to the limit # — co and by (H4), we obtain
Equation (5). Hence, W = N;_; W, is a nonempty compact set of X, and 2 has compact values in W.
Step 4. The values of & are closed.
Let xy, xs € Wwith x, = x,asn — o0, y, € P(x,), and y, — Yy« as n — oo. We show that
Y« € P(x4). Indeed, y, € F(x,) means that there exists f, € Sr, such that

n(6) = Col0) k0 = g(0)) + Ky ()31 + [ (=917 Byt = )fu(5)ds.

Next, we must show that there exists f. € Sr, such that

t
ye(t) = Cyt) (x0 = () + Ky(t)ra + [ (£ =3) By(t = 5)fu(5)d
Since x,, — x4 and y, € £ (xy), we deduce that

[1(yn () = Cq(B)x0 + Ca(£)g (xn) — Kg(£)x1) — (y(£) — Cq(t)x0 + Cq(B)g (x+) — Kg(H)x1) || = 0,

asn — oo,
Now, we consider the linear continuous operator

F LN, X) = C(,X), f— (?f)(t):/Ot(t—s)q*IPq(t—s)f(s)ds.

From Step 3 and Lemma 11, it follows that .% o Sr is a closed graph operator. Furthermore, in view of
the definition of .7, we have

(n(t) = Cq(t)xo + Cqlt)g(xn) — Kg(t)x1) € F (SE,)-

In view of the fact that x,, — x, as n — o, the repeated application of Lemma 11 yields

t
Y (t) = Cq(t)xo + Cy(t)g(x4) — Ky(t)x1 = /0 (t—8)171Py(t — ) f(s)ds
for some f € Sg,. Thus, & is a closed multivalued map.

Therefore, as an implication of Steps 1-5, we deduce that & : W — P(W) is closed and
v-condensing with nonempty convex compact values. Thus, all the hypotheses of Lemma 6 are
satisfied. Hence, there exists at least one fixed point x € W such that x € (x), which corresponds to
a mild solution of Equation (1). [

12
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Theorem 2. Suppose that all the assumptions of Theorem 1 are satisfied. Then, the set of mild solutions of
Equation (1) is compact in C(], X).

Proof. Note that the set of mild solutions is nonempty by Theorem 1. Indeed, letting > 0, defined
by Equation (3), we can get a mild solution in Wy. Now, we show that an arbitrary number of mild
solutions of Equation (1) belongs to Wj. Let x be a mild solution of Equation (1). Then,

(1) = Cyl1) (30 — g(x)) + Ky(O1 + [ (¢ = )1 Byt = 9)f()ds,

where f € Sp, = {f € L'(J,X) : f(t) € F(t,x(t)), fora.e.t € J}. Using an argument similar to the
one used in Step 1 of the proof of Theorem 1, we have

e =sup (1)
<sup (1) (x0 = (x) | + sup Ky (11 -+ sup [ =9 = )55 s

Ma?
<M|xol| + MNgi7 + MNga + Mal|x1 || + —= 75~ kgllar <.

Ma?1~1
(Zq) ” f”l“r ( )

This shows that the mild solutions of Equation (1) are bounded. Thus, the conclusion follows from
Lemma 7. The proof is completed. O
4. An Application

Let O € RN (N = 1,2,3) be an open bounded set and X = U = L?(Q). Let us consider the

following fractional partial differential equations with the constrained control u and a finite multi-point
discrete mean condition:
oty(tz) = Ay(t,z) + G(t, z,y(t,z),u(t,z)), tel[0,1],z€O, uel,
y(t,z) =0, te0,1],z €00

¥02) - Y [ m@ (0 =0,y (02 =0,z €0,
i=0

©)

where 0 is the Caputo fractional partial derivative of order « € (1,2),0 <ty <t; < --- < t, <1,
m(¢,z) : Qx Q — X is an L?>-Lebesgue integrable function, and G : [0,1] x Q x X x U — X is
a single-valued continuous measurable function.

We define x(t) = y(t,-), thatis, x(t)(z) = y(t,z), t € ], z € ), here ] = [0,1]. The set of the
constraint functions U : | — P (X) is a measurable multivalued map. If u € U, then it means
that u(t) € U(t,x(t)), for a.e. t € J. The function f : ] x X x U is given by f(t,x(t),u(t))(z) =
G(t,z,y(t,z),u(t, z)). Equation (9) is solved if we show that there exists a control function u such that
Equation (9) admits a mild solution. Let the multivalued map be given by

F(t,x()) = {f(t,x(t), u(t)), weU}. (10)

Then, the set of mild solutions of the control problem in Equation (9), with the right-hand side given
by Equation (10), coincides with the set of mild solutions of Equation (1).
Let A be the Laplace operator with Dirichlet boundary conditions defined by A = A with

D(A) = {ve L2(Q): ve H{Q)NH?(Q)}.

13
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Let {—Ag, ¢r}72, be the eigensystem of the operator A. Then, 0 < Ay < Ay < ---, Ay = c0as
k — oo, and {¢}3> ; forms an orthonormal basis of X. Furthermore,

Ax ==Y M dr)¢r, x € D(A),
=1

where (-, -) is the inner product in X. It is known that the operator A generates a strongly continuous
uniformly bounded cosine family (see, e.g., [9]), which, in this case, is defined by

C(t)x = i cos(v/Art) (x, P ), x € X,
k=1

and then [|C(t)||z(x) < 1 for every t > 0. Hence, (H1) holds.

Taking « = 3, we have g = 3. Let g : C(J, X) — X be given by g(x)(z) = LI Kex(t;)(z) with
Keo(z) = [m(E,z)v(E)dE for v € X, z € Q) (noting that K, : X — X is completely continuous). Thus,
the assumption in (H5) holds true. With the choice of operator A, Equation (9) can be reformulated in

X as the following nonlocal control problem:

1)

{C “x(t) = Ax(t) + f(t,x(t),u(t)), te],ucl,
x(0) = g(x), ¥'(0) =0.

Next, the results obtained in Section 4 apply to the following problem of fractional evolution inclusions:

{CD;‘x(t) € Ax(t) + F(t,x(t)), te], )

x(0) = g(x), ¥'(0) = 0.
Theorem 3. Assume that the following conditions hold:
Hypothesis 6. U : | = Py ., (X) is a measurable multivalued map.

Hypothesis 7. The function f : [ x X x X — X is L'-Carathéodory, linear in the third argument, and
there exists a function k¢(-) € LY(J,Ry) satisfying lkellh < /7(1 —nllm||)/2 such that || f(t, x,y)|| <
ke(t)(1 + [|x[[) for almost all t € J and all x € X.

Hypothesis 8. There exists a function B(-) € L'(J, Ry ) satisfying ||Bll1 < v/7t/16 such that

x(f(t,D,U(t,D))) < p(t)x(D),

for every bounded subset D C C(], X).

Then, the control problem in Equation (9) has at least one mild solution. In addition, the set of mild
solutions is compact.

Proof. From (H6) and (H7), the map t — F(t, -) is obviously a measurable multivalued map, and then
F(-,-) € Peyei(X). Now, we show that the selection set of F is not empty. Since U is a measurable
multivalued map, it follows by Lemma 9 that there exists a sequence of measurable selections
{u,}2, C U such that

Uu(t) = J{un(t), n >1} foreveryte .

Let v, (t) = f(t, x(t),un(t)) forn > 1and t € J. In view of the continuity of f, v, is thus measurable.
Hence, {v,(t), n > 1} C F(t,x(t)). Conversely, if f(t,x(t),u(t)) € F(t,x(t)) for any u € U, then there
exists a subsequence in U which will be still defined by {u,, }?? ; such that u, — 1 as n — 0. It follows

14
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from the continuity of f that f(t,x(t), u.(t)) — f(t x(t),u(t)) as n — co. Hence, f(t,x(t),u(t)) €
{v,(t), n > 1}. This means that

F(t,x(t) = U{oa(8), n 2 1),

Consequently, from Lemma 9, F(-, x) is measurable.

Next, we show that the map x — F(-, x) is an u.s.c. multivalued map by means of contradiction.
Firstly, we suppose that F is not u.s.c. at some point xo € Q). Then, there exists an open neighborhood
W C X such that F(t,x9) C W, and for every open neighborhood V C Q of x, there exists x; € V
such that F(t,x1) ¢ W. Let

1
Vi = {er, [|x — x| < Y n:1,2,...}.

Clearly, V;, is a open neighborhood of xy. Then, for each n > 1, there exist x, € Vy,, v, € F(t,x,),
and u, € U such that v, = f(t,x,,u,) and v, ¢ W. Moreover, as {u,}5_; C U, we set u, — u as
n — oo for some u € U. By the continuity of f, owing to x, — xg as 1 — o, we have v, — v as
n — oo, where v = f(t,xo, u), which implies that v € F(t,xy) C W. This contradicts that v, ¢ W for
each n > 1. Thus, our supposition is false.

In addition, according to the condition in (H7), we find that F is an L!-Carathéodory multivalued
map. Hence, (H2) and (H3) are satisfied. On the other hand, the hypothesis (H8) corresponds to (H4).
Thus, all of the hypotheses of Theorem 1 are satisfied. Hence, Equation (12) has at least one mild
solution. Furthermore, the set of mild solutions of Equation (12) is compact by Theorem 2.

Finally, we show that the mild solutions of Equation (12) do coincide with the mild solutions
of the control problem in Equation (11). Let x be a solution of Equation (12). Then, there exists
a single-valued selection

¢ €Spx={peL(]X), ¢(t) € F(t,x(t)), ae t €]}, (13)

such that
Dix(t) = Ax(t) + ¢(t), ae. t € ], and x(0) = g(x), x'(0) = 0.

Now, we introduce a map ¥ (t,u) = f(t,x(t), u(t)) and note that it is Carathéodory. Moreover, let the
equality in Equation (10) be satisfied. Then, for a.a. t € | and for every ¢(t) € {f(t, x(t),u(t)),u €
U} :=Y¥(t,U(t)), we deduce by Lemma 10 that there exists a measurable selection u(t) € U(t) such that
o(t) =¥ (tu(t)) = f(t,x(t),u(t)) for a.a. t € J. Thus, the mild solution satisfies the control problem in
Equation (11).

On the other hand, let x satisfy the control problem in Equation (11). Then, x is obviously a mild
solution of Equation (12), and the proof is completed. [

5. Conclusions

In the current paper, we study a class of fractional evolution inclusions with nonlocal initial
conditions. We obtain the sufficient conditions for ensuring the existence of mild solutions and the
compactness for set of mild solutions. We can see that the probability density function is closely
related to the mild solutions of the corresponding evolution inclusion problems, which enrich the
knowledge of the fractional calculus. Moreover, an illustrative example is provided to demonstrate the
applicability of the proposed problem.

On the other hand, many evolution inclusion problems are focused on a finite interval. This is
because the solutions of some physical models may blow up, or we can gain a clearer understanding
of the state of a physical system in finite time. If the time goes to infinity, it urges us to extend the
concept of mild solutions such as Equation (1) in [0, c0) and, furthermore, to find the existence of global
mild solutions. However, the technique for an infinite interval is more complex, and this topic may
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be a future work. In addition, our future works also include the topological properties of solution
sets (including Ry, acyclicity, connectedness, compactness, and contractibility) for fractional evolution
inclusions of order « € (1,2).
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Abstract: This manuscript is devoted to establishing existence theory of solutions to a nonlinear
coupled system of fractional order differential equations (FODEs) under integral boundary conditions
(IBCs). For uniqueness and existence we use the Perov-type fixed point theorem. Further, to
investigate multiplicity results of the concerned problem, we utilize Krasnoselskii’s fixed-point
theorems of cone type and its various forms. Stability analysis is an important aspect of existence
theory as well as required during numerical simulations and optimization of FODEs. Therefore
by using techniques of functional analysis, we establish conditions for Hyers-Ulam (HU) stability
results for the solution of the proposed problem. The whole analysis is justified by providing suitable
examples to illustrate our established results.

Keywords: arbitrary order differential equations; multiple positive solution; Perov-type fixed point
theorem; HU stability

1. Introduction

Fractional order differential equations (FODEs) emerge in the scientific demonstration of
numerous frameworks and different fields of science such as physics, chemistry , economics, polymer
rheology, aerodynamics, electrodynamics of complicated medium, blood flow phenomena, biophysics,
etc. (see [1-5]). Recently, many authors have studied FODEs from different aspects, one is the numerical
and scientific techniques for finding solutions and the other is the theoretical perspective of uniqueness
and existence of solutions. The interest of the researchers in the investigation of FODEs lies in the
incontrovertible fact that fractional-order models (FOM) are found to be highly realistic and practical,
compared to the integer order models. Because there are additional degrees of opportunity in the
FOM, in consequence, the subject of FODEs is gaining more attention from researchers. Another facet
of research, which has been completely studied for integer order differential equations is devoted to
uniqueness and existence of solutions to boundary value problems (BVPs). The mentioned aspect
has been very well studied for FODEs, we refer the readers [6-10]. Uniqueness and existence results
of solutions to multi-point BVPs have been studied via classical fixed point theorems such as the
Schauder fixed point theorem and the Banach contraction principle, see [11-17].
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FODEs under integral boundary conditions (IBCs) have been investigated very well because these
type of equations are increasingly used in fluid-mechanics and dynamical problems. Jankowski [18]
studied the ordinary differential equation under IBCs given by

y'(8) =F@,y(®)), ¢€[0T, T>0,

.
y(®)]o—o = 6 /0 y(s)ds+do, do €R,

where F € C([0,T] x R,R) and § = 1 or —1. He developed a sufficient condition for iterative
approximate solutions to the above problem.
Nanware and Dhaigude [19] have investigated the aforementioned BVP under the IBCs for FODE
as given by
DYgy(8) = F(8,y(8)), 6€[0,T), T>0,

.
(9)lo—o = 5/0 y(s)ds+do, do€R

where 0 < 0 <1,4is1or —1and F € C([0, T] x R,R), D}, is Riemann-Liouville fractional derivative
of order ¢ is defined in (2). The aforementioned author also studied the iterative approximate solution
to the above FODEs.

In the same line Cabada and Wang [20] studied the following problem under IBCs as

Doy (9) + @(8,y(8) =0; 8 € (0,1),

1
y(0) =y =0, y(1)=6 [ y(s)ds,

where o € (2,3],6 € (0,2) and y : [0,1] x [0,00] — [0, 00| are the continuous functions. Also we remark
that CDiO stands for Caputo’s fractional derivative.

Inspired from the aforementioned work, in this article we investigate a system of nonlinear FODEs
with IBCs as

(0,1); m—1<o¢<m,

Doy (9) + ¢(8,y(8),2(8)) = €
€(0,1); m—-1<e<m,

D¥oz(8) + x(d,y
1
y(0) =y =y"0) = =y =0, y(1)=¢ [ y(s)ds, @

£0)=2(0) = (0) =0 =" 2(0) =0, (1) =¢ [ =(s)ds,

~
EN
=
N
~
EN
=
=
I
S

such that m > 3, ,0 € (0,2), the functions ¢, x : [0,1] x [0,00] X [0,00] — [0, 0] are continuous
functions and D% ), DY, stand for Riemann-Liouville fractional derivatives is defined in (2). We claim
that such a system of FODEs are very rarely considered for stability as well as multiplicity results.
Our analysis is devoted to the existence theory of a solution, multiplicity results and stability analysis
of the suggested problem.

During the last few decades another part of research, which has been considered for FODEs and
got much attention from the researchers is stability analysis. Numerous forms of stabilities have been
studied in literature which are Mittag-Leffer stability, exponential stability, Lyapunov stability etc.,
we refer [21-23].

The Ulam stability was first presented by Ulam in 1940 and then brilliantly explained by Hyers
in 1941. For more information about HU stability, we refer [24,25]. The HU stability results were
generalized and extended by many researchers for FODEs under IBCs. In 1978, Jung studied the
said stability for ODEs. Oblaz, Benchohra, etc., have studied the said stability for FODEs but their
investigation was limited to initial value problems, we refer to [26-28]. To the best of our information
and knowledge, the HU stability has been very rarely studied for coupled system of FODEs under
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IBCs. Therefore in this article we investigate HU stability to the considered problem. Here we remark
that we also provide some necessary results for nonexistence of solution. Finally a series of examples
are provided to support our analysis.

2. Axillary Results

In the current section, we review some fundamental definitions and useful results of functional
analysis, fractional calculus and fixed point theory (see reference [1,2,8,29-32]). Here, first of all, we
define the Banach space which is utilized throughout in this article.

Let us define E = {y(8)[y € C[0, 1]} with the norm |[y[| = maxg[o1) [y(¢)]. We define the norm
for the product space as ||(y, z)|| = ||y|| + ||z||- Obviously (E x E, || - ||) is a Banach space.

Let K =[0,1— 0] for each 6 € (0,1), then, we define the cone C C E x E by

C={(yz) €ExE: gleig[y(ﬁ) +2z(8)] > AMll(y, 2|}
C={(y2) €C:|(y2)ll £r}, 0C = {(yz) € K: (v, 2)l =r}.

As in [31], we define positive solution as follows.

Definition 1. A pair of functions (y,z) € E x E is called a positive solution of problem (1) under the given
IBCs if DYy, Dﬁoz € L'0,1] with (y,z) > (0,0) on (0,1] x (0, 1], where the functions y, z satisfy the IBCs
given in (1) respectively, for all ¢ € [0,1].

Definition 2. The Riemann-Liouville fractional derivative of order o > 0 of a continuous functiony : (0,00) —
R is defined as

Dloy(8) = % (%) /(;9(19 —8)™ 7 ly(s)ds, )]

m-—o)

where m = [0] + 1 and [o] denotes the integer part of o.

Definition 3. The Riemann-Liouville fractions of integration of order o > 0 of a continuous function y :
(0,00) — Ris defined by

1 -
50y(8) = £y ) (=917 'y(s)ds, @
where the integral is point-wise defined on (0, o).
Lemma 1. Let o > o, then the FODE
DZoy(8) =0 4)
has a solution given by
m i
0)
y(0) =y YWys ©)
=1 "
Lemma 2. Let 0 > 0. Then we have
m i
0) .
70D%0y(@)] = y(0) - 3> Y o ©
i=0 "

Lemma 3. [2] Let 0 > 0 and ¢ € C(0,1) NL(0,1), then the FODE

Doy(9) = h(9)
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has a solution given by
y(0) = 10" 007 2+ em® ™ +10h(8),
wherec; € Rfori =10,1,2,..., mand m = [o] + 1.

Definition 4. [32,33] On the Banach space E defined afore, the mapping d : E x E — R" is called a generalized
metricon Eif Vx,y,andy,z € Ewithy # x,z #y, z # y, then the following hold

(A1) d(y,z) =0 y=2z Vyz€E
(A2) d(y,z) =d(z,y), Vyz€E
(A3) d(x,y) = d(x,z) +d(zy) +d(yy). Vx,yyz €E.

Further the pair (E,d) is called a generalized metric space.

Definition 5. [32,33] Let M = {Mmm € RT*™}, for any matrix B € M the spectral radius is defined by
®(B) = sup{|Ai|,i = 1,2,...,m}, where A, for i = 1,2, ..., m are the eigenvalues of the matrix B and the
matrix will converge to zero if &e(B) < 1.

Lemma 4. [32,33] A complete generalized metric space (M, d), with operator B : M — M such that there 3 a
matrix B € M with
d(By, Bz) < Bd(y, z),forally,z € M,

ifee(B) < 1, then B has a fixed point in M.

Lemma 5. [32,33] Consider a Banach space E with cone C C E and y C C is relatively open set with 0 € y
and B : § — y be a completely continuous mapping. Then one of the following hold

(A1) The mapping B has a fixed point in y
(A2) Thereexisty € dy and i € (0,1) withy = nBy.

Lemma 6. [33,34] Consider a cone C in the Banach space E and if 1 and 2, be two bounded open sets in E,
such that 0 € Ay C Ay C Ap. Let B: CN (A \ A1) — C be completely continuous operator and one of the
following satisfied:

(1) Byl <yl Yy eCnay|B| > [ly|l, Vy € Cno,
(2) Byl = llyll Vy e Cno|B] <|lyll, Vy € Cno,

Then B has at least one fixed point in C N (A N Ay ) .

3. Existence of at Least One Solution

Lemma 7. Leth € C[0,1], then the BVP
Diy(®)+h(®) =0, ¢€(0,1);, m—-1<oc<m,

(7)
y(0) =y'(0) =y"(0) = =y™2(0) =0, y(1)= 5/0l y(s)ds,,

where ¢ € (0,2), has the following unique solution

y(®) = /O ' H,(8,s)h(s)ds,
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where H is the Green’s function given by

811 —s) o —5+88) — (0 —8) (0 —s)7 !
(0 —6)I(5)
8711 —8)7 Yo — 6+ s)
(0 =0)r(s) '

Hy(9,s) = ®

Proof. Thanks to Lemma 3 for (7), one has
y(8) = —1%h(9) + 187 L + 207 2+ + e ™. )

By using initial condition y(O) = yl(O) = y”(O) == y(mfz)(()) =0,wegetcy =c3=--- =
¢ = 0. Therefore (9) implies that

y(8) = ;"1 —1%oh(8). (10)

By using boundary condition y(1) = ¢ fO s)ds in (10), we get

cl—/ ds+25/

Hence we have the following solution to (1)

e 1 [ (o9
y(a)_f'/0 Foy h(s)ds + 0 1'/0 )

LetB = fo s)ds, then from Equation (11), we have
1 90— 1 o—1 1
/ / s)ds+/ / 9 S) s)ds+/ 5B87lds
0

_ _ (7 1
:_/ (1 )%} (s)ds +/ (1—s) )ds—&-%éB (12)
0

implies Equation (12), so we get

1 (-s) 1 l(1-s)0!
B3 )y Ty OS5 ), iy b

1
h(s)ds + 697! /0 y(s)ds. (11)

Replacing this valve in (11), we get

- t(@—s)r ! sq [T (1=s)1 5 19 l(1—s)
yw)f—/0 ey h(s)ds o 1/0 Wh(s)ds—g_(s/o o) h(s)ds

) 1 190—1(1 _ s)a—l
—+ - 5/ (U) h(s)ds.

_ 0 (8 — 119‘711—5‘71(0 5+ 6s)
= _/ ( ds+/ — (@) h(s)ds
_ o 91 ) 1((7 J+0ds) — (0 — (5)(19 s)1
/ (=8I (o)
19o=1(1 —8)7" (o — 6 + s)
+, =0T

h(s)ds

7/Hg195 s)ds,
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where H, (9, s) is the Green’s function of BVP (7). Similarly we can obtain z(¢) = ]01 Hz(9,s)h(s)ds,
where Hx (9, s) is the Green'’s function for the second equation of the system (1) and is given by

9= 11— S)E’l(%(;e_z)@?)(;)(ae G A
O g e e
(-0l () '

(13)

O

Lemma 8. Let H(9,s) = (Hy(9,s), Hx(9,s)) be the Green’s function of (1) defined in Equations (8) and (13).
This H(0, s) has the given properties

(F1) H(0,s) is continuous function on the unit square ¥ (9,s) € [0,1] x [0,1]
(F,) H(d,8) >0 V98,s€[0,1] and H(d,s) >0 V98,5 € (0,1)

(F3) [max, H(d,s) = H(1,s),Vs € [0,1]

(Fy) min H(19 s) > A(s)H(1,s) foreach 6, s € (0,1),

ve(0,1—
where A = mm{)x(7 =071, A = 0271

Now according to Lemma 7, we can write system (1) as follows

1
y(®) = [ He(8,5)9(s,(s),2(s))ds,
0

1 (14)
2(0) = [ Ha(0,5)x(s,¥(s), 2(5))ds.
0
Let B: E x E — E x E be the operator defined as
1 1
B(y,2)(8) = (f Ho(9,5)¢(s,y(s), 2(s))ds, fHae(l?/S)X(S/y(S)/Z(S))dS>
0 0 (15)

- (Bi32)(0) B232)(0) -
Then the fixed point of operator B coincides with the solution of the coupled system (1).

Theorem 1. Consider that u,v : [0,1] X [0,00) x [0,00) — [0, 0) are continuous. Then B(C) C Cand B :
C — Cis completely continuous, where B is defined in (15).

Proof. To prove that B(C) C C, let (y,z) € C, then by Lemma 8, we have B(y,z) € C and from (F;)
and V ¢ € K, we obtain

1 1
Bi(y(9),2(9)) = [ He(8,9)p(s,¥(s),2(5))ds = A [ Ho(1L9)p(s,y(s)),2(5)ds.  (16)
0 0

Also from (F3), we obtain

1 1
Bi(y(9),2(6)) = [ Ha(8,5)9(s,y(s),2(s))ds < [ Ho(1,)(s,y(s)),2(s)ds. (17)
0 0
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Thus from (16) and (17), we have

Bi(y(8),2(8)) > A||Bi(y,2)|, forall 8 € K.
Similarly, one can write that

Ba(y(8),2(8)) > A||By(y,2)|, forall 8 € K.

Thus
B1(y(9),2(8)) + Ba(y(8),2(9)) > A|[B(y,z)||, forall ¢ € K,

min[B1 (y(8),2(8)) + Ba(y(8), 2(8))] = AIB(y,2)]|.

Hence we have B(y,z) € C = B(C) C C. Next, like the proof of Theorem 1 of [35], and applying
the Arzela-Ascoli’s theorem, it can be easily proven that B : C — C is completely continuous [

Theorem 2. Consider that ¢ and x are continuous on [0,1] x [0,00) x (0,00) — [0,00), and there exist
£;(9),H;(9), (i =1,2) : (0,1) — [0, 00) that satisfy

w(9)|y —y| +vi(9)|z—z|, for 9 € (0,1) and y,z,¥,2

z>0
( )Iy | +va(8)|z — 2| for 8 € (0,1) and y,z,3,2 > 0
» € RV} is a matrix given by

/Hglsul /Hglsvl )ds

/O Ha(1,s)us(s)ds /O Heo(1,5)va(s)ds

Then the system (1) has a unique positive solution (y,z) € C.

Proof. Let us define a generalized metric d : E2 x E2 — R? by
||z —z|

d((y,2), (¥,2)) = < HY*}:’H ) , forall (y,z),(y,z) € E x E.

Obviously (E x E,d) is a generalized complete metric space. Then for any (y,z), (7,z) € E X E
and using property (F3) we get

1
B1(y,2)(8) = Ba(y,2)(9)] < max /|Hg(l9,s)\H(p(s,y(s),z(s)) — (s, 5(s),2(s))[]ds
"~

-1
< [ Ho ) (s)ly = 71+ va(s)]lz - 2l
1 1
< [ wHos)dsly =51l + [ vi(s)Ho(1,5)ds]|z - 2.
Similarly we can show that
1 1
[Ba(y2) ~ Ba(5,2)| < [ ua(s)Ha(1,8)dslly ~ 7l + [ va(s)Ha(1,)ds]z ~ .

Thus we have

IB(y,z) - B(y,2)| <Bd((y,2),(7,2)), ¥(y,2),(3,2) € EXE,
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where | |
/ Hy(1,s)us(s)ds / Hy(1,8)v1(s)ds
/ Hx(1,8)ux(s) / He(1,8)v2(s)ds

As &(B) < 1, in the light of Lemma 4, system (1) has a unique positive solution. [

Theorem 3. Consider that ¢ and x are continuous on [0,1] x [0,00) x (0,00) — [0,00) and there exist
ai,bi,ci(i=1,2): (0,1) — [0, 00) satisfying:

(A1) 9(8,y(8), 2(9)) < a1(8) +b1(8)y(8) + 1 (9)2(9), 8 € (0,1),y,2 >0

(4s5) x(8,y(8), 2(8)) < a2(9) + b2(8)y(8) +c2(9)2(8), & € (0,1),y,220
(A6) A = ‘j‘Ha(l,S)al(S)dS < oo, Al = ng(l,S)[bl(S) + Cl(S)]dS < %

(A7) Ay = JHE(l,s)az(s)dS < oo, Ay = Oleae(s,s)[bg(s) +co(s)]ds < 3.

Then the system (1) has at least one positive solution in

{(y,z) eC:|(y2)] gr}, where max{ 3 M /7 A2 } <r.

2= M M

Proof. Define ) = {(y,z) eC:|(y2)| < r} with max{ M A2 } <r.

According to the Theorem 1, the operator B : QO — C is completely continuous. Let (y,z) € Q,
such that ||(y,z)|| < r. Then, we have

IB1(y,2) | = max ds

/Hg(ﬁs ¢(s,y(s),z(s))

< (/O Hg(l,s)al(s)dsqt/o HJ(l,s)bl(s)|y(s)|ds+./Ong(l,s)cl(s)|z(s)\ds)
< /01 Hg(l,s)al(s)ds—&-r{/ol H,(1,5)[by(s) +c1(s)]ds]

5A1+rA1<§,

Similarly, ||Ba(y, z)|| < %, thus ||B(y, z)|| < r. Therefore, thanks to Lemma 5, we have B(y,z) € Q,
thus B: Q — Q. Let there ex1st ¢ € (0,1) and (y,z) € 9Q such that (y,z) = ¢B(y, z). Then in the light
of assumptions (Ay), (As) and by (Fs) of Lemma 8, we get V ¢ € [0, 1]

2O < ¢ [ Hal@,9)lp(s,y(s)=(5))lds
< g(/ol Ho(1,8)a; (s)ds + ./0‘l H, (1,5)b1 (s)y(s)ds + ‘/01 Ho(1,8)c1 (s)z(s)ds)
< §<A1 + TA1>

r
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which implies that ||y|| < ¢%. Similarly, it can be proved that ||z|| < ¢5. From which, we have
[I(y,2)|| < gr, with ¢ € (0,1) which is a contradiction that (y,z) € 0Q as r = |(y, z)||. Thus, according
to Lemma 5, B has at least one fixed point (y,z) € Q. [

Next the following assumptions and notations will be used:

(C1) ¢, x:[0,1] x [0,00) X [0,00) — [0,00) are continuous and ¢(8,0,0) = x(9,0,0) = 0 uniformly
with respect to @ on [0, 1]
(C2) Hy(1,s),Hx(1,s) defined in Lemma 8 satisfy

1 1
0< /Hg(l,s)ds <00, 0< /H&(l,s)ds <o
0 0

(C3) Let these limits hold

= lim su 7q)(l9,y,z), *= lim su Xf(ﬂ,y,z),
(y2)=(an) gefo,) Y T2 (y2)=(aa) ey Y2 (18)
o ¢(9,y,2) g x(8,y,2)
Po = (yz)lgzal“) € fae[o,uyﬁ, Xee = <y,z>1f?a,a) € fae[o,uﬁ/ where a € {0, 0}
1 1
ay = max /Hg(ﬂ,s)ds, e = max /Hae(ﬂ,s)ds. (19)
9€[0,1] ) 9€[0,1] )

Theorem 4. If the assumptions (C1) — (Cz) hold and one of the following conditions is also satisfied:

1-6 1-0
(D1) o (/\2 f Hg(l,s)ds> > 1, ¢®as < 1and xo (/\2 S Hae(l,s)ds> >1, x®ae < 1.
0 0

Moreover, ¢y = xo = o and ¢= = x* =0
(D2) There exist two constants 11, 17 with 0 < 11 < 12 such that ¢(9,-,-) and x (9, -, -) are nondecreasing on
[0,72] V0 €10,1],

1-0 -1
p(8, Ao, Aa) = I (Ag / Ha(l,s)ds> ,
0

1-6 -1
X8 Ao, Aepy) = I (Aae / Ha(l,s)ds)
o
and ¢(8,12,12) < ﬂ, X8, 12,1m2) < ﬂ, forall 9 € [0,1],
20 205

where A,Hy(1,8), He (1, ) defined in Lemma 8 and ¢g, xo0, 9, X, &g, 0n defined in Equations (18) and (19).
Then the coupled system (1) has at least one positive solution.

Proof. B as defined in (15) is completely continuous.

1-0
Case L. Let the condition (D;) hold. Taking ¢g (/\3 J Ho(1, s)ds) > 1, then there exists a constant
0

x1 > 0 such that

?(8,y,2) = (9o —r1)(y(8) +2(9)), x(8,y,2) = (xo —r2)(y(8) +2(9)), forall ¢ € [0,1],y,z € [0,51],
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where r; > 0, and satisfies the conditions
22 1-6 A2 1-6
(g0 —m)°2 / Ho(Ls)ds > 1, (x0—r1) 58 / Ha(1,8)ds > 1.
) [;
So for ¢ € [0,1], (y,z) € 0Cy,, we have

1

1
Bu(y,2)(8) = [ Ho(8,5)9(s,¥(s),2(8))ds > A¢ [ Ho(L,)g(s,y(s),2(s))ds
0 0
1

A2 2
> (o) [Ho(1,9)asl (2 = 1020
0
Analogously

1 1
Ba(3,2)(8) = [ Hal®,5)x(s,y(5),2(9))ds = A [ Ha(1,5)(5,9(5),2(s))ds
0

0
1
A2 ,Z
> (0 - )2 [He(s)dsl () > (20
0
Therefore, we have
[B(y,2) [l = [IB1(y, 2) [l + [|B2(y 2) | = [I(y, 2) - (20)

Also for ¢®a; < 1 and x®az < 1, there exists a constant say £, > 0 such that ¢(8,y,z) <
(p®° +1r)(y+2),x(0,y,z) < (x*°+r)(y+z), ford € [0,1],y,z € (£,00), where r, > 0 satisfies
the conditions as (9% +7r2) < 1, aw(x™ +7r2) < 1. Let | = maxgejo1)yzeo0) PO y,2),L =
maXye 0,1]yz¢(0.0] X (8, Y,2), then @(8,y,2) < ]+ (9% +12)(v,2),x(8,y,2) < L+ (X¥+r2)(y,2).
Now setting max{xy, £, Jac (1 — a0 (9™ +12)) "1} < 2, max{x1, 2, Lae (1 — w(x®° +12)) 1} < 2.
So for any ¢ € [0,1], (y,z) € 0Cx,, we obtain

1 1
Bi(32)(#) = [ Ho(®,5)9(5,¥(s),2(5))ds < Ar [ Ho(1L,8)g(s,¥(s),2(5))ds
0 0

1
< [He(L9)( + (g™ + r)lu(s) +=(s)]ds
0
1
<J [ Hes)ds + (9% 4 72) [ Ho(1,9)dsl (. 2)]

0
I3 ~ K © K
<5 (9™ )5 + (97 +ral(y2)] < 7
Similarly By (y, z)(9) < %, as (y,z) € 9Cy,, thus we have
IB(y2)Il < Iy 2)l- (1)
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Case II. If assumptions in (D;) hold, then in light of the definition of C for (y,z) € dC;,, we have
[I(y,2)|| = 11, for ¥ € K. Then from (D,), we have

1 1-0
Bi(32)(8) = [ Ho(8,5)9(s,¥(s),2(5))ds = A [ Ho(L,5)p(s,y(5),2(s))ds
0 0
1-6 1-6 -1
> ()\U / Hg(l,s)ds) n (A[, / Hg(l,s)ds) —
0 0
Similarly it can also be obtained that B;(y,z)(8) > 4, for (y,z) € 9Cy,, and we get

[B(y,2)[l = [IB1(y, 2) [ + [Ba(y, 2)[| = [ (v, 2) - (22)

Also for (y, z) € 9C;,, we get that [|(y,z) || = #2 for ¢ € [0,1]. Then from (D), one can get

Bi(y,2)(9) = /Hv(&S)fP(S/y(S),Z(S))dS < [ Ho(1,5)9(s,y(s),2(s))ds

o

Similarly, it can also obtained that By (y, z) (8) < ”72, (y,z) € 0Cy,. Hence, we have

[B(y,2)[l = 1B1(y, 2) [l + [[Ba(y, 2) || < [I(y,2)]I- (23)

Now according to the application of Lemma 6 to (20) and (21) or (22) and (23) implies that B
has a fixed point (y1,z1) € Cyy or (y1,21) € Cp(i = 1,2) such that y1(8) > Ag[ly1]| > 0 and
z1(9) > Axllz1]] > 0,9 € [0,1]. From which it follows that the coupled system (1) has at least one
positive solution. [

Theorem 5. Under the conditions (Cy) — (Cz) and if the following assumptions hold
1-6 1-6
(D3) If 9Oy < 1; 9™ (/\Lz, Ii Hg(l,s)ds> > Tand YOue < 1;x® <A§e / Hg(l,s)ds> >1,
0 0
then the coupled system (1) has at least one positive solution. Further, if 9° = x* = 0 and ¢ = x* = oo,
where A,Hy(1,5), He (1, 8) defined in Lemma 8 and ¢o, xo0, 9, X, &, 0y defined in Equations (18) and (19),

then the the considered system (1) has at least one positive solution.

Proof. Proof can be obtained as proof of Theorem 4. [

4. Existence of More Than One Solutions

Theorem 6. Consider that (C1) — (Cs) hold and the following conditions are satisfied:
1-0 1-0
(Dg) Ifgo [ A2 [ He(L,s)ds | > 1,0 (A2 [ Ho(1,s)ds | > 1and
0 0
1-0 1-6
X0 (AL [ He(l,8)ds | > 1, xe (AL [ Ho(1,8)ds | > 1.
4 0
Moreover, py = X0 = Poo = Xoo = 0 also hold:
(Ds) there exists a > 0 such that
a a

maXge(o,1),(yz)cac, P(0 Y, 2) < g and maxpe o1, (y.z)cac, X(8,y,2) < -
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Then the coupled system (1) has at least two positive solutions (y,z), (y,Z) such that
0<lmall <a<li(z.2)]I (24)

Where A, Hy(1,s),He(1,s) are defined in Lemma 8 and ¢, xo, 9=, x™, s, 0x defined in
Equations (18) and (19)

1-0
Proof. Let (Dy4) hold. Select x,77 such that 0 < x < u < 5. Now if ¢g <)L?, Ii Hg(l,s)ds> >
0

1-6
1and xo <)\§e J H=(1, s)ds> > 1, then like the proof of Theorem 4, we have
0
[B(y,2)ll = |(y,2)||, for (y,2) € 9Cx. (25)

1-0 1-0
Now, if oo | A2 [ Hg(l,s)ds> > 1and Xeo (Aé i Hae(l,s)ds> > 1,
0 0
then like the proof of Theorem 4, we have
1By, 2)l = [I(y,2)l, for (y,2) € aC,. (26)

Also from (Ds), (y,z) € dCy, we get

By )(#) = [ Ho(0,5)p(s,(5) 2(5))ds

§/01Hg(1,s)q)(s,y( ),2(s))ds < %/ H,(1,5)ds = PZ‘

Similarly, we have By (y,z)(8) < § as (y,z) € 9C,. Hence, we have
[B(y,2)[l < [(y,2)]l, for (y,2) € 9Cy. 27)

Now according to Lemma 6 for (25) and (27), we have gives that B has a fixed point (y,z) € Béw
and a fixed point in (¥, Z) € 9C;, . Therefore system (1) has at least two positive solutions (y, z), (, Z)
such that ||(y,z)|| # p and ||(§,2)|| # p. Thus the relation (24) holds. [

Theorem 7. Consider that (C1) — (Cs) hold together with the given conditions

(De) aopo < 1and pootty < 1; azxo <1, and xeotte <1
(D7) there exist yu > 0 such that

~1
Ny 2/
max = | A Hy(1,s)d ,
19€K,(y,z)€8C,4(p( 72 ( 7 ) o )

SCYLREn

0< w2l <p<Ily2]l

x(8,y,2)

N\?

max
9€K,(y,z)€dCy

such that

where A,Hy(1,8), He (1, 8) defined in Lemma 8 and ¢g, xo0, 9, X, &g, 0n defined in Equations (18) and (19).
Thus the system (1) has at least two positive solutions.

Proof. We left the proof out, as it similar to the proof of Theorem 6. [
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In same line for multiple solutions we give the following results.

Theorem 8. Let (Cy) — (Cs) hold. If there exist 2m positive numbers up, Gy, L = 1,2...m with u; <
Apll] < O] <up < Aplip < p.. Uy < Aglly, < Qg and ug < Apli] < 0] < up < Aplip < ... .upy <
AeelQyy < Oy, such that

1 -1
(DS) 4)(19ry(l9)rz(l9)) > ug (AUJHU(LS)dS> rfor (l9,y,Z) € [011] X [/\tfuL/ uL] X [)\aequuL]r and
P(8,y(9),2(9)) < agtay, for (8,y,z) € [0,1] x [Aglip, 6] x [Aeup,ur],L=1,2...m,
-1
(Dg) x(8,y(9),z(9)) > uy, (Aaole@(l,s)dS)> for (8,y,z) € [0,1] x [Aeup,ur] x [Agur,ur), and

x(0,y(9),2(9)) < axlay,for (8,y,z) € [0,1] x [Agur,ur] X [Aetip, dr], L=1,2...m.

where A,Hy(1,8), Hae (1, s) defined in Lemma 8.
Then the coupled system (1) has at least m-positive solutions (yr,zr,), satisfying

ur, < ”(yL/ZL)” < ﬁL, L= 1,2...m.

Theorem 9. Suppose that (Cy) — (Cs) holds. If there exist 2m positive numbers ur, @y, L =1,2...m, with
u <0 <up <fyp...<uy <y such that

(D10) ¢ and x are non-decreasing on [0,@,,] ¥V ¢ € [0,1];
-1
1-0
(D11) ¢(8,y(8),z(8)) > ur, (/\g Ik Hg(l,s)ds)> , 9(8,y(8),2(8)) < SLop=12.m,
0

1-6 -1 a
x(9,y(8),2(8)) > ur (A& 9] Hae(l,s)ds)) , x(8,y(8),2(8)) < a—L L=12...m.

x

Hence we conclude that there exist at least m positive solutions (yr,zy), corresponding to coupled
system (1) which satisfy
uy < ”(YLrZL)” <6, L=12...m.

5. Hyers-Ulam Stability
Definition 6. [30] Let B, B; : E x E — E X E be the two operators. Then the system of operator equations
{y(z?) =Bi(y,2)(9)

z(9) = Ba(y,2)(0)

is called the HU stability if we can find J;(i = 1,2,3,4) > 0, with a;(i = 1,2) > 0 and for each solution
(y*,2*) € E x E of the inequalities given by

(28)

{|y* —o(y",2")|Exe < @1,

. . (29)
2" = x(y" 2" l|exE < @2,
there exists a solution (y,z) € E x E of system (28) such that
-y < ke + kpaey,
HY* ZHEXE < ke + kpaep 30)
12" = Z||exE < kseer + kacer,
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Theorem 10. [30] Let By, By : E x E — E x E be the two operators such that

[1B1(y,2) = B1(y", z)|[exE < killy — y*[|exEds + ka|z — z"|[ExEds,
[1B2(y,z) = Ba(y", z°)|[exE < kslly — y*[|[ex®ds + kal|z — z"|[exrds, (31)
forall (y,z),(y",z") € EXE,

B_ ki ko
ks k3
converges to zero, then the fixed points corresponding to operator system (28) are HU-stable. Further, the given

condition holds (M) under the continuity of ¢;,i = 1,2, there exist f;, H; € C(0,1),i = 1,2 and (y, z), (¥,Z)
such that

and if the matrix

9i(8,y,2) = ¢:(8,5,2)| < i(9)]y =y + Hi(8)|z —2[,i = 1,2.
In this section, we study HU stability for the solutions of our proposed system.

Theorem 11. Suppose that the assumption (M) along with condition that matrix

1 1
o /0 Ho (1, 8)uy (s)ds /0 H,(1,5)v1(s)ds

B 1 1
/ Hx(1,s)ux(s)ds / He(1,8)va(s)ds
Jo Jo

is converging to zero. Then, the solutions of (1) are HU-stable.

Proof. Thanks to Theorem 2, we have

1 1

[B1(3.2) = Ba(y", =) ek < [ Ho(L9)ua(s)lly =y llgseds + | Ho(1,9)vi(s)llz = =" [xds
1 1

[Ba(y,2) = Ba(y" ) ek < [ Hae(Ls)ua(o)]ly =y llpwpds + | Hall,9)va(s)lz = 2l foxeds.

From which we get

[IB1(y,z) = B1(y*,z")||gxE < [/01 H,,(l,s)ul(s)ds} [ly = v*|lexe + U(: Hg(l,s)vl(s)ds] [|lz = z*||gxE,
(32)
Ba(y, ) — Ba(y™, 2"k < ['/U ' Hae<1,s>uz<s>ds] 1y — y*llexe + [ A Hee<1,s>vZ<s>ds} [

Analogously one has

[|P(y,z) = P(y",z")||exe < B|(y,2) = (¥",2")||ExEs (33)

such that

1 1
o /0 Ho (1, s)uy (s)ds /0 Ho(1,5)v1(s)ds

- 1 -1
/ Hx(1,s)uy(s)ds / Hx(1,8)va(s)ds
0 0
Hence, we get the required results. [

6. Example

To verify the aforesaid established analysis we provide some test problems here in the
given sequel.
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Example 1. Take the system of given BV Ps with IBCs as

7 8+1...5
D2y (8) + 5 [T(3)ly(8)| +cos ()] = 0, 8 € [01],,2 2 0

92 4+1
4

y(0)=y(0) =y"©0) =0 y(1) = ['ys)ds,

2(0) = 2(0) = 2(0) = 0 z(1) = %/01 2(s)ds.

7
Dioz(ﬂ) +

[sin|y(8)[+[z(8)[] =0, ¥ € [0,1],y,2 > 0
(34)

. 8+1 241,
Since ¢(0,y(8),2(9)) = ——[F(3)Iy(®)] +cos [2(8)[], x(8,y(8),2(8)) = ——[sin|y(8)| +
1z(9)1].
Alsoasm = [35]+1=4,6=}and g = 3.
Then
5 9+1 941
l9(8,y2,22) = ¢(,y1,20)| <T(5) = —ly2 =1l + —— |22 —zl,
8 +1 2 +1
x(9,y2,22) = x(8,y1,21)| < =5 —Iy2 = y1l + =~z — z|.
94175 041 0% +1
where uy () = S7T(3),vi(0) = 57, wa(9) = va(9) = , 50 one can get
1 1
/Hg(l,s)ul(s)ds /Hg(l,s)vl(s)ds 8 8
B |0 5 REE 165y/7
T 1 B 496 496
/Hae(l,s)uz(s)ds /Hae(l, s)va(s)ds 11583/ 11583+/70
0 0
8 3 8
- 11 165\/7
det(B—AI) = 496 496 RE

-2
11583/ 11583y/7

We get Ay = 0.728 and A, = 0.024 since a(B) = sup{|A;],i = 1,2} = 0.728 < 1. Therefore due to
Theorem 2, BVPs (34) has a unique positive solution given by

1
y(8) = [H;(8,9 5 THTC)ly(s)] +cos=(6)]]ds,
| (35)
2
2(6) = [ Hy (8,551 sinly(s)] +]2() s
0

where H 7 (8,s) and H% (9,s) are the Green’s functions given by

Hy(9,s) =

7
2
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_9)3(10 L1y 199 _
7 5)7(61:1"?3; 29 gcscocr,
H%(ﬁ,s): 8 5 196 12
2 —s)2 (=2 S
(=938 +59), 0<gcsci
2r(3)
6 2

Further, by the use of Theorem 11, the solution is HU-stable.

Example 2. Taking a system of FODEs with IBCs as

D20y (8) +a(8)\/y(8) +2(9) = 0, D2y2(8) + b(8) {/y(8) + 2(8) =0, 8 € (0,1),

-1

y(0) =¥'(0) =y"(0) =y"(0) =0 y(1) = [ y(s)as, (36)

From the given system one has

¢(9,y,2) = a(9),/y(8) +2(9)

and
x(8,y,2) =b(8)y/y(9) +2(8), m=4,0=0=1

Alsoa, b:[0,1] — [0, 00) are continuous. Now ¢° = lim 2(0.y.2) = oo, similarly x° = co.

(yz)—0 y+z
Obviously we compute ¢* = 0 = x*. Hence due to Theorem 4, system (36) has at least one

positive solution.
Example 3. Taking another test problem with IBCs as
9 1
D1oy(9) + (1= 82)[y(9) +2(9)]* = 0, D}oz(9) + [y(9) +2(9)* = 0, 9 € (0,2),
3 rl
y(0) =y'(0) =y"(0) =y"(0) =y""(0) =0, y(1)=3 /O y(s)ds, (37)

2(0) = 2/(0) = 2/(0) = 2(0) = 2"(0) =0, z(1) = % /0 " 2(s)ds.

From the considered problem (37), one has § = ¢ = 3, as m = 5. It is easy to see that ¢° = x° = 0 and
@ = X = co. Therefore thanks to Theorem 5, the given system (37) has a positive solution.

Example 4. Further we take another system of FODEs with IBCs as

1 2 2
D2y (8) + ths Z{,ﬁffg;zwﬂ =0, 9¢(0,1),
Dfy(#) + B+ DO 2O o g ¢ (g1,

(46° + 4z 38)
y(0) = y'(0) = y'(0) = y"(0) =y"0) =0, y1) =3 [ y(s)ds,

z(0) = 2/(0) = Z"(0) = Z(0) = Z""(0) =0, z(1) = %/01 z(s)ds.

where 6 = 0 = %tmdm = 6. It is easy to obtain ¢g = X = 00 and Qoo = Yoo = 0.
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Further ¥ (9,y,z) € [0,1] x [0,1] x [0, 1], we have

(92 4+1)2 agl (¥ +1)2 ag!
[ < —— = — 4 < _ — .
9(0y,2) < 402+ 1ay 27 x(8y,2) < 4(0% + 1)age 2

Hence all the conditions of Theorem 6 hold. Thanks to Theorem 6, the given system (38) has at least two
positive solutions (y1,z1) and (y2, z2) which satisfy
0 <l(yrz)ll <1< |l(y2 22l
7. Non-Existence of Positive Solution

Here some conditions are developed under which the coupled system (1) with given IBCs has
no solution.

Theorem 12. Consider that (Cy) — (Csz) hold and ¢(98,y,z) < 162 gg x(%,yz) < H<2>22H for all

20,

€ [0,1], y > 0, z > 0, then there is no positive solution for BVPs (1).

Proof. Consider (y, z) to be the positive solution of BVPs (1). Then, (y,z) € Cfor0 < ¢ < 1 and

1y 2)[ = Nyl + =l

. 9 8
Jnax ly(®)] + nax |z(9)]

1 1
sm%JHA&$W@ﬂwd@WE+@%JHA&ﬂu@ﬂwdwﬁ

i (16231 h v 2)ll
vz Y.z
<b/HU(1,s) o ds+b/Hae(1,s) 5 Has

= 2l < y2)l,

which is contradiction. Hence the considered system (1) has no solution. [J

Theorem 13. Let the hypothesis (C1) — (Cs) hold along with the conditions

1-6 -1
wmmw»>(§)@/mmm),
0

1-6 -1
X(8,y(8),2(8)) > H(yziz)H <Ag / Hae(l,s)ds> , forall 9 € [0,1], y > Oand z > 0.
0

Then there does not exist positive solution to BVPs (1).

To demonstrate the results of Theorems 12 and 13 respectively, we give the following example.
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Example 5. Taking the given system of FODEs with given IBCs as

5 T 775
D3 ,y(d) =574<y+z+ §> ,9e(0,1],

D2 2(9) = (30 4+ —22 T 0 0,1]
HOT VY Tz 50" T (39)

1 /1
y(0) =¥ =y"0) =0, y(1) = 5 [ y(®)as,

2(0) = 2/(0) = 2"(0) = 0, 2(1) = %/01 2(9)ds.

Also as (Cy) — (C3) hold, where m = [2.5] +1 = 3and 6 = ¢ = 1. We calculate

5

(5= (2) )imal < oey)z@) <slimal,
w02 < x(b.y(8),2(6)) <5152

Therefore we have

5 (2) Il < 000,301, 2(0) < 5l52)] and (0, y(0), () < 5l 2)] < L2,

where ay ~ 0.32239 and xo ~ 0.32239.

Case I: Now
0(6,y(0),20) < 122 <1113 )
yields that
#(8,y(8),2(8)) < 5](s2) | ~ 31018] (2)|
and

x(8,y(9),2(9)) <51 (y,2)[| ~ 3.1018]|(y, ) |-

Hence under the condition of Theorem 12, there is no solution corresponding to problem (39).
Case II: Also

5
100

5 99 -1
p(0y(),20) > (5- (2) )Ima1> I (Ai ¥ Ha<1,s>ds) ~ 0615 (y,2)]

T 100

and

99
100

-1
x(8,y(9),2(8)) > %H(w)\\ > (v 2)ll (Ai ) Hae(LS)dS) ~ 0.615|(y,2) -

100

Hence under the condition of Theorem 13, there is no solution corresponding to coupled system (39).
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8. Conclusions

In the above research work we have successfully investigated a coupled system of nonlinear
FODESs with IBCs for multiplicity results. Further, the aforesaid investigation has been strengthened by
developing some conditions under which the solutions of the proposed system are HU-stable. Further
some results which demonstrate the conditions of nonexistence of solutions have been established.
The whole results have been verified by considering some examples where needed.
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Abstract: We discuss the existence and uniqueness of solutions for a Caputo-type fractional
order boundary value problem equipped with non-conjugate Riemann-Stieltjes integro-multipoint
boundary conditions on an arbitrary domain. Modern tools of functional analysis are applied to
obtain the main results. Examples are constructed for the illustration of the derived results. We also
investigate different kinds of Ulam stability, such as Ulam-Hyers stability, generalized Ulam-Hyers
stability, and Ulam-Hyers-Rassias stability for the problem at hand.
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1. Introduction

Fractional calculus played a pivotal role in improving the mathematical modeling of many
real-world problems. The extensive application of fractional order (differential and integral) operators
indeed reflects the popularity of this branch of mathematical analysis. In contrast to the integer
order operators, such operators are nonlocal in nature and do have the capacity to trace the history
of the phenomenon under investigation. A detailed account of the use of fractional calculus tools
can be found in several scientific disciplines such as, chaos and fractional dynamics [1], evolution
in honeycomb lattice via fractional Schrédinger equation [2], financial economics [3], ecology [4],
bio-engineering [5], etc. For theoretical development and further application of the topic, see the
texts [6-9].

During the past two decades, the study of fractional order boundary value problems has been
one of the hot topics of scientific research. Several researchers contributed to the development of this
class of problems by producing a huge number of articles, special issues, monographs, etc. Now the
literature on the topic contains a variety of existence and uniqueness results, and analytic and numerical
methods of solutions for these problems. In particular, there has been shown a great interest in the
formulation and investigation of fractional order boundary value problems involving non-classical
(nonlocal and integral) boundary conditions. The nonlocal boundary conditions are found to be of
great utility in modeling the changes happening within the domain of the given scientific phenomena,
while the concept of integral boundary conditions is applied to model the physical problems, such as
blood flow problems on arbitrary structures and ill-posed backward problems. For some recent works

Mathematics 2019, 7, 249; doi:10.3390 / math7030249 39 www.mdpi.com/journal /mathematics
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on fractional order differential equations involving Riemann-Liouville, Caputo, and Hadamard type
fractional derivatives, equipped with classical, nonlocal, and integral boundary conditions, we refer
the reader to a series of papers [10-28] and the references cited therein.

In this paper, we study the existence of solutions for a nonlinear Liouville-Caputo-type fractional
differential equation on an arbitrary domain:

‘Dix(t) = f(t,x(t)), 3<qg<4,telab], (1)

supplemented with non-conjugate Riemann-Stieltjes integro-multipoint boundary conditions of
the form:

n—2 b
x(a) =Y aix(y;) +/ x(s)dA(s), x'(a) =0, x(b) =0, x'(b) =0, ()
i=1 i

where ‘D7 denotes the Caputo fractional derivative of order g, a < 113 < 12 < -+ < 1,20 < b,
f i [a,b] xR — R is a given continuous function, A is a function of bounded variation, and
v eR,i=1,2,---,n-2.

The main emphasis in the present work is to introduce non-conjugate Riemann-Stieltjes
integro-multipoint boundary conditions and develop the existence theory for a Caputo-type fractional
order boundary value problem equipped with these conditions on an arbitrary domain. Conjugate
conditions on the body/fluid interface provide continuity of the thermal fields by specifying
the equalities of temperatures and heat fluxes of a body and a flow at the vicinity of interface.
The results obtained in this paper may have potential applications in diffraction-free and self-healing
optoelectronic devices. Moreover, propagation properties for fractional Schrodinger equation similar
to our results are well known theoretically [29].

The rest of the paper is organized as follows. An auxiliary result related to the linear variant of
the problems (1) and (2), which plays a key role in the forthcoming analysis, is presented in Section 2.
Some basic ideas of fractional calculus are also given in this section. In Section 3, we obtain some
existence results for the given problem, while Section 4 contains a uniqueness result for the problem at
hand. Ulam stability of different kinds for the problem (1) and (2) is studied in Section 5.

2. Preliminary Material

We begin this section with some basic definitions of fractional calculus [6]. Later we prove
an auxiliary lemma, which plays a key role in defining a fixed-point problem associated with the
given problem.

Definition 1. Let g be a locally integrable real-valued function on —oo < a < t < b < Hoo.
The Riemann-Liouville fractional integral I} of order p € R (p > 0) for the function g is defined as

B ()= (3+K) () = s [ (1= g o),

where Ky (t) = %, T denotes the Euler gamma function.

Definition 2. The Caputo derivative of fractional order p for an (m — 1)-times absolutely continuous function

g [a,00) — Ris defined as

1 t _ o
‘DPg(t) = F(T—p)/a (t— t)’"*pflg(m(t)dt, m—1<p<m m=I[p]+1,

where [p] denotes the integer part of the real number p.
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Lemma 1. [6] The general solution of the fractional differential equation ‘Dx(t) =0, m —1 < q<m, t €
[a,b]is
x(t) = wo+ wi(t—a) +wp(t—a)’ + ...+ wy_1(t—a)" 1,
where w; € R, i =0,1,...,m — 1. Furthermore,
m—1

1Dx(t) = x(t) + Y wilt — a).
i=0

Lemma 2. Let

o —Al(b—a)z 2A3
M= T gy~ A A0 ©)

For f € C([a,b],R), the unique solution of the linear equation
‘Dix(t) = f(t),3<q<4,tcab], @)

supplemented with the boundary conditions (2) is given by

AV AV _ )2
w0 = [T R [ O fows a0 [ E S o

I'(q) q) (g
b s (S _ u)qfl .
+83(t) /a (/ﬂ Wf(”)‘”‘)df‘(s)r )
where
t—a)*A t—a)?
alt) = A — (t=ayd (t—a)*As, g2(t) = Ao+ =y , (t—a)’As,
m 7
t— 2
g(t) = As+ % +(t—a)Ag, (6)
Azt (b—a)dA
o= 3(b—a)2 ' @
(b—a)?A, —~(b—a) (b—a)7 (b—a)?
Moo= 14—, A= - , A3 =—
! 31 ? 3 3 ’ 31
2A; 71200 —a)72 -2
Ay = , = , A=, 8
YT om0 sk-apn T 36— am ®
n—2 b n—2 b
A = 1-Y w —/ dA(s), Ay =) a;(y; —a)2+/ (s —a)?dA(s),
i=1 @ i=1 ?
n—2 N
Ay = Loty — 0P+ [ (s a)dAs). ©)
i=1 a
Proof. Applying the integral operator I to both sides of (4) and using Lemma 1, we get
E(t—s)™' 2 3
() = / SO el —a) ol —a? el -, (10)
Ja

where ¢; € R, i =0,1,2,3 are unknown arbitrary constants. Differentiating (10) with respect to ¢,
we have

/ F(t—s)12, 2
X(t) = / S f(s)ds +c1 + 20a(t — a) + Bes(t — a)”. (11)
Ja T(g—1)
Using the boundary conditions (2) in (10) and (11), we obtain ¢; = 0 and
g y

co+(b—a)c+ (b—a)dcs =1, (12)
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2(b—a)ca +3(b —a)c3 =1y, (13)
Ajco — Azco — Azcs = I, (14)
where A; (i = 1,2,3) are given by (9) and

L = ,/ﬂb b= 5o, Izz—/: %f(sws/

I'(q) (g
b — -
L = /a (/u (s F(L;)) (u)du ) dAs). (15)
Solving (12) and (13), for ¢p and c3 in terms of ¢, we get
_ )2
co=1h— (b37a)12 - wczl (16)
1 2
= 3h—a2 2 3H—a)? (17

Substituting (16) and (17) in (14) yields

’Yz A
) = — —hL + —I , 0, 18
2 % - 3, V1 F (18)

where 1 and 7, are defined by (3) and (7) respectively. Using (18) in (16) and (17), we find that
o = /\1[1 + /\2[2 + /\3[3,

3 = Aglh + Ash + Agl3.

Inserting the values of ¢, ¢, c and ¢3 in (10) together with notations (6), we obtain the solution (5).
The converse of the lemma can be proved by direct computation. [

3. Existence Results

Let £ = C([a,b],R) denote the Banach space of all continuous functions from [a,b] — R

equipped with the sup-norm ||x|| = sup{|x(t)|,t € [a,b]}. For computational convenience,
we introduce
b—a)r  _(b—a)  _(b— (s—a)T
A= , 19
{F(q+1)+glr(q+l)+g2 Fq o rq+1 Als) (19)

where §&1 = sup [g1(t)], §2 = sup |g2(t)], §3 = sup |g3(#)|. By Lemma 2, we transform the problems
te(a,b) te(a,b) tela,b]

(1) and (2) into an equivalent fixed-point problem as
x=Jx, (20)

where J : £ — € is defined by

g1 1
a0 = [ st — o) [ LI fs x(oa
_ )12 s
— o [P oo [ ([T s awian)aae), @y

where g1 (t), g2(t) and g3(t) are given by (6).
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Evidently, the existence of fixed points of the operator 7 will imply the existence of solutions for
the problems (1) and (2).

Now, the platform is set to present our main results. The following known fixed-point theorem [30]

will be used in the proof of our first result.

Theorem 1. Let X be a Banach space. Assume that G : X — X is a completely continuous operator and the
set P = {x € X|x = BGx, 0 < B < 1} is bounded. Then G has a fixed point in X.

Theorem 2. Suppose that there exists 0 € C([a,b], R™) such that |f(t,x(t))| < o(t), Vt € [a,b], x € &,

with sup |o(t)| = ||o||. Then the problems (1) and (2) has at least one solution on [a, b].
te(a,b]

Proof. Observe that continuity of the operator [ follows from that of f. Let ® C £ be bounded. Then,
Vx € @ together with the given assumption |f(t, x(t))| < o(t), we get

-1

b(t—s)T ! b(b—s)T
G0l < tiﬁi]{-/a W|f(s,x<s>>\ds+\gl<t>\‘/u Co I s x(9)is

gl [ o If s, x(s))|ds

e [ / H; 1|f<u,x(u»wu)dA(s)}

(b-ayt | _(b-ay (-l (s—a)
lel i) * 9T TR T *ga/»zrwn“‘s)}

= llellA = My,

IN

which shows that J is bounded. Next, fora < t; < t; < b, we have

(T x)(t2) = (Tx)(t1)]

I'(g+1) T'(g+1)

82(t2) ~ o ()| 10— )17 | Jgs(t2) (1)
HEEEE G [ ([ amaae)).

(O i e U
< [ e G (e s
+f %;'\f(s o)l +lga () — o)l [ s x(0 s
ot — i)l [T s x(0
+|83(t2)*g3(f1)|/a /u %V(w,x(u)ﬂdu)df\(s)
< |Q|{(f2”)q("Ll”)q|+2(fzfl)q+ Ig1(t2) — g1(t1)| |(b — a)1]

which tends to zero as t, — t; independent of x. Thus, J is equicontinuous on ®. Hence, by
Arzela-Ascoli theorem, J is relatively compact on ®. Therefore, 7 (®) is a relatively compact subset
of £.

Now we consider aset P = {x € |x = BJx, 0 < B < 1}, and show that the set P is bounded.
Letx € P, thenx = BJx, 0 < B < 1. Forany t € [a,b], we have

Xt = BI(Tx)(B)]
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t(t—s)17! b (b —s)a-1

< ;ﬁ%{ / r@ (5,2l + lga(8)] [ 05— If s x(s))lds

Haa0] [ O s (sl

_ g1
el [ ( /a sré)lf(u,x(u))du)df\(s)}
(b=a)t , (b= (=i (s—a)

< el tgan oDt T +g3/u T EDAe)
= lelia,

where A given by (19). Thus, ||x|| < ||o||A for any t € [a,b]. Therefore, the set P is bounded.
In consequence, the conclusion of Theorem 1 applies and that the operator J has at least one fixed
point. Thus, there exists at least one solution for the problems (1) and (2) on [a,b]. O

Example 1. Consider the fractional boundary value problem

2
el _ 6e " cost x| 3
D3x(t) = \/t4+724+t2+1<1+\x|3>+t +6,te[1,2], o)
4 -2
x(1) = Y ax(n) +/1 x(s)dA(s), ¥’ (1) =0, x(2) =0, ¥'(2) =0,
i=1

whereq=11/3,a=1,b=2, 00 = —-1/2, 0 = —-1/6, a3 =1/6, a4 =2, 11 =6/5, 12 =7/5, 3 =

6e cost x[3
8/5, 113 =9/5and f(t, x):\/erterl(lH ‘3)+t3+6.

Clearly, |f(t,x)] < \/m + tcz"St + 13+ 6 = o(t) > 0. Therefore, there exists at least one solution for
the problem (22) on [1,2] by the conclusion of Theorem 2.

Our next existence result is based on the following fixed-point theorem [30].

Theorem 3. Let Q) be an open bounded subset of a Banach space X with 0 € Q and the operator F : O — X
is completely continuous satisfying || Fx|| < ||x||, ¥ x € 0Q. Then the operator F has a fixed point in Q).

Theorem 4. Let |f(t,x)| < x| for 0 < |x| < T, where T and ¢ are positive constants. Then the problems (1)
and (2) has at least one solution for small values of ¢.

Proof. Let us choose ¢ such that
AE <1, (23)

where A given by (19). Define B,, = {x € &;||x|| < r2} and take x € & such that ||x|| = rp, that s,
X € 9B;,. As we argued in Theorem 2, it can be shown that J is completely continuous and

t(t_g)71 _\q-1
@0l < sup{ [T s wtoplas + s o] [ s wtslas

tefab] F(Q)
gl [ B Ifsx( ))lds
'S s—u -1
Hes(o) [ / o f(u,X(u))du)dA(S)}
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L ) L e
- dA
< |y AT tE e T8, T Al
= gAlx|.
Using (23) and the norm ||x|| = sup |x(t)|, we get || Tx|| < ||x||, x € 9B;,. Therefore, conclusion
tea,b]

of Theorem 3 applies and hence the problems (1) and (2) has a solution on [,b]. O

Example 2. Consider the fractional boundary value problem.

27 2\x| |x|
‘D7x(t) = 1 ,t 0,1},
*®) \/100+t2< +1+IXI) <1l

4 (24)

Y () + /O1 x(s)dA(s), x'(0) = 0, x(1) = 0, x'(1) =0,
i=1 b

x(0)

whereq =27/7,a=0,b=1, 01 = =2, ap = —1/6, a3 =1/6, a0y =15/4, 51 =1/7, 12 =2/7, 13 =

2|x| |x| S ,
3/7, =4/7,and f(t,x(t)) = 1+ . Let us take A(s) = 5. Using the given data,
"4 f(t,x(t)) 100+t2( 1+\x|> (s) = 7. Using the g
we have that Ay ~ —1.25, A, ~ 1.45068, A3 ~ 0.903110, 71 ~ —0.43194, 7, ~ —0.115630, A,

1.96464, Ay ~ —0.422566, A3 ~ 0.771712, Ay ~ 1.92928, A5 ~ 0.154867, A¢ ~ 1.54342, &;
1.96464, ¢ ~ 0.422566, 3 ~ 0.771712, A ~ 0.243646, where A is given by (19). Clearly the hypothesis
of Theorem 4 is satisfied with { = % Also EA ~ 0.097458 < 1. Therefore, the problem (24) has at least one
solution on [0, 1].

RN

In the next result, we apply a fixed-point theorem due to Krasnoselskii [31] to establish the
existence of solutions for the problems (1) and (2).

Theorem 5. (Krasnoselskii [31]) Let M be a closed, convex, bounded and nonempty subset of a Banach space X
and let JFy, F, be the operators defined from M to X such that: (i) F1x + Fpy € M wherever x,y € M; (ii) Fy
is compact and continuous; (iii) J, is a contraction. Then there exists z € M such that z = Fyz + Fz.

Theorem 6. Assume that f : [a,b] x R — R is a continuous function such that the following conditions hold:

(H) |f(t,x) = f(Ly)| < Llx—y|, L>0,Vt € [a,b], x,y €R;
(Ha) |f(t,x)| < u(t), ¥ (t,x) € [a,b] xR, p € C([a, 0], RT).

Then the problems (1) and (2) has at least one solution on [a, b] if

(b—a)t
<A - W) L<1, (25)

where A is defined by (19).

Proof. Consider a closed ball B, = {x € £ : ||x|| < r} withr > A||u||, sup [u(t)| = [|u||, and A is
te(a,b]

given by (19). Define operators J; and J, on B, as

t _ —1
@0 = [T s e
" —s)1-t _g)12
(Bx)(1) = —a(t) /ab %f(&x(s))ds—gz(t)/ab%f(s,x(s))ds
s _ -1
+g3(t) /ﬂb (/u %f(u,x(u))du)am(s).
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Please note that 7 = J; + J». For x,y € B;, we have

x su k)i —s) s, x(s ' 70_5)‘771
15+ Tyl < tqﬂp;}{ / I s+ 0] [ CE 1)l
Higa] [ s o)

sesol [ ([ S}(“q’fl|f<u,y<u>>du)dA(s>}

S 1 —S 1
< uts?pb]{/ut( r(q))q ds + g1 (t I/ tr(q))q ds
_ -1
+182(t I/ ds+|g3(t |/ / r(”q))qdu)dA(s)}
< ulla<sr,

where we have used (19). Thus, Jix + J2y € B;. Next we show that 7, is a contraction. For x,y € By,
we have

|Tox = oyl = tSI[llz]’(sz)(f)—(Jzy)(f)‘
< sup{|gl ) / O s x(6)) — fls, ()l
te(a,b]
Hgato)l [ G2 |fsx< ) = Fls,y(s))lds
Hast)l [ ( /S 5‘”; 1f(u»c(u))—f(w(u))|alu)azA(s>}
(=) (paf b (s—a)t
< LHX*]/H {gll“(qul) +&2 r(q) +g3/u F(q+1)dA(s)]

. (b~ a1

which shows that 75 is a contraction by the condition (25). Continuity of f implies that the operator
J1 is continuous. Also, J; is uniformly bounded on B; as

(b—a)t
gyl

Next, we establish that the operator [J; is compact. Setting S = [a,b] X B,, we define

sup |f(t,x)] = M,.Fora <t <t <b, weget
(tx)eS

[ x| <

[(J1%)(t) — (J1%) (f2)]

H _ 1
+f %f@x(s))ds
M,

g +1) [|(t1 —a)T—(—a)| +2(t — tz)'i]

— 0 when t; —t; — 0,

IN
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independent of x. Thus, J; is equicontinuous on B,. Hence, by Arzeld-Ascoli theorem, 7; is compact
on B,. Therefore, the conclusion of Theorem 5 applies to the problems (1) and (2). O

Remark 1. By interchanging the role of the operators Jy and Jo in Theorem 6, the condition (25) becomes:

L(b—a)l

1
CES

Example 3. Consider the fractional differential equation:

0
DS x(t) = tan lx+ €%, t e [1,2]. 26
* 248 1.2 2

subject to the boundary conditions of Example 1.

Let us take A(s) = ﬂ + 1. Using the given data (from Example 1), it is found that
Ay = —1, Ay ~ 1543333, A3 ~ 1245333, 71 ~ —0.379778, 7, ~ 0.081778, A, ~ 1.877706,
Ay = —0.261556, A3z ~ 0.877706, Ay ~ 1.755413, A5 =~ 0.476887, A\¢ ~ 1.755413, &1 ~ 1.877706,

g ~ 0.264808, g3 ~ 0.877706, A ~ 0.272140 (A is given by (19) and A — ((q )) =~ 0.204166.
_ 2t _
= m + e Also L (A

;?;ﬂz)) < 1for 5 < 14.693960. Therefore, there exists at least one solution for the problem (26) on [1,2].

T
Clearly the hypotheses of Theorem 6 are satisfied with L = 6/3 and u(t)

4. Uniqueness of Solution

Here, we prove the uniqueness of solutions for the problems (1) and (2).

Theorem 7. Assume that f : [a,b] x R — R is a continuous function satisfying the condition (Hy ). Then the
problems (1) and (2) has a unique solution on [a, b if

LA <1, 27)
where A is given by (19).

Proof. Setting sup |f(¢,0)| = N < oo, and selecting
tela,b)

1 > NA(1—LA)™!

we define B;, = {x € £ : x| < r1}, and show that JB;, C By, where the operator J is defined
by (21). For x € By,

Lf(t x(8))]

[f(£x(8)) = f(£,0) + f(£,0)| < [f(t,x(t)) — f(£,0)] + | f(£,0)|
Lix(t)]+ N < L|x|| + N < Lr; + N.

IN

Then,

_s -1 _s -1
174 < sup{ At%\f<s,x<s)>|ds+|gl<t>| [ s ol

te(a,b)
+Hgao) [ \f(s x(s)) ds
_g-1
Hs(ol [ / o |f<u,x(u>)du)dA<s>}
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a —a —a 1 S—a
< (Ll +N) | o e e O g [ A
< (L7’1+N)A§7’1.

This shows that Jx € B,, for any x € B,,. Therefore, 7B,, C B;,. Now, we show that [J is
a contraction. For x,iy € £ and t € [a,]], we obtain

70 -l = s (7)) = (Ty)(1)]
t(t_s)qfl B
< ;1{3}{ Ly e x(e) — flo o fas
. _ )1
0] [ O o a6 - s vtsn|s

o] [ LT | fGox9) — flsate s

Hes(ol [ ( /‘S e 1f<u,x<u)>f(w(u))\du)dA(s)}

(b—a)T (b-a)f g (s —a)i
1)+g1 ( +g3/ 1—~ )

< Llx—yl| 1 ek

= LA[x—yl.

By the condition (27), we deduce from the above inequality that 7 is a contraction. Thus, by the
conclusion of Banach fixed-point theorem, the problems (1) and (2) has a unique solution on [a,b]. O

Example 4. Let us take the problem considered in Example 1, and note that LA < 1 for 6 < 11.023738. Clearly
the hypothesis of Theorem 7 is satisfied. Hence it follows by the conclusion of Theorem 7 that the problem (22)
has a unique solution on [1,2].

5. Ulam Stability

In this section, we discuss the Ulam stability for the problems (1) and (2) by means of integral
representation of its solution given by

_ -1
s = [ sy - [ O ps e

b _ -2
a0 [ s

sat) [ ([ T fw ) aas), os)

Here y € C([a,b],R) possesses a fractional derivative of order 3 < g < 4and f : [4,b)] x R — R
is a continuous function. Then the nonlinear operator Q : C([a,b],R) — C([a, b],R) defined by

Qy(t) = “Dy(t) — f(t,y(t))
is continuous.

Definition 3. For each € > 0 and for each solution y of (1) and (2) such that

[Qull <e (29)
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the problems (1) and (2) is said to be Ulam-Hyers stable if we can find a positive real number v and a solution
x € C([a,b],R) of (1) and (2) satisfying the inequality:
lx =yl <ves,
where €, is a positive real number depending on e.

Definition 4. Let there exists k € C(R",R") such that for each solution y of (1) and (2), we can find a
solution x € C([a,b],R) of (1) and (2) such that

[x(t) —y(t)| < x(e), t € [a,b].
Then the problems (1) and (2) is said to be generalized Ulam-Hyers stable

Definition 5. For each € > 0 and for each solution y of (1) and (2), the problems (1) and (2) is called
Ulam-Hyers-Rassias stable with respect to o € C([a,b], RT) if

|Qy(t)] < eo(t), t & [a,b], (30)
and there exist a real number v > 0 and a solution x € C([a, b],R) of (1) and (2) such that
x() — y(1)] < veuo(t), t € a,]
where €, is a positive real number depending on e.

Theorem 8. Let the assumption (Hy) hold with LA < 1, where A is defined by (19). Then the problems (1)
and (2) is both Ulam-Hyers and generalized Ulam-Hyers stable.

Proof. Let x € C([a,b],R) be a solution of (1) and (2) satisfying (21) by Theorem 7. Let y be any
solution satisfying (29). Then by Lemma 2, y satisfies the integral equation (28). Furthermore, the
equivalence in Lemma 2 implies the equivalence between the operators Q and J — I (where [ is
identity operator) for every solution y € C([a,b],R) of (1) and (2) satisfying (27). Therefore, we deduce
by the fixed-point property of the operator J (given by (21)) and (29) that

() —x(O)] = y(t) = Ty(t) + Ty(t) = Tx(1)]
< |Tx() = Ty +[Ty(t) —y(b)]
< LAlx—yll+e,

where € > 0 and LA < 1. In consequence, we get

€

— < .
lx =yl < 3=7A

Fixing e, = 1=x and v = 1, we obtain the Ulam-Hyers stability condition. In addition,
the generalized Ulam-Hyers stability follows by taking x(€) = =x. O

Theorem 9. Assume that (Hy) holds with L < A~ (where A is defined by (19)), and there exists a function
o € C([a,b], RY) satisfying the condition (30). Then the problems (1) and (2) is Ulam-Hyers-Rassias stable
with respect to 0.

Proof. Following the arguments employed in the proof of Theorem 8, we have

lx =yl < exo(t),
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where €. = 1=Gx. This completes the proof. [

Example 5. Consider the following fractional differential equation

7 3 x
‘D7 - - -
D7 x(t) t2+16<cosx+1+ ) telo,1], 31)
subject to the same data and the boundary conditions given in Example 1 with f(t,x(t)) = tZJriM (cos x+

X

x)’ Obviously |f(t,x) — f(t,y)| < 3||x —yll, so, L = 3/8 and LA = 0.102053 < 1. Then the
problem (31) is Ulam-Hyers stable, and generalized Ulam-Hyers stable. In addition, if there exists a continuous
and positive function o = et 45 satisfying the condition (30), then the problem (31) is Ulam-Hyers-Rassias
stable with the given value of f(t, x).

6. Conclusions

We have obtained several existence results for a new class of Caputo-type fractional differential
equations of order g € (3, 4], supplemented with non-conjugate Riemann-Stieltjes integro-multipoint
boundary conditions on an arbitrary domain by imposing different kinds of conditions on the nonlinear
function involved in the problem. The existence results, relying on different fixed-point theorems, are
presented in Section 3. The uniqueness of solution for the given problem is studied in Section 4 with
the aid of Banach fixed-point theorem. Section 5 is concerned with different kinds of Ulam stability
for the problem at hand. Some new results follow as special cases of the ones presented in this paper.
For example, taking A(s) = s, our results correspond to the ones for non- conjugate integro-multipoint
boundary conditions of the form: x(a) = ¥/ =2 a;x(17;) f s)ds, x'(a) =0, x(b) =0, x'(b) =0
and the value of A given by (19) takes the following form in thls situation:

Q1 (p—a) | (p—a)rt
e T TG

(b—a)  _(b—
A:{F(q+l) S1(

Letting A(s) = 0in our results, we get the ones for non-conjugate multipoint boundary conditions
of the form: x(a) = 2” L ax(y;), ¥'(a) = 0, x(b) = 0, ¥'(b) = 0. In case we take &; = 0 for
alli =1,...,n — 2, our results reduce to the ones with non-conjugate Riemann-Stieltjes boundary
conditions. By fixing A(s) = 0and a; =0 foralli =1,...,n — 2, our results correspond to a boundary
value problem of fractional order g € (3,4] with conjugate boundary conditions.
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Abstract: In this article, we propose a coupled system of fractional difference equations with nonlocal
fractional sum boundary conditions on the discrete half-line and study its existence result by using
Schauder’s fixed point theorem. An example is provided to illustrate the results.
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1. Introduction

Recently, many mathematicians and researchers have extensively studied fractional difference
calculus since this subject can be used for describing many problems of real-world phenomena such
as mechanical, control systems, flow in porous media, and electrical networks (see [1,2] and the
references therein). The basic definitions and properties of fractional difference calculus are given
in the book [3]. The applications and developments of the theory can be found in [4-47] and the
references cited therein. For example, Ferreira [20] studied the fractional difference equation of order
less than one. Goodrich [22] presented the fractional difference equation of order 1 < a < 2 with a
constant boundary condition. Chen et al. [28] proposed the initial value problem of order less than
one. Chen and Zhou [29] studied the antiperiodic boundary value problem of order 1 < a < 2.
Sitthiwirattham et al. [38] initiated the study of the fractional sum boundary value problem of order
1 < a < 2. Sitthiwirattham [40] proposed the sequential fractional difference equation with the
fractional sum boundary condition. We observe that these research works are fractional problems
containing only one equation.

The study of coupled systems of fractional differential equations is an important topic in this area
(see [48-53] and the references cited therein), and a recent example of the application of systems of
fractional difference equations is [54].

For the boundary value problems for systems of discrete fractional equations, there are some
studies in this area (see [55-60] and the references cited therein).

Pan et al. [55] proposed the system of discrete fractional difference equations as given by:

—A'(t) = fn(t+v),pt+p—1)),
—AFyy (1) g(t+v),ya(t+pu—1)), 1
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fort € Nopyq :={0,1,2,...,b + 1}, with the difference boundary conditions:
yl(V — 2) = Ayl(v+ b) =0,
y2(n—2) = Dya(p+b) =0, @)

where b € Ny :=NU{0};1 < p,v<2;,0< B <1;and f,g: R x R — R are continuous functions.
AV and A* are fractional difference operator of order v and y, respectively.

In 2015, Goodrich [58] discussed the coupled system of discrete fractional difference equations:

—ATVx(E)
—Ay(t)

Mf(t+v—=1y(t+pu—1)), t € Nopiy,
Aog(t+pu—1Ly(t+v—1)), 3)

with the nonlinearities satisfying no growth conditions:

x(v—2) = Hy (XL aiy(Gi)) x(v+b+1) =0,
y(—2) = Ho (T bx(@)),  y(u+b+1) =0, @
where 1l <v <2;1<pu<2A,4 >0; {a;}], {b]'};,ﬂ:l C (0,00); and Hy, H; : [0,00) — [0, 00) are

continuous functions.
In this paper, we considered the coupled system of fractional difference equations:

Ay () =Fi(t+a; —Lt+ay— 1L AP (t+ oy — 1), un(t+ a2 — 1)), ©)
A“zllz(t) = Fz(t + a1 — l,t+ Ny — 1,A/32u2(t +ap — 51),u1(t + a1 — 1)),
for t € Ny, subject to the nonlocal fractional sum boundary conditions on the discrete half-line Ny:
ur(a =2) = ¢1(u1,u2),
up(ay —2) = ¢o(uq,u2),
(02 =2) = a(ur, 2) ©

limy—seo g (£ 4 ay —2) = AA %25 (0 + 02)ua (172 + 62),
lmy oo tp(F+ g —2) = A A1, (171 4 61)us (11 + 61).

Fori=1,2, a; € (1,2]; Vi, vi, 0i € (0,1}; ‘Bi S (txi — 1,D(i); A, Ay > 0, and 1 € Nﬂt,‘*l,'[#ﬂ(,-fl
are given constants; F; € C (Ny,_» x Ny, _» x R%,R) and g; € C (Ny,_p 144, RT) are given functions;
¢i(u1, up) are given functionals; and A% are fractional sums of order 6;.

The goal of this study is to show the existence of solutions of the governing problems (5) and (6).
The paper is structured as follows. Some definitions and basic lemmas are recalled in Section 2.
In Section 3, we prove the existence of solutions of the boundary value problem (5) by employing
Schauder’s fixed point theorem. Finally, we present an example to illustrate our result in the last section.

2. Preliminaries

In what follows, the notation, definitions, and lemmas used in the main results are given.

Definition 1. The generalized falling function is defined by t* := %,for any t and « for which the

right-hand side is defined. If t + 1 — w is a pole of the Gamma function and t + 1 is not a pole, then t* = 0.

Lemma 1. [4] Assume the falling factorial functions are well defined. If t <r, then t* < & for any a > 0.

54



Mathematics 2019, 7, 256

Definition 2. For « > 0and f defined on N,, the x-order fractional sum of f is defined by:

t—u

Y (t—0(s)*=Hf(s),

s=a

1
—a —
ATV (t) = (@)
where t € Ny and o(s) = s+ 1.

Definition 3. For « > 0 and f defined on N,, the a-order Riemann—Liouville fractional difference of f is
defined by:

AF (1) = ANAT NI f(1) = (t =0 (s))==f(s),

where t € Ny ny_, and N € Nare chosen so that 0 < N —1 < a < N.
Lemma?2. [4]Let0 < N —1<a < N. Then,

ATEAYY () = y(t) + CLEE=t + G2 4 ..+ Cy 1N,
for some C; € R, with1 <i < N.

The following lemma deals with the linear variant of the boundary value problems (5) and (6)
and gives a representation of the solution.

Lemma 3. Let «; € (1,2], 6; € (0,1], A, A2 > 0 and 1; € Ny_q71,1 be given constants,
ki € C(Ny—2,R) and g;j € C (Ny, o744, R") given functions, and ¢;(uy,uz) given functionals. For each
i,j € {1,2} and i # j, then the problems:

Aui(t) = ki(t+a; = 1), teNy, @)
ui(a; —2) = ¢i(u1,u2), ®)
Jim it + ) = A gi(n + 0;)uj () + 6)). ©
have the unique solutions:
() =8 AP ey - o(9) 5 gy (55 P k)
1{t1 1 AT(61) e M 1 81 1, K2
A & 0r—1 1
- (72 + 62 — 0(5))2== g2(5)s"2=—= Q(k1, k2 (10
AF(QZ) s:%-z Ui ( ) & ( 1 )
a2 H—a
H—¢r1(ug, u2) 1 i )
+ 1 t—o(s)) 22 ki(s+a;—1), t; € Ny, o,
l—v(al) r(“l) s;()(l ( )) 1( 1 ) 1 ap—2
. lim t;r tlim L a—
us(ty) = 52— { fﬁ""A Pk, ky) — W“T Q(kl,kz)} 11)
ap—2 ty—u
) 1 e -1
+ th —0(s))2"ko(s+ar — 1), th € Ny, _o,
T(a) T(a) Sgo(z (s)) 2s+ar—1), t2 € Nyyo

provided that both uy(t1), up(t2) are uniformly bounded on Ny, 5 and Ny, _», respectively, and:

. wpy—1
Ay lim 55— 4,

i Yo (240 —o(s) 2L gy(s) sz 1 (12)

A=—22_
F(DCZ) s=ap—1
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A lim £
Lo ! i (m +61— a(s))al;lgl(s) sa=l e Ny, -2,

r(lxl) s=wp—1

lim ial*f2 U, u

00 1 4)1( 1 2) )qujz(u],llz) f\l (1’]2 10, — U(S))bgz(s) SE

Plak) =) Twre) |, &,
-i-L lim tlffl(t —0(s) Lk (s + —1)—L>< (13)
T(ay) hooo =001 N ! I(az)L(6,)
2 {—a
Yo Y+ — (@) (E—o(s) 2 ga(s +ax — Dka(s +ap — 1),
G=ny s=0
lim tﬂ¢ (uy, up)
e 2 PV A (g, up) (B 0,1 -2
Uk k2) = T(az) ~ T(w)T(6y) s:azl‘iz(m th - el =
1 ) ty—ap o )\1
+ T(a) [;13;0 s;() (y—0(s)2 L ky(s +ap — 1) — )T @) X (14)
n {—m
Yo Xm0 — (@) E— () gy (s +ag — Dk (s +aq — 1),
G=un1 s=0

Proof. For each 7,j € {1,2} and i # j, using Lemma 2 and the fractional sum of order a € (1,2] for (7),
we obtain:

1 -2 1 hi —
ui(t;) = Clit?i"r Cz#? + T Y (i —o(s))% Lki(s +a; — 1), (15)
) s=0
for t; € N,X,._z.
By using the boundary condition (8), we find that:
i, ua)
Cyi = 71,(“1_) . (16)
Then, for t; € Ny, 2, we have:
w=1  ¢i(ur, uz) a2
uilt) = Cit; T 0
1
1 ti—a; 1
+W Sgo(ti—ﬂ(s)) k,‘(S+tX,‘—1). (17)

Taking the fractional sum of order 0 < 6; < 1 for (17), we obtain:

A0y (t) (18)
TR 61 o ooy =1 Pilu1,u2)
= Ty, &, TS T
ti ti C—a
0—1 1y =2 1 g 0,—1
52§72(ti +0;—0(s))"—gi(s) s“—=+ (0T (a) é’;m S;)(fz +0; — ()" x

(¢ - a(s))""‘*1 gils+a;—1)ki(s +a; — 1),

fort; € Ny, 5.
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Employing the boundary condition (9), this implies that:

. wp—1 (Pl(ul, uz) . ap—2 limt]%oo hoo o -1 -~
C1y t}lglo T+ T tlhg;q g+ T(ay) Yo (ti—o(s) 2L k(s +ag — 1)
MCip 61 a1
= + 6, —0(s))2 s) %2 19
@) Y. (12462 —0(s) 2 ga(s) (19)

s=ap—1

Magan 1) h— a—
+ T(ap)T(6,) s:azz‘iz(ﬂz + 6 — U(s))ugz(s) g2

2 {—ap
+W Yo Y (n+6—0(@)2E —o(s) 2 ga(s +ag — 1) ka(s +az — 1),

{=np s=0

and:

Po(ug,up) | a2 1o e 1 B
) AL BT pgy Mm Y (2= o(s) (s a2 — 1)

Cqp lim t;271 +
ty—r00 —
5=0
_ MG
r'(61)

Ui
Y (61— o(s) L gy (s) st (20)

s=a;—1
Mg (u, 12) & - -
T T(a)r () 5:§72(171 + 01 —0o(s))—=g1(s) s—=

A N {—m - .
+ mggl s;:) (1 + 61 — o (@)2L(E —o(s)) 1L gy (s +ay — 1) ky (s +ay — 1).

After solving the system of Equations (19) and (20), we obtain:

A 1
Cu = Wlel) Z2(’71+91*U(S))bgl(s)sup(khkz) (ah)

and:
wp—1
t)—c0 1

A

tlim th;l lim ¢t
—00
Cp = ZTP(klrkz) -

Q(ky, k), (22)
where A, P (ki,kz) and Q(ky, ko) are defined as (12)-(14), respectively. O

The following lemma deals with the solutions u;(t;), i = 1,2 of the problems (7)-(9), and
APiu(t; — B; + 1) are uniformly bounded on Ny, -2, Bi € (&; — 1,a;).

Lemma 4. Foreach i,j € {1,2} andi # j,let k; € C (Ny,_2,R) and g; € C (Ny,—2, R be given functions,
¢i(u1,12) be given functionals, p; > max{p; —«;}, Bi € (&; —1,a;), and 0 < g; < gi(s;) < G;, for each
i € Ny, 2 T ya;-

The solution u;(t;) of the problems (7)—(9) and APiu;(t; — B; + 1) are uniformly bounded on Ny, o, if
and only if u;(t;) and APiu;(t; — B; + 1) satisfy the following properties:

(Ay) There exist constants My, Ny, my,ny > 0 such that, for uy and APruy,

|ki(t1‘)‘ <M e ™M (2t1+tz),
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i (111, u2)| < Ni(ty + pp)2Le M+,
(A2) There exist constants My, No, i, 112 > 0 such that, for uy and AP2us,
[ki(t:)] < My (t2 + pg)f2 e 2(1202),
2
i (11, 12)| < Na(ty + pr)P2 [(t2 + p2) 2] e 212D,
(As) There exist constants Q); > 0, i = 1,2 such that,
(h—a +1)EN () —ay +1)2%2 |ui(t:)| < O
14 (b + 1)L (k2 4 p2)P2 e v

(h =+ 120 —ap + 1202 | o
{ 1+ (4 + 1) (t2 + p2)22 | AP (1) | < Q.

Proof. Firstly, taking the fractional difference of order a; —1 < B; < a;, i = 1,2 for (10) and (11),
we obtain:

APruy ()
- L [il (th—B +1—0(s))7ﬁ1*15“1—1>< A »
T s=ay—1 o - AT (61)
Uil
L 0= g (L P k) —
2
) (’72+92(T(s))"Zlgz(s)s“Z]Q(kl,kz)} 23
s=np—2

o1 (g, up)

T R puTan) o (1~ PrH 1ol Pt
1 41 ¢—aq g -
T L L (= B 1= o) B o) s+ - 1),
¢=wa1 s=0
and:
Aﬁzuz(tz)
1 1 ) Jim
=gy L (e Parl-ole)ftet {Z,\P(klrkz) (24)
s=apy—1
—1
lim tf
fr—oo P2 (u1, up) ! —Bo—1 ap—
I — Q(kllkz)} + Wpaglz(tz s ‘7(5))715 2
1 th+1 ¢—ay ppt .
T o, I pe 106 e o) (s )

If u;(t;) and APiu;(t; — B; + 1) are uniformly bounded on N,,_», we have:

ay—1
A hm t2 i
- _ 0p—1 ap—1
Al < |y L et o) (st
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. a1 —1
A lim —
1 t]—co 1 n

Ta) E (m + 6 — U(s))el;lgl(s) sta—1 (25)
s=ay—1
. ar—1
< max { ‘ Jim, (112 + 62 — ap) 2=
hm tl (7]1 +91—D€1) 1— }
Furthermore, considering w1 (t;) and AP1u;(t;), we obtain:
M, el (fitt2) ,for uy(ty)
M, e~ (2h+t2) ,for APYuy(t — B 41
Kt < 4™ o i =pr+D) 6)
M, (fz +p2)ple (h+t2) ,for uz(tz)
My (tz +p2)P—2€_(t1+2t2) ,for Aﬁzuz(tz — ‘32 —+ 1)
and:
Ny (b +p1+1)2 ,for uy (1)
Ny (f + pq)PLe (1) ,for APvuy(t; — By + 1
(b1, 12)] < 1(t Pl)ﬁ71 - 1(t1—B1+1) @7
Nz(l’l +p1)— [(t2+p2+l)—] ,for Mz(tz)
Na(t+ 1) [(t2 + p2)22] e (24D for AP2uy(ty — By +1)
where:
. G — o + 0= 1¢41 Gi(m —ag +6)2
M, = min 1 (),
! { A2goT (a2) Ap 81 (1)
Gi(m — a1 + 0081 Gy — wg +61)81 4 28)
Mgl (w1)Cr 7 Axg18al (@) AxCy
M, =min {F(lxz),)tzcz(i?z —ap +60)27 Ay, Gy (1 — ag + 67) 714,
Gi(m — a1 +6) 12 A; Go(mp — mp +62)271 A, 29)
8101 ’ $202 ’
. r'(6:) Gi(m — a1 + 624
Ny =min<I'(61),T(6),T(aq1), , , 30
1 { ( l) (2) ( l) )\zgzr(tx])Bz Azglgzr(ﬂq 71)81./42 ( )
N2 =min {r(ﬂz),AQGQF(Dq)(T]Z —ap + 92)62_ /\1G11"(1x2)(771 — 1+ 91)0171./4.1,
_ 61 _ 0,—1
(7]2 ap + 92) Ay G1(171 a1 + 91) .Al @31)
28, ’ s1B1

Consequently, the conditions (A1) and (A2) hold.
We next show that the condition (A3) holds. By using the conditions (A1) and (A2), we obtain:

+p1—1 ar+pp—1
()] < {520 < 7ROy
+2 po+2
]+tP1 Pz
(h—ap +1)=% ”‘1(t2—a2+1)7z""2 ’

and:
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o PR
[Pt — i +1)| < (1 — oy — B+ 1)=E thi < t?f’t/-*](),-

p1+2 0242
1+t
[ Thoh }Qi,i#]‘:l,z

(t1 —aq + 1)72""1 (th —ap + 1)72""2
where:

/\2G2r(lxl)(172 —ny + 92)02;1 y
T'(62)

_ Ny
0 = max{rwl)—f—Ml-i-

MC, )
MGy (m —aq +607)1=21 A4 )7

N, MGiT (a2) (111 — a1 +67)=L
I'(62) M r(61) .

MqCqy
N1By + -
( MGa(i2 — a2 + 92)921A2> }

(M; + Ny), (32)

(Nsz +

T(a1)

0, = max{ !

Golipp — ap + 62) 2714,

M+ Ny 1
+ Ny By + MC: ,
T(a1)A2 F(02)A2< . 2 2)}

1 My + N 1
Gi(m —m + 91)91—71441 r(2"‘2)/\12 * r'(61)A; (NlBl * Ml&)} }
+ ﬁ(Mz + Np), (33)
with
Ai = oF (g, 05 — 15 — La; — 1 — 6;;1) (34)
Bi:2F1(1Xi—1,061‘_77,‘_1;061'—171‘_91‘—];1) (35)
Ci=oF (a; +1La; —yzo; —1; — 0; + 1;1). (36)

Therefore, the condition (A3) holds.
Finally, if the conditions (A1)—(A3) hold, it is clear that u;(t;) and APiu;(t; — B; + 1) are uniformly
bounded on N, ». Our proof is complete. [

We next provide the following theorems used for proving the existence result for the problems (5)
and (6).

Theorem 1. (Arzeld—Ascoli theorem [61])
A set of functions in C[a, b with the sup norm is relatively compact if and only if it is uniformly bounded
and equicontinuous on [a, b].

Theorem 2. [61] If a set is closed and relatively compact, then it is compact.

Theorem 3. (Schauder’s fixed point theorem [61])
If S is a convex compact subset of a normed space, every continuous mapping of S into itself has a fixed point.
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3. Main Result

In this section, we aim to establish the existence result for the problems (5) and (6). To accomplish
this, we let C; = C(N,,_»,R) be a Banach space of all functions on Ny, _,, for each i,j € {1,2} and i # j.
Obviously, the product spaces:

Uu; = {(ul,uz) €Cy xCy: A/Sill,'(tj — ﬁ,‘ + 1) S C,‘ and)(\uj(tj)|,
X|Aﬁiui(ti — Bi+1)| are bounded on Na].,z, Nai,z,respectively,}
is also the Banach space endowed with the norm defined by:

(1, u2)lleg, = | APiuillc, + [lujlc;,
where:
AP, = tingiizx APiui(t; = Bi+1,t))| and |lujllc, = t/_éanjiZX\uj(ti/ t)l,
with for p; > max{p; —a;} and B; € (v; — 1,%;),

Y= (b= + 120 —ap + 122
n p1+2 po+2 ’
14 #2422

(37)

Let U = Uy NUpy; clearly, the space (Z/{, [ (211, uz) ||M) is the Banach space with the norm:

([(u1, u2)[log = max { (w1, u2) llegy, || (e, u2) g, } -

Next, we define the operator F : U/ — U by:

(]:(ul/uz))(tll tz) = ((-7:1(”1/ ”2))(t1,t2)r (‘Fz(ulruz))(tlltz))/ (38)

and:

m—1 Ui
(Fi(u1,u2)) (t, t2) = - { M1 Yo (40— o(s) it g (s)s L P(Fy, B)

ey L (’72+92_U(S))gzng(s)SDQlQ(FlrFZ)}

=1 (g, 1 h-1
) Y -1 -etot

s=un1—1

F (S, ty, A51111 (S — 51 + 1),u2(t2)), t;, € N‘Xxfz, (39)

ap—1
t . -1 . —1
(F2(u1,u2)) (1, 12) = 2T { lim 5>~ P(F, F) — t}lglo e Q(FLFZ)}

ty—rco

-2 th—1

t— a(uy, ua) 1 3 .
th4+ap —1—0(s))2=2x

o) T, o )

B (t,s,u1(t), AP2us(s — By + 1)), ti € Nyo, (40)

+
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where A is defined as (12), and:

. ap—2
lim 1571l ¢1(ug,12)

oo Ao (g, up) & o1 -
P(F,E) = - +0, —0(s))2—go(s) s22==
(B F2) T(a;) T(a2)T(62) s:%_z(ﬂz 2 —0(s))2—=82(s)
1 -1
) A L (1 + a1 = 1= 0(s)LFy (s, 12, AP s (s — By + 1), 12(2))
s=w;—1
Ao

72 -1
T(a)0(6) g;ﬂz S:azzl_l(ﬁz + 60, — U(C))@(C +ay—1—0(s))2=1x

2(8)Fa(t1,5,u1(t), AP2un(s — Ba + 1)), (41)
_ filglo 2 (i) Mg (w1, 1) 0,—1 02
Q(F, ) = T(w) ~ (@) (@) 5:§72(m + 61— 0(s))2—g1(s) s"—=
+ ) éigg%izzll(tz +ay —1—0(s)2=LF, (t,5,u1 (1), AP?up(s — B2 + 1))

mo ¢l
_m Y. (n+61—o(@)2 ¢ +a —1—0(s) 7 x

C=unq s=a1—1

g1(5)Fi (s, t2, APYu (s — B1 + 1), ua(t)). (42)

We next make the following assumptions:

(H1) There exist positive numbers ;0 € (—1,02) and My, m;, > 0 (i = 1,2and p = 1,2,3) such
that, for each t; € Ny, 2 and v; € R,

1 1 .
F <1‘1, ta, v %vz) —Mi (t + )17 e (hHh2)

< My (b + igp2) 22 e 2140 [y |
+Mis (b2 + i302) 2 e 3140 [y,
(Ha) There exist positive numbers ;,0; € (—1,p;) and Njp, n;, >0 (i = 1,2 and p = 1,2,3) such that,
forv; € C;,

1 1 5 512
bi (%01,}02> —Ni (t +apr)"™ [(fz +ilﬁz)’lp2] g~maltrth)

Pyt ~ Pyt 2 .
< Np (t + pp1)?! [(ferisz)’zpz] ettt ||y |

b N 2 _
+Nj (t1+i3ﬁ1)'3p1 [(ter,gpz)’SPZ] e tis(titt2) [|lo2]-

(H3) gi < gi(n;) forall u; € Ny, 1714,1-

Lemma 5. Suppose that (Hy)—(Hz) hold. Then, the fixed point of F coincides with the solution of the
problems (5) and (6), and F : U — U is completely continuous.

Proof. Let (u1,up) € U, for each i,j € {1,2} and i # j. By the above assumptions (H;) and (Ha),
it follows that:

‘Fi (tl,tz, APy (1 — B + 1)r“/'(tf)> ‘
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= 'Fi (tllfzé {XAﬁi”i(ti —Bi +1)] )l*( [X“J’(t]‘)]>

M (t2 + 1p2)"*2 e min(hitt) My (2 + 1pp2)?"? e mi2(t1+t2) ||A'B’“i||ci

<
+ M (b2 + iap2) 2 31 |, (43)
nd |¢; (u1,u2) | = | l[)cuﬂ,l [xu2]
: X X
) 2
< Ny (b +ap1)"" [(t2+i1ﬁ2)’1p2] e nin(titt2)
i~ - -~ () 2 _
+ Nip (t1 + infi1)2! {(fzﬂzﬁz)’zpz} el [luy |,
(44)

i - -~ Wl 2 —
+ N (1 + i3p1) " {(tersz)xaPz} e Miz(titt2) 2]l c,-

The rest of the proof follows from Lemmas 3 and 4. This implies that the fixed point of F coincides

with the solution of the problems (5) and (6).
To show that F is completely continuous, we organize the proof as the following four steps.

Step I. F is well defined and maps bounded sets into bounded sets.

Let Bgr = {(ul,uz) cU: ||(u1,llz)||u < R},then for (u],uz) cu:

max {{| (w1, u2) o, || (1, 112) g, }

max {X{Aﬁlul(tl —B1+1)|+ |M2(f2)\]/

R

[\

X[|M1(f1)|+Aﬁzuz(tz—ﬁ2+1)|]}~ (45)

By the definition of F, we get JF;(uy, ), APiF;(u1, up) € U. Therefore, (43) and (44) imply that:

‘F,-(tl, ta, APy (t; — By + 1), uj(t;)) )

1 ) 1
= |F <f1,tz, x [XAﬁ'ui(ti —Bi+ 1)] X [Xuj(tjﬂ> (46)
< My (b + jp2)P? e "lit2) L RM, (b + jpp2)2F? X
e +2) L RV, (ty 4 305)PF2 e Mid(Bit2)
1 1
and i (11, u2) | = | <% [xu1] " [XM2]> ‘ (47)

< Nit (1 +iap1) ™" [(tz + i1ﬁz)“pz]2€7"“<t]+t2)
+ RN (t1 + f1) 2" [(fz + izﬁz)mﬁz} ettt
+ RN (b + i3p1)™" [(fz + faﬁz)iaﬁz} emaltit),
Let
O =t (N11 + NiaR + Ni3R) 1 + (Nag + NooR + NoaR)
+ (Mi1 + M1aR + M13R) O3 + (Mag + MooR + MasR) Qg4

Q) =: (N1 + N12R + Ni3R) Qo1 + (N21 + NooR + No3R) Qo
+ (Mll + MR + M13R)(~)23 + (le + M»R + M23R) ()24
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where:

~ _ 1 /\1G1F(¢x2) o 61 —1 1
QO = [max{r(gl),r(el) (m — g +61) 2B 5 + ,

~ 1 /\2621”(041) 6,—1 }
0Oy = max =t —ap + 62)2=5, ¢,
12 {F(@z) T(6) (72 — a2 +62) )
013: |:maX{1,A1G1r(a2)(171061+911)9141C1}+ ! :|,

r'(61)
szlcz},

0Oy = max{ ! By }
2 Gz/\zr(al)(l’]z70(2+92)92;1.A2,r(91)~’41 ’

~ /\ZGZF(le)
Oy = max<1l,————(mp —ar+6,—1
14 X{ T(6) (2 —az 462 —1)

1 B, } 1
max , + ,
L { G])\lr(az)(ﬂl — o+ 91)91;1441 I'(62).Az I(az) |

(p3 = max { ! G }
s Gz/\zr(al)(lyz — 0y + 92)92;1./42, r(sl)Al ’

Oy = max{ ! G }+ !
7 GIMT(2) (1 — a1 +01)0 4, ' T(6:) 4 [ Tlaa) |
Hence, we obtain:
x| (F1(ur,u2)) (t1,82)]

< (N1 + Ni2R + Ni3R)

1 MG (ap) - 1

1 )\QGQF((X])(
r(0,) 1)
max{l,%(m — a1+ 601 — 1)EC1} + ! }
)\szr(le)

I'(62)
= (), (48)

+ <N21 + N»R + N23R) max { h — &y + 92)927162}

+ (M1 + M12R + My3R)

+ (M21 + MzzR + M23R) max {1, (ﬂz — ) + 92 — 1)92;102}

and:

x| (Fa(ur,u2)) (h1, £2)|

1 By }
< (Nj1 + NppR+ Ni3R max{ ,
( 11 12 13 ) Gz)\zr(lxl)(VlZ_’)‘2""92)6271"42 r(6,)A,

+ (Na1 + NoaR + Np3R) x
[m 1 B } L1 ]
GiMT () (1 — aq + 61)5-1 A, " T(62) Az I(az)
+ (M11 + M12R + My3R) max { Gl () —1112 o)A F(QCSA] }
+ (Ma1 + MR + Mp3R) x
[m 1 ) } 1 ]
GiMT () (1 — g +60)872 4, " T(62) A2 | T(a2)
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= .
Similarly, we have:

X|APT(Fi(u1,12)) (= B1+ 1, 0)| < O,
X‘Aﬁz (]:2(141,142)) (t1,t2 7‘32 +1)| < 02.

Therefore, F;(u1,u) € U. This implies that F : & — U is well defined.

Furthermore, we obtain:

| F (11, u2)]yy, = max {X\A‘S" (Filur, u2)) (ti — Bi + 1, 17)]

+ x| (Fjur, u2)) (i, 1))] for i, j € {1,2}, i#]'}

Hence,

IF(u1,u2)llee = max {|F (w1, u2) oy, I F (1, u2) [l } < O+ O

Thus, 7 maps bounded sets into bounded sets.

Step II. F is continuous.

(49)

(50)
)

(52)

(53)

Let € > 0 be given. Since F; and ¢; are continuous, then F; and ¢; are uniformly continuous.
Therefore, there exists 6 = min {51‘/ 31} > 0 such that, for each t; € /\/,Xi,z, u;,v; € C; with

ma { x| APt — B +1) —APioi(t)| + xluj(t) —oj(t))|} < 8,

1
_ T = Biny.(t. _ R.
F <t1,t2,X {XA vilt; ﬁ1+1)],
€
10,

< 2M,‘1 + ZMizR -+ 2M1'3R <
For each u;,0; € C; with |u; —v;| < &,

i (u1,u2) — ¢ (01,02) | = '471' ()1? [xul]%

€
< 2Nj1 +2NpR+2NR < TQ
Similar to Step I, we obtain:

X[ (Filur,u2)) — (Fi(vo1,02)) | < 20y <

and  x|AP (Fi(uy,u2) — AP (Fi(og,00)) | < 20 <
Thus, we have:

ST}

NI

(| Fi (11, u2) — Fi(v1,02) oy,

= [|APFi(ur, uz) — AP Fi(v1,02) |, + || Fj(ur, u2) — Fi(v1,02)ll¢;

< 2(()1 +02) < €.

65

Fi(t1, to, AP (t — i+ 1), u(t))) — Fi (t1, ta, APiv;(t; — B + 1)/vj(tj)> ’

o)) = s (3 el ) |

(54)

(55)

(56)
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This means that each F;, i = 1,2 is continuous. This shows F is continuous.

In order to prove that 7 maps bounded sets of U/ C C; x C; to relatively compact sets of
U C Cy x Gy, it suffices to show that both F; and F, map bounded sets to relatively compact sets.
Let ®; C C;, i = 1,2 be bounded sets and ®; x @, C U. Recall that ©; are relatively compact if:

e  both ©; are bounded,
e  both x©; are equicontinuous on any closed subintervals of Ny, 2,
e both YO, are equiconvergent as t; — .

It has been shown from in Step I that both F; are uniformly bounded. Now, we show that F;
maps bounded sets into equicontinuous sets of /.

Step IIL. Both F; : ©®; x ®, — U are equicontinuous on ([aq, 1] NNy, —2) X ([a2, 2] NNy, 5) :=D.
For any € > 0, there exists J > 0 such that, for each t;1, tjp € Ny, N [a;, bj],

€

o] € e =3, (57)
| 2max{Qj + O35}

[(t11 + 1)1 (t21 + p2)P2 — (t12 + p1)P1 (22 + 2

where:

1 1
Nj1 + NiaR + Ni3R] + [My1 + MR + M3R =75t =
([ 11 12 13 } [ 11 12 13 ]) |:r(01) F(al)}

=2
I

+ ([Nn + NioR + Ni3R] By + [My1 4+ MR + M13R}Cl> X

MGiT (a) (1 — oy +67)1=2
T(01)T(62)

1
+ ([N21 + NooR + NogR] + [Mp; + MR + M23R]> )

(58)

+ ([NZl + NpoR 4+ NogR| By + [Mp + MpR + M23R}52> X

MaGoT (a1) (172 — oz + 0) %=L
I'(61)T(62) ’

Q; = [N+ NppR+ Ni3R]

1 1
+ 59
MGy — az + 62)2=L A, F(NZ)} 9)

1
MGi(p — ag +61)8=1 4

By
r(61)A;

+[Na21 + N»R + Np3R]

B,
T(62) A,

+[M11 + M1aR + Mi3R] + [Mp1 + MxnR + Mp3R]

Hence, for each tj1,t; € Ny, _p N [a;,b;], and u; € ©;, we have:

[x (Frur) (11, t21) — x (Frin) (t2, t22)|
X tﬂ{ {Wl(ul,uz)l _loa(m )| |on (e, w)| .

r(6:) r(62) T(ar) ] T(OT(0)

{?\11"(“2)31|471(141:'42)\ n Aol (a1) B2 (w1, u2) |

)
|+ e
(52T (ay) T (01T (62)

n |:)‘1r(“2)Bl|Fl(t1/t2rA’61“1/“2)| n Azl”(le)l’5’2|F2(t1,tz,ul,A52u2)q
iggfll"(le) tﬁflr(az)

{‘Fl(tl,tz,Aﬁlul,uz)l B \Fz(tl,tz,ul,A52u2)| ‘Fl(tl,tz,Aﬁllll,uz)q
I'(61) I'(62) T'(ar)
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o) [1i(ur,u)|  [ga(u, ua)| |1 (1, u2)] 1
tﬁ{{ r6r) tat |+ rar
1

|:)\1r(’x2)61|¢1(“1/”2)‘ /\2T(061)32|¢2(H1,u2)\} n
BT () 1T (2) ACCY
{All"(ocz)BﬂFl(tl,t2,Aﬁ1u1,u2)| Azl"(vq)Bz|Fz(t1,tz,ul,AﬁZuz)\}
3 T(w1) £ (a2)
{\Fl(tl,tz,A’glul,uz)| Rty ty, 11, AP2uy) | n ‘Fl(t1/t2:A51u1/”2)‘:| } ‘
T(61) I'(02) (o)

O

(11 + p1)" (21 + 02)P2 — (t12 + 1)t + p2)2
, (60)

A

N
NI o

and:

|x (Fauz) (t11,f21) — x (Fouz) (t12, t20)|
1
s [ 111 (1, 2)] G lga(w, i)l o, 0)]
ArGy ( My — &y + 92)92 1A2 MGy (111 — a1 + 91)9];1.'41 r(D‘Z)
1
'Xz 1{61‘(]’1 Uy, )| Bz|¢2(141ruz)q {t%lFl(tl,tz,Aﬁ1u1,uz)|
61 Al F(BZ)A2 )\ZGZ(TIZ — &y + 92)62;1./42

_ (1,2, 11, AP 1) | \Fz(tl,tz,ul,Aﬁzuz)\]
MG1(1 — g 4 67)87L A4, I'(az)

[\ &
a1 {tﬁcﬂa(tl,tz, APy, )| tﬁczwz(tl,tz,ul,AﬁZuzn} }

IN

i T(01) Ay - T(62) A

1
o [ (u1,u2)| B t— g2y, 1)) . |472(141,M2)\}
2 UG (i — a2 +62)%27 4 MGy — w + 61)71 A, T'(a2)

-1
- 1{31\¢1(u1,u2)| B 32|CP2(U1,M2)\} {tﬁ |Fy(tr, ta, APy, )|

i
21 (91)-’41 r(GZ)AZ /\262(7]2 -y + ez)bAz
1
Bt b u1, AP2uy) | \Fz(h,tz,uhAﬁzuz)\}
MGi(1 — ag +67)=1 4, T(az)
n ta271 t%C]‘F](tl,tz,Aﬁ1 u1,1¢2)| _ t%C2|F2(t1,t2,u1,Aﬁ2u2)|
21 T'(6;)A; T(62) Az
< [t 4 01)P (b + 02)f2 — (12 + 1) (t22 + 02)P2 | €
€
< 5 61)
Similarly, for each 7,j € {1,2} and j # i, we obtain:
. . €
| AP (Fi(uy,u2)) (ti — Bi+ 1, tj) — AP (Fi(ug, u2)) (tn — Bi+ 1 tp)| < 7 (62)

Hence:

| Fi(u1, ua) (t11, t21) — Fi(ug, u2) (t12, t22) |y,
= AP Fi(uy, up)(tin — Bi+ L, tj1) — AP Fi(ug, ua) (i — i+ L) lle,
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+ 15 (w1, u2) (t11, £21) — Fj(ur, uz) (hi2, t22) |l
€ €
S a2ty =e ©
This implies that both 77 and F; are equicontinuous on D, which shows that F is equicontinuous

on D. Therefore, by the Arzeld—Ascoli theorem and Theorem 2, we can conclude that F is completely
continuous.

Step IV. Both F;: ©®; x ®; — U are equiconvergent as t;,f; — oo.

By the assumption (H1) — (H2), we obtain:

Q*
x| (Fi(ur,u2)) (1, 12)] < ﬁ — 0 uniformly in @ x @; as t1,t, — oo,
ot
1h2
X

QO
x| (Fa(uy,u2)) (f1,12)| < 5% — 0 uniformly in ©1 x ©; as t1,, — o,
it
16

where Qf, Q) are defined as (58) and (59).
Furthermore, we have:

Yk
& N 0
)
1h
uniformly in @ x @, as f1,t, — oo,

*

Q)
X}Aﬁz (.Fz(ul,uz)) (tl,tz—ﬁ2+1)| < -2 590

LaPLoA
12

uniformly in @1 X @y as f1,tp — 0.

X|AP(Fi(ug,u2)) (= Pr+1,1)| <

Hence, both F; are equiconvergent as t1,f; — 0.

Consequently, from Step I-Step IV, we conclude that F is completely continuous.
This complete the proof.

O
Finally, we present the main result of the article. For the sake of convenience, we set:
Y1 = (Ni2 + Niz3) a1 + (Nog + Noz) i + (Maz + Miz) Oy
+ (M2 + Mp3) s, (64)
and (65)
¥y = (Ni2 + Ni3) o1 + (Noz + No3) Qap + (Mip + Miz) (s
+ (M + Mp3) s, (66)
where ﬂlp, ﬂzp, p=1,2,3,4 are defined as (48) and (49).
Theorem 4. Suppose that (Hy)—(Hy) hold. Then, the problems (5) and (6) has at least one solution if:
¥+ ¥, < 1. (67)

Proof. Under the Banach space U equipped with the norm || - ||/, we let:

wi(ty, t)

ap—1 0;—1
b MGiT (@) (i — aq +64)2—Ay P1p—n1(t+1)
=i { T(6;) (i +p1)e x
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(Nlltiqz ~ NnAGa(ip —an + 92)92132) Myje~m™b

(1) I'(62) T(a1)
t—w 0r—1 ,—mq (2t +t;
0 — ooyt ms _ MGl 3+ 6 - e
5=0 F(GZ)
6,1
422Gl (w2) (12 — 2 + 62)2— Ay {(h 4 o)Pre )
I(62)
2
Noity*~  NuMGi(m — o +61)%718; n Myje~2mh
T(az) r'(61) T(a2)
t 01-1 —my (2
zzaz(tz — o(s))t2=lems _ My Gi( —ag + 61 —1)"—e m( tlHZ)}
s=0 r(el)
Ny . Mype~mit2 hiot 1
+ b+ py)Pre M) o T b —o(s))a"lem2ms, 68
I"(le)( 1 Pl) I"(le) 5;) ( 1 ( )) ( )
and
wy(ty, t2)
wy—1 wy—2
t ar—1 2 _ 1 leti
= ZA {tzz{(h + 1) [(t + pp)f2] el )(Tﬂll)
NapAaGo(p — a2 + 92)b32> Mype a2tz = 1
_ ty + 002 t; —o(s))1—2x
1—(92) r((xl) ( 2 pZ) 5;0 ( 1 ( ))
o 2mas _ Mzsz(l’]z —ay+6) — })(%g*mz(tﬁrﬂz) (t2 + PZ)Q:| n Tlf] y
>

) B
Npoty NpMGi(m — i+ 91)91131>

(1 1)L [(b2 + p2)2] 2 < T(az) I(6)

—mpty b2—o
Mot N 1y - o(e)) =l 21y 4 )2

r(“Z) 5=0
My» Gy (111 -1+ 6] — 1)61;1€7n12(t2+2t2) No» 0212 —ny(tr+1) 22
r@) Fag) (2020
Mzze—mztl fy—wp
E (tr — o (s))2=Le=2m25 (1, 4 py)F2, (69)

Mw) =
It is clear that (wy, wy) € U. For ¢ > 0, we define:
By = {(u,u2) €U : |[(ug,u2) — (wy, w2) oy < £} (70)
For (u1,uy) € Ey, we have:

[ (w1, u2) e < [ (w, u2) = (wr, w2) o + (@1, @2) [l < €4 [[(w1,@2) e (71)
[ (1, u2) e = max {[] (1, 12) [l 1 (1, 12) [l } < €+ [[ (w1, w2) - (72)

Using the conditions (Hj)—(Ha), together with the procedure employed in Lemma 5, we have:

F (tlltz, AP, “j) — My (t2 + npp) 182 e~ (h12)

< {Mz‘z (2 + ip2) 22 e M1 12)
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+ Mz (t2 + ispz)ﬂfm"a(t“m} [l 1, u2) [luas
and:
Pyt 1 0 2 .
¢i (u1,u2) — Nig (t 4 np1)28% [(tz + ilﬁz)ﬂ] e~mu(titta)

P ~ Pl 2 — N
= {Niz (b +p1)22 [(tz + iZPZ)&} e nalhth)

N ()2 [ (12 )] e ) | )
Therefore, we obtain:

x| (Filui,uj)) (t, 1) — wi(ty, t2)| < (“‘ H(w1,w2)|\u)‘1’i-
Furthermore, we have:

x| 8P (Fi(uwi,uy)) (4 — Bi + 1, £) — APiwi(t; — Bi + L, t))|
< (£ ll@r w2l ) ¥

Hence, it follows that:
1 (Filun ) = willy, < (€4 H(wr @2l ) 2%

Therefore,

| (F (1, u2)) = (w1, w2) |, < ((Z+ H(wlrwz)ﬂu) 2max {¥1, %>} .

Choosing;:

. [| (w1, w2)||,, 2max {¥1, ¥2}
- 172maX{‘Y1,‘F2} !

and for (u1,up) € Ey, we consequently obtain:

| (Fur,u2)) = (wr,@2) |, < ¢

(73)

(74)

(75)

(76)

77)

(78)

(79)

(80)

From the Schauder fixed point theorem, this implies that F has a fixed point (u1,uy) € &,

which is a bounded solution of the problems (5) and (6). The proof is complete.

4. Example

O

In order to illustrate our result, we consider the following fractional sum boundary value problem:

3 2
Aup(t) = 7(t+

4 31
513 —(25t+ 1
é) o~ (12t45) (t+3)°e ), <t+3)
3

2
3 4000 (1+ %) (1+ cos )
3
<t+ %>2 e—[(12t+5)+(t+%)n]A%ul <t+ %>

5000¢ + 10cos? (¢ + )

, teNy

70



Mathematics 2019, 7, 256

(t+ %)% e (BH3),, <t + %)

1 4
Auy(t) = §<t+§>e_(12t+5)+ : 5
1000 (") +10)
3
12 ,—(12645) 2 1 3 VA
+(t+ 6) arctan(cos (t+3> n)A4u2(t2+12) -~
5 ,
10007 (¢ + )
1-|u3+2|
N _ w2 YR —
u(=3) = o) = s costmal + 2000m2(13 +e)
1-[u3+3|
2y lua| . 5 |y [} + 3 —1=
o 3) = #2(,12) = g0 S 2] + 20007 (12 + 71)
1 1 2
,hi)nwul(t7§> = EA*%(12e+cos(4)> uy(4)
. 2 3. 2 . (15\\? /15
Jim n(t-3) = g 3(“’““‘(1)) u(F) 6D

_3 . _4 3 . 5 _1 g _2  _7 __ 10 _
Here, a1 =3, ;=% =3 Bo=3 =3 =23 =3 =%, m=4m=271=

L A=13,T=4, g(h) = (10e —sint )3, g2(t2) = (12¢ + cos ), and:

4

] 2 2 e—6(hi+t2) (b+4)3el2(tr) )i (1)
F1(t1,t2,Azu1(t1+3),uz(tz)) 3(t2+1) ) T e i)
(t2+

ft ) [6(f1+f2)+t1n]A%u1(tl+%)

+

5000e+10 cos? t 71
4
4\ 3 ,—[12(t+t2)+1 ]
3 1 1 o—6(h+12) (+%)3e [2(+2)+y (1)
F <t1,t2,A4le (t2+4 ,ul(tl) = 2(i’2+1) + 1000(el+10)
3
n (tz+%)2e 6(t1+12) arctan(cos tzn)A4u2(t2+4)
100077 (t,+3)?
Ch. -1 — 2 0 = 25 = L o = G = 2 a0 = ad = 2
, , ’ ,

0ose 1 —3 P2 = ; P11 = aP1r = 3, 201 = 201 = 3, 301 = 381 = I
iap2 = 1, pp2 = 5, 302 = 3, My = njy = 6, mp = np = 6, mjz = nz = 12, where

i > max{pf; — a1, B2 —az}, ipP1 € (*1,1),,‘,,‘02 €(-1,2)fori=12andp=1,2,3.
([1*2)1/2(t2 3)2/3

Let t; € Ni%%, t) € Nig’%é and x = o 1 Since:
1 1 2
‘Fl (tlle,*A%ull *M2> — 2 (k4 1) e tlth)
X X 3
4 3
1 4\3 12k 1 312 o-6(ti+t2) A}
< —— (¢ = 1+t [ 2 1+h2) [A3 ,
= 361000 < 2+ 3) ¢ 2l + Soooen 110 (27 2) “1
1. 3 1 1
B (t,ty, —ASup, —uy | — = (fp + 1) e 0lt82)
2(1,2)( M2Xu1> 2(2‘*‘ )e
1 4\ 3 9 3\?
P LI (PR —12(1+t) —6(h+12) | Ad
= 121000 < 2+3) ¢ 2|+ 156000 \2 T2 ) € |,

we find that (Hl) holds with My, = 0.666, M, = 9.080, M3 = 2.770 and Mj; = 0.500, My, =
0.000046, M>3 = 0.0000083.
Furthermore, we obtain:

1
i) 32 (oo e
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2 4 3 3
1 2)* 213 e(ty+ty) 1 3)* 3)?
200063 (t1+3> <t2+3> ¢ Il + g0z (1) (R2+g) *

e g

1
1 1 1)2 1\ 6(t+1)
_ _ — t _ t _ 1 2
)472 <xu1’xu2> <1+2> <2+2>e
4
3

5
6
1 2\ 3 2 1 3\ 1 3\?
< —(H+Z2) (B+Z) ebtlhith) —(h+2) (+>
= 2000n<1+3> <2+3> ¢ Il + 5002 (1 +3) (B2+g) *

—3(ty+t

e Nz,

and (10e —1)3 < g1(t;) < (10e +1)3 and (12e — 1) < go(tp) < (12e +1)2.

Thus, (H,), (H3) hold with Nj; = 04, Njp = 0.0000249, Ni3 = 0.0000253, N»; = 0.833,

Ny = 0.000159, N3 = 0.000271, g1 = 17949.37, g» = 999.79, Gy = 22384.80 ,and G, = 1130.26.

Finally, we find that:
0y = 2313.238, Qqp = 319.647, g3 = 27053.522, (g4 = 2597.063,
0y = 0.0212, Oy = 1.1403, Q3 = 0.0198, Qpy = 1.5093.

Therefore, we have:
Y1+ ¥, = 0.00057 + 0.4692 = 0.4698 < 1.

Hence, by Theorem 4, this boundary value problem has at least one solution. O
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Abstract: This paper gives continuous dependence results for solutions of integer and fractional
order, non-instantaneous impulsive differential equations with random impulse and junction points.
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have a continuous dependence. Finally, we use numerical examples to demonstrate the obtained
theoretical results.
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1. Introduction

Impulsive differential equations (IDEs) are applied in many fields, such as mechanical engineering,
biology, and medical science. Generally speaking, there are two classes of impulsive equations. One
is composed of instantaneous IDEs, for which the duration of the impulsive perturbation is very
short compared to the entire evolution process, see for example, References [1,2]. The other class
is composed of non-instantaneous IDEs, for which the impulsive action starts at a fixed point, and
remains active over a period of time that may be related to the previous state.

Non-instantaneous IDEs were introduced in Reference [3] and address the shortcomings
of instantaneous IDEs, which do not seem to describe some of the dynamics of evolution in
pharmacotherapy. Wang and Feckan [4] corrected non-instantaneous impulsive equations in
Reference [3] and proposed new and generalized non-instantaneous IDEs by considering the impact
from the previous system state. Wang [5] used the notion of a non-instantaneous impulsive operator
to represent the solutions of linear problems, which are simplified from the model in Reference [4].
The existence and stability of solutions and control problems for these non-instantaneous IDEs, as
well as inclusions have been studied in References [6-25]. Meanwhile, fractional differential equations
provide an alternative model and are gaining much importance and attention. The qualitative theory
of fractional differential equations was studied extensively in the literature; see References [26-33] and
the references therein.

Recently, Dishlieva [34] studied a class of instantaneous IDEs with random impulsive effects and
established sufficient conditions to ensure continuous dependence of the solutions. Motivated by
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Reference [34], we investigate the continuous dependence of the solutions of the following first-order
nonlinear differential equations with random non-instantaneous impulsive effects:

£(t,x(t)), t€ (s tipa], i€ N:={0,1,2,---},
= h;(t;, (;)), ieNt:={1,2--},
( ( ))/ (tirsi}r i€ N+r

x(t) =
t

=

H‘

x(t)
x(0) =
and also of the fractional-order random non-instantaneous IDEs:

D x(t) = £(t,x(t), t € (si,tipa], i €N, a € (0,1),
x(tF) =hi(t;,x(t;)), i € NT,

x(t) = hi(t,x(t;)), t € (t,s], i € NT,

x(0) =

@

X0,

where CD?,»,t denotes the classical Caputo fractional derivative of order «, by changing the lower
limit s;, as in Reference [35]. The random impulse and junction points, ¢; and s;, respectively, satisfy
th=50=0<t; <s3 <t <+ <s <ty <, = co. The symbol x(t}) and x(t;)
represent the right and left limits of x(t) at t = t;, respectively. In addition, we set x(t; ) = x(t;). The
function f : [0,00) x R — R is continuous, and the function h; : [t;,s;] x R — R is continuous for
all i € N*. The piecewise continuous solutions of Equations (1) and (2) have been represented in
Reference [14] [Equations (5) and (7), therein].
We also introduce the following related original and perturbed equations without impulses:

X/(t) = f(t,X(f)), te [S,‘, ti+1], i €N, @3)
X(si) = xs,,
X/(t) = f(t,X(f)), te [S,‘, tzqu], i €N, @)
X(Si) = ys,-/
D2 X(t) = £(t, X(1)), t € [sitip], i €N, a € (0,1), )
X(si) = xs;,
and:
“DE X(t) = £(t, X(1), t € [sitita], i€ N, a € (0,1), ®)
X(S,‘) = fgi.

Denote any solution of Equations (1) or (2) by x(-;0,x) € PCJ,R) := {x : J = R :x €
C((tx tk+1),R), k=0,1,--- and there exists x(f;) and x(t; ),k =1,2,- - - with x(t; ) = x()} , where
J = [0,00) and C((fy, tx+1], R) denotes the space of all continuous functions from (#, t¢,1] into R.
Additionally, denote any solution of Equations (3) or (5) by X(;s;,xs5;) € C([s, ti+1],R) . For the
interval (t;, s;], we denote its solutions by X(-; t;, x(tl'*')) Then, the following relationship is valid:

X(50,x%), t € [0, 1];
X(t t,x (f )) te (tl,S]];
X(t;51,%s,), t € (s1,2);

x(t0,x9) = (7)

The main objective of this article is to present the continuous dependence of solutions with respect
to the initial condition when random impulse and junction points are incorporated in Equations (1)
and (2). We will take notice of the fact that the location and the number of the impulse points and
junction points are not determined in a finite time interval, and so, we can assume that the impulse
and junction points are random.
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The main contributions of this paper are two folds. We extend the concept and results in
Reference [34] to random non-instantaneous impulsive cases by imposing different conditions
on the nonlinear term. We also extend the continuous dependence of solutions of first-order
non-instantaneous impulsive equations to fractional-order non-instantaneous impulsive equations.

The rest of this paper is organized as follows. Section 2 gives the relevant definitions and notions
for the continuous dependence of solutions and contains the main results. Section 3 gives two examples
to demonstrate the application of our results. In Section 4, conclusions are drawn.

2. Main Results

Based on Reference [12] (Definition 2.1, therein) and Reference [34] (Definition 2, therein), we give
the following definitions for the continuous dependence of solutions.

Definition 1. The solution x(-;0,xo) € PC(J,R) of Equations (1) or (2) depends continuously on the initial
point (0, xg), if for any € > 0, T > 0, there exists a 6 = (¢, T) > 0, such that for any (0,%) € [0, T] X R,
and | Xy — xo| < 6, then:

\x(t;O, fo) — x(t;O, XO)‘ <g te [0, tl] U(t,‘,si] U(S,‘, ti+1]' ieNT.

Definition 2. The solution X(-;s;,xs;) € C([s, ti+1], R) of Equations (3) and (5) depends uniformly and
continuously on the initial point (s;, x,), if for any € > 0, T > 0, there exists a 6 = (e, T) > 0, such that for
any (s;, Xs;) € [0, T] x R, and |Xs; — x5;| < 6, then:

|X(t;si,Xs;) — X(t;51,x5,)| <& t € [s5,tiq], 1 € N+,

We introduce the following assumptions for further discussion:

[H1] The function f : J] X R — R is continuous and h; € C([t;,s;] x R,R),i € NT.

[Hp] There exists an L¢ > 0, such that |f(t,x) — f(t,y)| < L¢|lx —y|, foreacht € [s; tiq], i €
N, and forall x,y € R.

[H3] There exists a positive constant Ly, i € N*, such that |hj(t,x) — hj(t,y)| < Lp,|x —
yl, foreacht € [t;,s;], i € N*, and forall x,y € R.

[H4] The solutions of Equations (3) or (5) depend uniformly and continuously on the initial point.

[Hs] The functions h;(t,x),i € N*, are uniformly bounded, i.e., for any i € N, there exists an
M > 0, for any x € R, t € J, such that |[h; (¢, x)| < M.

Theorem 1. Assume that [Hy] — [Hs] are satisfied. Then the solution of Equation (1) depends continuously on
the initial point (0, xo) at the random impulse and junction points.

Proof. Let ¢ and T be two arbitrary positive constants and Q = {t1,s1, 2,5, - - - } be an arbitrary set
of impulse and junction points. Note that if #; — oo as i — oo, then for any selection of the set of
impulse points and junction points, there exists k € N such that sy < T < t,4, i.e., there exists at
most k impulse points and at most k junction points belonging to the interval [0, T|. Without loss of
generality, we assume that T = ;..

We divide the proof into several cases.

Case 1. For the interval (s, tx; 1], the solutions of Equations (3) and (4) are given in Reference [14]:

t
X (s, x5,) = X, +/ £(s, X(s; 5, x5, ) )ds, (8)
Sk
and:
t ~
X(t; 5%, X5, ) = X5, +/ £(s, X(s; sg, x5, ) )ds. 9)
Sk

77



Mathematics 2019, 7, 331

Assume that there exists a di 11 = Orr1(e, T), where 0 < & pyq < € and |¥s, — X5, | < S pr1,
linking Equations (8) and (9), we get:

[X(t 50 o) — X(E5535,)|

ot
< Ry — e +Lf/ |X (53 50 Ts, ) — X (535, x5, )| s
Sk
t
< gL [ |X(5550 %) — X (53555 s (10)
Sk

From Reference [36] (Theorem 1.1, therein), we get:
X (£ 51, %5, ) — X(t55, %5,)| < S jegretBsr =),
Since 0 < k41 < & we have:
|X (5, %s,) — X(E; 5k, X5, )| < & t € (Sg, tega]-
Case 2. For the interval (ty, si], we have the following expression of the solutions, respectively:
Xt x(6)) = hueltx(5;)) and X(6 b, (1)) = hie(t, (8 ).
Assume there exists 6 < dg g1, where |X(t]) — x(t)| < 5, then we have:
IX (8 b, X(50)) = X (6t x(50)] < Ly [X(8) = x(80)]- (11)

For (sj_1, ti), similar to Equation (10), we assume there exists a §;_1 ; < L Ok Then we obtain:

Le(tfe—sk—1)
hy €

- 1
|X(t1 Sk—1s xSk,1) - X(t;skfll xsk,l)‘ < (Skfl,kfleLf(tkislP]) < % <g te (sk71,tk}- (12)
hye

For t = ti, we get:

~ Ok
X (b sk1, X5 p) — Xt sk, X 4)| < 7,
Lp,
and: 5
~r— - k.k
[hy (b, X () — hye (B, x(80))] < Lhkﬁ < Ok
k
Therefore, Equation (11) becomes:
‘X(t; ty, f(f;r)) — X(t; tk,x(tk*))| < 5k,k < 5k,k+l <g te (tk,Sk]A (13)

From the procedure of Equations (12) and (13), we finally establish the following facts:
For the interval (t1,s1], if there is a 817 < 612, where |X(t]) — x(t])| < 611, then:

IX (80, (8) = X(6 4, x(5))| < L [X(57) = x(87)]- (14)
For the interval [0, t1], we assume there is a Jy < L‘Slﬁ, where | Xy — x¢| < dp1. Thus, we obtain:
hy
= Ly _ 11
|X(t;0,Xp) — X(t;0,x0)| < dpre~f'1 < I <eg te0t]. (15)
hy

Fort = t;, we get:

B 5
|X(11;0, %) — X(11;0,%0)] < 1L,
Ly,
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and hence, we have:

_ [
‘hl(tl,x(i’;)) —hl(tl,x(tl ))| < thﬁ < 011-
1

Thus, Equation (14) becomes:
IX(t 11, X(H)) — X(t 11, x(8))
Next, we notice that:

bon =

Sk—1k
Ok
Opkr1 =

| <011 <dpp<e te (s

do1(e, T, 611),

Ok—1k(&, T, 0c),
Oie(&, T, O g,
O kr1(e T).

(16)

17)

Therefore, we have dy; = dp; (¢, T). Considering Equations (7) and (15), we obtain, for any ¢ > 0, there

exists a 6p; > 0, where |Xy — xg| < dp1, thus:

[x(t;0,Xp) — x(£0,x0)| <e t€[0,t],

and from Equation (16) we get:

[ha(t, ¥(t7)) — ha (b, x(t

D)= (%) = x(5)] < én.

Taking into account Equations (17) and (7), we find that:

|x(0,%0) — x(£0,x0)| <& t € (ty,51],

and:

[ha(s1,X(t) ) —ha(s, x(t))| = |%s; — x5, | < 012

According to Equation (7) again, we obtain:

[x(£0,X0) — x(t;0,x0)| < ¢, t € (s1,t2].

Similarly, we achieve the following conclusion:

[x(£0,X0) — x(t;0,x0)| < ¢, t € (t, k],

and:

[huc (s, X (1)) — huc(sp, x(8))| = (%5, — x5 < S

Then, it is further determined:

[x(0,X0) — x(£;0,x0)| < ¢, t € (s, tys1]-

(18)

(19)

(20)

(1)

By Equations (18)—(21), we get that for any ¢ > 0 and Xy, xo € R, there existsa d > 0, where |X¥) —
Xo| < 6, such that |x(t;0,%g) — x(t;0,x0)| < efort € [0,t1] U(t;, si] U(si, tiva],i = 1,2, -+, k,where 6 =

d01(e, T). By Definition 1, the proof is completed.

O
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Theorem 2. Suppose that [Hy] — [H3] are satisfied. Then the solution of Equation (2) depends continuously on
the initial point (0, xq) for random impulse and junction points.

Proof. Let ¢ and T be two arbitrary positive constants like in Theorem 1. We divide the proof into
two cases.
Case 1. For the interval (s, t, 1], the representation of the solutions of Equations (5) and (6) are
given by [14]:
1 gt
X(t; 51, xs5) = X5, + —/ (t — )" (s, X(5; 5, Xs,) )ds, (22)
I(a) Js,

and:
- ~ 1 t _ ~
X(t/ Skr xsk) = Xs;. + m A (t - S)ZX 1f(S,X(S; Skr xsk))ds' (23)
k

Assume that there exists a 01 = g r1(e, T), 0 < Jpps1 < & where |X5, — x5, | < O py1, then
from Equations (22) and (23), we have:

‘X(t;sk/ysk) - X(t;sk/xsk)‘

~ L t _ ~
RS ) AD R (CEEV R (CRVEN L
| P _ .
< Gkt gy L (0 I s T — X5 xs)lds.

Sk

Using Reference [37] (Corollary 2, therein), we get:
|X (£ 5k, X5,.) — X(8; 5, X5 )| < O jey1Ea(Le(trn — 55)"),
where E, is the standard Mittag-Leffler function [35] defined as:

oo Zk
E.(z) = S A zeC.
«(2) kgol"(kzx+1)

Owing to 0 < 6 k41 < & one can get:
|X(t; 5, %) — X(E; 5k, X5, )| < & t € (Sg, tega]-
Case 2. From the interval (#, si], the expression of the solutions are given by:
Xt x(6)) = hue(t x(5;)) and X(8 b, (1)) = hie(t, (1 ))-
Assume that there exists a 8 < 0y k1, where |¥(t7) — x(t])] < di, then we have:
IX(8 b, X(50)) = X (6t x(50)] < Ly [X(8) = x(80)]- (24)
Similar to the above procedure, for the interval (sy_1, t], one has:
[X (8 sk, Xs_y) — X(Esk—1, %5, 1) | < Gk 1xBa(Ls (b — s5-1)")-

Ok

————* - one can obtain:
Lhy Ea(Le(t—sk-1)")”

Since 61 <

- )
IX(t -1, %o, ) — X(Eso1,xs, )] < f <& b€ (st
k
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For t = t;, we get:

~ Skk
[X (b sk—1, X5y ) — Xt Sk—1, X5, )| < =,
Lhk

and then:

_ _ 1)
lgx(tr, x(t ) — gkt x(8))] < Lhk% < Ok
k

Therefore, (24) becomes:
[X (8t X(47)) = X (8t x(5))] < e < &

From the above, one can deduce that for the interval (t1,s1], there exists a d1; < 12, and if
|x(t;) — x(t7)| < 011, then:

X (811, x(H) = X(t 1, x(8)] < Ly [X(t7) — x(87)].

For [0, t1], there is 6y < ﬁ, if |Xp — xo| < Jo1, then:
1 ‘K

L

- o
|X(£;0,%0) — X(£;0,x0)| < 601 Ba(Lgt}) < LA <e teot]
hy

Thus, for t = £, we have:

— o
|X(t1;0,%0) — X(£1;0,%0)] < +%,
Lh1

and then:
‘hl(tl,f(i’l)) — h](tl,x(tl))| <.

and:
|X(i’; tl,x(tf)) — X(i’; tl,x(tf'))\ <o <dp<g te (tl,Sﬂ.

Similar to Theorem 1, we reach the conclusion. []

Theorem 3. Assume that [Hy), [H4], and [Hs] are satisfied. The solution of Equation (1) depends continuously
on the initial point (0, xo) at the random impulse and junction points provided that 2M < |Xs; — xs,].

Proof. We divide proof into several steps.
Step 1. According to [Hy], assume there is a g1 = Opps1(e, T), where 0 < G ppq < g, if
|fgk — xsk\ < 5k,k+l/ then:

|X (5, %) — X(E; 5k, x5, )| < & t € (Sg, tega]-
Step 2. For the interval (f, si], according to [Hs], we obtain:

IX(tt, X(60) = X (Bt x(50)] = [he(£,%(8)) — hae (8, x ()|
< 2M < |3?sk - x5k| < 6k'k+1 <g te (tk,sk}.

For t = s;, we get:
[huc sk, X () — hue (s, x ()| < Sy (25)

Step 3. In this step, we check the continuity of the solutions in the interval (s;_q, t¢]. From
Equation (25), we assume there exists a Jx_1 depending on ¢, T, ;1. For brevity, we denote
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Ok—1k = Ok—1k(& T, 0 k+1), where 0 < §j_q < . If |5, | — x5, ;| < Ok_1x then by [Hy] we deduce
that:
|X (£ k1, %5, ) — X(Esk—1,%s,_,)| <& t € (Sp_1, ty)-

Step 4. For (#¢_1,5¢_1], we get:

|X (8 i1, (1)) = X (b b1, x(541))] i1 (£, X(_1)) — a1 (8, x(81))]

M < (X, — X5y | < Op—1k <& t € (b1, 86-1)-

IN

For t = s;_1, we have:

[hue—1 (-1, X(t_q)) — a1 (551, X(t_1))] < Fp—1-

Similar to the above steps, we have the following general results.
Step 2k. For the interval (1, s1], it follows that:

IX(t: 41, %(1)) = X(t 0, x(47))] = [ha (£, X(87)) — ha(t, x(87))] < 612 <g, t € (1, 1]
For t = s1, we have:
[ha(s1, X(t;)) —ha(sy, x(t))] < dr2- (26)

Step 2k + 1. For [0, #1], assume there exists a 6p1 = 801 (¢, T, 812), where 0 < &y < ¢, if |[Xp — xo| < ¢,
then:
|X(t0,%0) — X(£0,x0)| <¢ t€0t].

Finally, we notice that:

do1 = d01(e T, 12),
-1k = Ok1x(e T, 0kks1),
Opk1 = Opks1(e T).

Therefore, we have 8y = dp1 (¢, T).

Now we apply the above results to the impulse case.

Step 1’. Based on Equation (7) and Step 2k + 1, we obtain for any ¢ > 0, there exists a dy; >
0, such that if |Xy) — xg| < o1, then:

|x(£0,%0) — x(t;0,x0)| < ¢ te[0,t].
Step 2'. Using Equation (7) and taking Step 2k into account, we find that:
[x(0,X0) — x(£;0,x0)| < ¢, t € (t,81]
From Equation (26), we have:
[ha(s1, (¢ ) — ha(st, x(t))] = [Xs; — x5y | < 12
Step 3'. According to Equation (7) and Step 2k — 1, it follows that:

[x(;0,%0) — x(£0,x0)| <&, t € (s1,t2].
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Step 4'. Again by Equation (7) and considering Step 2k — 2, we have:
[x(t;0,%0) — x(£0,x0)| <&, t € (t2,52],
and:
[ha(s2, %(f5 ) — ha(s2, x(t; )| = [¥s, — x5, | < O25.

Similarly, we arrive at:

Step (2k)". |x(t;0,X0) — x(£0,x0)| <e¢, t € (fx, sk]-

Thus, from Equation (25), we get:

[hyc (s, X () — (s x(80)] = (%5, — X5, | < Opppa-

Step (2k +1)". [x(£0,%) — x(£;0,x0)| <&, t € (Sg, tgr1]-

From Step 1’ to Step (2k + 1)/, we get that for any ¢ > 0, Xp,x90 € R,thereexistsa 6 >
0, such thatif |¥) — xo| < 6, then |x(£0,X0) — x(;0,x0)| < ¢ for t € [0,t1]U(t;, si] U(si, tiya],i =
1,2,-+ ,k,and 6 = 6p1(¢, T). O

By repeating the same proof procedure in Theorem 3, we have the result:

Remark 1. Assume that [Hy|, [Hy), and [Hs)| are satisfied. Then the solution of Equation (2) depends
continuously on the initial point (0,xq) at the random impulse and junction points, provided that 2M <
|5Z5i - Xs; ‘

3. Numerical Examples

Let e and T be two arbitrary positive constants.

Example 1. Consider:

x'(t) = ax(t), t € (s;,tip1], i€ N, a >0,

x(t1) = 55 cos  /ti|x(t;)|, i € N¥, @)
x(t) = 5o cos \/m\ te (t,s], i€ NT,
x(0) = xo.

Then the solution of Equation (27) can be analytically determined, namely:

exq, for t € (so,t1],

ot €08 \[Hx(t)|, for t € (t1,51],

St cosw/sl|x(t1_)|e“(t’51),fort € (s1,t2],
x(H) =< (28)
ﬁcos t‘x( — 1)| fO}’t € (tm—lrsm],

2@”5”’ (COS Sm‘x( mfl)‘ea(tism)r fOT t € (Sm/ tm-%—l}r

Let £(t,x) = ax and h;(t, x) = cos \/t|x|. Note that h; € C([t;,s;] x R,R),i € NT. Forany x,y € R,
[£(t, x) —£(t,y)| < alx —y|and [hi(t,x) —hi(t,y)| < 55]x —y|. Set Lg = aand Ly, = 55 So, [H1]-[H3]
all hold. Therefore, all the assumptions in Theorem 1 are satisfied.

From Definition 2, choosing 6 = &, we find that the solution of Equation (27) without impulses satisfies
uniform and continuous dependence on the initial point. Choosing 2M < &, then h;(t, x) are uniformly
bounded. Thus, the conditions [Hy], [Ha], and [Hs) hold, and all the assumptions of Theorem 3 are satisfied.
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The solutions of Equation (27) and the corresponding perturbation problem (with xg = 1,% = 1.3, T =
1,a = %,s = %) are shown in Figure 1.

0.8

0.6

0.4

0.2

Figure 1. The blue line denotes the solution of Equation (27) and the red line denotes the corresponding
perturbation problem.

Example 2. Consider:

1
D2 ,x(t) = ax(t), t € (s, :+1] i€eN,a>0,

sit
x(t) = (cos\/ti|x(t7)]), i € NT,
! 26 (at % 29)
x(t) = —5——(cos \/tx(t;)~|), t € (t,s], i € NT,
2E, (at
2
x(0) = xo.
Like Equation (27), let £(t,x) = ax, and h;(t,x) = —*——(cos \/t[x[). Choosing L¢ = a, Ly, = 55,
2B (at2)
therefore, [Hy] — [H3) hold. Then, one can obtain the solution of Equation (29), namely:
on%(at%), fort € (so, t1],
£ cosy/tx(t)|, for t € (t1,51],
2E, (at2)
2
e cos/s1|x(t7)|Ey (a(t —s1)2), for t € (s1,t2],
2E; (asl) ! 2
x(t) =4 (30)
£ cos /t|x(t , fort € (ty—1,8ml,
o cos \la(ty )] fort € (tacr 5
2
- 1
——<——cos y/sm|x(t, _1)|E1(alt —sm)2), fort € (sm, tmy1],
2Eq (as?) 2
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From Definition 2, choosing 6 = £ ——, we get that the solution of Equation (29) without impulses
E; (aT2)

satisfies uniform and continuous dependence on the initial point. Choosing 2M < —=£——, then the h;(t, x)
E; (aT2)

are uniformly bounded. Thus, the conditions [H;|, [Hy], and [Hs)| hold, and all the aszsumptions in Remark 1
are satisfied.

The solutions of Equation (29) and the corresponding perturbation problem (with xo = 1,%) = 1.3, T =
%,a = %,s = %) are shown in Figure 2.

0&r B

06+ B

04r B

02r B

\—K\_hﬁx———_______\‘_——_

. . ]
a 05 1 1.4

Figure 2. The blue line denotes the solution of Equation (29) and the red line denotes the corresponding
perturbation problem.

Remark 2. Equations (27) and (29) are called non-instantaneous impulsive logistic models, which are
motivated from the instantaneous impulsive logistic equations. For more details of the models, one can refer
to Reference [12] (Section 4, therein).

4. Conclusions

In this paper, we presented the continuous dependence of the solutions to first order
non-instantaneous IDEs with random impulse and junction points. Then, we extended the results to
study the same problem for fractional order cases. The backward checking approach [34] (from the last
subinterval to the first subinterval) is extended to differential and algebra equations and is used to
prove the main results. The approach is different from Reference [13].
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Abstract: In this paper, the Hyers—-Ulam stability of linear Caputo-Fabrizio fractional differential
equation is established using the Laplace transform method. We also derive a generalized
Hyers—Ulam stability result via the Gronwall inequality. In addition, we establish existence and
uniqueness of solutions for nonlinear Caputo—Fabrizio fractional differential equations using the
generalized Banach fixed point theorem and Schaefer’s fixed point theorem. Finally, two examples
are given to illustrate our main results.

Keywords: Caputo—Fabrizio fractional differential equations; Hyers—Ulam stability
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1. Introduction

Fractional differential operators describe mechanical and physical processes with historical
memory and spatial global correlation and for the basic theory—see [1-3]. Results on existence, stability
and controllability for differential equations with Caputo, Riemann-Liouville and Hilfer type fractional
derivatives can be found, for example, in [4-19]. Caputo and Fabrizio [20] introduced a new nonlocal
derivative without a singular kernel and Atangana and Nieto [21] studied the numerical approximation
of this new fractional derivative and established a modified resistance loop capacitance (RLC) circuit
model. Losada and Nieto [22] presented a fractional integral corresponding to the Caputo—Fabrizio
fractional derivative and introduced Caputo-Fabrizio fractional differential equations and established
existence and uniqueness results. Baleanu et al. [23] extended the study to Caputo-Fabrizio fractional
integro-differential equations and obtained the approximate solution. Franc and Goufo [24] established
a new Korteweg-de Vries-Burgers equation involving the Caputo-Fabrizio fractional derivative
with no singular kernel and presented existence and uniqueness results and also gave numerical
approximations.

Hyers—Ulam stability is a concept that provides an approximate solution for the exact solution
in a simple form for differential equations. A Laplace transform method is applied to show the
Hyers—Ulam stability for integer order differential equations in [25,26] and Wang and Li [27] adopted
the idea and applied a Laplace transform method to show the Hyers-Ulam stability for fractional
order differential equations involving Caputo derivatives. There are many papers on differential
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equations involving fractional derivatives—see, for example, [28-36]. However, there are only a few
papers on the Hyers—Ulam stability for differential equations with the Caputo-Fabrizio fractional
derivative. In [37], Wang et al. offered the Ulam stability for the fractional differential equations with
the Caputo derivative.

First, we recall the well-known Caputo fractional derivative [2] of order 3, given by

(DPy)(x) = r(11, . /,,,x (xffsz)ﬁd:;, 0<p<1,

where f € C!(a,b),b > a. By changing the kernel (x — s) ~# with the function exp(—%(x —s)) and

% by S —
(1-p) *7 \/2n(1-a2)
(“FD*y)(x)—see Definition 1 for details.

In this paper, we study Hyers—Ulam stability and existence and uniqueness of solutions for the
following Caputo-Fabrizio fractional derivative equations:

we obtain the new definition of fractional derivative without a singular kernel

(D) (x) — AMCTDPY) (x) = u(x), x € [0,T], 0 < a, p < 1, 1)
and
(“"D*y)(x) = flxy(x), x €[0T, 0<a <1, 2

where (SFD7y)(-) denotes the Caputo—Fabrizio derivative for y with the order 0 < 7 < 1 (see
Definition 1), A € R, u : [0,T] — Rand f : [0, T| x R — R will be specified later.

The main contributions are as follows: we obtain a simple result to check whether the approximate
solution is near the exact solution for linear Equation (1), which implies Hyers-Ulam stability and
generalized Hyers-Ulam stability on the finite time interval. In addition, we present a condition to
derive existence and uniqueness of solutions for nonlinear Equation (2) using the generalized Banach
fixed point theorem (this improves the result in (Theorem 1, [22])). In addition, we establish sufficient
conditions to guarantee the existence of solutions for nonlinear Equation (2) using Schaefer’s fixed
point theorem. Based on the existence and uniqueness result, we prove the Hyers—Ulam stability of (2)
via the Gronwall inequality.

2. Preliminaries
Let C(I, R) be the Banach space of all continuous functions from I into R with the norm ||y||c :=

sup{[y(x)| : x € I}.

Definition 1 (see [22]). Let 0 < o < 1, h € C? [0,b) and b > 0. The Caputo—Fabrizio fractional derivative
for a function h of order « is defined by

CFDah(T) — (Zzzlallgga) /OT exp(f

« /
— >
- a(T x))h'(x)dx, T>0,
where M(«) is a normalization constant depending on . Note that (SFID*)(h) = 0 if and only if h is a
constant function.

Definition 2 (see Definition 1, [22]). Let 0 < a < 1. The Caputo-Fabrizio fractional integral for a function h
of order w is defined by

2(1—w) 20

I = G o™ @

@ /Orh(x)dx, T>0.
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Theorem 1 (see [20,22]). Let « € (0,1). Then,

(2—a)M(a)

ﬁ[CFD“h(T)](S) = m

(sL[h(T)](s) — h(0)), s > 0.

Motivated by (Definition 2.3, [37]), we introduce the following definition.

Definition 3. Let 0 < «, f < 1and u : [0, T] — R be a continuous function. Then, (1) is Hyers-Ulam stable
if there exists K > 0 and € > 0 such that, for each solution y € C([0, T],R) of (1),

[“FDy(x) — AFDPy(x) — u(x)| <€, Yx € [0,T], (3)
and there exists a solution z € C([0, T), R) of (2) with
ly(x) —z(x)| < Ke, Vx € [0, T].

Definition 4. Let 0 < a,f <1, u:[0,T] — R be a continuous function and G : [0, T| — R be continuous
functions. Then, (1) is generalized Hyers—Ulam—Rassias stable with respect to G if there exists a constant
cf,c > 0such that for each solution y € C([0, T],R) of (1),

D%y (x) = AYDPy(x) — u(x))| < G(x), Vx € [0,T], )
and there exists a solution z € C([0, T],R) of (2) with
ly(x) —2(x)| < ¢£,6G(x), Vx € [0, T].

Definition 5. Let f : [0, T] x R — R be a continuous function. Then, (2) is Hyers—Ulam stable if there exists
K > 0and € > 0 such that for each solution y € C([0, T],R) of (2),

"D y(x) — f(x,y(x))| <€ Vx € [0,T], ®)
and there exists a solution z € C([0, T), R) of (2) with
ly(x) —z(x)| < Ke, Vx € [0, T].

Definition 6. Let f : [0,T] x R — Rand G : [0, T] — Ry be continuous functions. Then, (2) is generalized
Hyers—Ulam—Rassias stable with respect to G if there exists a constant ¢y, g > 0 such that, for each solution
y € C([0, TL,R) of (2),

S D*y(x) = f(x,y(x))| < G(x), Vx € [0, T, (6)

and there exists a solution z € C([0,T],R) of (2) with
ly(x) = z(x)| < ¢f,6G(x), Vx €0, T].

3. Stability Results for the Linear Equation

In this section, we study Hyers-Ulam and generalized Hyers-Ulam-Rassias stability of (1).

Theorem 2. Let 0 < B, <1, A € R, and u(x) be a given real function on [0, T]. If a functiony : [0, T] — R
satisfies the inequality

(FDy) (x) = A(FDPy) (x) —u(x)| < e )
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for each x € [0, T] and € > 0, then there exists a solution y, : [0, T] — R of (1) such that

AD - BC ocﬁ

ly(x) —ya(x)] < 2\%|s+2 ye max{1, exp(ffT)}strZ\ ﬁ\xe,
where
A=(1-p)2-a)M(a) —A2-B)M(B)(1 - a),
B=(2—-a)M(a)p—A2—B)M(B)e,
C=(1-p-a),
D=ua+p—2uap.
Proof. Let

F(x) = (“'D%) (x) = A" DPy) (x) — u(x), x € [0, T].

Taking the Laplace transform of (10) via Theorem 1, and we have

L{F(x)}(s) = L{(“"D*Y)(x) = A(FDPy)(x) — u(x)}(s)
L{TD ) (x)}(s) = AL{(TTDPy) () }(5) — L{u(x)}(s)
_ (2—-a)M(a) (2—p)M(B)
= eraioo) " 2T pa- o)L
QoM@ | @-BME)
o3 Tat—s) 1T pa—sy Y@ T LEIE)
where L{F} denotes the Laplace transform of the function F. From (11), one has
L{y(x)}(s)
_ st 205 +a(1—5))(s+B(1—5))
- s (2—a)M(a)(s + B(1 —s)) — A2 = B)M(B)(s + a(1 —s))

x (c{um}(s) n c{F<x>}(s>)
C AD —-BC 1 ap1 af 1

L R R e § [ UCHO RV LRI

where A, B, C, D are defined as in (9). Set

ya(x):y(0)+2%u(x)+2<ADI;BC 7%)/0 exp(— i)u(xft dt+2 ﬁ/ dt.

Taking the Laplace transform of (13), one has

L{()6)
= Lo +2Setme 220550 ) 1, Z2Y
A

1 C AD-BC 1 apl ap 1
= Sy(0)+2<A+ a2

; )ﬁ{u(x)}(s)

5+% B s BS+Z
Note that

L{(D*a) (x) = A DPya) (1)} (s)
(2—a)M(a)(s +B(1 —s)) — A2 = B)M(B)(s + a(1 —5))
2(5+D¢(1—S))(S+‘B(1—S)) (Sﬁ{yﬂ(x)}(s)fy(o))

92

L{u(x)}(s) + 25~ L{u(x)}(s)

®)

©)

(10)

1n

(12)

(13)

(14)
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Substituting (14) into (15), we obtain
L{(“Dya) (x) = A DPya) (1)} (s) = L{u(x)},
which yields that y,(x) is a solution of Equation (1) since £ is one-to-one. From (12) and (14), we have

LW - ww)e =2(§ + B R

)E{P(x)},

This implies that

AD — BC

2 = ) exp(— D) () +2%E (14 P,

y(0) = yalx) = 25 F(x) +2(

SO

y(x) = ya(x)]
c AD — BC aﬁ)(

- '2ZF(x)+2( g xp(— f‘)*F(x)wLZ%(l*F(x))‘

C AD -BC «
2';“”'”‘T‘Fﬁ
AD—BC _aB| ™ op(= B _ @/X _

= | [ Texe(= g tlIFG = nlat+2 ) [ FG—lar)
AD —-BC «af
A2 B

AD —BC ap B p
— 3 xmax{l,exp(—ZT)}e+2|§|x8.

IN

lexp(—2x) « F(x)] +2| %2 |1 E(x)|

IN

25 IF@)+2]

C
< 2|Z|\F(x)|+2‘

S/o max{1, exp(—E( T))}dt + 2| 5|€/Ox 1df)

< 2|%|€+2’

The proof is complete. [J

Remark 1. If T < oo, then (1) is Hyers—Ulam stable with the constant

7z\f|+2|u ”‘5|max{1 exp(=2 )}T+2\”‘5\T

Remark 2. Let 0 < B,a < 1, A € R, and u(x) be a given real function on [0, T|. If a function y : [0, T] — R
satisfies the inequality

|(CFDy) (x) — A(CFDAY) (x) — u(x)| < G(x), (16)
this implies that
[F(x)] < G(x)

for each x € [0, T) and some function G(x) > 0, where F is defined in (10).
From Theorem 2, then there exists a solution y, : [0, T] — R of (1) such that

y0) ~a(x) =25 F() + 2022 PC 8 p( By () 2% (14 B,

93



Mathematics 2019, 7, 333

and

ly(x) = ya(x)]|
C AD—BC ap
2\ZF(X)|+2‘T—f
AD —BC _ap _B " iy *p /’“ _
> B‘max{l,exp( AT)}\‘/O F(e—t)at| + 2| 2| [ Fx =t
AD-BC af
A2 B

IN

lexp(~ o)« F()| +2/ % |1 ()

IN

C
205 IF@)+2)

IN

2/ IF()]+2 max{1,exp(— 2 T)}F(x)] +2|°F | F(x)|

C, |AD-BC ap
2[5+ [P

provided that

IN

max{1,exp(— (1)} + | 1| 62

/OXF(t)dt < F(x)

for any x € [0, T], where F is defined in (10) and A, B, C, D are defined as in (9). Thus, (2) is generalized
Hyers—Ulam stable with respect to G on [0, T].

4. Existence and Stability Results for the Nonlinear Equation
We introduce the following conditions:

[A1]: f : [0, T] x R — R is continuous.

[A2] : There exists a ky > 0 such that

\f(xy) = fx8)l < kely—gl, Yy, 8 € R x€[0,T].
[A3] : There exists a constant L > 0 such that

[f(x )l < L+ [y])

foreachx € [0,T] and ally € R.
Leta, = %M(u), by = 2% M(w), y(0) = yo and Co = —a4f(0,y0) + Yo.

Theorem 3. Let 0 < a < 1. Assume that [A1] and [A2] hold. If acky < 1, then (2) with y(0) = yo has a
unique solution.

Proof. Consider P : C([0, T],R) — C([0, T],R) as follows:

(PY() = Co-+ auf(x,y(0) + by [ F(5,9(0)is. a7)

Note P is well defined because of [A1]. For all y3,y> € C([0, T|,R) and all x € [0, T], using [A2],
we have

|(Py1)(x) = (Py2)(x)]
an] f(x,y1(x)) = f(x,y2(x))| + ba /0 (s, y1(s)) = fx,y2(x)) |ds

X
aakylys (¥) = y2(3) |+ e [ kglyn(s) - ya(s)lds
= adksllyr — yallc + bakpxllyr — y2llc.

IN

IA
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Denote Ci, = Next,

(n— L)'z‘

|(P2y1)(x) = (P2y2) (%)

< aalf(x, (Py1)(x)) — f(x, (Py2) (x))] + ba ./OX £ (s, (Py1)(s)) — f(x, (Py2)(x))|ds
< aukylPya () = Pa()| + b [ kylPys(6) = Pyas)lds
< auks(ackysllyr — vallc + baksx(ly1 — y2llc)

+baks /Ox(’lzxkf”yl —yallc + baksx|y1 — y2llc)ds

k¢byx
< ((kfﬂa)2+2kf”a(’<fbax) ( f b )Hyl v2llc
Cl (K pag) 2 (k by )’

- ZMH%*M”O

i=0

For any m € N, suppose the following inequality hold

()0 = (P < 35 SR
iz
Then,
[(P"Hy1) (x) = (P"*y2) (%)
< aalf(x, (P"y1)(x)) — f(x, (P"y2) ()] + ba /x \f(x, (P"y1)(s)) — f(x, (P"y2)(s))|ds
< <kfﬂa i Cél(kfaa)n; l(kfbmx +ksba / Z kfua - (kfbk5)1d5> ly1 — wallc
i=0 :
= '%1 Cnsa )" il kb ly1 = v2llc
i=0 :
< Sm)llyr = vallc,
where S(m) := " Cone <kf””)2+1 (kfb“T)i. Thus, for any m € N¥,

i=0
[Pty — P yallc < S(m)[ly1 = yallc-

From the condition kfa, < 1 via (Theorem 2.9, [38]), one has S(m) — 0 as m — co. This implies
that for any large enough m € N*, S(m) < 1. Thus, P™ is a contraction mapping. As a result, P has a
fixed point. Thus, (2) with y(0) = yo has a unique solution. This proof is complete. [J

Remark 3. In (Theorem 1, [22]), an existence and uniqueness result for (2) with y(0) = yo is established
by imposing a uniformly Lipschitz condition and applying Banach’s fixed point theorem with the condition
anks + by Tk <1, where k¢ denotes the Lipschitz constant. Here, we use the generalized Banach fixed point
theorem and we weaken the condition a,,(kf + by ka < 1in (Theorem 1, [22]) to a,xkf <1

Next, we show that the existence of solutions for (2) via Schaefer’s fixed point theorem.

Theorem 4. Assume that [A1] and [A3] hold. If a,L < 1, then (2) with y(0) = yo has at least one solution.

Proof. Consider P as in (17). We divide our proof into several steps.
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Step 1. P is continuous.
Let y,, be a sequence such that y, — yin C([0, T],R). For all x € [0, T], we get

[Pya(0) = PUCO)| = a0 f (5,90 (x)) b [ F(5,m(6))ds = auf(x,y(x)) = b [ (5, (5))ds]
oul £ 5,0 (3)) = £ + bl [ £, ya(s))ds = [ sy

ol £, 0 (3)) = £ )|+ [ 1705, 90(6)) = (5, s
< @+ BT = £l

IN

IN

This shows that P is continuous since || fy, — fy||c — 0 when n — co.

Step 2. P maps bounded sets into bounded sets of C([0, T], R).

Indeed, we prove that for all > 0, there exists a k > 0 such that for every y € B, = {y €
C([0,T],R) : |lyllc <r}, wehave ||Py|c < k. In fact, for any x € [0, T], from [A3], we have

IPYGO| < 1Col +aal o)+ b [ 1Fy(o))lds

X
< [Col +al (14 |yl) + bl [ (14 [y(s)])ds
< [Col+aaL(1+ lyllc) + BaTLIL+ [yllc)
< |CO‘ +ﬂp¢L(1+r)+bp¢TL(1+r)

|Co| + (an + b T)L(1 +7),

which implies that
IPyll < |Col + (aa + b T)L(1 +7) := k.
Step 3. P maps bounded sets into equicontinuous sets in C([0, T], R).
Let x1,x2 € [0, T], with 0 < x; < xp < T,y € B,. From [A3], we have
[Py(x1) = Py(x2)|
X1 X2
= o e, y(en)) + b [ F(5,y(s))ds — auf (v y(xa)) — b [ £ls,y(6)ds]

< alfla () — fa vt + bl [ flsishds = [ fls,(s))ds]
< aalfon,y(n)) = Flon y(ea))| +aelflen y(xa)) = Fla y(ea))| + bl [ Flsy()ds
< al o y(a)) — Frye))] +aal f,y(32) — f o, ()| + Bl (L4 1) (32 = x2).

Then, as x1 approaches x,, the right-hand side of the above inequality tends to zero (because of [A1])
as x; — Xo. Thus, P is equicontinuous.

We can conclude that P is completely continuous from Step 1-Step 3 with the
Arzela-Ascoli theorem.

Step 4. A priori bounds.

Now, we show that the set E(P) = {y € C([0, T],R) : y = APy for some A € (0,1)} is bounded.

Lety € E(P). Then, y = APy for some A € (0,1). For each x € [0, T], we have
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Wl < [Col+ aalf (o) + b [ 1Fy(o))lds
< 1G] +aeL(1+ ly(x)]) + bl [ (1 ly(s)])ds
< K+m¢WQH+%LéqﬂﬂMs(K:KM+%L+%H)

Using the condition 1 — a,L > 0, one has

<
Wl < e+ oy [l

and Gronwall’s inequality yields

K by LT
<
vl < e (1) <o

Then, the set E(P) is bounded.
Schaefer’s fixed point theorem guarantees that P has a fixed point, which is a solution of (2).
The proof is finished. [

In the following, we consider (2) and (6) to discuss the generalized Ulam-Hyers-Rassias stability.
We need the following condition.

[A4] : Let G € C([0, T],R4) be an increasing function and there exists A > 0 such that
X
/ G(s)ds < AcG(x), Vx € [0,T].
0

Theorem 5. Assumptions [A1], [A2] and [A4] hold. If acks < 1, then (2) is generalized Ulam—Hyers—Rassias
stable with respect to G on [0, T|(T < co).

Proof. Let g € C([0, T],R) be a solution of (6). From Theorem 3,

{ CFDRy(x) = f(x,y(x)), 0 <a <1, t€[0,T), as)

¥(0) = Co,

has the unique solution

y(x) = Co + anf(x,y( )+m/f& ))ds, x € [0,T].

From (6), we have

IN

|g(x) = Co — anf(x,8(x)) — ba / f(s,g(s))ds| G(x)-',—ba/OxG(S)ds

(ay +baAg)G(x), x€[0,T).

A
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Thus,
g(x) — y(x)]|
< |0 = Co-aaflxy(x) = by [ fs,y(s)a
< o) = Comanflrg(x)) — b [ fs5(6))ds
(3, 0(0) + b [ £(5,(6)ds = auf(x,y() = b [ 6,90
< lglo) = Co—auf x.g(0) ~be [ fs 58

aul £, y(3)) = F(x,8(0)| b [ 1£(5,9(5)) = £(5,8(6))lds
< (0 +0uA6)G(x) + aakyly(x) — ()] + buky [ ly(s) = g(5) s

Note that a,xkf < 1, and so,

- (2 + baAg)G( buk /
()~ ) < B BASOE) B [T o,

From Gronwall’s inequality, we have
ly(x) —g(x)| < |———exp(x)|G(x), x € [0,T]. (19)
1-— Il,xkf

Set K* = ””h”‘AG exp(T). Note that one has
ly(x) —g(x)| < K*G(x), x € [0, T].

From Definition 6, (2) is generalized Ulam-Hyers—Rassias stable with respect to G on [0, T]. The proof
is complete. [J

5. Examples

In this section, two examples are given to illustrate our main results.
For convenience in calculating, we suppose that M(-) in Definition 2 is the roots of the
following equation:

Then, one can derive an explicit formula M(x) = ZL and M(B) = 555 ﬁ (see (p. 89, [22])).

Example 1. Consider

(FDy)(x) = 2(CFD3y)(x) = 2¢* + 2e 2 = 2, x € [0,T] 20)
3 3 3 3
Seta =1, B=2u(x)=32e"+1e2 —2and A = L. From (Definition 1,[22]), M(1) = % and M(3) = 3.
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Let y1(x) = e, and we have
(CFDZyl) _2/ F=Xoldt — % — ¢ —x

(CF]D)3y1 _3/ 2(x—t) tdt_e _e 2x.

Choose e = 3. Note y1(x) = ¥ satisfies

@Wﬁyﬂ@)*EGWﬁyﬂ&)*zf Tl
3 3 3
1 1 2 1 2
_ X _ =X - S22y S ox . © 2 <
- F T 3 +38 36 3e +3‘
2
= Z e <2
3 <2

Note y1(0) = 1 and with the formulas of A, B,C, D in (9) and (13), we obtain an exact solution of
Equation (1) as

y(0) +2%u(x) +2<% - %) /Ox exp(—gt)u(x — t)dt

+2% /Ox u(x — t)dt

Ya(x)

2 1 2 4 ¥ e~2(x=h)
- 1 7x7772x7777/ =3t/ x—t -1
+3e 3¢ 379 )¢ (e "+ )dt
*t)
9/ “1)dt
_ * 5 3x_g72x_é
= +27*’27 3 Ton
Clearly,
_ _ i 5 3x_g 721'_% X
|y1(x) ya(x)‘ = | +27+27 3¢ gr ¢
_ 4 5 3x 2 —2x
= 27*’27 3¢ 7ot
< - 3%
2 8 4 2
< — 4 — -
< ztg¥ 0+3)3

Note in Theorem 2 (see Remark 1) that we have K = 2|§| + 2|AD—BC “ﬁ\max{l, exp(—LT)}T +
2|% |T =1+ 2T and e = 3. Thus, Equation (20) is Hyers—Ulam stable when T < co.

Example 2. We consider the following fractional problem:

e—2x

CFy3 _ ly|
( Dwﬂﬂ—1+ﬁl+werMH, 1)
and the inequality
Dy ) — e | 2 G, v e 2] 22)
1+e¥ 14yl —

9
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Set o = é, T=2and f(x,y) = 172; %\lyl’ (x,y) € [0,2] x R. Clearly, [A1] holds. Then, M(%) = g,
ay = z b% = 2. Let G(x) = ¢ € C([0,2],R) and [ G(s)ds = [y e’ds = e* —1 < e*. Here,
Ac=1>0.

Forany x € [0,2] and y1,y2 € R,

e |l |y2| ey — o
X, —J X, = — <
Fey) =feoml = T |y Il £ T )

72){ 1

= (1+er)‘yl vl < - Iy1 2l < 5l = yel.

Forall x € [0,2] and y € R,
eyl B -
)l = et < ol < S < gl < Ja b

Thus, [A2] and [A3] hold.
Set L = % = ky. Then agky = % X % = % < 1. From Theorem 3, (21) has an unique solution.
Thus, all the assumptions in Theorem 4 are satisfied, so our results can be applied to (21).
Let g € C([0,2],R) be a solution of (22). We have

—2x
¢ 8l | < Gx), xe 0,2 23)

CFmyd .
('D38)(x) T+er1+g]

(FDig)(x) —f(x,g(x))‘ -

From Theorem 3, we see (21) with y(0) = Cy has the unique solution

y(x) C0+a1f(xy )+ b1 /fsy ))ds

U™y 12 x ey

— Gt = ds.
BT re 1ty T Bh Tre1ty

Applying the fractional integrating operator ¥ I*(-) on both sides of (23), we have

36) = Co=my fag3)) — by [ fs,5(6))0s

X
< 8,G(x) +by [ G)ds
< (a% +b%AG)G(x), x €1[0,2].
In addition,
(a% + b%)\G)
V)~ sl < | e ew()| G, x € 02
3
a1+bqAg 24, 12
Set K* = 45— ”Skf exp(2) = 215_+ﬁ5;%132 = 3{’; Note that one has

ly(x) — g(x)| < K*G(x), x € [0,2].
6. Conclusions

By applying the well-known Gronwall inequality and fixed point theorems, we obtain the
Hyers-Ulam stability of linear and semilinear Caputo—Fabrizio fractional differential equations.
Existence and uniqueness theorems of solution are established. In a forthcoming work, we shall
consider the impulsive Cauchy problem with Caputo—Fabrizio fractional derivative.
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Abstract: The current article studies a coupled system of fractional differential equations
with boundary conditions and proves the existence and uniqueness of solutions by applying
Leray-Schauder’s alternative and contraction mapping principle. Furthermore, the Hyers-Ulam
stability of solutions is discussed and sufficient conditions for the stability are developed. Obtained
results are supported by examples and illustrated in the last section.
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1. Introduction

Fractional calculus is undoubtedly one of the very fast-growing fields of modern mathematics,
due to its broad range of applications in various fields of science and its unique efficiency in modeling
complex phenomena [1,2]. In particular, fractional differential equations with boundary conditions
are widely employed to build complex mathematical models for numerous real-life problems such
as blood flow problem, underground water flow, population dynamics, and bioengineering. As an
example, consider the following equation that describes a thermostat model

—x" = g(t)f(t,x),x(0) = 0,pxr(1) = x(n),

where t € (0,1),1 € (0,1] and B is a positive constant. Note that solutions of the above equation with
the specified integral boundary conditions are in fact solutions of the one-dimensional heat equation
describing a heated bar with a controller at point 1, which increases or reduces heat based on the
temperature picked by a sensor at 1. A few of the relevant studies on coupled systems of fractional
differential equations with integral boundary conditions are briefly reviewed below and for further
information on this topic, refer to References [3,4].

In Reference [5], Ntouyas and Obaid used Leray-Schauder’s alternative and Banach'’s fixed-point
theorem to prove the existence and uniqueness of solutions for the following coupled fractional
differential equations with Riemann-Liouville integral boundary conditions:

D2, u(t) = g(t,u(t),o(t)),t € [0,1],
D} o(t) = g(t,u(t),v(1)),t € [0,1],
ji

1
u(0) = ylPu(n) =y [! (’rb;: s)ds,0<n<1,

1
0(0) = 6170(C) = 6 [ 2h—o(s)ds,0 < T < 1.

Here, CDg f and CDg , are Caputo fractional derivatives, 0 < o, <1, f, g € C( [0,1] x R?, ]R) and
p,q,7,0 €R.
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Similarly, Ahmed and Ntouyas [6] employed Banach fixed-point theorem and Leray-Schauder’s
alternative to prove the existence and uniqueness of solutions for the following coupled fractional
differential system:

‘Dix(t) = f(t,x(t),y(t), te€[0,1], 1<g<2,
{ DPy(t) = gt x(0),y(H), tel01], 1<q<2,

supplemented with coupled and uncoupled slit-strips-type integral boundary conditions, respectively,
given by

x(0) =0, x(C)= ufon y(s)ds + bf; y(s)ds, 0<n<C<é&é<,

y(0)=0, y() = aﬂ x(s)ds + bj:; x(s)ds, 0<n<C<é&<l1,
and .

x(0) =0, x(¢)= afor’x(s)derbfé x(s)ds, 0<n<l<&<1,

; 1 .
y(0)=0, y() = afony(s)ds —Q—bj;r y(s)ds, 0<n<l<é<l
Furthermore, Alsulami et al. [7] investigated the following coupled system of fractional differential

equations:

D%x(t) = f(t,x(t),y(t)),t€[0,T,1<a<2,
{ DPy(t) = gt,x(t), y(1)),t € [0,T], 1 <p <2,

subject to the following non-separated coupled boundary conditions:

{ x(0) = Aqy(T),x'(0) = A2y (T),
¥(0) = p1x(T),y'(0) = upx'(T).

Note that D% and °DF denote Caputo fractional derivatives of order & and . Moreover, A;,
ui, i =1, 2, are real constants with A;ju; # 1 and f,g:[0,T] x RxR — R are appropriately chosen
functions. For further details on this topic, refer to References [8-21].

The current paper studies the following coupled system of nonlinear fractional differential
equations:

D%(t) = f(t,x(t),y(t)), tel0,T], l<ac<2,

)
DPy(t) = g(t,x(1), y(t)), te[0,T], 1<p<2,
supplemented with boundary conditions of the form:
X(T) =ny'(p), y(T) = (), x(0)=0, y(0)=0,p,puel0T] @

Here, °D¥ denotes Caputo fractional derivative of order k (k = a,); and f, g € C([O, T] xR?, R)
are given continuous functions. Note that 7, C are real constants such that T2 - nC # 0.

The rest of this paper is organized in the following manner: In Section 2, we briefly review some
of the relevant definitions from fractional calculus and prove an auxiliary lemma that will be used later.
Section 3 deals with proving the existence and uniqueness of solutions for the given problem, and
Section 4 discusses the Hyers-Ulam stability of solutions and presents sufficient conditions for the
stability. The paper concludes with supporting examples and obtained results.

2. Preliminaries

We begin this section by reviewing the definitions of fractional derivative and integral [1,2].

Definition 1. The Riemann-Liouville fractional integral of order T for a continuous function h is given by

gy - LTk
Ih(S)fm\foVWdt, T>0,
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provided that the right-hand side is point-wise defined on [0, co).

Definition 2. The Caputo fractional derivatives of order T for (h — 1)—times absolutely continuous function

1[0, ) > R is defined as

1

Digls) = I(h-rt

where (1] is the integer part of real number .

Here we prove the following auxiliary lemma that will be used in the next section.

Lemma 1. Let u,v € C([0, T],R) then the unique solution for the problem

Dax(t) =u(t), te[0,T), 1<a<2
{ ‘DBy(t) =o(t), te[0,T], 1<p<2,
x(T) = ny'(p), y(T)=0C"(u), x(0)=0, y(0)=0,p,u€l0,T]

(s)ds +nC fop W f) u(s)ds—n foT (T=s)

x(t) = g(nT & <§<-;j —Tf
_q)a-1
+f0t <trzl) u(s)ds,

u(s)ds +TC o #;1

v = f(nc P Yl oteas - f T (5)-Tf &

t (t—s)P
+ fO %v(s)ds
where A = T> —nC # 0.
Proof. General solutions of the fractional differential equations in (3) are known [6] as

x(t)fut-i-b—i-r(la fo 1(s)ds,
y(t) =ct+d+ (1,3 fo v(s)ds,

where a,b, c,and d are arbitrary constants.
Apply conditions x(0) = 0 and y(0) = 0, and we obtain b = d = 0.

Here
xr(t) =a+ ﬁ ](; (t—5)"2u(s)ds,
¢

! —5)P20(s)ds.
o, - et

we get
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and

Tt R
cT+j(; Tﬁ)v(s)ds—aCJer; mu(s)ds,
1 Plp-sf T (T=s)
= T(qc-ﬁ-r]j; TG-1) v(s)ds jo‘ T(a) u(s)ds],

_1 pos) (T
,T[aC—FCL Ta=1) u(s)ds L ) v(s)ds].

Hence, by substituting the value of a into ¢, we obtain the final result for these constants as

SO

T (T—g)@-1 _s)22 T (T—g)f1
c= %(—[nchnfp (o= v(s)ds—fo (Tr(so)é) u(s)ds} +Cf0# %u(s)ds—fo (TF(S;) v(s)ds),

o e 50

s _g)f1
C(TZ C’7) %(%[nfop L= S) s)ds —f (Tr()) u(s )ds]+C N #5)1) (s)ds—fOT (Tr(s;) v(s)ds),

c= ﬂ%@(%[n s (l"(ﬁ 5 fo ) ds] + Cfoy o 2u(s)ds— OT <T;(S;‘;ilv(s)ds),
= Tzzq(nc B e oeas = T ey + 7 [ e uoyds - T T T ey
= 3 7 e oteyds [ o ey + 7 U l<s>ds—TfJ Corote)as)
and
— ( Tfop (p=9)" = Tfo 0 ds-&-anO” ;’ o) = s)ds—nfOT (T-5) ds),

Substituting the values of 4, b, c,and d in (6) and (7) we get (4) and (5). The converse follows by
direct computation. This completes the proof. O

3. Existence and Uniqueness of Solutions

sup
0<t<T
product space C([0, T], R) x C([0,T],R) is a Banach Space (endowed with [|(x, y)I| = Ilx|| + [lyll).
Inview of Lemma 1, we define the operator G : C([0, T], R) x C([0, T],R) — C([0, T],R) x C([0,T],R)
as:

Consider the space C([0, T], R) endowed with norm [|x|| = |x(t)| Consequently, the

Glx,y)(t) = (Gilxy)(1), G2 (x, y)(1),

where

Gilxy)) =% (i fo” r,“ g x()y( Nas =T [ 02 1f(s,x(s),y(s))ds
+1C K St £ 6 s = O gls,x(s),y)ds) @
+f }EM fls,x(s), y( 5))ds,
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and

Ga(x, y)(1) = i (’YC .[)p r;; 1) (5, (s), y( ds—CfOT (T_Sa)tn_lf(s,x(s),y(s))ds
Ty r;—lf (5,29, o)ds = T | Thmgls,(0), w(s)ds)  ®)
+f0 trz;s) f(s,x(s), y(s))ds,

Here we establish the existence of the solutions for the boundary value problem (1) and (2) by
using Banach’s contraction mapping principle.

Theorem 1. Assume f,g: C([0,T] x RZ — R are jointly continuous functions and there exist constants
¢, ¥ € R, such that ¥ x1,x2,y1, y2 € R, Yt € [0, T|, we have

£ (t,x1,%2) = f(t,y1,92)| < ¢(|X2 —x1l+ |2 - y1|),

)

|g(t,x1,%2) = (£, y1,v2)] < Y2 =21l + |y2 -

where

P(Q1+Q3) +9(Q +Q4) <1
then the BVP (1) and (2) has a unique solution on [0, T]. Here

ot ndut! T
(F(a+1)+ T ) T

TPt InlTf

O
&
Il

=5

i L0 L
Q=pm Tt TET) ) ©)
_ |cre TiClue~
Q= mlram + T )
_ 1l e %
Q= m( ) r(w))+ TR
. sup sup
Proof. Define 0<t<T |f(t,0,0)| = fo < o, 0<t<T |g(t,0,0)| = g0 < o and Q, =
{(x,y) € C([0,T],R) x C([0,T],R) : I(x, y)Il < &}, and ¢ > 0, such that
(Q1+Q3)fo + (Q2 + Q4)go
= [0(Q1 +Q3) + ¢(Q2 + Qu)]

Firstly, we show that GO, € Q).
By our assumption, for (x,y) € Q, t € [0,T], we have

lFtx(), y(1)]  <|f(tx(), (1) -
< (x| + y() |) +fo < (Il + Iyl + for
< e+ fo,

and
ls(t, (), (1) < w(|x(O)] + [w(®)]) + g0 < wlixll + lIyll) + go,
< e+ go,
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which lead to

Grx )l (Il [ LLasp il + i) + go)
(p-1)

+T (T‘Z{ ds(@ (Il + 1yl) + fo)

el s (¢(||x|| +llyl) + fo)

+nl |y 5 ” s (Il + ) + 0))
Ojqu fo ”) (Il + liyl) + fo)

< (@l + Iyl + o) |Z|( e I ]
(Il + ) + go) &("”T’;“ e

< (@ (Il + Iyl + £o)Q1 + (@Il + Iyl + 80)Q2

< (e + fo)Q1 + (e + 80)Q

In a similar manner:
G2 (x, y) (8)] < (P (Il + 1Iyll) + £0) Q3 + ((Ilxll + I1yll) + 80)Qa < (P + fo)Qs + (e + 80) Q.

Hence,

IG1 (x, Y)Il < (e + fo)Q1 + (Ve + 80)Qa,

and

G2 (x, Il < (e + fo)Qs + (Pe + o) Qs

Consequently,
IG(x, Il < (pe + fo)(Qr+ Q3) + (P& + 80) (Q2 + Q4) < &

and we get [|G(x, y)|| < ¢ thatis GO, C Q..
Now let (x1,11), (x2,y2) € C([0,T],R) x C([0,T],R), Yt € [0, T].
Then we have

|G1(x1, y1) ()= Gilxo, y2)(1)]
< Fa(lnir ??Tzdsw(nxz — 1l + lly2 = wal)
+7 fy Tk dS(f)(llxz xll+ lly2 = yl)
] g 2 sl — xall + v - )
+Hhlfy ” ” dsgb ez = ll + 1y = )|

Su,
O<t”<T fo U dsi (v =l + lya = ),

G1 (x1, 1) = G1(x2, y2)Il < Qi (I = x4l + lly2 = yall) + Qap(llx2 — x1ll + lly2 = y1ll)- (10
and likewise
G2 (x1, 1) = G2 (x2, y2)lIl < Qa0 (Il — x4l + lly2 = yall) + Qap(llx2 — x1ll + lly2 = y1ll)- 11)
From (11) and (12) we have

IG(x1, y1) = Gx2, y2)ll < (P(Q1 4+ Q3) + Y(Q2 + Qa)) (Ilx2 = x1ll + lly2 = D).

108



Mathematics 2019, 7, 354

Since ¢(Q1 + Q3) + Y(Q2 + Q4) < 1, therefore, the operator G is a contraction operator. Hence,
by Banach’s fixed-point theorem, the operator G has a unique fixed point, which is the unique solution
of the BVP (1) and (2). This completes the proof. O

Next we will prove the existence of solutions by applying the Leray-Schauder alternative.

Lemma 2. “(Leray-Schauder alternative [7], p. 4) Let F : E — E be a completely continuous operator (i.e., a
map restricted to any bounded set in E is compact). Let E(F) = {x € E : x = AF(x) for some 0 < A < 1}. Then
either the set E(F) is unbounded or F has at least one fixed point)”.

Theorem 2. Assume f,g: C([0,T] X R2 - R are continuous functions and there exist 61,62, A1,A2 > 0
where 01,0, A1, Ay are real constants and 6y, Ao > 0 such that ¥x;, y; € R, (i = 1,2), we have

|£(t,x1,22)| < Bg + O1]x1] + Oalxal,

[8(t,x1,20)| < Ao + Aglerl + Aalal,

If
(Q1+Q3)01 + (Q2+Qu)A1 <11,

and
(Q1+Q3)02+ (Q+Qu)A2 <1,

where Q;,i =1,2,3,4 are defined in (10), then the problem (1) and (2) has at least one solution.

Proof. This proof will be presented in two steps.

Step 1: We will show that G : C([0,T],R) x C([0, T],R) — C([0, T],R) x C([0,T],R) is completely
continuous. The continuity of the operator G holds by the continuity of the functions f, g.

Let BC C([0,T],R) x C([0,T],R) be bounded. Then there exists positive constants k;, k, such that

F(tx(0,y0)] <k, gt x(®),y®)| <k VEe[0,T]

Then Y(x, y) € B, and we have
|G1(x, y) ()] < Qiky + Qoka,

which implies
IG1 (x, ¥)Il < Qiky + Qoka,

and similarly

IG2 (x, Y)II < Qzky + Qako.

Thus, from the above inequalities, it follows that the operator G is uniformly bounded, since

IG(x, y)Il < (Q1 + Q3)k1 + (Q2 + Qa)ko.
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Next, we will show that operator G is equicontinuous. Let w1, wz € [0, T| with w1 < wy. This yields

G1(x, v) (@2)=  Gi(x,y) (@)
= w2|;\wl(|’7|Tfop T(F-1) | (s,(s), y(s))|ds
Ty If (s, x(s >|ds+|nc| o s, (), () s
+|'7|.[) F(ﬁ |g(s, (S))| )
6 2 s x(0),v(5) s
- " (s x(0), y(e) s
< “’1(| |Tk2 K r(ﬁ>1) ds +Tk1f0 T ° _ ds+|r7C|k1 f“ “ ) zds
il fy Ehds) + “”(%—%)ﬂs x(s), (s ))ds
e %ﬂs,x(sw(s))dsL

Wy
< @o (kTP | T kndet | kol
T(a) T(p+1)

- |A\ () 1"(&+1)

(fo ( wr—8)" = (wy — s)”‘_l)ds + f:z(wz - s)“_lds).

And we obtain

w—wr (kTP | T klncutt kol Tf
|Gl (X, }/)(wz) -G (xr y) (wl)l = ”2|A|”l( 2 T(B) rl(a_H) + = T(a) 1"?/3+1))

k
+r(al+1) (w2 = ).

Hence, we have [|Gi(x,y)(w2)—Gi(x,y)(w1)ll = 0 independent of x and y as wy; — w;.
Furthermore, we obtain

_ ka|nc|ppf1 K CIT K TIC 1 B+1
G, ) (w2) = Gal, ) ()| < (B + BT 4 S 4 B

+r(/§il> [MZ‘B - wlﬁ]/

which implies that |Gz (x, ¥) (w2) — Ga(x, ¥) (w1)]l = 0 independent of x and y as wy — w;.
Therefore, operator G(x, y) is equicontinuous, and thus G(x, y) is completely continuous.
Step 2: (Boundedness of operator)
Finally, we will show that Z = {(x,y) € C([0, T],R) x C([0,T],R) : (x,y) = hG(x,y),h € [0,1]}is
bounded. Let (x, y) € R, with (x, ) = hG(x, y) for any t € [0, T|, we have

x(t) = hGi(x,y) (1), y(t) = hGa(x, y)(H).

Then
[x(t)] < Q1(90 + Onfx(t)| + 92|y(t)|) + Qz(?\o + Mfx(8)] + Ay (t) )
and
ly(t)] < Q3(90 + O] ()| + 92|y(f)|) + Q4(/\o + Mfx(t)| + /\2|y(f)|)~
Hence,
[lxll < Q1(60 + 61llxll + Ballyll) + Q2(Ao + Allxll + Azllyll),
and

llyll < Q3(00 + Oullxll + O2llyll) + Qa(Ao + Aqllxll + A2llyll),
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which implies

llxll 4+ 1yl < (Q1 4 Q3)00 + (Q2 + Q) Ao + ((Q1 + Q3)01 + (Q2 + Q) A1)l
+((Q1 + Q3)02 + (Q2 + Qa) A2)lIyll.

Therefore,

I,y < L9 Q3>6050<Qz +Qho

where Qo = min{l - (Q1 + Q3)01 — (Q2 + Qu)A1,1 - (Q1 +Q3)02 — (Q2 + Q4)A2}. This proves that
Z is bounded and hence by Leray-Schauder alternative theorem, operator G has at least one fixed point.
Therefore, the BVP (1) and (2) has at least one solution on [0, T]. This completes the proof. O

4. Hyers-Ulam Stability

In this section, we will discuss the Hyers-Ulam stability of the solutions for the BVP (1) and (2) by
means of integral representation of its solution given by

x(t) = Gi(xy)(1), y(t) = Ga(x, y)(b),

where G and G; are defined by (8) and (9).
Define the following nonlinear operators N1, N, € C([0,T],R) x C([0, T],R) — C([0, T], R);

‘D%(t) - f(t,x(t), y(t)) = N1(x,y)(t), te[0,T],
DPy(t) - g(t, x(t), y(t)) = Na(x,y)(t), t€[0,T).

For some ¢1, €2 > 0, we consider the following inequality:

Ni(x,y) <e1, Na(x,y) < e (12)

Definition 3. ([8,9]). The coupled system (1) and (2) is said to be Hyers-Ulam stable, if there exist My, My > 0,
such that for every solution (x*,y*) € C([0, T],R) x C([0, T|, R) of the inequality (13), there exists a unique
solution (x,y) € C([0, T],R) x C([0, T], R) of problems (1) and (2) with

1(x, ) = (x%, )l < Mieq + Maes.

Theorem 3. Let the assumptions of Theorem 1 hold. Then the BVP (1) and (2) is Hyers-Ulam-stable.

Proof. Let (x,y) € C([0, T],R) X C([0, T], R) be the solution of the problems (1) and (2) satisfying (8)
and (9). Let (x*, y*) be any solution satisfying (13):

DUx(t) = f(Lx7 (1), y"(8)) + Na(x", y")(t), te]0,T],
DPy(t) = g(t,x" (1), y" (1)) + Na(x', ) (1), €0, T).

So
()= Gilx,y)(t)

+A(an” <§,” Mo,y (s)ds = T T ToEmNy (o, ) s)es
0 fy “; N,y (s = ) %Nz(xiy*)(s)ds)
Ny ()

111



Mathematics 2019, 7, 354

It follows that

G @)= w0 }
%l(|n|Tf0 r ﬁ 1 dsez + Tfo dsal + 'T]CUO o dsel
1

] [T T e 2)+ e dssl,
T Ta+1 nCI i YR IS o 1 U LA

[A( TatT) )+ r<a+1>] at m( g T r(w))éz'
Qre1 + Qoén.

Similarly,

. . T (_ldre T|gu! Inclpﬁ Th+1 T8
G160 = (0] < (L + T e + [ (2 + )+ s )
< Qze1 + Quer,

where Q;,i =1, 2, 3, 4 are defined in (10).
Therefore, we deduce by the fixed-point property of operator G, that is given by (8) and (9), which

le(t) = (O] =|x(8) = G, y) (1) + Ga (', ) (1) =2 ()]
<[Gi(x y) (1) = Gr (%, v ) (B)] + |G (%, y) () = (1) (13)
< Qo+ Q) (v y) - (¥, y") + Quer + Qe
and similarly
ly(®) =y (1] =[y(t) = Calx, y) (1) + Ga(x', y) (1) =y (8)]

Ga(x,y) (1) = Ga(x", i) (B)] + [Ga (", ) (1) = y* (1)] (14)
(Q3¢ + Qu) (%, y) = (¥, y") + Qaer + Quer,

<
<

From (14) and (15) it follows that

(e, y) = (x5, ¥l < (@19 + Q2 + Q3¢ + Qup)lI(x, y) = (&7, ¥l 4+ (Q1 + Q3)e1 + (Q2 + Qu)ea,

M- (Q1+0Q3)e1+(Q2+Q4)e
0o y) = (¥ < Rg ot Grr 007
< Mieq + Mjes.

with

M, = (Q1+Q3)
1-((Q1+Q3)p + (Q2+Qu)v)’

M, = (Q2+ Q)
1-((Q1+Q3)p+ (Q+Qa)y)

Thus, sufficient conditions for the Hyers-Ulam stability of the solutions are obtained. O

5. Examples

Example 1. Consider the following coupled system of fractional differential equations

3 B X(f) ®

Dix(t) - 6nv§f(sl+|x |>| * s|+y|x<t|>|)'

Dy(r) = s (sin(x(1)) +sin(y(1))), (15)
x(1) =2y’ (1), y(1) = -x'(1/2), x(0) =0, y(0) =0,
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3 7 A 1
a=p=pT=n=20=-Lyu=5p=1
Using the given data, we find that A = 3,01 = 1.269, Q> = 1.1398, Q3 = 0.5167, Q4 = 1.554,¢ =

1 _ 1
54ms 11[) T 48me
It is clear that

- 1 |x(t)| |y(t)|
f(tx(t),y(t) = o m(g + (o) "5y |X(f)|)l

and

8(t,x(t), y(1)) = (sin(x(£)) +sin(y(£))),

1
127t V64 + 2

are jointly continuous functions and Lipschitz function with ¢ = #, Y= 48n Moreover,

1 1
55 (1269 +0.5167) + 1o~ (11398 + 1.554) = 0.0283 < 1.

Thus, all the conditions of Theorem 1 are satisfied, then problem (16) has a unique solution on [0, 1], which
is Hyers-Ulam-stable.

Example 2. Consider the following system of fractional differential equation

/ |x(6)] 1 o
Dx(t) = 80+t4 + 120(1+y2(6)) * 42500+ ¥ cos(y(1)), te [0,1]
D83y (t) = <= cost + ghge Vsin(y(t)) + (1), t € [0,1] (16)

x(1) = =3y’ (1/3), y(1) =x'(1), x(0) =0, y(0)=0

o= g,ﬁ: g,T:1,1]:—3,C:1,y:1,p:1/3.

Using the given data, we find that A = 3,01 = 1.269, Q> = 1.1398, Q3 = 0.5167, Q4 = 1.554,¢ =
1 _ 1
5V = T
It is clear that

1 1
(x| < g5 + T35+ 50514

_80

1
gt x )| < 5 + @IXI + 150|y|

Thus, 6y = 55,61 = 135,02 = 555, Ao = %,Al = 185, A2 = 18-
Note that (Q1 + Q3)61 + (Q2 + Qa)A1 = 0.0298 < Land (Q1 + Q3)02 + (Q2 + Qa)A2 = 0.0269 < 1,
and hence by Theorem 2, problem (17) has at least one solution on [0,1].

6. Conclusions

In this paper, the existence, uniqueness and the Hyers-Ulam stability of solutions for a coupled
system of nonlinear fractional differential equations with boundary conditions were established
and discussed.

Future studies may focus on different concepts of stability and existence results to a neutral
time-delay system/inclusion, time-delay system/inclusion with finite delay.
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Abstract: In this article, we study the existence and uniqueness results for a separate nonlinear
Caputo fractional sum-difference equation with fractional difference boundary conditions by using
the Banach contraction principle and the Schauder’s fixed point theorem. Our problem contains
two nonlinear functions involving fractional difference and fractional sum. Moreover, our problem
contains different orders in 7 + 1 fractional differences and m + 1 fractional sums. Finally, we present
an illustrative example.

Keywords: fractional sum-difference equations; boundary value problem; existence; uniqueness

JEL Classification: 39A05; 39A12

1. Introduction

Fractional calculus has recently been an attractive field to researchers because it is a powerful tool
for explaining many engineering and scientific disciplines as the mathematical modeling of systems
and processes which appear in nature, for example, ecology, biology, chemistry, physics, mechanics,
networks, flow in porous media, electrical, control systems, viscoelasticity, mathematical biology,
fitting of experimental data, and so forth. For example, Zhang et al. [1] proposed both analytical
and numerical results from studying the propagation of optical beams in the fractional Schrodinger
equation with a harmonic potential. In 2015, Zingales and Failla [2] solved the fractional-order heat
conduction equation by using a pertinent finite element method. For Lazopoulos’s [3] work, they
defined the fractional curvature of plane curves, the fractional beam small deflection, the fractional
curvature is approximate. In 2017, Sumelka and Voyiadjis [4] proposed a concept of short memory
connected with the definition of damage parameter evolution in terms of fractional calculus for
hyperelastic materials.

Basic definitions and properties of fractional difference calculus, appear in the book [5].
In particular, fractional calculus is a powerful tool for the processes which appear in nature, e.g., ecology,
biology and other areas, one may see the papers [6-8] and the references therein. The interesting papers
related to discrete fractional boundary value problems can be found in [9-29] and references cited
therein. For previous works, Goodrich [10] considered the discrete fractional boundary value problem
{—N”N“N“y(t) =flt+m+p+ps—Lyt+m+m+ps—1)),

@
y(0) =0=y(b+2),
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Mathematics 2019, 7, 471

where t € NZ*}Q7;427;43,b+27y17}127y3/ 0 <pipo,ps <11 <po+ps <2,1<p+p+ps <2
f: Ny x R — [0,+00) is a continuous function, and A is the Riemann-Liouville fractional difference
operator of order u. Existence of positive solutions are obtained by the use of the Krasnosel’skii fixed
point theorem.

Weidong [12] examined the sequential fractional boundary value problem with a p-Laplacian

AL[pp(A8X)](1) = f(t+a+B—1x(t+a+p—1)), teNy,
APx(B—1)+ALx(B+D) =0, 2)
x(a+pB—2)+x(a+p+0b)=0,

where0 <a,<1,1<a+p<2f: Nyyp-1a+p+7-1 X R = Riis a continuous function, ¢, is the
p-Laplacian operator, and Ag is the Caputo fractional difference operator of order . Existence and
uniqueness of solutions are obtained by using the Schaefer’s fixed point theorem.

Recently, Sitthiwirattham [19,20] investigated three-point fractional sum boundary value problems
for sequential fractional difference equations of the forms

{Ag[(pP(A{@x)](t) = ft+a+p—T1x(t+a+p—1)), .
A(/S:x(a —-1)=0, x(a+B+T)=pA "x(n+7),
and
AS(AE o+ AEp)x(t) = f(t+a+ B—Lx(t+a+p—1)), "
x(a+p-2)=0, x(a+p+T)=ps]5 x(1+7),

where t € Ng7, 0 <o, <1, 1 <a+B<20<y<1,y€ Naﬂg,l/aﬂHT,l, 0 is a constant,
f:Nayp2a4psr X R = Ris a continuous function, Egx(t) = x(t 4+ B — 1) and ¢p, is the p-Laplacian
operator. Existence and uniqueness of solutions are obtained by using the Banach fixed point theorem
and the Schaefer’s fixed point theorem.

The results mentioned above are the motivation for this research. In this paper, we consider a
separate nonlinear Caputo fractional sum-difference equation of the form

AL+ (e+1) A u(t) = AF(tthxf1,u(t+¢x71),(Y‘9u)(t+oc719)>

+yH<t+4x—l,u(t—l—a—1),(‘Y7u)(t+/x+'y—l)>, ®)
with the fractional sum-difference boundary value conditions
ulw—n) = Aglu(afnfﬁ1+2) = Aglﬂgzu(zxfnfﬁlfﬁerél) = ..

Z{x—Zﬂ n—2
At My a+n—4—2/3,~ =0, (6)

i=1

m m
w(T+a) = tA Lnbig <i7+ EG,) u <77+ Z@‘) ,
i iz

i=1

(S, 0) St
T D (1D O () EEL esg (427, 6,)
Bi,0:,v € (0,1], myn € Ny, m < n, T > n—3, 2;’;12‘81' € n—-3n-2], "6 € (m—1,m]
and A,y € R are given constants; F € C(Na,n,Tﬂ x R x R,]R), H € C(Na,n,TM xR xR, R),
g€ C(Ny_praRY),and for ¢,¢ € C(Ny_y 110 X Ny 144, [0,00)), we defined the operators

where t € N7 :={0,1,...,T}, T < ,a € (n—1,n],
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(YPu)(t—8+1) = [ALpu](t — 8 +1)

- 1 t+9-1 t oy A bt
*msza_;w_f — ()2 Pt — 0+ 1)Au(s — 0 +1),
t7
and <W><f+v>::[A‘w(tﬂ):*r(ly) T (o) g+ )uls +).
s=x—n—y

The plan of this paper is as follows. In Section 2 we recall some definitions and basic lemmas.
We derive a representation for the solution of (5) by converting the problem to an equivalent summation
equation. In Section 3, we prove existence results of the problem (5) by using the Banach contraction
principle and the Schauder’s theorem. Finally, an illustrative example is presented in Section 4.

2. Preliminaries
The notations, definitions, and lemmas which are used in the main results are as follows.
T(t+1)

I(t+1-a)
right-hand side is defined. If t + 1 — w is a pole of the Gamma function and t + 1 is not a pole, then t* = 0.

Definition 1. We define the generalized falling function by t* := , for any t and « for which the

Lemma 1 ([16]). Assume the factorial functions are well defined. If t < r, then t* < 1% for any a > 0.

Definition 2. For a > 0 and f defined on N, := {a,a +1,...}, the a-order fractional sum of f is defined by

t—u

Y (t—0(s)*=Hf(s),

S=a

1
—a —
ATV (t) = (@)
where t € Nyyqand o(s) = s+ 1.

Definition 3. For a > 0 and f defined on N,, the a-order Caputo fractional difference of f is defined by

1 t—(N—a)

TN —a) Y, (t—o(s)X=2=2ANf(s),

s=a

Ef (1) =" NIANF(r) =

where t € Ny N_y and N € N is chosen so that0 < N —1 < a < N.
Lemma 2 ([14]). Assume that « > 0and0 < N —1 <« < N. Then

ATEALY(E) = y(t) + Co+ C1 2 + Cof2 + ..+ Cy N1,
forsomeC; € R,0<i<N-—-1

To investigate the solution of the boundary value problem (5) we need the following lemma
involving a linear variant of the boundary value problem (5).

T(Tf, ) e
Ul r—n+1 m mezl 6i-1 ¢ m 4
Yrmun ls—a-n (77+Zi:1 91'7‘7(7))*6 g(77+2i:1 91')
mmneNy, m<n, T>n-23 2;’;12,5,- €em—3n-2], Y0, (m—1,m] and h € C(Ny_p 144 X

R,R), § € C(Ny_p,1+a,R") e given. Then the problem

Lemma 3. Let T <

a« € (n—1,n], B;,6;,ve(0,1],
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E+(e—1)AE u(t) =h(t+a—1), teNyr 7)

w(e—n) = Afu(@—n—p1+2) = AL Pu(@—n—p—pr+4)

_ Azi’lzﬂ"u<a+n—4—2ﬁ> ®)
u(T+a) = TA~ Tl (v+f9">”<’7+29">’ ©
i=1

i=1

has the unique solution
O[h} t—n+1 B
u(t) = N 5727 e’
v—atn 1
Z Z Y (=@ hE 1), (10)
=a— —n =0

where the functional O[h] and the constant A are defined by

7oorntl s=1 v—atn o (77 + szzl 0 — 0.(,,))21":1 0;—1

o = Y Y Y X T (2", 6;)T(a—n)

Fr=&—NnS=x—NU=a—n 5:0

¢ (0~ o(8)) ", <77+29> C+a-1) (11)

1 T+a—n+1 s—1 ov—atn
Y e (v— ()L h(x +a—1),

r(lel’l) s=a—n v=a—n =0
T+a—n+1 Nor (Y — U(r))):f":l 6i—1
A = et — i=1 7 X
s:az—n r:az'—n s:;—n r (szzl 91')
m
e g <77 +Y 0i> , respectively. (12)
i=1

Proof. Using the fractional sum of order a : A~ for (7), we obtain

u(t) +(e—1) A u(t) = Cp 4 Cott 4 Cat2 4 ... + Cpt=L (13)
1 t—a a1
+Wszo(t—a(s))—h(s+zx—l), t € No—yTra-

For the forward difference of order n : A" for (13), we have

AMu(t) + (e —1) A" lu(t) = a0 t fn(t —0(s) = n(s +a — 1).
Therefore,
et t—a+n
A [etA”_lu(t)] = faow Yo (t—o(s)"h(s +a —1). (14)
s=0
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Taking the sum: A1 to (14), we get

t=1 s—a+n

¢ Au(t) = Cot LY eb-o@ptiera-1. a9

ainsanv

Next, taking the sum of ordern — 1 : A= (1=1) o (15), we obtain

t—n+1
u(t) = C1+ GH+ G2+ ..+ Cpqt=24C, Y e* (16)

S=a—n

1 t—n+1 s—1 v—a+tn
Y oy (v c()* " h(x +a—1), t €Ny yTra-

[
r(lx - 1’1) s=a—nov=ac—n x=0

Using the Caputo fractional differences of order §; for (16) wherei = 1toi = n — 2, we obtain

AP u(r) 17)
= GAPA 4 AP R+ a2
T o) [
+C A e’
! r=a—n r(l - ﬁl) ' s:;n
t+B1— 1 o(r ))7 r—n+1 s—1 v—atn (v— (T(x))”“"*l
+ 7A el h(x4+a-—1)y,
r= Z —n :Bl) ' s:;n v=a—n 1;0 r(“ - n)
for t € Ny—p+1-p;,T+a+1-p;-
(18)

AP ()
= CAlP 2 g, A2
-2 _
t+p1+p2 (t o(r ))1 B1 ﬁzAz{r n+1es}

tp1t+pa—2 1-B1— 132 r—n+l s—1 v—atn 1
(t—o(r))—"1=F2 o(x))en=t
- r=a—n W {s;nv;n XZ ¢’ Mh(x+a_l)}'

for t € No—ni2-p)—, THat2-p1—po-

Z;’;Z i
AZ= Py ()
v t—n+2+Y1"2 B; f_ n—3-y12p; r—n+1
_ CnflA)C:i:l ﬁttg +C, Z ( 0'(7') )‘ . A};}72 E oS
r=a—n T <n —2— 27;1 ﬁ,) s=a—n

t—n+2+ Y12 By (t— U(r))nfafzg’;f Bi
+
o T (n-2- T2 )
a—n—1

A;’z{’fl 5_21 vf”e %h(x+a—1)}, (19)

X

S=x—nov=a—n x=|
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for t € Na7272;1;12 Bi T+at+n—2-Y" 2 B

Employing the conditions of (8), we have the system of n — 1 equations
(E1) Ci+Co(a—n)+Cala—n)2+..4+Cp1(a —n)i=2 = 0,
(E2) CobP (@ —n+2—B1)+ o+ Cod (@ —n+2—-p1)2=2 = 0,
(Es) CaAL P2 (a—nta—p1— P22+t Coa b P2 —n 4= p1— p2)2 = 0

n—2 n=2
(En1) Cp 1A2115' <a+n425> =0 (20)

i=1

Using the fractional sum of order }_j" ; 6; for (16), we have

Sy
AGE () @1)

B t=Yilq 6; (t— U(,,))):?‘zl 6;—1
r=a—n r( 1m:1 91')
= 0 r—nt1 (t— 17(7’))):;”:1 0i—1

r=a—n s=a—n r(lr‘rilei)

Cr+ CoAPlsl + AP 4 ¢, APrsn=2

+Cy e

fz,lzrnJrlslz;oHrn

+ Z Z Z Z — 0’(7))):1:71 b1 (U — U(x))a7n71 ev—sh(x ta— l),

r=X—N S=A—NV=0—N x= 119) r(o‘fn)

for t € Na Y 0, T+at T 6
By substituting t = + Y/ ; 6; into (21) and using the second condition of (9), we finally get

Ui m —o(r Yt 6i—1 m
e afi- L T(szzrlfzif;(-))) g(”*-m)}

r=a—n
U + Y0 —o(r n
+C2{(T+a)1— Y tlr ( é))) <77+29i)}
r=a—n 1 i=1
T (n+ 0, —o(r Y01 &2 m
+C3{(T+zx)2 Yy (L 1( (9))) gln+) o
r=a—n 1 i=1
+ -
_ 1o (g4 Y, 0 — o(r)) Bl gn2 o
+Cy18 (T +a)i=2 — =1 + Yo
! {( ) r:az'—n F(Eizl ei) s\ 1:21 I
T+a—n+1 n r—n+1 m Y 6i—1 m
-~ + n 9 —0 i=1 s
+Cn{ Z s Z Z T(n Ez—rl lf" 9(7))78 Sg (17+ Z@') }
s=a—n r=a—ns=a—n (21:1 l) =
1 r—n+l s=1 v—a+n (g + X0, 6 — 0’(}’))% .
_ =1 e’ x
r:aE’—n s:;—n v=a—n x=0 Iﬁ(zizl 6:)
(v—0(x )“‘”‘1 u 4 _
T+a—n+1 s—1 v—a+n (v —0o(x a—n—1
-y Yy ¥ A CAC)) r(i j)n) h(x+a—1). (22)
s=x—n v=x—n x=0

120



Mathematics 2019, 7, 471

Solving the system of Equations (E;) — (E,), we obtain

Ci=C=..=C,.1=0 and C, :%,
A
where O[h], A are defined by (11), (12), respectively. Substituting the constants C; — C,, into (17),

we obtain (10). This completes the proof. [

3. Main Results

The goal of this section is to show the existence results for the problem (5). To accomplish this,
we denote C = C(Ny_y,1+q, R), the Banach space of all functions # with the norm is defined by

lllle = llull + AZull + (|4~ ull,

where lu| = max |u(t), HAguH = max  [Alx(t -9 +1)| and [[Au| =
tENy T 1a FENEN, T4
max  |A77x(t+)|. In addition, we define the operator F : C — C by

tENfEann,TM

O[F(u) + H(u)] 8t 1 A RS e
- A E e +m Z gzo EU X

1
v=a—n

(v —o(E))e==L {AF(@’ +a—1u@+a—1),(You)(&+a— 19))

/ (23)

+yH<C+txf1,u(§+a71),(ly7u)(§+a+,yi1)>

where A is defined by (12) and the functional O[F(u) + H(u)] is defined by

O[F(u) + H(u)]

Nt s—1 o—adn o (17 + Z;nfl 0 — U’(i’))):’mzl 0;—1

= ) T, Ta—n) © ¢ <;7+§9,—> *

r=a—ns=a—nv=a—n =0
(0— o(E))a=n=1 {)\p<g+ a—1Lu@+a—1), (Yu)(@+a— 19))

+ptH(§+zx—1,u(§+1x—1),(‘1’7u)(§+a+7—1))

1 T+a—n+1 s—1 v—a+tn

- Z Z Z e (v — o(x)) ==Ly

r(‘x_n) s=a—n v=a—n =0

/\F(ij+p¢—1,u(§+a— 1), (Y”u)(§+a—l9))

+;4H<C+zx1,u(§+zx1),(‘1’7u)(§+oc+’y1))]. (24)

Clearly, the problem (5) has solutions if and only if the operator F has fixed points. The first show
the existence and uniqueness of a solution to the problem (5) by using the Banach contraction principle.

Theorem 1. Assume that F,H : Ny_j, 744 X R x R = R are continuous, ¢, ¢ : Ny_py 740 X Ny_yy 740 —

[0, 00) are continuous with g9 = max{¢e(t —1,s) : (t,5) € Ny_o 744 X Ny_o 744} and ¢pg = max{¢(t —
1,5) : (ts) € No—p 14a X Ny_o 144 }. In addition, suppose that:
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(H1) there exist constants Ly, Ly > 0 such that for each t € Ny_, 74 and u,v € C
[E(t,u(t), (Yu)(t =9 +1)) = F(t,0(t), (Y?0)(t = 8 +1))| < Lifu — 0| + La|(YOu) = (Y?0)],
(Ha) there exist constants {1, > 0 such that for each t € Ny_y 140 and u,v € C
[H(t,u(t), (YTu)(E+ 7)) = f(t0(t), (FT0)(t+ 7)) < bfu—of + L|(FTu) — (7o),

eT—1n+3_1)ell 2"+2F(m+1)
(H3) O < g(t) < K # ,7 ll+(7’l+m)mTLT)+”‘ ZVH»Z(,7 a+n+m m fOT e{lCh te NDL n, T+

o po(T+n—0+1)1=¢ @o(T+n+7)Y
i o= M1+ T2 0) )+u(t+e Ty +1) )]
U+ +03) <1, (25)

then the problem (5) has a unique solution on Ny_, 1.4, where

@ (T+2) eI YT+a—n+2)x=1t2

= IA] + T(a—n+3) ’ (26)
@e2n—a—2 T-1(T _ 3)a=n+2 | (T 94118
0, = e 48 (T+a—n+3) (T+n +1) ) 27
IA] T(a—n+3) r(2-9)
@e"%(T 42 T—1 T o 2 a—n+2 T i
0, = | ( +)+e (T+a—n—+2)x"E2 | ( +n+'y)/ 28)
|A] (e —n+3) T(y+1)
o - K —w+ 2" 2 (g —atn4m)™ T T +a—n+2)042 29)
N T(m+1)T(a—n+3) T(a—n+3) ‘

Proof. We shall show that F is a contraction. For any #,v € C and for each t € Ny_,, 744, we have

|OF(u) + H(w)] - O[F(v) + H(v))|

N r—n+l s—1 ov—a+tn m _ Lit 6i—1
< 72 Z Z T(U+(Z£"119 )(T(EX)_)n) ezyfs(v_U_(ér))ozfnfl><

r=a—ns=a—nv=x—n =0
A (Ll =l 4 Lal (Y*) = (Y*0)1 ) 4+ o (4] — o] + 2] (¥7u) = (7)) ]
1 T+a—n+1 s—1 v—a+n .
g <17 + 2 0; > o) Yoy Y e to—o(x)x (30)
S=a—n v=a—n i;:O

[A(mu*vmz\wﬂ) (Y00)[) + u (E1]u — o] + €2/ (¥7u) = (¥70)] )]
¢o(T+n—9+1)=2 ¢@o(T+n+y)*
< [/\<L1+L2 (2= 8) )-‘r#(fl +€zw)] [lu—ollex
TKe! Y —a+2)2(p — g+ n4+m)™ el YT +a—n+2)2-0+2
T(m+1)T(a—n+3) B T(a —n+3)
B ¢o(T+n—9+1)L=2 eo(T+n+ )X
= [/\(Ll-i-Lz r2—9) >+H(fl + 1y W)]H”‘””C®,
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and
|(Fu)(t) — (Fo)(1)]|

< ot + Hw) - 0F@) + @[ 3

b e

S=x—n

1 t—n+1 s—1 v—a+n

+7n) Z Z Z e (v — o ())a=t=1x

S=X—Nv=a—n g 0
[A(Lalu = o] + Lo (Y0u) = (Y®0) ) + (1] = o] + | (¥70) = (¥70)] )|

(

< [A( L‘PO T+n—z9+1)1 ¢ (T+n+7)L
e}
A

)+t + P T ) e = vl x

t—n+1 t—n+1 s—1 v—a+n
{ RV e zxfn) )M DY e”(va(ﬁ))”l}

s=a—nov=a—n ¢=0

219)

4) T+n—z9+1)1 0 @o(T + 1+ )7
< ML+ L2 o )+t + P T ey )]l = ollex
@ (T +2) T WT+a—n+2)r=nt2
< A Ta—n+3) ) G
_ 1-9 v
< [A(LﬁLf“”{éfgl) )+u(&+b%)]l\u—v\lcﬂl-
Next, we consider the following (A%2Fu) and (A7 Fu) as
(ALFu)(t—9+1)
u u t s—n+1
- @[lj\(r()ltlig )] L (t=0+1-0(s)0s 3 e
1 t 9 r—n+1 s—1 v—a+n B
e, e oo B R e
(va(@))m{/\F@Jruc1,u(§+a¢1),(Y‘9u)(C+uc19)>
+yH(§+a—1,u(§+a—]),(‘i’7u)(§+tx+’y—1)) }
u u t
_ 0[1/:\(1_'()1""—1;195 )] q:;”(t—ﬁ—l-l—o'( )) 9, n—s—2
1 t r—n+l s—1 v—a+n 9 6 os
+F(a—n)1‘(1—19) r:az—ns:;—nv:;—n 5;0 (t_ +1_‘7(7’))*€ *
(v—a(@))“l{AF(@%—1,u<¢+a—1>,(wu>(¢+a—ﬂ>)
+HH(E+a—LuE+a—1),(Pu)E+atr-1))], (32)
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3 (14— ()=l o

|
3
@«
I
=

|
=
<
I
=

|
3
Eat]

o

(v —o(¢))s=n=L {/\F(C +a—1Lu@+a—1), (Yu)(E+a— 19)>

+rH(E+a—Lu@E+a—1), (Y u)E+aty-1)|. (33)
Similarly, we have
(AP Fu)(t—0+1) — (ALFo)(t— 0 +1)|
po(T+n—0+1)1=¢ po(T+n+7)r
< [/\(L1+L2 T(2—9) )+;4(f1 +£2w>]“’4*7’”cx
@42 T T o —n43)2H2 | (T4 n— 0 +1)1=2
{ At Ta—n+3) T2-9) 34)
Go(T+n—9+1)=2 @o(T+n+ )2
< [/\<L1 + L r2-9) ) +Pl(€1 +€2W>] lu—2llce,
and
(AT Fu) () = (A7TF0)(t+ )]
Go(T+n—09+1)=2 @o(T+n+ )2
< [A(L1+L2 T2—9) >+V<€1+fzw>]”u*?’“cx
Oc" (T +2) ET_l(T"FlX—”‘i‘z)ia_’H—z (T+n+q9) (35)
[A] I(e—n+3) I(y+1)
¢o(T+n—09+1)1=2 @o(T+n+ )2
< [A(L1+L2 T(2—90) >+H<€1+€2W)]HM*UHCQ3.
Hence (31), (34) and (35) imply that
T+n—9+1)1=2
[ (Fu)(t) = (Fo)(#)]| < [A<L1+L2¢O( r;(12_19) ) )
a
+;t(€1+52%>](01+02+03)””*UH6
= xllu—olc. )

By (Hy), we have || (Fu)(t) — (Fo)(H)||, < lu -2l
Consequently, F is a contraction. Therefore, by the Banach fixed point theorem, we get that 7
has a fixed point which is a unique solution of the problem (5) ont € Ny_;, 74,. U

In the second result, we deduce the existence of at least one solution of (5) by the following,
the Schauder’s fixed point theorem.

Lemma 4 ([30]). (Arzeld-Ascoli theorem) A set of function in Cla, b] with the sup norm is relatively compact if
and only it is uniformly bounded and equicontinuous on [a,b].

Lemma 5 ([30]). Ifa set is closed and relatively compact then it is compact.

124



Mathematics 2019, 7, 471

Lemma 6 ([31]). (Schauder fixed point theorem) Let (D, d) be a complete metric space, U be a closed convex
subset of D, and T : D — D be the map such that the set Tu : u € U is relatively compact in D. Then the
operator T has at least one fixed point u* € U: Tu* = u*.

Theorem 2. Assuming that (Hy) — (Hz) hold, problem (5) has at least one solution on Ny_p, 74 4.

Proof. We divide the proof into three steps as follows.
Step 1. Verify F map bounded sets into bounded sets in Bg = {u € C : |ju|¢ < R}. We consider
— {4 € CNemrsa) : lullc < R).
Let max |F(t,0,0)|=M, max |H(t0,0)| =N and choose a constant

teENy 5, T+ tENy 4, T
R> (M+N)(Q1+ Q2+ 0Q3) 37)
2 o= N
1= (O + 0+ 03) { MLy + L2200 ) (6 + 2T 00) |
Noting that
|S(t,u,0)| = ‘F(twﬂx71,1¢(t+tx71),Aéu(t+tx719)) —F(t+a—1,0,0)]
+|F(t+a—1,0,0)],
|7 (tu,0)| = ‘H(t+¢x—1,u(t+1x—1),A’7u(t+¢x+'y—l))—H(t+1x—l,0,0)|
+|H(t+a—1,0,0)|,
for each u € Bg, we obtain
|OIF () + H(w)]
7 r—n+1 s—1 v—a+t (r]JrZ giig(r»):ﬂlsﬁl ‘
< ¥ (0 — o (&)=L
r:;ns:a—nv:;n g;) r( I:lei)r(“_n) ( ())
(18,00 + 1|7 (& ,0)[]
N r—n+l s—1 ov—a+n Yt 6i—1
FI+Z 9 _‘7('/))7 V—S a—n—1
< e v—0 ——X
N r:az'—nb:a—nv:a—; g r(zl 16)1—‘(“7") ( (g))
[A(Lallull + Lol Y®ul) + M) + g (ajull + &2 ¥7u]) + N)]
1 T+a—n+1 s—1 v—frn v ( ( ))a uet
- e’ (v —o(x)) 1 x
r(len) s=a—n v=a—n ¢=0
[A (Ll = o] + Lo (Y*u) = (Y20) |+ M) + (2] = o] + £ (¥7) = (¥70)| + N |
Go(T+n—8+1)
< {)‘[(Ll +L W)“”“C*M}
@o(T+n+ )"
+u[(t+e W)Hullww]}
K (g —a+ 22y — a4 m)™ el (T4 o —n42)%042
I'(m+1)'(a —n+3) I'(a—n+3)
¢o(T+n—9+1)
< {A[(L1+LZW)IIM|M+M]
Po(T+n+7y
+y[(€1+EZW)I|Ml|C+N]}® (38)
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and

|(Fu) (1)

t—n+1

5 e

S=K—n

< +|o1FG) + H(w)

1 t—n+1 s—=1 v—a+n

Y, (v U(C))w[/\|8(§,u,0)| +u|T (&, u,0)|]

S=a—nov=a—n C:O

I'(a—n)

— R

< [M(Lalull + LallYOull + M) + p(Enllull + 0¥ 7u] + N)] <
® t—n+1 1 t—n+1 s—1 v—a+n 1
il e+ " F(v—o0(g))1=
AL Tk, e, @)

<

T

@o(T+n+y)X Q" (T+2) el Y T+a—n+2)s=n2
+ul(a+ e r )”””CJFN}}( A T(«—n+3) >

< (BT

e
+y[<€1 +62"W)Ilullc+N}}nl. (39)

Furthermore, we have

[(8LFu)(t—8+1)| < {A[(Ll s +rr(lziﬂﬁ; Uﬂ) e + ]

r
+u] (4 %%)MHN] }Qz, (40)

and

. 10
[(AYFu)(t+ )| < {A[(“ +r, 20 +r(z —195 . )lule +M]

T y
+;4[(£1 +€zW)uC+N]}03. (41)

Hence (39)—(41) imply that

n— 94 1)1=0
lFw @], < {A[(L1+Lz"’°(”r(2_‘i§” Yl + m]

+u{(£l MQW)MC +N] }(Q1 + 0+ 0)

< R. (42)

So, || Fulle < R. This implies that F is uniformly bounded.

Step II. Since F and H are continuous, the operator F is continuous on Bg.
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Step III. Examine F is equicontinuous on Bg. For any € > 0, there exists a positive constant
p* = max{dy,0,83,04} such that for t1,tr € Ny_p, 714
th — t1’ < —er whenever |t, — t1| < 61,
) 6710 [A|F|[+|H] | |
B b 1R (4 = peni?] o cleondd
’( ) ( / 6en— @[)\HF\Hy =]

)(tz—tx—i—n—ﬂ-i-l)ﬂ—(tl—a+n—19+1 —‘9’

whenever |t) — t1| < &y,

2n—a—2 T—1(T 3)a=n+2
3[AIFI +ullHI ($5s + “romeaias )

AT(2=0) T(a—n+3)I(2—0)
I'(l1—v)l F
< € ( vIT(p) D‘) whenever |t — ] < 83,
40g
(2 —atn+7)? = (- tn+ )| < :

Qe (T+2) | T 1(T+a—n+2)80+2\
3[ALF] +””HH]( AT ) T TaonidT( D) )
whenever |t — 11| < d4.
Then we have

|[(Fx)(t2) — (Fx)(t1)]

1 t2i+l t1i+l 1 th—n+1 s—1 v—f—n
< ——O[F(u)+ H(u et — e+ ——— e’ x
‘A| s=a—n s=a—n r(“ - 11) s=a—n v=0—n ¢

<v—a<¢>)“1{AP(§+a— Lu(E+a—1),(Yu)(E +a—9))

ti—n+l s—1 v—a+tn

ZZZES

SIX‘VIZ)A‘VI_

(v —o(¢))e=n=L {/\F(é +a—1Lul@+a-—1), (Y‘9u)(§+ x— 19))

+;4H(C+¢x71,u(£j+oc71),(‘Y”’u)(é+a+'yfl )

+yH(§+afl,u((era71),(‘Y7u)(§+a+771)>

< [A|F| + ul[H]] Len_“’t —t ‘+L‘(t —n41)82 (g —n+1)M‘
= # A 2T T T —n gty !
€ €
<6763 @
Furthermore, we have
[(ALFu)(ty — 9 +1) — (ALFu)(th — 0+ 1)|
@212 T (T 4y — 4 3)a=nt2
<
= [A||Fl|+ﬂ||H]{[A|F(2—l9) T Tw—nrare-o |~
(t2a+nﬂ+1)”(t1a+n0+1)“”} < g (44)
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and

[(A™"Fu)(t2+ ) — (A" Fu)(t1 + )|

Bc" (T +2) e T+a—n +2)7”‘*”+2

‘(t2a+n+7)7(t11x+n+7)7‘} < g (45)
Hence
|Fx)t) - (Fow)|, < 5+5+5 =« (46)

This implies that the set F(Bg) is an equicontinuous set. As a consequence of Steps I to III together
with the Arzela-Ascoli theorem, we find that 7 : C — C is completely continuous. By Schauder fixed
point theorem, we can conclude that problem (5) has at least one solution. The proof is completed. [

4. An Example

In order to study the existence of a solution to our problem, we obtain the conditions provided in
Section 3. Since our designated problem is a theoretical problem, it is rare to find the application related
to our results. However, for thorough explanation, we provide the following example to illustrate
our results. Consider the following fractional difference boundary value problem

. , o (2n(t+3)+10) | (t+]) |+‘Y% u(t+2)
AL+ e+1A7}ut: - -
[ &t (et 1)Ag| u(t) 1005 AP+ D) [+ ju(t+7) ]

(C+F) D1 el (4 8))|

(t+Z) 1+ u(t+5) 1]

1 1 3
u <—%> =Dlu (Z) = DZu (%) =Dlu(4)=0

27, 1, _»w —sin(3%7) 587
u(my) = o e 60 (47)
3 (= o(s)Zh e (+D)
where (‘F%u) <t+ §> = (t U(zs)) ¢ 3 Au (S + g) ,
)72 TR @) 3
4\ (o(s) s et 4
ot o) B 5 )
“w T 5) (t +100)
2 1 4 1 1, 3 0 Yol Tebnel
Seta = ,1’1—5,19—3,’)’—5,['31—4,,32—2,ﬁ3—4,)\—£’ ,y_l,T_6,:7_ z,
T, TSm0 = b 62— b, 03—} 04— () =, glt,5— 94 1) = £ ana
E—s+%

g(t;s+7) = (£+100)2°
We can show that
©® = 5455721, |A|=202.553, () =2189.264, ), = 15715.32
Q3 = 17049.09 and ¢y = (3) e 5, 9o < (%) e M.
Nothing that (Hy) — (Hs3) hold, for each t € %N,%,Zzlr we obtain

‘F[t,u,Y%u] 7F[t,v,Y%v]‘ < llﬁ\u -+ ﬁ\Y%u fY%v|,
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F[t,u,‘l’%u} — F[t, v,‘l’%v]‘ < (%)2 (%)3 |u—o| + (%)3 \‘I’%u —‘I’%v|,
and % <g(t)<e,

so, L1 = Ly = 0.0099, ¢; =1.178 x 107, 4, = 0.0012, K =e.

Finally, we find that
X = 0.0443 < 1.

Hence, by Theorem 1, the problem (47) has a unique solution on JN_ 1y

5. Conclusions

We study the existence and unique results of the solution for a separate nonlinear Caputo fractional

sum-difference equation with fractional sum-difference boundary conditions. Some conditions are
obtained when Banach contraction principle is used as a tool. In addition, the conditions for the case
of at least one solution are obtained by using the Schauder fixed point theorem.
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Abstract: In this article, by the use of the lower and upper solutions method, we prove the existence
of a positive solution for a Riemann-Liouville fractional boundary value problem. Furthermore, the
uniqueness of the positive solution is given. To demonstrate the serviceability of the main results,
some examples are presented.

Keywords: positive solution; green function; fractional differential equation; the method of lower
and upper solutions

1. Introduction

The aim of this work is to study the existence and uniqueness of the positive solution for the
following problem:
_ _ )
k(0) =0, pk(1)—7k(n) =0, nelo1]
where B, v, and 7 are positive real numbers such that  —2y7*~1 > 0, j is a nonnegative continuous
function on [0,1] x [0, c0), and Dj. is the fractional derivative in the sense of Riemann-Liouville.
This type of equation is important in many disciplines such as chemistry, aerodynamics, polymer
rheology, etc.

{Dg@k(t):j(t,k(t)), l<a<2 0<t<1 ,

Different techniques are used in such problems to obtain the existence of solutions, for example
the variational method, the Adomian decomposition method, etc.; we refer the reader to [1-8] and
references therein.

Existence results of nonlinear fractional problems are given by the use of fixed point theorems;
see [9-15]. More precisely, the authors in [12] gave the existence of positive solutions for the following
equation:

Dgvk(t) +j(tk(t)) =0, 1<a<2, 0<t<],

according to some boundary conditions.
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Using the theory of the fixed point index, the author in [11], presented the existence of the positive
solution for the following system:

0, 0<t<l 1<a<2,

:k(l).

DG k(E) +j(t k(1))
k(0) =0, Bk(n) =

Recently, the upper solution method and lower solution method have been the aim of many papers;
see for example the book [16] and the recent papers [17-30]. The main idea of this method is to study
some modified problem and, then, give the existence results for the principal problem.

Motivated by the above works, in this article, we will present a new method to study the given
problem, that is we combine the lower and upper solution method with the fixed point theorem
method in order to prove the existence and uniqueness of the positive solution. Let us assume the
following:

Hypothesis (H1). The function j is nonnegative and continuous on [0,1] x [0, 4c0).
Hypothesis (H2). For each t € [0,1], the function j(t,.) is bounded and increasing on [0, +oc0).
Hypothesis (H3). There exists a function a : [0,1] — [0, o) such that the function j satisfies:
li(s,x) = j(s,y)l < als)lx —yl, Vs €[0,1], Vx,y > 0. 2
The main theorems of this paper are summarized as follows.
Theorem 1. Under Hypotheses (Hy)~(Ha). If B — 2yy*~1 > 0, then Equation (1) admits a positive solution.

Theorem 2. Under hypothesis (Hz), if p — 2yn* 1 > 0 and if:

1
/0 1+ MQ — 8)* s 1a(5)ds < T(a), 3)
then Equation (1) admits a unique positive solution.

2. Preliminaries

In this section, we collect some basic results and notations that will be used in the
forthcoming sections.

We denote by L(0,1) the set of all integrable functions on (0,1) and by C(0, 1) the set of functions
that are continuous on (0, 1).

Lemma 1 ([31]). Let « > 0, N = [a] + 1. Assume that the function k is in C(0,1) N L(0,1). Then,
the following equation:
Dgik(t) =0,

admits a unique solution. Moreover, this solution is given by:
k(t) = Cit* 1 4 Cut* 2 ...+ Ct* N,
for some C; € R, wherei =1,2,...,N.

Lemma 2 ([31]). Leta > 0and N = [a] 4 1. Assume that either k and Dfj, k are in C(0,1) N L(0,1). Then,
there exists C; € R, fori = 1,2,..., N, such that:

I8 DEKk(t) = k(t) — Ct* 1 = Cot* 2 — ... — Cnt* V.
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Now, we give the Green function associated with the problem (1).
Theorem 3. If 1 < a < 2 and h is continuous in [0, 1], then equation:
Dy k(t) +h(t) =0, 0<t<]1,
with the following conditions:
k(0) =0, pk(1) — k() =0, 5 €0,1],

admits a unique solution, which is given by:

with G(t,6) being the Green function defined by:
I(%)G(t,4)

=(t—0)"""xpq(6) +

where x 4 is the function defined by:

oo ={ 4 Hre

Proof. From Equation (4) and using Lemma 2, there exist two real numbers C; and C; such that:

k(t) = —I8.h(t) + Ct* 1 + Cot* 2.

It follows that:

_ =9t a1 2
ko= [ h(8)ds + Crf* L 4 Cot* 2,

I'(a)

Since k(0) = 0, then C; = 0.
On the other hand:

{ k(1) = Jg U5+ o,

. _5a—1
k() = J Uth—h(0)d6 + Cop .

As Bk(1) — vk(n) = 0, then we have:

T(a) T'(a)

C
! B— T

By substituting the values of C; and C; into Equation (7), we get:

k(t)

. 51 _sa—1
B Jo B h(o) — v J Ui n(6)ds

t 75a71 1 1 175&—1 *5”‘71 -
:/0 (t—9) h(‘s)d‘Hﬁ—%]aq[ﬁ/o ( = ) h(5)d5—7/0n%h(5)d5]t“ )

I'(a) (@)

1 1
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T T(a) Jo X0 B— qya1 p 1y X[o]

|

h(8)ds.

4)
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That is: ,
k(1) = /0 G(t, 6)h(6)do.

It follows that for all real numbers t,6 € [0,1], we have:

_ s\a—1
G(t6) = %X[OJ] (6) + W [.5(1 =) —y(n— 5)0‘71)([0,1;](5)] ol

O
Proposition 1. Let G be the function given by Equation (6), then we have the following properties:
(i) Putq(s) = %(1 — 8)%1, then we have:
G(t,0) < q(6),Y t,6 €[0,1].
(i) Put p(t) = ﬁi:#t"‘*l, then we obtain:

G(t,8) > q(6)p(t), ¥ ,6 € [0,1].

Proof. (i) Firstly, we remark that G(1,6) is given by:

CLI=F | a—epts -t p1—ept Pify<ésl

B
On the other hand, for all § € [0, 1], the function t — G(t,J) is increasing, so, for any t,6 € [0,1],
we have:

1 {(15)“1+,3;,1A1{ﬁ(15)“17(775)“} Lif0< 5 <y

G(t,8) < G(1,0).

As v > 0, it is easy to see that:

. 1 o
T(x)G(t,6) < (1—6)* 1+ Wﬁ(l — o)t
= Mu —8)*1, V6 € [0,1].

B—nt

That s, if t, 6 € [0, 1], then we have:
G(t,6) < q(6).
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(ii) If 0 <75 <t < 1, then using (6) and the fact that g — 2"(11""1 > 0, we obtain:

G(t,9)
e A Y N _ .
S (155) g (P et o<y
_ e A A _ .
=4(9) %(%) + gt ifp<o<t
zﬁffqa,l 1 ifr<s<1
=1 o a—1 N _ .
p(t) + Zﬁﬁ—m“” <%) - W(%)“ el if0<s<y
> q(9) Byt (1) i
P(t) + 215_7,70(—1 <17 ) s lfi’/ S 1) S t
p(t), ift<o<i,
(B D=0~y —o)* et
t) + , if0<s6<
> q(g) p( ) 2’37,)/17,,‘_1 Ul
p(t), ify <é6<1,
(t) + 1 (ﬁ _ D(*l)tﬂ(*] _ zx—lta—l fo<s<
2 q(é) p 2/3_7,70(71 ’)/17 ’)/17 ’ — - 17
p(t), ifyp<é<1,
> a(6) P(t)JFW(ﬁ*Z’W“*l)t“*lr if0<s<y
B p(t), ify<s<1,
> p(t)q(9),
where p(t) = Wt"‘*l. The proof of Proposition 1 is now completed. [

3. Proof of the Main Results

This section is devoted to proving our main results. To this aim, we will apply the following
lemma.

Lemma 3 (See [32]). Let E be a semi-order Banach space and P be a cone in E. Let D C P and a nondecreasing
operator T : D — E. Assume that the equation x — T(x) = 0 admits a lower solution xy € D and an
upper solution yy € D, with xo < yo. Assume that if xo < x < yo, then x € D. If one of the following
statements holds:

(i) P isnormal, and T is compact continuous.
(ii) P is reqular, and T is continuous.
(ii) E is reflexive, P normal, and T continuous or weak continuous.

Then, the equation

admits a maximum solution x* and admits a minimum solution y* such that xo < x* < y* < y.

Note that a function v (resp. A function w) is called the lower solution (resp. upper solution) of

operator T if:
v(t) < To(t), (resp. w(t) > Tw(t)).

Let E = C[0, 1], equipped with the supremum norm. Put P = {k € E k(t) > 0; 0 < t < 1}, which
is a cone in E. Define T on P by:
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so it is not difficult to see that k is a solution for Equation (1) if and only if T(k) = k.
Proof of Theorem 1. We divide the proof into four steps.
Step 1: We will prove that T maps P into itself and that it is completely continuous.

First, since G and j are nonnegative and continuous, it is easy to see that T maps P into itself and
that it is continuous. Let () be a bounded subset of P, which is to say the existence of M > 0 with:

Ik|| < M,V ke Q.
Put:

L= max |h(t k)|
0<t<1keQ

Then, for all k in O, we get:

1 1
Tk(1)| < /0 G(t,8)|h(5,k(6))|d6 < L/O G(t,6)ds.

That is, T(Q) is a bounded subset of P.
Now, forany k € Qand 0 < t; < t; <1, we have:

1 1
|Tk(t2)ka(t1)\:\/ G(tz,é)h(é,k(é))déf/o G(t1,6)h(5, k(6))ds|
= | [[(6t2,6) ~ Gl11,0))h(6, k(&)
< [116(02,6) ~ G, ) (6 9)las

< L/ G(t2, 8) — G(t,8)|do

< L(/Ot1 IG(t2,8) — G(ty, 8)|d6 + ./: IG(t2,6) — G(t, 8)|d6 + ./t: G(t2,6) — G(tl,zs)w)

SL<11+12+13>

where:
t
11:/0 G(ts,6) — G(t,6)|ds

t
< [ 102 = 9 M0 (0) = (1= 0 M (0)1d0

tacfl _ tacfl H ’
+ ﬁ | 1BO= 0 =0y =) g, ()10

a—1__ja—1 § ® )
{ - (-t -6)+ S Ea-a-nn+ 1), ifn<t

g tnflitu—l 0 (p_ )
2 B (B(1— (1 )Y+ 2R, ity > b

&

136



Mathematics 2019, 7, 516

h=/hWWJ) G(t1,8)|do

It

< [ 162 =01 M0 (6) ~ (61~ 0)* xi00 (O)1do

Ju
(5 — (b —1)") T2 — ,
F o [ 1B =0 (= o) g (0) s
a—1__ a1
%(tZ_tl)“'f‘%g((l—tl)“—(1—1‘2)“), ifo<n<t
o a—1_ qa—1
- BL ‘*““W{f((l —H)* = (1—t)") —L(t — 17)“}, ifty <y <t

Bt

a—1__a—1
T ++(t§wt«11){§((1 =) = (1=1)%) + Tt —m)* = (t = U)“]}r iffp <y <1

13_/ G(t2,6) — G(h, 6)|do

IN

L 1= 0" 0y ()= (11 = 0 g 0110
< [ 12— 01 X0 (6) — (1~ 8)* xi0n ()10

(5 —(ta—1t)*) - -1 a1
- 1-6 — -6 0)|do
Fg e [ B =9 =l =y O)
a—1_ ga—1
T ia-n)e, ity < b

ta 1*[“ 1 ﬁ o .
ﬁ,wa T E(l — )" — (11 — )%, iftp <1
Then, we obtain that:

|Tk(ty) — Tk(t)| < L(Lh + I+ I3)

( ~1 -1
SL(ts—t@t% - B,
o Tt a

Since t* and #*~! are uniformly continuous when t € [0,1] and 1 < & < 2, it is easy to prove that
T(Q) is equicontinuous. From the Arzela-Ascoli theorem (see [33], we deduce that T(Q2) is a compact
subset. Thatis, T : P — P is a completely continuous operator.

Step 2: T is an increasing operator.

Let 0 < t < 1. Since the function 6 — j(t,J) is nondecreasing, then there exists 2 > 0, such that
the function [0,a] 3 6 — j(t,6) is strictly increasing. It follows that for k; < ky, we have:

1 1
Tk (f) = /0 G(t, 6)h(5, k1(6))ds < /0 G(t, 6)h(5,k2(6))d5 = Tha().

Step 3: For each t € [0,1] and from (H,), there exists M > 0 with 0 < j(t,k(t)) < M. It follows by
applying Theorem 3 that equation:

D§ w(t) + M =0, 0<t<l,1<a<?,
w(0) =0, pw(1) —qw(y) =0 , 5 €[01].
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has a solution w. Moreover, this solution satisfies:
1 1
w(t) = / G(t,6)Mds > / G(t,6)j(t, w(8))ds = Tuw(#).
0 0
That is, the operator T admits w as an upper solution.
On the other hand, the operator T admits the zero function as a lower solution; moreover:

0<w(t) VO<t<1

Step 4: Since P is a normal cone, Lemma 3 implies that T admits a fixed point k € (0, w(t)). Therefore,
Equation (1) admits a positive solution. I

Proof of Theorem 2. To prove Theorem 2, we begin to prove that T has a fixed point. We remark that
if for n large enough, T" is a contraction operator, then T has a unique fixed point. Indeed, assume
that for n large enough, T" is a contraction operator, and fix x € E. Since T is an increasing operator,
which is uniformly bounded, then the sequence {T"x} ¢y is convergent, that is there is p € E such
that lim T™"x = p. Since T is continuous, we get:

Tp=T lim T"p = lim T""! = p,

m—ro0 m—ro0

On the other hand, if p is a fixed point for the operator T, then it is also a fixed point for the
operator T", so we obtain the uniqueness of p.
Now, let us prove that for n large enough, the operator T" is a contraction. Let k,v € P,

then we have:
|Tk(t) — To(t)| = /01 G(t,0)]j(8,k(0)) — j(d,v(5))|dd
< /0'1 G(t,6)a(6)|k(5) — v(6)|do

k=0l "y gty B e
I(a) /o[(t %) +(/3_1)/771x—1)(1 0)* Ya(s)ds

k= ot 1 8 N N
- T/o [+ W(l —6)*Ya(6)ds

[[k —of|¢* "
< AN g,
)

<

where K = [1[1+ W%(l —5)*~1]a(5)ds.

Similarly, we have:

IT2K(8) = T20(0)] = [ G015, TH D)) (6, To(0))ldo

[y

G(t,8)a(8)|Tk(6) — To(8)|do
! Ik — oo~
[ G(t)a(0)

B

kol

< e b 0+ o
||k — o]+~

S Ty

Kdé

<)
<)

1—6)* 16" 1a(s)ds

KH,
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where H = [J[1+ Gy (1= 0)* 10" 1a(8)do.
By mathematical induction, it follows that:

[k — o]t~
n

n—1
T(w) KH" .

IT"k(t) = T"o(t)] <

By using (3), we get:

Hence, it holds that:
IT"k(E) = T"o(t)] < [Ik— o]} *~" < |}k — o],
and this completes the proof. [

4. Examples
In this section, some examples are presented in order to illustrate the usefulness of our

main results.

Example 1. Consider the system:

« _ —k(t)
{Dmk(t) Viek), 0<t<1, 1<a<2, o)

k(0) =0, Bk(1) —~k(y) =0, n€l0,1] ,

where B,y > 0, B —2yyp*~1 > 0.

Note that since for any t € [0,1], we have 0 < v/te *1) < \/t, which implies that Conditions (Hy) and
(Hy) hold. On the other hand, there is an equivalence between the solution of Problem (9) and the fixed point of
the operator T given by:

1 )
Tk(t) = / G(t,6)Vae KO ds.
0
1 —
Take w(t) = [, G(t,6)v/6d6 and v(t) = 0, then:
1
w(t) > / G(t,6)Voe O ds = Tuw(t),

0
which implies that the operator T admits the function w as an upper solution. Moreover, it is obvious that
the zero function is a lower solution for T. Hence, from Theorem 1, we conclude that Problem (9) admits a

positive solution.

Example 2. In the second example, we study the following problem:

3/2 __ _sin
{ Dy/?k(t) = (3iky arctan(1 + k(1)) 0<t<1, 10)
k(0) =0, Bk(1)—~k(n)=0, nel01] ,

where B,y >0, f — 2y,/11 > 0.
Note that arctan(1 + k(t)) < 7§ for each t € [0,1], then j(t,k(t)) = (i%é)arctan(l +k(t)) is an
increasing and bounded function on k. Therefore, we can easily prove that Conditions (Hy) and (Hp) are
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satisfied.
Take w(t) = fol G(t,9) (fi:é‘;)d& and v(t) = 0, then:
1 .
wt) > | G(t,é)\/g% arctan(1 4 k(6))dd = Tw(t),

which implies that T admits the function w as an upper solution and the zero function as a lower solution. Thus,
from Theorem 1, we obtain a positive solution to Problem (9).

Example 3. In this example, we take p =1, v = 0, and y € [0, 1], and we consider the following problem:

D2y(t) = Ay(t) + £(b),
{y(O) , y(1) =0, "

where f is a nonnegative function. It is clear that we have:
j(t,x) = Ax+ (1),
and o = % Moreover, for all t € [0,1], one has:
it x1) — j(t, x2)| < Alx1 — xo|, thatis a(t) = A,

and:

A/Ol (1+ =8y 1) 6 ds
= A(B(1,a)+ B(w,u))

_ 1, T

= Al(a) (r(a TV r(m))

3 1 re 3
= AF(E) (1‘(2) +1"((§))) < r(i),

1
ﬁ o— n—
/() [1+W(1*5) 1}5 1ﬂ((5)d5

forall0 < A < 1162@, where B(.,.) is the beta function.

Finally, all conditions of Theorem 2 are satisfied. Therefore, for 0 < A < fg@, Problem (11) admits a
unique solution.
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Abstract: Throughout this paper, via the Schauder fixed-point theorem, a generalization of
Krasnoselskii’s fixed-point theorem in a cone, as well as some inequalities relevant to Green’s function,

we study the existence of positive solutions of a nonlinear, fractional three-point boundary-value
problem with a term of the first order derivative

(ED*x) (1) = f(t,x(t), %' (1), a<t<b 1<a<2,

x(a) =0,x(b) =ux(n), a<ny<b, u>A,

—a

b
where A = and §D* denotes the Caputo’s fractional derivative, and f : [4,b] x R x R — Risa

continuous function satisfying the certain conditions.

Keywords: three-point boundary-value problem; Caputo’s fractional derivative; Riemann-Liouville
fractional integral; fixed-point theorems

1. Introduction

In the last decade, questions on positive solutions to two-point, three-point, and multi-point
boundary value problems (BVPs) and integral boundary-value problems for nonlinear ordinary and
fractional differential equations have attracted much interest. The investigation of three-point BVPs for
nonlinear integer-order ordinary differential equations was initially begun by Gupta [1]. Since then,
several authors have put their focus on the existence and multiplicity of solutions (or positive solutions)
of three-point BVPs for nonlinear integer-order ordinary differential equations. Several papers are
available in regard to the setting of integer orders of differential equations in the literature. In 2000,
applying the fixed-point index theorems, the Leray-Schauder degree, and upper and lower solutions,
Ma [2] studied a class of second-order three-point boundary value problems with a nonlinear term f(x).
In 2002, He and Ge [3], with the help of the Leggett-Williams fixed-point theorem [4], investigated
the multiplicity of positive solutions of a problem with the nonlinear term f (¢, x) (see [5-15] and the
references therein).

In recent years, multi-point boundary value problems have also been considered for
fractional-order differential equations. For instance, employing the superlinearity and sublinearity,
together with the well-known Guo-Lakshmikantham fixed-point theorem in cones, Ntouyas and
Pourhadi [16] studied the existence of positive solutions to the boundary-value problem with a
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fractional order, 1 < a < 2. Furthermore, they investigated the convexity and concavity of the
solutions with respect to the behavior of a given function as a coefficient of the subjected problem (see
also [17-21]).

There were only a few papers available which focused on the existence of solutions for nonlinear
fractional differential equations associated with three-point boundary conditions, which served as
motivation for this work. The key idea of the current paper is that a term of the first-order derivative
is involved in the subjected nonlinear problem, while most works (either fractional or ordinary
differential equations) are done under the assumption that the first-order derivative is not involved
explicitly in the nonlinear term.

In this paper, an analogy with a boundary-value problem for differential equations of integer
orders via the Schauder fixed-point theorem, a generalized version of Krasnoselskii’s fixed-point
theorem in a cone [22], and also using the associated Green’s function for the relevant problem, the
existence of positive solutions for a fractional three-point boundary-value problem is investigated.

($D*x)(t) = f(t,x(t),x'(t)), a<t<b l1l<a<?2,
M
x(a) =0, x(b)=pux(y), a<n<b u>A,

where A = a and ED”‘ stands for the Caputo’s fractional derivative, and f : [2,b] x R x R — R is

a Continuouz function which will be specified later on.

The organization of this paper is as follows. In Section 2, we recall some auxiliary facts and
preliminaries. In Section 3, we first find the Green’s function associated with (1), and then, using the
inequalities related with this function and two well-known fixed-point theorems, we present our main
results. An illustrative example is also given.

2. Preliminaries

This section is devoted to recall and gathering of some essential definitions and auxiliary facts in
fractional calculus, as well as the results needed further on, which can be found in [23-25].

Definition 1. Let « > 0 and f be a real function defined in [a, b]. The Riemann-Liouville fractional integral of
order « for a continuous function f : (a,00) — R is defined by (,1°f)(t) = f(t) and

(WIF) () = ﬁ /ﬂt(tfs)“’]f(s)ds, «>0, telabl,

where T'(-) is the Gamma function.

Definition 2. For a continuous function f : (a,00) — R, the Riemann-Liouville fractional derivative of
fractional order a > 0 is defined by

D 0) = gy (1) 9" s, 0= o]+,

n—uw)
where [ denotes the integer part of the real number w.

For a < 0 and the convenience of the reader, we use the denotation D*y = I~*y. Moreover, for
B € [0,a), itis valid that DPI*y = [*~Py.
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Definition 3. Caputo’s fractional derivative of order a > 0 is given by ($DOf)(t) = f(t), and (SD*f)(t) =
(o I"%D™ f)(t) for « > 0, where m is the smallest integer greater or equal to a. Besides, it can be formulated by

1

CD3+ (t) = F(n —DL) B

/t(t—s)"""’lf(”)(s)ds, n=I[a]+1, forfe AC'([ab]),

where o ¢ Ny and AC"([a, b]) represents the space of all absolutely continuous functions having an absolutely

continuous derivative up to (n — 1) (see also [23]).

In the sequel, the associated Green'’s function for the three-point BVP (1) is formulated by utilizing

a crucial lemma derived by Zhang [26] as follows:
Lemma 1. Let & > 0; then, in C(0,T) N L(0, T), the differential equation

CDg,u(t) =0

has solutions u(t) = co +ot+eti 44yt eRi=0,1,--,n n= [a] + 1.

Furthermore, it has been proved that I D u(t) = u(t) +co +c1t + cot? 4 - -+ cpt" 1 for some

¢;eR,i=0,1,---,n, n=[a] +1(see Lemma 2.3 in [26]).

3. Main Results

In the following, we present a pivotal lemma which will play a crucial role in our next analysis

and direct our attention to a variant of Problem (1).

Lemma 2. Let A := p(yy —a) — (b —a) > 0. Then, x € C'(I,R) is the solution of fractional three-point

BVP (1) if, and only if x satisfies the integral equation

b
x(t) = / G(t,5)f(s,x(s),x'(s))ds, te&1:=a,b]
a
where the Green'’s function G(t,s) := Gi(t,s) + Ga(t,s) is given by

(t—s)*1

Gilts) = { )

0,

Gz(t,s) =

Moreover,

@

®)
tel,

*)
tel

®)

Proof. By employing the Riemann-Liouville fractional integral ,I* for Equation (1), the imposed
boundary conditions, and the knowledge received from the fractional calculus theory, we observe that

x € Cl[a, b] is a solution of (1) if, and only if

x(t) :co+c1(tfa)+ﬁ/

a
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for some real constants ¢y and c; (see Lemma 1). Since x(a) = 0, we immediately derive ¢y = 0. Now,

r(lTo /:(b =) fls,x(s), 2/ (s))ds

=cpu(n —a)+ ﬁ /’;7(’7 _ S)aflf(s,x(s),x’(s))ds
= AT(a) (/ab(b — )" f(s,x(s),%'(s))ds
= x5

x(b) = px(n) & alb—a)+

which, together with (6), implies that

() = ey [ (=9 s x(0), ()
)
+At1__(j)</ab(bfs)"‘ L (s, x(s), dsfy/ Y (s, x(s), x (s))ds).
This is also equivalent to
() = a7 [ (=) s x(0), ()l
g (' (=91 =ty =90 ) s x(0), () ®

b
_o\a-1 !
—0—/}7 (b—s) f(s,x(s),x(s))ds>,
Now, (8) can be rewritten as follows:
b
x(t) :/a G(t,5)f(s,x(s),x'(s))ds, tel=]ab],

where the associated Green’s function G(t,s) = Gi(t,s) + Gy(t,s) is defined by (3) and (4).
Furthermore, for any s € I,

max G(t,s) = (b—s)* -+ max <(b =) i - a))

I'(«) tel A-T(w)
_(b—s)*t b—a
S (%) o
S Uil ?) (H(W—ﬂ)>
u—a)
S AAT()

Therefore, the inequality (5) is proved. [

Throughout the remainder of this paper, we employ two well-known fixed-point results to study
Equation (1).

3.1. Existence of Positive Solution with the Schauder Fixed-Point Principle

In the following, we investigate Equation (1) via the Schauder fixed-point theorem.
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Theorem 1 (Schauder fixed-point Theorem, [27]). Let U be a nonempty and convex subset of a normed
space X. Let T be a continuous mapping of U into a compact set K C U. Then, T has a fixed point.

In the sequel, we suppose the following condition:

(Co) f satisfies Carathéodory-type conditions. That is, f(-, u,v) is measurable for the fixed u, v, and
f(t,+,+) is continuous for a.e. t € I. Moreover, if u > 0, then f(t,u,v) > 0.

Under this condition, the equivalent representation for Equation (2) is given by
x(t) = [Fx|(t), tel=lab],

where F is an operator defined by

b
[}'x](t):/ G(t,s)f(s,x(s), x'(s))ds, tel.

a

It is obvious to see that x(t) is a solution to the problem (1) if it is a fixed point of the operator F.

Theorem 2. Suppose that f satisfies the condition (Cy) and the followings:

(C1) There exists an L'-function ¢ : I — R*, such that
£ (0,2 (0)] < p0(),  xeCULR), tel,

where Q) : [ — [0, 00) is a non-decreasing continuous function and || - || denotes the supremum norm
onl.
(Ca) The point iy € (a,b) is taken sufficiently close to a, such that

b
y/av(q — )" (s, x(s),4'(s))ds < /a (b—s)""1f(s,x(s),%'(s))ds, forall x € C}(I,R).

Moreover, suppose that there exists a continuous function p defined on I satisfying the following inequality:

b—a)¥
%pr\llﬂ(\lpll) <|pll- )

Then, Equation (1) has at least one positive solution in C(I,R), bounded above by ||p||.

Proof. Let us define
S= {x e CY(I,R) ‘ 0<ux(t) <|p|forte I},

where || - ||; denotes the L!-norm on I, and p is a function satisfying the condition (Cy). Clearly, the set
S is a non-empty, closed, bounded, and convex subset of c! (I, R). To establish that Equation (1) has a
positive solution, it only suffices to show that the operator F has a fixed point in S. We first show that
S is F-invariant. Let x(f) be a non-negative function; then, following condition (Cp), one finds that
f(t,x(t),x'(t)) is non-negative too, and the right-hand side of (7), together with conditions (Cp), (Cz)
and the fact that A > 0 imply that [Fx](t) > 0.

On the other hand, using (2), (9), (10) and condition (C;), one can see that

[[FxIB < lpll,  fortel
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Hence, 7S C S. Furthermore, to show the continuity of the operator 7 : S — S, we have
b
[[Fxal(t) = [FA]()] 2 0 /a G(t5)] - |f(s,x(5),x'(s)) = f(5,%n(5), %3, (5)) |ds — O

for x,x, € S C C'(I,R).
Next, we show that 'S is equicontinuous. Assume that 2 < t; < t; < b. Following the definition
of F and the condition (C7), we have

|[Fx](t2) = [Fx](t)] < ll@lhQ(llx]]) - max|G(t2, s) — G(t, 5)],

which tends to zero, as t; — t,. Consequently, we conclude that 'S is equicontinuous. Furthermore,
the equicontinuity of the set of functions [FS]' = {y' : y = Fx,x € S} can also be shown. Indeed,
suppose thata < t; < tp < b; then,

P (12) 175 ()] < lglhOxl) - max | 2 Gtz 5) — 2 Gt )] =0

whenever t; — t;. Therefore, we conclude that [FS]’ is equicontinuous.

Besides, S is totally bounded (since every sequence in S has a Cauchy subsequence), so S is
compact and FS is compact. Now, all the conditions of the Schauder fixed point are fulfilled; thus, the
operator F as a self-map on S possesses a fixed point in this set, which yields that Equation (1) has a
positive solution bounded above by ||p||. O

3.2. Existence of Positive Solution via the Krasnoselskii Type Fixed-Point Theorem

In what follows, we recall a generalization of Krasnoselskii’s fixed-point theorem of cone
expansion and compression of a norm type. To do this, let us suppose (X, || - ||) is a Banach space, and
P is the cone in X. Assume that &, 8 : X — R are two continuous non-negative functionals that satisfy

&(rx) < rf&(x), Blrx) < |r[B(x), forxe X, re(01], a1
and
My max{@(x), B(x)} < [|x[| < Mymax{a(x),B(x)}, forx € X, (12)
where M;, M, are two positive constants.

The following lemma is understood as a special case of a result derived by Bai and Ge (see [22]
Theorem 2.1).

Lemma 3. Letrp > rqy >0, Ly > Ly > 0 be constants and

Q={xeX|ax)<r, Bx) <L} i=12
be two open subsets in X, such that 0 € QO C Oy C Q. In addition, let

C={xeX|akx)=r, B(x) <L}, i=12
Di={xeX|a(x)<r, B(x)=L;},i=12

Assume T : P — P is a completely continuous operator satisfying

(S1) ®(Tx) <r,x€C1NP; B(Tx) < L;,x € D1NP;
®(Tx) > ry,x € CNP; B(Tx) > Ly, x € DyNP;
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or

(S2) &(Tx) >r,x € CyNP; B(Tx) > Ly, x € DyNP;
w(Tx) <13,x €CoNP; B(Tx) < Lp,x € D,NP;

then, T has at least one fixed point in (Q \ Q1) N P.
To apply the recent fixed-point theorem, let us consider the following settings.
Let X be a Banach space in C'(I, R), with
= t (¢ X.
Il = max{max |+(5), max [ ()]}, x €

Define a cone P by

P:{XGX

x(t) >0, forallte I},

and functionals

®(x) = max |x(t)], B(x) = max\x (1)), VxeX.
tel tel
With the help of (11) and (12), @ and B are two continuous non-negative functionals, such that
|| x|| = max{a(x), B(x)}. Let us consider the following notations:

b
/ G(t,s)ds|,
a

L := max
tel

= (b—ﬂ)’x_l 1 P « « «
N'7< I(a) +Ar(a+1){2(b—§) —2u(y — &)+ p(y — a) _(b_a)D'

b—1
1
U1 — 1
Accounting on condition (C;), we get that the operator F (as defined before) transforms P into

itself; moreover, a standard argument shows that it is completely continuous. In fact, 7 is continuous
and maps any bounded subset of P into a relatively compact subset of P.

where & =7 — € [a,n).

In the following result, we suppose that 7 is sufficiently close to a such that the Green function G
is non-negative. For the possibility, we refer to Example (1).

ky 1
Theorem 3. Suppose there are four constants, k, > ki > 0, I > I; > 0, such that max Ll Ail}

. (kI . . .
min {f’ N }, and the following assumptions hold:

(C3) There is an L'-function 1 : I — R which satisfies the following condition:

[t x(6) s — [0 510502 () 2 [ pl6)53(5), 5,

forall x € CY(I,

(Cs4) f(t,u,v) > max for (t,u,v) € I x [0,k1] x [—1h,I);

LR* )
(i Ml}
(Cs) ftuv)<m1r1{f2 N Jfor (t,u,v) € I x[0,k) X [—p, I2],
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where M = 1%l . Then, problem (1) has at least one positive solution x(t), such that
ki <maxx(t) <k, or I <max|x'(t)] <.
tel tel

Proof. Let us take the following subsets of X = C'(I,R)

O; = {XEX|&(X) <kir B(x) <li}r i=1,2;
Pi—{xeX|ax) =k, B <) i=12
Qi ={xeX|a(x) <k, Bx)=1L}, i=12

For x € P; N P, by (Cy), there exists

/bG(t,s)ds k. (13)

kq
> — max
L a

tel

/b G(t,5)f(s, x(s), x'(s))ds

a

a(Fx) = max

Since 7 is taken sufficiently close to a such that the Green function G is non-negative, the inequality
(13) holds. Moreover, taking into account the continuity and properties of F, we derive

a—1

F@ = Ty [ =92, 26

+AF1(0¢) </ﬂb(b )" f(s,x(s), ds*,“/ )L (s, x(s), x’(s))ds),
(Fx)"(t) = 7?&)/ﬂt(t75)“731:(5/75(5),3(/(5))(15 <0, el

Therefore, (Fx)(t) is concave on I, and so the absolute value of (Fx)’ takes its maximum only at the
endpoints of I. That is,

max |(72)'(t)] = max{|(Fx)"(@)], |(Fx) (0)[} = |(F)' (0)].
Therefore, for x € Q1 N P, followed by (C3) and (Cy), one can see that

B(Fx) = max{|(Fx)'(a)l, |(Fx)'(b)1}

2 70/
b
- ( (0= 595, 6)s = [0 = 91005, 5
> s [ 9O x5
2]\/IAF()HIIJHI

Now, assuming x € P> N P, by (Cs), there is

®(Fx) = max

/b G(t,5)f (s, x(s), %' (s))ds

Ja

S :kz.
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Finally, for x € Q> N P, by (Cs), one can find

B(Fx) Fx)'(a)l, [(Fx)' (b)[}

\
=
jov}
bed

ﬁ

—s5)* 1f (s,x(s), x(s))ds)

[
(e
(i </{]
s
5(5

IN

h
N

(b—n)"
45+ Ar(a+ 1))

+  zls

{ ) gt
r(al+1

) {Z(b — &) —2u(n — &)+ ply —a)* — “’*“)a])

ozl

Now, all conditions of Lemma 3 are satisfied, and it implies that there exists x € (Q; \ Q1) N P, such
that x = Fx. That is, the problem (1) has at least one positive solution x(t), such that

k1 < R(x) <k or l] < B(x) <.

In other words,
k1 < maxx(t) <k, or I <max|x'(t)] < I,
tel tel

which completes the proof. [
In the following, we illustrate the said result with an example.

Example 1. Consider the boundary value problem:

(SD2x)(f) = f(t,x(t),X'(t), 0<t<]1,
(14)

x(0)=0, x(1)=pwux(y), O0<ny<l, uyp>1,
where yu = an~" for somea > 1,0 <r < 1.5,and f :[0,1] x R x R — Ris given by
f(tu,v) = Aysin®u+Aycosv+ Azt +Ay,  t€1=1[0,1], u,v € R

such that A; > 0, Ay > 0,1 =1,2,3, are constant. Since f takes both supremum and infimum over domain D,
let us set
igff(t, u,v) = My, sup f(t,u,v) = Mp.
D

A direct computation shows that

4ur
S 3(uA -1V
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On the other hand, by considering 1 as being sufficiently close to 0 and () < %, we see that

1 1
/0 V1 —sf(s,x(s),x'(s))ds > /0 P(s)f (s, x(s),x'(s))ds.

Thus, condition (C3) is satisfied. To give more detail, if 1 — 0, then using the fact that y = ay™", together with
Leibniz’s rule, we see that

,x(s), %' (s))ds
o T3 056, )| = 5ty 12 Wm
<ﬂ|M2‘ / v —S
- 2r ;7—>0 i
:a|M2‘1m17 =0,
r n—0

which shows that the second integral term in the left-hand side of the inequality in condition (Cs) vanishes for 1
sufficiently close to 0.

2|l
Furthermore, M = ————— < Land
(m —1)Vm
- 2.L (2(1 =M = 2u(n = )" + py' - 1) > L
Voo

2 _
where § = =1 € (0,1). Next, to check the conditions (Cy) and (Cs), choose ko > I > 11 > ki > 0, such
21

that Iy = M - My and Iy = N - My. Then, one can derive the followings:

f(tu,0) > max{kL1 Il\iI} Il\iI' for (t,u,v) € I x [0,k1] x [=1, I1);

ky 1 I
f(tu,v) < mm{ L2 I\ZI} NZ' for (t,u,v) € I X [0,ka] X [—Ip, I5].
That is to say, all the assumptions of Theorem 3 are fulfilled, then problem (14) has at least one positive solution
x, such that
k1 < maxx(t) <k or M- M,y Sntlalx\x’(tﬂ < N-M,.
€

tel
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Abstract: In this paper, we establish sufficient conditions for the existence of solutions for a nonlinear
Langevin equation based on Liouville-Caputo-type generalized fractional differential operators
of different orders, supplemented with nonlocal boundary conditions involving a generalized
integral operator. The modern techniques of functional analysis are employed to obtain the desired
results. The paper concludes with illustrative examples.

Keywords: Langevin equation; generalized fractional integral; generalized Liouville-Caputo
derivative; nonlocal boundary conditions; existence; fixed point

1. Introduction

The topic of fractional calculus has emerged as an interesting area of investigation in view of its
widespread applications in social sciences, engineering and technical sciences. Mathematical models
based on fractional order differential and integral operators are considered to be more realistic and
practical than their integer-order counterparts as such models can reveal the history of the ongoing
phenomena in systems and processes. This branch of mathematical analysis is now very developed
and covers a wide range of interesting results, for instance [1-7].

The Langevin equation is an effective tool of mathematical physics, which can describe processes
like anomalous diffusion in a descent manner. Examples of such processes include price index
fluctuations [8], harmonic oscillators [9], etc. A generic Langevin equation for noise sources with
correlations also plays a central role in the theory of critical dynamics [10]. The nature of the quantum
noise can be understood better by means of a generalized Langevin equation [11]. The role of the
Langevin equation in fractional systems, such as fractional reaction-diffusion systems [12,13], is very
rich and beautiful. The fractional analogue (also known as the stochastic differential equation) of the
usual Langevin equation is suggested for systems in which the separation between microscopic and
macroscopic time scales is not observed; for example, see [8]. In [14], the author investigated moments,
variances, position and velocity correlation for a Riemann-Liouville-type fractional Langevin equation
in time and compared the results obtained with the ones derived for the same generalized Langevin
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equation involving the Liouville-Caputo fractional derivative. Some recent results on the Langevin
equation with different boundary conditions can be found in the papers [15-20] and the references
cited therein.

Motivated by the aforementioned work on the Langevin equation and its variants, in this paper,
we introduce and study a new form of Langevin equation involving generalized Liouville-Caputo
derivatives of different orders and solve it with nonlocal generalized fractional integral boundary
conditions. In precise terms, we investigate the problem:

{ PDE, (CDE. + A)x(t) = f(t,x(t), te]:=[a,T), AR, "

x(a) =0, x(n) =0, x(T) = pPI,x(5), a<n<i<T,

where £ D% i ng . denote the Liouville-Caputo-type generalized fractional differential operators of
order1 <a <2,0< B <1, p>0,respectively, /I, is the generalized fractional integral operator of
ordery > 0and p > 0,and f : [1,T] x R — R is a given continuous function.

Here, we emphasize that the present work may have useful applications in fractional quantum
mechanics and fractional statistical mechanics, in relation to further generalization of the Feynman
and Weiner path integrals [21].

We compose the rest of the article as follows. Section 2 contains the basic concepts of generalized
fractional calculus and an auxiliary lemma dealing with the linear variant of the given problem.
In Section 3, we present the main results and illustrative examples.

2. Preliminaries

Definition 1 ([22]). The generalized left-sided fractional integral of order > 0and p > 0 of g € X£ (a, b) for
—00 < a < t<b< co,isdefined by:

1-8 gp—1
(prJrg)(t) = ‘IZ(W /af (tp_pwg(s)ds, (2)

where X! (a,b) denotes the space of all complex-valued Lebesgue measurable functions ¢ on (a,b) equipped with
the norm:

b dx\1/p
9l = ([ 1ol ) <o, ceR1<p <
a

Similarly, the right-sided fractional integral 1’157 g is defined by:

1—a ;b -1
890 = b [ e @)

Definition 2 ([23]). For p > 0, n = [B]+1,p > 0and 0 < a < x < b < oo, we define the generalized
fractional derivatives in terms of the generalized fractional integrals (2) and (3) as:

Db = (1) 0
_ pﬂfﬂJrl _dn o Sp71
B W(tl pa) /tzmg(s)dsf (4)
and:
ofa = (v o
_ Pt Cdnn b sl
a F(ni—/s)<‘t1 pa) /[ & myp a8 )ds, ()
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if the integrals in the above expressions exist.

Definition 3 ([24]). For B > 0,n = [B] +1and g € AC{[a,b], the Liouville-Caputo-type generalized

fractional derivatives QDE' L gand ’CJDEL g are respectively defined via (4) and (5) as follows:

n—1 ok 0 _ 4P\ k d
20k 00 =0k [s0) £ S (o) i, 5 e, ©
=l (—1)kskg(b) s bP — 1P\ K d
£D}_g(x) =Dj_ [g(t)—kZ ( 1)k, 2 )( pt )@, o=, %)
=0 :

where AC} [a, b] denotes the class of all absolutely—contim;ous functions g possessing 6" '-derivative (6" g €
n—

AC([a,b],R)), equipped with the norm ||gHAq; =Y H(SkgHC.

Remark 1 ([24]). For a > 0and g € AC}[a, b], the left and right generalized Liouville-Caputo derivatives of
g are respectively defined by the expressions:

t o g\ n—B=1 (5" d
Q’Df;g(t) = I"(nlfﬁ) /ﬂ (t ; s ) (6 ;?1)7(;) s/ ®)
1 b s — o\ n—a=1(—1)"(5"¢)(s)ds
£D} g(t) = F(n—ﬁ)/t ( ; ) (=) il_f)( s, ©)

Lemma 1 ([24]). Let g € AC}[a,b] or Cf[a,b] and B € R. Then:

n—=1 (sk -~
iDL st = 50 - L SR ()
—0 .

oI DP g(x) = g(x) — kz

o
=
=

In particular, for 0 < B < 1, we have:
PIED] g(x) = 8(x) ~ gla), PIED g(x) = g(x) - g(b).

Definition 4. A function x € C([a, T],R) is called a solution of (1) if x satisfies the equation fD;’,‘Jr(ngJr +
Mx(t) = f(t,x(t)) on [a, T], and the conditions x(a) = 0,x(n) = 0,x(T) = pPI}, x(¢).

In the next lemma, we solve the linear variant of Problem (1).

Lemma?2. Leth € C([a, T],R), x € AC3(]) and:

_ (TP —af)P(TP — ) (G —aP)P7[(B+1)(5F —yf) — y(nf —af)]
o= pPHIT(p+2) PPFHIT(B -y +2)(B+1) [#o o

Then, the unique solution of linear problem:

{ DY, (DP. + A)x(t) = h(t), te]:=[a,T], -

x(a) =0, x() =0, x(T) =PI} x(2), a<n<{<T,
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is given by:
—aP)B(yP — .
x(t) = ISPt~ AT x(t) + %{wﬂﬁhm AT x(T)
atB 8 (t° —af)f /(TP —aP)P(TP — tP)
~HLTHE) +”)‘PI“+H"(§)} - Q(ryp_ap)ﬁ< pPHIT(B+2)
0 aP)B+y 0 t0) — (1 — af N
_H(g ap)ﬁerr[fl‘[i(; i_)f_i_ Z)t(; +’1)/)(f bl ) {pla:ﬁh(ﬂ) - Aplf+x(’7)}~ (12)

Proof. Applying PI;, on the fractional differential equation in (11) and using Lemma 1 yield:

(D8, + 1x(t) = B + e+, (13)

for some c1,¢p € R
Applying © 1’ ..+ to both sides of Equation (13), the general solution of the Langevin equation in (11)
is found to be:

(tF —aP)P (P — ar)PH1
T 1) T PB4 2)

x() = LT h() = A1 x (1) +es, (14)
where c3 € R.

Using the condition x(a) = 0in (14), we find that c3 = 0. Inserting the value of c3 in (14) and then
applying the operator I}, on the resulting equation, we get:

(t° — aP)PtY (10 — aP)BFr+1

P = PIETHD ~ VITHO) + ) T (b 12

(15)

Using the boundary conditions x(7) = 0 and x(T) = I}, x(¢) together with (14) and (15) leads
to a system of algebraic equations in ¢; and cp, which, upon solving, yields:

_ PP+ g (P —af)PH i b «
- Q(ryﬂ_up)ﬁ{pﬁ+lr(ﬂ+2) (PR = WL X(T) = g I THE) + A TP 7x(0))

(TP — aﬁ)ﬁH u(Ee — aﬂ)ﬁ+”r+1 atp 8
~(rrpea ~ o) (50—
p/SF (B+1) { qP—aP

o = f7p — up B pﬁr [3 - 1 ( ]Ziﬁh(T) — Aplf+x(T) — yﬂ]ﬂé+ﬁ+7h(§) + ‘u/\pI/iJr'yx(g))
(T —af)P u(E0 —aP)Pty atp s
- <95F(ﬁ +1)  pFHIT(B+ 7+ 1)) (P12 ln) =A%)

Inserting the values of ¢y, ¢ and ¢3 in (13) yields the solution (12). The converse of the Lemma 2,
can be obtained by direct computation. This finishes the proof. [

3. Existence and Uniqueness Results

In view of Lemma 2, we introduce an operator F : C — C by:

_ B _
s L (e f(rx(ry) — v )

VAT —aP)B _
W @) + i) | - O [T )

HE —a)P((B+ )@ — ) =9 —af)]] (o0
I T DB it o xm) = w1t <)} a6)

F)() = LR x(0) — AP x(t) +

158



Mathematics 2019, 7, 533

Here, C denotes the Banach space of all continuous functions from [a, T] to R equipped with the
norm ||x|| = sup;c (7 1% ()]
For the sake of computational convenience, we set:

PR €. . N ‘R 1@ — at) P15,
! P Pr(a+B+1) 1 pPHIT(B+2)[Q[]  p¥ 2P (0 + B+ 9 + 1)1 (B +2)[Q)
(7P —a)*Co
Tt B 1 (17)
P LT 1, e - e,
PPT(B+1) PPHT(B+2)|Q  p?PHTHIT(B+ 9 + 1T(B +2)|Q)
[A[Z2 18
PPT(p+ DI (19
where:
i max | a0 = )], (19)
_ [ (TP = aP)B(TP — 1) (@ — af)PHY(B 4 1)(ZF — 1) — (1 — aP)]
R R PTG e @

te(a,T)

Now, we are in a position to present our main results. Our first existence result for the problem (1)
is based on Krasnoselskii’s fixed point theorem [25], which is stated below.

Lemma 3. (Krasnoselskii’s fixed point theorem) Let S be a closed convex and non-empty subset of a Banach
space E. Let Gy, Gy be the operators from S to E such that (a) Gix + Goy € S whenever u,v € S; (b) Gy is
compact and continuous; and (c) G, is a contraction mapping. Then, there exists a fixed point w € S such that
w = G1w + Grw.

Theorem 1. Let f : | x R — R be a continuous function such that the following condition holds:

(A1) There exists a continuous function ¢ € C([a, T],R™) such that:
[f(Eu)l <o), V(tu)e] xR
Then, the problem (1) has at least one solution on |, provided that:
A < 1. 1)

Proof. Introduce a closed ball B, = {x € C : ||x|| < r}, withr > H‘PHAl M@l = supyepy gy [9(2)], where
A, is given by (18). Then, we define operators F; and JF, from B, to C by:

—aP)B —
Rl = P11 x(0) + Eb o, o(m) - w1 P 0)) )
L) (7P t) @ =@ 1) )
Q(F —a)P L pPHIT(B+2) PPHHT(B+ 7 +2)(B+1)
<L f(,x(0)),

_aP\B _ — agP\B
R = —wifxtn - Cotb e el () - et (@)} + S0

[(TP —a)B(TP — 1) (e —a?)PHTI(B+1)(E° — 1) — 7 (1 — p”]”ﬁ <),
PPHIT(B+2) PP (B +2)(B+1) 1
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Note that 7 = F; + F, on B,. For x,y € B,, we find that:

IN

IN

<

[ Frx + Fayll
sup {PEEP ) + AP Ty 1)
(1 — )| (y — 1)
pPHT (B +2)[0]
HPLEPTIFE X@) 4 AP x(@) f + ‘Q(

B PG 1) ()]

{PLEP LT, 2D + NPT, Jy(T)]

0 —af)P (TP —aP)B(TP —tP)
(P —af)P 1 pPHIT(B +2)

(PR xm) |+ NPIE. Ty )l |

PP HT(B+ v +2)(B+1)
H‘PH (Tpiap)ﬂchﬁ {1+ gl ]+ |y|(§P7uP)a+'B+7gl
PP (w+p+1) 1 pPHIT(B+2)|Q)  pv BT HIT (a + B+ + T(B +2)[Q)
(P —af)* (o [A|(TP —af)P 0
pa+ﬁr<a+5+1>|m}+”"”{ P | T oGl
n [ul|Al(EP — af)PT1Ey e
PHHT(B+ v+ 1)T(B+2)|Q]  pPT(B+1)|Q]
H¢HA1 + }’Az <r.

Thus, Fix + ]:2]/ € B,.
Next, it will be shown that F; is a contraction. For that, let x,y € C. Then:

IN

IN

| Fax — Fayl

U]
su AP |x(t) — y(t +|(—><
tEl]D{ ity xte) - )|+ e o

<{ I 2(T) = y(D)] + AP 1(0) - (@)1}
ANt = a?)P| | (TP = a?)P(TP — 1) (&P — a)PHI[(B+1)(EF — 1) = 7(tF — a?)]

Q[ —ar)f | pPIT(p+2) PPFTHIT(B 9+ 2)(B+1)
<P 1P, |x() —y(ﬂ)l}

(e ey O] 1A (@ — a0)P*7g,
pPrp+1) L oFr(pr2)jall T I 4y + DI+ 2)[0)]
_ e 1y

pPr(p+ i)Y

Aallx —yll,

which, by the condition (21), implies that /; is a contraction. The continuity of the operator 77 follows
from that of f. Furthermore, 7 is uniformly bounded on B; as:

[Frx]l < [l As-

Finally, we establish the compactness of the operator Fj. Let us set SUP(; v)e B, |f(t,x)| = f < co.
Then, for t1,t; € |, t < tp, we have:

[(F1x)(t2) — (F1x)(t1)]
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\P e ++g [ [ = o8 = (8 = s )

+ tt spfl(tg—SP)"‘Jrﬁ*lf(s,x(s))ds]

£ —ar)Bye — ) (2 —ar)P(yP — « «
[( i)’”friﬁ(z 2)02) - ;ﬁﬂr)(ﬁ(zz)ol)]{plﬂiﬁf(T'x(T)) LA @) |

[P (P ) @ P D@ 1) —a(e — )y

QP —ar)fF L pPHT(B+2) PPHTHIT(B+ 7 +2)(B+1)
( —ar)P [(TP —aP)P(TP — ) (@ —a)PT[(B+1)(EF — 1) — (] — fl")]H
Q@ —ar)B L pPHIT(B+2) PP HIT(B+y+2)(B+1)
<P 1P £, ()|
f (a+B) _ ol @
< Gt *ﬁ|+2< 0}
(5 —af)f (P —t5)  (# —af)P « «
| B0 P ,3+z le PP+ LA @)
(5 —af)P (TP —af)P(TP —15)  pu(GP —af)PT[(B+1)(E° —t5) — 7(t5 —a)]
Q (e _up)ﬂ{ oPHT(B+2) PPHHT(B+ 9 +2)(B+1) }
(1 —a)P [(TP —aP)P(TP —#])  p(@ —a’)PHr[(B+1) (8 —t]) — (] — up)]} ‘
Q(f —af)P L pPHIT(B+2) pPHHIT(B+y +2)(B+1)

<P LB £, x()),

which tends to zero as t, — t, independently of x € B,. Thus, F; is equicontinuous. Therefore, F; is
relatively compact on B,. As a consequence, we deduce by the the Arzeld—Ascoli theorem that 77 is
compact on B,. Thus, the hypothesis of Lemma 3 is satisfied. Therefore, the conclusion of Lemma 3
applies, and hence, there exists at least one solution for the problem (1) on J. [

In the next result, the uniqueness of solutions for the problem (1) is shown by means of the Banach
contraction mapping principle.

Theorem 2. Let f : ] x R — R be a continuous function satisfying the Lipschitz condition:

(A2)
[f(t,u) = f(t,0)] < Llu—vo|,L>0,/, forte] andevery u,v € R.

Then, there exists a unique solution for the problem (1) on [a, T], provided that:
LA +Ar < 1, 22)
where A1 and A; are respectively given by (17) and (18).

Proof. In the first step, we show that FB; C By, where By = {x € C([a,T|,R) : ||x]| < 7}, M =
SUP;c 4, 7] [f(t,0)], 7> ﬁ, and the operator F : C — C is given by (16). For x € By, using (A»),
we get:

F@) )

< PRI (W) = F(L0)] + £(4,0)) + AP LE, (1)

(1 = a)P | — 19)]
PPHT(B+2)[0)]

HulP L I£@ x(@) — £, 0]+ 1£E 0)) + AP x(@) ]

{PIEPIA(T, X(T)) = F(T,0) |+ [F(T,0)]] + A IE, ()|
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(0 —af)P (TP —af)B(TP —t0)  p(GF — aP)PTY[(B+1)(EF — ) — y( — aP)]

\Ol(np—apﬁ PFHIT(B +2) PPFTHT (B + 9 +2)(B+1)
< {1 PI1f O, x(n) = FOn, 001 + £ 1, 0) ) + IAPIE, ()}

(Tﬂfuf’)’”rﬁ [1+ e}
PPl (a+p+1) PPHIT (B +2)[]
(nf —af)*%p )

AT (a + B+ 1)|Q
(LI =P G Jy MW@ e
PPT(B+1) PPHT(B+2)|Q) e TTHIT(B+ 9+ DI(B+2)[Q]  pPT(B+1)]Q)
= (LF+ M)A+ M7 <7

[H](8° — a?) P 1E,
PP (a4 p+ o+ DI(B+2)[0)

IN

(L7 +m)( ]+

which, on taking the norm for ¢t € [a, T], implies that ||F(x)| < 7. Thus, the operator F maps B
into itself. Now, we proceed to prove that the operator F is a contraction. For x,y € C([a, T|,R) and
t € [a, T], we have:

| F(x)(8) = Fy) ()]
< PLTPIF(6 () = FLy ()] + IMPIE |x(5) = y(2)]

o _ pﬁ P —tP) "
O TS (PP, (1) = ATy (D) |+ WP (1) = ()
HlP LT, () = @y @] + AP x(@) ~ y(@)]}
L o (a1 ) (@ P TIEDE ) e e
Qf(nP —af)Pl pPHIT(B+2) PPHHIT(B+ 9 +2)(B+1)
< (PP f O x () = FOny )|+ NP |x(p) = y(n) |}
(TP — ar)+F s
U= (ar s oy 1 ppvins o0
[ — af)* g,
PP (a4 B+ + 1)T(B+2)[0)
(1P —af)" s A[(TP —af)P 41
ot pr o) Y Crgpen [ o ral)
AN — )P4, ALy
PP (B + DI(B+2)IO | pPT(B+1)IQ)]
= (LAT+A)x—y]l

IN

Taking the norm of the above inequality for t € [a, T], we get:
[F(x) = F)ll < (LA + Ag)lx =y,

which implies that the operator F is a contraction on account of the condition (22). Thus, we deduce
by the Banach contraction mapping principle that the operator F has a unique fixed point. Hence,
there exists a unique solution for the problem (1). The proof is complete. [J

Example 1. Let us consider the following boundary value problem:

1 x(H)+2 |
D4 (1D 4175 ) x(t) = 400+t(}x8}+1 +et), te]=[12),

x(1) =0, x(3/2)=0, x(2)=2/71313/%x(7/4).

(23)

162



Mathematics 2019, 7, 533

Here,p = 1/3,0a = 5/4,p = 1/4, v =3/4 A =1/5,u=2/7,a =1,7 =3/2,8 =7/4, T =2

and f(t,x) = m(mﬁ + e_f>. Using the given data, we find that [)] ~ 0.293634,A; ~

1.336009, Ay ~ 0.673563, {1 =~ 0.082260, (> ~ 0.232036, where 3, A1, Ay, {1, and { are given by (10),
(17), (18), (19) and (20) respectively.

For illustrating Theorem 1, we show that all the conditions of Theorem 1 are satisfied. Clearly,
f(t,x) is continuous and satisfies the condition (A;) with ¢(t) = %. Furthermore, Ay ~
0.673563 < 1. Thus, all the conditions of Theorem 1 are satisfied, and consequently, the problem (23)
has at least one solution on [1,2].

Furthermore, Theorem 2 is applicable to the problem (23) with L = 1/20 as LA; + Ay =
0.740363 < 1. Thus, all the assumptions of Theorem 2 are satisfied. Therefore, the conclusion of

Theorem 2 applies to the problem (23) on [1,2].

4. Conclusions

We have introduced a new type of nonlinear Langevin equation in terms of Liouville-Caputo-type
generalized fractional differential operators of different orders and solved it with nonlocal generalized
integral boundary conditions. The existence result was obtained by applying the Krasnoselskii fixed
point theorem without requiring the nonlinear function to be of the Lipschitz type, while the uniqueness
of solutions for the given problem was based on a celebrated fixed point theorem due to Banach. Here,
we remark that many known existence results, obtained by means of the Krasnoselskii fixed point
theorem, demand the associated nonlinear function to satisfy the Lipschitz condition. Moreover, by
fixing the parameters involved in the given problem, we can obtain some new results as special cases
of the ones presented in this paper. For example, letting o =1, y = 0, 2 = 0 and T = 1 in the results of
Section 3, we get the ones derived in [15].
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Abstract: In this paper, we investigate the existence of solutions for a class of anti-periodic fractional
differential inclusions with -Riesz-Caputo fractional derivative. A new definition of ¢-Riesz-Caputo
fractional derivative of order « is proposed. By means of Contractive map theorem and nonlinear
alternative for Kakutani maps, sufficient conditions for the existence of solutions to the fractional
differential inclusions are given. We present two examples to illustrate our main results.
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fixed point theorem; anti-periodic boundary value problems

1. Introduction

Fractional order models, providing excellent description of memory and hereditary processes,
are more adequate than integer order ones. Some recent contributions to fractional differential
equations and inclusions have been carried out, see the monographs [1-8], and the references
cited therein. The study of fractional differential equations or inclusions with anti-periodic
boundary problems, which are applied in different fields, such as physics, chemical engineering,
economics, populations dynamics and so on, have recently received considerable attention, see the
references ([9,10]) and papers cited therein.There are several definitions of fractional differential
derivatives and integrals, such like Caputo type, Rimann-Liouville type, Hadamard type and
Erdelyi-Kober type and so on. In order to develop the fractional calculus, some different and special
form of differential operators are chosen, for example, see [11-15] and the references therein. The «
order ip-Caputo fractional derivative was first introduced by Almeida in [3]. Some properties, like
semigroup law, Taylor’s Theorem, Fermat’s Thorem, etc., were presented. This newly defined fractional
derivative could model more accurately the process using differential kernels for the fractional
operator. In 2018, Samet and Aydi in [16] considered the following fractional differential equation with
anti-periodic boundary conditions:

D% u(x) + f(x,u(x)) =0, a<x<b,
1
u(a) +u(b) =0,u'(a) +u'(b) =0 .

where (a,b) € R?,a < b, 1< a <2,¢ € C?([a,b]),¢'(x) > 0,x € [a,b] “D*¥ is the p-Caputo fractional
derivative of order «, and f : [4,b] x R — R is a given function. A Lyapunov-type inequality is
established for problem (1). The authors also give some examples to illustrate the applications of their
main results.

Very recently, Chen et al. in [10] studied the following anti-periodic boundary problem involving
the Riesz-Caputo derivative

Mathematics 2019, 7, 630; doi:10.3390 / math7070630 165 www.mdpi.com/journal /mathematics
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Xeply(r) =g(t,y(1)), TEOT,1<y<2,

y(0) = —y(T), ¥ (0) = —y'(T),

where 8°D7 is a Riesz-Caputo derivative, which can reflect both the past and the future nonlocal
memory effects and g : [0, T] x R — R is a continuous function with respect to T and y. Some existence
results of solutions are given based on the Lipschitz condition, the growth condition and the
comparison condition. Most of the present work are concerned with fractional differential equations
or inclusions involving Riemann-Liouville or Caputo fractional derivative, merely reflecting the past
or future memory effect. Riesz derivative is a two-sided fractional operator, whose advantage is that
it could reflect both the past and the future memory effects. We take anomalous diffusion problem
for example. The fractional differential equation with the Riesz derivative is adopted to describe
the anomalous diffusion problem, in which the Riesz derivative stands for the nonlocality and the
dependence on path of the diffusion concentration. Some applications of Riesz derivative about
anomalous diffusion, we refer the reader to [17,18]. Another typical example is stocks. According to
the price trend of the past and future time, investors would buy or sell a stock at an agreed-on price
within a period of time. This process depends on both past state and its development in the future,
which is the characteristic of Riesz derivative. There are some other applications of this derivative, and
we refer the reader to [10,19,20]. In 2009, Ahamad and Otero-Espinar [1] investigated the following
fractional inclusions with anti-periodic boundary conditions

@

‘Dix(t) € F(t,x(t)), t€0,T],1<g<2,
®)
x(0) = —x(T), x'(0) = —x'(T),

where °D7x(t) is the standard Caputo derivative of order g, F : [0, T] x R — P(R) is a multivalued
map, P(R) is the family of all subsets of R. Some sufficient conditions for the existence of solutions are
given by means of Bohnenblust-Karlin fixed point theorem.

Inspired by the above-mentioned works, in this paper, we are concerned with the following
anti-periodic fractional inclusions with -Riesz-Caputo derivative:

ECDZ"‘Pu(x) € F(x,u(x)), a<x<b, @
4
u(a) +u(b) =0,u'(a) +u'(b) =0,

where (a,b) € R%a < b,1<a <2, e C([a,b]), ¢(x) > 0,x € [a,b]. R°D}"¥ is the y-Riesz-Caputo
fractional derivative of order a, and F : [a,b] x R — P(R) is a multivalued map. Sufficient conditions
for the existence of solutions are given in view of the fixed point theorems for multi-valued mapping.
The aim of this paper is to develop the calculus of fractional derivatives. We shall combine the two
definitions of Riesz-Caputo derivative and y-Caputo fractional derivative. Then we investigate the
existence of solutions of anti-periodic inclusions (4). The rest of this paper is organized as follows.
We first present some basic definitions of fractional calculus, {-Caputo derivative, Riesz-Caputo
derivative and multi-valued maps, and then a new definition of ip-Riesz-Caputo fractional derivative
of order w is given. In Section 3, the main results on the existence of solutions for anti-periodic
boundary value problem (4) are provided. We present two examples in order to illustrate our main
results in last section. Our results generalize some published known results. There is no literature to
research the fractional differential inclusions with y-Riesz-Caputo fractional derivative. If we take
F(x,u) = {f(x,u)}, where f : [a,b] x R — Ris a given continuous function, then the problem (4)
corresponds to the single-valued problem (1). If we takea = 0,b =T, (x) = x, F(x,u) = {g(x,u)},
where ¢ : [0,T] x R — R is a given continuous function, then the problem (4) corresponds to the
single-valued problem (2).
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2. Preliminaries

In this section, we recall some notation, definitions and preliminaries about fractional
calculus [6,7,21], ¢-Caputo fractional calculus [3-5,22,23], and Riesz or Riesz-Caputo fractional
derivative [17-19].

Definition 1 ([6]). The left Caputo fractional derivative order & (1 < & < 2) of a function f € C%([a, b]) is
given by
fDLf(x) = (I f")(x),a < x <b,
that is,
1
r(2-a)

Similarly, the right Caputo fractional integral order a (1 < a < 2) of a function f € C2([a,b]) is given by

SDYf(x) = / (x =)' " (t)dt,a < x < b.
$Dif(x) = #/b(t — )1 (e < x < b
b I2—a) /s ’ :
Definition 2 ([6]). The fractional left, right and Riemann-Liouville integrals of order B > 0 are defined as
p _ b
30 = gy [ (05
B 1 b -1
g(r) = r(ﬁ) | =0 g(as,

Ais0) = s [ sl
Let ¢ € C%([a, b]) be a given function such that
Y'(x) >0,a<x<b.

Definition 3 ([3]). The fractional left, right integral of order o > 0 of a function f € C([a, b]) with respect to
 are defined by

W70 = o [ VOO — 9 FOda<x <, ®)

G0 = g [V OWO - 9@ Wi a <x < ©

Definition 4 ([3]). The left, right p-Caputo fractional derivative of order a (1 < a < 2) of a function
f € C2([a, b)) are defined as

EDIF(3) = fry . ¥ W00 — 90D (s 3 (Dt a < 2 <y )
D f () /w W) ())]’“(w,l(t);t)f()dth@ ®

Remark 1. Consider (x) = x, p(x) = Inx, the Riemann-Liouville and Hadamard fractional operators
are obtained.

Inspired by the above definitions, we shall present a new definition of ¢-Riesz-Caputo fractional
derivative of order «, which is a combination of y-Caputo fractional derivative and Riesz-Caputo
fractional derivative.
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Definition 5. Let f € C%([a,b]). For x € [a,b], the y-Riesz-Caputo fractional derivative REDiY £ (x) of
order (1 < « < 2) could be defined by

KDY f(x) = 5 (SDEY + $DY) f(x). ©)

If we take (x) = x, it follows from (7)—(9) that the classic Riesz-Caputo derivative fractional order o (1 < o <
2) of a function f € C2([a, b)) is given by

KEDRF(x) = 5 (S8 +5D5) (), (10)
which is defined as in [19]. For convenience, denote

Py(X)={Y e P(X):Y isclosed},

Py(X)={Y e P(X):Y isbounded},

Pp(X) ={Y € P(X):Y iscompact},

Pepo(X) ={Y € P(X): Y is convex and compact}.

The following are definitions and properties concerning multi-valued maps [24-28] which will be
used in the remainder of this paper.

Definition 6 ([28]). A multivalued map G : X — P(X):

(@)  denote the set Gr(G) = {(x,y) € X x Y,y € G(x)} as the graph of G,
t—d(y,G(t)) =inf{ly —z| : z € G(#)}

is measurable.
(b)  ifG: X — Py(X) is called y—Lipschitz if and only if there exists v > 0 such that

Hy(N(x),N(y)) < vd(x,y), for each x,y € X.

() ifG:X — Py(X) is called contraction if and only if it is -y—Lipschitz with v < 1.
(d)  Gis said to be measurable if for every y € R, the function

Definition 7 ([26]). Assume that F : ] x R — P(R) is a multivalued map with nonempty compact values.
Denote a multivalued operator F : C(] x R) — P(LY(], R) associated with F as

F(x)={we L'(J,R) : w(t) € F(t,x(t))}

forae. t € J:=[a,b]isa closed interval from a to b.

Definition 8 ([26]). Assume that Y is a separable metric space and N : Y — P(L(],R)) is a multivalued
operator. If N is lower semi-continuous(l.s.c.) and has nonempty closed and decomposable values, we say N has a
property (BC) .

Definition 9 ([28]). Foreach u € C(]J,R),t € | = [a, ], denote the selection set of F as
Spy={f €LY, R): f(t) e F(t,u(t)) ae. te]}

Definition 10 ([28]). Let A, B € Py (X.) The Pompeiu-Hausdorff distance of A, B is defined by
Hy(A, B) = max{sup,. 4 d(a, B),sup,cd(A, D)},
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where d(A,b) = inf,c o d(a,b),d(a, B) = infycpd(a,b).

Property 1 ([24]). Let G be a completely continuous multi-valued map with nonempty compact values, then T
is u.s.c. <= G has a closed graph.

The following lemmas play important roles in the proof of our main results.

Lemma 1 ([28]). (Nonlinear alternative for Kakutani maps ). Assume that E is a Banach space, C is a closed
convex subset of E, and U is an open subset of C with 0 € U. Let F : U — P,y (C) be a upper semicontinuous
compact map. Then either

(i) F has a fixed point in U, or
(ii)  thereexistau € oU and A € (0,1) satisfying u € AF(u).
Lemma 2 ([29]). Let (X, d) be a complete metric space. If N : X — Py (X) is a contraction, then FixN # @.

Lemma 3 ([30]). Let X be a Banach space, and F : ] x X — (P)(X) be a L' —Carathédory set-valued map
with Sp # @ and let © : L1(],X) — C(], X) be a linear continuous mapping. Then the set-valued map
T'oSp:C(],X) = P(C(J, X)) defined by

(©0SF)(u) : C(J X X) = Pepe(C(], X)), x = (@0 Sp)(#) = O(Sku)

is a closed graph operator in C(J, X) x C(], X).

Lemma 4 ([20]). Assume that Y is a separable metric space and N : Y — P(L'(J,R)) is a multivalued
operator with the property (BC). Then there exists a continuous single-valued function g : Y — L'(J,R)
satisfying g(x) € N(x) for every x € Y, i.e., N has a continuous selection.

From [6], we have

Lemma5. If1 < B < 2and g € C?[a, b], then
JJESDEg(7) = (1) — g(a) — g/ (a) (T — a),
JfEDfg(7) = g(1) — g(b) + 8 (b)(b— 7).
From (10) and Lemma 2.1 in [15], for u € C? [a,0], and 1 < a < 2, we have that

. 1
JEDEu(T) = o (2ED% + LD} ) u(r)

1 1 1
= (1)~ y(u(a) +u(b)) ~ g (@) (x @) + W B)(b-7). (D)
By (11), similar to the proof of Lemma 2.2 in [10], we have the following lemma.

Lemma 6. Assume that h € C[a,b]. A function u € C?[a, b] given by

) = grgrgy J, 6 s
ey [ =9 s + s [0 nis)as (12

is a unique solution of the following anti-periodic boundary value problem
{ (XCDEu)(t) = h(t), te(ab),1<a<2,

u(a) +u(b) =0, u'(a)+u'(b)=0.

(13)

169



Mathematics 2019, 7, 630
As the same argument of Lemma 2.1 in [16], we can easily obtain the following result, which
plays a very important role in proving the main results.
Lemma 7. If f,p € C?([a,b)), and ¢'(x) > 0 for each x € [a, b], then
EDY AW W) = (G Do (Fop™ )W), 9(a) <y < p(b), (14)

and

(G Dy (F o™ W), w(a) <y < (b). (15)

Dy Ay (y))

Moreover, we have

EDY AW W) = oD (fFo v )W), wla) <y < (b). (16)

Lemma8. If f : [a,b] x R — R, € C2[a, b] with ¢/(x) > 0, and ¢'(a) = ' (b), then the problem

ECDZ’lpu(x) = f(x,u(x)), a<x<b, (17)
u(a) +u(b) =0,u'(a) +u'(b) =0,
could be transformed into the following problem
{R(%D“ o) = Fy~ () W) o) <y < g0 "
o(p(a)) +o(p(b)) =0, '(yp (ﬂ))JrBU’(l/J(b)) =
A nontrivial solution to (18) is given by~ v(y) = er( — = /A (B—s)*" Zf( “1(s),v(s))ds

+ﬁ /Ay(y—s)a—lf(qz’ (s),v(s))ds + r(la /y YL 1(s), o(s) )ds, (19)

where A = (a) and B = (b).
Proof. We introduce the function v : [((a), (b)] — R, defined by

o(y) = u(p~'(v), ¥(a) <y < p(b).

In virtue of (16), one has

ne Dl () = KDy Y u(x),  (a) <y < p(b). (20)
By a chain rule, we have
/ — 1 (=1 b
v'(y) T )" ¥ @), ¥la) <y < y(b)
Thus, we have
/ 1 ! 12 1 /
V((a) = s (@), and 0 ((8) = il (0)
From boundary condition (17) and condition ¢ (a) = ¢'(b), we have that
0((a)) +0(p(b)) = 0,'(¢(a)) + o' ((b)) = 0. (1)

Therefore, the problem (17) could be transformed into problem (18). By virtue of Lemma 6,
we obtain v € C2[A, B] is a nontrivial solution to (18).
From Lemma 8, we can easily know that
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) = =S [ (o) — 929 Ot ut)a

L )~ PO W)+

T(a) /:(lli(t) — ()L (1) f(, u(t))dt (22)

is a unique solution of problem (17).

3. Main Results

We pose the following hypotheses:

(Hy) F: [a,b] x R — P(R) is Carathéodory and it has nonempty compact and convex values;
(Hp) there exist a continuous nondecreasing function g : [0,00) — [0,00) and a function
p € C([a,b],R") satisfying

|[E(t,u)| :=sup{|f|: f € F(t,u)} < p(t)q(||ul]), for each (¢, x) € [a,b] x R.

(H3)1<a<2,¢eC*ab]),y(x) >0, x¢€ [ab]

(Hy) ¢/(a) = /(D).

(Hs) F : [a,b] x R — Pcp(R) is such that, for every u € R, F(-,u) is measurable.
(Hg) There exists m € L!([a,b)], R") for almost all t € [a,b], such that

dy(F(t,u), F(t,a)) <m(t)|u—1da|, Yu,ieR
with d(0, F(t,0)) < m(t) for almost all t € [a, b].
(Hy) F: [a,b] x R — P(R) is a nonempty compact-valued multivalued map such that
(@) (x,u)— F(x,u)is L& B is measurable.
(b) u > F(x,u) is lower semicontinuous for each x € [a,b],
Now we are in the position to state our main results. The first theorem is dealing with the

Carathéodory case.

Theorem 1. Assume that (Hy)—(Hy) hold. Moreover, if there exists a constant M > 0, such that

{ (lp2(llzajp1 b(‘/’(b)*IP(SD”“Zp(s)w’(s)ds

a

ey s )| T @3)

v
=
A
=
‘C~.
S
IS
=
N

=
|
-

2
F(nc
Then (4) has at least one solution on [a, D).

Proof. The operator T : C([a,b],R) — P(C[A, B], R) is defined as follows:

— b
() = {1 € ot R) s h(e) = 5= (o) — pis))* 20/ (5) o)
b
e [ 00O O WSO+ s (06 - I YOS, f € Spuh 8
We divide the proof into 5 parts, which shows that T satisfies all the conditions of Lemma 1.

Part (i). T maps the bounded sets into bounded sets of C([a,b], R). Set B, = {v € C([a,b],R) :
|lo]l < r, r > 0}, which is a bounded ball in C([a,b], R), then for h € T(u), u € B,, there exists
f € S, such that

i) =~ S0 [ (o) — g0 2/ 0 )
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b [ @0 @O+ s [0 - g WO @9
l"(oc),alp P(s Y'(s)f(s)ds r(“).ttps P ¢/ (s)f(s)ds.

Then

o) < B0 [ (o) - yie) 29 0o s

g [ @O =0 OOl + s [ 06 - )Y Ol
< ) [ G2 [ (o) — pie) 29/ Ghpisyis

i [ @) g o)ps)ds + ﬁ/f@p(s) — (1) ($)p(s)ds

<) (SR [ e -y 2 @pteias

2 a— b
o 0O = vy [ epds). (26)

Part (ii). T maps bounded set into equicontinuous sets. Let u € By, t1,ty € [a,b], t1 < tp, where
B, is a bounded set in C([a, b} R), for u € T(u), we have

J’_

[h(t2) = h(t)] < 75 /[ (f2) = T () = () g (9)|f (5)1ds
/[ (£2) = ()" " = ((t1) = ()" J¢' ()| f (5) s

oy L 100 =) = () = 9(e)* Iy (0 (5 s

<t [ 19(12) ~ 96 = ) - 9 Op(s)ds

on T () - p(s) N ()p(s)d
IO () — () — () — 9(s)* ' (5)pls)ds @
T J, (V02 D) =) Y ()p(s)ds,

independent of u € B, as t; — ty, the right side hand of above inequality tends to 0. According to the
Ascoli-Arzeld Theorem, T is completely continuous.

Part (iii). T has a closed graph. Set u,, — 4, hy, € T(uy) and hy, — h.. Then, we shall show that
h. € T(u). For hy € T(uy), there exist f, € Sg,, such that

ilt) = =0 [ Gg0) - p(o))* 24/ )l s)

g [ @O =0 W R+ s [0 ) O

Hence, it suffices to show that there exists f. € Sg,, such that for each t € [a,b],

i) =~ SO o) g0 2y 011 01

172



Mathematics 2019, 7, 630

b [0 9O 0 + s [ 95) —$(0) ) f ). (29)
F(oc),alp P(s P (s)f«(s)ds r(a).tzps P P’ (s) f«(s)ds.

Define the continuous linear the operator @ : L'([a,b], R) — C([a, b], R):
£ @) = LD [ (46) - p(s)) 2y )10
t b
iy L 0O 0O @ f s+ s [ 96 - p) G (30)

We have ||h, — h|| — 0, as n — co. Thus, in light of Lemma 3, ® o Sr is a closed graph operator.
Furthermore, we have I, () € ®(Sr,, ). By uy — 4, we obtain

i) =~ S0 o) g0 2/ 011 01

¢ b
+ﬁ [0 =9y ). (s)ds + %,x) | W) v 1) W) f()ds, (31)

for some f; € Sg,.
Part (iv). T is convex for each x € C([a, b], R). Since Sg, is convex, it is obviously true.

Part (v). We show that there exists a open set U C C([a, b],R), with u ¢ T(u) for any n € (0,1)
andall u € 9U. Letny € (0,1), u € 5T (u). Then for t € [a, b], there exists f € S, such that

o) =~ S0 [ o)~y 24/ 0 )

1 t a—1 ./ 1 b a—1_ ./
e f, WO =9 Y EfGs + gy [ 006) — )T O 32

A similar discussion as in part (i), we have

I < gl (BT [ pie) — gty 29! ohpisyis
g ) 9@ [ Y Opes). )

Consequently, we have
lu
alllull) (SRR [ 0) = 9()* 2/ (s)p(s)ds + s (w(b) — (@)= [, ¢/ (s)p(s)ds )

By (23), there exists M such that ||u| # M. Let

<1. (34)

U= {xe€C([ab],R): ||ul]| < M}.

It is clear that the operator T : U — P(C([a,b],R)) is upper semicontinuous and completely
continuous. If we choose U properly, for some 17 € (0,1), thereisno u € 0U such that u € #T(u). Thus,
by means of Lemma 1, we can get the conclusion that thereexists a fixed point u € U, that is, it is a
solution of problem (4). We complete the proof. [

We shall give the second theorem which is concerned with the Lipschitz case.

Theorem 2. Suppose that the conditions (Hz)—(Hg) are satisfied. Moreover, if

= B [ p(e) — 962y Gms)s + o (96— p(@) [y m(snds <1(39)
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then problem (4) has at least a solution on [a, b].

Proof. By (22), we define the operator T : C([a,b], R) — P(C|a, ], R) as follows:

T(0) = € CCla, 1K) () = 502 90 - g0 29/ 0lg(o)s
+ﬁ [0 -y v
1 b )
+m /t (p(s) — ()" w’(s)g(s)ds, S € Skut- (36)

Obviously, the fixed point of T is the solution of (4). Our aim is to prove that the operator T
satisfies all the conditions in Lemma 2. The proof will be given in two claims.

Claim 1. For each h € C([a,b],R) the operator T is closed. Let {h,},>0 € T(u) be such that
hy — h(n — o) in C([a,b],R). Then h € C([a, b],R), and there exists v, € Sp, such that for each
t € la,b],

s [ ) ) Y (on(ds + s [ 96— ()Y S)ou(s)ds. (37)
r(a)'atp P(s P(s)on(s)ds r(“).tt/;s P P (s)vn(s)ds.

For F has compact values, we get a subsequence v, which converges to v € L!([a, b], R). Thus,
v € Spy, and for each t € [a,b], one has

in(t) = ) = ~ D= [ p0) (o) 2y spots)as

+ % /at(w) = ()" (s)o(s)ds + % /,b<¢<s) — ()Y (s)o(s)ds. (38)

Therefore, h € T(u).
Claim 2. We shall show that there exists ¢ < 1 such that

Ha(F(t,u), F(t, 7)) < lJu— 1],
Let u,ii € C([a,b],R) and hy € T(u). There exists v1(t) € F(t, u(t)) such that for each t € [a,b],

in(t) =~ S0 [ y(e) — g6 29 (o)

e [ 46 W e + s [ ) ()Y S)or (s, (39
I(w) Ja l O o

+
By (Hp), there exists w € F(t,ii(t)) such that

o1 (t) —w(t)] < m(t)[u(t) —a(t)], t € [a,b].
U : [a,b] — P(R) is defined as

U(t) == {w € R: |or(t) —w(t)| < m(t)[u(t) —a(t)|}.

The multivalued operator U(t) N F(t,1(t)) is measurable, so there exits a measurable selection
for U(t) N F(t,u(t)). We denote this function as v (t). For each ¢ € [a,b], one has

[o1(£) — va(8)| < m(t)[u(t) —a(t)|.
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Then, we define for each t € [a,b],

ia(t) = =S8 [ y(e) — gl 29 G

1 1

it follows that

D0 [ (p(6) — 90029 G)erls) — o)l

[ w6 = 969 G er () — a5 s

b [ 06— $OF YOl () (o)l

+ﬁ”” il / (1) — ()" 9/ (s)m(s)ds
*ﬁ”” a1l [ () = p(0)" 1 (S)m(s)ds
= {% /;Wb) — (1) 2/ (s)m(s)ds
+% M/llf }Hufun
= llu—da|.

Therefore,
7 = bl < yllu—a.
Interchanging u and i yields

Hy(F(t @), E(t,u)) < yllu —al.

s [0 = 9Dy e+ s [l =yl SJeatels,

(40)

(41)

Thus, T is a contraction by o < 1. Since Lemma 2, we conclude that T admits a fixed point which

is a solution to problem (4). [

The third theorem is about the lower semicontinuous case.

Theorem 3. Assume that (Hy)—(Hy) hold, if (Hy) is also satisfied, then the anti-periodic boundary problem

(4) has at least one solution on [a, b].

Proof. Itis clear that F is of L.s.c. type as condition (Hy) is satisfied. By means of Lemma 4, there exists

a continuous function f : C(J,R) — L(J, R) such that f(u) € F(u) forallu € C(J,R).
Next, we shall consider the following problem

{ (KC DYy ) = fe) 90 <x < b(0)
u(p(a)) +u(p(v) =0, w(p(a)) +u'(y(b)) =0,
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Note that if u € C?([a, b], R) is a solution to (42), then u is a solution to the problem (4). we define
the operator 7 as

Tut) =~ B2 [ p(0) — gi6))* 29/ ) Cute) s

g 00 =g )OS EN+ s [ W) - pOF O ). @)

We transform the problem (42) into a fixed point problem. Obviously, the operator 7 is continuous
and completely continuous. As the remainder of the proof is similar to that of Theorem 1, we omit
ithere. [

Remark 2. If we take F(x,u) = {f(x,u)}, where f : [a,b] x R — R is a given continuous function, then the
problem (4) corresponds to the single-valued problem (1).

Remark 3. Ifwe takea = 0,b = T, p(x) = x, F(x,u) = {g(x,u)}, where g : [0,T] x R — R is a given
continuous function, then the problem (4) corresponds to the single-valued problem (2).

4. Applications

Example 1. Consider the fractional differential inclusion involving -Riesz-Caputo derivative with
anti-periodic boundary value conditions

{ REDIVy(x) € F(x,u(x)),

u(=1)+u(l) =0,u'(-1)+u'(1) =0,

(44)

where P(x) = sinh(x), —-1<x<1l.a = % Observe that € C2([-1,1]), ¥/'(x) = cosh(x) > 0,
—1 < x < 1. Moreover, we have

P'(—1) = cosh(—1) = cosh(1) = ¢/(1),

which implies condition (Hz)—(Hy) hold.

|u® 2 |ul 3
1, 1|,u €R,
w3 T e e

x — F(x,u(x)) := {
and

|F(x,u)l| := suplo] : v € F(x,u) < 3:= p(x)q(lul)) u € R.
Obviously, condition (Hy ) is satisfied. And p(x) =1, q(||u||) = 3, we can find a positive constant M such that

)=1
M {3 (‘ smh(lz)r(_ljl;)h(_l)‘ /_11(sinh(l) — sinh(s)) "2 cosh(s))ds

) . -1
2 s [ cosh(s)ds)] > 1,

that is, M > 30.486. All the conditions in Theorem 1 are satisfied. Therefore, the fractional differential inclusion
with anti-periodic boundary value conditions (44) has at least one solution.

Example 2. Consider the fractional differential inclusion involving -Riesz-Caputo derivative with
anti-periodic boundary value conditions

{ Iing%’wu(x) € F(x,u(x)),

u(—1)+u(l) =0,u'(-1) +u/(1) =0,

(45)
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where P(x) = sin(x), -1 < x < l.a = g Observe that ¢ € C2([-1,1]), ¢'(x) = cos(x) > 0,
—1 < x < 1. Moreover, we have

¥'(—1) = cos(—1) = cos(1) = ¢'(1),
which implies condition (Hz)—(Hy) hold.

x| [u]
F = — R
x — F(x,u(x)) {O, 3 ul+1 ,UER,
and
dy(F(t,u), F(t,1)) < %h{ —il,u € R

we can find out that

p = YA ZICD T (g0) g tyrs)Sas + o) 91} [ 9

2r(3) -1 () 3
sin(1) —sin(—1) (1, . . L
= % ./_1(sm(l) —sin(s)) 5 cos(s)'%‘ds
2_(gin(1) — sin(<1))} [ cos(s) 2
+Tg)(sm(1) —sin(—1)) /71 cos(s)?ds
<0967,

that is, v < 1. All the conditions in Theorem 2 are satisfied. Therefore, the fractional differential inclusion with
anti-periodic boundary value conditions (45) has at least one solution.

5. Conclusions

Riesz derivative, which is different from one-sided fractional derivative, as the Caputo or
Riemann-Liouville derivative, is a two-sided fractional operator. It is of great use due to its reflecting
both the past and the future memory effects. We study the existence of solutions for a class of
anti-periodic fractional differential inclusions with ¢-Riesz-Caputo fractional derivative in this paper.
Firstly, combining ¢-Caputo derivative with Riesz-Caputo derivative, we give a new definition
of y-Riesz-Caputo fractional derivative of order a. Then, in virtue of fixed-point theorems for
multi-valued maps, some sufficient conditions for the existence of solutions to the fractional differential
inclusions are presented. Last but not least, we present two examples to illustrate our main results.
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Abstract: In this paper, we study the existence of solutions for a new class of fractional
g-integro-difference equations involving Riemann-Liouville g-derivatives and a g-integral of different
orders, supplemented with boundary conditions containing g-integrals of different orders. The first
existence result is obtained by means of Krasnoselskii’s fixed point theorem, while the second one
relies on a Leray-Schauder nonlinear alternative. The uniqueness result is derived via the Banach
contraction mapping principle. Finally, illustrative examples are presented to show the validity of the
obtained results. The paper concludes with some interesting observations.

Keywords: g-integro-difference equation; boundary value problem; existence; fixed point

1. Introduction and Preliminaries

Fractional calculus, dealing with differential and integral operators of arbitrary order, serves as
a powerful modelling tool for many real-world phenomena. An interesting feature of such operators
is their nonlocal nature that accounts for the history of the phenomena involved in the fractional
models. Motivated by the extensive applications of fractional calculus, many researchers turned to the
theoretical development of fractional-order initial and boundary value problems. Now, the literature
on the topic contains many interesting and important results on the existence and uniqueness of
solutions, and other properties of solutions for fractional-order problems. The available material
includes different types of derivatives such as Riemann-Liouville, Caputo, Hadamard, etc. and
a variety of boundary conditions. For some recent works on the topic, for instance, see [1-8] and the
references therein.

Fractional g-difference equations (fractional analogue of g-difference equations) also received
significant attention. One can find preliminary work on the topic in [9], while some interesting details
about initial and boundary value problems of g-difference and fractional g-difference equations can be
found in the book [10].

In 2012, Ahmad et al. [11] discussed the existence and uniqueness of solutions for the nonlocal
boundary value problem of fractional g-difference equations:

‘Dgx(t) = f(t,x(t)), 0<t<1,1<a<20<qg<],
a1x(0) — B1Dgx(0) = 11x(11),  apx(1) — B2Dgx(1) = 12x(112),

where f € C([0,1] x R,R), °Dy is the fractional g-derivative of the Caputo type, and a;, B, 7i, 11 €
R,i=1,2.

Mathematics 2019, 7, 659; doi:10.3390 / math7080659 181 www.mdpi.com/journal /mathematics
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In 2013, Zhou and Liu [12] applied Monch’s fixed point theorem together with the technique of
measure of weak noncompactness to investigate the existence of solutions for the following fractional
g-difference equation with boundary conditions:

“Dgu(t) + f(t,u(t)) =0, 0<t<1, 0<g<1,
u(0) = (Dju)(0) =0,  (Dgu)(1) + p(Dju)(1) =0,

where2 < a <3,7,8>0and f:[0,1] x R — R is a continuous function.
In 2014, Ahmad et al. [13] derived some existence results for a nonlinear fractional g-difference
equation with four-point nonlocal integral boundary conditions given by
DP(eDY + AJu(t) = f(t,u(1)), 0St<10<q<l AR,
u(0) = aly™ u(p),  u(l) = by Yu(e), abeR,
where 0 < B,7<1,0<#5,0<1,a>2, f:[0,1] x R — Ris a continuous function and Ij;‘ denotes the
Riemann-Liouville fractional g-integral of order «.

Later, Niyom et al. [14] studied the following boundary value problem containing Riemann-Liouville
fractional derivatives of different orders:

(AD* + (1 — A)DPYu(t) = f(t,u(t)), te€[0,T],1<ap<2
u(0) =0, uDMu(T)+ (1—pu)D"u(T)=7;, O0<7y,72<a—p,

where D? is the ordinary Riemann-Liouville fractional derivative of order ¢ € {a, 8,71, 72} such that
0<A<1,0<u<1ly3eRand f e C(0,T| xR,R)forT > 0.

Some recent results on fractional g-difference equations equipped with different kinds of boundary
conditions can be found in the papers [15-25].

Now, we recall some important results on fractional g-integro-difference equations. In [26],
the authors studied a nonlocal four-point boundary value problem of nonlinear fractional
g-integro-difference equations given by

DE(EDY + A)x(t) = pf(t,x(t)) + kIig(t,x(1)), 0<t<1,0<g<1,
21%(0) - ﬁl( "Dyx(0))| = o1x(m), a2x(1) +p2Dgx(1) = o (2),

where CDf; and CD;,Y denote the fractional g-derivative of the Caputo type, 0 < B,7 < 1, Ig ()
represents a Riemann-Liouville fractional integral of order ¢ € (0,1), f,g : [0,1]] x R — R are
continuous functions, A # 0 and p, k,«;, B;,0; € R,5; € (0,1), i = 1,2. For some recent works on
boundary value problems of fractional g-integro-difference equations, for instance, see [27-31].

Motivated by aforementioned works, in this paper, we study the following nonlinear fractional
g-integro-difference equation

(ADg + (1 - /\)Dg)u(t) =af(t,u(t))+ be;g(t,u(t)), te[0,1],a,b € RY, 1)

supplemented with g-integral boundary conditions

1 — qs ’Yl 1) 1 (1 — qs)(’hfl)
) =0, / §)dys + (1 — /71{5115:0, 7 >0, (2

" rq ’71 ( ) q ( V) 0 rq(')/z) ( ) q 1,72
where0 < g <1,1<a<20<d<1,0<A<,0<u<l,a—-p> 1andD3denotesthe
Riemann-Liouville fractional g-derivative of order a and f, g : [0,1] x R — R are continuous functions.
Notice that Equation (1) contains g-derivatives of fractional orders & and 8 and a fractional g-integral
of orders J, while fractional g-integrals of orders -y and 7, are involved in the boundary conditions (2).
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We make use of Krasnoselskii’s fixed point theorem and a Leray-Schauder nonlinear alternative to
prove the existence results, while the uniqueness result is proved via Banach contraction mapping
principle for the given problem.

Let us first recall some necessary concepts and definitions about g-fractional calculus and fixed
point theory.

Let 0 < g < 1 be an arbitrary real number. For every a € R, the g—number [a]; is defined by

_

[a]q = % [9]. In addition, the g-shifted factorial of real number 7 is defined by (4;7)p = 1 and
n—1 .

(a;9)n = H(l —aq’) forn € NU {co}. Fora,b € R, the g-analogue of the power function (a — b)"
j=0

withn € Ng:={0,1,2,...} is given by

n—1

(@a-0)9 =1 (a—b)" =T](a—0bg).

j=0
< 4 —bgl

In general, if a is real number, then (a — b)) = a* H aTbZH and a@ = g% when b = 0.
j=0t =0

Ifa >0and 0 < a < b <t then (t —b)® < (t —a)@. The ¢-Gamma function I'y(«) is defined as

(1—q)V
Ty(a) = gt aeR\{0,-1,-2,...}
and satisfies the relation I'y(« + 1) = [a];T4(a) [9].
Leta > 0and u : (0,00) — R be a continuous function. The Riemann-Liouville fractional
g-integral for the function u of order « is defined by (Igu)(t) = u(t) and

t
%/0 (t—qs)("‘*l)u(s)dqs, a>0

for t € (0,00), provided that the right-hand side is pointwise defined on (0, c0) [9].
Recall that I,/,glg‘u(t) = If”u(t) fora, B € RT [9] and

T,(B+1)
[ = 0 petp -1 >0,t>0.
e Fq(ut+ﬁ+l)t , Be(—1,00),a>0,t>0
1
= « R —
If f =1, then I§1(t) Fq(a+1)t forall t > 0.

The Riemann-Liouville fractional g-derivative of order a > 0 for a function u : (0,00) — R is
defined by [9]

1 t u(s)
D%u(t) = / dgs, —l<a<n.
gu(t) T,(n—a) Jo (t—gs)ail a5, 1 a<n
Next, we state some fixed point theorems related to our work.

Lemma 1. Let M be a closed, bounded, convex and nonempty subset of a Banach space E. Let A and B be
operators mapping M into E, such that

(i) Ax+ By € M, where x,y € M;
(ii) A is compact and continuous;
(iii) B is a contraction mapping.

Then, there exists z € M such that z = Az + Bz (Krasnoselskii’s fixed point theorem [32]).
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Lemma 2. Let X be a closed and convex subset of a Banach space £ and let ) be an open subset of X with
0 € Y. Then, a continuous compact map H : Y — X has a fixed point in Y or thereisay € Y and o € (0,1)
such that y = oH(y), where 9 is the boundary of Y in X (Nonlinear alternative for single-valued maps [33]).

2. Main Results

Let E = C([0,1], R) be the set of continuous functions defined on [0,1]. The set E is a Banach
space with the following norm
[ulle = sup |u(t)], uekE
te[0,1]
Now, we prove the following lemma which characterizes the structure of solutions for boundary
value problems (1) and (2).

Lemma 3. Let h € C([0,1],R) and

qu(“) (1- Pl)rq("‘)

STt Tatr) 7O @

The function u is a solution for the fractional q-difference boundary value problem

(AD3 + (1 A)Dﬁ)(wh() tefo1],

B (1—gs)m-1 yn=1) 1(1—gs)(rD B 4)
=0, H_/ T, (11) u(s)dgs + (1 - V)/O W“(S)d:}s =0,

if and only if u is a solution for the fractional g-integral equation

un = sp aﬁﬁ)/ £~ gs)@ By ()dqurM_l( )/t(tqu)(""l)h(s)dqs

et A—1 1 e Brr—
5 [ A 4 9 Yt

i ] /1(1 —gs) @D (s)d,s

+

TAT,(wm) Jo
A-uwyA-1) 1 e

_m/o(l_qs)( B+ Du(s)dqs
(1—#) 1 s

N

Proof. Let u be a solution of the g-fractional boundary value problem (4). Then, we have

A—=1_p 1
= Tun(t) + Xh(t)'
Taking the Riemann-Liouville fractional g-integral of order « to both sides of the above equation,

we get
A—1 1 _ _
u(t) = TI;’;Dgu(t) + () + et et
where ¢q, ¢y € R are arbitrary constants. Since 1 < a < 2, it follows from the first boundary condition

that ¢, = 0. Thus,

A-1 t e p 1 t . .
(t) = m /0 (tqu)( ﬁ ])u(s)quJrW,/O (tqu)( 1)h(s)qu+C]t 1. (6)
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On the other hand, if ¢ € {71, 72}, then we have
A—1 rt
o _ _ (a—p+o-1)
ITu(t) AT, (a1 0) /0 (t—gs) u(s)dys

1 t . Ty(a) _
- _ (a+o-1) o9\ ato-1
+/\Fq(a+¢7)/0(t qs) h(s)dqs+cqu(a+a)t .

Now, by using the second boundary value condition and substituting the values ¢ € {71, 2} into
the above expression, we obtain

]”[(/\_1) 1 a— 1—
Ayl —pm) Jo (=97 V(o

M ! (aty1-1) g ()
_ 1- 1-Dp(s)d _ e\t
+/\Fq(zx+’h)/0 (1= 4s) (s) qs+cll"q(oc+'n)

A-0A-1D [ g
AT y (1 # Vules

(1 - ]") 1 a+y— (1 — lu)[‘ (“) B
m/o (1 — gs)@t l)h(s)dqurclm —o

Solving the above equation for c1, we find that

’m ,/01(1 —gs) 1V n(s)dys

_% /01(1 —gs) @D (s)dys

*% /;(1 —5) 2 Dn(s)dys),
where A is defined in (3).

Substituting the value of c¢; in (6), we get the solution (5). Conversely, it is clear that u is a
solution for the fractional g-difference Equation (4) whenever u is a solution for the fractional g-integral
Equation (5). This completes the proof. [
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In relation to the problems (1) and (2), we introduce an operator 7 : E — E by

(Tu)(t) = % /O'(t — 4)@ Dy (s)dys + ﬁ /()’(t )& (s () el
b ' :
HCEY) /0 (= gs) 0 Vg(s,u(s))dgs
g [ =g s (s ;
- m /01(1 — gs) @ g(s, u(s))dys
- % ./(;1(1 = 49) 12D f(s,u(s) )dgs
B % [ =g gt u(s) s,
where u € E and t € [0,1]. In the sequel, we set

Ao = qu‘(ﬁ:yﬂ) + A\Aqu?lﬁzﬂwfl) + A\A\(I’lq?leﬁ/;\_:;l_i_l)/

A= Are([ﬂlé+1) + AIA\Fq(ﬁnH) T A|A\ruq((l;ff32+1)f @®)

Ny = )\I’q(ai&+1) + )\|A‘rq(,xf(5+%+l) + A\Alfq(aJr_MvzH)‘

Now, we are ready to present our main results. The first existence result is based on Krasnoselskii’s
fixed point theorem.

Theorem 1. Suppose that f,g : [0,1] x R — R are continuous functions satisfying the following conditions:
(i) there exists a positive constant L such that for each u,v € R,
f(tu) = f(t,0)] < Liu—o, te[01]
(ii) Foreachu € R, there exists a continuous function m on [0,1] such that

lg(t,u)| <m(t), tel01].

If Ao+ LAy < 1, then the fractional g-integro-difference Equation (1) with g-integral boundary
conditions (2) has at least one solution on [0, 1], where Ao and Aq are defined by (8).

Proof. Let ||m| = SUP; (o) |m(t)|. Define B, := {u € E : ||u|| < r} with
- A+ KAy
=1 (Ao + LAy

where K := sup, (o) |£(t,0)] and A; and A are given by (8). Clearly, B, is a closed, bounded, convex
and nonempty subset of Banach space E. We consider the operator 7 : E — E as (7). By Lemma 3,

©)
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it is obvious that the fixed point of 7 is the solution of problems (1) and (2). Now, for each t € [0,1],
we define two operators from B, to E as follows:

Tlt) = oy (=09 P syt s [ a5 s ) s

ATg(w—B)
gt V(/\fl) ! a— 1—
A [_)qu(a—ﬁ+'71)/(J(1_qs)( P u(s)dgs

1
,%/0( *QS) (aty1— 1f(S,u(S))dqs

_w ! — s(”‘* 2~ )us s
AFq(ﬂc—ﬁ-i-“Yz)/o(l gs)\“PFDu(s)d,

”(1 _V) 1 a+y2
AlyGa ) o (89S ()]

+

and

Talt) = gy (= Vslo uts) s

tﬂc—]

by ! (a+d+71-1)
A [m /0 (1-4s) 8(s,u(s))dys

b(1—p) /1 (a46+72—1
A S 7 1— 12" Do (s, dsl.
ot sl G §(s,u(s))dgs]

By the condition (Hp), we have that |f(t, u(t))| < |f(t,u(t)) — f(t,0)| + |f(t,0)] < L|ju|| + K <
Lr+K forany u € Rand t € [0,1]. Thus, for any u,v € B, and t € [0, 1], it follows by means of (8) and
(9) that

A1) a
<
T+ o] < 3 g A (M
plA=1] ap

L K

T g M Ra e (LK)
(- g1 all— )

L K

Vet Eemen LR vo s reven  GILIRRY

sl v Im

ATg(a+6+1) ABAT (@ +6+ 71 +1)

L)y
AAT,(x 6+ 72 +1)
S (Ao + LAl)r+A2||mH +A1K S r,

+

which implies that || 771 + 7,0|| < r and so Tiu + Tv € B, forall u,v € B,.
Now, we prove that 73 is continuous. Let {1, },>1 be a sequence in B, such that 1, — u. Then,
for each t € [0,1], we have

Taat) = Tot)] < 3ty 8 () — 5 0(o)

by
)\\A\I‘q(a +o+71+1

b(1—p)
A‘MMMﬂzH)\g(s,un(s))—g(s,u(s))\~

y18(5/1un(s)) = 8(s,u(s))]

187



Mathematics 2019, 7, 659

Since g is continuous, we get || Tzut, — Tau|| — 0 as u, — u. In consequence, it follows that the
operator 7 is continuous on B,.

In the next step, we show that the operator 7, is compact. Let us first show that 7; is uniformly
bounded. For each u € B, and t € [0,1], we have

htoché b]lta71
<z
T < Sy 86 M)+ a8 )
b(1 — )t
TAAT (a5 5+ 72+ 1) )
< Il o ]
- )qu(a+(5+1) /\\A\Fq(ac+5+71+l) A|A|rq(a+t§+72+l)

Aa|[ml,

which implies that || Tou|| < Az||m]|.
In order to establish the equicontinuity of the operator 75, we assume that t1, f, € [0, 1] such that
ty > t1. We will show that 7, maps bounded sets into equicontinuous sets. For each 1 € B;, we have

b ty e
|7Eu(tz) - 7—2u(t1)| < m/o [(tz _ qs)(zH»o—l) _ (tl _ qs)(aﬁ»&—l)}|g(slu(s))|dqs
b ) s
s 19 sl
1

taflita—l b 1 o B
+2 ar ‘{Arq(af(swl)/o(1_“)(“”% Vigls u(s))ldys

b(1—p) /0l (1- qs)(a+t5+’72—1) ‘g(slu(s)”dqs]

/\rq(ﬂt+(5+’)/2).
< || [2b(t2 — 1) 4 b5 — 1) bulty ™! — 51
m
- ATg(a+0+1) MATg(a 46491 +1)

b(1—p)lty " —# ]
MAT (a+6+ 1+ 1))

Observe that the right-hand side of the above inequality is independent of u € B, and tends to
zero as t1 — tp. This shows that 75 is equicontinuous. Therefore, the operator 7; is relatively compact
on B, and the Arzeld-Ascoli theorem implies that 7; is completely continuous and so 75 is compact
operator on B,.

Finally, we prove that the operator 77 is a contraction. For any u,v € B, and t € [0,1], we obtain

(A —1] a

[Tiu(t) — Tio(t)| < WW(S)—U(S)HWLW(S)_v(s)|
pA—1| ap

TAAT ) M O R o ) oG

(1-wlA-1] |u(5)—U(S)H‘%L\u(s)—v(s”

+
AMAT (e =B +72+1)

< (Ao+ LA [lu—ol.

AAT (e + 72 +1)

Since Ag + LA < 1, 77 is a contraction. Thus, all the assumptions of Lemma 1 are satisfied.
Therefore, the fractional g-integro-difference Equation (1) with g-integral boundary conditions (2) has
at least one solution on [0, 1] and the proof is completed. [

In the following result, we prove the existence of solutions for the problem (1) and (2) by means
of a Leray-Schauder nonlinear alternative.
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Theorem 2. Let f : [0,1] x R — R be a continuous function satisfying the conditions:

(Hs) there exist continuous nondecreasing functions P, : [0,00) — (0,00) and functions ¢1, s €

C([0,1], R*) such that |f(t,u)| < @1()pr(|ul) and [g(t,u)| < @2(t)y2(Jul) for each (t,u) €
[0,1] x R;

(Hy) there exists a constant E > 0 such that

(1—-Ap)=
Aallal[91(Z) + Azl gal[2(Z)

where Ao, A1, Ao are defined by (8).

>1, Ap <1,

Then, the fractional g-integro-difference Equation (1) with q-integral boundary conditions (2) has at least one
solution on [0,1].

Proof. We verify the hypothesis of a Leray-Schauder nonlinear alternative (Lemma 2) in several steps.
Let us first show that the operator 7, defined by (7), maps bounded sets (balls) into bounded sets in E.
For a positive number R, let By = {u € E : ||u|| < R} be a bounded ball in E. Then, for ¢t € [0,1],
we have

A —1] a

ot ot .
Tu®l < gy f e s+ s =0 Dl s

b t R
T een WA Ol LA O

=t A—1 1 Bt
a7 e (090l

o ap ! _ (a+vy1-1)
S b A8l s

h]l 1 (a+6 —
I 1— a+o+y1—-1)
EE ST b 1 1921192001l dgs

A=A =1 g
IS oA i 1— 2=V |41ld
Ao ) b A 1l

al—p) 1o (a1
+Arq(a+72)./0 (1—qs)" "2 llypr ([|ul)dgs

bl-p) ! T
+m/o (1= g3)727D) )y (|l s

< Aollull + Aallgalla (llull) + Aallg2llpa (flu])-

Therefore,
[[Tull < AoR+ Aql¢1[[91(R) + Azllgallp1(R).

Secondly, we show that 7 maps bounded sets into equicontinuous sets of E. Let t1,t, € [0,1] with
t; < tp and u € Bg. Then, we have

|Tu(tz) — Tu(tr)]

AR Bt @B (g (@B) %ty — gs)@ b

gy |y (2= (1 —45) P Vg + (12 g9) Vs
allgllgn(R) |11, ooy@1) _ (py _ pg) @) (1 — gs) &)

+ AT, () A [(t2—gs) (t1 —qs) }dqs"‘/t] (t2 —qs)"* ™ dgs

+|t§71*t‘f71\ ulA—1|R 4 _llli(R)
[A Arq(a7ﬁ+71+1) Arq(/x+71+l)
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L O OR1R a0l (R)
/\rq(zx—ﬁ+72+1) /\rq(Dc—O—’Yz—i-l)

bllgapa(R) | [h (a+6-1) (a+6-1) f2 (+5-1)
BT UL bulgaya(R) (- )ligaya(R)
|A Al"q(oc+(5+'yl+1) Al"q(oc—i-(s-i-'yz—&-l)
‘/\71|R _ g \a—p a—p _ a—p ’1H¢1H¢’1(R) Y .t
< /\rq(txf‘B+1)[2(t2 tl) +|t2 tl H + AFq(aJrl) [2(t2 tl) + ‘tZ tlH
BT -ETUT AR apl|gn 191 (R)
Y _Al"q(a—ﬁ-i-’h-i-l) /\Fq(a-‘r’h—I—l)
A=pA-1R  a(d—p)|eill¢1(R)
ATy =p+72+1) ATg(a+72+1)
bH¢2”4’(R) _ g \a+é a+6 _ gatd
+m[z(t2 1) + |ty 17l
bllgalp(Rult5 ™ — 117" b(1—p)llgallp(R)|t5~" — f‘i‘fll]
MATg (46491 +1) AMATG (46472 +1)

— 0 as t, — t; independent of u € Bg.

Thus, the Arzeld-Ascoli theorem applies and hence 7 : E — E is completely continuous.

In the last step, we show that all solutions to the equation u = 67 u are bounded for 6 € [0,1].
For that, let 1 be a solution of u = 87 u for 6 € [0,1]. Then, for t € [0,1], we apply the strategy used in
the first step to obtain

l[ell < Aollull + Aallal[a (lull) + Aallg2lla (flul)-
Consequently, we have

(1= Ao)lul|
Axllprllpr(flull) + Aallgallips ([lull

)Sl.

By the condition (Hy), we can find a positive number Z such that ||u|| # &. Introduce a set
U={u€kE:|ul| <E}, (10)

and observe that the operator 7 : U — E is continuous and completely continuous. With this choice of
U, we cannot find 1 € U satisfying the relation u = 07 x for some 6 € (0,1). Therefore, it follows by
a nonlinear alternative of the Leray-Schauder type (Lemma 2) that the operator 7 has a fixed point in
U. Thus, there exists a solution of problems (1) and (2) on [0, 1]. The proof is complete. [

In our final result, the uniqueness of solutions for the given problem is shown with the aid of a
Banach contraction mapping principle [34].

Theorem 3. Let f : [0,1] x R — R be a function satisfying the assumption (Hy ). In addition, assume that the
function g : [0,1] x R — R satisfies the condition

(Hs) there exists a positive constant M such that, for each u,v € R,

lg(t,u) —g(t,v)] < Mlu—v|, tel0,1].
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Then, the fractional g-integro-difference Equation (1) with g-integral boundary conditions (2) has a unique
solution on [0, 1], provided that Ao + LAy + MA, < 1, where Ag, A1, Ay are defined by (8).

Proof. By a Banach contraction mapping principle, we will show that the operator 7 : E — E defined
by (7) has a unique fixed point which corresponds to the unique solution of problems (1) and (2).
Setting sup;c (g 1] [f(t,0)] =K < coand sup;¢(o) I§( 0)] = N < e and selecting

NA; + KA
r> ,
= 1— (Ag+ LA + MA)

we show that 7B, C B,, where B, = {u € E : ||u|| < r}. For any u € B,, following the arguments used
in the proof of Theorem 1, one can obtain

|Tu|| < (Ag+ LAy + MA2)r+ AgN + MK <7,

which implies that 7B, C B;. For any t € [0,1] and any u,v € R, we obtain

70 = (To)l < st (=9 Y lu(s) - ofo)ldys
ey =9 1A () = fls 005 s

e g) o (0 90 gl u(e) — (5060 s

pa—1 V’(Afl) 1 . -
+W[W/O (1qu)( B+ 1)|M(S)fv(s)|dqs

+ﬁ /01(1 — gs) @M=D) £(s,u(s)) — £(s,0(s))|dgs
+m '/01(1 — gs) @HEN=N) o5, u(s)) — g(s,0(s))|dgs

Mtiu DIl St Uy — gs) @Bt 4 (s) — v(s)|d,s
+Ar,,(a_,g+72)/0(l qs) @ P2 Du(s) — o(s)|d,

+% '/01(1 — qs)(“+V2*1)|f(s,u(s)) — f(s,0(s))|dgs

b(l — ]/l) ! o 2—
m/o (1- qs)( +oty UIg(s,u(s)) - g(s,v(s))\dqs]

< (Ao + LA+ MA)|Ju — 2.

As Ao + LA1 + MA; < 1, therefore T is a contraction. Hence, we deduce by the conclusion of
the Banach contraction mapping principle that the operator 7 has a unique fixed point, which is the
unique solution of problems (1) and (2). The proof is completed. [J

3. Examples
I. Ilustration of Theorem 1
Example 1. Consider the fractional q-integro-difference equation

15 B 1.01 _ |90¢ sin(u(t))| 0.35
(09D33 -+ (1 - 09)DY ) = 0245 e s 5 + 03183

sin tu3(t)|

erosarpe@n Y
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subject to g-integral boundary conditions

(1- gs5)(01-1) 1 (1 — gs)(01-1) B
—o, 01/ Ty s+ 0 —0.1)/0 Slom MO =0 a2
Here,a = 1.5, = 05, = 1.01,a = 0.2,b = 0.3, = 0.35, A = 09, = 0.1, 71 = 72 = 0.1, ¢ € [0,1]
and f,¢:[0,1] x R — Rare

|90t sin u| sin tu’|
t LA R tu)=——— -1
Fw) = tootsmu+ 1 S = G nea £ aD

For each u,v € R, notice that |f(t,u) — f(t,v)] < Llu —v| with L = 0.9 > 0. On the other hand,

there exists a continuous function m(t) = on [0,1] such that |g(t,u)| < m(t) forallu € R. In

2+41)3
addition, we have ||m|| = SUP;eo,1] m(t) = (0.125.) Using the given values, it is found that A = 0.9935 and
Ao+ LAy = 0.5567 < 1. Clearly, all the assumptions of Theorem 1 are satisfied. Therefore, the conclusion of
Theorem 1 implies that the fractional g-integro-difference Equation (11) with q-integral boundary conditions (12)
has at least one solution on [0,1].

II. Illustration of Theorem 2

Example 2. We consider the fractional q-integro-difference equation

. t i t
(09D}3 + (1 - 09) DI u(t) = 22 (sinu(r) + {401 ) + 03188 ¢ (1 + el ) - (13

supplemented with g-integral boundary conditions

y(01-1) 1(1—gs)01-D)
) =0, 01/ r,, 01 u(s)dgs + (1 —0.1)/0 o veds =0 g

wherea = 15,4 =05,=1.01,a=02,0=103,6 =035A=09, =017 =72 =01t € [0,1] and

- 1 . [u(t)| 1 1 | arcsinu(t)|
flu(®) = W(SIn“(t) Ty |u(t)|>' s = (5 +|arcsinu(t)|)’
Obviously,

A u(O)] € s (1 ), gt )] < o1+ ),
With 1(8) = s () = g and Y1) = Ya(ul) = 1+ . Note that ]| = 5 =

0.0625, ||¢a|| = % = 0.25and Y1 (E) = $2(8) = 1+ E. Using the given data, we find that A = 0.9935,
Ag = 02414 < 1, Ay = 0.3504, and Ay = 0.4685. Then, by condition (Hy), we get & > 0.22438. Thus, all
the assumptions of Theorem 2 are satisfied. Therefore, by Theorem 2, problems (13) and (14) have at least one
solution on [0, 1].

III. Illustration of Theorem 3

Example 3. Let us consider the fractional q-integro-difference equation

09 sin(FO)Iu(0)] 3102580 cos (b))
t

(0.9D2 + (1 - 0.9)DFMu(t) = 0.2 51 ) 10007 1 [u (D

(15)
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with g-integral boundary conditions

B (1-gs)®1-1) )(01-1) 1(1 - gs)(01-1) B
-0, 01/ T (s)l;lqur(1—0.1)/0 o Meds =0 ()

wherea =15, =05,=1.01,a=02,0=03,6=035A=09, =017 =72 =01t [0,1] and

0.9¢[sin (7 (£))[[u(t)]
54 [u(b)]

80| cos(rrt)|[u(t)|

Fltu(t) = ) = 007+ Tu@®)) -

Then, L=9/10,M = 8/10 as

[f(&u(t) = f(to(t)] < 10(IM( ) —o(®)), [8(£u(t)) — g(t,0(t))| < %(Iu(t) —o(B)])-

With the given data, it is found that A = 0.9935, Ag + LA + MA, = 0.9315 < 1. Clearly, the assumptions
of Theorem 3 hold. Thus, by the conclusion of Theorem 3, problems (15) and (16) have a unique solution [0, 1].

4. Conclusions

We have derived some new existence and uniqueness results for a nonlinear fractional
g-integro-difference equation equipped with g-integral boundary conditions. The obtained results
significantly contribute to the literature on boundary value problems of fractional g-integro-difference
equations and yield several new results as special cases. Some of these results are listed below.

(a) By letting A = 1/2 in the results of this paper, we obtain the ones for a nonlinear fractional
g-integro-difference equation of the form:

(D:; + Df)u(t) =2af(t,u(t)) + 20Lg(t,u(t)), te[0,1],a,b€R".

(b) For u = 1/2, our results correspond to the following boundary conditions:

u(0) =0, /01 [(1 — qs)(“rrl) N (1- qs)('yz—l)

u(s)dss =0, v1,72 > 0.
Fyn) Fyi s =0

(c) Our results with a = 0 and b = 0 correspond to the ones with purely integral nonlinearity and
purely non-integral nonlinearity, respectively.
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1. Introduction and Preliminaries

Since 1695 [1-3], fractional calculus has been studied by many researchers from both theoretical
and applied viewpoints [4,5]. Particularly, fractional calculus is used to generalize classical inequalities.
Studies involving integral inequalities are important in several areas such as mathematics, physics,
chemistry, biology, engineering and others [6-15]. We recall that there are many definitions of fractional
operators, including Riemann-Liouville (RL), Hadamard, Liouville, Weyl (see [16-19]). From such
fractional integrals, one can obtain generalizations of the inequalities: Hadamard, Hermite-Hadamard,
Hardy, Opial, Gruss, and Montgomery, among others [20-32].

We mention that the following inequality was developed by Ostrowski [33]:

Theorem 1. Let g : I — R be a mapping differentiable in 1° such that I is an interval in R, 1° is the interior of
Land ay,by € I°, a1 < by. If |§'(&)| < M forall & € [ay, by, then the integral inequality holds

) - 5 /blg@)dc's[ﬂ(xﬂw} (b~ a) M, )

- bl —a1 Jay 4 (bl — ﬂl)z

forall x € [aq,b1].

In the literature, the inequality (1) is called the Ostrowski inequality, see [34]. This inequality has
a great importance while studying the error bounds of different numerical quadrature rules. In recent
years, such inequalities have been generalized and developed by many researchers. Various authors
obtained new Ostrowski-type inequalities for different fractional operators, see [16-19,35-47] and the
references therein.

In 2009, Anastassiou et al. [20] obtained Montgomery identities for fractional integrals and a
generalization for double fractional integrals. For fractional integrals they discussed both Ostrowski
and Griiss inequalities. In 2010, Alomari and Darus [36] presented some Ostrowski-type inequalities
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for the class of convex (or concave) functions. In 2012, Set [41] obtained some new fractional
Ostrowski-type inequalities. In the same year, Liu [40] established some Ostrowski-type inequalities
involving RL fractional integrals for the i-convex function. His results are generalizations of [41,42].
He also provided new estimates on Ostrowski-type inequalities for fractional integrals.

In 2013, Yue [38] obtained Ostrowski inequalities for both fractional integrals and associated
fractional integrals. In 2014, Aljinevi¢ [16] studied Montgomery identities for fractional integrals of a
function f with respect to another function g. Also, he gave the Ostrowski inequality for fractional
integrals for functions whose first derivatives belong to L, spaces. In the same year, Yildirim and
Kirtay [46] established new generalizations for Ostrowski inequalities by using the generalized RL
fractional integral.

Yildiz et al. [47] used the RL fractional integrals to obtain several new generalizations of Ostrowski
type inequalities. Farid [35] found a new version of Ostrowski type inequalities in a very simple way
for RL fractional integrals. He also derived some related results. Recently, Dragomir studied several
generalizations of the Ostrowski type integral inequality involving RL fractional integrals of bounded
variation: Holder and Lipschitzian functions, see [17-19]. In 2018, Yaldiz and Set [45] obtained some
new Ostrowski type inequalities for generalized fractional integral operators.

Recently, Sousa and Oliveira [43] introduced the left and right sided fractional integrals and
the so-called y-Hilfer fractional derivative with respect to another function. They studied Gronwall
inequalities and the Cauchy-type problem by means of the - Hilfer operator in [44]. Consequently,
they opened a window for new applications.

The following definitions are special approaches for when the kernel is unknown, involving
a function ¢. Let a1 > 0 and I = [ay, by] be a finite or infinite interval. Also, let the function g be
integrable defined on I, and the function ¢ be increasing and positive monotone on (a1, b1, having a
continuous derivative ¥’ (x) on (a1, by).

The expressions of the left sided and right sided fractional integrals of a function g with respect to
another function i can be seen [4,5], respectively:

17 1 x / ay—
s ()= o [0 @ W0 —p @) s @
and
ayp _ 1 b ap—1
s ()= o [ @ 0@~y )" @) 3)
If we take ¥(x) = x and ¢(x) = Inx, then we obtain RL and Hadamard fractional

integrals, respectively.

The organization of this manuscript is as follows. In Section 1, we give the introduction
and preliminaries. Motivated by [35,43], several Ostrowski-type inequalities for the left sided and
right sided fractional integrals of a function g with respect to another function ¢ are established in
Section 2. [llustrative examples are presented in Section 3 to support our results. Section 4 deals with
our conclusions.

2. Main Results

Below, we will show several new Ostrowski-type inequalities for both left and right sided
fractional integrals of a function g with respect to another function .

Theorem 2. Assume that the conditions of the Theorem 1 are satisfied. Also, suppose that the function

g € CY(1) is increasing and positive monotone, and ¢'(x) > 1 (Vx € I). Let IZTP and If}’w be defined as (2)
1 1

and (3), respectively. Then the following inequality holds:

(0 (1) = 9 (<)) + (@ (x) = (1)) 8(x)
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- (r (B1+ 1) I () 4T (g +1) £ (x)) ‘

! o1y o
< (P oy - p@prte

where a1, B1 > 0and x € [ay,by].

(% (x) - w(m))“l“) , (4)

Proof of Theorem 2. Taking into account that i is an increasing and positive monotone function,
foray > 0and ¢ € [a1, x] we get

(1 () = P (€N < (9 (1) = ()" )
Utilizing (5) and the given condition on g’, we obtain
[ (M9/(©) - §'@) (9~ 9(@)* a2 < (p() — (e [ (/@) - (@) e
and
[ M9+ 8/@)) (9() ~ 902" e < ()~ pan) [ (M) +5'(2)) .

If the above integrals are calculated, we obtain the following inequalities, respectively:

(9 ()= 9 (@) §3) =T (0 + D 175 (3) < 200 (9 () = ()" (6
and ay;p ap May a+1
[ (e + 1) L8 (x) = () = (@)™ 8(x) < =7 () = pl@)™ (7)
By using (6) and (7), we report the following inequality:
($(0) = p(an)g() — T a1+ 1) IF7g(0)| < S (9(3) — )+, )

On the other hand, if ¢ is an increasing and positive function, for ¢ € [x,b;] and 1 > 0 we get

(&) —p(x)P1 < (p(br) — p(x))Pr. 9)

By using (9) and the given condition on g/, we conclude
[ (9@ - £1©) 0@ - 9Pz < (9ion) — 9 )P [ (4@ ()
and
1 by
/ "My (@) + () (910) — $()P 2 < ((o1) 90" | (My(@)+ /@) e

If the above integrals are calculated, we obtain the following inequalities, respectively:

T (1 +1) 125 (0) = (p(br) = ()" g(x) < ;ffll ((br) — ()™ (10)
and M
(¥ (o) = 9(0)" g0 =T (Br+ D gl < o B (i) — ) (1)
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By using (10) and (11), the following inequality will appear:

(p(br) = p(x)P g(x) =T (b1 + 1) [V5(x)| < ;ffll (o) =) (12)

So, by utilizing (8) and (12), we obtain (4). O

Theorem 3. Let g : I — R be a mapping differentiable in I° (the interior of 1) such that I is an interval

in Rand ay, by € 1°, a; < by. Assume that the function € C'(I) is increasing and positive monotone,

and ' (x) > 1 (Vx € I). Also, let I:flp and If,l;w be defined as (2) and (3), respectively. If m < g'(t) < M for
1 1

M>0,m < 0andall ¢ € [a1,b1], then the following inequalities hold:

() = (@)™ = (¥ (br) = (2))P1) g (x)

(P DI @ T (B ) e (1)

43!

&1 ﬁ 1
< M (5 0 -yl P o) -yl ) (13

and

(@) =9 ()P = (9 () = (1)) g ()

+ (T e+ ) 1200 - T (B 1) Y ()

13!
wp+1

< (P ) - g+

where ay, B1 > 0and x € [aq, by).

(P(x) - zp(al))“l“), (14)

Proof of Theorem 3. Using the given comparing conditions on g/, the proof is similar to one of
Theorem 2. That is, from (5) and by using the given condition on g’, we conclude

/a (My/ (2) = /(@) ($() = 9(E)" d < (¥() = plar)" [ (My'(§) - ¢'(§)) dg
and

6@ = mi! ©) (b0~ 9@ de < (9) — plan))* [ ()~ my’ (@) e

ay

If the above integrals are calculated, we obtain the following inequalities, namely:

(9) —9la))" 500 =T o +1) 12750) < FE (9(3) — 9l (15)
and . at
e + DI g(x) — (9(x) — () 8(x) <~ (9() — plan)) " (16)

On the other hand, by using (9) and the given condition on g’, we have

[ M(©) @) 9@) ~ $(0)" ag < (o)~ [ (My'(@) - £'©) g

X
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and

/b (€(0) —my'(£) (¥(@) — p(x)P1dE < (p(br) — p(x))P / " (0 - my/ (@) de.

JX

If the above integrals are calculated, we obtain the following inequalities, namely:

T+ 1) 78 (1) = (9 (br) = 9 () g(x) < &M—fg (9 (b1) =y ()" (17)
and
(p(b1) = 9(x)P1g(x) = T (B + DIV (x) < - 5:”ﬁll (9(br) = ()P, (18)

respectively. By using (15) and (17), we obtain (13). In addition, by using (16) and (18),
we provide (14). O

Theorem 4. Let g : I — R be a mapping differentiable in I° (the interior of I) such that I is an interval
inRand a;, by € I°, a1 < by. Assume that the function ¢ € C(I) is increasing and positive monotone,
and ¥’ (x) > 1 (Vx € I). Also, let ID‘1 Y and 151 ¥ be defined as (2) and (3), respectively. If m < ¢'(t) < M for

M>0,m<0andall ¢ € [a,bq], then thefollowmg inequalities hold:

() = @)™ + (9 (b1) — 9 (1)) g (1)

- (r (ag +1) 1"‘l Vo (x)+T(B1+1) I{fl,l"‘Pg (x))

M
<

< L () = pla) ™ - L (gen) — p()P (19)

B1+1

and
— () =9 )P + (@ (x) — p (a)") 2 (%)
+ (r (a1 +1) 1“1 Yo(x) +T (B +1) If]l;l/’g (x))

< Mp
T pit+1

where a1, B1 > 0and x € [aq, by).

muoq

A () — pla)) (20)

((b1) = ()P =

Proof of Theorem 4. Proof is constructed in the same line as the proof of Theorem 3. By using (15)
and (18), we obtain (19). In addition, from (16) and (17), we get (20). [

Theorem 5. Suppose that the conditions of the Theorem 2 are satisfied. Also, assume that the function

g € CY(1) is increasing and positive monotone, and ¢'(x) > 1 (Vx € I). Let I::flp and Ifl;l” be defined as (2)
1 1

and (3), respectively. Then the following inequality holds:

(0 (1) = (x)P g (B1) + (¥ (x) = (1)) g (a0))

— (T B+ 1) 78 (b)) +T (1 + 1) g (1))

<M (A 0y L 0 @) ) (1)

where ay, 1 > 0and x € [ay,by].
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Proof of Theorem 5. Recalling ¢ is an increasing and positive monotone function, for #; > 0 and
¢ € [a1, x] we obtain

@ (@) =9 (@)™ < (¥ (x)—¢@)™. (22)

By using (22) and the given condition on g’, we have
[ My (@) ~ £ (©)#(@) — pla)) e < (9(x) — plan)* [ (9/(@) /(@) e
and
[ My (@) + /(@) (@) — pla))*Hde < (9(x) — plan))* [ (My'(@) + (@) .
If the above integrals are calculated, we obtain the following inequalities, respectively:

Mocl

(o + DI glan) = (9x) = plan))* glon) < 28 (9lx) = plan)) (23)
and M
($() = o)) ~ Do + DI glan) < 2 (9) —pla))™ . 29)
By utilizing (23) and (24), the following inequality holds:
|9 ()= 9 (@) g (a1) ~ Ty + 1) L7 (o)
< L@ -y (25)

Using the fact that ¢ is an increasing and positive monotone function, for ¢ € [x,b;] and f; > 0
we get

(b)) — 9 (€)P < (9 (b1) — 9 (x))Pr. (26)

By using (26) and the given condition on g/, we have

[ M)~ £ @) 9o0) (@) e < (pi) 9 ()P [ (My'@) -2 (@)) g
and
b 1
[ 9(@) + £ @) i) — (@) < (pi) 9 ()P [ (Y@ + 2 (@) e

X

If the above integrals are calculated, we obtain the following inequalities, respectively:

(0(00) = 9(x)) 300) = T(1 -+ DI g00) < 205 (pib) — 9™ (@)
and M
DB+ D0 = (p(b) = p(x)Pigl) < o B (i) - g (28)
By making use of (27) and (28), the following inequality holds:
(p(b1) = 9(0)Prg(br) ~ (B + DI 5(0)] < 2B (o00) —g()P (29)

So, from (25) and (29), we obtain (21). [
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Corollary 1. If By = ay in Theorem 2, then the following fractional Ostrowski inequality holds:
(¢ (b1) = 9 ()™ + (¥ (x) = (a1))™) 8(x)

T+ 1) (1% () + 1 (0 )|

< szl
T +1

(@)= )"+ @ () =y @) ),
where ;> 0 and x € [ay, by].
Corollary 2. If a1 = B1 = 1 and (x) = x, then we lead to the Ostrowski inequality (1).

Corollary 3. If a1 = B1 in Theorem 5, then we obtain the following fractional Ostrowski inequality:
[((@ (B1) =9 ()" g (01) + (¥ (x) = ¢ (1))"™ & (a1))

T (a1 +1) (57 (b)) + 18 (a0) ) |

Mle

<
T +1

(@ b)) =9 () + (p () =g (@) 7)),
where iy > 0 and x € [ay, by].

Remark 1. Ifwe take y (x) = x, then Theorem 2, Theorem 3, and Theorem 5 reduce to Theorem 1.2-Theorem 1.4
in Farid [35], respectively. But, in [35], —m should be M in the first inequality in Theorem 1.3. Also, M should
be —m in the second inequality.

Remark 2. After following the steps of the proof of Theorem 2 with ¢ (x) = x and x; = B1 = 1, an alternative
proof of the Ostrowski inequality is obtained (see [37]).

3. Examples

In this section, we support our main results by presenting two examples.

Example 1. Let a7 = 0.5, f1 = 2.2, p(x) = ¥, g(x) = sinx and [a1,b1] = [0, 7|. Then, we obtain
|¢'(x)] = |cosx| <1, that is, M = 1. Also, p(x) = e* is an increasing continuous derivative and positive
monotone function with ' (x) = e* > 1 for all x € [0, t]. Then, using Theorem 2, for [0, 7] we obtain the
following Ostrowski type inequality:

‘((e"—ex)z'z-i-(ex—l)o's) sinx—( (32)1 22‘psmx—Q—F(IS) smx)‘

S 4 (eniex)3.2+ % (ex 71)1,5

Example 2. Let a; = 0.5, B; = 2.2, p(x) = 63/x +2, g(x) = (x —1)* and [a1, by] = [0,2]. Then, we get
¢ (x)=2(x—1). Let m = —2and M = 2. Also, p(x) = 6/x + 2 is an increasing continuous derivative
and positive monotone function with ¢'(x) = \/% > 1 forall x € I = [0,2].Then, using Theorem 3,
for x € [0,2] we obtain the following Ostrowski type inequality:

((6W 6\/) (1%6@)2'2) (x=1)2= (T (15) 7" (x = 1)* =T (32) ;¥ (x = 1)?)

( (6vx+2- 6\/) (12 6\/7> >

16
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and

((12 - wm)” ~ (6vr+2- 6\/5)1'5> (=12 (T (15) 07 (x =12 = T (32) B2 (x — 1))

<2 (% (6\&7 wm)” + % (6@ - 6\/5)1'5> .

4. Conclusions

Studies involving integral inequalities play an important role in several areas of science
and engineering. During recent years, such inequalities have been generalized and developed by
many researchers. Ostrowski inequalities have a great importance while studying the error bounds of
different numerical quadrature rules, for example the midpoint rule, Simpson’s rule, the trapezoidal
rule and other generalized Riemann types. In this paper, by generalizing the inequalities in [35],
we proposed, within four theorems and their related corollaries, several new Ostrowski-type integral
inequalities for the left and right sided fractional integrals of a function ¢ with respect to another
function 1. Finally, we investigated in detail two examples to show the reported results.
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Abstract: In the present paper, we investigate some Hermite-Hadamard (# ) inequalities related
to generalized Riemann-Liouville fractional integral (GRLFZ) via exponentially convex functions.
We also show the fundamental identity for GRLFT having the first order derivative of a given
exponentially convex function. Monotonicity and exponentially convexity of functions are used with
some traditional and forthright inequalities. In the application part, we give examples and new
inequalities for the special means.
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1. Introduction

Recently, several researchers have attracted the fractional calculus, see References [1-4]. The effect
and motivation of this fractional calculus in both theoretical and applied science and engineering rose
substantially. Numerous studies related to the discrete versions of this fractional calculus have been
established, which benefit from countless applications in the theory of time scales, physics, different
fields of engineering, chemistry and so forth (e.g, see References [4-32] and the references therein).

A few decades ago, a lot of new operator definitions were given and the properties and structures
of these operators have been examined. Some of these operators are very close to classical operators in
terms of their characteristics and definitions. It is known that the GR L FZ, which was introduced in
reference [33], extends several well-known fractional integral operators (see Remark 1 below). Both
the generalized Riemann-Liouville fractional derivative and the integral operator are useful in the
study of transform theory, quantum theory and fractional intgerodifferential equations.

Almost every mathematician knows the importance of convexity theory in every field of
mathematics, for example in nonlinear programming and optimization theory. By using the concept of
convexity, several integral inequalities have been introduced such as Jensen, HH and Slater inequalities,
and so forth. But the well-known one is the celebrated HH inequality.

LetZ C R be an interval and ¢ : Z — R be a convex function. Then the double inequality

dy
dy+dy 1 U(dr) +U(d>)
M( 2 ) = dz*d]/u(x)dx = 2 ’ M

holds for all di,dy € Z with di < dy. It is easy to see that if ¢/ is concave on Z, one has the
reverse of this inequality. This inequality provides bounds for the mean value of a convex function.

Mathematics 2019, 7, 807; doi:10.3390 / math7090807 207 www.mdpi.com/journal /mathematics
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Recently, mathematicians have focused on obtaining new variants of the HH inequality by giving
generalizations, improvements, refinements and extensions, see References [34-36].

Exponentially convex functions have emerged as a significant new class of convex functions,
which have important applications in technology, data science and statistics. The main motivation
of this paper depends on new inequalities that have been proved via GRLFZ and applied for
exponentially convex functions. This identity offers new upper bounds and estimations of HH type
integral inequalities. Some particular cases have been discussed, which can be deduced from these
consequences.

Recall the definition of an exponentially convex function, which is investigated by Dragomir and
Gomm [34]:

Definition 1. (See [34]) A positive real-valued function U : K C R — (0,00) is said to be exponentially
convex on K if the inequality

Mt (1=1)y) < 7 UE) (1 — 1)HW)
holds for x,y € Kand T € [0,1].

Exponentially convex functions are used to manipulate for statistical learning, sequential
prediction and stochastic optimization, see References [37-39].

After the class of exponentially convex functions was introduced by Dragomir and Gomm [34],
Alirezai and Mathar [37] have investigated the mathematical perspectives along with their fertile
applications in statistics and information theory, see References [37,39]. Due to its significance, Pecaric
and Jaksetic [40,41] used another kind of exponentially convex function introduced in Reference [42]
and have provided some applications in Euler-Radau expansions and stolarsky means. Our intention
is to use the exponentially convexity property of the functions as well as the absolute values of their
derivatives in order to establish estimates for GRLFT.

Definition 2. ([1-3]) Let (d1,dp) (—o0 < dy < dy < o0) be a finite or infinite real interval and p > 0. Let
Y (x) be an increasing and positive monotone function on (dy,dy] with a continuous derivative on (dq,dy).
Then the left and right-sided generalized Riemann-Liouville fractional integrals of a function U on [dy,d,)] are
defined by

17 u(r) = %P) [ @@ - v0) U, @

dq

and .
1 u(r) = %P) [ @@ -2 @) U, 3

respectively; with T'(.), the classical gamma function.

Remark 1. Many known defined fractional integral operators are just special cases of (2) and (3).

1. Setting U(T) = T, it turns into the both sided (RLI).
Setting U(t) = log T, the Hadamard fractional integrals are obtained [1,3].
3. Setting U(T) = %g, B > 0 it turns into the both sided Katugampola fractional integrals given in

Reference [33].
Setting U(T) = #, B > 0, the operators in reference [43] are obtained.
Setting U(T) = %, it turns into the both sided generalized conformable fractional integrals defined by

Khan et al. in reference [44].
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The principal objective of this paper is to use a new convex class and a new integral operator to
obtain new versions of H#H-inequality that give bounds for the mean value of convexity. Also, we will
establish some more general estimates and related modulus inequalities for GRLFZ via exponentially
convex functions. In addition, the accuracy of the results was tested with applications of special means
and with some examples.

2. HH Inequality for GRLFT

Theorem 1. Let U : [dy,dp] — R be a positive function, for 0 < dy < do, and ! € Ly([d, da]). Let ¥ (x) is
an increasing and positive monotone function on (dq,dy], with continuous derivative ¥'(x) on (dy,dp). Let U
is an exponentially convex function and p € (0,1). Then

u (it T(o+1) [p% , ¥ _ eM(dr) 1 pU(dz)
M%) < Gy L [1" (o) (¥ (d2)) + 17 (¢ o) (¥ ) < —5— ©
Proof. Since { is an exponentially convex function for [dy, d3], we have
wio U () ()
gilyt) ¢ S+ ©
Letu = td1 + (1 — T)dy and v = (1 — 7)d; + tdp, we get
2@“(@) < Ui+ (1=1)dz) 4 U((1-T)di+Tdy) (6)

Multiplying by 70~ on both sides of inequality (6) and then integrating w.r.t T over [0, 1], implies

1
geu(d1+d2) < /Tp 1 Z,{(leJr(l T)dz)d,[+ /Tp 1 Z/{((l T)d1+7d2)d (7)
P

Now consider,

20y —dypp L'
_ T+ 1{‘P (d2>‘i”(2)(dz—‘1’( )P oY) (2)d
2P T | )
¥ (d2)
+ / Y (z)(¥(z) —dy)’ 1(3“0‘?)(2)512}
¥1(dh)
¥ (d)
© ’ 1
la| [ YO Y@) e
¥1(dy)
“H(d2)
+ [ z)(‘Y(z)fdl)p_leu(‘lf(z))dz}
¥ 1(d

1
_ g{ Tp 1 U(vdy +(1-7)dy) dT+/Tp 1U((1- T)d1+1d2)dT:|
0

d
eu( 1+L2)
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by using (7). Thus the first inequality of (4) is proved.
Next, we again use the exponential convexity of {, that is,

M+ (1-T)dy) 4 U((1=)dytrdy) < () 4 U(d), ®)

Multiplying by 7~ on both sides of inequality (8), and then integrating w.r.t T over [0, 1], implies

1

1 3 d U (d
[ et g / -1 U=y ) g < €1 + B
o

0

0

That is,

() 4 ()
%{Iﬂ(e o) (¥ (da)) + I (¢ o) (¥ ()] < %eu

Hence the proof is completed. [

Our next result is the subsequent lemma, which is useful for our coming results.

Lemma 1. Let U : [dy,dy] — R be a differentiable mapping, for 0 < dy < dp, and M € Ly([dy,dy)]). Let
Y (x) is an increasing and positive monotone function on (dy,dy|, with continuous derivative ¥’ (x) on (dq,dy)
and p € (0,1). Then

eu<d1)+el’{(d2) T(p+1)
2 2(dy — dq)P
Y

510 (0 ) (¥ (o)) + 1 (¢ 0 ¥) (" ()|
“H(da)
S [ ety e e

v

() (BED) (o) a2z . 0

Proof. Consider

drdl

1
/ [(1—1)f — 7] M<(17T)d1+7d2)1/{’((1 —T)dy + Tdy)dt
0

_dy—dy

N

1
{/ (1-1) pe (- T>‘11”‘12)1/{’((1 —T)dy + tdy)dt
0

1
_/Tpeu((l—r)d1+1'dz)u/((1_T)dl -‘erz)dT
0

By making a change of variable in the above equation ¥(z) = (1 — 7)d; + td, we have
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=0 +b. (10)
Now

S o) (@)
p1(da)
s | YO e
$=1(d1)
1 $ 1 (da)
=2 ay | (enai-ve)
Y= (dr)
1 y7H(da)
= 2d AP {(dz —dy)PeH (@) / ¥ (2)(d2 — ¥(2))" (¢ o ) (2)U' (¥ (2))dz
y=1(dy)

oMU (dr)

+ I

and

“say | evdre-a)
¥1(dy)
1 ¥ (d2)
= 3d A {(dz —dpE) [ (¥() - ) (H o ) (U (E(2)dz
¥-1(dy)
(d2)
= euz — I

It follows that

wfhflzzm

This completes the proof. []
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Theorem 2. Let U : [dy,dy] — R be a differentiable mapping, for 0 < dy < dp, and ! € Ly([dy, dy]). Let
Y (x) be an increasing and positive monotone function on (dy,dy)|, with continuous derivative ¥'(x) on (dq,dy)
and p € (0,1). If |U'|7 is exponentially convex and q > 1, then

(d1) (dz) Al _ Al _
| gt el [ (o) (¥ (d) + 1T (0 %) (3 )|

1-1
W(@(lé)) ks (1= )] [l )+ [ @]

Proof. First note that, for every z € (‘F_l(dl)‘P_l(dZ)), we have d; < ¥(z) < dy. Let T = dzd;fd(f),

then we have ¥(z) = td; + (1 — 7)dy. Applying Lemma 1, Hélder’s inequality and exponentially
convexity of U], we obtain

n

==

M) M) T(p+1) - , .
= S ap e (o) (¥ ) + I (o) (¢ )|

-1

(d2)
Si{ [ IR (B R @ o) o) e )
.

1 1
M /\ 1—r)ﬁ_rp\dr /I 1= 1) — 7| [ M0 (dy + (1 - 7)) a7
0
1 1-1
/\ 1—TP—TP\dT> !
0

1 1
x ([ 1= = I {7 4 (1= ) ) 1} o () |7+ (1= D) (do) )l
0

-1
_dy—di [ 2 1 ! o o[22 U q
=25 <p+1(1 zp>> (0/“ o | [P )|

+(1 = )2 MDY () [T+ (1 — 1) { | (do)|T + | M (d7) |q}]dr>

_ B
:d22d1<Pi1<121p>>

1
x ( [ 10— =[R20 )|+ (1= MU ()7 + (1~ T)A(dl,dz)}dr>
0

1
q

1
q

1-1
dy—di [ 2 1 1
=2 <p+1(1_2f’)> (S1+52)- (12)
where
I /[(1—T)P—TP} [Tz}eu<d1)u’(d1)|q+(1—r)z\eu(d2>u’(d2)|q+r(1—T)A(dl,dz)]dr,
0
1
Sy = /[Tpf(lfT)P} [Tz}eu(dl)ul(d1)|q+(1fr)z‘eu(@)[/{’(dz)w+T(171)A(d1,d2)]dr.
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Now

2(1 — 7)Pdt =

O\N\H

(1 — 7)%dt = 5%(3,P+1),

M —

(1 —1)%dr = | 72(1 - 1)PdT = 5%(/) +1,3),

O\N\H
M —

1
0247 = /(1 — 1) 24t =

1
2

1
(o + 3277

O\N\r—‘ O\N\H

1
1
)P +2dr = / p+2g _777,
o AR RN PR IR
2

[(1—1)flr —2rT (1 - 1)]dT = Bilp+2,2)—B1(20+2) =0,

1
2

[P (-1~ (-1 rldr = By (0 +2,2) — By (2p+2) = 0.

1
2

e \ = O\N\H

By substituting the above integral values in (12) and after some simplification, we get the required
inequality (13). O

Corollary 1. Letting q = 1, then under the assumption of Theorem 2, we have

R (d(zp fdll))p [ (o) (¥ —1(dz))+I§;—Y(e“°‘1’)<‘1"1<d1))”
<@{pi3( ZP+2)H U )|+ (dz)‘}' 4

Proof. Since ¥ is differentiable and strictly increasing function, we can write (‘¥ (x) — ‘I’(T))p_1 <
(¥(x)— ‘I"(dl))pfl, where as x € [dy,dp] and T € [d1,x], p > 1, and ¥/(7) > 0. Then, the subsequent
inequality holds true

() (F(x) ()" <) (Y) ) (14)
By exponentially convexity of I/, we have
UD <« XTT Ui ¢ T d U
e Sx—dleu —l—x_dle . (15)
From (14) and (15), one has
/‘Y’ Y(x) - Y(t ))pfleu(”dr
¥(x) —¥(di)" i i
< % {eu(dl) /(x — 7)Y (r)dt + 4 /(T —dy)¥'(v)dr|.
d d
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By using (2) of Definition 2, we get

T(p) 16" ) (16)
1

(¥(x) =¥ ()"

T (x —dy) [‘Y(x)emx) - eu(dl)‘lf(dl)} — (M) — eu(dl)) /T(T)dT:|.

dq

Now for x € [dy,dp], T € [x,dp] and 6 > 1, the subsequent inequality holds true

¥ (1) (¥(1) — ¥ ()" < ¥ (1) (¥(da) ~ ¥ (x))" " (17)
By exponentially convexity of I/, we have
M) < T7X ) | 27T ), (18)

“dy —x dr — x

Adopting the same procedure as we did for (14) and (15), one can get from (17) and (18) the
coming inequality

T(8) 15 M) 19)
51 dy
< (T(dz)d* ‘YJ(CX)) (d2 _ x) [T(dz)el/{(dz) _ eZ‘(")‘{’(x)] _ (eu<d2) _ eu(x)) /‘Y(T)d”[:| )
y —

From inequalities (16) and (19), we get (13). Hence the proof is completed. [

Particular cases are stated as follows.
Corollary 2. Choosing p = ¢ in (13), then we have a new inequality for GRLFL;
F(p)IgiFemx) + F(p)Ig’,‘Peu(")
1 2

(¥(x) —¥(d))" "

P {(x —dq) [‘Y(x)e“(") - eu(dl)‘lf(dl)} — (eu(x) - eu(dl)) /‘F(T)dr}

dq

1 dy

()
+ OB XN ) (a9 - 0w )] = (4049 — 1) [ oy

Corollary 3. Choosing x = dy and x = dy in (13), adding the resulting inequalities, then the conditions of
Theorem 1 are satisfied, we have

(¥ (da) — ¥ ()" + (¥(d) - wdl))“l) 0)

.Y U (d2) ) 19 U (1) <
1“(p)[dl+ e +F(0)Id2, e < ( A

dy
x <(d2 —dy) [M @) (dy) — M B F (dy)] — [Md2) — ()] /‘F(T)dr).
d
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Corollary 4. If we take p = 6 in (20), then we get the following inequality for GRLFT

-1
F(P)[Iglfl’TT(d )-H"H Yy ()] < <2(Y(d2€)l;_‘l;(ld1))p )

dy
X ((dz —dy) [MDY (dy) — MY (dy)] — [ (B — M) /‘I’(T)dr>.
dq
Theorem 3. Let U, Y : [dy,da] — R be the functions such that ! be differentiable function, ¥ is also
differentiable and strictly increasing with ¥’ € Ly ([dy, d3]). Then for p,6 > 0, x € [dy, da] we have

IT(o+1) gfew Y 4 T(5+ 1)1;5;}“(@ — (¥(x) = ¥(dy)) M) 4 (¥ (dy) — ¥ (x)) eH(d2)|

(wx)—‘r(dl)) (=) 4602 () + (¥ ()~ (x)) (do—) DU ()
3

<
N {(¥(d)-¥() (da—)+ (¥ ()~ ¥ () (x—dy) }H O ()]
3
L (¥-¥@) )o@ )+ (¥(d)—¥(x)) (da—x)A(da,x)
6 ’7
(21)
where
A(dy, x) = [HMOU (dy)| + [ (x)], (22)
A(dy, x) = [MOU (dy)| + |41 (x). (23)
respectively.
Proof. From the convexity of |(e”)’|, we obtain
—d
@) < [ZE T T | EE )+ T2 | (24)

(2=r) e d1u<d>|+( )\e“<x>u'<x>|

*(fjl)( - ){Wl U ()] + 10U ()|}

(=) s (24 (255) (=

From (24), we have

2 2
ou(e) < (2 ) 1w+ (528 ) eow )+ (25 ) (2 ) o, 2. (25)

Since Y is a differentiable and strictly increasing function, we have the subsequent inequality

(F(x) = ¥(1)" < (¥((x) —¥(d1))", (26)

where as x € [d1,dp] and T € [dy,x], p > 0.
From (25) and (26), one has

215



Mathematics 2019, 7, 807

(¥(x) — ¥ (1)) Oy ()

(¥(x) —¥(d1))’

< S S G M )+ (2= PO ()] + (5= )= ) ()|

Integrating over [dq, x], we have
X

n)" [|e @y (dy) \[ x — 7)2dT + |H |[ T —dq)%dT + A(dy, x )[(x—r)(r—dl)dr] (27)
dy

df (¥ (x) — ¥(0)) O (v)dt
(

Y(x)-¥(d
- (x—d1)?

= () — () (x—dy) [

2{\# DU (dy) H\em" U (x)] }+A( d, Y)

and

T (¥(x) = ¥(0) U (t)dr = 4O ((x) (D)5, +p [ (F(x) = () MO (1) o8
& i
= —H@) (¥(x) = ¥(d1))" +T(p+ 11T MO,

Therefore (28) takes the form

T(p + IO — M) (¥ (x) — ¥ (d))” (29)

< (¥(x)— ¥(d)) (x — dy)

2{ [ @Y (dy)| + MU ()|} + A(dl,x)}
6

Also from (24), one has

e”“w(r)z—[(;:dz)z\euwl )|+ (= )|e wl+ () (24 )a@mn]. o

Following the same procedure as we did for (25), we also have

(Y (x) =¥ (@) —T (o +1)ITHE) (31)

2{[H @’ (dy)| + |’ (x) [} + A(dl,x)}
6

< (Y(x) = ¥(d) (x —dy)

From (29) and (31), we get

IT(p+1) gfew ) — M) (¥ (x) —¥(dy))"| (32)

{2{\6“@1)2/{/((11)\ + |e”(x>u/(x)\} + A(dl,x)}

< (¥(x) =¥ ()" (x — di) 6

By convexity of | (e!)'|, we have

2
(7)) < ((;2, )Ie (dz)H(%) [0 (x) (33)

(@3 (@)

Now for x € [dy,dp] and T € [x,d;] and 6 > 0, the following inequality holds true
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(¥(0) ~¥(2)" < (¥(d) —¥(x))". (34)

Following the same way as we have done for (25), (26) and (30) we can get from (33) and (34)
the subsequent inequality

ID(6+ 1)1 M) — ) (¥ (dy) — ¥ (x))°)| (35)

) 2{ e (dy)| + |4 (x)|} + A(da, x)

< (¥(d) —¥(x)) (dy — x c

From inequalities (32) and (35) using triangular inequality, we get (21) which is desired. [
Particular cases are stated as follows.
Corollary 5. Choosing p = & in (21), then we have a new inequality for GRLFT
IT(0+1) [Igfe“(’” + Igfewx)} — (¥ (x) =¥ (d1)) M) + (¥(dy) — ¥ (x)) M|
(Y(x) =¥ (d1)” (x — dy) [ U (d)| + (¥ (d2) =¥ (x))" (d2 — x) |42 ()|

= 3
LA(¥() - ¥(x))” (d2 — x) + (¥(x) = ¥(d))" (x — i) } O (2)|
3
(¥ (@) (x — d)A(d, 2) + (¥(d) — ¥(x))" (d2 ~ 1)A(da, %)
- :

To prove our next result we need the following Lemma.

Lemma 3. Suppose that U : [dq,dy] — R is an exponentially convex function which is symmetric about @.

Then we have
dqy+d-
M2) < MOy e dy,do). (36)

Proof. Write

d1+d271<x—d1d +d2_xd1>+l<x_d1d +d2—xd2>

2 2\d—d; T d—dy 2\dy—d; VA —dy
Since ¢ is convex, therefore we have
a x—d dy—x x—d dy—x
M(15%2) L (gt ) | 1 u(a e g, dz)
- 2 2
1 ’
= 5 [EU(A) + eu(dﬁdz*X)}

Also, e is symmetric about dl;dz, therefore we have ¢!(¥) = H(41+6-%) and the inequality

in (36) holds. [
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Theorem 4. Suppose that U : [dy,dy] — R be an exponentially convex function such that e/ is
positive convex and symmetric about @, Y is a differentiable and strictly increasing function having
Y € Ly([dy,dz]). Then p, 6 > 0, we have

H(52) {(‘Y(dz) —¥(d)" (¥(d) ‘T(dl))w] (37)

o+1 o+1
(¥(da) — ¥ ()’ + (¥(d2) —¥(dy))"
dy — dy

< T+ DI ¥ (dy) +T(0 + 1) ¥ (dy) <
1 2

4
x [mz ) [ () — MO (8)] — [ — ) | xy(r)df].
dq

‘I’(dl))(s, where as x € [dy,dp], 6 > 0,and ¥’(x) > 0. Hence, the following inequality holds true

Proof. Since ¥ is differentiable and strictly increasing function therefore (¥ (x) — ‘F(dl))é < (¥(do) -

¥ (x) (¥(x) —¥(d1))" < ¥'(x) (¥(d2) — ¥(dr))’. (38)

From the exponential convexity of I, it can be obtained

—d dy — x
Ulx) « X700 U(dy) | 92 U(dy)
< dz—dle +d2—d16 . 39)

From (38) and (39), one can have

dy
/eu(x)‘I"(x) (¥(x) - ¥(dy)) dx (40)
d
3 dy dy
Y -Y
( (dz;)2 - d](dl)) QM) d/ (x — dy ¥’ (x)dx + (") d/ (d2— x)‘l’/(x)dx} :
1 1
By using (2) of Definition 2, we get
[(3+ 1)1 ) (41)
2

(¥(do) *‘1’(1711))‘5

dy
< — [(dz — ) [HE (dy) — M (dy)E (dy)] — (M) — M) d/ Y(x)dx].

Now for x € [d1,dp], T € [x,dz] and p > 0, the following inequality holds true
¥ (x) (¥(da) — ¥(x))" < ¥'(x)(¥(da) —¥(dh))". (42)

Adopting the same procedure as we did for (38) and (39) one can get from (40) and (42) the
subsequent inequality

r(p + 1)]5;1"?6“('12) (43)

(¥(d2) —¥(dh))"

a
< S| ) e - ) | ¥(x)ds).
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From (41) and (43), we get

¥(dy) —¥(d1))’ + (¥(d2) — ¥(d))
dy—d;

(6 + 1)) Lo+ 1) H®) < ( (44)
2 1

><{(dzfdl)[e”(@)‘l’(b)fe”(dl)‘lf(m)}7[ (d2) _ ()] /‘Y }

Using Lemma 3 and multiplying (36) with (¥ (x) — ‘I’(dl))d‘l” (x) and integrating over [dy, d>],

we get
dy dy

HOFR) [ (w0~ w() ¥ @)ix < [0 (4(0) — 9 () ¥ () (45)

dq dq

By using (2) of Definition 2 we get

iy B 5+1
M(152) [%] < I’(5+1)I§LYEM("‘). (46)

Similarly, using Lemma 3 and multiplying (36) with (¥(d2) — ‘Y(x))p‘lﬂ (x) and integrating over
[d1,d>], we get

_ p+1

eu(@) {(‘I’(dz) ¥ (dq)) } < F(p+l)1p+1‘y Uldy) 47)
p+1

From (44) and (47), we get (37) which is the required result. O

Corollary 6. Choosing p = J in (37), then we have a new inequality for GRLFTL

— dq+dy _ p-1
2(‘P(d2)pf§dl)) MG )<r(p+1)[p+l‘1"},(d) pHy‘Y(M(2(‘1“(012;2_‘1;(:11)) )

(= ) (192 () — O )] — [ dw/w ).

3. Examples

Example 5. Letd; = 2,dy = 4,0 = 2,0 = 2,U(x) = 2Inx, ) = 32, ¥ (x) = x2 and x € [2,4]. Then all
the assumptions in Theorem 1 are satisfied.

Clearly,

3
—2 / (9 — 2)3dt ~ 70.83,
2
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and

dy
TOIFHD = [ (¥(r) -~ ¥(x) D

X

4
-2 / (7 — 9)Pdt ~ 334.83.
3

Adding the above equations, we have the left-hand side term of (13)
T(p) 1Y () 4 T (8)15¥ ™) ~ 405.66. (48)
1 2
On the other hand,

-1 x
(Y(x) *T(dl))f’ {(x ) [‘If(x)e”("“) - eu(dl)‘ff(dﬂ} _ (eu(x) _ elxl(rh)) /T(T)d”[:|

X — dl .
dy
L F(d) —¥(x)" {(d () elld) _ )y Uldy) U (x) 7 i
4 —x » —x)[¥(da)e —e (x)] — (¢ —e )/‘I’(T) 'c}

X

3
_ (z - ‘2*) [(6-2)[909) — 4] - (9- ) [ Par]
2

4
+U8=9 14— 3)16016) -9 - (16 -9) [ 2]
3

= 166.675 + 620.83 ~ 785.50. (49)
It is nice to see that the following implications hold in (48) and (49),
405.66 < 785.50.
Example 6. Let di = 2,dy = 4,0 = 2,6 = 2,U(x) = 2Inx, ™) = 22, ¥(x) = x? and x € [2,4].

where A(x,dq) and A(x, dy) are given in (22) and (23), respectively. Then all the assumptions in Theorem 3 are
satisfied.

Clearly,

X

T(p+ 1)15;}’ MO (¥ (x) —¥(d))) M = / (¥ (x) — ¥ (7)) MO (t)dr

dq
3
=2 /r(9 — 12)%dt ~ 41.67
2
and

dy

(6 + )Y — (¥(dy) — ¥ () R = [ (¥(1) - ¥(x))’H O (v)dT

2

4
2 / (12 — 9)%dt ~ 114.33,
3
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Adding the above equations, we get the left-hand term of (21)

IT (o + 1)151;‘Ye“<X> — (F(x) = ¥(dy)) M) 4T (0 + 1)13;,‘%“” — (¥(da) — ¥ (x)) M)
= 41.67 4+ 114.33 =~ 156. (50)

Next,

(¥ () = ()" (x = ) |HOU ()| + (¥ (da) — ¥ (x)) " (dz — )| (dy)
3
_ (9-42B-2)l(3)|+ 1694 -3)[16()] _,,
3 4

{(¥(da) —¥(x))°(d = x) + (¥(x) = ¥ ()" (x — ) } 4O ()
3
_ (16—92(4 73); (9-4)%(3-2) ‘9(2) s,

(¥(x) —¥(d1))" (x — dv)A(d1, x) + (¥(da) — ‘Y(x))é(dz —x)A(da, x)
6

~ 172.47.

Adding the above equations we get the right-hand side term of (21)

(F(x) = ¥(eh))* (x — d) | WU (d)| + (¥(d2) = ¥(x))° (d2 — x) | B ()|

3
N {(¥(da) = ¥(x)) (d = 2) + (F(x) = ¥(d))* (x — ) }eH O (x)]
3
N (F(x) = ¥ ()" (x — d1)A(d1, x) + (¥(da) = ¥(x))" (da — x)A(d2, %)
6
— 164+ 148 + 172,47 ~ 484.47. (51)

It is nice to see that the following implications hold (50) and (51),
156 < 484.47.

4. Applications

We consider the following special means for arbitrary real numbers p, v, jt # v :

A, v) 5 WVETR,
2uv
, = , wvERN{0O},
M) = pveRr\(0)
v—
L(u,v) :m/ |p] # [v], uv #0,
Vn+1_yn+1
Ln(p,v) :[m], ne Z\{-1,0},pveR,u#v.

Now using the results in Section 1, we have some applications to the special means of real

numbers.
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Proposition 6. Foray,ay € R, ay < ap, then

1 1
ap —aq 7 q q

a1 o2 a1 12| < - Aar|q a2 |q
|A(e™, ) — L(e,e")] < o= <32> [|E [T+ e |} .

Proof. Apply Theorem 2 with é(*) = ¢¥, ¥(x) = x,p = 1, and we obtain the desired result. [J

Proposition 6. Foray,ay € R", ay < ap, then

1 1
1 1 a —a 7)6[12 12977
,a2) — L L) < - q q] )
[H ™" (a1, a2) (a1,m)] < o <32 |u1| +\u2|

Proof. Apply Theorem 2 with e//(*) = L ¥(x) = x,p = 1, and we obtain the desired result. [

Proposition 6. Let aj,ay € R', a1 < ap, then

S

ay —aq 7 i
|A(a},a3) — L3(a1,80)| < i (§>q[|a1\q+|az\q] :
q

Proof. Apply Theorem 2 with ¢} = x2, ¥(x) = x,p = 1, and we obtain the desired result. [

Proposition 6. Let aj,ap € R, a1 < ay, then

S

a, —a 7N\§ _ _
\A(al, al) — L0 (ay,a2)] < %(ﬁ)ﬂww D0 4oy -]
q

Proof. Apply Theorem 2 with e/(Y) = x", ¥(x) = x,p = 1, and we obtain the general result. []

5. Conclusions

In this article, we have investigated a few fractional integral inequalities for GRLFT via
exponentially convexity. These inequalities have bounds of the sum of left-sided and right-sided
fractional integrals and inequalities for the function, and their first derivative in absolute value is
exponentially convex. Also, fractional inequalities of HH type for a symmetric and exponentially
convex function are proved. These estimates, bounds and inequalities exist for all fractional operators
are stated in Remark 1. The method followed to produce fractional inequalities is innovative and
simple. It could be followed to broaden further consequences for other classes of functions related to
exponentially convex functions, using convenient fractional integral operators.
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1. Introduction

Let h : [a,b] C R — R be a convex function. Then, h meets the following classic
Hermite-Hadamard inequality (see [1])
a+b 1 b h(a) + h(b)
< < — 7
h( S ) < b—a/,, h(s)ds < > (1)

If h is a concave function, the inequalities in (1) are presented in the negative direction.
The Hermite-Hadamard inequality provides us the estimates for the integral average of a continuous
convex function on a compact interval.

For the latest results on generalizing, improving, and extending this classical Hermite-Hadamard
inequality, one can see [2-9] and the references therein.

In [10], Dragomir and Agarwal proved the following result connected with the right part of (1).
In [11], Alomart also elicited the similar result for functions whose second derivatives absolute values
are convex.

Lemma 1 (see [10], Theorem 2.2). Assuming h : [a,b] C R — R is a differentiable function, ' € La,b]
and |h" | is convex on [a, b]. Then, the bellow inequality holds:

Ha) 40 1 /ﬂ"h(s)ds

(b—a)

g (W@ + 1 @©)]). 0]

<
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Lemma 2 (see [11], Theorem 3). Assuming h : [a,b] C R — R is a twice differentiable function, i € Lla, b]
and |h"| is convex on [a, b]. Then, the following inequality holds

h(a) —;—h(b) _ ﬁ /a.bh(s)ds

Now, fractional calculus has turned into an enchanting field of mathematics. Many
extensive investigations have been carried out in this area. Due to the wide applications of
Hermite-Hadamard inequalities and fractional integrals, many researchers have extended their
research to Hermite-Hadamard inequalities involving fractional integrals rather than integer integrals,
see [12-22]. Sarikaya et al. [12] have deduced an amusing inequality of Hermite-Hadamard-type
involving fractional integrals in the place of ordinary integrals. This research fascinates many
researchers to consider this respect. As a result, some new integral inequalities by the approach
of fractional calculus have been obtained in the literature until now. In addition, Ahmad et al. [16]
gave the new fractional integral operators with an exponential kernel and proved similar inequalities.

—a)?
< O () + ). ®

Definition 1 (see [16], Definition 2). Let h € L[a,b]. The fractional left-side integral J* h and right-side
integral J" h of order « € (0,1) are, respectively, defined by

1 /% 14
Yh(x) = ;/a eflT(x*S)h(s)ds, x>a, 4)
and
b —u
Jp-h(x) = %/ 6717(x*5>h(s)ds, x <b. )

Lemma 3 (see [16], Theorem 1). Let h : [a,b] — R be a positive convex function with 0 < a < b and
h € Lia, b]. The following inequality for fractional integrals (4) and (5) holds:

a+b < 1—a h(a)-‘rh(b).

h(— ),2(1_e,p)[J;;h(bHJg,h(a)]g . ©)

Remark 1. In (6), note that

1—ua

o= (b—a).

In addition, Ahmad et al. [16] derived the bound estimate of the difference between the mean
value of the endpoints and the average of the fractional integrals.

Lemma 4 (see [16], Theorem 3). Assuming h : [a,b] C R — R is differentiable, i’ € L{a,b] and |h'| are
convex on [a, b]. Then, the following inequality holds:

Qurl < 2 tann( )00+ 10 01,
where L ” .
Qur = M0 E ()—2(1_‘j‘,p)[ S h(b) + T h(w)]

denotes the bound estimate of the difference between the mean value of the endpoints and the average of the
fractional integrals.
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However, the bound for the left of the Hermite-Hadamard inequality (6) has not been studied. It
will be interesting to find

|Quu| < what?

Here,
1

Qui = ey ) + Fhia)] ~ ()

denotes the bound estimate of the difference between the value of the midpoint and the average of the
fractional integrals.

Furthermore, if || is convex, it is natural to study the right- and left-type Hermite-Hadamard
inequality via the fractional integral with an exponential kernel similar to Lemma 2, i.e., we want to
find the constants p; and p; satisfying the following inequities:

|Qur| < pr- (|0 (@)] + [W" (D)]),

and

|Quitl < p2- (1" ()| + [H" (D)]).

Motivated by [12,15,16], we will demonstrate three new fractional-type integral identities and
set up their corresponding Hermite-Hadamard-type inequalities involving left-sided and right-sided
fractional integrals for convex functions, respectively.

2. New Fractional Integral Identity and Hermite-Hadamard-Type Inequality for First
Order Derivative

We firstly prove the following lemma in order to attest the following result.

Lemma 5. Assuming h : [a,b] C R — R is a differentiable mapping and b’ € L{a,b]. Then, the following
equality for the fractional integrals (4) and (5) holds:

b—a (1 ,
Qu = 7 /0 kh'(sa+ (1 —s)b)ds
o bma /1 e PH (sa + (1 — s)b)ds — /1 e P91 (sa + (1 — 5)b)ds @)
2(1 — E’P) 0 0 !
where
pol L0<s<y,
-1, 1<s<1
Proof. Define
1 1
Vo= /0 e PN (sa+ (1 —s)b)ds — /0 e P (sa + (1 —s)b)ds
= -V, ®)
where
1
v, = /0 e K (sa+ (1—s)b)ds,

1
V, = /e*P(lfs)h'(sa-i-(l—s)b)ds.
0
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and

Integrating by parts, one has

1

o= e PN (sa+ (1 —s)b)ds

S—

- aib/olf‘”d(h(w(lfs)b))

1

- /1 h(sa+ (1—s)b)d (eps)}
o Jo

R - {ewf(sw(ls)b)

o
- uib {E—Ph(a) —h(b)—l—p/(jh(su—l— (1 —S)b)e“’st]
L f e

_ g*phia)_—bh(b) (ufb)z /abefl“;“(b%)h(x)dx

Il

N
&
3=
=
~
5
=

a—b " (a—b)
e Ph(a)—h(b) 1—-a _,
B P (e R

1
V, = /Oe*”“*”h’(sa—&-(l—s)b)ds

= L et sa+ (- o)

a
1

_ 1 . {ep(lsm(sa +(1—s)b) - /01 h(sa+ (1—s)b)d (e—p(ps))

a—

= 2 i b |:h(ﬂ) — Eiph(b) _ P/Ol h(Su 4 (1 . s)h)e—p(lfs)ds:|

@) —eth) [ e
_ - 7(a_b)2/b h(x)e P dx

_ h(a) _eiph(b) P b —La(x_g)
= 7 + L /u e h(x)dx

_ h(a) —e7Ph(b) P
- a—b T (a-b)
h(a) —e Ph(b) 1

L 1-e
a—b (b—a)

sy h(a)

Ty-h(a).
Substituting (9) and (10) into (8), we get that

V = V-V

_ (A—e?)(h@+hb) 1-a «
_ L b=y i)+ T k@)
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Note

b—a (1,
Aij;M(w+(lfﬂmw

- b;” /O%h’(m(l—s)b)ds— b%a/l W (sa + (1= s)b)ds
f) =n(*5") e —n(5)
- 5 + 3
h(a) ;h(b) _p <a42rb> . (12)

Substituting (12) and (11) into the right-side of (7), we obtain the left of (7). This testifies
the proof. [

Then, we can declare the first theorem including Hermite-Hadmard-type inequality.

Theorem 1. Ifh : [a,b] C R — R is differentiable, |I'| is convex on [a,b], and W' € Lla, b], then the following
inequality about the fractional integrals (4) and (5) holds:

|le‘ <

b—a [1 tanh(f§)

5 -

2 ’ } (K ()| + [H (B)))- (13)

Proof. Using Lemma 5, convexity of ||, and e™® > ¢7f and eP(1=8) > o= for any s € [0,1],

we obtain
_ 1
1Qul ‘bz“/o ki (sa + (1 — 5)b)ds

o [ e ot (1 s)byas — [ e 0=0 sa (1 — )

2(1—e*) [Jo Jo
1
- z(lb%fp) =) = e O sa (1 - s)p)as

- 0

- /;[(1 —e ) —e P19 Lo 0T (sa 4 (1 — 5)b)ds

b—a
2(1—e ")

+ 1(1 —e7P — e PU=5) L o) (|l (a)| + (1 — s) |l (b)])ds]
J

IN

[ me = e Gl )]+ (1 ) )i

= 2(57;:7/))[/07(1787p*eips+€7p(lfs))(s|hl(ll)‘+(175)‘h/(b)|)d5

+ [F e — e e ) (1= )W )|+l (0) )]

e A et e I )]+ (1) s
= i | e @)

b—a |1 tanh(§)|  , ,
= 5 Lp“‘] (1 @) + ).

The proof is completed. [
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3. New Fractional Integral Identity and Hermite-Hadamard-Type Inequality for Second
Order Derivative

In [16] Lemma 4, Ahmad et al. gave the equality

_ (b - a) /.1 —psy,/ /1 —p(1=s)1,/
Qmr = 30— L e PH (sa+ (1 —s)b)ds A e H'(sa+(1—s)b)ds|. (14)
By (14), we will prove the Hermite-Hadamard-type inequality of the order derivatives via the
fractional integrals with an exponential kernel for convex functions. Before we prove our main results
in this section, we give the following lemmas.

Lemma 6. Assuming h : [a,b] — R is a twice differentiable function. If h" € L[a,b], then the following
equality for fractional integrals holds:

(b—a)?

O = 20— 9)

1

/ (1 +e P —e - e"’(l_s)> 1 (sa+ (1 —s)b)ds. (15)
0

Proof. By using equality (14), we note

K = /: e N (sa+ (1—s)b)ds = —% /: W (sa+ (1 —s)b)d(e )

% {h’(b) — e P (a) + (a—b) ./01 e PH (sa + (1 — s)b)ds} ) (16)

and

K, = /[;1 e PU= (sa + (1 — s)b)ds = %/01 W (sa+ (1—s)b)d(e P1-9))
% {h’(ﬂ) —e PH (b) — (a—D) I/Ol e*“’(l*s)h”(su Y- S)b)ds} ‘ a7

Inserting the values of K; and K, in (14), we obtain

h(a) + h(b) 1—a
2 T 2(1—e)

b—a - / /
= m{(l‘w ?) (' (b) — K (a))

[T h() + Ti-h(a)]

—(b—a) /0.] (e‘ps + e_'”“_s)) B (sa+ (1 — s)b)ds}

— 1
- ﬁ{(lﬁ-fp)(b—a)/o W' (sa+ (1—s)b)ds
_(b —u) /0.1 (g_PS +e_p(1—5)) h”(S[l—‘r (1 —S)b)ds:|
(biu)z ! — —ps —p(1—s "
= m/{) <1+e P _ops _ p—p(1 >)h(su+(1—s)b)ds. (18)

This completes the proof. [J

Lemma 7. Assuming h : [a,b] — R is a twice differentiable function. If h" € L[a,b], then the following
equality for fractional integrals holds:

Q=150 [N sa+ (1 -, (19)
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where

14eP—e=PS—eP(1-9)

1
ey 0ss<2

5 —
m(s) =
4o P—e 05 _p—p(1—5) 1
(175)7”"’17—6,;’), 5<s<l

Proof. By using the proof of the Lemma 5, we can get

Qumi (1—s)b)ds
o boa /1 e Ph (sa+ (1 —s)b)ds — /1 e P31 (sa + (1 — s)b)ds (20)
2(1—e*) Lo 0 '
Thus,

b—a (1 ,
3 /0 kh'(sa + (1 —s)b)ds

b—a [3 ,

= /0 h'(sa+(1—s)b dsf—/ (sa+ (1—s)b)ds

1

—

b—a ,
= 5 |:sh (sa+ (1—s)b)

—(a—0D) /07 sh” (sa+ (1 — s)b)ds]

1

0

J’%‘Z [sh/(sa +(1=s)b)

—(a—10) /11 sh” (sa+ (1 — s)b)ds]

1 1
2 2

e

a+b

)—(a—0b) /11 sh” (sa+ (1 — s)b)ds}

2

. [h’(a) — JH(
= L -]

—a)2 /i —a)?
L 2 ) /O Sh”(sa-i—(l—S)b)dS—% /115h/’<sa+(1—s)b)ds

2

_ (b;a)Z /Zlh//(s’l*(l*s)b)ds
Lm0 a1 —sypyas S [+ (1 - sy
_ _z”)2 /0 S (sa + (1 5)b)ds + 2 _2”)2 -t a-opis @

Submitting (16), (17), and (21) to (20), we get (19). This completes the proof. [

Now, we can prove our Hermite-Hadamard-type inequalities by the second order derivatives.

Theorem 2. Assuming h : [a,b] — R is a twice differentiable function. If " € L[a, b] and |h"| is convex on
[a, b), the following inequality for fractional integrals with exponential kernel holds:

(b—a)? <1+e’P S l—ef

s (- ). @

<
‘er| )
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Proof. Note that
1
/ <1 +e P —e P — e*F’(l’S)) sds
Jo
1 1 ) 1
= (1+ e’p)/ sds — / se Pds — / se P(1-9) s
0 0 0

—p —e P —e P
_ 1+e +1<e’ﬁ’71 e >71<171 e )
2 o o o o

—P e P
_ 1+e¢ 71 e ) (23)
2 P

and
1
=0 _p=ps _ p=p(l=s) —
/O<1+e e e )(1 s)ds

/01 (1 +e P —e - e*"(l*")> ds — /01 s (1 +e P —e P~ e*P(1*S)> ds

1 sl Co(1—s) 11 _ _
ps p(1-s) P —e P
— (4e?) +e e _(l—i-e _1-e )
o P o o o 2 4
1+e? 1—eFf
— S . (24)

o

According to (15), (23), (24), and the convex of |1”|, we can get

—a?2
|Qunr| ‘%/01 <1+e_P —ehs _e—p<1_s)) H'(sa+ (1— s)b)ds
(b —a)?

|H'(sa+ (1—s)b)|ds

1
7 =0 _ p=ps _ p=p(1=s)
Zp(l—e*P)/o )1+e e e

_ap

72;(}7] — e)*P) /01 (1 +e P —e - e*"(lfs)> (s|h"(a)| + (1 —s)|H"(b)|) ds
(b—a)? 1+e? 1—eF

20(1—e") < 2 )

) (K" ()| + " (B)]).
The proof is finished. O

Remark 2. a« — 1in (22) of Theorem 2, then p = 1%‘ (b —a) — 0, one obtains

. 1—a i 1—% . —Inx 1
oA —eny "M 50—y Mg -a-my  200-a) @5
and
. 1 14+e® 1—e P\ . p+pe?—2+2F 1
flali%p(l—eﬂ’)< 2 )_})135 202 (1—e?) 12 26)
So (22) is transformed to
h(a) + h(b) 1 b (b_’l)z " "
RS2 N GO <=7 .
MO0 L[] < CEE o)+ o))

This result coincides the conclusion in [11], Theorem 3.

232



Mathematics 2019, 7, 845

Theorem 3. Assuming h : [a,b] — R is a twice differentiable function. If " € L[a, b] and |h"| is convex on
[a, b], then the following inequality for fractional integrals with exponential kernel holds:

—g)2 -
1l < 5 [+ iy — | W@+ o). @)

Proof. According to Lemma 7 and the convex of |h’ ’|, we can get

oml = | O [ o a1 -5y

)2 % —0 _ »—ps _ ,—p(1—s)
(b Zu) /O (s 1+e pp(f,pe—p)e P >(sh"(a)+(1s)|h”(b)|)ds

+(b—za)z /; (1 et 14e P —ePS—eP(ls)> (S (@) 4 (1 — )" (B)]) ds

N2
< w/ol jm(s)| |1 (sa+ (1 - 5)b)| ds

IN

p(l—ef)

_ (b;u)z{/o% (sz‘h//(u)‘+t(l 8|1 (b der/ s(1—s)|h"( )‘ds+(175)2‘h//(b)

)ds

+ﬁ /0l (14e70 e o009 (i (a)| + (1 - )| (1)) ds]

N2
= CS @1+ @)+ @)+ gl )

1 14+e? 1—ef I I
o (Fa - ) @+ e
(b—a)? 1 1+ef 1

2 {é + 20(1—ef) p?

| @i+ .
This completes the proof. [

Remark 3. Let « — 1in (27), one has

’blﬁ/abh( )ds — h(

4. Application to Special Means

a+b 5(b

_a)?
20| < 2 @)+ o)

A

Think on the following particular means [23] for ¥p,q € R, p # q as follows:

(i) H(p.q) = p,q € R\{0};

,
l+l

.. +
(i) Alpq) =L q, paeER

iii) Lpq) = 0t , 0;
(iii)  L(p.q) ln|p|fln\q\ Pl # lal pg #
qurl*Perl %
iv) Ly(p,g) =|————| , meZ\{-1,0},p,9 €R, .
() L) = [ s | \-1L0LpacRp g

Next, making use of the acquired results in Section 3, we give some applications to particular
means of real number.

Proposition 1. Let p,g € R, p <gq, pqg >0 and m € Z, |m| > 2. Then,
5 - -
L5 (p,a) = A" (p )| < o7 (q = p)?|m(m —1)|A(|p|" 2, [g"2). (28)
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Proof. Applying Remark 3 for /i(x) = x™, we can get the conclusion immediately. [

The upper bound is smaller than the result of Proposion 3.1in [5] when | — p| < 1and |p|, |q| > 1
obviously.

Proposition 2. Let p,q € R, p < q, pq > 0. Then,
_ _ 5 30—
L7 p.q) = A7 (p,9)| < 50— ) Allpl 7 1al ™) 29)
1

Proof. The inference follows from Remark 3 used for h(x) = ;. O

Proposition 3. Let p,q € R, p < q, pg > 0and m € Z, |m| > 2. Then, we have

5 1\?
L p ) = H )| < gy (5 ) ln = DI g, 0)
and
5
L7 (p,0) — H(pa)| < 5 (a—p)PH (1P, 1aP). &)

Proof. Doing he replacement 4! — p,p~! — g in the inequalities (28) and (29), we can obtain the
required inequalities (30) and (31), respectively. Here, we have observed A~!(p~1,471) = H(p,q) =
2/(5+7 9 <p O

At last, we will present an application to a midpoint formula. In [23], let w be a division
p=s50 <51 - <Spy_1 < sy = qof the interval [p,q] and inspect the quadrature formula

/qh(s)ds = T(h,w) + E(h, w), (32)
P
where
m—1 . .
Tlhw) = L RS i =)

is the midpoint version and E(h, w) refers to the approximation error. Here, we deduce the error
estimate for the midpoint formula.

Proposition 4. Let h : [p,q] — R be a twice differentiable mapping on (p,q) with p < q. If W' € L|a, b] and
|| is convex on [p, q], then in (32), for every division w of [p, q|, the following inequality holds:

-
B, w)l < o 2 sivt =) (H(s9)|+ " (si21)1)

Proof. Applying Remark 3 on subinterval [s;,s;1](i = 0,1,--- ,m — 1) of the division w, we derive

Sit1 si +5; 5
[ s = I (5= s)| < (sin =50 (W) + 1 (si)1)
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Summing over from 0 to m — 1 and making use of the convexity of |1”|, we infer that

mil |:

i=0

/pqh(s)ds —T(h, w)‘ —

/:"“ h(s)ds — (L) s Si*’)] ‘

Si

[ S; +s;
< / h(s)ds—h(%)(si—sm)
iZo i
5 m-l 3 1 "
< g8 L i —s)” (I (i)l + W (sia)]) -
i

The proof is completed. [

5. Conclusions

Based on the above interpretation, we acquire the bound estimates of the difference between the
average of the fractional integrals with an exponential kernel and the mean values of the endpoints
and the midpoint.

By comparing these bound estimates, we have obtained the following conclusions:

(i)  With the first and second order derivatives of a given function, the Hermite-Hadamard-type
inequalities involving left-sided and right-sided, the fractional integrals are different.
The Hermite-Hadamard-type inequalities with the second order derivatives of a given function
are more accurate.

(if)  With the same order derivatives of a given function, the Hermite-Hadamard-type inequalities
involving different fractional integrals finally tend to be same when a — 1.
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Abstract: In this paper, we establish sufficient conditions for the existence, uniqueness and Ulam—
Hyers stability of the solutions of a coupled system of nonlinear fractional impulsive differential
equations. The existence and uniqueness results are carried out via Banach contraction principle and
Schauder’s fixed point theorem. The main theoretical results are well illustrated with the help of
an example.

Keywords: caputo fractional derivative; coupled system; impulses; existence theory; stability theory

1. Introduction

Fractional differential equations (FDEs) provide an excellent tool for the description of memory
and hereditary properties of different processes and materials. Thus, contrary to the classical derivative,
the fractional derivative is nonlocal. Fractional calculus has played a very important role in enhancing
the mathematical modeling of several phenomena occurring in engineering and scientific disciplines,
such as blood flow systems, control theory, aerodynamics, the nonlinear oscillation of earthquake,
the fluid-dynamic traffic model, polymer rheology, regular variation in thermodynamics, etc. FDEs are
more accurate than the integer-order derivatives. Therefore, in the last few decades, fractional calculus
has received great attention from researchers [1-13]. On the other hand, it is impossible to describe the
complicated systems and processes with a single differential equation. Therefore, the coupled systems
involving FDEs have also received incredible attention; consequently, many results are devoted to
them [14-31].

It is well known that the effects of a pulse cannot be ignored in many processes and phenomena.
For example, in biological systems such as heart beats, blood flows, mechanical systems with impact,
population dynamical systems and so on. Thus, researchers used differential equations with impulses
to describe the aforesaid kinds of phenomena. Therefore, many mathematicians studied impulsive
FDEs with different boundary conditions; see [32-40] and references cited therein.

In fields such as numerical analysis, optimization theory, and nonlinear analysis, we mostly
deal with the approximate solutions and hence we need to check how close these solutions are to
the actual solutions of the related system. For this purpose, many approaches can be used, but the
approach of Ulam-Hyers stability is a simple and easy one. The aforesaid stability was first initiated
by Ulam in 1940 and then was confirmed by Hyers in 1941 [41,42]. That’s why this stability is known
as Ulam-Hyers stability. In 1978 [43], Rassias generalized the Ulam—-Hyers stability by considering
variables. Thereafter, mathematicians extended the work mentioned above to functional, differential,
integrals and FDESs; for more information about the topic, the reader is recommended to [44-59].
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Inspired from the above discussion, in this article, we study the existence, uniqueness and stability
analysis of a coupled system of nonlinear FDEs with impulses of the form:

D%x(t) + h(t, D(t),*DPy(t)) =0, t £tm, m=1,2...,7,
°DPy(t) + w(t,S D%(1),* DPy(t)) =0, t Aty, m=1,2...,1

A =ty = Mim (x(tm)), Ax ft=t,,= Nim(X(tm)), A" [i=t,,= O1m(x(tm)),
AY t—t,,= Mom (y(tm)), Ay’ lt=tm= Nom (y(tm)), Ay |= tm= O2m (Y(tm)),
x(0) =x/(0) =0, *D*x(Q) =x"(1),

y(0) =y’(0) =0, °DPy(®) =y" (1),

M

wheret € ] =[0,1], 2 < o, < 3, 0 < a,b,e,Q,p,® < 1. °D stands for Caputo fractional
derivative and h,w : ] x R® — R are continuous functions. M1y, Mam, Nim, Nom, O1m, Oam €
C(IR,R) and t,, satisfied 0 = tg < t1 < -++ < tn < tny1 = 1, Ax i=t,,, = x(th) = x(t;n), &X' i=t, =
x/ () —x ( ) A g = x5 =X (1), AY == y(th) —u(tn), AY’ =t = y'(th) —

Y (tm), AY” =, = y”(tﬁl) y”(tm), x(th),y(th), and x(t,), y(t;,) represent the right and left
limits of x(t),y(t), respectively, at t = ti,.

The remaining article is organized as follows: In Section 2, we give some definitions and lemmas
related to fractional calculus. In Section 3, we establish our main results about the existence and
uniqueness of solutions for the proposed system (1). In Section 4, we study the Ulam-Hyers stability.
In Section 5, we provide an example to support our main results.

2. Background Materials
In this section, we give some basic definitions of fractional calculus that will be used throughout

the article.

Definition 1. (see [60]) If x : (0,00) — R and o > 0, then the Caputo fractional derivative of order o is
defined as

t
CD“x(t):L/ (t—s)™* IxMW(g)ds, n—1<a<n n=[a+1,
Fm—o) Jo

where [«] denotes the integer part of real number «, provided that the right side is pointwise defined on (0, co).

Definition 2. (see [60]) The Riemann—Liouville fractional integral of order « > 0 for a function x : (0,00) — IR
is defined as
t
I%(t) = L/ (t—s)* Ix(s)ds, t>0,
(o) Jo

provided that the right side is pointwise defined on (0, c0), where T is the Euler Gamma function.

Lemma 1. (see [60]) The solution of the differential equations involving Caputo derivative “D*x(t) = f(t),
t € J, has the form:
I%°D%x(t) = I%f(t) + eg+ et + -+ en_1t™ 1,

forsomee; € R, 1=0,1,....n—1, n=[af + 1
Lemma 2. (see [60]) If &, p >0, t € J, then, for x(t), we have
CDOTx(t) = x(t), I¥IPx(t) =I%Px(t).
Lemma 3. (Banach contraction principle, see [59]) If X is real Banach space and W : X — X isa

contraction mapping, then W has a unique fixed point in X.
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Theorem 1. (Schauder fixed point theorem, see [59]) If w is a closed bounded convex subset of a Banach
space X and W : w — w is completely continuous, then W has at least one fixed point in w.

For the sake of convenience, we introduce the Banach space as follows:
Let] =1[0,1], J' =J/{t1, ta, ..., tn}. Define the set by

X =PC(]) ={x(t) : x(t),x(t),x" (1),* D(t),° DPx(t) € C(J'), x(t) and x(t;,)
exists and satisfying x(t;;) = X(tm), 1 < m < n}.

It is easy to verify that X is a Banach space equipped with the norm:

()|}, v x(t) € PC()).

[Ix[lo = max { sup |x(t)
te]

Similarly, we can define a set Y = PC(]), which is a Banach space endowed with the defined norm:

l[yllo = max { sup [y(t)
te]

t),sup |y” ()], sup | “D%y(t)|,sup | D y(t) t) € PC()).
teJ te] te]

Furthermore, we define the Banach space Y’ = X x Y with the norms ||(x,y)|| = ||x|lo + lyllo and
6 ) = max {[x[lo, Iyllo}-

Definition 3. A pair of functions (x(t),y(t)) € Y’ is called a solution of (1) if (x(t),y(t)) satisfy all the
equations and boundary value conditions of the system (1).

Lemma 4. Assume that f € C(],R). A function x € PC(]) is a solution of the boundary value system

D% (t) + f(t) =0, 2 < a < 3,

AX [t=tm= Mim(x(tm)), m=1,2,...,n,

AX lt=tm= N1 (x(tm)), m=1,2,...,7, )
M i—tm= O1m (x(tm)), m=1,2,...,m,

x(0) =x"(0) =0, °D*x(Q) =x"(1), 0<¢,Q < 1,

ifand only if x € PC(]) is the solution of integral equation

g o (t s)ds+ e*t?, te[Otﬂ
ftm tfs)"‘ Lf(s)ds — ‘X) Z] 1ft] . )1f(s)ds
x(t) = o( Ta—1) Z] 1 _t ft 1 t —s)* zf( )ds_zr x—2) Zj:l t_t]')z 3)

xft ltst)D‘ Pf(s)ds + 3§y Muj(x(t5)) + X% (= 45)Nij (x(t5))
+Zj:1 h) 01](( ) +e*t?, t € (tm, tmi1l, T<M <,

where t € (tym, tmp1l, 1 <m<n,
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. r3—e) 1 Q 1 Ql-e
¢ TrB_e -2 {71“(“—6) /tj (Q=s) s — = ra—o
Sl A PR O o Sub R AP
x;/tj l(tJ s)*“f(s)ds NCEINEE) ;AJ l(tJ $)*°f(s)ds

_Ql—a m -t o 1 o om
+m2tj/t (t =) f(s)ds + s Zl

j=1 j—1
02—« m ol—¢ m 1

1
x—3
+mj;01j (X(tj)) — W;tjolj(x(tj)) + m/[m(]*s) f(s)ds

t—s"‘3f dS_ZOh }

o1
Proof. Applying Lemma 1, for some constants e, e1, e, € IR, we have

x(t) = —I%f(s)ds + e + e1t + et?
1

t
= f—/ (t—s)* 1f(s)ds + eg + ert + ext?, t € [0, 1],
') Jo

Then, we obtain

1 t
x/'(t) = a1 /0 (t—s)*72f(s)ds + e + 2ext,

1 t
x"(t) :_m/o (t—s)*3¢(s)ds + 2e».
When t € (t1,t;), we have
x(t) *—L/t(t—s)"‘_lf(s)ds+eg+e4(t—t1)+e5(t—t1)2,
I'(e) t

/ 1 ¢ 2
x'(t) = o) A] (t—s)* *f(s)ds + eq + 2e5(t — t1),

" _ 1 t x—3
x"(t) = TTa—2) /tl (t—s)*7f(s)ds + 2es,

where ej3, ey, e5 are arbitrary constants, from (4)-(6), we can find

_ 1 t _
x(t;) = ~T@ /0 (ty — )% 1(s)ds +ep + ety +eat], x(t) =es,
!/ 1 1 2 /
x'(t7) = —m/ (1 —s)**f(s)ds + e1 +2exty, x'(t]) = ey,
- 0
1 4 3
x"(t]) = fm/ (t1 —s)* 7 f(s)ds +2ep, x"(t]) = 2es.
- 0

*)

®)

(6)

@)

®)

©)

Furthermore, Ax |i—¢;= Miq(x(t1)), AX' [t = Nip(x(t1)), Ax” |i—¢= On1(x(t1)), and (7)—(9)

give us:

1 /b

ey = _7/ (t1 —s)* M(s)ds + e+ erty +e2t% + My (x(t1)),
I'(e) Jo

1 "t o—2

eg=——— [ (t;—s)* 2f(s)ds + ej + 2epty + Nyq(x(t1)),
F(oc—l) 0

e __¥/tl(t —5)*3f(s)ds + e +1o (x(t1))

5= (=2 Jy ! 2T
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Plugging es, e4, and es into the first equation of (6) for t € (ty, tp], we have

1 _ t
W= L g teas - 1 M —srsas— ET T ge2poas
M) ') Jo Mo—1) Jo

t
—t)2 [t )2
ooy [t =% s M et + (¢ = 0N xe) + O )

+ep+ert+ et

Repeating the same process for t € (tm, tm+1] such that (m =1,2,...,n), then we can write

1 t 1 l m t] 1 m
= — )% (s)ds — (tj —s)*1f
x(t) o ./tm(t 5) ) JZ]/ §)%7f(s) 2
t m m
></ (tj — ) 2#(s)ds — s tht) / (tj—s)*f(s)ds+ ) Myj(x(t;)) (10)
):1 -1 j=1
m m (t—t')
+) (= )Ny (x(t) + ) 5 015 (x(t))) + eg + ert + ext®.
j=1 j=1
Furthermore, we have
1 s
"5y — (t—s)*3f(s)ds — L Y™ [T (t; —s)* 3f(s)ds + Op; (x(t;
X (t) F(oc 2 jtm S) ( ) T(x—2) Z):l jtj—l(] S) (S) s+ 1](X( ])) (11)
+2€2.

By utilizing conditions x(0) = x’(0) = 0in (4), we get ey = e; = 0. In addition, it follows from (11) that

1 ox— oc 3
x"(1) = a2 ftm 1—8)%3f(s)ds = pais 1ft] . f(s)ds + O1;(x(t5)) 1)
+2€2.
In view of j € {0,1,...,n} such that Q € (t;, tj;1], we have
x(Q)——L/Q(Q $)X (s ds— Z/ (t; — ) f(s) ds—c— i
r(o‘) ] ]:l
t: m
x /J (= )% 2f(s)ds — 5o Z —t)) / (t; — 5)*3#(s)ds (13)
-1 ;:1 1
— (—O-_tj) 2
"rZMlJ +Z(Q_ti)N1j (X(t))) + folj (X(t])) +eQ0°.
j=1
By applying result (5), we get
_Qlfe
CD§+X(Q): ) e (s)ds *m[j 1ft, 1 )*2f(s)ds
QZ*E oc 3 QI*E .
RICE PR At Fa o =g 2151 Y 14)
ol m —¢ m
Xft N )% —3(s )derijﬂ Nlj(x(tj))Jr%Zjﬁ 01
Ql—e 202%7¢

_F(TZ] 1t101]+ r3— 8]62‘
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Since °D§, x(Q) = x" (1), thus (13) and (14) gives

_ TB—¢) 1 Q a—e1 Ql-¢
2TMB—e) - Q%) {* Mo—e) A (0= s = e

S Y 2—¢ m Y
X Zl /t (t; — )% 2f(s)ds — m Z /t (t; — 5)3f(s)ds
j=1"14-1 =y

_Qlfe m

tj m

Y t; —s)*73f Jds+ =o——
Ma—2)T(2—¢) J; J/tH( i) (s) Zl
Q27£ m

! ' 1—5)*3f(s)d
+m; Z j 2)-/tm( —s) (s)ds

Moe— ZZ/,1 R dstOl] }

Plugging the values of ep, e; and e into (4) and (10), (3) can thus be obtained. Conversely,
we consider that x(t) is a solution of (3). Then, it is obvious that (3) satisfies (2). [
Similarly as in Lemma 4, we can prove the following

Lemma 5. Let 9 € C(J,R). A functiony € PC(]) is the solution of

DPy(t)+9(t) =0, 2< B <

AY t=t,,= Mo (Y(tm)), m=1,2,...,n,

AY' li=t,,= Nom (y(tm)), m=1,2,.. (15)
Ay” lt=tm= O2m(y(tm)), m=1,2

y(0) =y'(0) =0, ‘D y(@) =y"(1), 0<p,® <1,

if and only ify € PC(]) is the solution of the integral equation

[O —s)P1Y(s )ds+c*t2 tel0,t],

ftn B 18( Z] lft] . 75 ﬁ 119( )d
B  Zje(t—1) ft 1t —s)B 29(s )ds—mzl L=t

Xft L tJ*S)B 39(s ds+Z, 1Mz;(y(tj))+Z;i1(t*tj)N2j(U(tj])
+ 5 0, (y() + ¢, e (b tmpa], T<m <,

y(t) = (16)

where c €{0,1,...,n}such that ® € (tc,te1], and
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. TB—p 1 e N o'
¢ ’2(r(3—p)—®2*pJ{ r(rs—p)/ (@ =) 2 0s)ds — mE—rm — p)

m

t 2— Y
xZ/ l(tjfs)B*Z{)(s)dS* o’ Z/ (t; —s)P39(s)ds

= i rB-2rB-p) &/

j
t (t;—s)P 39 ds+
(B2ZPZ/t,1 (&)

Z Naj(y

@279 ch 1 1 b3
—r(%p);o)w(tm o pZt)C)zJ tJ))+r(672)Aﬂ(1—sJ 8(5)ds
P i/tj (t-—s)ﬁ_3ﬁ(s)ds—ZOZ-(y(t))}.

-2, 2 Oty

3. Main Results

In this section, we use fixed point theorems to prove the existence of solutions to problem (1).
According to Lemmas 4 and 5, we define operator W: Y’ — Y’ by

W(x,y)(t) = (W1(XrUJ(t),Wz(XrUJ(tJ)T,V (xy)eY, telo1], 17)
where

fot (t— s)h(s,c D%(s),* DPy(s))ds + e*t2, t € [0, 4],
ft (t—s)*~ 1h(s,CD‘1 (s),C DPy(s))ds

PR lft, (5 —5)% Th(s,© D(s),* Dy(s))ds
Wi(x,y)(t) = o jalt ft 1t —5)% 2h(s,  D%(s), Dy(s))ds
fmzl 1(tft] ft 1t)fs)°‘ Sh(s,c D%(s )CDby( ))ds

t— t
T My (x()) + X (6 — )Ny (x(t) + 20 U504 (x() + e* 2,
te(tm,tmﬂl 1<m<n

and

-1 Jy (t—5)P~1w(s,c Dx(s),* Dy(s))ds + c*t?, t € [0, t1],
—Bft (t—s)P~Iw(s,® D%(s),* DPy(s))ds
ﬁ, P 1ft11 t; — )P 1w(s,c D%(s),* DPy(s))ds
Wa(x,y)(t) = F(B 7 i1 (t—1t) ft (t; —s)P~2w(s,® D%(s),* DPy(s))ds
({H) Yitt—t) ft ]t)fs)ﬁ “3w(s,° D%(s),c DPy(s))ds

(t—t
+zj";Mz)-(y )+ S (= )Ny (y(t) + T 0y (5) + e,
te€ (tm,tmy1l, 1<m<n,

with
e* =2 {—71 /‘Q(Q—s]""g’lh(scDax(s)CDb (s))ds
Lo Tla—e) Jy ’ s
T Ta—1Dr2—e) 1 / (t; — )% h(s,° D(s), Dy(s))ds
T T(ax—2)T(3—¢) 2 3—¢) Z/ (tj —s)* (s,  Dx(s)," D"y(s))ds

=1
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1—¢ m
i % 2—¢) Z / (tj — )% *h(s,  Dx(s),* D y(s))ds

j=1 tj—1

Ql-¢ m

— Q1,£ m
+m;mj (x(t))) + m;ou(xmn - F(Z—_E)j;tjou(x(tm

1 1
gy J,, (1790 hls D) Dyl ds

;m K . )x—3 cpa cpb 7111 . . :|
r(cfo);/tj,l“’ " Shis D) Dyls)as =3Oty

1 ()
¢ =2Zg {— B—p /t (@ — )PP 1(s,° D(s),* DPy(s))ds
_L - K . <\B—2 cpa c b
r(ﬁ_l)r(z_p) jgllj,l(t] S) W(S, D X(S), D y(S))dS
2— moot
7?([5:2)7;37;))2/ (t; —s)P3w(s,° D%(s),° DPy(s))ds

1

! _f53 cpa c b
T(B—2)T(2—p) 2 2—p) Zt /t)lt s)P 7 w(s,“ D% (s),” D y(s))ds)

ol-—r ®2—P m ol-r m
+ r2—p j;NZj (y(t;) + TG3_p) Zozj(y(tj)) BvED] j;tjoz)'(y(t )

1 ! __ \B-3 cpa cpb
fp—2) /tm(l )P w(s,“ D%(s),“ D y(s))ds

;m.t]‘ . __<\B-3 cpa c b _m . :|
+r(ﬁ_2)j;/tjfl(t] 9P Sw(s Dox(s) Dy(s)ds =3 Oauly)]

+

r3— N . . .
= W and Zp = W. Thus, solving problem (1) is equivalent
to obtain a fixed point of the operator W. Next, we have to prove the uniqueness of solutions of
problem (1).

where Zq

Theorem 2. Let the following conditions (My) — (M3) hold, and then the boundary value problem (1) has a
unique solution.

(My) : Forall t € Jand x;,y; € R (j = 1,2) there exists some positive constants y;, uj’ (j =1,2) such that

[h(t,x1,y1) — h(t, x2,Y2)| < mafxa —xa| + malys —
|WtX1/y1) wt, x2,y2)| < wi|[x1 —x2| + i ly1 — vz

(My) : For all x,y € R, there exist some positive constants Iy, Ti, TG =1,2; m =1,2,...,n) such that
P ks ik 4y
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(M3) :
2 1 1 2o 2o Ql- ZO(QZ_E
[(M+p2)<m+@+m 1) Tl e r( e T
Z-‘X_Q17€ —e M Q27€ m o
Ma—Dr2—e & ) leh ZIIJ+ Z ) ;IU
= iz
_Ql e M 1 m
le]+zazllj E];I :|<1
and

L 2 1 1 2p 201 P 2p02P
{(“1+“2)<r(fs+n F(B]+2F(B—1J+F(r5—p+1)+F(B)F(2—p)+r(ﬁ—1)rt3—p)

2p®1=P 22
B ﬁ ) ZIZJ ZIZ)+ B Z 2) Z 2j

TrB-Dr2-e) a

m

1-p m
ZB(D ZIZJ-"_ZBZIZJ %ZT :|<1
j=1

Proof. By using the Banach contraction principle, we can prove that W, defined by (17), has a fixed
point. Before proving the main result first, we will prove the contraction. When t € J, from (17) and

conditions (M;) — (My), for all (x1,y1), (x2,42) € Y/, we have

[W1(x1,y1) (t) — Wy (x2,42) (1)

1 ¢ o—1 cya cnb cma cTyb
<@/0 (t— )% (s, D (s),€ DPys () — h(s,S Dxy(s),S DPys(s))|ds

2 ge]
e [T 109 (s Do (51,6 DVyr (9] ~ s DOxals), DOz ds
- t

Zat2Q17€
Moa—1)r2—c¢) ;

mooag.
[ =51 25 Do (s),€ DUui ()  hls,* Dxa(5),¢ DPya(s)] ds
=17%-1

a0 /ti (t; — 5)%3[n(s,S Do (), DPys(s)) — hs, Doxy(s),S DPys(s))|ds
F(OC—Z)FB—C) j71~ 4 ) ’ 105), 1 ’ 218 2
t2Q1 €
Za Z j—5)% 3| h(s, D% (s),° DPyi(s)) — h(s,  Da(s), DPya(s))|ds
Moa—2)T(2—¢)
Z tZQl e M tZQZ e M
= Z [Ny (x1(t5)) = Nyj (xa(t5))| + Zat O 7 Z [0 (x1(t;)) — O15(x2(t)))]

2,12 -1
+r(oj‘ 5 / (1= 9)% 35, Doxi(5),¢ DPys (5)) — (s, Doxa(s), € DPys(s))as
- t

2 Mmoot
Zat Z/) i —5)% (s, D% (s),° Dy1(s)) — h(s,  Dx(s)," DPya(s))|ds
j=1"Y
tQ e &
Bl Z|t |01 (x1(t;)) = O; (x2(t;))| + Zct? Z‘Oh x1(t5)) — Oy (x2(t5)),
j=1
1
Sr(a+ 1 [1| D% (s) =€ D (s)] + pa| “DPy1(s) = DPya(s)|]
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Z
+ Ta—erD 7z+ 1 [ ‘D% (s) =€ D (s)] + 12| “DPy1(s) = DPya(s)|]

+&[ |“D%1(s) =€ D (s)| + 12| “DPy1(s) —¢ Dys(s)|]
r(oc)r(z 1 1 2 K2 Y1 Y2

ZD(QZ € cDa cpa CDu cpa
+m[ul| x1(s) — X2(3)|+H2| ya(s) — UZ(S)H

Z“Q]7€ Crya ca c c
+m[ul| D% (s) —“D X2(5)|+H2| Dbyl(s)* Dbyz(S)H

2o Q1 E o 2.02¢ m
+m;|N1] x1(t5)) — Nyj(x2(t; ))|+mj;\oh (1)) — O35 (xa(t5))|
+r(0%71[u1| DaX1 ) CDQX2(8)|+HZ|CDby1(S)7C Dby2(5)|]

o ‘pe cpa c c
r(ocfl)[ul| Dxy(s) =€ Dxa(s)] + p2| “DPy1(s) = DOya(s)]

2oQl7e & =
+ T2—0 th [015(x1(t))) — O1 (x2 ()| + 2t Z |01 (x1(t5)) — Og5(x2(t5))],
=1 j=1

+

2o
x—e+1
Z- Ql € Z-(x-o-27£
a2 o) [ lx1 —x2llo + 2llyr —y2llo] + W [ %1 = x2llo + w2lly1 — yzllo]

1
gi — — — .
NCEEY [wllx1 — %allo + Mallyr —yallo] + " ] [mallx1 —x2llo + K2lly1 —y2llo]

2,017 ¥
e [wlxa —xallo + wallyr —vallo] + 5524 E) -3 Bl —xallo + m SD PR (RN CL)

Z 2o
x |Ix1 —x2llo + Mo 1) [ lx —x2llo + allyr — yallo] + Mo 1) [al[x1 —x2llo + 12lly1 —yzllo]

z Q1* UL
+ T Z Lijllx1 —xallo + Zaz Lijllx1 —x2llo,

1 2o
<——o — _ B S B B
STat1) [+ k2] (1 = x2, 41 Uz)H+r(“7€+1)[u1+uﬂ\|(x1 x2,Y1 —Y2)||

Zaﬂl € Z“Q27£
+ Flor2—9) (w1 + 2] [ (1 —x2,y1 —y2) || + Mo 13— ) [+ 2] [ (x1 —x2,y1 — v2)||

2,01¢ 2,01
+m[ul+}iﬂ”(’<l—x2/yl Yo +(7211;H (x1 —=%2, 91 — o)l

QZ&:m

Z
Z Ll (x1 —x2,y1 —y2) || + F(Til) [ + 2] [ (1 —x2,91 —2) |
2w Ql-e m
a1 (b1 + 2] | (x1 —x2,y1 —y2) | + Zh;l\ —x2,Y1 = y2) ||
m
+2a Y Tijll0a —x2,y1 —u2)|,
j=1
1 1 Qlfs _0_275 Qlfe
<Z
“{(“1 “‘2)<z Mot D) T Tla—erD)  T@r2z—e Ma—DrG—e Ma—Dr2—e
2 Ql-e mo _QZe:mv _Qle:mv mo
Iy; Ly; I Iy;
+F(oc—1)>+l"(2—£); ; J; “+)§l 1’}

x l(x1 =x2,y1 —y2)Il, t € [0, t4].
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When't e (tm,tm+]], then

[W1(x1,91) () — Wi(x2,42) (1)]

1 ot
<irag | (=97 (s, Do ), DPys ) — his D xals) € DOy s)|ds
tm
1 o Y
g 6597 (s, D% (5], DUy )~ hls S Dxals) € DPuals) s
j=17t1
m

1 . ,j e x—2 cpa cpb _ cpa c
+m§|(t‘m‘/tj,l(t] $)%2[h(s, D%als),* DPy1 (s)) —h(s S Dx(s),* D ya(s))[ds

m t:
2 ) x—3 cpa cpb cpa c
+mj;}(tftj) }Aj,l(tjis) }h(s, D% (s),* DPyq(s)) — h(s,c D% (s),¢ DPyy(s |ds

+Z\Mn x1(t5)) = My (xa(t5))] + Y |(t—15)]|Nyj (xa(t5)) — Nyj (x2(t5))|
ji=1
Zatz Q :
o, 109177 Dale) D wn(5) Rl D329 Dol

20l—¢
R Tt i) (6 — 9)%2[R(s,S D% (s),€ DPys(s)) — h(s, DOx(s),° DPys(s)

))|ds (19)
Zoc 2_02 €
o= DI (=517 (s D (5),° Doy (s)) — his,S Doxal(s), € DPya(s))]ds
Zot201
Wtziz, 1] S (45 =947l D (s), DPyi(s)) — hs* Doxafs),* DPys(s))|ds
Zat 2Q1-¢ il Zat2Q27£ m
WEJN“ (xa(ty) — th(tnhm;}oh (x1(t})) — Ox; (x2(t))|
Zat’ [N 1 (s Do (6)S Dy (s)) — hls € Dx(s) € DPy(s)]d
r(o(_z) Am —S ‘ S, xX1(8), Yils)) —nis, X2(8 yz ‘ S
Zot? _
+ r(“EZ) ,;/t, 1(tijJ"‘ *Ih(s,® D1 (s),* DPy1(s)) — h(s, D (s), DPya(s))|ds
- 2Q1—5 m
e 2 15110 (e (1)) — Oy a4y )| + 2t > [0y alts)) — Oty
j=1

j=1

" ooy
+Z f|olj (x1(t5)) — Onj(x2(t;))]-
i—1

Utilizing (M) and (M,) in (19) and taking the maximum, we get

1 1
Mo 1) [l —x2llo + m2lly1r — yallo] + Fatl) [l —x2llo + 12lly1 —yallo]

1 1
+ o) [m1llx1 —%allo + mallyr —yallo] + Mo 1) [ llx1 — x2llo + H2lly1 —yallo]

m m
N Z
+ Dyl —xallo+ YTl —xallo+ m=—o—= [mlx1 —xallo + k2 lly1 — y2 o]
P o MNa—e+1)

Zqu €

EaQTE e xalo + il — yalo] + o2
r((x)r(z ) H1([X1 —X2{l0 H21{lY1 Y2ilo r(

+ m[ﬂl”’il*X2HO+P-2H91*UZHO]

247



Mathematics 2019, 7, 927

Z“Q17£

T e D e Ml el +kally —

Z Q -
Zh] [x1 — X2H0+

Za [
MNa—1)

1 m
+5 > Dyl —xallo,
j=1

+ w fxa —xallo + m2llyr —yallo] +

<;[m + w21 — x2,y1 — 2| +
Mo+1)

1
T e |

+ 2] [[Ep——
W+ ke fllba =Xy =v2)ll+ or =

yallo] +

Z Ljlx1 —x2llo

[mHXl —x2lo + m2llyr —ya2llo]

2o Q1™
c(x Zh, [x1 —xallo + 2« le) [x1 —xallo

1
Mot [t + w2) [ (1 —x2,y1 —y2) |

1 (w1 + w2) [ (1 —x2,y1 —y2) |

+ X0 Tl 0a = x2, 1 —y2) 1+ 25 T 0k —x2, u1 —wa)l[ + ﬁ (1 + 2] | (x1 — x2,y1 — Y2 )|

1—¢ 2—¢
STy [+ k2] 00— x2,u1 — ) | + praasSir=ey [ + 1] | —x2, y1 — w2 | (20)
Z,017¢ 2,017 & o
o et _ _ S N W — X2, Y1 —
e Dr2 o) [ + 2] [[ (1 = x2,y1 —y2) || + F2_¢) ]; 1511(x1 — %2, y1 — Y2
2,07 & Za
+F(37211’H X1 —X2,Y1 — Y2 H+71)[H1+H2}H(X1*X2,91*92)H
2 Ql e M
+ [ + ] [ (1 —x2,y1 —2) | tro—a B Z —x2,y1 — Y2l
Mo—1) o
m 1 m
+Za;11j‘|(X]*X2/y17UZ EZl X]7X2/y]792)“
j= j=
2 1 1 Zw 2o Q178 Zo 0278
< s 4=
\[(“1+”2)<r(a+1)+r(cx)+zr(o¢71)+r( et 1) Tr2—e T Ta—1rG—e
b ol 22 = L Ql—f— L 2,02 &
+ x + X Z ZI 11j+ X Ilj
NMa—1)Fr2—e) T(ae—1) S —€) o rN3—e) o
z Ql e 2 1
e " le]+Zo<ZIl) Iy j}n(xlw,yl—yz)n.
j=1
In the same fashion, we can obtain
[Wa(x1, Y1) () — Wal(x2, yo) (1)
/ / 1 1 @l-° D2P @l-°
S Zp [(“ﬁ”z)(zﬁr(ﬁﬂ)*r(fs—pm+r(5)r( o) T TE=DTG=) T M=) o

N 1)>+r2 p)Z] 112)+r3 o) ZJ 112)+r2 B ZJ 1Ty + 25 Ty

x|[[(x1 —x2,9y1 —y2)|, t € 0, 1],
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and
[Wa(x1, 1) (1) — Walx2,y2) (1)

. 2 1 1 2p 2p@P 2p DT
S {(“ﬁ”z)(rmm + 1) + 2= + T T FEITE=p) + TE-DTG=p)

22
. (22)

R 1)+Z1 Vg + oy o+ T Ty T T Ty

@10 ¢ ¢ M
ey i Do+ 2 X0 Doy + 5 X5 Doy | lx1 —x2, 91 = y2)Il, t € (i, timal:

Thus, from (18)-(22) and (M3), we infer that W is a contraction mapping. According to Lemma 3,
W has a fixed point (x*(t),y*(t)) € Y/, which is unique. Therefore, problem (1) has a unique solution
(x*(t),y*(t)). O

Theorem 3. Let (M;) — (My), (My) and for all t € ] such that h(t,0,0) =w(t,0,0) =0, Mijx = Nijx =
O =0, (1=1,2;, k=1,2,...,n) hold. Then, (1) has at least one solution (x*(t),y*(t)).

Proof. For the sake of simplicity, let us denote

B 3 1 1 Zo 2o Q1€ 2,002
""‘{(”1*“2)<r(a+1)*mumwl)*r( 7a+1)+r(fx)r(2 )*( r

Z,017¢ e m
+ F(oc—l)l"(2—a) ) +ZII1 +Zha Zh; Zl
+ - ZhﬁzaZIlJ I }
1

(3—¢)

-

N\H
I\/Ia

o, 3 1 1 2p 2p01P 2p02P
‘i’{(”ﬁ”Z)(r(BH) W*zr(ﬁ—l)+ms—p+1)+r(ﬁ)r(z—p)+r(ﬁ—1)r(3—p)
2501° 22,
e e T )*ZI“ZIN =) ZZJ ZZJ
Z’B(D17 o

leﬂrzﬁzlz] %

o)

and Ry, = max{( +1,+ + 1)}. Define the operator W, as in (17), and a closed ball of Banach space Y’
as follows:

|||\/]3\

U:{(X,U)GY/H(X,U)H ngU} (23)

Similar to (18)—(22), we easily show that W(v) C v by applying (My). W(v) C v indicates that W(v)
is uniformly bounded in Y’. The continuity of the operator W is follows from the continuity of
h, W, Mim, Niym and Oi. Now, we need to prove that W : v — v is equicontinuous. Let (x,y) € v
and {1, 8, € [0,1] with ¢; < €. When 0 < {1 < £, < tq, similar to Equation (18), we have

W1 06, y)(£2) — Wi (6, 9) (@)
_ 1 b o—1 oa—1 cma cmb 1 b oa—1
”W/o [(6— )% — (& — )% Jn(s,* Dox(s),° D ”(S”d”m/e (6—s)

1

x h(s,“ D%(s)," DPy(s))ds —e* (& — )],
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1 b a1 a1 cpa c b 1 b a1
<m/0 [(6— )1 = (& — )% 1] [h(s,° Dox(5),¢ D ”(S”’d”ﬁ)/zl (& —s)

x [h(s, D(s),* DPy(s))|ds + |e*|(ta — €1)%,

—+ 4 _ _ + *
<X “2|Mx,y)u/0 (62— )% — (& — )% ds + LT E2 (o 431 (6 — 0)% + || (2 — 01)2,

S Tw) Mat1)
<RIl - )% - (05 — )] + FEEE Iyl — ) el - )2, 4)

1—¢ 2—¢

2 1 Q Q' Ql-c
gza{(ﬂl +!’L2)(for(oc+l) e T Tore—e T Fla—rG=9 T Fla=1r2—¢)

+ﬁ) e S by e S T+ B S Ty S Ty oyl - ),
<ORy (6 — )%
In the same fashion, we obtain
[W2(x,9) (€2) = Wa(x,y) (1) < ERy (2 — 1) (25)
In addition, we obtain the same result when ty, < {1 < { < ty41, 1 < m < n, similar to (20)
[Wi(x, ) (6) = Wil y) ()] < @Rl — 1) (26)
and

[Wa (%, y)(£2) — Wa(x,y) (&1)] < ERy (€2 — )2 27)

Thus, it follows from (24)—(27) that, for any e > 0, there exists a positive constant o = J{L,, min{%, %}
independent of {1, {, and (x,y) such that [[W(x,y)(&) — W(x,y)({1)]| < €, whenever [, — {;] < o.
Thereby, W : Y/ — Y is equicontinuous. By the Arzela—Ascoli theorem, we know that W: Y’ — Y’ is
completely continuous. In view of Theorem 1, W has a unique fixed point (x*(t),y*(t)) € U, which is
a solution of system (1). [

4. Ulam-Hyers Stability

In this section, we are interested in Ulam-Hyers stability and its types for the solution of (1).

Definition 4. [61] Problem (1) is Ulam—Hyers stable if there exists a constant Ko g = (Ko, Kpg) > 0 such
that, for any € = (e, €pg) > 0,and m =1,2,...,m, there exists a solution (x,y) € Y’ of:

|“D¥x(t) — h(t, D%(t),° DPy(t))] < e,
|AX(tm) - Mlm(x(tm))| <
|AX" (tm) = N (x(tm))| € €as
[AX" (tm) = O1m (x(tm))| <
|“DPFy(t) —w(t, D(t), DPy(1))] < e,
[Ay(tm) — Mam (y(tm))] <

[AY (tm) —Nom(y(tm))] < €,

|AY” (tm) — O2m (y(tm))| <

(28)

corresponding to a solution (,x) € Y’ of (1) such that

|6 y) (1) = (LX) (0] < Kgpe.
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Definition 5. [61] Problem (1) is generalized Ulam—Hyers stable if there exists a function O« g € C(Ry, Ry),
O, (0) = 0 for each € > 0, such that for every solution (x,y) € Y’ of the inequality (28). there is a solution

(¢, x) € Y of (1) such that

|0 y)(t) —

(G X) ()] < Onp€).

Definition 6. [61] Problem (1) is Ulam—Hyers—Rassias stable with respect to (Yo 5, 9, ), where Wy g =
(Yo, Wg) € C(J,R) and o3 = (9, @p) € C(J,R), if, for every € = (ew, €p) > 0, there exists a real

number Ky o, > 0, such that form =1,2,...,

‘Ax/(tm) -
!AXH(tm) -
“DPy(t)

{Ayl(tm)*

there is a solution (C,x) € Y' of (1) such that

(¢ y) (1) = (& X) (1]

‘Ayll(tm)_

Pos

PR,

Pp,

n and for a solution (x,y) € Y’ of:

[“DX(t) — h(t,S D%(1),* D y(t))| < Ya(t),

|AX(tm) = Mim (x(tm))| <
Nim (xX(tm))| € @a,

O1m(x(tm))| <

—w(t,S D%(t),° DPy(t))| < ¥a(t),

|AY(tm) = Mam (y(tm))| <

Nom (y(tm))] < @3,
Oom (y(tm))| <

< K‘l’,(p (\P(X,f) (t) + (Poc,ﬁ)e'

(29)

Definition 7. [61] Problem (1) is generalized Ulam—Hyers—Rassias stable with respect to (Yo, 9,p) €
C(J, R), if there exists a real number Ky o, > 0, such that form =1,2,...,

of the following:

| y)(8) = (&) (1]

|AY (tm) — Nom (y (
|AY” (tm) — Oz (y(tm))]
there is a solution (¢, x) € Y’ of (1) such that

<
))‘ < ppeg,
< @peg,

< KW,(p (ch,[i (t) + Qg

n and for every solution (x,y) € Y’

[“Dx(t) — h(t,° D*x(t),° DPy(t))] < Va(t)ea,

[AX(tm) = Mim (x(tm))] € Paew
|AX(tm) = Nim (x(tm))| € @a€a,
[AX" (tm) — O1m (x(tm))| < (Poceou
|“DPy(t) —w(t,  Dx(1),* DPy(t))| < Yp(t)ep,
|Ay(tm)*M2m ” Ppep,

B)-

(30)

Remark 1. A function (x,y) € Y’ is a solution of the inequality (28), if and only if there exist functions

Fn, Fw €Y and asequence F i, Fm, m=1,2,...

Fwl(t )|<€{5/

‘rh | €x/ rm|
Ax ‘t:tm: Mim (X(tm)) +F m;
Ax ‘t:tm: Nlm(X(tm)) +Fm
Ax ‘t:tm: O (x(tm)) +F m;

Ay ‘t:tm: Mzm(y(tm)) + fm;
Ay ‘t:tm: NZm(U(tmn + /; ms
Ay ‘t:tm: Oom (y(tm)) + F m-

€ots

fm' €g, t€Jm, m

€D*x(t) = —h(t, Dx(t), DPy(t)) + F n(1);

CDBx(t) = —w(t,° D*%(t),° DPy(t)) + £ w(t);
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Remark 2. A function (x,y) € Y’ is a solution of the inequality (29), if and only if there exist functions
Fw, Fw e Y andasequence [, Fm, m=1,2,...,ndepending on (x,y), such that

Frt)] <VYo [Fuw)] <V¥p, [Fun| <@ [Fm|<op te]m m=1,...,n;
€D*x(t) = —h(t,° Dx(t),¢ DPy(t)) + F n(t);

AX [t=t, = Mim (X(tm)) + F m;

Ax ‘t:tm: Nim (x(tm)) + F m;

Ax ‘t:tm: O1m (x(tm)) + F ms

cDPBx(t) = —w(t,C Dx(t),¢ DPy(t)) + F w(t);

Ay ‘t:tm: MZm(U(tm)) + ﬁm;

Ay ‘t:tm: Nom (y(tm)) + Fs

Ay ‘t:tm: OZm(y(tm)) + pm

Similarly, one can easily state such a remark for the inequality (30).

Theorem 4. If the assumptions (My) — (My) hold with

AN
Ag=1——24% 5, 31
0 1—AN(1-A3) 31)

then (1) is Ulam—Hyers and generalized Ulam—Hyers stable.

Proof. Let (x,y) € Y’ be any solution of the inequality (28) and let ({, ) € Y’ be the unique solution
of the following:

CD*¢(t) +h(t,SD¢(t), D x(t)) =0, t #tm, m=1,2,...,1m,
‘DY (t) +w(t D(t),° DPx(t)) =0, t #tm, m=1,2,...,m,
AT lt=t,,= Mim (C(tm)), Al lt=t;= Nim (C(tm)), A" lt=tm= O1m (C(tm)),

(32)
AX t=tm= Mom (X(tm)), AX' lt=t;n= Nom (X(tm)), AX" li=t;n= O2m (x(tm)),
€(0)=¢'(0) =0, °D*¢(Q) = ¢"(1),
x(0) =x(0) =0, “DPx(®) =x"(1).
By Lemma 2.4, we have
CD*x(t) + h(t,S Dx(t),° DPy(t) = F p(t), t# tm, m=1,2...,7m,
DBy (t) + w(t, D%(t),° DPyY(t)) = F w(t), t#tm, m=1,2...,n,
Ax |t:tm: Mim (X(tm)) + Fm, AX/ ‘t:tm: Nim (X(tm)) + Fm, AX” lt=tm= Opm (X(tm)) + Fm,
(33)

AY lt=t,n= Mom (y(tm)) + Fm, AU/ [t=ty= Nom (y(tm)) + Fm, Ay "’ [t=t,m= O2m (y(tm)) + Fm,
x(0) =x(0) =0, Dx(Q) =x"(1),

y(0) =y'(0) =0, “DPy(®) =y"(1).
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Since (x,y) is a solution of the inequality (28) and t € J; hence, by Remark 1, we obtain

r(a Jo (£ =3)[n(s,° Dx(s),° DPy(s)) + F n(s)]ds +e*t?, t € [0, 1],
W Jtm t—s)% 1 [h(s,* D%(s),* DPy(s)) + F n(s)]ds

~ @ L= lft] (4 —5)% 1[5, D (s),¢ DPy(s)) + F n(s)]ds

M= Wll Tt =t5) [ (=) %2 [h(s,° Dox(s),* DPy(s)) + F w(s)]ds
2r(<x 2) PIL: )zfttj‘;l(t]-—s)‘x 3[h(s,® Dox(s),¢ DYy(s)) + F n(s)]ds

(t— J

250 M (X)) + F ]+ 350 (0= 15) [Ny (x(4)) + F ] + 3%
x [01j(x(t))) + Fm] +€*t%, t € (tm, tms1], 1< M <N

r( jo (t—s)P~1[w(s,S D%%(s),c DPy(s)) + F w(s)]ds +c*t2, t € [0, 4],

fr—)f‘ (t—s)P~1[w(s,S D(s),* DPy(s)) + F w(s)]ds
mzj LS (65 = )BT Iw(s, S Dex(s),S DPy(s))ds

y(t) = e Tt t) f)) [, (6518 2wl DOx(s),* DVy(s))ds

fmzj“ll ~t) Jth —5)P 3 [w(s,° Dx(s), DPy(s)) + F w(s)]ds

T My () + F ] + X1 (6= ) [May (y () 4+ Fon] + 2 m

x[O25(y(tj)) + Fm] +c*t2, t € (tm, tms1), I<M<n,

where

1 QQ a—e~1[p (s cpDa cpb d
l"(T—e)/t (Q—s) [h(s,* D(s),* D°y(s)) + F n(s)]ds

Ql—¢ t;
*m[/ (4 = 5)%7? [R(s,° Dx(s),° Dy(s)) + F n(s)] ds
j=17%-1

m

02—« t
a2 / (tj —5)*°[h(s," Dx(s),* Dy(s)) + F n(s)]ds
j=174-1

e* :ZD‘{—

+

Ql—¢ m t;
Ty >y /t (tj — ) > [h(s,* Dx(s), D®y(s)) + F n(s)]ds
=1 b

—2)F(2—¢)
Ql-e m 2—e M ol-e m
+7r(2_£);[1\11j( x(t;) + Fm] + J; O35 (x(t))) + F m] _7F(2—£)j;tj
1 1
x [015(x(t5)) + F m] +m/t (1—5)%3[h(s, D%(s),S DPy(s)) + / n(s)]ds
3Th(s, D(s),* D y(s)) + F n(s [0 (x +Fmﬂ,
j=1

c* =2 {f é/cp(d)fs]ﬁ*"*l [w(s,® D(s),° DPy(s)) + F w(s)]ds
T ' ’ v

1— moy
_ r( (D P Z/‘t t —s) B 2 w(s, DaX(S),CDby(S))+fW(S)]dS
):] 1
2 moog
r( (D P Z/t t —S f5 3 CDOX(S),C Dby(s))“er(S)]dS
VS
1—p m
ﬁztj/t (t5 = 5)P 7 [w(s,* Dx(s),* D y(s)) + Fw(s)] ds
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@l ks N O2—p m . (Dl [*]
r(zip);[NZj(U(tj))+/’m]+r(37p)j (02 (y(t;)) + £ m]

+

Il
A

m
Zt]
] =1

1 ! p—3 cpa c b
x [ozj(y(tjmfmhﬁfmu—s) [W(s, D*x(s), DPy(s)) + F w(s)] ds
(t; —s)P 2 [w(s,S D(s),* DPy(s)) + F w(s [024(y +Fm}]
-1 i=1

For t € [0,t1], we have

ot
x(t) :ﬁ /0 (t— )% [h(s,S D% (s), DV (s)) + F n(s)] ds

Z'Octz o oa—e—1 cpa cpb
e [, @S I DRl Do (s) ¢ s

ZD(tZQ17£ m

Moa—1T(2—¢) P

Z‘XtZ()_Zfs m
Ma—2)rB—¢)

4
[ 5 =902 s Do) DOy () 1 (s s

o]
/t (t; — )% 3[h(s, DOx(s),* DPyy(s)) + F n(s)]ds
j=17 1

2o 20l—e m
Wtziz [ =95l Do) Do) + (sl s @4
Z“tZQl e M Z“t2Q275 m
szl [Nlj(x(tj))JrFm] er [Olj(X(tj))JrFm}

=1
2 1
F(Zocajz)/t (1—5)*[h(s, D1 (s),* Dy1(s)) + F n(s)]ds

+ 2o t? Z /tj (t; — )% 3 [R(s,° D% (s),¢ DPys(s)) + F n(s)]ds
Mo—2) =171 ’ , o " '

tZQl e M
Zt) O35 (x(t5)) + F m] + Zat? Z 015 (x(t))) + F m].
j=1

For computational convenience, we use s(t) for the sum of terms which are free of f; then, (34)
becomes

[x(t) —s1(t)]
1 t x—1 Zu © ax—e—1
<m/0 (t—s) ‘Fh(s)‘dSJrl"(ocfs) /ti (Q—s) |Fh(s)|ds

Z(xﬂl ¢

D(Z Z’lXQ7€ cx3
o 752/ =92 s ds 4 s Z/ o= $)% 3] (s ds
1

1—e¢
+|~(LZ| |/ (t; —$)*3|F nls) |ds+ “Q )Z|Fm|+
j=1

2—¢ M

2 |Fml
_5) = m
Zo

1
x—3 x a3
er/;m(]fs) |/’ h(S)|dS+mj;/tjil(t] s) }f h(s)‘ds
Z“Qlfa m m
e 2 [l ml+ 2 X[
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By utilizing Remark 1, we get

x(t) —s1()]
1—¢ 2—e 1—e¢ 1—e¢
< 1 . Z . 2o Q) n 2o Q) n 2o Q) 22,Q (35)
Moa+1) T(a—e+1) T(l(2—e) T(ax—1)FB3—¢) T(a—1)'2—¢) rN2—e)
2002 2%«
FB—e) Tla—1) x|
Let
o1 R« 2o Q¢ N 2o Q7 ¢ 2o Q¢ 22,017¢
P Ma+1) Tla—e+1) T(gF(2—¢)  Tla—1TB—¢)  Ta—1)T(2—¢) N2—ce)

202 E 2%

FG—e) Mla—1) >

+

Thus, (35) becomes
[x(t) = s1(t)] < Qreq.
Let
[x(t) = ¢(t)| = [x(t) = s1(t) +51(t) = C(1)] < [x(t) = s1 (V)| + [s1(t) — C[t)]-

Using (36) in (37), we have

[x(t) — ()]
<Qieq + L/t(tfs)"‘_1|h(s,°D‘1x(s),C DPy(s)) — h(s, S D(s),c D’x(s))|ds
() Jo
Z'Oétz Q ax—e—1 ca cpb cpa cnb
r((x—e)l (Q-—5s) [n(s,® D(s),° D®y(s)) —h(s,* D*C(s),* D x(s))|ds
a2l &

MNMa—1)r2— a)] —

20M2—¢
T Z/ t — )% (s, Dox(5),° DPy(s)) — hls,c D2C(s),¢ DPx(s))|ds
t1

Mo—2)T

I(o
+Z,‘i‘(t2Ql€)£jil}N1j(x(tj))Nlj(C(t,-))| +%)§|01, t)) — Oy (C(ty))|
% /t1 (1—5)%3[h(s,¢ Dx(s),¢ DPy(s)) — h(s,S D(s),¢ Dx(s))|ds
r(i“fzz) il /t t(t —5)%7*[h(s,“ D(s),* Dy(s)) = h(s,* D*L(s),“ DOX(s))|ds
*%i}tj}lon(x(tj))Olj(c(tj)) +zatzi |05 (x(t;)) — O1;(¢(t;))]-
= =

255

/tj (t — )% 2|h(s,“ D*x(s),* D®y(s)) — (s,  DL(s),* DPx(s))|ds
tj_1

&Z / (t; — )% [n(s, Dx(s),¢ DVy(s)) — h(s,S D*¢(s), Dx(s))

(36)

(37)

‘ds
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Utilizing (M) and (M;), we get

1 @
< _ _ _ _
<Qrex+ Mot D) [wallx = llo + mally — xllo] + Fla—er1) [ llx = Cllo + m2lly — xlo]
2ol 2,02
+w[ml\x Cllo+ m2lly —xllo] + CEIEES (w1l = llo + mally —xllo]
26 Q1 2,Q17¢ m
A 1T — ) - - =% Ljlx— 38
+r((xfl)r(27£) [hallx = Zllo + 2lly = xllo] + 5 ]; 1illx — Cllo (38)
QZ g M 2
To—ay 2 Wl o+ g Zgy il Lo +bally =] + 25
2o Q1
x [malx—Cllo + m2lly —xllo] + T2 o le)HX C\|0+Zo<ZIl]HX*C||0-
After some calculation and rearrangement in (38), we get
2 Qrex
x=Cllo— 77 lly=xlo < , 39
lx—Cllo @ Al)l‘y xllo d-A) 39)
where
1 1 Ql—e¢ 02—« 0l—¢
=R {“1<ZJ(<X+1J T ra—edD) T@r2—o Te—DrG-g Ma—1r2—e
2 Ql-e b Q2 Ql-e It mo
; o I I,
+rw«—n)*wz—a). it g 2t g 2 “}
j=1 j=1 j=1 j=1
1 1 Ql-e 02—¢ Ql—e
M2 {HZ(ZOLF((XH) TTa—e+D) TT@r2—¢)  Ma-DIB—¢)  MNa-Dr2—c)
L2
NMa—1)/]"

In addition, for t € (tm, th} , we have

X(t) :L

mo
ﬁZ/t (6 =) (s Dx(s),“ D y(s)) + Fn(s)]d
j=17%-1
1 il Y
+ t—1 Yy —s)" s, x(s), y(s))+ Fnis)|ds
Ma—1) ,-:1( : tj—l( )% [nls* Dx(s)“ D y(s)) (s)]d
_ 1 - 2 " x—3 ca c b
otz =) /t (t; = 8)%*[(s,° Dx(s),“ D®y(s)) + F w(s)] ds
j=1 j—1
+Z Mujx(t) + F +Z t—t5) [Ny (x(5)) + F m]
j=1
2 Q
r(i“;) / (Q )% [n(s,* D(s),* Dy(s)) + / n(s)]ds
20 1—¢ t
F(Z’LZ/; t —S oc 2 h.(S D% ( )CDby(S))-‘FFh(S”dS
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Z“t2Q27£ Ll

1
Facarga X J, 690 e DR DRyl + (s
j=17%-1

201—¢ m tj
ZatQ th/ (t; — )3 [h(s,° D%(s),° Dby(s)) + Fr(s)]ds

Ma—2F2—e) 57/,
Zot2Qle & 2at?Q? ¢ &
T ]; [Ny (x(t5)) + Fm] + 60 & (035 (x(t;)) + F m]
2 1
* r(i“fz) /t (1—5)%>[h(s,* D(s),* D°y(s)) + / n(s)] ds
Zat?

1
Ma2) Z /t (=977 [1(s, Dx(s),* DPy(s)) + Fn(s)]ds

ZcthQl e M
N2—e)

Z

5[0 (x(4)) + F m] +Zat® D [O15(x(t;)) + F ]
j: j=1

Ol] ( ))+Fm]-

For computational convenience, we use sy (t) for the sum of terms which are free of /-, so we have

[x(t) —s7(t)]

1 t x—1 1 — b ) ax—1
gm/tm(t—s) ‘Fh(s)|ds+mg/t;l(t]—s) |Fh(s)|ds

m m t
|/ (t; — )% 2[F n(s) |ds+ Z| t*tj)2|/ (tj—s)*?
1 tj1

J:l

j=1
Z"X @ x—e—1
x}Fh(s)\derZ|Fm|+Z}(t—tj)||Fm|+m/t_ (Q—3s) |Fn(s)|ds

Z‘xﬂl €

+ D=9 Z/ (tj — )% 2| Fn(s) |ds+77 y Z/ (t; — )| Fn(s)|ds
Z _O_l €
o e ,EZ [ =t as z| ml+ z|rm|

Z‘X ! ox—3 ZOC e ) o—3
T Fa-2) ,Am(l_s) Fn)lds + =) j;/tj,l(tj_s) [Fnls)]ds

2,078 & - [ (t—1t5)?
+r("‘2€)jzl|tj||Fm|+zo¢jzlfm+jzllz’|Fm.

By utilizing Remark 1, we get

[x(t) — s (t)]

4Z0+1 3za+4 ZaQl¢ 22,018 | 2,0%¢
g(r(mﬂ) +r( jtarta—n + +r(<x o T Tleore—g T reeg T Fi-o (40)

2o Q¥ ¢ 2o Q¢
T a—1rG—¢)  Tla—1)r2— )>€‘"
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For computational convenience, let

9 -2 1 4Za+1 3Za+4 2o 2178 22,017 2,07 ¢
et 1) T T2 a—1) 2 Ma—etl)  Mor2—e) " T2—e¢ TTG—0
ZqQZ*E Z-OL.Q17£
e )rG—¢) Tla—Drz—e
Thus, (40) becomes
‘x(t) —si‘(t)| < Qnéq. 41)
Let
[x(t) = C(t)] = |x(t) = sT () + 57 (1) — C(1)] < |x(t) — sT ()| + [sf (1) — C(1)]. (42)

Using (41) in (42), we get

[x(t) — ¢(1)]

<Quen + / (t fs)“’1|h(s,° D%x(s),© Dby(s))fh(s,CD“C(s),CDbx(s))‘ds

1

T(x)

1 & /Y

F(Tz/t (t; —s)* 1|h(s,° D(s),* D®y(s)) — h(s,c D¢(s),* D®(s))|ds
j=1""%-1

m

Fa—p 2 [t I/ (8 =5 2[R(s° DOx(5),° DPy(s)) — h(s, DCLs),E DPx(s)[ds

l — ) — C a C c a c
3 2) Z|(t—tj)2|/[jil(tj—s)“ ®[h(s,© D%(s),° Dy(s)) —h(s,° DL(s)," DPx(s))|ds

j=1
+Z|M1) — M ( (tj))|+Z|(t*tj)HN1j(X(tj))*Nlj(C(tj))|
j=1

Z“tz /Q(Q—s)“**}h(smﬂx(s)CDb (s)) —h(s,° D(s),° D"x(s))|ds

MNo—e) J¢ ’ ’ Y ’ ! X
+ﬂz (tj — )% 2[h(s,® D%(s),° DPy(s)) —h(s,“ D¢(s)," D x(s))|ds

r( t) . 7 7 y 4 7 X

Z‘XtZQZ 3

/ti (t; — )% 3| h(s,® D*x(s),* DPy(s)) — h(s,c DL(s), DPx(s))|ds
1

Ma—2)T(3—¢) pr

201—¢ m 't
+ 72 ro Z [t; |/t (tj — )% [n(s,° D%(s),° DPy(s)) —h(s,  DL(s)," DPx(s))|ds

o
20l—e ™ 22— M

LR L Z\Nn Ny lel))+ S Z|oh —0y(2lty))|
2 1

rfx“t . / (1= 5)%%[R(s* Dox(s),¢ DPy(s) — h(s,* DC(s), DVx(s))[as

‘xtz t
Z/t 5 — )73 h(s,S Dx(s),° DPy(s)) — h(s,  D((s),° D x(s))|ds
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Zcxtzﬂ ) m
Z\tJHOn — 055 (Cl)| + 22 Y [0 (x(t5)) — O5;(C(1))]
j=1
Z' |\01] (t5)) — On;((t))].

Using (M;) and (M3 ), we have
< Quea+ rrarn X —Cllo + rally — xllo] + rrary [alx — Cllo + 2 lly — xllo]
ey [ lx = Cllo + w2lly = Xllo] + arga=gy [Hllx = llo + rally — xllo]

+ 250 Dyl —cllo+ X% Tyl — Cllo+ r(?iﬂ] [mallx = ¢llo + m2]ly —xllo]

2
sy [l — 2llo + mally — XHO}+ﬁ[ml\x—dlo+ml\y—Xl\o}
2.0 (43)
+W[MHX—CH0+MHU Xllo] + Fa3> E) -3 Blx =l
+iei E) - Tl — Cllo + mragy [ lx — ¢llo + wally —xllo]
1—¢ v
*r( 1y [malx — C|\0+H2HU*XH0]+ZHQE Y Bl = llo+ 2o X% Tijlix = Cllo
+3 30 Tyjllx = Clo.
After some calculation and rearrangement in (43), we get
/\* Q(xea
—lo— —2— < 44
lIx—Cllo Hy xllo < A}’ (44)
where
* 2 1 1 Z'(x Z;D‘Q17£ Z(XQ275
A —
1 {M<F(o¢+ D" 2F(cx D Ta—ern " F(Oc)r(2fe) TTa—Dre_o
2,Q1¢ — — z e &o 2,07 &y
1 1 j
Tra—nrz—e " ) g 1’+Z Ut T e J; BT &1
[XQ - 1,
EPRIED WIS )
. 2 1 1 Zo 2,01 E 2,07 ¢
A=t ——— + ——
2 “2(r(o<+1)+r( W a1 T Tla—er ) T2 Fa—DrG_e
N 2o Ql7¢ N 22
MNMa—1)Fr2—e¢) T(ax—1)
On the similar fashion, for t € [0, t;], and utilizing (M;) — (M), we can find
[y(t) — s2(t)| < Qep, (45)
where s;(t) are those terms which are free of / and
1 2p 201 P 20> 2p01P 225 ®1P

L= e TR et D) T2 _p) TFE_DMB_p)  T(B-DF2—p) " T2—p)

2p@T P 22p

TG Trpo1) TR
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and

Qzefg
(1—-Az)

Cllo < (46)

ly —xllo — =24 |l —
YTXIOT T

where

An =20 [ 1 1 Qe QFe ol
T 4”1( (B+1)+F(f37p+1) F(B)F(2 o) (B F3—p)  T(B-1IN2—p)

2 m
G 1)) r2- pZz’ Z]

As =2 L 1 1 Ql-r QP ol-r
4’ﬁ{”<zﬁr(ﬁ+1)*r(ﬁ—p+1)+r(mr(2—o) FB—1IG—p) TE-1r2—p)

")
1))

In addition, for t € (tm, tm“}, 1 <m < n, wecan get

[y(t) —s5(t)] < Qpep, (47)

where s; (t) are those terms which are free of / and

2 1 42 +1  32p+4 2p 2p@17P  225017P  Z02F
Qﬁ: + == + +
COT(E+1)  T(R) 2r(p-1) 2 FB—p+1) TEIF2-p) T2-p) TB—p)
Zﬁ@ZP ZB®17Q

+

FB-DIG—p)  TE_Dr2—p)

In addition,

A Qpep
H‘J*XHO*WHX*CHO < A-AY)’ (48)
where
A*’{ /(72 c by L F Zp0P 0T
3TM\r+ D TR T 2r(e -1 r(rsfp+1) r(mr(zfp) F(Bfl)r(3fp)
2p 0P zzﬁ i ZB i R
TrE—re—p * ) g 2’+ZIZ’ Z 5 TE—p) J.;IZ’
z ol-r I i 1 &
rs ZIZ)JrZ,BZIZ) 5; }
At ,( 2 v 1 Zp 2p®@IP 2p @2
—H re+1) T(R) 2r(—-1) TPR—-p+1) TRIN2—-p) TPE-DTB—p)
N 2p®LP 22 )
rp—1r2—-p) TE-1)

The equivalent matrix of Equations (44) and (48) is given as:

/\; Quex
1 TOAD lIx—Cllo a=A7)
< Q
Aj _ BER
7[1_/4\§) 1 Hy X”O 1-A3)
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Solving the above inequality, we get

1 /\; Quen
l[x—Cllo Ao AoT-AT) 1-A7)
< 4
_ Al 1 Qpep
[y —xllo oA A oA
where ASAS
Ao=1— 274 > 0.

I—AH(T—A%)

Further simplification of the above system gives

HX*CHO < Qae(x /\;Qﬁeﬁ
Ao(1—=AF) " Ag(1—-AA1- AL’
Qﬁeﬁ /\ZQ“EO(

Iy —xllo < A —A3) T A= ADA—AS)’

from which we have

=l Iy =l < G55 + Rt e AT ) AT A A 49
Let max {€q, €g } = €; then, from (49), we get
[(x=Cy—x)l < Kape,
which implies that
[(xy) = (G X < Kape, (50)

where

Qx N Qp n AjQ« n A5Qp
AT=AF) T Ag1=A3) T A= ANA=AF)  AT=ADT=AS) ]

Ky p =

Hence, problem (1) is Ulam-Hyers stable. Moreover, if we set ©(e) = Ky y¢; ©(0) = 0in (50),
then problem (1) is generalized Ulam-Hyers stable. [

(Ms): Let Wy, Wg € PC(J, IR™) be nondecreasing functions; then, for t € J, there are Aa,Ap >0
such that

Similarly,

Theorem 5. Assume that (M) — (My) and (Ms) are satisfied; then, by Definition 6 and Definition 7,
Problem (1) is Ulam—Hyers—Rassias stable with respect to (W, g, @ ,p ), as well as generalized Ulam—Hyers—
Rassias stable.
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5. Example

To substantiate the aforemention demonstrated theory, we supply the following problem:

D*x(t) + h(t,S D%(t),* DPy(t)) = 0,t # tm,

DPy(t) +w(t, D(1),° Dy(1)) =0,

AX |i=tn= Mimx(tm), AX [i=t; = Nimx(tm), AX” [¢=t,,= O1mx(tm),

AY it = Momy(tm), AY’ li=t,,= NomY(tm), AY” li=t,,= O2my(tm),
x(t) =" x(t) =0, “D*x(Q) =x"(1), y(0) =y'(0) = 0, “DPy(®) =y"(1),
0<e0<1,0<p ®d<1.

()

Take ] = [0,1], a =3, =V5,e=3Q =3, a=3b=§t =3p=30 =1 hitxy) =

2
t |x|+|y‘ t _ cost+‘x‘+|y| M -M _ x‘ N - N _ x|
e +740(1+‘x‘+|y )r w(t,x,y) = 470(1+|x}+|y , Mii(x) = Mp(x) = 5+|x s Ni1(x) =Ny (x) = 10+|x
O11(x) = 0p1(x) = S}X“ ‘ By direct computation, we have py = = pj = uj = %, I1 =1 = %
I 2121:%/111 I :%
T~ SN S S S 2Q17¢ N 2,0%7¢
MR\ Piar1) T 2Ma—1)  Te—e+1)  Tal2—¢)  Ma—1)rG—¢)
+ Za01 ¢ 4 R ii Ql_s 3 i .+7Z°‘QZ_£ S 1
Mo—1)r(2—¢) ' Tloa—1) T2—¢) &~ Y7 T3—¢ R

T Ma 0 I\’IS

Z Ql e M 1
e Zh] JFZDcZIl) 23 } ~ 0.680277 < 1.
Similarly,
{( 'y /)( 2 n 1 n 1 n Z[g N ZﬁClep n Zﬁq)pr
MTRI\TB+1) TR T 2r(B—1) " T(B—p+1)  T(BT2—p)  T(E—1TB—p)
Zﬁq)l*p 22’(5 m Z’B(D17 m ch o m
Tre-vre—p t >+ZIZJ+ZIZJ - J;IZJ‘ Z %
Zﬁ(D -

Z Ly +2p Z L + Z IZJ} ~ 0427420 < 1.

Thus, by Theorem 2, Problem (51) has a unique solution. Furthermore, all of the assumptions
are satisfied, so the Problem (51) is Ulam—Hyers, generalized Ulam—-Hyers, Ulam-Hyers—Rassias and
generalized Ulam-Hyers—Rassias stable.

6. Conclusions

In the above study, we have successfully built up existence theory for the solutions of system (1).
The required analysis has been developed with the help of the Banach contraction principle and
Schauder fixed point theorem. We found that the fractional order coupled system is additionally
complicated and challenging as compared to the single FDEs. We also concluded that, if we increase
the order or boundary conditions, then the end result turns into extra accurate. Our results are new
and fascinating. Our methods can be used to study the existence of solutions for the high order or
multiple-point boundary value systems of a nonlinear coupled system of FDEs. Furthermore, we have
presented different kinds of Ulam-Hyers stability results for the solution of the considered system (1).
In addition, we have presented our main theoretical results with the help of an example. In the
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future, this concept can be extended to more applied and complicated problems of applied nature.
The obtained results can be used in fields like numerical analysis and managerial sciences including
business mathematics and economics, etc.
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Abstract: The purpose of this article is to obtain the exact and approximate numerical solutions of
linear and nonlinear singular conformable pseudohyperbolic equations and conformable coupled
pseudohyperbolic equations through the conformable double Laplace decomposition method.
Further, the numerical examples were provided in order to demonstrate the efficiency, high accuracy,
and the simplicity of present method.
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1. Introduction

In recent years, many mathematicians have been studying and discussing the linear and nonlinear
fractional differential equations (FDEs) which arise in various fields of physical sciences, as well as in
engineering. These types of equations play a significant role and also help to develop mathematical
tools in order to understand fractional modelling.

However, there are many different methods to obtain exact and approximate solutions of
these kinds of equations. In [1], the author point out a major flaw in the so-called conformable
calculus. Recently, many researchers have also paid much attention to study the numerical and exact
methods for finding the solution of conformable differential equations. In [2], the authors proposed
so-called conformable derivatives. In [3], the conformable heat equation was studied. Similarly, in [4],
the nonlinear conformable problems were also studied. The authors in [5] discussed the concepts
underlying the formulation of operators capable of being interpreted as fractional derivatives or
fractional integrals. In a very short period of time, many mathematicians became interested and
provided mathematical models related to conformable derivatives, for the details we refer reader
to see [6-9]. In [10,11], the conformable derivatives were applied to some problems in mechanics,
and in [12] total frational derivative and directional fractional derivative of functions of several
variables were studied.

In order to solve the conformable derivatives, the single Laplace transform method was first
introduced and used in [13]. In [14], the idea was extended to the conformable double Laplace
transform. In [15], the modified Laplace transform was applied to solve some ordinary differential
equations in the frame work of a certain type generalized fractional derivatives. The authors
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in [16] applied the double Laplace decomposition method to solve singular linear and nonlinear
one-dimensional pseudohyperbolic equations.

In this present research, the main objective is to solve linear and nonlinear singular
pseudohyperbolic equations by using the conformable double Laplace transform decomposition
method, which is a combination of the conformable double Laplace transformation and
decomposition method.

2. Properties of Conformable Derivative and Conformable Double Laplace Transform

In this part, we present some background about the nature of the conformable Laplace transform.
In the following example, we present the conformable partial derivatives of certain functions as follows.

Example 1. Let p,v € (0,1] and a,b,m,n, A, u € R, then the conformable derivative follows

aa}; (au (x,t) +bo(x,t)) = giﬂ +bgyu
T ) < e
E)x?’ (N TT) = A
m

a]/ ﬂ n L

v \ u v
oM X ny AN v

s () (5) = () ().
x

H
oM ) Xt ) v
w <Sll’111 (;) s (;))

Next we recall the conformable single and double Laplace transforms, see [14,17], repectively.
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« N
- | = =
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Definition 1. Let f : [0,00) — R be a real valued function. The conformable single Laplace transform of f is

defined by o . .
() =)

%, %) be a piecewise continuous function on [0, co) X [0,00) of exponential order

sup{x" tv}>0 and Mgl.
pov ea™ +bi-

Similarly, if we let u (
and for some a,b € R,

Then the conformable double Laplace transform is defined by

- L u
LQL}’ (u <x—,t—)> Fuv (p,s) / / e s fTu <x t ) =gt dx (1)
pov pov

where p,s € C, 0 < p,v < 1 and integrals by means of conformable integrals with respect to x
and t, respectively.
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Further, the first and second order partial derivatives of the conformable double Laplace transform
with respect to ’% are given by

wyy [OFu
Ly L} n = Puu,V(Prs) - Uy (0,s), ()
oxt
9%ty ol v
M _ 2
LyLy <ax—2’4> = p-Uu(ps)—pU, (0,s) — LY <ax14” (0,;)) . 3)
Similarly, with respect to % they are given by

aV
Ly (aw) sUyy (p,s) — Uy (p,0), @)

0% A °
Li‘Lﬁ(aﬂv) = Uy (p,s) —sUy (p,0) — Lk (atv <7 0)) ¥

In the following examples we state some conformable Laplace transforms of certain functions
which are useful in this to Examples 3, 4, and 5.

Example 2. In this example we calculate the conformable double Laplace for certain functions

L[] = 1a 4] = %.
31
2. LhLY [("7) sm(‘(%)} = LyL; [(x)¥sin(t)] = AT
3. LELY |( [ "7 cos( ] LyLt [(xcos(t)] = plz szil
4 LIy [4( ) 4sm< )] = LyLy [(4 — 4sin (£)] = m.
5. LILY [ (4- 4cos( )} [(4—4cos (t)] = ﬁ.

The next result generalizes the conformable double Laplace transform, see [14].

Theorem 1. Let 0 < u,v < 1 and m,n € N such that u (x—’l Lﬂ) € Cl(Rt xRT), and

u’v
I = max (m,n) . Further, we also let the conformable Laplace transforms of the functions be denoted by

Xt Qmiy My
u <?,;) e and S Then

YT _
L?;Ltv(axm#”<7'7>> = Uiy (pys) = p" 71U (0,5)

nov
m—1 i i v
_ m—1—iyv v
)

anV x}l tl/ 1
Ly <8t"“u <7,;>) = s"U, (p,s) —s"'U, (p,0)
o xt
n=1—j 1 20
e (G ()

g (At YA (i
i < u v) me gt <7’?>

denotes m, n times conformable derivatives of function u(x,t) respectively.

where

269



Mathematics 2019, 7, 949

Theorem 2. If the conformable double Laplace transform of the conformable derivatives % is given by

Equation (4), then the double Laplace transforms of

M\ 9 xH v xH xH Y
(7) wf(??) and ug<14 v)

g EGY) - ) .
£ (eu[gf) - ()

Proof. Using the definition of conformable double Laplace transform for Equation (6), we get

i X "
LVLU[ x } / / e P TSy (’; ty)t” Lxt=1dt dx, )

by taking the "th derivative with respect to p for both sides of Equation (8), we have

n TR n "
ddp (L”L" {f L D / / ddpn<*P7*5*f(x t>)t” Len=1 4ty
" TR
:(_1)"/ / (%) P tV*IxF‘*1f<x7,%)dtdx

o Jo
gy (XN A
= (F1)7 Lk Kﬂ) f(ﬂ v

and further we obtain

o e () () ()

Similarly, we can prove the Equation (7). 0O

are given by

and wheren = 1,2,3, ...

3. Conformable Derivatives Double Laplace Transform Decomposition Method Applied to
Singular Pseudohyperbolic Equation

The main aim of this section is to discuss the applicability of the conformable double Laplace
transform decomposition method (CDLDM) for the linear and nonlinear singular pseudohyperbolic
equation. The pseudo-hyperbolic equations arise, for example, in the description of the electron
diffusion processes in a plate, and they also arise in hydrodynamics in the study of fluid motion
with an alternating viscosity In this study we define the conformable double Laplace transform of
the function u ( ) by Uy, (p,s). To illustrate the idea of our method, let us suggest here two
important problems.

The first problem:
Consider the linear pseudohyperbolic equations

®'u w9 [xMotu o oMtV [ xk oty xbt v
o X axt (7@) X oxor (7@) =f (77)’ *t>0 ©)
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subject to the condition

u(x,0) = fi (%) , w =f (%) , (10)

where f ("” tV) f1 ( ) and f> ( ) are source term and initial conditions, respectively.
The method:

In order to obtain the solution of Equation (9) by using conformable double Laplace transform
decomposition methods, we applying the following steps:
Step 1: Multiplying both sides of Equation (9) by the term 2=, we have

xHoMu o [xt Mu oMty [ xl 9hy xt Y 1
oo (7@) ~ owar (7@) = ( ) (1
Step 2: Applying conformable double Laplace transform for Equation (11) we get
g [P [ (et | 9 (aar
Laly {;4 o | = Wb |5 u oxt + oxior u oxt
wry [2 (X
sty 5y (.0 (12)

Step 3: On using Equations (5)—(7), we obtain

_% $2Uy, (p,s) — sUy (p,0) — o a(t’f' )} LELY [¥] - dp {L*‘Lv (f(%%))} (13)

. "u (%,
where the conformable Laplace transforms of 1 (’;—z, O) and % are denoted by

0"u (p,0
U (.0) = F; (p,0), “5E0 —  (p,0)

ot [ xH otu QMY xH QMY
= o (7@) t owar (7@)

using given initial condition Equation (13) becomes

respectively, and

d 14 14d 1, 14d
ap [Upv(p,s)] = g@Fl (p,0)+ ;@Fz (p,0) = ZLaLi [¥] + Q%Fy,v (p,s). (14)

Step 4: By applying the integral for both sides of Equation (14), from 0 to p with respect to p,
where p is transform of the variable %, we have

Fi (p,0 F (p, 1
UW(P/S)Z%JF 2(:27 / LYLY [‘P]dp+ —Fuv(p,s), (15)

where Fy,y (p,s),

Fi (p,0), and F, (p, 0) are conformable Laplace transforms of the functions f (’;—f, %) ,
fi (%’), and f (%) respectively.
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Step 5: By taking the inverse conformable double Laplace transform for Equation (15), we can
i
n’v

xt ot xH tv xH 1,11
(o) =n () 0a () + s [ahee)

a1 g
—L,'L;! {?/O LELY [¥] dp} (16)

compute the solution u ( ) as follows

where L;lL; ! indicates the double inverse conformable derivatives double Laplace transform. Here,
we assume that the double inverse Laplace transform with respect to p and s exists for each term in the
right hand side of Equation (16).

Step 6: The conformable double Laplace transform decomposition method (CDLDM) defines the
solutions u(’%, %) with the help of infinite series as:

Xt tY — Xt tY
(e %)= 5 (0) “7>

By substituting Equation (17) into Equation (16), we obtain

(51) = () e e
1L le /Op LALY aa; (’;f aa;; (nojou,q)ﬂ dp}
Ly { o vt [(a,ﬁ;; (ﬁi))} dp] '

The zeroth component 1, as suggested by Adomian method, is always identified by the given

e

n

!

(18)

initial condition and the source term L;lL; 1 [S%FW (p, s)] , both of which are assumed to be known.
Accordingly, we set

o (5) = (2) 20 () i L]

The other components 1,1,k > 0 are given by using the relation

xt Y o [P, [ OF [ xt My

41 < u 1/) ~Ly ks {37/(] Laly oxH ? oxH dp
1 P outv xH oty
11| 1 Hyv R
Ly Ls {52/0 LiLs {Bxﬂat’/ ( W oxt )} dp} ! (19)
the first few components from the last recursive relation are, at k = 0,
xt [P [ O xF otug
uy (7/ ;) 7LP Ls |:57/() Lth w ? ok dp

1 (7 oMV xH oty
-1 1 ppv X7 07ug
Ly'Ls {52/0 LeLd {axi‘atv <]/l oxt >] dp} ’

272



Mathematics 2019, 7, 949

atk=1

XN [ [ X ok
2 (77) = bk {7/0 b | o )|

1 qr oMV [ x 9ty
_og-1-1 | b Hrv x0Ty
Ly'Ls {52/0 Lk {axi‘at" ( W oxt )} dp} ’

N TN I S TR I L A < s )
u3 (7,;> = —L,'L; L—Z/O LY |5 o dp
1 /7 oMty [ xt oty
_ —17-1| 2% Hrv AT 2
LyLs Lz ./0 ExlLi {Bxl‘atv (y oxt )} dp} ’
etc. The important terms used in infinite series depend on the problems and may be three terms or

four terms, etc.
In order to give a clear overview of this method, we present the following example:

atk=2

Example 3. Consider singular conformable derivatives in one dimensional pseudohyperbolic equations with
the indicated initial condition

'u  u ot [xMotu woOMTV xF oty XN
A xFoxk \ poxt ) xFoxFor \ uoxt) w) S\

—4sin <i> — 4 cos <ﬁ> , (20)
v v

and
I Ju ﬂ,O uy 2
u (i/o) =0, M = <i) ) 1)
p ot "
By using the aforesaid method subject to the initial condition, we have
AUy (p,s) 1 oy [ @ OF (xtotu pooMtv [ xl oty
—L 1 = S| L= = )+ 4 i
dp s xtoxt \ u oxt xt oxtotV \ u oxH
3! 4 4 3!
- 22
TPEET]) D) @] e 22
taking the integral for Equation (22), from 0 to p with respect to p, we get
_ 1 (P [ oF [xtolu oMty [ xH 9ly
Unprs) = =5 | Laki L)x“ (7@ + axrar \ uowr )| P
2 4 4 2!
52 (23)

Cp32(s2+1)  ps2(s2+1)  ps(s2+1) + p3s?’

Employing the inverse conformable derivatives double Laplace transform to Equation (23), we get
xt ot _ 1 [P, [0 (xFotu TV [ xH 9ty
" < T 1/) = Lk LZ ./0 Leli oaxt \ p ox# + ot i oxH dp

2 v v v v
T <ﬁ> sin (i) 4 <t—> 1 4sin <t—> +4cos <t—> 4, (24)
u v v v v
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by substituting Equation (17) into Equation (24), we obtain:
20) - o[ (5 )
= —L;'L LELY | == | === Y ua | | dp
— ( P oxt \ p oxt =
1 [P oHtv xH ot &
11| L prv | 90 [ X 97
1L LZ/O AL [axl‘atv (ﬂ o Zw)} dp}
n=0
m 2 v v v v
+ <L> sin (t ) —4 <t ) +4sin <t ) + 4 cos (t—> —4.
u v v v v
By applying the conformable double Laplace transform decomposition method, we obtain

u v v v v
u0:<x—> s1n<t >74<tL >+4sin<t—>+4cos<t—>f4,
1 v v v v
eventually, we have the general recursive relation, given by
N S [P [ OF (X oMy
Uy ( P v) = —L,'L sz ./0 Lili |5 i axh dp
1 /7 oHtV [ xl ly
11 L Hrv X7 07Uk
Ly'Ls Lz/o Lk {axi‘atv ( W ooxt )} dp} !

Ms

where k > 0, therefore

1 rr

w = —LI;IL;l le /Op Ly [4 <%‘> sin (%) +4 (9;4) cos <%)} dp}
p
= 5 G ey ) )
wo= L)L lep(s;:-l) p(sfil)} =L [52 (sz4+1) T3 (s§s+1)]’

by using partial fractional and inverse Laplace transform with respect to s, we have

= L1 4 n 4s
Do 2241 2(s2+1)

I E RN S S
- 2 241 ' s 241

v v v
= 4 (t—> —4sin (t—> +4 — 4 cos (t—> ,
v v v

1 ot [ xt oF TV [/ xl g
_r—1y-1| = v (T 7 -
by Ls { 2 /0 Lilf L)xi‘ <y E)xi‘u1> * oxHaty (;4 Bx”ulﬂ dp}
1
2

—L'! { / LYLY [0+ 0] dp} —o0.

and
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In the view of the above equations, the series solution is given by
Zun = up+tu+uy+...
n=0
w2 v I i I
= <x7> sin (—) —4 (—) +4sin (—) +4cos <—> —4
U v v v v
v tv v
+4 <7> —4sin (—) +4 —4cos <7> +0+0+...
v v v
Hence, the exact solution of Equation (20) is given by:
(5) - (G = (5)
u{—,—|=(—) sin{—|.
BV I3 v

Second problem: Consider the following general form of the nonlinear singular pseudohyperbolic
equations in one dimension of the form:

0%y w9 [xMotu oMtV [ xk oty N\ otu o, (x
i da (i g) ~ wawan Geg) (o) vsa o=, (%) @

with initial condition

1
xH xH 'u (%,0) xH
jua = = S N iy A s 2
M(Hﬂ) &<H>' ot &<H>' 2
where the functions a(%‘) are arbitrary. In order to obtain the solution of Equation (25), we use the

following steps:
First step: By multiplying Equation (25) by "7“ and taking conformable double Laplace transform,

we have
gy [#10] g [ (a3 9 (it at
Ll {y otV = Laly oxt \ p oxt +8xVBtV u oxt

ppe o XX 00 X ]y [X (6 27
+LELY {a(x) P yuaxl‘ Mu + LYLY %f )] (27)
vu (2t
" u 7,0) .
where conformable Laplace transform of u (%, O) and —;— are given by
0"u(p,0
w@mzawmﬁi%J:@@m. (28)

Second step: Applying Equations (5)-(28) into Equation (27), one can get that
d 1d 1d 1 4 1d
ap (U (p,s)] = g@cl (p.0) + ;@GZ (p,0) = FL:Li [@] + Q%Fm (p.s), (29)

where,

ot [ xt otu OV xM 9ty xtxt otu o xt 5
“3 (ow) e (o) 20 -

AV A A TRt w
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Third step: By taking the integral for Equation (29), from 0 to p with respect to p, where p is a

'
transform of "7, we have

Gi(p,0) Gy (p0) 1 [P
Upy (p,s) = l(f L+ zs(zp )’?2,/0 LiLy [@]dp + Fuu (p,s).

(30)

Fourth step: Using CFDLDM, the solution can be written in the infinite series as in Equation (17).

By using the inverse Laplace transformation to Equation (30), we obtain.
xt xt tv xt 1,11
(%) = () T () v (a8 0]
1,11 (P
—L,'L! sz /0 LELY (@] dp}
furthermore, the nonlinear terms u g}xﬁ and u? can be defined by:

}l
w? =Ny = 2 Ay, ua

o= L

We have a few terms of the Adomian polynomials for A, and B), that are denoted by

1 [ee]

b <W{ 12 un])A—o,
1 [ dat >

s o))

where n =0, 1,2, ... By putting Equations (33)-(32) into Equation (31), we get

© o " " 1
Zun (X > -5 (x )+ Y <x >+L 1t L P},,,,(p,s)}
n=0
o (o (&
—L,'L; 57/0 L | g g () )| 20

and

N [[(xh ontv [ Xt
S Pt N KLY T AvHAFY wlv
L,"Ls _52/0 LxLt _( U oxHotv (,;]un < I V>>>} dp:|

(1 v [y [ &
—L;t 7/ Ly | = A
(1 r &
+L L 5 LiL |:a(x)VZBn:| dp:|,

L n=0

J0

U
=
—

the few components of the Adomian polynomials of Equations (33) and (34) are given as follows

Ay = uf,

A1 = 2uguq,

Ay = 2ugupy+ u%
Az = 2uguz +2uuy,
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and
a”uo
By = ”OW/
_ oMuy "uy
By = uoor Lt P
_ a”uz 8”u1 a”uo
By = w5 P T T
_ g oty g ot
B = uoaxy + 1W+ 2W+ 3550 37)
Hence, the zeroth component uy from Equation (35) is given by
xt v Xt 1,91
w () =0 () e 5 () vt [ o) &
and
B\ a1 |1 P, [ OF [ xt oMy
”k+1<y ) = Lk {7/0 LLt | o o )| 9P
1 p xH oty
171 # k
e | ()| ]
+L;1L;1{ / L”L"{ AkuBk} dp} (39)
where k > 0.

Example 4. Consider the nonlinear singular pseudohyperbolic equation in one dimensional is governed by

0%u oot (xtolu pooMtv [/ xl oty 1xt oHu X\ _w
- — )| - —— | —z=—u—+4ut=(—) e v, (40)
o2V xloxk \ u oxk xt 9xHotY \ p oxt 2 u o oxt 1

subject to the following initial conditions

xH xH 2 9'u (951_10) xH 2
—0)=(=), w2 —-_(=). 41
”(ﬂ ) (H) ot <H> @

The conformable double Laplace transform decomposition method leads to the following scheme

Gr5)-()
u |\ —,— | ={(—) eV,
BV H

and
ot — —-17-1 (1 rr Hyv [ ot xH oty xH aFH“VuO
ul(yl 1/> = Lp L _52/0 Ly L} EANTD + 19X dp
(1 qr [xM  oFug  xM
—“17-1 |2 Hrv 0
Ly Ls | s2 ./0 Ly L u TRFT u }dp]

1 p [ [ xt v xt v
= Lt [Tk |4 (5 ) et a3 ) e T ld
p s _52 0 x =t ] U e U e p

-1 v r x” 5 W xl,( 5 W

—Lyt 7/ ALy (=) ev = (=) e ¥
p s _5210 xt_ i e i e dp
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proceeding in a similar manner, we have

uopv uoqv uoqv
Mz(i,i)zo,u3(i,i>:0, u4<x7,t7>:0,”'
pov v v

so that the solution u (%, %) is given by

xt v > xt
M(—,*) = Eun<— 7>:u0+u1+u2+.”

’
n=0 pov

2 w
Z ) e v
H

and hence the conformable solution is given by

nop N2
u <x—,t—> = (x—> e . (42)
peov I3

By substituting y = 1 and v = 1 into Equation (42), the solution becomes

Il
/N
=

P (x, 1) = 2%

Conformable double Laplace transform method and Singular conformable coupled
pseudohyperbolic equation.

In this section, conformable double Laplace decomposition method is considered for the
one-dimensional conformable derivatives coupled pseudohyperbolic equation since the method is
much simpler and more efficient in the study of linear equations.

The thrid problem: Let us consider the conformable derivatives coupled pseudohyperbolic equations

Pu _p (A N g I (O N (A
otV xt 9xt \ u axi" ) T xr axror i o co f w'v

%o w9 [xt M oMtV [xit ot xt Y
~fr g (i a0) ~ B (G aw) von = s(0%) @

otV xi 9xH

subject to

o(50) =7 (%), L () mav (30) —a 0, “F - (5) @

where the linear terms % % (% %) are the so-called conformable Bessel operators. Here, f (%, %),

g (%, %) f ( %’) fa ( %) , 81 (%’), and ¢, (%) are given functions, ( is the coupling parameter.
One can obtain the solution of Equation (43), by using the following steps.
(1): Multiply both sides of Equation (43) by "7“, we have

X 9%y ot [xt oM OHFV [ xi M xH xH xt Y
oo W(? w“) ~ axior (7 w“)*%” = 2/ (7'?)
X

Xt 9%y ot [ xH oF oHtv xH ot x# M xH 45
W o T oan (7W)TW (7 aw”)* Gt = 7g(??>' @)
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(2): We apply conformable double Laplace transform on both sides of Equation (45) and single
conformable Laplace transform for Equation (44), we get

o [P [9(0 N9 G N o
Lali [pt e | = Ll |5 u oxk ") axiar " aart) ~¢ u vt u f w'v)l’

ppy [20] ey [0 (2 o LR I S N £ i

LxLi { ot | Lali oxt \ u axi ) T axiar U o’ ¢ u v u 8 w'v)|’ (46)

on using theorem 1 and theorem 2, we obtain

%[UW(P'S)] = %%H(P’OHS%%&(M)
141 [ (5 ) * v (5 art) =45
raap (1 (55)])-
B Wwpo)] = 160+ 1 G (p O
41 [ (5 ) + s (3 ) = 450
AL

(3): By integrating both sides of Equation (47) from 0 to p with respect to p, we have

EF(p,0)  FE(p0
Uu(p,s) = @+ z(s;; )

1 (P oy, [oF (xt o QMY [ xi M xH
@, {W (7 w”>+rwatv T T
1 p(d (Luy [, (x" &
ra (G ([ (5 0))))

G1(p,0) n Gz (p,0)

V%V(PIS) = s — 2

71 P Ty oM xH ot aP’*V xH ot _ xH
2 Jo Ll {w (7 W”)* o \w awr?) = S|P
1 p/d . xH Y
(G (s G 0)1)) v 8)

where F; (p,0),F (p,0),G1 (p,0),and Gy (p,0) are conformable Laplace transform of the functions

fi ("7") , f2 <’;—7> ,81 (%), and g» (%), respectively. By applying double inverse Laplace transform
for Equation (48), we have

AN O SR P e
u(#’V) - f1<u>+vf2<ﬂ>+L” = Lz/o (drﬂ(L"L[ AT i
1 qr M [l
_r-1y-1 |t v | O (A Y
e [ e 5 (5 )| ]

1 (P oK tv xH ot xH
e e O Hpv | Y (AT _
bt {2/0 bk {axﬂatv <;4 w“) o ”} d”} @
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and
LA N LN & 111 /” d (rupl, (28
U(#’V) B gl(ﬂ)+ g2<u>+L &l Lz o \ap BR800y i
P oM xH oM
1! {52/0 Ly {ax” <7 ﬁv>}dp}
N R R i S ) x#
—L,"L; L—Z/O LY LY Py ?WU —gzu dp| . (50)

The conformable double Laplace decomposition methods represent the solutions of Equation (43),

by the infinite series
uoqv o uoqv uoqv uoqv
(rv) =5 Gr) (e 8) -5 (0 5) o
uw'v = uw'v w'v = uw'v
By substituting Equation (51) into Equations (49) and (50), we get
xt Y _ xt [ pfd xt Y
w(e) = Go) e (o) e [5 ) Gy (e (5 5)]) o
(1 r  (xn [ &
—17 -1 H
PP I T AR B o T O
“L b g o \ B S \ e (B0 ) )] )P

1 &
+L, 'Lt | S Lol {g =y v,,” , (52)
s K n=0

ngk

HMS

and

=
L0

A X\ [t o [Loppfd ([ (X
Un(yry) = g1< >+ gz(y>+L L Lz/o (dp(LL g gy dp
IR B L T A L
Lyl ;z/o (Lfo axi \ o (%) || )4
7171 -l T LN R
LI | 5 /0 LRLY | 5o i ngovn dp

1 we
L | L [g % y uﬂH . (53)

Our method suggests that the zeroth components 1 and vy are identified by the initial conditions
and from source terms as follows

o o 1)) e [ (e (5 0))a)
() o () ot [ (G (b ()] o0

o
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The remaining terms are given by
T I ot [ xt ot
W = —L, 'L {57/0 <L§Ly {axi‘ <? muk)D dp}
1 4 oHtv xH oM
_r-1y-1| & Wyv| % (2 7
s [ I (8 [ (5 ) )

1.1 11 xH
+LP1L51 L—zLXL, {g ?ka , (55)
and
a1 g o [xt o
UVpp1 = 7Lp1leLf2/0 (LﬁL}/ {axl‘ (7 vaﬂ)dp}

g [ L7 (g [ O (M O

~LyLs [;2/0 Lelt | geraw \r 3 )| ) %P

1 "
+L, L [?Lth [g %ukH . (56)

Here, we assume that the double inverse Laplace transform with respect to p and s exists for each
term in the right hand side of the above equations.

To illustrate our method for solving the conformable derivatives coupled pseudohyperbolic
equations, we will consider the following example:

Example 5. Consider the following homogeneous form of a conformable derivatives coupled pseudohyperbolic equation

A TR e G/ W TN A WY

oty x# 9xt \ p ox# xt OxHotY \ u oxH

aZuU ]’l a]l x}l a‘u ]’l a}l+1/ x}l a}l

9 T o (7 w”) X oxor (7 W”) - =0 67)

with initial condition
ﬂ 2 am(%,o)i_ xi 2
w) ' ot B m
S N0 (50) _foy? 58
v 7/ = 7 v 7 . (58)
By applying above method for Equations (57) and (58), we obtain
G9-G) -G
L e el (=) =
0 Bov H w)ov
[1 v [ o [
-l Brv X o
Ly'Ls »s2 0 (Lth oxH (;,1 oxt (ngou”>>}) dp:|
PR I T AR B e T O
_LP Ls 57/[) LXLt EIIEIT 7 W nZ:Oun dp

1 xt &
T SZLXLt[ ZvnH, (59)

=
7N
=%
°
S—
|

| ngki

n
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and
L (rd) - () -G)%
| — =) = (=) - (=) =
n=0 ! pov H " v
N ar (x g (&
s (e [55 (5 75 (£)) )]
p bs -52 0 X o 7 ok ,;) n
(1 » v [ gn [
171 p
it [ (o v (3 o (S )] ) ]
L n=0
]t &
—L'L | FLale [ = Y ua| |- (60)
L H n=0
By applying equations Equations (54)-(56), we have
X\ 2 X\2 xH\2 xh\2
o = () -G 5= -(0) 5
H wjov H w) v
[1 [0 [xt oF MV [ xi xt ]
e o o i
mo= Lk _szLth | xt <y oxh 0> +8x"8t” (y oxH u0> + u vo"
2 /N 1 (N 1 (x\2(\?
-0 2 (50) (?) () (5)
[1 [oF [xI oM oFTV. [xi ¥ x* 1]
e X o7 X X7
no= Lk _szLth | ox# <y axl’%) + axiar (y axﬂvo) + u MO__
2 /N 1 /N2 N1\ 2
- 50 00 6) -G )
(1 [o# [xI oF WV [ xl QK a7
— _gy-ly-1 2 (T IR -
o= Lk _szLth | oxH (pt E)xi‘m) t o (y 8x“u1> + yvl__
2 (NP 1 ar\? >
-0 10 () -m ) (5)
[1 [oF [xH oHtV (xi oH xH
R, e X
= Lk _szLth | oxH <y axl‘m) Bxl‘at’/ (y oxt l) yul
_o2(tN 1 N INEANTAY
T3\ 24 \ u 120 \ ¢
and
1 ot [xt oM oHtV [ xi QK
— _gy-ly-1 2 -
s = ~LyL LZLXLt {i)xi‘ <y oxt 2>+axﬂat" <;4 i)xi‘u2>+ ”
1/ 1 (N1 (x\ X\ 2
- E(?) 1260 <?> +%<7> <?> 5040( ) ( >
1 ot [xt o oHtV. [xi gt
— _y-ly-1)z — I
o= Tkl LL"“ {a (u ot )*axﬂatv<y axﬂ”)+ H
1/ 1 N\ 1 (a\ X\ 2
=5 (6) e (6) o () (5) - () (0 )
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and so on for other components. Using Equation (51), our required solutions are given below
, )2 #\3 o\4 )
uxﬂtt = ugtu+up+uz+..=11 t”+v LVARNERN. i
wv oA e v 3! 4 )\
w2 w3 w4
(2.) ) ), )
v —,—
w'v

t 2
v+ +vtozta=1——+ - + — <*>
v H
and hence the exact solution becomes

2! 3! 4!

() -G =(8)- ()

u({—,—|=(—)ev, v|l——)=—) e 7.
v M pov M

By taking y = 1 and v = 1, the conformable solution becomes

2 ,—t

e, v(xt) =x2

u(x,t)=x et

4. Numerical Result

In this section, we shall illustrate the accuracy and effciency of the double conformable Laplace
transform method by numerical results of u(x,t) for the exact solution when y = v = 1, and
approximate solutions when y and v taken different fractional values in Equations (20) and (40),
which are depicted through Figures 14, respectively.

The three dimensional surface in Figure 1 shows the exact solution of Equation (20) in standard
form of singular pseudohyperbolic equation at 4 = v = 1. Figure 2 compares the approximate
solutions of Equation (20) when t = Z. In Figure 2a, the numerical solution at 0 < y = v < 1, in this
case u(x, t), increases hastily at fractional derivative decrease, Figure 2b shows the solution at = 0.99
and v = 0.95,0.90,0.85 and we see u(x, t) increasing regularly when v decreases, and in Figure 2c we
can observe 1(x, t) increasing slowly at y = 0.95,0.90,0.85 and v = 0.99 when u decreases.

0E ot
04

02+

: 0.2
0o

Figure 1. The Exact Solutions u(x, t) for Equation (20) when y = v = 1.
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Similarly, the exact solution and approximate solution of Equation (40) were demonstrated
in Figures 3 and 4 when t = 1. In the case v = p = 1, we get the exact solution of a singular
pseudohyperbolic equation, as seen in Figure 3. Figure 4 shows the approximate solution of
Equation (40) with different values of y and v. Figure 4a gives plots of the behavior of Equation (40)
when 0 < y = v < 1, in this case the function u(x, t) increases quickly, and in Figure 4b we have
obtained the solution for the values of y = 0.99 and different values of 0 < v < 1, in this case the
function u(x, t) increases gradually, and Figure 4c gives the behavior of Equation (40) at v = 0.99 and
different values of j, in this case the function u(x, t) increasing tardily.

It is clear from the solutions of Equations (20) and (40) that the conformable double
Laplace decomposition method has good agreement with the exact solutions of the problems.
The fractional-order solution of these two problems and exact solution of integer order problems
are equal at 0 < ¢ = v < 1, in this case we have no error.

05 ; 7 03
+ uev=095 * +  y=095
045 o +
p=¥=0.90 o 03 ¥=0.90 +
04 * umv=08s + ] * =085 y
© Exact Sal * < Exact Sal .
03 0.25
03
02
= 025 B
0s 015
015 01
0.1
00s
005
o . . . . . . o . . . .
0 005 01 015 02 02 03 035 04 045 05 0 005 01 045 02 025 03 035 04 045 05
*
(a) (b)
045
+
copE095 o
oAy =00 + ]
+ =085
W +
U3 o Exact Sl #F
03t 1
J
.
025t 4
(o)
- Q
02t 1
015 1
01t 1
005t 1
o . . \ ,
005 01 015 02 025 03 035 04 045 05

(0)

Figure 2. The solutions u(x, t) for Equation (20) for different values of y and v when t = Z. (a) Plot
solutions u(x, t) for Equation (20) at y = v. (b) Plot solutions u(x, t) for Equation (20) when ;1 = 0.99
and different values of v. (c) Plot solutions u(x, t) for Equation (20) for different values of y at v = 0.99.
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0

0z
0

Figure 3. The Exact Solutions u(x, t) for Equation (40) when yy = v = 1.

07 : : : : : . . . : 035 . . . . } .
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o5k L=v=090 1 03 ¥=0.90 +
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015
0.1
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L L L i} 1 1 L 1 1 L 1
oo 01 015 02 025 03 035 04 045 05 0 005 01 045 02 025 03 035 04 045 05
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(a) (b)
045
4
vopE09s o
0ar 4=0.90 Pl
+  p0Es *
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03f 4
B
B
D2t A
=
D2t 4
o5t 4
o1f 4
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o . . . . . .
005 01 045 02 025 03 035 04 045 05
H
()

Figure 4. The solutions u(x, t) for Equation (40) for different values of ;1 and v when t = 1. (a) Plot
solutions u(x, t) for Equation (40) at 4 = v. (b) Plot solutions u(x, t) for Equation (40) when u = 0.99
and different values of v. (c) Plot solutions u(x, t) for Equation (40) for different values of y at v = 0.99.
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5. Conclusions

In the present work we have studied singular linear and nonlinear pseudohyperbolic equations
by employing the conformable double Laplace transform decomposition method (CDLDM), and we
obtain analytic solutions when y = v = 1 and numerical solutions for different fractional values.
Further, we also studied singular coupled pseudohyperbolic equations. It is clear that the solutions
of Equations (20) and (40) were obtained as infinite series by using the conformable double Laplace
decomposition method and they are in good agreement with the exact solutions of the problems.
We have provided three different examples in order to demonstrate the efficiency, high accuracy, and
the simplicity of the present method. Further, we plot the exact solutions, as well as the numerical
solutions, in Figures 1—4, and we can easily see the efficieny of and agreement among the solutions.
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Abstract: In this paper, we prove the existence and uniqueness of solution for some
Riemann-Liouville fractional nonlinear boundary value problems. The positivity of the solution
and the monotony of iterations are also considered. Some examples are presented to illustrate the
main results. Our results generalize those obtained by Wei et al (Existence and iterative method for
some fourth order nonlinear boundary value problems. Appl. Math. Lett. 2019, 87, 101-107.) to the
fractional setting.
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1. Introduction

Forth-order boundary value problems, can be used to model the deformation of the elastic beam,
which is considered to be one of the most used elements in structures such as bridges, buildings and
aircraft (see, for instance, [1,2]).

In the literature problems of the form

u®(x) = f(x,u(x),u"(x)), x € (0,1), 1

subject to different types of boundary conditions have been extensively studied (see, for example, [1-11]
and the references therein).

Under adequate conditions imposed on f and using different approach, the existence, uniqueness
and qualitative properties of solutions have been considered.

In [1], Aftabizadeh considered Equation (1) together with the boundary conditions:

u(0) = u(1) = u"(0) =u"(1) =0, @)

where f : [0,1] x R? — R is continuous. Under adequate conditions imposed on f he proved that
problem (1)-(2) has a unique solution. To do this, he transforms Equation (1) into a second-order
integro-differential equation and apply the Schauder’s fixed point theorem.

In [4], by using the method of lower and upper solutions for a fourth-order equation and some
restrictive conditions on f, Bai established an existence result to problem (1)—(2).

In [7], Dang et al., to prove the existence and uniqueness of a solution of the problem (1)-(2),
they reduced the problem to an operator equation for the right-hand side function and proved the
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contraction of the operator under some convenient conditions on f. The positivity of the solution and
the monotony of iterations are also considered. This idea was also used by Dang and Qey for cantilever
beam equation [12].

Recently, in [11], Wei et al. considered the following problem

{ u® (x) = flx,u(x), ' (x)), te(0,1), 3)

Observe that problem (3) cannot be reduced to two second-order problems. Nevertheless,
following the idea developed in [7], they proved the existence and uniqueness of this problem.
Motivated by the mentioned works, in this paper, we generalize the results obtained in [11] to the

fractional setting.
More precisely, we are concerned with the following problem

DF(D*u) (x) = f(x,u(x),D%u(x)), x € (0,1), 1
{ u(0) = D*u(0) = D*u(1) = (D*u)'(1) =0, @
where 0 <« < 1,2 < B <3,and f : [0,1] x R? — R continuous function satisfying some adequate
assumptions. Here D*(resp. DF) denotes the Riemann-Liouville fractional derivative of order « (resp. f).
It is worth mentioning that many authors studied fractional differential equations which were
applied in many fields such as physics, mechanics, chemistry, and engineering; (see, for instance [13-32]
and the references therein).
Following a different approach, they addressed the question of existence and uniqueness of
positive continuous solution.
In [31], the authors considered the two-dimensional fractional Schrodinger equation (FSE)

without potential
A P2 2\?
l&‘(‘ﬁ‘ﬁ) P =0, (5)
for the slowly varying envelope 1 of the optical field and 1 < a < 2.

They transformed Equation (5) into a Dirac-Weyl-like equation, which is used to establish a link
with light propagation in the honeycomb lattice (HCL). They discovered a very similar behavior—the
conical diffraction. This similarity in behavior is broken if an additional potential is brought into system.

Our paper is organized as follows. In Section 2, we establish some estimates on the Green’s
function and we prove appropriate inequalities on some integral operators involving the Green’
function. In Section 3, under adequate conditions imposed on function f, we prove the existence and
uniqueness of a solution of problem (4). Our approach is based on the Banach contraction principle.
The positivity of the solution and the monotony of iterations are also considered. Some examples are
given to illustrate our existence results.

Throughout this paper, we denote by C([0,1]) the set of continuous functions in [0, 1]. We recall
that the space C([0,1]) equipped with the uniform norm ||u|| := xrg[g)ﬁ |u(x)| is a Banach space.

2. Preliminary Results

2.1. Fractional Calculus
We recall in this section some basic definitions on fractional calculus (see [33-36]).
Definition 1. The Riemann—Liouville fractional integral of order -y > 0 for a measurable function f : (0,00) —
R is defined as
1 x _
I x:—/ x =)L) dt, x>0,
£ =i [ =07 0

J0

290



Mathematics 2019, 7, 961

provided that the right-hand side is pointwise defined on (0,00). Here T is the Euler Gamma function.

Definition 2. The Riemann—Liouville fractional derivative of order v > 0 for a measurable function f :
(0,00) — Ris defined as

D7f(x) = ﬁ (%)n '/Ox (x — t)”*%lf(t) dt = (%)n I"7f(x),

provided that the right-hand side is pointwise defined on (0,00) . Here n = [y] + 1, where [7y] denotes the integer

part of 7.
Please note that if v = m € N\{0}, then we obtain the classical derivative of order m.

Lemma 1. Lety > 0and u € C(0,1) N L' (0,1). Then we have

(i) For0 <7 <8, D"Pu=1"Tuand D'I"u = u.
(ii) DYu(x) = 0ifand only if u(x) = c1x7 1+ cox7 2+ ..+ cuxT7,

where m is the smallest integer greather than or equal to <y and ¢; € R (i = 1,..,m) are
arbitrary constants.
(iii) Assume that DYu € C (0,1) N L' (0,1), then
I"DVu (x) = u(x) + 16" x24T,
where m is the smallest integer greather than or equal to v and ¢; € R (i = 1,..,m) are

arbitrary constants.

Proof. For the convenience of the reader, we provide the proof of property (ii) which plays an
important role in the rest of the paper.
The property is clear if v = m € N\{0}. Next we assume thatm —1 < ¢ < m.
We claim that fori =1,2,...,m,
DY(t7)(x) = 0.

Indeed, by elementary calculus, we have

Im—'y(t'y—i)(x) == (ml_ 5 /OX (x— t)m—’y—l rige — ;‘((thi;i)) i

Hence

D1 = (1) (1) ) o

Therefore, if u(x) = )Tf ¢;x7~, then D7u(x) = 0.

i=1
Conversely, assume that D7u(x) = 0.
From Definition 2, we obtain
" Yu(x) = ag + ayx 4 ... +ay_1x™ 71,

where a; € R(i = 0,1,...,m — 1) are arbitrary constants.
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Using property (i), we deduce that

u(x) = D" (1" Tu)(x)
m—1 X
= Y aD"7(t)(x)
i=0
_ mila, r(l+i) xi—m+’y
= ——
' T(A+i—m+7)

n .
= Yeax"
i=1

where ¢; € R(i = 1,..,,m) are arbitrary constants. [

2.2. Estimates on the Green’s Function

Lemma 2. Let2 < < 3and ¢ € C([0,1]), then the boundary-value problem,

, (6)
0(0) = v(1) =v'(1) =0,
has a unique solution
1
v(x) = ; Gg (x,t) @ (t)dt, (7)
where for x,t € [0,1],
1 G(x,t), for0<x<t<1,
Gg(x,t) = —— _
p (%) r(){c(x,t)+(x—t)ﬁl, foro<t<x<1, ®)
1
= ——(G(x,t)+ (max(x —¢,0 p-1 ,
7y (G 0) + (max(x— £,0))F )
with
Glx,t) :+ =xP2A-0F2[B-1)(t— —2)x(1—t 9
(o) o == [(B-1D(E—x) + (B -2)x (1 -1)] ©)
= B-Dt1—-x)xP 21 -t)f 2P 11 -p)PF L. (10)
Gg (x,t) is called Green’s function of boundary-value problem (6).
Proof. By means of Lemma 1, we can reduce equation DPov(x) = ¢(x) to an equivalent
integral equation
0(x) = 1P 4 eoxP 2 4 P73 4 [P (), (11)
where (c1,¢3,¢3) € R3.
The boundary condition v(0) = 0 implies that c3 = 0, while the condition v(1) = 0, gives
c1 4o+ 1Pp(1) =0. (12)

On the other hand, since v’(1) = 0, we obtain

(B—1)c1+ (B—2)ca + P 1 p(1) = 0.

Hence
c1=(B—2)1Fp(1) —IFlp(1) and c; = IP (1) — (B— 1) IPg(1)
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Therefore the unique solution of problem (6) is

t
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—
= =
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=
S |

~ = =
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= _ =
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The proof is completed.

inate planes (see Figures 1-3). These details give
ions

In the following, for some values of § we give the representation of the Green function Gg (x, t)

with the contours and the projections on some coord

diate idea of the behavior of these funct

an 1imme

(a) Gp(x, t) and contours.

06

st

(c) Projection of graph of Gg(x,t) on the plane tz.

(b) Projection of graph of Gg(x, t) on the plane xz.

Figure 1. The Green function for p = 2.1.
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Figure 2. The Green function for g = 5/2.
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(a) Gg(x,t) and contours.
(a) Gg(x,t) and contours.
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(b) Projection of graph of Gy (x, t) on the plane xz.

t

(c) Projection of graph of Gg(x, t) on the plane tz.

Figure 3. The Green function for g = 3.
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Proposition 1. Let 2 < B < 3. The Green function Gg(x, t) satisfies the following properties.

(i) (x,t) = Gg(x,t) is continuous on [0,1] x [0,1].
(if) For0 < x <t <1, we have

(B—2)H(x,t) <T(B) Gy (x,1) < (b~ 1) H(x, 1),

where H(x,t) ==t (1 —x)xF"2(1—#)Ff72.
(iii) For0 <t < x <1, we have

(B—2)H(x,t) <2I (B—1)Gg (x,t) < H(x,t),
where H(x,t) := 12 (1 — x)2xP3 (1 — £)f 3.

Proof. (i) Itis clear.
(i1) Assume that 0 < x < t < 1. From (8) and (9) we have

T(B)Gp(xt) = 21— 2[(B-1)(t—x)+(B—2)x(1—1)]

(B=12 (=02 [(t—2) +x(1-1)]
(B=1H(x,1).

ININ

On the other hand, since t — x > 0, we get

T'(B) G (x,t) > (B— 2)H(x,1).

(iii) Now, assume that 0 < t < x < 1.
Since

BT - (e )F T = (B 1)H(1 —x) /Ol(x b st(1— x))P2ds,

it follows from (8) and (10) that

L
-1

Now, using the fact that

t a2 - 0p [T ()

G‘B(X,t): 0 x(l—t)

VP=2)ds.

we deduce from (13) that

IN

1
T(B—1)Cp(xt) < H1—x)xP3(1— t)ﬂ*?’/ H(1 - x)(1— s)ds
0
< %tz(l —x)2P 3 (1 - P73,
Similarly, using again (13) and (14), we obtain

T'(B—1)Gp(xt) > @tza —x)2xP 3 (1 - p)f 3,
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Throughout this paper, for 2 < B < 3 and ¢ € C([0,1]), we denote by

Gpo(x) / Gp (x,t) @(t)dt, for x € [0,1], (15)
where Gg (x, ) is given by (8).

Lemma3. Let0 < a < 1,2 < B <3and ¢ € C([0,1]). Then the following assertions hold:

G|l < Kg @]l and [|1*(Gpg)|| < Mug @]l »
where
4 B—2
S =prpen\p ) 17
g ﬁ4w+n<ﬁ ) (17)
and 2
o wtth? (a+p—1)(1—a) a(a+ )
Ma,ﬂ-WM(<l+ 5o1 + - ) as)
with w = “g*l _ % <a+/3;1)1(17a>.

Proof. Let ¢ € C([0,1]). By (15), we have for x € [0, 1]

1
Gpo(x)| < gl || Gp (1)t (19)

Using Lemma 2, we obtain

/Olclg(x,t)di’ = ﬁ/olc x b dt+ s /(x—tf“dt
)

_ B, _ph
() (1—x)xP~ 2/0 (1—6)F2at

1 1 _ 1 x _
—r(ﬁ)xﬁfll/o (1-1)f 1dt+r(5) /0 (x—t)ftat
1
= e
1
= m(l —x)2xF72 = 6(x). (20)
By simple computation we obtain
_ p-2
ol = max o) = (£52) = K. e1)

Hence from (19) and (21), we get the first inequality in (16).
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Now, using Definition 1 and (20), we obtain for x € [0,1]

" [l x . -
[I*(Ggo)(x)| < W/O (x — )11 — )2 2at
WD O 2
_ el ( TB+Y) wip_y T(B) wip
TB+1)'T(a+p+1) T(a+p)
r(ﬁ_l) a+p—
+F(a+ﬁ—1)x+ﬁ %)
— ol sy, @
where 1 ) Lp-1
_ L atp_ fatpl X — 1 atp-2
e A A T
Observe that
/ _ a+p—=30,2 (D‘+ﬁ_1) (Dc—i—,B—l)(/X-i-ﬁ—Z)
P’ (x) x (x> =2 3 x+ BB-1) )

= Py —w)(x—@),
where w = @H=) 1 [EEFTA] g g - (etp1) | 1 [GFETI=0)
Since w € (0,1] and @ > 1, it follows that ¢’ (x) > 0 on [0, w] and ¢’ (x) < 0 on [w, 1].
Hence

9l = v(w). (23)
By combining (22) and (23), we obtain the second inequality in (16). [
3. Main Results

Let0 <« <1and 2 < B < 3. For each real number M > 0, denote by
Dy ={(x,u,0) €R?*: 0<x <1, [u] < MMy, |o] < MKg},

where Kg and M, 4 are respectively given by (17) and (18).
By B[O, M], we denote the closed ball centered at O with radius M in the space C([0,1]).

3.1. Existence and Uniqueness of a Solution

Theorem 1. Let f : [0,1] x R2 — R be a continuous function and assume that there exist numbers
M, Ly, Ly, > 0 such that

(1) |f(x,u,0)| < M forany (x,u,v) € Dy.
(i) |f(x,u2,02) — f(x,u1,01)] < Ly Jup — 11| + Lo [v2 — v1],

forany (x,u;,v;) € Dy, i =1,2.
(lll) q:= LlMa,/; + LzKﬁ < 1.

Then the boundary value problem (4) has a unique solution u € C([0,1]) satisfying
[lull < MM, g and |D*ul| < MKg. (24)
Proof. Consider the operator T : C([0,1]) — C([0,1]) defined for ¢ € C([0,1]) by

To(x) = f(x, I(Gpo) (x), Gpo(x)), x € [0,1], (25)
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where Ggg is defined by (15) and I* is the Riemann-Liouville fractional integral operator given by
Definition 1.

We shall investigate problem (4) via the operator equation (25).

Observe that if ¢ is a fixed point of the operator T, then by Lemma 1, (15) and Lemma 2,

u(x) = I*(Gpg)(x), (26)

is a solution of problem (4) and vice versa.

We claim that T is a contraction operator from B[O, M] into itself.

First, we show that the operator T maps B[O, M] into itself.

Indeed, since ¢ is continuous and by Proposition 1 (i) the Green’ s function Gg(x, t) is continuous
on [0,1] x [0,1], it is not difficult to check that T¢ is continuous on [0, 1].

Now, for any ¢ € B[O, M], we have by Lemma 3

|Gpe|l < MKg and [[I*(Gpe)|| < MM, . 7)

Hence, for x € [0,1], we have (x, I*(Gg)(x), Ggp(x)) € Dp. Therefore, from assumption (i),
it follows that || T¢|| < M. Therefore, the operator T maps B[O, M] into itself.

Secondly, we prove that T : B[O, M| — B[O, M] is a contraction operator. Indeed, for any
@1, 92 € B[O, M], by using assumption (ii) and Lemma 3, we obtain for x € [0, 1],

ITga(x) = Tor(x)| = |f(x, I*(Gpg2)(x), Gpga(x)) — f(x, I*(Gpgr) (x), Gpg1(x))|
Ly [|[I%(Gpg2) — I*(Gpep1)|| + L2 || Gpg2 — Gpen) |
Ly || 1*(Gp(92 — 91)) || + L2 [|Gp(92 — ¢1) ||
LiMep |92 — @1] + LoKg [[92 — 1]
qlle2 — o1l

IN

IN

where g is defined in assumption (iii).
Therefore, T is a contraction operator in B[O, M|. Hence, it has a unique fixed point ¢ in B[O, M].
Therefore, problem (4) has a unique solution u € C([0,1]) given by (26). The estimates (24)
follow from Lemma 3 and the fact that ||¢|| < M.
The the proof is completed. [

Next, we present a particular case of Theorem 1. To this end, denote
Dy = {(x,u,0) eER}:0<x<1,0<u< MM, 0 < v < MKg}.

Corollary 1. Let f : [0,1] x R> — R be a continuous function and assume that there exists numbers
M, Ly, Ly > 0 such that

(i) 0< f(x,u,0) < M forany (x,u,0) € D;.
(i) [f(xu2,02) = f(x,un,01)| < Ly fup — | + Lo [v2 — 01,
forany (x,u;,v;) € D;(A, i=1,2.
(iii) q:= LlMa,/% + LZK/; <1

Then the boundary value problem (4) has a unique nonnegative solution u € C([0,1]) satisfying

0<u(x) < MM, and 0 < D*u < MKg. (28)
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3.2. Iterative Method and Examples

Consider the following iterative process.

{ Let ¢y € B[O, M], (29)

Pr+1(x) 2= Tor(x) = f(x, I*(Gpor) (x), Gpr (%)), fork =0,1,..; x € [0,1].

Theorem 2. Assume that hypotheses of Theorem 1 are satisfied. The sequence (@ )x>o converges with the rate
of geometric progression and we have

k
11 Gpge) =l < Mgz llor = 9ol (30)
where u is the exact solution of problem (4) and q is given in assumption (iii) in Theorem 1.

Proof. It is known by the Banach contracting mapping principle that the sequence (¢y)r>o converges
with the rate of geometric progression and we have

k
I — |l < %qusol—rpou, (31)

where ¢ is the unique fixed point of the operator T in B[O, M].
Using this fact and Lemma 3, we obtain

[[1*(Gppr) — ull [1*(Gpor) — I*(Gpo)|
[ 1*(Gp(ox — @)

Mg llox = ¢l

IN

¢
Ma,ﬁm le1 — ol -

The proof is completed. [

Proposition 2. (Monotony)Assume that hypotheses of Theorem 1 are satisfied. In addition, we assume that
the function f(x,u,v) is nondecreasing in u and v for any (x,u,v) € Dy Let ¢y, o € B[O, M] be initial
approximations such that ¢o(x) < ¢o(x), for all x € [0,1]. Then

(7) forallk € Nand x € [0,1],

I*(Gpr) (x) < I*(Gpipr) (x). (32)
(i1) Suppose further that for all (x,u,v) € Dy

Po(x) < f(x,u,0) < ¢o(x). (33)

Then the sequences (I*(Ggpk))k=0 and (I*(Gpyx))k>o converge to the umique solution u of
problem (4) and
I"(Gpor) < I"(Gpry1) < u < I'(Gpprr1) < I*(Gpipr)- (34)

In particular, if o > 0 (resp. o < 0), then u is nonnegative (resp. nonpositive) solution.
Proof. (i) We claim that for all k € N, we have

(Pk(x) < lpk(x)r on [Or1]~ (35)
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We proceed by induction. From hypothesis, the inequality is clear for k = 0. For a given k € N,
assume that ¢ (x) < i (x).
Since the Green function is nonnegative, we deduce from (15) and Definition 1 that

Gpor < Ggy and I*(Ggoy) < I(Gpiy)-

Combining this fact and that the function f(x, u,v) is nondecreasing in u and v, we obtain

Prr1(x) = f(x, I"(Gpor) (x), Gpor(x)) < f(x, I*(Gppr) (x), Gptpr (%)) = Y1 (%)

So our claim is proved.

Using (35), (15) and Definition 1 we get inequality in (32)
(if) From Theorem 2, we know that the sequences (I*(Ggy) k=0 and (I*(Ggy) k=0 converge to the
unique solution u of problem (4).

We claim that the sequence (¢ )>o is nondecreasing.

Indeed, since for x € [0,1], we have (x, I*(Gggo)(x), Ggpo(x)) € Dm, we deduce from (33) that

Po(x) < f(x, I*(Gpgo) (%), Gpo(x)) = ¢1(x).

Assume that @(x) < @g1(x). From (15), Definition 1 and the monotony of the function f,
we deduce that

P (x) = (0, I(Gpor) (), Gppr(x)) < f(x, I (Gpepri1) (), Gpprr1(x)) = Prpa(x)-

Hence the sequence (@ )i>0 is nondecreasing.

Therefore, by using again (15) and Definition 1, it follows that the sequence (I*(Gg@x))k=0
is nondecreasing.

Since the sequence (I*(Gp@y))x=0 converges to u, we obtain

I*(Gpox) < I"(Gpopr1) < u

Similarly, we prove that the sequence (I*(Ggy))x=0 is nonincreasing and that
u < I(Gptry1) < I*(Gptpg).

So inequalities in (34) are proved.
Finally, from (34), we have
I*(Gggo) < u < I*(Ggipo).
This implies that if ¢g > 0 (resp. 1y < 0), then u is nonnegative (resp. nonpositive) solution.

This completes the proof. []

Example 1. Consider the following boundary value problem:

{ D3 (D2u) (x) = xu(x) + x2(D2u(x))2 +2x +1, x € (0,1), 36)

1(0) = D2u(0) = D2u(1) = (Du)'(1) = 0.

In this case K5 = 8.6123 x 1072, M% 5= 5.4279 x 1072 and f(x,u,v) = xu + x*v% +2x + 1.
i) in Theorem 1 will be satisfied if we choose M > 0 such that

N

So condition (

~

MM s +M?K3 +3 < M.
2

NI
N

’

It is easy to verify that M = 4 is an example of suitable choice.
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Since
fr = xand f, = 2x%0,

it follows that for any (x,u,v) € Dy = {(x,u,v),0 < x <1, |u| <4M; 5, |v| < 4K% +
272
|ful <Tand |fj] <8Ks <1.

+ LK

Hence, L1 = 1and Ly = 1 satisfy the condition (ii) in Theorem 1. Also, we have q := L1 M =
5+ K% <1

Thus by Theorem 1, problem (36) has a unique solution, and the iterative method converges.

In Figure 4, we present the approximation of the unique solution of problem (36) with uy(x) =

I (G% @x) (x) and @o(x) :=2x+1.

N8

15
22
M

1
2

[T

0.06 T

0.05

0.04

= 003
>
0.02

0.01

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 4. The approximation of the solution of problem (36).

Example 2. Consider the following boundary value problem:

{ D%(u’) (x) = =3u?(u/(x))? + 3u(x) + 4u' (x) + sin(rrx), x € (0,1), 37)

u(0) =u'(0) =u'(1) =u"(1) = 0.

In this example, Ky = 5.5637 x 1072, M, =2.1030 x 1072 and f(x,u,v) = —3uv? +3u +4v +
sin(7x). \

As in Example 1, we verify that all conditions of Theorem 1 are satisfied with M = 3, L1 = 4and Ly = 5.
Hence problem (37) has a unique solution, and the iterative method converges. Moreovet, since in D3 we have
fli > 0and f}, > 0, the function f(x,u,v) is nondecreasing in both u and v. Take the initial approximation
@0 = f(x,0,0) = sin(rtx) > 0,0 < x < 1. By the positivity of the Green’s function and Lemma 3, we have

0 < Vo = G%(po < K% and 0 < Uup := Il(G%(po) < 1\/[1 %
Therefore form the iterative process (29), we obtain

p1(x) = fx,uo(x),v0(x))
= —3u3v3 + 3ug + 4vg + sin(7x)
= 3ug(1 — ugvd) + 4vy + sin(7x)
> sin(mx) = @o.

By Proposition 2, (uy := I*(Ggy) k>0 is @ nonnegative increasing sequence which converges to the
unique nonnegative solution u. Some iterations are depicted in Figure 5.
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Figure 5. The approximation of the solution of problem (37).
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Abstract: In this work by the index of fixed point and matrix theory, we discuss the positive solutions
for the system of Riemann-Liouville type fractional boundary value problems

Do u(t) + filt, u(t), o(t), w(t)) = 0,t € (0,1),

D, o(t) + falt,u(t), o(t), w(t)) = 0, € (0,1),
D w(t) + fa(t,u(t), o(), w(t)) = 0,t € (0,1),

M(O) — u/(o) P — u(n—z) (O) = O, Dg+ll(f)‘t:1 = /01 h(t)Dg+u(t)dt,
00) = /(0) = -+ = o0 2(0) = 0,Df, o0t = [ (DD o(0),
0(0) = w/(0) = -+ = w"2(0) = 0, Df, w(t)| iy = / 0, w(t)dt

where v € (n—1,n] withn € N, n > 3, p,q € Rwith p € [1,n—2], g € [0, p], D, is the a order
Riemann-Liouville type fractional derivative, and f;(i = 1,2,3) € C([0,1] x RT x R x RT,R) are
semipositone nonlinearities.

Keywords: Riemann-Liouville type fractional problem; positive solutions; the index of fixed point;
matrix theory

1. Introduction

In this work the positive solutions for the system of fractional boundary value problems involving
Riemann-Liouville type are considered:

D§, u(t) + fi(t,u(t),o(t), w(t)) =0,t € (0,1),
Dg o(t) + f2(t,u(t),v(t),w(t)) = 0,t € (0,1),
Dg,w(t) + f3( ,u(t ,v(t ,w(t)) =0,t € (O 1),

u(0) = u'(0) = - (= 2>(0) =0,D, u(t)]—1 = fo u(t)dt, ™
v(0) =9'(0) =--- 2(0) =0, D), v(t)|e— 17f0 v(t)dt,
w(0) = w'(0) = - - w<" 2(0) =0, D, w(t)];—y = I h(t O+w(t)dt,
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where Dy, is the a order Riemann-Liouville type fractional derivative, the constants a, p, g, 11, and the
functions &, f;(i = 1,2,3) satisfy the assumptions
(COneNn>3,ac(n—1mn,pel,n-2),9€[0,p],
(C1) there exists h with h(t) > 0(# 0) on [0, 1] such that A := (11( o) Ix q fo H-1-1dt > 0,
(C2) fi(i=1,2,3) € C([0,1] x RT x Rt x R*,R), and there isa M > 0 such that

fi(t,x1,x2,x3) > —M, for (t,x1,%2,x3) € [0,1] x R x RT x RT,i =1,2,3.

Fractional calculus theory shows undoubted advantages in aerodynamics, electrodynamics in
complex medium, the theory of control, signal and image processing, rheology, and many other issues,
see the books [1-3]. The study of such kind of problems has received considerable attention in the
previous studies, see for instance [4-79] and the references therein.

In [4] by the fixed point theorem of Guo-Krasnosel’skii, the authors discussed the positive
solutions for the multi-point Riemann-Liouville fractional boundary value problems

D&, u(t) + Af(t,u(t)) = 0,¢ € (0,1),
u(0) = u'(0) = - -- = u"2(0) = 0, )
D u(t)|i=1 = Tf%q a;DY u(t)]i—¢,

where f is a sign-changing nonlinearity. In [5], the authors studied the multiple positive solutions for

the problem (2) (A = 1), where f is a sign-changing nonlinearity, and permits singularities on t and

u. In [6], by means of the index of fixed point, the authors researched the positive solutions for the

boundary value problems of Hadamard fractional equations

—HD%u(t) = f(t,u(t)), te[le, 3)
u(1) = du(l) = du(e) =0,

where f is a sign-changing nonlinearity, and may grow superlinearly and sublinearly at co.

The fractional-order equations in systems have also been widely investigated in the literature, see
for example [52-79]. In [52], the authors studied the system of Hadamard fractional integral boundary
value problems

HDBu(t) + fi(tu(t),0(f) =0, 1<t<e,

HDBo(t) + fult, (t),v(t))z 1<t<e,

M(l) =0(1) =u'(1)=7'(1) = @)
jl h(s)v s %,
= J; g(s)u(s) %'

where the nonlinearities f;(i = 1,2) € C([l,e] x RT x R*,RT).
In [53], by means of the alternative of Leray-Schauder, the authors obtained the uniqueness and
existence of solutions for the system of fractional integral boundary value problems

{D%«(t) = f(t,x()y (1), DTy (1) t € [0,T],
DPy(t) = g(t,x(t),D°x(t)y (1)), t € [0, T],

with the integral boundary conditions

{ x(0) = h(y), fo (8)ds = p1x(1),
0) = ¢(x), fy x(s)ds = pay(2),

where D%, DF, D?, D7 are the fractional derivatives of Caputo type.
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In [54], the authors studied the positive solutions of the abstract fractional semipositone
differential system with integral boundary conditions, which arises from HIV infection models

() +Af (b u(t), Df u(t), () =0,
Lo(t) + Ag(tu(t) = O<t<1

u(0) = D5 u(0) = (1): Jo D5 u(s)dA(s),
():v()fo,v( :fo

where f, ¢ are the semipositone nonlinearities (so-called semipositone problems), which originally
modeled nonlinear phenomena of chemical reactions by Dutch chemist Aris [80]. For some relevant
work, we refer the reader to [4-7,71-75].

Motivated by the works aforementioned, in this work we use the index of fixed point and

(6)

nonnegative matrix theory to study the positive solutions for the system of Riemann-Liouville type
fractional boundary value problems (1). We first transform our problem into the equivalent system of
Hammerstein type integral equations, and establish some nonnegative operator equations. Then, using
some superlinear and sublinear conditions for our nonlinearities, we obtain two existence theorems.
Finally, we offer two examples to explain our main theorems.

2. Preliminaries

Now, we offer the definition of the (> 0) order Riemann-Liouville type fractional derivative,

which is given by
D0 = iy () )09 s

where f : (0, +00) — (—0c0, +00) is a continuous function, and n = [a] + 1. For more materials, we
refer to the books [1-3].

Lemma 1. [Suppose that (C0)—(C1) hold. Let f € C|[0, 1], then the problem

{ D, u(t) + f(t) = 0,t € (0,1), -
u(0) = ' (0) = -+ = ul™2(0) = 0, D}, u(t)1—1 = [y h(t)Df u(t)dt,
has a solution, which can take the form
1
u(t) = /O G(t,s)f(s)ds,
where
tlx—l 1
G(t,s) =g1(t,s) + 1 /0 h(t)ga(t,s)dt,
and
1 1 =) Pl (t—s)* 1, 0<s<t<T,
81(69) = 1y { (1 —s)rpl, 0<t<s<i, ®
B P (1 —g) Pl ()il 0<s <<,
82045) = Fr =) { (1 - s) 0<t<s<l. ®

Proof. Using similar arguments in ([4], [Lemma 1 and 2]), we have

ot (t— a—1
u(t) =t ot 2t —/O %f(s)ds,
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where ¢; € R,i=1,2,...,n. Note that u(0) = u/(0) = --- = u(n=2) (0) =0,and thusc, = -+ = ¢, = 0.

Consequently, we get

t _ o)a—1
u(t) = ey t* ! — ‘/0 %f(s)ds.

Therefore, we find

T(e) a— T(a) 4 o

P — a—p—1 _ p q _ a—qg—1 _ q
Dy, u(t) Clil"(zxfp)t Iy " f(t), Dy u(t) Clir(“,q)t Io, ' f(t)-
Using the condition D] Lu(t)|=1 = fO u(t)dt, we have

T(w) 1 1 a—p— _ I(a) ! a—q— a—
W7W4<175) v ]f(s)dsfqrm_q)/o R(E)E-11df — a_q)/ / (t — )11 f(s)dsdt.

(5]

Solving this equation, we obtain

o = m/;(l — )P f(s)ds — m/:h(t) /Ot(t—s)“*ﬂflf(s)dsdt.

As aresult, we get

1 =1

. _o)a—1
u(t) = m/ol #1(1— s)* P f(s)ds — m/ol h(t)/ot(t—s)“’q’]f(s)dsdt—/ot ¢ r(s‘z) fls)ds

t _o\a—1
:ﬁ/ol*"’1<1*s>“**’*1f<s>ds*/0 : (2) W”{Ar; ﬁ} /olf"’l<1fs>“**’*lf<s>ds

N %/01 h(t) /t<t—s)“"*1f(s)dsm
_/Olgltsf(sds+Ar [/ / RO (1 — )% P f(s)dsdt — / h(t) / (F—s)* ’77]f(s)dsdt]

:/Olgl(t,s s)ds + 1/ / 1)8a(t,s)dif (s)
:/01 G(t,s)f(s)ds

|

Lemma 2. (see ([4], [Lemma 3])). Suppose that (CO) holds. The functions g;(i = 1,2) have the properties
(i) g; € C([0,1] x [0,1],R"), and g;(t,s) > 0fort,s € (0,1),i =1,2,
(i) t* 1§ (s) < g1(t,8) < @(s) forall t,s € [0,1], where

Gy = 1= 1A= (1=5)")
Pls) = ()

,s €[0,1],

(i) g1(t,5) < == 15 € 0,11,

Lemma 3. Suppose that (C0)—(C1) hold. The Green’s function G has the properties
(i) G € C([0,1] x [0,1],R"), and G(t,s) > 0for t,s € (0,1),
(i) ¥ Lp(s) < G(t,5) < @(s),Vt,s € [0,1], where

¢(s) A/ 1) g (t,s)dt,s € [0,1],
(iii) G(t,5) < 141 [% 1 [h(t)galts dt] vt,s € [0,1].

This is a direct result of Lemma 2, so we omit its proof.
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Lemma4. Letx; = ]01 Lo ()dt, ky = .]61 @(t)dt. Then we have the following inequalities

K19(s) < /01 G(t,s)p(H)dt < xa9(s), Vs € [0,1]. (10)

From Lemma 3(ii), we easily obtain (10).
Next we will consider the problem

Dy, u(t) + f(t,u(t)) = 0,t € (0,1), an
u(0) =/ (0) = - = ul™2(0) = 0,D}, u(t)|s—1 = [y h(t)DY, u(t)dt,
where f satisfies the condition
(C2) f € C([0,1] x RT,R), and there isa M > 0 such that
f(t,x1) > —M, for (t,x1) € [0,1] x RF.
Lemma 5. Suppose that (C0)—(C1) and (C2)'. Then the problem (11) is equivalent to
1 -
u(t) :/ G(t,s)f(s,u(s))ds, (12)
0
where G is defined in Lemma 1.
Now, we take care of the following auxiliary problem associated with (11):
D&, u(t) + F(t,u(t) —z(t)) =0,t € (0,1), 13)
w(0) = u'(0) = --- = ul2(0) = 0,D}, u(t)|1=1 = Jy h(t)DY, u(t)dt,

~ fit, M, tel0,1],x >0, -
where F(t,x1) = f;( )+ (0.1}, x1 > and z(t) = Mfol G(t,s)ds, for t € [0,1]. Then F is
f(t,00+M, te€]0,1],x <0,

nonnegative continuous on [0,1] x R, and from Lemma 5 we have (13) is equivalent to

u(t) = /(: G(t,5)F(s,u(s) — z(s))ds, (14)
where G is as in Lemma 1.

Lemma 6. (i) If (11) has a positive solution u*, then (13) has a solution u* + z.
(i) If u* is a solution for (13), and u*(t) > z(t) for t € [0,1], then u* — z is a positive solution for (11).

Proof. Note that z satisfies the fractional boundary value problem

{Dg+z(t) +M=0,te(0,1), 15)

2(0) = 2/(0) = --- = 2" 2(0) = 0, D}, 2(t)|1=1 = [y h(t)Df, z(t)dt.
Substituting u* + z into (13), we have

D& (u* +z)(t) + F(t,u*(t) +z(t) — z(t)) = 0 = D&, u*(t) + D, (z)(t) + F(t,u* (1) + M =0.

Using Dfj (z)(t) = —M, we have Dg u*(t) + f(t,u*(t)) = 0, and note that u*, z satisfy the boundary
conditions in (11), (15), we obtain Lemma 6(i) holds.
Next, substituting u* — z into (11), and using D§ (z)(t) = —M we have

D, (u" —2)(1) + F(b,u* () — 2()) = 0 = D, u* () — D§, (1) + F(t,u* (1) — 2(1)) =0,
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and B
D, u™ () + F(t,u*(t) —z(t)) = 0.

Note that u*, z satisfy the boundary conditions in (13), (15), we obtain Lemma 6(ii) holds.

Lemma 6 implies that we only need to seek the solution u* for (13), which is greater than z, we
can obtain the positive solution u* — z for (11).

Let E := C[0,1], |Ju] := tr;l[()a)f] lu(t)|, P:={u e E:u(t)>0,Vte[0,1]}, Po={uecP:u(t) >

#*=1|u||, vt € [0,1]}. Then (E, || - ||) is a real Banach space, and P, P, are cones on E. Note that the
relations between (13) and (14), we let an operator T : P — P as follows:

(Tu)(t) = /0l G(t,5)E(s, u(s) — z(s))ds, foru € P,t € [0,1].

From the continuity of G, FweobtainT: P — Pisa completely continuous operator, and if there
exists # € P\{0} such that Tu = 7, then this # is a positive solution for (13). O

Lemma 7. T(P) C P,.
By Lemma 3(ii) we can easily obtain this conclusion, so we omit its proof.
Note that if i is a positive fixed point of T, from Lemma 7 we have u € Py. Moreover, when

= W= m [ {1*5
0(

A/ gztsdt}ds>0

we have

1
a(t) — z(t) > £ fM/O G(t,s)ds

1 a—p—1 1
a—=157] _ a—1 (1_5) P l
> 11| M/Ot [7““) +A/O h(t)ga(t,s)dt | ds
> 0.

Then from Lemma 6 we have U — z is a positive solution for (11). Therefore, we only need to study the positive
fixed point u* for T, which the norm is greater than M, then u* — z is a positive solution for (11).

In the following two lemmas, we let X be a real Banach space and P a cone on X.

Lemma 8. (see [81]). Let Q C X be a bounded open set, and T : QN P — P a continuous compact operator. If
there exists pg € P\{0} such that

u—Tu # Ao, VA > 0,u € 0QNP,
then i(T, QN P, P) = 0, where i is the index of fixed point on P.

Lemma 9. (see [81]). Let Q C X be a bounded open set with 0 € Q, and T : QNP — P a continuous
compact operator. If
w—ATu #0,YA € [0,1],u € 9Q2NP,

then i(T, QN P,P) =1

In what follows, in order to build our main theorems, we need to introduce some basic knowledge
for nonnegative matrices, for more details see [82,83].

Definition 1. Let M be a real matrix. If all elements of M are nonnegative, then M is called to be nonnegative.
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Definition 2. A real square matrix M = (m;;)nxn is called R’ -monotone, if for every column vector
x € R", Mx e Rl = x € R|.

Lemma 10. A real square matrix M is R -monotone <= det M # 0, and M~ is nonnegative.

Remark 1. Note that our boundary condition at t = 1 is integral and generalizes multi-point fractional

boundary conditions. However, our problem (7) can be considered as a perturbation of the two-point boundary
value problem

D u(t t) =0,te(0,1),

{ ou(t)+ £()) =0t € (0,1) »

u(0) = u'(0) = -+ = u""2(0) = D, u(t)|i=1 =0,
which is equivalent to
1
u)) = [ a1t9)f(s)ds,

where g1 is defined by (8). Therefore, our method, by making good use of the original Green'’s function for the
problem (16), will dispense with constructing a new Green’s function, in contrast to some papers dealing with
multi-point boundary value problems. For example, in [50] the author studied the problem

D u(t) + f(t,u(t)) =0,0<t <1, 17
u(0) = 0, pu(y) = u(1),
where o € (1,2], 1,57 € (0,1). The author obtained the Green's function associated with (17) is
[t(17 )]a—lfﬁta—l( _ )“’lf(tf )rx—l 17'5 a—1
s (1iﬁ;«71)r(a)s (P, <s<izissy,
[t(l—S)]Vl*(tfi)kl(1*/3’7%1), O<p<s<t<l,
Gailt,s) = (1=pr— T (18)
ai\trs [t(l_s)]n—]_ﬂﬂx—l (n_s)a’—1 0 <t<s< < 1
R ==
[t1—s)] ! 0<t<s<1ny<
(-1 )W)’ =iessnse
This function is very complicated. However, we note that this function can be expressed by
lBtﬂ(—l
Gai(t,s) = gpai(t,s) + Wé’t}ai(%s),
(t5) = L] FA=9) T = (t=s)*], 0<s<t<],
8Bl ) = Ty ) [H(1 —s)]e 0<t<s<I,
where gp,; is the Green’s function for the problem
Dy u(t) + f(tu(t)) =00<t<1, (19)
u(0) =u(1) =0.

Compared with Gpgj, §pai 1s much simpler.

3. Main Results

From the discission of Section 2, we can define the operators T;(i = 1,2,3) : P x P x P — P and
T:PxPxP— PxPx P asfollows:

Ti(u,v,w)(t) = /01 G(t,s)Fi(s,u(s) —z(s),v(s) — z(s), w(s) — z(s))ds,
T(u,0,w)(t) = (Tq, T, T3) (1, v, w)(¢), for t € [0,1],
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fi(t,x1,x0,x3) + M, t€][0,1], forx; >0,i=1,2,3
£i(£,0,0,0) + M, t € [0,1], for else cases.
exists (7,7,) is a positive fixed pint of T with [|7||, |||, ||@|| > M, then we obtain (& — 2,7 — z,@ — z)
is a positive solution for (1).

Now, we list our assumptions for F;(i = 1,2,3):

(C8) There exist a;, bj; > 0and /; > 0(i,j = 1,2,3) such that

where F;(t, x1, x2,x3) = { " Consequently, if there

Fi(t, x1,x2,x3) a11x1 + apxo + axs — I
Ey(t,x1,%0,%3) | > | amxy +apxs +apxs—L |, V(tx),x2,x3) €0,1] x RT x RT x RY,
F3(t, x1,x2,x3) a31x1 + azpxo +aszxs — I3

and the matrix M is a Rﬁ_ -monotone matrix, where

r1a;1 — 1 Kpap2 K113
My = K141 Kiap —1  Kpax
K1a31 K14z Kiazz —1

(C4) There exists Q;(t) in [0, 1] such that
1 - 13

| 90yt < M, and Fi(t, x1,32,%5) < Qu(t), ¥(t,x1,%2,%3) € [0,1) x [0, M] i = 1,2,3,
0

(C5) There exist Zl']',-,Ej,- >0 andl~j > 0(i,j = 1,2,3) such that

Fi(t, x1,x2,x3) axy + Xz +aix3 + 1
B(t,x1,x2,x3) | < | @mx +anxa+anxs+h |, V(L x1,x0,x3) € [0,1] x RT x RT x RY,
F3(t, x1, x2, x3) a31X1 + azx2 +a33x3 +13

and the matrix M, is a Ri -monotone matrix, where

1=Ky —Kol1a  —K2d13
My = —Kolda1 1 —kolyp  —K2d23
—Kod31  —Kodzp 1 —K2d33

(C6) There exists Q;(t) in [0,1], and ty € (0,1) such that

1 ~ - ~ ~13
/ 9(1)Qi(t)dt > MtL ™%, and F(t,x1,x2, x3) > Q;(t), V(t, x1,%2,%3) € [1,¢] X [o,m] Ji=1,2,3.
0

Let By = {u € P: |Ju|| < p} for p > 0 in the sequel. Then we easily have 9B, = {u € P : ||u|| =
o} By = {u € P u] < p}.

Theorem 1. Suppose that (C0)—(C4) hold. Then (1) has a positive solution.
Proof. We first show that:
(u,v,w) # T(u,v,w) + A(P1,¢2,$3), foru,v,w € dBg, NP, A >0, (20)

where ¢;(i = 1,2,3) are given elements in cone Py, and Ry > M. Argument by contrary, there exists
u,v,w € 9B, NP and Ag > 0 such that

(u,0,w) = T(u,v,w) + Ao(¢1, P2, ¢3), foru,v,w € dBg, NP, A > 0. (21)
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This implies that

/1 G(t,s)Fi(s,u(s) —z(s),v(s) — z(s), w(s) — z(s))ds
u(t) T (u,0,w) (t) + Ao (£) o
ot) | = | Ta(wow)(t) +Aep2(t) | 2 /O G(t,5)Fx(s, u(s) — 2(s), 0(s) — z(s), w(s) — z(s))ds
T3(u,0,w) () + Aogs(t) 1
/0 G(t,s)F3(s,u(s) —z(s),v(s) — z(s), w(s) — z(s))ds

Note that Lemma 7 we have
u,0,w € P. (22)

From (C3) we have

. [ G5 ana(s) = 2(5)) + ana0(5) — 2(5)) + ans(w(s) — 2(5)) — )
u(t
( o(1) ) > | [ 600,5) @ (u6) — 2(6)) + aza(o(s) — 2(5)) + a(io(s) — 2(5) ~ L)

[ 6,5) an (u(s) — 2(6)) + an(o(s) — 2(5)) + ass(wls) ~2(6)) ~ )

Multiplying by ¢(t) for the above both sides, and integrating on [0, 1], by Lemma 4 we get
[ruwor) ([ g anwt) =) + aae()  2(0) + o) =) - 13
[roear | = | [ g et~ 2(0) + ano(t) — 2(0) + anel) - ()t - 13
[retemar) [ g e @it~ 2(0) +ase() ~ 2(0) + axel) - =)t - 13

Consequently, we find

/1 w(B)g(t)dt x1(a1n + a1z + a13) /1 o(1)z(1)dt + L2
( Ka —1 ;A K113 ) ’ 01 ’ 01
K1dpq K1d22 — 1 K143 / U(t)(p(t)dt < K1 (ﬂ21 +ax + 023)/ (p(t)Z(t)dt + lzK%
K1a31 K1az KAz —1 01 01
A w(t)g(t)dt x1(as1 + asy + as3) /0 p(t)z(t)dt + L33

x1(ar1 + a2 + a13) M3 + 1113

IN

i1 (az1 + ag + an3 MK% + lz;(%

)
x1(as1 + azp + azs) Mx3 + 33
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Therefore, we obtain

1
/ u(D)g(t)dt . 2 2
o1 qan—1 K113 K1 (11 + a1z + a13) M3 + lixs
/0 v(H)e(t)dt | < K121 K1ayp — 1 K123 K1 (a1 + axn + a23)MK% + ly(%
1 K1a31 K14z Kidzz — 1 2 2
/ w(t)<p(t)dt Kl(ll31 +H32+ﬂ33)MK2+13K2
" (k122 — 1) (k1033 — 1) — KFaxazn K3ayza3; — Kya1p (ka3 — 1) K2a1a23 — k1a13(Ka20 — 1)
= K2az3a31 — K191 (Kyaz3 — 1) (k1011 — 1) (k1833 — 1) — k3a13a31 K3a13az1 — Kyap3(ryay — 1)
K2ayaz — kiaz (ka0 — 1) K2apa31 — kyaz (kg — 1) (k1a11 — 1) (r1a20 — 1) — K2a12ap
K1 (au +app + a13)MK% + 117(%
K1(a1 + ax + a3) M3 + bk |,
x1(az1 + azy + as3) M3 + I3x
where
ka; — 1 Kkap K113
Ay = det K121 Kpap — 1 K123
K431 K1az;  Kiaz3 — 1

As a result of this, there exist N; > 0(i = 1,2,3) such that

1
t d
/01 uetar)
/O o(edt | < | M|,
e N3
/O w(t)p(t)dt
where N7 = 3-[((kiaz2 — 1) (k133 — 1) — kfazsaz) (k1 (a11 + a1z + a13)Mi3 + Lix3) + (kfarzaz —

Kia1z(rk1a33 — 1)) (k1 (a1 + az + ap3)Mi3 + Lx3) + (Kappazs — xaa(xan — 1)) (kg (az + az +
a33)Mx + 133)], Na = A-[(kFaxsaz — xiaz (k1433 — 1)) (k1 (a11 + a1z + a13) M3 + hx3) + (k111 —
1) (x1a33 — 1) — x3a13a31) (51 (a21 + a2z + a23) M3 + Iox2) + (k2a13a01 — x1a23(xya11 — 1)) (1 (a31 + azz +
a33)Mx3 + 13x3)], Na = - [(kazaz; — xiaz (k1422 — 1)) (k1 (11 + @12 +a13) M3 + 113) + (kfaraaz) —
r1azp(k1ann — 1)) (k1(az1 + a2 + az3) Mi3 + Iox3) + (k1811 — 1) (k1a22 — 1) — kfaziaz) (1 (a3 + az +
a33) MK3 + I3k3)].

Note that (22), we have

[ Nirp
ol | < | Narp!
[[w]| Nk !

Therefore, we can choose Ry > max{]\7L Nlel,Nszl,N3K;1} such that when u, v, w € dBg, NP, (21)
is not satisfied. This also indicates that (20) holds for u, v, w € 0Bg, N P, and Lemma 8 indicates that

i(T,Bg, N (P x P x P),Px P xP)=0. (23)
On the other hand, we prove that

(u,0,w) # AT(u,v,w), foru,v,w € 9By NP,A € [0,1]. (24)
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If this claim is not true, there exist u,v,w € 9By NP, Ay € [0,1] such that
(u,v,w) = MT(u,0,w).
This implies that
ull <1 Ty(w,0,w)|, o] < [|T2(w,0,w)]l, and [Jw|| < || T3(u, 0, w)].

However, from (C4) we have

Ty(u,0, t,8)Fi(s,u(s) —z(s),v(s) — z(s), w(s) — z(s))ds

00 = [ o
< [foerae®
<M.

Note that by (C4), ||u|| = M. Hence, we obtain || Ty (1,0, w)| < |lu||. Similarly, || To(u, v, w)|| < |||
and || T53(u, v, w)|| < |Jw]|. This has a contradiction. Hence (24) holds. By Lemma 9 we get

i(T,ByN(PxPxP),PxPxP)=1 (25)
By use of (23) and (25) we can calculate

i(T,(Br,\Bg;) N (P x P x P),P x P x P)
=i(T,Bg, V(P xPxP),PxPxP)—i(T,ByyN(PxPxP),PxPxP)
=—1.

Therefore, T has a fixed point (1*,v*,w*) on (Bg,\By) N (P x P x P). Consequently, (u* — z,v* —
z, w* — z) is a positive solution for (1), i.e., (1) has a positive solution. [

Theorem 2. Suppose that (C0)—(C2), (C5)—(C6) hold. Then (1) has a positive solution.
Proof. We first claim that:
(u,v,w) # AT(u,v,w), for u,v,w € dBg, NP, A € [0,1], (26)
where Ry > M. If this claim does not hold, there exist u,v,w € dBgr, NP, Ay € [0,1] such that
(u,v,w) = AT (u,v,w). (27)

This indicates that

/01 G(t,8)Fi(s,u(s) —z(s),v(s) — z(s), w(s) — z(s))ds

u(t) ATy (u,0,w)(t) 1
o) | = | RDwew)(®) | <| [ G - 2(),006) —2(),wls) - 2()ds
w(t) A2T3(u, 0,w)(£) !
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Using Lemma 7, we know u,v,w € Py. By virtue of (C5), we obtain

( 6109 u(s) — 2(5) +na(o(6) — 2(5)) + s ao(5) ~2(5)) + s
u(t

)
o(t) | < /01 G(t,s) (a1 (u(s) — z(s)) 4 dan (0(s) — z(s)) + daz(w(s) — z(s)) + Ir)ds
w(t) :

[ 605) @ a(5) = 2(5)) + 0(5) — 2(5)) + T ((s) — 2(5)) + T )

Multiplying by ¢(t), and integrating over [0, 1], Lemma 4 enables us to get

1 1 -~
/o u(t)g(t)dt /0 op() (@11 (u(t) — z(t)) + a2 (v(t) — z(t)) + dra(w(t) — z(t)) + Ip)dt
1 1 -
[Fomgwar | < | [ rap0) @ w(t) —20)) + Ea(o() ~20)) + (wle) ~ =(0) + B
1 1 .
/ w(t)p(t)dt /0 k2@ (£) (@31 (u(t) —z(t)) + s (o(t) — z(t)) + azs(w(t) — z(t)) +I3)dt
1 .
/0 K2 (t) (@ u(t) + appo(t) + dzw(t))dt + L
1 -
< /0 K2 (t) (@ u(t) + G0(t) + Asw(t))dt + I
1 -
/0 K¢ (t) (@31u(t) + axo(t) + assw(t))dt + l3x3
Therefore, we find
1
/ u(B)p(t)dt _
o e e J0 lle
1 =201 K2d 1) K213 1 5
—Koay  1—iodn  —Kadns / o()e(t)dt | < | i |,
—Koz1  —Kpdzp 1 —iodss ° T3k
/ w(t)g(t)dt
0
and
/ Lot
u lP ~
’ 01 1—tKody  —kodia  —Kod13 hig
/0 v(te(t)dt | < —Kolpy 1 —tKolp  —Kofip3 [
1 —Kod31 —Koazy 1 — Koz T332
/0 w(t)(t)dt
1 (1 — K2 ) (1 — Kofiz3) — K333 K313032 + K212 (1 — Kofi33) k312803 + K213 (1 — K220
- K3ap3031 + K2l (1 — K20033) (1 = xoin1 ) (1 — Kpizs) — k313831 313001 + K283 (1 — 20011
K3 a3 + Kod31 (1 — Kpli0) k312831 + Kofi32 (1 — Koi11) (1= 12a11) (1 — Kpiip) — k3120001
e
e |,
3
where
1—roa11  —Kkoflp  —K2d13
Ay = det —Koln| 1 — Ko —Kofn3
—Kpaz1  —kodzpy 1 —1xods33
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Hence, there exist \; > 0(i = 4,5, 6) such that

1

./O] uear)
/Ov(t)go(t)dt < (M5,
1 Né
/Ow(t)<p(t)dt

2 ~ . . - ~ - . . ~ o
where Ny = 22 [l (1 — xafiza) (1 — kaiiz3) — k32383 + Lo (k3332 + kalna (1 — Kafiag)) + la (K3a1adns +
2 ~ ~
K3 (1 = Kaina))], N5 = 32 (11 (5238031 + Koz (1 — Kadiz)) + Lo (1 — a1 ) (1 — Kafiz3) — K313831) +

~ 2 ~
13(1{%61134121 + 10023 (1 — x2a11))], Ng = %[11(1{%6121&132 + Kpd31 (1 — Kpdn2)) + ’2(K%a12a31 + Kotz (1 —
oi11)) + I3((1 — xod11) (1 — Kodpn) — K%Elzliﬂ)}. Note that u, v, w € Py, we have

I\ (N
lofl | < | Asrp !
ol ) \WNex; !

Therefore, we can choose Ry > max{M, N4K;1,N5Kf1,N6K;1} such that when u,v,w € 9Bg, N P, (27)
is not satisfied. This also indicates that (26) holds for u, v, w € dBg, N P, and by Lemma 9 we get

i(T,Bg,N(PxPx P),PxPxP)=1. (28)

On the other hand, we prove that
(u,v,w) # T(u,v,w) + A($1,$2,$3), for u,v,w € 9By NP, VA >0, (29)
where 4~),- € P(i = 1,2,3) are fixed elements. Otherwise, there exist u, v, w € 0B 7P A3 >0 such that

(u,0,w) = T(u,v,w) + /\3(51,1:52/ &3)

This implies that
[[ul T2 (u,0,0)|
ol | = | IT2(w,0,w)]| | - (30)
[[wll 1T5(u,0,w)|

However, from (C6) we have

T, 0,0) 1) = [ Glto,)F(5,u(5) = 2(5),0(6) — 2(5), w(s) — 2(5))s

1 ~
=657 [ 9(0)Qi(s)ds
> M,i=1,2,3.
Note that from (C6), we have ||u|| = M. Hence, we obtain

HTl(ulU/w)H Tl(u/vrw)(to) ||u||
IT2(w,0,w)[| | = | T2(w,0,w)(to) | > | Il
1T3(u, 0, w) | T5(u,v,w)(to) [[w]l
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This has a contradiction with (30), and thus (29) holds. By Lemma 8 we find
i(T,By N (PxPxP),PxPxP)=0. (31)
From (28) and (31) we can calculate

i(T,(Br,\Bj;) N (P X P x P),P x P xP)
=i(T,Br, V(P X PxP),PxPxP)—i(T,ByN(PxPxP),PxPxP)
=1

Therefore T has a fixed point (u*, v*,w*) on (B, \Bj;) N (P x P x P). Therefore, (u* — z,v* —z,w* — z)
is a positive solution for (1), i.e., (1) has a positive solution.

Letn = 4,0 = 35,p = 15,4 = 0.5, and h(t) = t,t € [0,1]. Then we have A = 2.91, and
fo Hga(t,s)dt = Z‘ZS — %sz + 21454 s € [0,1]. This implies that (C0)-(C1) hold. Moreover, we
can calculate

K1 = 0.017, % = 0.075, M = 0.16M.

O

Example 1. Let xqa11 —1 = k14 — 1 = x1a33 — 1 = «1, and we have a11 = ayp = az3 = K1+1 = 59.82.
Moreover, we take the matrix

ap daip 413 59.82 0 0
ap1 dayp a3 = 0 59.82 0 ,
azy dazp ass 0 0 59.82
and
Fi(t, %1, %2, X3) 2M(9.57M) ™7 (a11x1 + a1ax2 + a13x3) ™
By(t,x1,x0,x3) | = | 1.8M(9.57M) =" (az1x1 + azpxy + ap3x3)?? |, V(t,x1,x2,x3) € [0,1] x RT x RT x R,
F3(t,x1,%2,%3) 1.5M(9.57M) ™" (az1x1 + azpxz + a33x3) "

where y; > 1(i = 1,2,3). Note that

K411 — 1 K1d12 K1413 K1 0 0
M1 = K141 K1dp2 — 1 K1d23 = 0 K1 0
K1a31 Kiaz  Kiazz — 1 0 0 m

Hence, M isa ]Rfj_ -monotone matrix. Furthermore, for all t € [0, 1] we have

L. Fy(x1,x9,x L. 2M(9.57M) =1 (a11x1 + aypxp + ap3xz) "
lim inf _ hlaxx) = lim inf ( )T (an ¥ + 1% + 413%3) = 400,
anX1+apX+a;3xs—+00 A11X1 + A12X2 + A13X3 a11X1+a12X2+A13X3—>+00 a11x1 + appxy + a13x3

L. Fr(x1,x0,x 1.8M(9.57M) "2 (ap1x1 + axxp + axxz)"?

lim inf 2(x1, X2, x3) lim inf ( )T (anx1 +apxs +anvs)” _
a1 X1+ X, +a23X3—+00 (91 X1 + A22X2 + A23X3 T anxapxa a4 az1x1 + axpxy + ax3x3

. F5(x1, %0, x L. 1.5M(9.57M) 73 (az1xq + azpxp + aszzxz) "

liminf 3(x,x2,%3) iminf ( ) "(azx +an¥s +axs)

a31X1+a3X2 +a33x3—+00 (A31X] + A3 X7 + A33X3 T anxapxy oy — 4o az1x1 + azpxp + aszxz

On the other hand, if (t,x1, %2, x3) € [0,1] x [0,0.16 M]3, we have

F, <2M, F, < 1.8M,F; < 1.5M.
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If we choose Q1 (t) = 2M, Qa(t) = 1.8M, Qs(t) = 1.5M for t € [0, 1], and we have

1 1 ~
/ o(HQi(t)dt < / ¢(1)Q1 (H)dt = 26,M = 0.15M < M,i = 1,2,3.
0 0
Therefore, (C3)—(C4) hold.

Example 2. Let tg = 0.5, Q1 (t) = 13M, Qx(t) = 14M, Q3(t) = 15M for t € [0,1], and

ayp A 4 2 5 3
Ay dan @3 |=| 8 3 4 |,
d31 dz; A 6 3 4
and
F (t, X1,X2, XS) 13 Mel-6Mp—2x1—5x2—3x3
Fo(tx1,x0,x3) | = | 14Me24Me=8n1-3x—4xs | \(t x;,x5,x3) € [0,1] x RT x RT x R*,
F5(t,x1,x2,x3) 15Me208M p—6x; —3x, 43

Then if (t,x1,%p,%3) € [0,1] x [0,0.16M]3, we have F; > 13M,F, > 14M,F; > 15M, and
J2 9(H)Qi(t)dt > [ o()Q1(t)dt = 13k;M > 0.16 x 5.6569M.
On the other hand, we can calculate

1-0075x2 —0.075x5 —0.075 x 3
det My = det —0.075x8 1-0.075x3 —0.075x4 = 0.0868,
—0.075 x 6 —0.075x3 1-0.075 x4

0.475 0.313 0.287
0.555 0.494 0.39
0.484 036 0.434

11
27 0.0868

Consequently, My is a Ri—monotone matrix. Furthermore, for all t € [0,1] we have

) Fl(t, X1, %2, x3) ) 13 Mel-6M p—a11X1 =12 —A13X3
lim sup = - = = lim sup = = = =0,
A+ i xa— oo A1X1 T 01202 +013X3 G v L vy tava e A11%1 412X + d13X3
. Ex(t,x1,x2,x3) ) 14 Me?AMp—ii1 X1 ~ix2 —3%3
lim sup = — = = lim sup — — — =0,
Ty Higpxy Higxs —-Hoo 21X H 022X H023X3 Gy iy iy s teo  A21X1 422X + A23X3
F3 (tr x1,X2, X3) 15M£,2A08Me*u31x1 —ad3pXp—A33X3

lim sup = = = = lim sup = = = =0
G311 +A3 0+ i3z 03— +o0 A31X1 + azpxp +as3x3 3131 + 30 X0 Hi33 X3 00 a31x] + aspxy + a3z X3

As a result, (C5)—(C6) hold.

4. Conclusions

In this paper, we utilize the index of fixed point to research the positive solutions for the
system of Riemann-Liouville type fractional boundary value problems (1). We first investigate
corresponding operator equations for (1), and then establish some coupling behaviors for our
nonlinearities f;(i = 1,2,3) by virtue of nonnegative matrix theory, which ensure that our nonlinearities
can grow superlinearly and sublinearly at co.
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Abstract: We establish sufficient criteria for the existence of solutions for a nonlinear generalized
Langevin-type nonlocal fractional-order integral multivalued problem. The convex and non-convex
cases for the multivalued map involved in the given problem are considered. Our results rely on
Leray-Schauder nonlinear alternative for multivalued maps and Covitz and Nadler’s fixed point
theorem. Illustrative examples for the main results are included.
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1. Introduction

Fractional calculus is the extension of classical calculus which deals with differential and integral
operators of fractional order. It has evolved into a significant and popular branch of mathematical
analysis owing to its extensive applications in the mathematical modeling of applied and technical
problems. The literature on fractional calculus is now much enriched and covers a wide range of
interesting results, for instance [1-6]. For a comprehensive treatment of Hadamard-type fractional
differential equations and inclusions, we refer the reader to the text [7].

The Langevin equation is found to be an effective tool to describe stochastic problems in
fluctuating situations. A modified type of this equation is used in various functional approaches
for fractal media. A variety of boundary value problems involving the Langevin equation have been
investigated by several authors. In [8], existence and uniqueness results for a nonlinear Langevin
equation involving two fractional orders supplemented with three-point boundary conditions were
obtained. An impulsive boundary value problem for a nonlinear Langevin equation involving
two different fractional derivatives was investigated in [9]. Some existing results for Langevin fractional
differential inclusions with two indices were derived in [10]. In [11], the authors proved the existence of
and uniqueness results for an anti-periodic boundary value problem of a system of Langevin fractional
differential equations. In [12], the authors investigated a nonlinear fractional Langevin equation with
anti-periodic boundary conditions by applying coupled fixed point theorems. In a recent work [13],
the authors obtained some existence results for a fractional Langevin equation with nonlinearity
depending on Riemann-Liouville fractional integral, and complemented with nonlocal multi-point
and multi-strip boundary conditions.

In the present paper, we study the existence of solutions for a nonlinear generalized Langevin
type nonlocal fractional-order integral multivalued problem given by

PDE, (UDP. + A)x(t) € F(t,x(t)), t€]:=[a,T], A€R,

(1
x(a) =0, x(n) =0, x(T)=puPI},x(&), a<yp<E<T,ueR,
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where £D%, fo , denote the Caputo-type generalized fractional differential operators of order
1 < «a<20<pB<1,p >0, respectively, F : [a,T] x R — P(R) is a multi-valued map (P(R)
is the family of all nonempty subsets of R), P17, is the generalized fractional integral operator of
order v > 0 and p > 0. Here we emphasize that the single-valued analogue of the problem (1) was
discussed in [14].

The rest of the paper is arranged as follows. The background material related to our work is
outlined in Section 3. The existence results for the problem (1) are presented in Section 3. The first
result for the problem (1), associated with the convex valued mutivalued map, is derived with the
aid of Leray—-Schauder nonlinear alternative for multivalued maps, while the result for non-convex
valued map for the problem (1) is proved by applying a fixed point theorem due to Covitz and Nadler.
Section 4 contains the illustrative examples for the main results. We summarize the work established
in this paper, and its implications, in the last section.

2. Preliminaries

Define by X? (a,b) the space of all complex-valued Lebesgue measurable functions ¢ on (a, b)
equipped with the norm:

b dx\1/p
9l = ([ o P) " <o ceRI<p< .
C a x

Let AC}[a, b] denote the class of all absolutely continuous functions g possessing 6"~ !-derivative
(6""1g € AC([a,b],R)), endowed with the norm I8l ac = Yoo l1okgllc.

Definition 1. The left-sided and right-sided generalized fractional integrals for g € X! (a,b) of order § > 0
and p > 0, denoted by PIig and plfig respectively, are defined by [15]

1-B ,t p—1

(I g)(t) = %/ﬂ mg(S)dS, —co<a<t<b< oo, )
1—a b o—1

(Plfig)(t):%/[ (sl)iwg(s)ds’ —o<a<t<b< oo 3)

Definition 2. Let p > 0, n = [B] + 1 and p > 0. We define the generalized fractional derivatives, associated
with the generalized fractional integrals (2) and (3), for 0 < a < t < b < oo, as follows [16]:

n B—n+1 n -1
eobs)0 = (1) e ton - s (1 8)" [ G @
n B—n+1 n b -1
oo 9= (-0 5) R0 = s (-1 g) [ G ©)

provided the integrals in the above expressions exist.

Definition 3. Let g € AC}[a,b] and B > 0,n = [B] + 1. Then the Caputo-type generalized fractional
derivatives £ Df ' gand? D§7 g are respectively defined via (4) and (5) by [17]

n-1 sk 0 _ gP\k d
D7, s(x) = DL [s(0) - 1 ge) (& o) e, e= ©®)
ol (—1)kkg(b) bP — PNk d
£}_g(x) =*D{_[s(t) 7k2 : )kl . )< > t )], o=xtr )
—0 :
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Remark 1. The left and right generalized Caputo derivatives of order B for g € AC[a, b], are respectively

given by [17] . ;
1 0 _ gP\ n—p—1(§" d
10t st = ro [ (252 o
B B 1 b s — o\ n—a=1(—1)"(5"g)(s)ds
be*g(t) T T(n—-B) /t ( 0 ) sl—p : ©)

Lemma 1. Let g € AC}[a,b] or C}[a, b]. Then, for B € R, the following results hold [17]:

n—1 (sk -~
plf+§D§+g(x) =g(x) - kz %(%)}i
—0 :

oI DP g(x) = g(x) — kg

o
=
=

In particular, for 0 < B < 1, we have

PI5,LDf, g(x) = g(x) — g(a), *1} £Df g(x) = g(x) — g(b).
We need the following known lemma [14] in the sequel.

Lemma 2. Let h € C([a, T],R) and x € AC3(J). Then the unique solution of linear problem:

{ PDE, (EDE, + A)x(t) = h(t), te]:=1[a,T), W

x(a) =0, x(y) =0, x(T)=pPI}, x(§), a<n<¢<T,
is given by:
(t —aP)P (5 — 1)
oPHIT(B+2)0

(tP —aP)P /(TP — aP)B(TP —tP)
Qe —ar)P ( PPHIT(B+2)

(G —al )P [(B+1)(GF — 1) —y(t —aP)]\ p atp B
B PPty +2)(B+1) ){PIaI h(n) _)\plﬁ+x(r])}’ 11)

x()) = IR - AT x () + {PrPu(r) - A01f x(1)

WL + A I (@) | -

where it is assumed that

(TP —a)B(TP — ) u(@ —af)PY[(B+1)(E° — 1) — y(nP — af)]

3. Main Results

We begin this section with the definition of a solution for the multi-valued problem (1).

Definition 4. A function x € C(J,R) is called a solution of the problem (1) if we can find a function
v € LY(J,R) with v(t) € F(t,x) a.e. on [ such that x(a) = 0,x(n) = 0,x(T) = pPI] x(&) and
x(t) = PIPo(t) —AerP x(t) + %
(tp —aP)B /(TP —af)P(TP — )
QP — af)P ( PPHIT(B+2)
p(EP —a?)PHT[(B+1) (8P — 1) — (1 —aP)]

B PPOFIL(B+ 7 +2) (1) ){FnsPom - 2T s . a3

{PI;‘I%(T) — TP x(T)

—w L@ + e I x(@) ) -
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For the sake of computational convenience, we set

(T —aP)*+F [ || (&P — af)*TPHg,

_ 01
M= P HPT (e + g+ 1) PFHIT (B + 2)\0\} - PP (w4 B+ + DI(B +2) [
(° —af)*Cn (13)
T (a+ p+ 1)l
po o WP 6 ) e -
: PPT(B+1) PFHIT(B+2)|Q])  pPTHIT(B 4+ + 1DI(B +2)[Q)
A2 15
PPr(p+ 1)l (15)
where
{1 := max ‘(t" — ap)ﬁ(vyp — tp)‘, (16)
tela,T)
o [(TP—af)P(TP — 1) u(ZP — a)FTY[(B+1)(§° — ) — y(t0 —af)]
Go= e [ = g PG ey W

We define the set of selections of F by Sr, := {y € LY(J,R) : y(t) € F(t,x(t)) on J} for each
x € C(J,R).

3.1. The Upper Semicontinuous Case

In the following result, we assume that the multivalued map F is convex-valued and apply
Leray—Schauder nonlinear alternative for multivalued maps [18] to prove the existence of solutions for
the problem at hand.

Theorem 1. Assume that:

(A1) F:] xR = Pepe(R) is L-Carathéodory, where Pep(R) = {V € P(R) : Y is compact and convex};

(Az) there exist a function P € C(J,R") and a continuous nondecreasing function Q : [0,00) — (0, 00) such
that |[F(t,x)|p :=sup{|y| 1y € F(t,x)} < P(t)Q(|x|) foreach (t,x) € ] xR;

(Asz) there exists a constant M > 0 such that

(1-A)M
Aq][PIQ(M)

where A1 and A; are respectively given by (14) and (15).

>1, A<,

Then the problem (1) has at least one solution on J.

Proof. Let us first convert the problem (1) into a fixed point problem by introducing a multivalued
map: N : C(J,R) = P(C(J,R)) as

heCUR):
I tPo(t) — APIP x(b)
(10 —aP)B (5P — 1) () aip 5
O S e {P1iPo(r) - o e 5
= wrp B (tF —aP)B /(TP —aP)B(TP —t°)
—u I P00 + Al Tx(@) ) - Q(Wpfaﬂ)ﬁ< Pﬁ+1r(ﬁ+2)
(gp —af ﬁ+7[ (B+1)(E° —t°) — y(t° — af)] p1a+/3
M*M*Hﬁ+v+a)ﬁ+1 ){

)= AL x(n) ),

forv € Sp .
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It is clear that fixed points of N are solutions of problem (1). So we need to verify that the
operator N satisfies all the conditions of Leray-Schauder nonlinear alternative [18]. This will be done
in several steps.

Step 1. N(x) is convex for each x € C(],R).

Indeed, if hy, hp belongs to N(x), then there exist v, v, € Sp , such that, for each t € ], we have

(P — gp)ﬁ(ﬂp —1f)
PPHIT(p+2)0
(P —aP)P /(TP — aP)B(TP — t0)
Qye fa”)ﬁ( PFHIT(B+2)
#(GP —af)FT[(B+1)(E° — 1°) — (1 —aP)]\ [pa
- PP (B 4+ +2)(B+1) ){plﬂiﬁv"(”) - )‘p15+"(’7)} i=12

mi(t) = PIPot) - A1 x(t) + {P1sPoi(T) - 2015, x(T)

TP @) + e e} -

Lett € Jand 6 € (0,1). Then

[0k + (1 — 0)h) (¢)
= PIPl60i(s) + (1 - 0)0a(s)](1) — APIE x (1)
(t0 — aP)P(yf — 1°)

120 {Pljiﬁ[evl(s) (1= 0)0y(s)](T) — APIF, x(T)

— P 001 () + (1 - 0)0a(s))(@) + pAP L Tx(2) } -

H(E =@ PH(B+1)(E — 1) = —af)]\ 1o
- PPNy 1D (B 1) J{P1Poor(s) + (1= 0)en(s))(n) — A1, x() }.

(tP —aP)P /(TP — aP)B(TP — t0)
a@F fa”)ﬁ( pPHIT(B+2)

Since F has convex values (Sg , is convex), therefore, 0 + (1 — 6)hy € N(x).
Step 2. N(x) maps bounded sets (balls) into bounded sets in C(J,R).

Let B, = {x € C(J,R) : ||x|| < r} be a bounded ball in C(J,IR), where r is a positive number.
Then, for each h € N(x),x € By, there exists v € Sg, such that

(0 — a )P (g — 1)

PpPHIT(B+2)Q
(tP —aP)P /(TP — aP)B(TP — t°)

owwamﬁ( PPHIT(B+2)

0 aPVBTY[(B 4 1)(E0 — t0) — 4 (0 — aP N

B e LGRS R

ne) = PIPo() - AIE x(t) + {PriPo(r) - artf (1)

—u 1P To@) + pe I Tx(@) ) -
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In view of (Ha), for each t € ], we find that

|(#0 — aP)P (P — t°)]
T T
(tP —aP)P /(TP — aP)B(TP —t°)
7P —uP)ﬁ< PPHIT (B +2)
@ —a)PTT(B 1)@ — 1) — y(# — a1 s
P ) 0= oy 4 g )
ap)a+p G
P11 Ix[I) ( “ﬁr(wﬂﬂ)[ +pﬁ+1r(ﬁ+2)lﬂd
+ |l (P — af) Py b =) )
P IBFTIN (a4 v+ (B +2)[Q oL (a+ p+1)[Q
IA|(TO — af)P 01
+xI PTG T [1+pﬁ+1r(ﬁ+2)\0d
|HlIA|(&° — a?)PH1gy A2 )
PP (B -+ + )I(B+2)[0] * pPT(B+1)I0)
= AlIPIQUIx]l) + Aallxll

()| Lot + A PP x(1)] +

IN

{Pz“*% )|+ AP 12, |x(T)|

+ww”mmf|ﬂmwﬁ”wo@+b

IN

which leads to ||| < Aq]|P||Q(r) + Aar.
Step 3. N(x) maps bounded sets into equicontinuous sets of C(J, R).

Let x be any element in B, and 1 € N(x). Then there exists a function v € Sg, such that, for each
t € ] we have

(## — a®)B (5P — 17)
ePHIT(B+2)0
(t — ,lp)ﬁ (TP — aP)B(TP — t°)
Onf — ar)F ( PPHIT(B+2)
0 gP\Bt+Y 1)(E — ) — y(t0 — P N
e ﬂp)Berr[ElﬁE(-;jij 2)(;+'1Y)( - )]){plaiﬁvw) */\plf-*-x(ﬂ)}.

nty = PIPo(t) — APIE x(t) + {PieiPo(r) = A1 x(T)

—n L) + e x(@) ) -
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Lett, » €], 1 < . Then

h(t2) — h(t1)]
< |2 (“(W;[ / PI[(5 — sP)HBL (1 — P) B Jo(s)ds + /ttzspfl(tgfsp)ﬁﬁ*lv(s)ds}
(5 —af)f (P —15) () —af)P(nP — )7 g aip wtp
b PPHIT(B+2)0 ;ﬁ“F(Mz)Q J{rntPom - wn o) )

(t—ar)P (TP —af)P(TP — 1)  p(gP —a)PH7[(B+ 1)(& — 1) — 9(t — a?)]
[ QP —af)P { P T(B+2) EPHYHIT(B+ 4 +2)(B+1) ]
(8 —ar)f (TP —at)P(TP =) (G —aP)PTY[(B+1) (G — ) — v (£ —ar)]

“aurepl Gy PPITIT (B +2)(B+1) I}~
<1 Po)|
%;)ﬁ | /0 "o (1 — )P — (1 — )P (s)ds + [ 71 (t — )P x(s)ds]
(= a)Plye — 1) (5 —aP)P(yP — )
+[ P o LR O R L 0
(5 —at)f (TP —a?)P(TP ) (& —at)PH7((B+1)(&F — 1) —7(# —aP)]
+[ Q@ — aP)P { P T (B +2) PPTTHIT(B+ 9 +2)(B+1) ]
M —af)P (TP —af)P(TP =) (G —af)PH[(B+1)(E — ) —y(H —ar)]
“au eyl ey PP (B +2)(B+1) JJ~
Xprer(’I)‘
IPlQ(r) (a+p) _ pola «
< pa+/3r(a+,5+1){‘t§ +8 — +/3H2(tp )+ﬁ}
(th—af)Pyf —15) (8 —a")b(yr — 1)
‘ BHT(+2)0  pPIT(+2)Q ‘
(TP — ap)lx+;5 (a0 — ap)wﬁﬂ
<P (hr e 154D M g 77 D)

(5 —af)f (TP —af)B(TP — 1) u(§P —aP)PTV[(B+1)(§F — 5) — v(t5 —aP)]
QW,M[ PPHIT(B+2) PPHHIT(B+ 9 +2)(B+1) ]
(] —ar)P [(T” —af)B(TF 1) (G —a)PTT[(B+1)(5P — ) — (] *a*’)]” §

Q@P —ar)B L pPrIr( +2) PFTHT(B+ 9 +2)(B+1)

(1 — at)*# R )
XIIPHQ(T)PHﬁr(a+ﬁ+1) +pﬁr(ﬁ+1){“p — P 4 2(h — ) }

= p)ﬁ(pftp) (tﬂf 0B (P — p)ﬁ
IR ] (Gt

] (&0 — af)B+r )

PPN (B +2)Q2 pPHT(B+2)0 B+1) PFIT(B+y+1)
Aty —af)P [ (TP —aP)B(TP —t5)  p(gP —af)PTI[(B+1)(5F — 1) — 7(t —aP)]
Q(nf — af)P [ pPHIT(B+2) PPHIHIT(B+ 9 +2)(B+1) ]
A —af)P (TP —aP)B(TP — ) p(EP —af)PH7[(B+1) (5P — 1)) — 7 (] — )]
Sy —uP)ﬁ{ pPIT(B+2) PP (B4 +2)(B+1) J
X (° —ar)f — Owhent; — tp, independently of x € B,.
PPT(B+1) ' '

Combining the outcome of Steps 1-3 with Arzeld-Ascoli theorem leads to the conclusion that
N:C(J,R) — P(C(],R)) is completely continuous.

Next, we show that N has a closed graph. Then it will follow by Proposition 1.2 in [19] that the
operator N is u.s.c.
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Step 4. N has a closed graph.

Suppose that there exists x, — x., h, € N(x,) and h, — h,. Then we have to establish that
h. € N(x4). Since h, € N(xy), there exists v, € Sg . In consequence, for each t € |, we get

4 (10— )P (1P —9) (s
ha(t) = Pljfvn(t)—Aﬂlf+xn(t)+m{ﬂ1;‘fvnm—Aﬂlﬂﬁxn(T)

a+p+ B+ (tP —aP)B /(TP —aP)B(TP —tP)
WL o @)+ w0 (@)} Q@ —ar)P ( pPHIT(B+2)

R(EP —a?PET(B+1)(G — 1) — (0 — aP)]\ s 4
- PP HIT(B+ 9 +2)(B+1) >{plﬂ++ on (1) 7“"*“(”)}'

Next we show that there exists v, € Srx, such that, for each t € ],

(1 — a)P(yf —1#)
PPHIT(B+2)Q
(t0 —af)B /(TP —aP)P(TP — )
O(nP—uﬂ)ﬁ( pPHIT(B+2)
0 — aP)BHI[(B+1)(EP — t0) — (0 — af @
— ap);sﬂﬁ?(ﬁjfﬂ)(;ﬁ)( Y iz Pontn) — a0t ).

he(t) = PIPou(t) = APTE xu(t) + {Pﬁjﬁv*m —APIP x.(T)

L P 0 (@) + A I (@)} -

Consider the continuous linear operator @ : L'(J,R) — C(J,R) given by

(1 — )P (5 — 1)
TP 2)0
(t° —aP)B /(TP —af)P(TP — )
Qe —aﬂ)ﬁ( PFHIT (B +2)
0 — aP\BEY[(B4+1)(EP — ) — v (10 — aP «
e ap)ﬁi+7-£5§(ﬁ_gf+2)(2;+,1}/)( : )]){plaiﬁv(ﬂ) —)Wlerx(q)}.

0= 0@)() = PIPot) —ATP x(t) + {PIﬁﬁv(T) — 1P x(T)

L) + (@) |~

Notice that ||l (t) — hy(t)|| — 0as n — co. So we deduce by a closed graph result obtained in [20]
that © o Sp , is a closed graph operator. Furthermore, 11, € ®(Sg 5, ). Since x,, — x., therefore we have

(tP —aP)P (5P — 1°)
he(t) = PIPo.(t) = APIP x.(t) + m{ﬁﬁﬁm(ﬂ —APIP 2 (T)

(tP —aP)P /(TP — aP)B(TP — t0)
a@F faP)’j< pPHIT(B+2)

RGP —al)PHI[(B+1) (8P — 1) — y(# —a®)]\ fora
- PPTIT(B 4y +2)(B+1) enFouon - wilx

—u I P 0. @) + A I 50 ) -

for some v, € Sp .,
Step 5. There exists an open set V C C(J,R) with x ¢ ON(x) for any 6 € (0,1) and all x € 9.

Take 6 € (0,1), x € ON(x) and t € J. Then we show that there exists v € L!(J,R) with v € Sf
such that

(1 —a)P (P —t°)
oPHIT(B+2)Q
(tP —aP)P /(TP — aP)B(TP —t0)
QP — af)P ( pPHIT(B+2)

H(EP — aPHI(B+ 1@ — 1) — 31 — )] np ’
S ey ey JUR Vi)

x(t) = 0PI Po(r) — AT x(t) + 0 {PIjIBv*(T)—APIf+x(T)

—W L To@) + R x(@) ) - 6
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Using the computations done in Step 2, for each t € |, we get
[x(B)] < Adl[PIQUIx[) + Azl ],
which yields
a-m)lxl _,
M[PIQUIx[) —
By (A3), there exists M such that ||x|| # M. Define a set

V={xeC(,R):|x|| < M}.

Observe that the operator N : V — P(C(J, R)) is a compact multivalued map, u.s.c. with convex
closed values. With the given choice of V, it is not possible to find x € 9V satisfying x € ON(x)
for some 6 € (0,1). Consequently, by the nonlinear alternative of Leray—Schauder type [18], the
operator N has a fixed point x € V, which corresponds to a solution of the problem (1). This finishes
the proof. [

3.2. The Lipschitz Case

Let (X, d) denote a metric space induced from the normed space (X;|| - ||). Let H; : P(X) x
P(X) — RU{co} be defined by Hy(A1,A2) = max{sup, c4, d(a1,A2),5up,,c 0, d(A1,02)},
where d(Ay,az) = infy, c 4, d(ay;a2) and d(ay, A2) = inf,,c 4, d(a1;a2). Then (Py (&), Hy) is a metric
space (see [21]), where P}, (X) = {V € P(X) : Y is bounded and closed},

The following result deals with the non-convex valued case of the problem (1) and is based on
Covitz and Nadler’s fixed point theorem [22]: “If N : X — P.;(X) is a contraction, then FixN # @,
where Py (X) = {Y € P(X) : Yisclosed}”.

Theorem 2. Assume that

(Ag) F: [ xR = Pep(R) is such that F(-,x) : ] — Pep(R) is measurable for each x € R, where
Pep(R) = {Y € P(R) : Y is compact };
(As) Hy(F(t,x),F(t,%)) < @(t)|x — x| for almost all t € [ and x,¥ € R with @ € C(J,R") and
d(0,F(t,0)) < @(t) for almost all t € ].
Then the problem (1) has at least one solution on J if
@A+ A2 <1, (18)
where Ay and A, are respectively given by (14) and (15).

Proof. Let us verify that the operator N : C(J,R) — P(C(J,R)), defined in the proof of the last
theorem, satisfies the hypothesis of Covitz and Nadler fixed point theorem [22]. We establish it in
two steps.

Step I. N(x) is nonempty and closed for every v € Sg .

Since the set-valued map F(-, x(-)) is measurable, it admits a measurable selection v : | — R by
the measurable selection theorem ([23], Theorem II1.6). By (As), we have

lo(8)] < @(t)(1+[x(B)]),

thatis, v € L! (J,R). So F is integrably bounded. Therefore, Sg  # @.

333



Mathematics 2019, 7, 1015

Now we establish that N(x) is closed for each x € C(J,R). Let {u,},>0 € N(x) be such that
uy, - uasn — ooin C(J,R). Then u € C(J,R) and we can find v, € Sg, such that, for each t € ],

N o — gP\B(pP — P
w) = PPt =201 () + L)
(tP —ar)P ((TP —aP)B (TP — tP)
QP —aP)P N pPHIT(p+2)

H(EP — aPHI(B+ 1@ — ) — 41 — )]y rp ’
R PPTHIT(B+y +2)(B+1) Hen outn) = A1 xat .

{P1Po(T) = AT, (T)

1L T0u(@) + A I 3 (0) } -

As F has compact values, we can pass onto a subsequence (if necessary) to obtain that v,, converges
tovin L'(J,R).So v € Sp,. Then, for each t € ], we get

(0 —aP)P(nf — 1) pra
x(t) + m{”ﬂiﬁv(ﬂ - /\pr+X(T)

(t — ap)ﬁ (T° — up)ﬁ(Tp —t0)
Q@pp —ar)f ( pPHIT (B +2)

p(EF —aP)PHT[(B+1) (8P — 1) — y(t —aP)]\ fpn
- PB4y +2)(B+1) ){tPotn —aeig <},

un(t) > o(t) =PI Po(t) — APIP,

—# I P (@) + A 1T x(@) ) -

which implies that u € N(x).
Step II. We establish that there exists 0 < § < 1 (§ = Aq||@|| + Ay) satisfying
Hy(N(x),N(%)) < 8||x — %|| foreach x,% € C(J,R).

Let us take x,X € C(J,R) and h; € N(x). Then there exists v1(t) € F(t,x(t)) such that,
foreacht € |,

N 0 _ aP\B(ype — to
R e To
(t0 —aP)B /(TP —af)P(TP — tP)

’nwfuuﬁw( pPHIT(p+2)
a0 —aPPHY[(B+1)(EP — tP) — y(t° — aP @
N =) e o) - 0if ()

{PratPor (1) = 21 x(T)

— Loy (8) + AP I x(0) |

By (As), we have that Hy(F(t,x), F(t,X)) < @(t)|x(t) — X(t)]. So, there exists w(t) € F(t,X(t))
satisfying |v1 () — w| < @(t)|x(t) — X(t)|, te .
Define W : | — P(R) by

W(t) = {w e R: Jor(t) —w| < @(t)]x(t) — %(1)[}.

As the multivalued operator W(t) N F(t,X(t)) is measurable by Proposition II1.4 [23], we can
find a function v, (#) which is a measurable selection for W. So v,(t) € F(t,%(t)) and for each t € ],
we have [v1(t) — vp(t)| < @(t)|x(t) — X(t)|. For each t € ], we define

(t° —aP)P(yP — )
CPPIT(B+2)Q
(0 — up)ﬁﬁ (<Tp ; ulp)ﬁ(w —t0)
Oy —ak) pFAT(B+2)
(6P —a?)PHT[(B+1)(§F — 1) — (P —aF « -
gy D e -}

() = PIPoy(t) — A1 R () + {P1stPoa(T) - A I} 2(T)

— L P o (0) + AP I (D) | -
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As aresult, we get
[y (£) — ha(t)]

PL P oa(s) — 01 (s)](t) = AIE, [x(t) — 2(1)]

(12 —a)P(yf — 9)
* pPHIT(B+2)Q

L [oa(s) —o1(9))() + uA I [x(@) — 2(D)] |

{P15Ploa(s) = o1 (9N(T) = APLE, [¥(T) = R(T)]

(t — uﬂ)ﬁ <(Tp —aP)B(TP — tP)

N Q(}f/l’ —aP)ﬁ pﬁ+1r(ﬁ+2)
B(E — )PP+ 1)@ = ) = 9(# = )] 1t f 3
- PPHIT(B 4y +2)(B+ 1) PP as) —on @) 0n) — A1, L) —2n)] |
o (TP —ap)ath 01
< HwHHX*X”(puwﬁ,m) {”pﬁﬂrwznm]
|il(8° —ar)+PHrg,
P 2B (w + B+ ¢ + DT(B+2)|Q
(1 — aP)*2, Sy (JAI(TP —ar)P &
sre s g o) A Gy [ e s ayal
[1lIAL(EF —af)PH1Ey AIC2 )
PP (B+ 4+ DI(B+2)[Q] | pPT(B+1)|Q)
= (loflAr+ Az)[x — ]
Hence

1 = ha|| < (@] A1+ Az)l|lx = %][.
Analogously, we can interchange the roles of x and X to get
Ha(N(x), N(x)) < ([l@] A1+ Az)[]x — 2],

which implies that N is a contraction by the condition (18). Hence, by the conclusion of Covitz
and Nadler fixed point theorem [22], N has a fixed point x, which corresponds to a solution of (1).
This finishes the proof. [

4. Examples

We illustrate our main results by presenting a numerical example.

Example 1. Consider the following problem

{ 143D5/4<1é3D1/4+1/5>x(t) € F(tx(t), te]:=[1,2], )

x(1) =0, x(3/2) =0, x(2)=2/7"313*x(7/4).
Herep=1/3, 04 =5/4,=1/4,A=1/5,a=1,T=2n=3/2, u=2/7,v=3/4¢=7/4
Using the given data, we find that {3 =~ 0.082260, {» ~ 0.232036, |Q}| &~ 0.293634, A ~ 1.336009 and

Ay ~ 0.673563, where (1, (», Ay and A, are given by (16), (17), (14) and (15) respectively.
(i) Let us consider the function

1 [x(B)] ¢ [x(®)] et 1
F(t,x(t)) = [m( 3 (\x(t)|+1+2>+1)’9t+8<smx(t)+%>]' 20)
We note that |F(t,x(t))| < P(t)Q(||x]|), where P(t) = ﬁ, Q(llx) = |lx|| + 1. So the

assumption (A) holds. Moreover, there exists M > 1.047447394 satisfying (A3z). Thus the hypothesis
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of Theorem 1 holds true and hence there exists at least one solution for the problem (19) with F(t, x)
given by (20) on [1,2].
(ii) To illustrate Theorem 2 we consider the function

—t
F(t,x) = 1967”, m(x—&-tan_l(x) + 11—5) . @1)
Clearly Hy(F(t,x),F(t, %)) < @(t)|x — %|, where @(t) = 2. Also d(0,F(t,0)) < @(t) for

(t+4)2
almost all f € [0,1] and Aq||@|| + Ay ~ 0.7804433180 < 1. As the hypothesis of Theorem 2 is satisfied,

therefore we conclude that the multivalued problem (19) with F(t, x) given by (21) has at least one
solution on [1,2].

5. Conclusions

We have introduced a new class of multivalued (inclusions) boundary value problems on
an arbitrary domain containing Caputo-type generalized fractional differential operators of different
orders and a generalized integral operator. We have considered convex as well as non-convex valued
cases for the multi-valued map involved in the given problem. Leray-Schauder nonlinear alternative for
multivalued maps plays a central role in proving the existence of solutions for convex valued case of the
given problem, while the existence result for the non-convex valued case is based on Covitz and Nadler
fixed point theorem. The work presented in this paper is not only new in the given configuration, but will
also lead to some new results as special cases. For example, fixing p = 0 in the obtained results, we obtain
the ones for nonlocal three-point boundary conditions: x(a) = 0,x(y) = 0,x(T) =0,0 < n <T.
For p = 1, our results specialize to the ones for Liouville-Caputo type fractional differential inclusions
complemented with nonlocal generalized integral boundary conditions on an arbitrary domain.
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Abstract: We consider a time-fractional diffusion equation for an inverse problem to determine an
unknown source term, whereby the input data is obtained at a certain time. In general, the inverse
problems are ill-posed in the sense of Hadamard. Therefore, in this study, we propose a mollification
regularization method to solve this problem. In the theoretical results, the error estimate between the
exact and regularized solutions is given by a priori and a posteriori parameter choice rules. Besides,
the proposed regularized methods have been verified by a numerical experiment.

Keywords: time-fractional diffusion equation; inverse problem; ill-posed problem;
convergence estimates

MSC: 35K05; 35K99; 47]06; 47H10x

1. Introduction

In this work, we study an inverse source problem for the time-fractional diffusion equation in a
infinite domain as follows:

% = uxx(x, 1) + (1) f(x), (x,1) € Rx(0,T],

u(x,0) =0,x € R, @
u(x, T) =g(x), xeR,

where the fractional derivative % is the Caputo derivative of order f (0 < § < 1) as defined by
t

B s s
dhf(t) 1 /d/;(s ) (tfs)ﬁ' @)

a1 p) /
and T'(+) denotes the standard Gamma function.
The biggest motivation for developing the problem (1) is the inverse problems for the heat

equation; we recover the unknown source function under different assumptions on the smoothness
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of input data, which were proposed by Igor Malyshev in Reference [1]. The inverse problems of the
restoration of a source function in the heat equation with the classical derivative are studied by many
researchers, that is, Geng [2] and Shidfar [3].

The mathematical model (1) arising in control theory, physical, generalized voltage divider,
elasticity and the model of neurons in biology is studied in References [4-6].

According to our search, the fractional inverse source problems (1) are the subject of very few
works, for example, Sakamoto et al. [7] used the data u(xg, t)(xp € R) to determine ¢ () once f(x) was
given, where the authors obtained a Lipschitz stability for ¢(t). In Problem (1) for a one-dimensional
problem with special coefficients, Wei et al. [8] used the Fourier truncation method to solve an inverse
source problem with ¢(t) = 1. In Reference [9], using the mollification regularization method, Yang
and Fu determined the inverse spatial-dependent heat source problem. In Reference [10], Wei and
Wang considered a modified quasi boundary value regularization method for identifying this problem.
In Reference [11], using the quasi-reversibility regularization method, Yang and his group identified the
unknown source for a time fractional diffusion equation. In Reference [12], with the quasi-reversibility
regularization method, Wei and her group investigated a space-dependent source for the time
fractional diffusion equation. ~Actually, to our knowledge, in the case ¢(t), dependent on time,
the results of the inverse source problem for the time-fractional diffusion equation still has a limited
achievement, if ¢(t) # 0, we know Huy and his group investigated this problem by way of the
Tikhonov regularization method, see Reference [13]. In these regularization methods, the priori
parameter choice rule depends on the noise level and the priori bound. But in practice, to know exactly
this is very difficult. In the above research, by using Morozov’s Discrepancy Principle for choosing the
regularization parameter in Tikhonov regularization, the authors show error estimation for both the
priori choice rule parameter and the posteriori choice rule parameter.

In this paper, we use the mollification method to solve the inverse source problem. Instead of
receiving the correct input data, we only get the approximate input data. We assume that the measured
data in functions couple (g:(x) € £(R), ¢¢(t) € C[0, T)) satisfies

g — gell w2ry < & Ml — Pellcor) < & ®)

where the constant ¢ > 0 represents a noise level. It is known that the inverse source problem
mentioned above is ill-posed in the sense of Hadamard, that is, a solution of this problem (1) does not
always exist, if the solution does exist, it is not dependent continuously on the given data, meaning
that the error of the initial data is small, the error of the solution will be large. This makes trouble for
the numerical solution; here a regularization is required. The Fourier transform of a function F is
defined by

)

- = / e (x @

We imposed an a priori bound on the input data, that is,
I F ey < M. k>0, ®)

where M > 01is a constant,|| - ||z () denotes the norm in Sobolev space H*(R) is defined

HY(R) = {F € (R

= Oo}’ and H-FHHk(]R) = (l/’(lJrCZ)k/Z}A'(C)’zdg)z- 6)
il

The outline of this paper is divided into the following sections: Section 2 gives some auxiliary
results. In Section 3, by the priori bound assumption of the exact solution and the priori parameter
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choice rule, we present the convergence rate. In Section 4, we show the convergence rate between the
exact and regularized solutions under the posteriori parameter choice rule. Next, a numerical example
is proposed to show the illustration of the results in theory in Section 5. Finally, a conclusion is given
in Section 6.

2. Some Auxiliary Results

Before showing some lemmas, we recall the Mittag-Leffler function which is defined by

0 k

z
Ege(2) =), —————, z€C, 7)
P ,§O T(Bk +x)
where f > 0 and x € R are arbitrary constant. In Reference [14], the properties of the Mittag-Leffler
function are discussed. Hereby, we present the following Lemmas of the Mittag-Leffler function which
can be found in Reference ([14], Chapter 1).

Lemma 1. Let 0 < By < By < 1. Then there exist the constants By, By, B3 depending only on By, B1 such that
forall B € [Bo, B1],

B, 1 B,
< <20 ()<, v < ,
< Epa(x) < TA-p)1—x Bpa(¥) < 77, Vx<OVa €R ®)

These estimates are uniform for all B € [Bo, B1]-

By 1
r1-g)1—x

Lemma 2. (see Reference [7]) For 0 < B < 1, we have:
Egp(—) >0, £ >0.
Proof. As for the proof, see Miller and Samko [15]. O

Lemma 3. (see Reference [7]) For & > 0, & > 0 and a positive integer n € N, we have:

dar _
——Ep1(—8tF) = —tF "Eg g1 (—22F), t>0,

a(tEﬂ,z(—gztﬁ)) = Eg1(—¢*tF), t>0. )

Lemma 4. (see Reference [7]) By Lemma 2 and Lemma 3, we have
Q Q
/ | B p(—g27)|at = /ﬂ*ll—jﬁ,ﬁ(—éjzﬂ)dt
0 0

Q
= —?12 / %Eﬁ/l(_gzﬂ)dt = é(l - Ea,l(—éze“)), e>0. (10
0

Lemma 5. (see Reference [16]) For 0 < a < 1, & € R, the following inequalities hold:

22

sup|(1+¢%) (1-e 1)

CeR

< max {azk,zxz}. (11)

Proof. The proof can be found in Reference [9]. [
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Lemma 6. Let p € (0,1) and ¢ € R, the following estimate holds

& :
: = 2 1=y TEIZT
</Sﬁ71Eﬁ,ﬁ(—€25’5)ds> = W < ﬁ’i( ) _ 12)
0 m/ if ¢ <1

Proof. If |f| > 1 then since Eg1(—y) for 0 < B < 1 is a decreasing function for y > 0, we get
Eﬁ/l(—g’,zTﬁ) < E/grl(—Tﬁ). Whereupon

T

(/Sﬁ 'E (—czsﬁ)dsylz & = h for |3 > 1 (13)
Jo 1= Ep1(=82TF) = 1— Eg(~TF)’ -

If |¢] < 1 then since Egp(—y) with 0 < B < 1is a decreasing function for y > 0, we get
Eﬁ,ﬁ(—gzsﬁ) Z Eﬁ,ﬁ(—sﬁ), SO

T -1 T -1
_ _ 1
(b/sﬁ 1Eﬁ,ﬁ(,gzsﬁ)d5> < (b/sﬁ 1Eﬁ,ﬁ(fsﬁ)ds> = m for |¢] < 1. (14)

O

Lemma 7. Fora € (0,1) and & € R, from Lemma 6, one has:

1 _ éz
T - 2282
oo )t (- mtsm0).?
0
gzaz 4 1
: < (—) (7) e
e @) T B (-1
B (1 Ega(~T#))e B .
1

<

/N
QN‘ .
S~—

1 .
(1= Epa(-19) % () <t

This gives

! <(2) (1) (16)
(/rsﬂ—lEﬁ,ﬁ(—gzsﬁ)ds)e# <a2> <1_Eﬁ’1(_Tﬁ)>

0

3. The Priori Parameter Choice

Next, the error estimate of the mollification regularization method will be derived under the
priori parameter choice rule in this section. We consider the Gauss function

X2

ou(x) = “;#—;z, 17)

as the mollifer kernel, where « is a positive constant.
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We define an operator K, as

Kaf (x) i= paf (v) i= [ palt)fx = )t = [ palx =07 (1)t (18)
R R
for f(x) € %(R). The original ill-posed problem is replaced by a new problem of searching its
approximation f . (x) which is defined by

1 [ ix A
fealx) := Eﬂze gPafe(C)dCr 19

The Inverse Source Problem

By using the Fourier transform, the problem (1) is formulated in the following frequency space

PU(E, _ -
e s 2an = o0f@), (€1 eRxOT)
i(¢,0) = 0, FER, (20)
(¢, T) =g(c), ZeR
From the equation and the initial value in (20), we obtain
t
0(E ) = [(t=9)F1Egp(—23(t = 5)P)p()f()ds. ey
0
Or equivalently,
t
() = = [ ([0 5P By g~ — 9P )p(s)as) @) @)
R 0
Set
Dg(&,t —s) = (t—s)P ' Egp(—&2(t —5)P).
And (¢, T) = g(¢) in (20), one has
9 p—(( - 23)
[ DT = )p(s)is
0
Using the inverse Fourier transform, then we obtain the formula of the source function f
8(&)
F(x) = W / de. (24)
/ Dy(E, T = s)p(s)ds

0

On the other hand, if ¢(t) is bounded by infy¢[o 1 [p(t)] < o(t) < SUP;c[o,7] lp(t)| = l¢llco,m,
T

2 -1
we have ( / Dg(E, T~ s)cp(s)ds) can be written then -
0

2

The unbounded

1 5
inficjo,7) [¢(H)] (1_5511(_,§2Tﬁ)) :
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function # can be seen as an amplification when ¢ — co. From now on, putting
(1-Ega (-22TF))
infyco7) [9(1)] = Ao, infreor) [e(t)] = A1, supyeioq [¢(1)] = lI¢llcio,r) = @ From (19) with a
is a regularization parameter and a« depends on ¢, we found the regularized solution

[N p—C) : 25)

- 282

(/ Dp(E, T~ s)gbg(s)ds) et

0
Using inverse Fourier transform, we get
1 8:(¢) iex

xX) = e'erde. 26
fon(x) m/ . e (26)

) <0/ Dﬂ(@T—s)fps(s)ds)eT%

The main conclusion of this section are given below.

Theorem 1. Let f(x), given by (24), be the exact solution of (1) with exact data § € % (R), and feq(x) is
approximation solution of f(x) with measured data g € £ (R). Then we obtain

a. If0 < k < 1,and choosing a(e) = <%) 26 e have a convergence estimate

1-k

1O = fuOll ey < 7T (max {1, (15) 7 }+ R(A -1, 9)): @)
e \i
b. If k > 1, by choosing a(e) = (ﬂ) , we have a convergence estimate
1) = fea )| gyqmy < M3 (14 R (A0, ALR) ), (28)
in which
. 4 1 18lam

R(Ap ALY = ————— —+72>, 29
( 0 1 g) (17E‘B/1(7Tﬁ)) <.A1 .AlA() ( )

Proof. From (24) and (26), by the Parseval formula, the triangle inequality, we obtain

I1£C) = feaOll gy = IFO) = Fea Ol gy
2@ - (&)

T T
282
/ Dp(8, T — s)¢(s)ds (/ Dg(¢, T - s)¢g(s)ds> o AR
0 0
= H:Zl £ (R) + ||ZZH§([§(R) + HI3H:/2(]R), (30)
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in which

g/ {3 IR () ,
[ Do, T = 5)p(s)ds (/ Dy(e,T— s)(p(s)ds)e%
0 0

I — - g(g) - _ 7 ge(’:) - ,
</Dﬁ§T—S% ))f%' (/DM@T—@@@MﬁfT

0 0
7= 3(0) ~ ) _ o

<O/TDﬁ(C,Ts)¢(S)ds>e“%fz (b/TDﬁ(CfTS)%(s)ds)e“zfz

Next, we estimate the error by diving it into three steps as follows

Step 1: Estimate for HIl ) we have
~, 2.0 112
AR H )|
([ Pp(e T~ s)p(6)es) v
0
~la+ -t
L(®)

< Sup‘(1+§2)_k(1fe_a4g
ZeR

2. R) < M2 max {oc4k,uc4}~

Hence,

HIl &

R) < M max {chk, az}- (32)

Step 2: Estimate for HIZ H;z (r), We get

oI - 2() _ g:(0) ?
H 2”22(11@ T T 4®)
252 2
([2peT-990)s)e T ([ DyieT-s)r(s)as)e™
0 . 0 Ny .
< A{2||§(C) — §.(2) %(R) ?lg (/(T—s)ﬂ-lEﬁlﬁ(_gz(T—s)ﬁ)ds)e%
€ 0
20~ ~ 2 Cz 2
< APZ@) - & g m) jan 4 (1 Ep (TP
— Epa(— =
< () (s Epa(-19)) )
Hence, we conclude that
4 -1
Tl ey < (55 ) (A0 Ea-TP)) &
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Step 3: Estimate for || Z5

2 we have
L (R)

N N 2
Bl = |- 8O
(/Dﬁ(g,T—sw(s)ds)e"f (/Dﬁ(é,T—s)@(s)dS)e% ()
0 . 0
[ Dp(e T =5)(9:(5) ~ 9(5))ds )
_ 2@ b
azgz T T P R)
([ Pe@ T~ )e(s)as) ([ Dol T~ )p(s)as)
0 0
From (35), we get
N 2
1731y = 4529 =l |
([ Pp(eT— s)p(s)as)e ™ 14
0 5 ’
< AP 9= 9legym |~ —
([ oe T - s)g(as)ed 4
0
2 2,
< (Aon) e = 9l m : 2| [IR@)Pd
(1- ﬂl(_ngﬁ)) ed
16
< (ﬂ) (A0A1(17Eﬁ,1( H‘Ps ‘PHCOTR/ (&)|?de-
Hence,

4e 8 -1
1B s < (5 ) (Ao (1= Epa (=T)) 8l e
Combining (32), (34) and (37), we received
&

2+T)
(@) If0 <k <1by choosing a(¢) = (m> ’ , we have a convergent estimation:

£() = feal: HJ is of order eFiT.

1

4
(b) Ifk >1,by choosing a(e) = <%> , we have a convergent estimation:

[1£C) —fs,a(.)HnZ,z( is of order e?.
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4. The Discrepancy Principle

Now, we present the posteriori regularization parameter choice rule. The most general of the
posteriori rules is the Morozov discrepancy principle [17]. Choosing the regularization parameter « as

the solution of the equation
T -1
= 1 1 — 4
aw=or(es(ms(3)) W

Remark 1. To ensure the existence and uniqueness, we can choose 1 such that

where 77 > 11is a constant.

0< s+r](log <log (9))_1 <&l % m)

To establish the existence and uniqueness of the solution of Equation (40), we consider the
following lemmas

Lemma 8. Ife > 0 then there holds:

(a) 1(«) is a continous function.

(b) lim, o+ () = 0.

(c) hmzx~>+ool 04) HgsHiﬂ

(d) () is a strictly mcreasmgfunction.

The proof is very easy and we omit it here.

Lemma 9. The following inequality holds:

e~ F ) ~ 800y < 261 108 (108 (7)) @

Proof. Applying the triangle inequality and (40), we have

<l 42g:<c>f§e<¢>|\m)+}|g:(c)f§<¢>|\m)

sw“rﬂa—ﬂ@bmﬁWQ@—ﬂm@®

T -1
§2€+17<10g(10g <E>)> . (42)

Lemma 10. For any 0 75 c;‘ € R, lets,t € [0,T] such that 0 < s <t < T, making the substitution ¢* and

B3s

O

using the inequality: < B3sP~1, we have the following estimate

14828
T T _
[ Dot T = [T Egg(-(r - oputs < BT @)
0 0
Lemma 11. If « is the solution of Equation (40), then the following inequality also holds:
b <ML 1))
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whereby M > HfHHk(R)'

Proof. Due to (40), we receive

e (1og (g () " = - g

22 222 22 )

)8(8) — (1 —em 17)8(8) + (1 —e” 17)g(S)
T

<o) 1425 [ Dyle T ppte)ds) 1+ 2)F10)|

0

sla-v

£(R)

£ (R)

T

(- )+ ([ Dpe - o)p(s)as)

0

< e+ sup M

¢eR

2
<e+ %Hﬁ(ﬁg,, T,®, M),

whereby
Hg(Bs, T, ®, M) = (B) ' ®B3 TP M.
So
4 _ HMg(Bs, T, ®,M) T
SR =).
s (s (7))
|

Lemma 12. For 0 < a < 1, using the Lemma 7, the following inequality holds:
( &2 )k+167% _ ( k+1 >k+1(i)kﬂ
~ \(1-Eg1(-T#F)) a2/

e SAC Eg1(—g2T#)

¢eR

The proof is similar to Lemma 7 and we omit it here.

Next, the main results of this section are shown under Theorem.

(45)

(46)

(47)

(48)

Theorem 2. Assume the condition ||ge — g|| < € where ||.|| denotes the £ (R)-norm with & > 0 is a noise

level and the condition (5) holds, then there holds the following error estimate

1£C) = feaOll gy z) = IFO) = Fea Ol gy

(e (2)) (BT

1 k
k\ F+1 —1\ F+1
(] 1 1 T
* (1—Eﬁ,1<—m)> M‘“'(2””<1°g(l°g(s>>) )

n (slog (log (Z))) < Hﬁ(§3, T,®, M) . (ng(B&T,(D,M)|§||\5,”2(R)>>. (49)

WAO(l—Eﬁ/l(—T'B)) ﬂ(l—Eﬁll(—T'B))AoAl
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Proof. By the Parseval formula, we get

1£0) = fea Ol gy m) = IFO) = Fea Ol gy )

252 =N
< |- g(6) —&(6)
/Dﬁ s 1 (R)
0
+|— g(¢) o H) .
([ Pae=s100s)e ([ Dp(e T o)plas)eF A
0 0
T |— 8(¢) _ 8(8)
282
([oste s )eF ( / Do(E, T = s)gu(s)ds )+ 2
0
<Al g @) + 171 4 @) + ||k73||_2/2(]12<)/ (50)
We can divide the proof into three steps as follows:
Step 1: Estimate for || 7 Hz‘%(R), using the Holder inequality, we obtain
1 252 N 2
17 ) = — e F @ -g0],,
([ Ppe T 5)9(s)ds)
0
("7‘2 a2 N 2
< |z ey (80 -80) |4
< (hF = (@), (51)

whereby

2 222 R 2k
¢i= <n{ ((Ao(lesl(fngﬁ))Y(ef £ 8.(0) —g(§)> ) Hdg’),

¢ = ( [((Fa@-20)" )"“d@) - )

k_
I3

From (52), we can check that (C%) +

@ = ( [ (¥ e g(é))zdcYL

R

as follows

< — .
o (e () )

,252

= [l @) - 5@)
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On the other hand, we deduce

+oo - k1
(@) < (/ (&0 _Ei(_m)))”*” (e F o §<¢))2d¢>
B 62 k+1 szfz/\ s ﬁ
- ‘ <J“O(l - Eﬁ,l(*{szﬂ))> (i —a0) 5 (R)

2 k 22 R
< (KAO(l _ EEI(—CZTﬁ))> HE’TE (gs(ﬁ) —8(5))

2 (R)

k+1
: 54
fz(R)> &9

2 k 22 N
+ H (A0(1 _ Esl(,gzﬂ;))) - (e*Tg(C) *8(5))‘

To estimate C;, we give two Lemmas as follows:

Lemma 13. Assume that the condition ||g(¢) — §(Z)|

BHE) SE holds. Then we have the following estimate

2 22 ~
H <A0(1 — E§1(—§2T,3)) >k+1e* £ (gs(é) *g(é)) H»%(R)
< s(log <log <%>>k+1 <£5(k, T) HZ(O?,T, @, M) >k+1‘ -

Proof. Using the Lemma 12 and setting Lg(k, T) = (%), we get
“Epi(—

gZ >chrle_&

H<A0(17Eﬁ’1(,§27~5)) * (§S(§)_§(C))‘

4 \k+1 k+1 K
)" (mrzacm))

k+1 55} k+1
Se(log(log <I>> (ﬁﬁ(k,T) H'B(B3,T,<D,M)> (56)
€ A017

£ (R)

IN

in which Hg (B3, T, ®, M) is defined in Lemma 11. [

Lemma 14. Let § € R and exist M is a positive constant such that M 2 || f|| i (), we get

& k+1 7%A R > 1 k
H<AO(1—E&1(—€2T‘5))) (T80 -30) fHm) = A <1—E5,1(—T/5)> MO

Proof. Applying the Lemma 4, we receive
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& k+1 7#A o
H (-AO (1 — Eﬁ’](_ng‘B)) ) (e g(é) g(g)) A®)
52(1*6*%)ﬁ k1 s e T
= 1+ 1+ Du(&,T — i
‘ <A0(1—E,5/1(—§2Tﬁ))) 1+ 1+8%) (é)_o/ 5(C s)p(s)ds .
3 gz k(1-— 87‘,‘2452)
< %32 (G g cemy) arer M
D CZ k 7‘7‘2‘52
: A](§+1 §2£)<(1+62)(17Eﬁ,1(*(§2Tﬁ))) (1*3 ) M
b 1 k
O
Combining (54), (56) and (58), we have estimate (Clz)ﬁ as follows
1 T k+1 Lok, T) H E,T,d) 1
et o £)) T (EERE) e
(o] 1 K\ BT N
+A16+1 <1—Eﬁ,1(—Tﬁ)> > MFET,
From (51) to (59), so
TN/ L (k, T) Ha(Bs, T, )\ FH1
Hlegz(R) < (€<10g (log <;)> < 7l )Afﬂ( 3 )) M
: k
(03] 1 k\ &1 N r N
el ()
Step 2: Estimate for || 7> H?%(R)’ we have
(KA H (8:(6) ~ 8(2) :
BHR) > T .
([ opte T —oppas)e s
0
2 22 2
: e (50 - 5@)
£H(R)

- H Ao (1 - E5,1(—§2Tﬁ)>

- (E) 13 7§”§2”2(R) < 1 )2'
— \at A2 1—Eg1(—TF)

Applying the Lemmas 11 and 12 in case k = 0, we know that
_ 2

2 T Hg(Bs, T, , M)
1721/ 4 gy < <€1°g (1og (5))> (qu(l —Eg1(~TP)) )~
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(58)

(59)

(60)

(61)

(62)
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Hence, we conclude that

T Hp(Bs, T, ®, M)
16y < (108 (1 () ) (A ) ©

Step 3: Estimate for ng H?%(Ry we have :

() ()

T T

([PseT-9095)a5) T ([ Dpia, T~ )pels)is)e
0 0
T
(F2@) [ Do@ T )(9els) — p(s))as
o 0
- T
([ oe T~ p(e)as) ( [ Dp(e T~ s)pels)es)

0 0

|75

2
<
£([R) =

22 |l ()

2

(64)

£(R)

From (64), it gives
T
0= fleor [Pp@T—s)as
— (=5 2@)
2
Ao ( / Dy(E, T~ s)ds)
0

< H‘P - ‘P&”%j[oj]
T AN

2
H*73H$2(R) =

62 - szz
(1—Eg1(—22TP))

(65)

Applying Lemma 12 with k = 0 and Lemma 11 , we know that

2 16 1 2“4’*4’6”%[011 2
1 e < (35) (5= - =) pry e A

2 _
T Hp(B3, T, ®, M)|I2] (r) |2
< (slog(log (£>)> ( U(l_Eﬁ,l(_T'B))AO-Al > : (66)

Therefore,

T Hﬁ(§3rT/¢/M)H§|L?2(R)
1751 ) < <€1°g (108 (e))) ( 7(1— Ep1(—TP)) Aoy ) (©7)

Combining (60), (63) and (67), we get:
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1£C) *fs,vc(~)sz(R) = ||J?(~) *JFS;Q)HzZ(R

)
T\ / Lp(k, T) Hg(Bs, T, @)\ |
< (e(rom (s (1)) (BB
> 1 R\ 1 T -1\ R
T (1—Eﬁ,1<—Tﬁ>)> Mk”'<2€+’7<l°g<l"g<e)>) )

T Hg(Bs, T, @, M) Hp(Bs, T, @, M)Ig]l )
+ (slog <log (s))) <11.A0(1 — Ep,l(*Tﬁ)) + ( n(1— Eﬂrl(—Tﬁ))A0«41 )) (68)

Nohing that

g (10 (1)) =0 et (105 (7)) =0 ®

Combining (68) and (69), we conclude that

1£0) = fea Ol gy ) = IFO) = FeaO) ]l gy m) = Oas e = 0. (70)
The proof of Theorem 2 is completed. [

5. Numerical Experiments

In this section, in order to illustrate the usefulness of the proposed methods, we consider the
numerical examples intended. We carry out numerically above regularization methods to verify our
proposed methods. The numerical examples with T = 1, and = 0.4, B = 0.95 are shown in this
section, respectively. In the following, we give an example which had the exact expression of the
solutions (u(x,t), f(x)). We use the computations in Matlab codes which are given by Podlubny [18]
for computing the generalized Mittag-Leffler function and the accuracy control in computing is 10~1°.
We will do the numerical tests with x € [—7,7] and 7 = 1.1. The couple of (¢, g¢), which are
determined below, play as measured data with a random noise as follows:

9e(-) = ¢(-) +e (2rand() — 1), ge(-) = g(-) +e (2rand() — 1). (71)

Following Reference [9], we know the function rand(-) generates arrays of random numbers
whose elements are normally distributed with mean 0, variance ¢“ = 1 and standard deviation o =1,
and it gives rand(size(.)) and rand(size(.)) returns an array of random entries that is the same size as g
and ¢, respectively. We can easily verify the validity of the inequality:

¢ — Pllco, <& lIge —8lam <e (72)

In this example, we consider particularly a one-dimensional case of the problem (1) for f is an
exact data function.

Pu(x,t
B(T) = uxx(x, 1)+ ¢(t)f(x), (x,t) e Rx(0,T],
u(x,0) =0,x € R, (73)
u(x,1) =g(x), x €R-
In this example, we choose the following solution
L o/x
u(x, t) = (E/;J(tﬁ) — Eﬁ/l(—tﬁ)> sin <§> (74)

353



Mathematics 2019, 7, 1048

Then a simple computation yields

D) = 2 Epa(tP) + SEpa(~19). 75)

and f(x) = sin (). Moreover, we have 1(x,0) = 1g(x) = 0 and

u(x,1) =1y (x) = g(x) = (Eﬂ,1(1) - Eﬁll(q)) sin <§) (76)

Next, for computing the integral in the latter equality, see Reference [19], we use the fact that

X

: By — B
[ ) 3 10 B — )P = LB - y)_ oonED g
0
From ¢¢(.) = ¢(.) + ¢ <2rand(.) - 1), we have
1 1
/sﬁflEﬂ,;;(fé‘zsﬁ)(pg(l —s)ds = /sﬁflEﬁ,ﬁ(f(fzsﬁ)zp(l —s)ds
0 0
1
+e (2rand() — 1) / sP=1Eg 5(—25P)ds- (78)
0
Combining (72), (75) and (78), we have
1
. 5 E 1) + ZE _x2
O/SﬂflEﬁ/ﬁ(_gzsﬁfl)@(l —s)ds = 1( ppr1(1) 1iéf,ﬂ+1( g ))
B §(E;s//3+1 (-1) — &Eg g1 (—Cz))
4 —1+¢2
S(Zrand(.) - l)
+ T(1 ~Epa(=). (79)

In general, the numerical methods referenced by References [20,21] are summarized in three steps
as follows.
Step 1: Choose N to generate the spatial and temporal discretization in such a manner as:

T

x; = iAx, Ax = N i=0,N. (80)

Obviously, the higher value of N will provide numerical results that are more accurate and stable.
Here we choose N = 100 is satisfied.

Step 2: Setting feq(x;) = fi, and f(x;) = f', constructing two vectors contained all discrete values
of fen and f denoted by A¢, and ¥, respectively.

Aca = [fon fla - F2] € R,
Y=[f0f . R e ROHL (81)

Step 3: The estimation is defined:
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Relative error estimation:

ﬁ (xi) — ()
Z fs,uc Xi f Xi fz(—7r7).

E = (82)
‘ = |f(xi)|?gz(,7l7)
Absolute error estimation:
1N
Fa= |y o Malx) = Sl (53)

Figure 1 shows a 2D figures between the sought and its regularized solutions for N = 100 and
B = 0.95. All figures are presented with e = 0.1, ¢ = 0.01 and ¢ = 0.001, respectively.

In Tables 1 and 2 of this example, we show the error estimation both the priori and the posteriori
within case N = 100, that is, in Table 1 we show the error estimation for both the priori and the
posteriori at § = 0.95 with e € {0.1,0.01,0.001}, respectively. In Table 2, we show the relative error
estimation and absolute error estimation both the priori and the posteriori with ¢ = 0.01 with the
different values of § € {0.2,0.4,0.6,0.8}, when ¢ is fixed and the mesh resolutions are increased,
the regularized solution convergence is better than that of the exact solution. From observing the
results from the tables and figures above, we conclude that when ¢ tends to zero, the regularized
solution approaches the exact solution.

0.5

)

-0.5

f and its approximation

0.5

Z
£ o
E 05
“
b —H— fexact -1 —#— foxact
—O— fprioni —O— fprion
15 | | . | | —— Jyosterori s | | | | | 5 fposterions
] 6 -4 2 0 2 4 6 8 "8 6 -4 2 0 2 4 6 8
v v
(b) ()

Figure 1. A comparison between the exact and regularized solutions for k = 1, B = 0.95 with N = 100.
(a) e = 0.1. (b) e = 0.01. (c) e = 0.001.
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Table 1. The error estimation between the exact and regularized solutions of this example at g = 0.95

with N = 100.
e Elﬂ,m’ Ef;:ns Efpvi Ef;’ns
0.1 0.279660141830880  0.163452531664322  0.188256991900635  0.110030273632189
0.01 0.167130513450332  0.146077554813055  0.112506156619184  0.098334073898654
0.001  0.144054212078375  0.144599158066180  0.096972033479447  0.097338871212350

Table 2. The error estimation between the exact and regularized solutions with the different values of

B,e=0.01and N = 100.

8 EPr EPr EPr EPr
02  0.156401672575436  0.176079016470940  0.078962919638416  0.092189970426402
04  0.146364358305196  0.165153671589525  0.073895354649786  0.086469770247512
0.6 0.136338164832119  0.153413164488168  0.068833404246973  0.080322774289912
0.8  0.124692172130227  0.140316883268202  0.062953661590221  0.073465933522836

6. Conclusions

In this study, by using the mollification regularization method, we solved the inverse problem and
recovered the source term for time fractional diffusion equation with the time dependent coefficient.
In the theoretical results, which we have shown, we obtained the error estimates of both a priori and a
posteriori parameter choice rule methods based on a priori condition. In addition, in the numerical
results, it shows that the regularized solutions are converged to the exact solution. Furthermore, it also
shows that the smaller error of the input data, the better the convergence results.
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Abstract: In this article, we establish new Hermite-Hadamard-type inequalities via
Riemann-Liouville integrals of a function ¢ taking its value in a fractal subset of R and possessing
an appropriate generalized s-convexity property. It is shown that these fractal inequalities give
rise to a generalized s-convexity property of 1. We also prove certain inequalities involving
Riemann-Liouville integrals of a function ¢ provided that the absolute value of the first or second
order derivative of i possesses an appropriate fractal s-convexity property.

Keywords: s-convex function; Hermite-Hadamard inequalities; Riemann-Liouville fractional integrals;
fractal space

1. Introduction

Convexity is considered to be an important property in mathematical analysis. The applications
of convex functions can be found in many fields of studies including economics, engineering and
optimization (see for example [1,2]). A well-known result which was identified as Hermite-Hadamard
inequalities is the reformulation through convexity. These inequalities, widely reported in the literature,
can be defined as follows:

Theorem 1. Suppose that i : [u,v] C R — R is a convex function on [u, v) with u < v, then

(15 < g v P10

These two inequalities, which are refinement of convexity, can be held in reverse order as concave.
Following this, many refinements of convex functions using Hermite-Hadamard inequalities have
been continuously studied [3-6]. Given the variation of Hermite-Hadamard inequalities, Dragomir
and Fitzpatrick [7] established a new generalization of s-convex functions in the second sense.

Theorem 2. Suppose that p : Ry — Ry is a s-convex function in the second sense, where 0 < s < 1,
u,v € Ry andu < v. Ifp € LY([u,0]), then

s-1, (UF0 o Y (u) +¢(v)
2 11/]<T>§v—u/ulp(x)dxS s+1 @
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Though the Hermite-Hadamard inequalities were established for classical integrals [8], the inequalities
can also hold for fractional calculus, such as Riemann-Liouville [9-11], Katugampola [12] and
local fractional integrals [13]. Some of these were studied through Mittag-Leffler function [14,15].
Other important generalizations include the work of Sarikaya et al. [16], who proved the
Hermite-Hadamard inequalities through fractional integrals as follows:

Theorem 3. Suppose that ¢ : [u,v] — R is a non-negative function with 0 < u < vand ¢ € L[u,v]. If ¢ is
convex function on [u,v], we have:

o (M52 < FEE L e pio) 4 3 g) < KOO0,

where 0 < o < 1.

The s-convexity mentioned in Hudzik and Maligranda [2] was also given as the generalization on
fractal sets.

Definition 1 ([17]). A function ¢ : R, — R* is called generalized s-convex in the second sense if

Plyiu+720) <APP(u) +95°9(0), ®3)

holds for all u,v € Ry, y1,7v2 > 0, with y1 + v2 = 1 and for some fixed s € (0,1]. The symbol GK? denotes
the class of this functions.

The Riemann-Liouville fractional integral is introduced here due to its importance.

Definition 2 ([18]). Suppose that € Lq[u,v]. The Riemann—Liouville integrals [ ¢ and J5_1p of order
« € Ry are defined by

Bb) = g [ G- g, x>
and
. 1 v
9t = g L -0y, x <o,
respectively.
The following lemma for differentiable function is given by Sarikaya et al. [16].

Lemma 1. Let ¢ : [u,v] — R be a differentiable function on (u,v) withu < v. If ' € L'[u, v], then we have:

" o N ) v—u [1
#( );w( ) 2r(<v _+u1)>a (@) + Fopw)] = = [

[(A=7)* = "¢ (yu+ (1 —7)v)dy.

Wang et al. [9] extended Lemma 1 to include two cases, one of which involves the second
derivative of Riemann-Liouville fractional integrals.
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Lemma 2. Let ¢ : [u,v] — R be a twice-differentiable function on (u,v) with u < v. If " € L [u,v], then

Y +9(0)  Tla+1)

2 T 2(w—u) iy 9(0) + To-¢(u)]
_ )2 o satl aatd
_ 2u) /01 1-( Zli Lall " (qu+ (1= 7)0)d7,

holds.

Even though studies were conducted on generalized Hermite-Hadamard inequality via
Riemann-Liouville fractional integrals for s-convexity [16,19-21], inequalities of this type for
generalized s-convexity are lacking. Therefore, this paper is aimed at establishing some new integral
inequalities via generalized s-convexity on fractal sets. We show that the newly established inequalities
are generalizations of Theorem 2. The new Hermite-Hadamard-type inequalities in the class of
functions with derivatives in absolute values are shown to be s-convex function on fractal sets. This was
achieved using Riemann-Liouville fractional integrals inequalities.

2. Main Results

Our first main result is obtained in the following theorem.

Theorem 4. Suppose that ¢ : [u,v] € Ry — RY is a generalized s-convex on [u,v], where 0 < s < 1,
u,v € Ry and u < v. Ifp € L'[u, ], then we obtain

2““*”1#(”#) < gt 8 (o) + 15 p(w)] < [% + Hellftad ) | [pulpetol), 4

Proof. Since ¢ € GKZ, we get

o(E5E) < L0 o
Substituting x = yu + (1 — y)vand y = (1 — 7)u + yo with y € [0,1] in inequality (5), we obtain
2op (X532 ) <t (1= 1)0) + plao+ (1= D). ©

Multiplying both sides of (6) by 7*~! and integrating the resulting inequality with respect to ¢
over [0,1] yields

27%¢<}62ﬂ) < /0‘1 w_lzp(w+(177)v)+/ol YTy + (1= 7))
= (vrfa,z)a[fﬁ+¢(v) + % p(u)). "

Then the first inequality in (4) is proved.
To prove the second inequality in (4), since i € GK?, we get

P(yu+ (1 =7)o) <9y*¢u) + (1 -7)"p(), ®)

and

Pro+ (1 =7)u) <y ¢(0) + (1= 7)"p(w). ©)
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Combining the inequalities (8) and (9), we obtain

Plyu+ (1 —7)0) + (1 —7y)u+v0) <)+ (1 -7)P(©) + 7P ) + (1 - 7)“¢(u)

= [+ (1=l (w) + (o)) 1o
A similar technique used in (6) is applied to inequality (10) to get the following:
(vr_(“i)a U2 (0) + I )] < / P+ (=) () + p(o)ldy
1 T'(as+1)I'(a)
<[t W pw +ve,
where
1 KS+S5— . 1
/0 yetTdy =
and
1 as (‘Xs + 1)r(“)
/ & dy T T(ast+a+1)

Using inequalities (7) and (11), we prove Theorem 4. [

Remark 1. In the second inequality of Theorem 4, the expression } {H—l + %} for0 <s < 1isthe

best possible. The map ¢ : [0,1] — [0%,1%] given by ¢(z) = z°* is generalized s-convex in the second sense,
and it satisfies the following equalities:

" " TFla+1)[ 1 1 I'(as + 1) («)
Vb ) + o9 (0)] = —=5 {W(w(s+1)+r(as+zx+1))}

F(uc+1)

T(a+1) 1 I'(as+1)T'(«)
2 {al"(a)(s—&-l) F(zx)l”(txs—&-oc—i—l)}
_1{ 1 +1"(/)45—1-1)1"(1)4-‘:- )}
2ls+1  T(a(s+1)+1) |/

and

1 I'(as+1)T (a+1)} [¥(0) +

(1)) :1{ 1 F(ucs+l)1“(a+l)}
s+1 Fla(s+1)+1)

2 20s+1 " T(a(s+1)+1)
Corollary 1. By taking « = 1 in Theorem 4, the inequalities in (2) of Theorem 2 are recovered.
This result is the same as Theorem 2.1 in Dragomir and Fitzpatrick [7].

Remark 2. The equality
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implies

2oy < SO (o) + 8y

- { 1 F(as+1)1"(zx+1)} [p(u) +p(v)]
“ls+1  T(a(s+1)+1) 2

< L+1 +Bas+1,a+1)(a(s+1) +1)}

v +y(o)]
2

Theorem 5. Suppose that M : [0,1] — R* is the mapping given by

F(a+1)
(o — e

e (o + 0= 5 )+ (-5 ) | a0,

M(y) =

where P : [u,v] — R belongs to GK2, s € (0,1], u,0 € Ry, u < vand ¢ € L'([u,v]). Then

(i) M€ GKZon[0,1].
(ii) We have the following inequality:

M(y) > zw(”%”) (12)
(iii) We have the following inequality:
M(y) < min{M;(7), Ma(7)}, 7 € [0,1], (13)
where
M) = 7 LD g + I yt) + -y (R,
and

Ma(y) = Lil +%M] {w(wﬂl—w)u;v) +¢<w+(1_7)”§7’)}

(iv) If M = max{M; (), Ma(7)},7 € [0,1], then we have

< e [ vl 2ea - mee (150

Proof.

(i) Letyy, 7 € [0, 1] and M1, p2 > 0 with p1 4+ pp =1, then

M@ +p2r2) = féﬁ)la)

[Jff+¢((#1’h + p272) 52 + (1= (1 + pa72))0)

I IP((Hl'Yl +pay2)u+ (1 — (pry1 + VZ'YZ))%)
o R R S

(1w (g + (=)o) + g (rn+ (1= )22 )]
= M) + 15 M(7)-

IN
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(ii) Assume that € (0,1]. Then by the change of variables ¢ = yv + (1 — 7) 4% and p = yu + (1 —

)52, we have

o) ¢<w+(1*7)uzv>

+ s v)#)*lP(W* (a ‘V)M;vﬂ

= RO

MO = e ue {]wwl 7

Applying the first generalized Hermite-Hadamard inequality, we obtain

?“?[L‘;ﬁw( )+ T-v(g)] = 2“51/;(“77’) _ zaslp(u;zJ)/

and inequality (12) is obtained.
If v = 0, the inequality

u+o _ u—+o
> oas 1
o(*57) =2 (5)
also holds.

(iii) Applying the second generalized Hermite-Hadamard inequality, we obtain

T(a+1)
(0 —u)

1 T(as+1)T (vc-i—l)
L+1 T(a(s+1) + }W (©)]
1

[ty {w(w“*ﬂ“?)

1
+1P<”rv+ 1 —v)ugvﬂ
Az (), Vv € 0,1].

() + Jo- 9 (u)]

Please note that if v = 0, then the inequality

o{252) s [ 5)

holds as it is equivalent to

(o] =)o (7)<

which is known to hold for s € (0, 1].

Since for all v € [0,1] and x € [u, v] the inequalities
u+o . u-+v
p(u+ - 0) < v+ a-mep(50),

and

¢<7v+ (1 —7)”;”’) <9 p(o) + (1 —7)%(”%).
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are true, we obtain

r 1 ,
M = [ (o + a5
Ty (w+ (1 w)”;vﬂ
<P o)+ a5 gl + -y (110
=M (7)
and the inequality (13) is proved.

(iv) We have

My(y) = Lil +%} [¢<W+(177)u;y>
+w<w+(1—v)”§”>}

1 Tlas+DI(a+1) ][ ws [U+v s
< [y et DR D] g + (- pp (“52) + v0)

+a-aep(*30)]
= [ o] [t + vl 2ow - e (5],

2
Since
S S + 1 v00) < |+ e e,
and
ora(t) sl R (),
then

M) <% [+ DI D (i) + 9

« «s 1 r(ﬂ5+1)r(0{+1) u+o
+2%(1—1) L+1+ M1 1) 1) }lﬂ( 5 )

and the proof of Theorem 5 is complete.
O

Corollary 2. Choosing s = 1 in Theorem 5, we have
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(i)
Ega_tjz {]3+¢<’rv+ (1 —7)”%”) +L‘ff¢<7u+ (1 —v)uzvﬂ
< min {* {08 (o) 4 13 p(o)]
e (0) [ ]
X {lﬁ("ruﬂlfv)’%v) +¢<vv+(177)u;v>”-
(ii) Since
1= max { L 0) 4 1]+ (=) (),

3+ T Tyt =)™+ p (o + =52 ) |,
we get

1= 5+ D ) (o + von + 20 - e (U1,

Theorem 6. Let ¢ : [u,v] C Ry — R* be a differentiable function on (u,v) where 0 < u < v. For some fixed
q > 1,if |¢'|7 is generalized s-convex on (u,v), we obtain

Cuf 2y
‘lp(u);zp(v) _ Zf((v"‘jul))k T p(0) + J% p(u)] ‘ <Z 2 : (ail)

x ({ﬁ(m+l,as+1)+a(s+1ﬁ}

ey

x [|¢'(uw+|¢'(v>m) .

Proof. Applying Lemma 1, we obtain

pu) +¢(©) Tla+1) v—u

2 20— u)® Ui p(0) + To-y(u)] ‘ =— /01 [(1—7)* — %]

<y (yu+(1- v)v)d7‘~ (14)
First, suppose g = 1. Since the function |¢’| is generalized s-convex on (u,v), we obtain

9" (yu+ (1 =)oy < vl ()| + (1 =)y’ (0)]. (15)
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Therefore,
1
‘/O [(177)0(77“] l//(')/u‘l*(l* ) )d’y’ < |1p |/ IX,)/MJF,szs-Hx]d,Y
FW@ [ 1071+ (1= 7 )*lay

= (ﬁ(u+1,v¢s+l) + [¢'(u) +¢'(v)]. (16)

as+zx+1>

Next suppose that g > 1. From the power mean inequality and the generalized s-convexity of the
function |y’ |7 we obtain

(S L A (¢ A L

xf (yu+ (1 - W)v)dv‘

Jo 1@ =) =" (yu+ (1 - v)v)dw‘

1
14

Jo =)~ w”\d"r)

.

17)

1

Sl =)+ ¥y g ()7 + (1 — 7)“5|¢/(U)\"]d7> '
ﬁ>]7%<[ﬁ(¢x+l,v¢s+l) + Mj—,m]

< Wl + @)1
In view of inequalities (14), (16) and (17) the proof of Theorem 6 is complete now. [

Corollary 3. Under the conditions of Theorem 6, we get
(i) Ifq=s=1,then

| £ — SO (12 (o) + 5 ()] < 252 [y + Bla+ L+ D] (19! () + 19/ (@)])-

(i) Ifq =a =s =1, then

’wu);w(v)_ L[yl <

2319 ()] + |9 ()]).

v—UJu

(iii)If g > 1ands = 1

| H540) — 20D e o) + 9] S%(ﬁ)lf%’([ﬁwﬂ,asﬂwm

1

<+ 1y @)

(iv)Ifq > 1and « = s = 1 then

‘w(u>+¢(v)f 1 /vw(x)dx’<v2u<¢/<u>|q;uﬂ(v)w)%_

2 O—UJu
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Theorem 7. Let i : [u,v] C Ry — R* be a differentiable function on (u,v) where 0 < u < v.
If |¢'|7 is generalized s-convex on (u,v) for q > 1, we get

P L9 _ T@HD pu oy 4o ) ‘ < Uzu<ai1{121“}>1;

2 2(v—u)«
X({F(tstrl)F(terl) 1 Dé

T(as+a+2) as+a+1

1
< 14/ G0l + ¢/ @)1
Proof. Since |¢'| is generalized s-convex on (1, v), we obtain
9 (v + (1= 7)oy <y [g' ()| + (1 = 1)y (0)|.

From this fact and applying the Holder’s inequality, we have

Ila=ny —7“]¢’(w+(1—7)v)dv‘ hla=nv —wﬁ[(1—7)“—wﬁw’mm—w)v)m\
< (K- fﬂr“]dw.@[v“f(177>“]d'r>17%
< (1=t =l 1= )v)\”dvy
< (K- —wldwﬁ[wu— o) (18)
<RI I 0l + (1= ) @) )
(W[ D*( e 1))’

<9/ ()1 + ¢/ (0)|)7.
Thus, the inequalities (14) and (18) complete the proof of Theorem 7. [

Theorem 8. Let ¢ : [u,v] C Ry — R be a differentiable mapping on (u,v) with 0 < u < v. For some fixed
q > 1,if |¢'|7 is generalized s-convex on [u,v], then we have:

$0) 900) 2F(<vvc+1)> (o) + T2 ()] \ <5 (,Xpil {1 B zlrzD <1+1>

1

< (1)

Proof. By applying Holder’s inequality and (15), we obtain

-y 77“]w’(vu+(177)v>d7‘ < (1= =ty

1

I
[/ (u+ (1 - vwm)"

(%
(#
< (1= =2 Pdy+ il — (1 - "‘]”dv); (19)
(&1

X

1

! () 1+ (1 — ) o ﬂm)

1
q ) |9 ’1
< (MH [l_zT’D (w Wiy/o) )

Finally, from (14) and (19) we get the desired result. [

X
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Remark 3. From Theorems 6-8, we obtain the following inequality for g > 1

u)

‘ Y +9()  T(a+1)
2

200 —w)" Ui p(v) +T5- ()]'<mm{51,52,53}(

where

([ptos vas s+ 2],

,_.
Il

/N
2

+ 1N
i

~~—

T

.

1

- (2] ([P 1Y

1 1
2 1 » 1 q
SS:(ucp+l{172TP}> (IXS+1> ’

[l ()] + |9/ (0) )7,

Theorem 9. Let ¢ : [u,v] C Ry — R be a twice-differentiable function on (u,v) with 0 < u < v.

If, for some fixed q > 1, the function || is generalized s-convex on the interval [u, v], then we have

P) + (o)  T+1) o, . -u?( a \''7
P g U vto] | <55 ()

1
X<a5+1 Blas+1,a+2)

(1 + |¢”<v>|ff);.

Proof. Applying Lemma 2, we have

(v— ”)2 /»1 1-(1- ,Y)zx-H — ot
0

3 poo| 9" (yu+ (1 =)o) ld.

1
q
a >

(20)

First, suppose that ¢ = 1. Since the mapping |¢"| is generalized s-convex on (u,v), we obtain

9" (ru+ (1 =7)o)[ <4 [¢" (W] + (1 =71 [9"(v)].

Therefore,

v_uz/ll_ 1_ 1x+1
0 1x+1

s+a+2

where

Blas+1,a+2) =B(a+2,as+1).
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- (W|¢"(u>|+(1w)“sww"(v)\)dv
2 1 1/ 1
)( ) - 7)04; W)+ 19" (o),
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Secondly, for g > 1. From Lemma 2 and the power mean inequality, we have

<O (fa-a-p- ““)M) .

1

([ (1= = = G @ = olJar)

Hence, from inequalities (21) and (22), we obtain

2/ A B g

< ( Hlﬂwuwl) ([ @ty s - o)t )|
'U*u)z rx « 17%

2+ (/ 1-a- +1_7+1)

(/ 1 (1— )+ = “*1[w5|¢”<u>|ff+(1—v)“\w”(v)l'f}”)q

s <“12>1 (v poerera- M)b('l’”%u)lu w”w);.

This completes the proof of Theorem 9. [J

Theorem 10. Let 0 < u < v < oo and let the function  : [u,v] — R* be twice-differentiable on the open

interval (u,v), and fix s € (0,1] and fix g > 1. If, in addition, the function |¢"|1 is generalized s-convex on
[u,v], then

pu)+y@)  Tla+1) . (v—u)? 2 P
2 EICENE Jar (@) + Jo-9(u)] ’ 2t 1) (1 p(a+1)+>

[ ()17 + 1" (0)|7\ 7

* ( as+1 ) !

1,1 _
wherep+q—l.

Proof. From (20), (21) and the Holder’s inequality, we have

‘w(u)w(v) _ ZT((:j 1)> [ 9 (o )+Jgt¢(u)}‘

(0 —u)?

C ([ — ) (0= ofar)
S (fla- e - (pop [ vty + o [0 -ved)
(

S (1 ) (o)

IA

IA

IA
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We use
(1 _ (1 _ ,)/)D(+1 _ ,th+1>q <1- (1 _ ,)/)q(tx+1) _ tq(a'+1),

for any y € [0, 1], which follows from
(V—N)T < V71— N,

where
V>N2>0andg > 1.

The proof of Theorem 10 is complete now. [

The following result exhibits another Hermite-Hadamard type inequality in terms of the second
derivative of a function.

Theorem 11. Under the same assumptions of Theorem 10, we have

L ; N v—u)?
P90 D (o) + gy piw] | <

X (aslj —Blas+1,g(a+s)+1)

1 )3
(a+1)g+as+1

(17t + 19 )1

1
q

Proof. By applying Lemma 2 and the Holder’s inequality, we obtain

B0 Tt ey g g

1

—u)? 7 7
< S (L) (flasammet o g e - ol
v—u)? i
< ;(a - i) <\¢”(u)\f7 /01(7”‘5 — (1= ) F)gs — platd)tas)gy
1 i
YO (1= = (1= ) et )y )
(v—u)? 1 1 i
= 2(a+1) x <zxs+1 ~Blas+11+qla+s)) - (oc+1)q+zxs+1>

q

(19 + 19 )1
This completes the proof of Theorem 11. [

Remark 4. From Theorems 9, 10 and 11, we have

‘ Y +y)  Tla+1)
2 2(v—u)%

e (o) + J& p(u)] | < min{Ky, Ky, K3},
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where

(v—u) %’

k= 2(0(—0—1; (zxiz)l; <asl+1 —Plas+1a+2) - M)z(w”(u)lq + \w”(v)w)

 (o—u)? 2\l + [ (@)]7\ 7
KZ_Z(a+1)<17p(a+l)+> < as +1 ) 4

1 1
q

) (o)

(v —u)? 1 1

KS:2(1x+1)<4xs+1_ﬁ(as+l'q(a+s)+1)_q(pc+1)+ocs+1

3. Applications to Special Means

Using the obtained results, we examine some applications to special means of non-negative
numbers u and v.

1.  The arithmetic mean:
u—+v
A=A(u0)= ;u,v € R, withu,v > 0.

2. The logarithmic mean:
v—u

L(uv) = ———;u,v € R, withu,v > 0.
logv —logu
3. The generalized logarithmic mean:
vr+1 _ ur+1 %
Ly(u,0) = {m} ;r€Z\{-1,0} u,v € R, withu,v > 0.

Using the results obtained in Section 2, and the above applications of means, we get the
following proposition.

Proposition 1. Suppose that v € Z, |r| > 2 and u,v € R such that 0 < u < v. Then we get the
following inequality:

A(ur,vr) _ Lﬁ(u,v) < %A(lur’fl, |v|r—])_

Proof. This result follows Corollary 3 (ii) applied to the function ¢(x) = x". O

Proposition 2. Suppose that n € Z, |r| > 2 and u,v € R such that 0 < u < v. Then for q > 1, we get
the following:

(0 —u)lr|

‘A(u’/?’) = Li(u,0) A (juf10D), o),

<
Proof. This result follows from Corollary 3 (iv) applied to the function (x) = x". O
Proposition 3. Suppose that u,v € R such that 0 < u < v, then

(0w, 12
< A2 ol 2).

’A(uil, 1) — L(u,v)

Proof. This result follows from Corollary 3 (ii) applied to the function y(x) = x~1. O
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Proposition 4. Suppose that u,v € R such that 0 < u < v, then

O 45 21, o] 20,

A0 = L(u,0) g( 5

Proof. This result follows from Corollary 3 (iv) applied to the function ¢(x) = x~1. [
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Abstract: We prove the existence of solutions for neutral functional differential inclusions involving
Hadamard fractional derivatives by applying several fixed point theorems for multivalued maps.
We also construct examples for illustrating the obtained results.
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fixed point

1. Introduction

Fractional calculus has emerged as an important area of investigation in view of the application
of its tools in scientific and engineering disciplines. Examples include bio-medical sciences, ecology,
finance, reaction-diffusion systems, wave propagation, electromagnetics, viscoelasticity, material
sciences, and so forth. Fractional-order operators give rise to more informative and realistic
mathematical models in contrast to their integer-order counterparts. It has been due to the non-local
nature of fractional-order operators, which enables us to gain insight into the hereditary behavior
(past history) of the associated phenomena. For examples and recent development of the topic,
see References [1,2] and the references cited therein.

Differential inclusions—known as generalization of differential equations and inequalities—are
found to be of great utility in the study of dynamical systems, stochastic processes, optimal control
theory, and so forth. One can find a detailed account of the topic in Reference [3]. In recent years,
an overwhelming interest in the subject of fractional-order differential equations and inclusions has
been shown, for instance, see References [4-14] and the references cited therein.

In Reference [15], the authors obtained some existence results for sequential neutral differential
equations involving Hadamard derivatives:

D¥[DPy(t) — g(t,yr)] = f(ty(t), te]:=[1,b], o
y(t)=¢(t), tel-r1], Dfy(l)=neR,

where D%, DP are the Hadamard fractional derivatives of order 0 < «, B < 1, respectively and
f,g: ] x R — R are continuous functions, ] C Rand ¢ € C([1 —r,1],R).

In this paper, we cover the multivalued case of problem (1) and investigate the Hadamard type
neutral fractional differential inclusions given by

D¥[DPy(t) — g(t,y)] € F(t,y (1), t €] :=[1,b],

@
y(h) =), tel-r1, DPy()=neR,

Mathematics 2019, 7, 1084; doi:10.3390/math7111084 375 www.mdpi.com/journal /mathematics
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where F : | x R — P(R) is a multivalued map, P(R) represents the family of all nonempty subsets
of R, and the other quantities in (2) are the same as taken in (1). Here y; is an element of the Banach
space C, := C([—r,0],R) equipped with norm |[|¢||c := sup{|¢(6)| : —r < 8 < 0}, and is defined by
y(0) =y(t+0), 6 € [—r,0], where y is a function defined on [1 — r,b] and t € J. The standard fixed
point theorems for multivalued maps are applied to establish the existence results for the problem (2).

The remaining content of the paper is composed as follows. In Section 2, we describe the necessary
background material needed for our work. Section 3 deals with the main theorems. In Section 4,
we construct illustrative examples for the obtained results.

2. Preliminaries

Let us begin this section with some necessary definitions of fractional calculus [1].

Definition 1. For a function h : [1,00) — R, the Hadamard derivative of fractional order x is defined by

DXh(t) = ﬁ (t%)” /1t <log é)nﬁ(il @ds, n=I[x]+1,

where (x| denotes the integer part of the real number x and log(-) = log,(-).

Definition 2. The Hadamard fractional integral of order ) for a function h is defined as

. x—1 s
IXh(t) = ﬁ/l' <1og é) @ds, x>0,

provided the integral exists.
Now we state a known result [15], which plays a key role in the forthcoming analysis.

Lemma 1 (Lemma 2.3 in [15]). The function y is a solution of the problem

D*[DPy(t) — g(t,ye)] = f(t,yr), t € ] = [1,D],
y(t)=¢(t), te[1-r1], 3)
Dfy(1) =y €R,

if and only if
o), ifte[l-r1],
O B t a—1 .
v ={ {o@+0- g(1,¢))% S IACH, o) o
1 t ¢ a+p—1 f(s,ys) '
+W/1 (1°g§> T‘is}r ift €.

3. Existence Results

For a normed space (X, || - ||), we define Py(X) = {Y € P(X) : Yisclosed}, Pp(X) =
{Y € P(X) : Yiscompact}, Py ;(X) = {Y € P(X) : Yisclosed and bounded}, Pepe(X) = {Y €
P(X) : Y is compact and convex} and P}, (X) = {Y € P(X) : Y is bounded, closed and convex}.
In passing, we remark that a closed and bounded set in a metric space is not necessarily compact in
general; however, it is true that a set in a metric space of real or complex numbers is compact if and
only if it is closed and bounded.
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For each y € C(J,R), define the set of selections of F by
Sry = {¢ € L'(J,R) : &(t) € F(t,y(1)) on J}.

Denote by C(J,R) the Banach space of all continuous functions from ] into R endowed with
the norm ||y|| := sup{|y(t)| : t € J}. L}(J,R) represents the space of functions y : | — R such that

b
Iyl = Jy ly(6)lat.

Our first existence result deals with the case when F has convex values and is based on nonlinear
alternative for Kakutani maps [16] with the assumption that the multivalued map F is Carathéodory.

Definition 3 (Granas, Dugundji [16]). A multivalued map F : ] x R — P(R) is said to be Carathéodory if

(i) t— F(t, x) is measurable for each x € R;
(if) x — F(t,x) is upper semicontinuous for almost all t € J.

Further a Carathéodory function F is called L' —Carathéodory if
(iii) for each p > 0, there exists ¢, € L'(J,R™) such that
[E(t,x) || = sup{fo| : v € F(t,x)} < ¢p(t)

forall x € Rwith ||x|| < p and for almost everywhere t € |.
Theorem 1. Assume that:
(Hp) there exists a non-negative constant k < I'(« + 1)(logb) ~* such that

|g(t,uq) — g(t, u2)| < kllug —uzllc, fort €] andevery uy,up € C,.

(H1) F:] xR = Pepe(R) is LI-Carathéodory;

(Ha) there exists a continuous non-decreasing function ® : [0,00) — (0, 00) and a function p € C(J,R™")
such that

[E(tx)llp = sup{ly| : y € F(,x)} < p(6)(||x[|) for each (£,x) € ] x R;
(H3) there exists a constant w > 0 such that
k(log b)*
(1 T T(a+1) >“’

(logb)P  go(logh)® @(w)|pll "
T(p+ 1) Tl 1) Flatpor o)’

>1,

l¢llc + (Il +Kligllc + o)

where go = |g(1,0)].

Then the problem (2) has at least one solution on [1 —r,b].
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Proof. Let us first transform the problem (2) into a fixed point problem by introducing an operator
V:C([1—-rb],R) — P(C([1—r,b],R)) by

heC([1—rb,R):
(1), ifte[1-r1],
(log 1)

o)+ (71— 8L ) vrav
V() = { F(g+1) ©)

1 t AN 8(s,ys)
+1"(rx) /1 (10g;> s ds

1 t t at+p-1 ‘:(S) )
-‘rm/l (log ;) Tds}, ifte],

for § € Sg,. It is obvious by Lemma 1 that the fixed points of the operator V' are solutions of the
problem (2).
We verify the hypothesis of nonlinear alternative for Kakutani maps [16] in several steps.

Step 1. V(y) is convex for each y € C([1 —r,b], R). It directly follows from the fact that Sf ,, is convex (F
has convex values).

Step 2.V maps bounded sets (balls) into bounded sets in C([1 —r,b],R). Let B; = {y € C([1 —r,b],R) :
[llli=rp < ¢} be a bounded set in C([1 —r,b],R). Then, for each i € B(y),y € B, there
exists § € Sry such that

O B t a—1 X

atp1
e f (ons) e

Then, for t € ], we have

(logb)?  kllyllp—ry + 80
r(g+1) F(a+1)

) < ligllc + (| +klellc + o) (logb)*

S(lylip-re)llpll

Ta+pt1) o8 b)**F.

Thus,

(lOgb)l3 kZ + 8o (lOgb)a-‘r rq)(g)”p” (1Ogb)ﬂc+ﬁ.

Il <l + (nl-+ kgl +80) 1 s + oo G+BeT

Step 3. 'V maps bounded sets into equicontinuous sets of C([1 —r, b],R).

Let ty,t, € Jwith t; < tp and y € B;. Then, for each i € B(y), we obtain

o) —nte)| < PEAIEEE0 (10g )8 — (o))

kC—i—go 't ty a+p—-1 B t a+p-1 ds
Tt p) S (res log - 5
ML ( g)“*’“ ds

T(a+B) Jy s s

S@llpll NPT P s
+F(1x+ﬁ) 1 logs 1Ogs s
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+1"(o<+/3) f s s

< % |(log 2)? — (tog 11)"

k

ot a+p—1
Qe 1 (1012t

which tends to zero as t, — t; — 0 independently of y € B;. For the cases t; <t <0andt; <0 < £,
the equicontinuity can be established in a similar manner. Thus, by Arzelad-Ascoli theorem [17],
we deduce that V : C([1 —r,b],R) — P(C([1 —r,b],R)) is completely continuous.

Now we show that } has a closed graph. Then it will follow by the Proposition 1.2 in Reference [18]
that V is upper semi-continuous, as it is already proved to be completely continuous.

Step 4. 'V has a closed graph. We need to show that h, € V(y.) when v, — x4, hy € V(y,) and by, — hs.
Associated with i, € V(y,), there exists &, € S Fy, such that, for each t € ],

B a—1

wtp-1
g (oss) e

Thus it suffices to show that there exists {« € Sg, such that, foreach t € ],

oo t)B t a—1 \
h(t) = <P(1)+(17*g(1r¢))r(zﬁgj)l)+ﬁ/l <log£) g(s;y)ds

atrp1
RN GH T

Let us introduce the linear operator ® : L!(J,R) — C(J,R) given by

1

B t a—1
00 = 90+ 0 s o) B + s [ (logt) Eas

wp-1
T GRS

Notice that |71, (t) — h«(t)|| — 0, as n — co. Therefore, it follows from a result dealing with the closed
graph operators derived in Reference [19] that © o Sf is a closed graph operator. Further, we have
hy(t) € ©(SE,y, ). Since y,; — y«, we have

B a—1
B = o)+ - s o) B + s [ (ogt) S e

. atp-1
rrwrp b (osg) S

for some ¢. € Spy,.
Step 5. We can find an open set U C C([1 — r,b],R) withy ¢ vV(y) forany v € (0,1) and all y € oU.

Letv € (0,1) and y € vV(y). Then there exists & € L!(J,R) with & € S, such that for t € J,

(logb)?  kllylla—rs) + 80
T(p+1) T(a+1)

v < lillc+ (nl +klellc + o) (log b)*
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S(lyllp-re) Pl

a+p
Ta+p+1) (logb)*™, te7,

which implies that

‘ p
yur,m{l—’;((fibf)} < lglle+ (il + kil + 50) ST

go(logb)*  @([lylla—rp) Pl

log b)“+P.
T(a+1) Tatpt1) (o8
Consequently
k(log b)*
(1 - Kope) > 19011
<1.
logb)P logb)®  @(lylla—ru)llPl atB
I9llc + (1] + Kllgllc + o) LoBLL . Sollogd) Lorb NP g ot

rp+1) F(a+1) IF(a+pB+1)

By (Hj), there exists a real number w such that ||y||;;_, # w. Let us consider an open set
U={yeC(1=rbR)):[lyllg_ry <w}

with U = U U9U. Notice that V : U — P(C([1 — r,b],R)) is compact and upper semi-continuous
multivalued map with convex closed values. The choice of U implies that there does not exist any
y € oU satisfying y € vV (y) for some v € (0,1). In consequence, we deduce from the nonlinear
alternative for Kakutani maps [16] that V has a fixed point y € U which corresponds to a solution to
the problem (2). This finishes the proof. [

In the following result, we make use of the nonlinear alternative for contractive maps ([20]
Corollary 3.8) to show the existence of solutions for the problem (2).

Lemma 2. (Nonlinear alternative [20]) Let D be a bounded neighborhood of 0 € X, where X is a Banach space.
Let Z1 : X — Pep,e(X) and Z; : D — Pep,e(X) be multivalued operators such that (a) Zy is contraction,
and (b) Zy is upper semi-continuous and compact. Then, if G = Zy + Z, either (i) G has a fixed point in D or
(ii) there is a point u € 0D and A € (0,1) with u € AG(u).

Theorem 2. If the conditions (Hy) — (H3) of Theorem 1 hold, then there exists at least one solution for the
problem (2) on [1 —r, b].

Proof. Inorder to verify the hypotheses of Lemma 2, we introduce the operator ¥; : C([1—r,b],R) —
C(1—=r,b],R) by

0, ift e [1—r1],

Yiy(t) = oo £)B ; a—1 (6)
(U*3(1/¢))%+ﬁ/1 (log§> g(%ys)ds’ ift eJ.

and the multivalued operator ¥; : C([1 —r,b|,R) — P(C([1 —r,],R)) by
e C(l—rbLR):

P(t), ift e [1—r1,
Yy =1 = )

A O
¢(1)+W/] <10g;> Tds, lftEJ,
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for¢ € Sg . Observe that V = Y1 + Y5, where V is defined by (5). In the first step, it will be established
that the operators ¥ and ¥, define the multivalued operators ¥1, ¥ : By — Pep,c(C ([1 =r,b],R)),
where By = {y € C([1 —1,b],R) : [[yll}1_p) < 0} is a bounded set in C([1 —r,b],R). Let us show that
Y, is compact-valued on Bg. Observe that the operator ¥, is equivalent to the composition £ o Sf,
where £ is the continuous linear operator on L!(J,R) into C([1 — r,b],R), defined by

t a+p—1
co )=o)+ gy | (osg)

Let y € By be arbitrary and let {{,} be a sequence in Sg . Then it follows by the definition of Sf,
that &, (t) € F(t,y(t)) for almostall t € J. As F(t,y(t)) is compact for all t € ], we have a convergent
subsequence of {,(t)} (we denote it by {¢,(t)} again) that converges in measure to some {(t) € Sp,
for almost all t € J. On the other hand, £ is continuous, so £(&,)(t) — £(¢)(t) pointwise on J.

The convergence will be uniform once it is shown that { £(&,)} is an equicontinuous sequence.
For t1,t, € [ with t; < t, we have

t a+p—1 a+p—1
L@ L@ < OB [ (0g2)  (log2) T |E
@@)llpll = (1 P ds
e TACH I
< M H(lo t)oz+ﬁ_(10 t)"‘+/5)+|lo to [t ‘zx-%—ﬁ] ~0
S T+ p+1) LV82 g h g2/t ,

as fp — t1, which shows that the sequence {£(¢,)} is equicontinuous. As a consequence of the
Arzela-Ascoli theorem, there exists a uniformly convergent subsequence of {&,} (we denote it again
by {¢u}) such that £(,) — L(¢). Noting that £() € L(SFy), we deduce that B(y) = L(Sg,) is
compact for all y € By. So ¥»(y) is compact.

Now, we show that ¥;(y) is convex for all y € C([1 —r,b],R). Let hy,hy € ¥2(y). We select
¢1,62 € Spy such that

. at+p=1 ~
() = 4’(1)+r(%+,5)/1t <1og£> g’is)ds, i=1,2,

for almost all t € . Then

7

L e )T REE) + (1= )Ea(s)]
Al + (1= Dh)(t) = (1) + m/l (log—) - ds
where 0 < A < 1. Since Sg,, is convex (as F has convex values), AZ;(s) + (1 — A)%2(s) € Sg,. Thus
Ay + (1 — A)hy € ¥a(y), which shows that ¥ is convex-valued.

On the other hand, it is easy to show that ¥; is compact and convex-valued. Next we prove that

¥, is a contraction on C([1 —,b],R). Fory,z € C([1 —r,b],R), we have

a—1 — o(s, zs
O - N0 < o [ (gl) Berlsball,

I'(a) s s
< %/j <10g£>lx_1 llys = zsllc _SZSHCds
< Tyl
which implies that [[¥1(y) = ¥1(2) 1z < By — 2zl1_,y- By the assumption (Hp), we

conclude that ¥ is a contraction.
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As in the proof of Theorem 1, it can easily be shown that the operator ¥, is compact and
upper semi-continuous.

In view of the foregoing steps, we deduce that ¥; and Y, satisfy the hypothesis of Lemma 2. So,
from the conclusion of Lemma 2, either condition (i) or condition (ii) holds. We show that conclusion
(ii) is not possible. If y € A¥1(y) + A¥2(y) for A € (0,1), then there exist § € Sg, such that

B a—1 S, s
y(t) = /\(4)(1)+(,7_g(1,¢)) (log t) +L/lf <1og£> 8(s,¥s) 4

r(p+1) TI(a) s

1 t A6
+W/1 (10g;> ?ds , te].

By our assumptions, we can obtain

(logb)?  Kllylln—rp + 80 /f (10 5)“—1@
Tr(B+1) I'(a) 1 s

1 t F a+p—1 ds
g L (osl) T peR(nlof
(logb)?  kllyllj1-rp + 80

v < lgllc+ [l +klglic + ol

< Ile-+ Ul + Flplle + sol {20 + = 2 g
Pl @yl i—rs) atp
TTarpii) (osb)Th
Thus
k(log b)*
(1 - Kogt) > 19011 |
<1 ®
log b)P logb)® @yl
ollc + [l + klplc + go) 1822, gollogh)® | SUMn-ra)lIP] oy )0vp

rp+1) T(a+1) Tla+p+1)
If condition (ii) of Lemma 2 is satisfied, then there exists A € (0,1) and y € 9B, withy = AV(y). Then,
y is a solution of (2) with ||y||;_, 4 = w. Now, by the inequality (8), we get

k(logb)*
(17r(o¢+1)>“’ )
(ogh)F  sollogb)* | S(wllpl (o pip
T(B+1)  T(a+1) T@+p+1) o8

’

¢llc + [l +klgllc + 8ol

which contradicts (H3). Hence, V has a fixed point on [1 — r, b] by Lemma 2, which implies that the
problem (2) has a solution. The proof is complete. [

Our next result deals with the non-convex valued map in the problem (2) and is based on Covitz
and Nadler’s fixed point theorem [21] (If N : X — Py(X) is a contraction, then FixN # @, where X is a
metric space).

For a metric space (X, d) induced from the normed space (X; || - ||), it is argued in Reference [22]
that (P, 5(X), Hy) is a metric space, where H; : P(X) x P(X) — RU {co} is defined by H,(A, B) =
max{sup,. 4 d(a,B),sup,.pd(A,b)},d(A,b) = infoc 4 d(a;b) and d(a, B) = infycpd(a; b).

Definition 4 (Granas, Dugundji [16]). A multivalued operator N : X — Py (X) is called

(a)  y—Lipschitz if and only if there exists vy > 0 such that
H;(N(x),N(y)) < vd(x,y) for each x,y € X;

(b)  a contraction if and only if it is y—Lipschitz with v < 1.
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Theorem 3. Assume that (Hy) and the following conditions hold:

(A1) F:] xR —= Pey(R) is such that F(-,y) : | = Pep(R) is measurable for each y € R.
(A2) Hy(F(t,y),F(t, 7)) < m(t)ly — | for almost all t € [ and y,§j € R with m € C(J,R") and
d(0,F(t,0)) < m(t) for almost all t € ].

Then there exists at least one solution for the problem (2) on |, provided that

k [[m]

Tt o8t ¢

0= Tatpt1)

(logb)* P < 1. )

Proof. Observe that the set S, is nonempty for each y € C(J,R) by the assumption (Ay). Therefore
F has a measurable selection (see Theorem II1.6 [23]). Next we consider the operator V given by (5)
and verify that it satisfies the hypothesis of the Covitz and Nadler theorem [21]. We show that
V(y) € Pa(C(J,R)) foreach y € C(J,R). Let {v }u>0 € F(y) be such that v, — v (n — c0) in C(J, R).
Then v € C(],R) and we can find &, € S Fy, such that, foreach t € ],

B a1
o) = o)+ =8N { e + g (1ost) £

w+p-1
g ) (ss) B

Since F has compact values, we pass onto a subsequence (if necessary) such that ¢, converges to ¢ in
LY(J,R).So ¢ € Sry and for each t € ], we have

oo t)P t a—1 )

).
1 Ll NP ()
+F(a+ﬁ)/1 (1°g§> e
Hence, v € V(y).

Next we prove that there exists 0 < § < 1 (¢ is defined by (9)) such that
Hy(V(y),V(¥)) < dlly — 7|l foreach y, € C*(J,R).

Lety,7 € C?(J,R) and hy € V(y). Then there exists &1 (t) € F(t,y(t)) such that, for each t € J,

B . a—1 5, 1s
e A CH

S
1 t A\ 7 (s)
A CH I S

Hy(F(t,y), F(t,7)) < m(t)|y(t) — g(t)].
So, there exists v € F(t,(t)) such that

By (Az), we have

G1(t) —v(B) <m(B)|y(t) —g(B)], te].

Define V : ] — P(R) by

V(t) = {veR:&(t) —v(®)] <m(t)]y(t) — g(H)]}.
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By Proposition II1.4 in Reference [23], it follows that the multivalued operator V(¢) N F(t,§(t)) is
measurable. So we can find a measurable selection ¢, (t) for V. So & (t) € F(t,j(t)) and satisfying

[81(t) = Ga(8)] < m(t)|y(t) — 7(t)| foreach t € J.
For each t € |, we define

B . a—1 s, 7
) = ¢+ 0= s o) B + s [ (logt) Eas

T(B+1)  T(a) s
1 ot ¢ a+p—1 gz(s)
) CHEE
Thus,
1 t a—1 ) — 7.
I (f) — ha(8)] < @/1 <10g£) w*
1t PTG () — 6(s)]
g ) (osg) O
klly = 7ll—rp) . [[m] Bl -
TTarn 0080t r gy (080 Pl — dlln-ra.
Hence
k . lm| el
[[hy — ho|| < {M(logb) +m(1ogh) + }yy“l—r,b]'

On the other hand, interchanging the roles of y and 7 leads to

Ha(F(y), F(9)) < {kaog b+ ¢

ol ool
T(a+1) )(logb) ly = Flln—rp-

(a+B+1

So V is a contraction. Therefore, from the conclusion of Covitz and Nadler theorem [21], the operator
V has a fixed point y which is indeed a solution of the problem (2). This finishes the proof. [

Finally, we prove an existence result by applying the multivalued version of Krasnoselskii’s fixed
point theorem [24], which is stated below.

Lemma 3 (Krasnoselskii [24]). Let X be a Banach space, Y € Py (X) and Wy, Wp : Y — Pep(X) be
multivalued operators satisfying the conditions: (i) Wiy + Wy C Y for all y € Y; (ii)) Wy is contraction;
and (iii) Wy is upper semicontinuous and compact. Then there exists y € Y such that y € Wiy + Way.

Theorem 4. Suppose that (Hy), (Hy) and the following assumption are satisfied
(B1) there exists a function q € C([1,b],R™) such that
|[E(t,u)|lp :=sup{ly|: y € F(t,u)} <q(t), foreach (t,u) € [1,b] x C,.
Then there exists at least one solution for the problem (2) on [1 — r, b].
Proof. Let us consider the operators ¥; and ¥, defined by (6) and (7) respectively. As in Theorem 2,
one can show that ¥1,¥2 : By — Pepc(C([1 —r,b],R)) are indeed multivalued operators, where

By = {y € C(1 =70, R) : [[ylli_y < 0} is a bounded set in C([1 —r,b],R). Moreover, ¥; is a
contraction on C([1 —r,b], R) and ¥ is upper semi-continuous and compact.
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Next we show that ¥ (y) + ¥2(y) C Bg forall y € By. Lety € By and suppose that

k(logb)* [ln] +klipllc +g0l(logb)f  go(logb)* _ [Iql|(log b)**F
0<171‘(a+1)>>”¢”C+ T(B+1) TTar) TTarprn

Forh € ¥1,¥2 and § € Sf, we have
t a—1 .
B = o+ (—se) B+ o [ (1ot

1 ¢ t a+p— 16(5)
+m/l (lOg;) Tds, te I

With the given assumptions, one can obtain

(logb)?  kllyllp—rp + 80
r(p+1) [(a+1)

)] < lgllc+ [l +klglic + ol (log b)*

llqll «

Thus

(logb)? k6 + go

« gl «
TP+ " Tat) o8 F (logb)**# <6,

T(a+pB+1)

[l < liellc + [l + klgllc + g

which means that ¥1(y) + ¥2(y) C By forall y € By.
Thus, the operators ¥ and ¥, satisfy the hypothesis of Lemma 3 and hence its conclusion implies
thaty € A(y) + B(y) in By. Therefore the problem (2) has a solution in By and the proof is finished. [J

4. Examples

In this section, we demonstrate the application of our main results by considering the following
Hadamard type neutral fractional differential inclusions:

D4 (D*y(t) ~ g(t,yr)) € Ft,ye), t€ ] =[Lel, (10)
y(t) = ¢(t), te[1/2,1], D*3y(1) = 1/4. 459
Herea =1/4,=2/3,r =1/2,b=ce,
| V3+1Int | \f|yt| 1
F(t,ye) = fsm(y t), 80+ [y sin(7tt/2e) 4+ %l

1 . , 1
g(t yf) 4+1 ttan (%) +Sll’1(7’(t/2), (P(t) - 16@
4

With the given data, it is easy to see that (Hp) is satisfied with k < T'(5/4), (Hy) is satisfied with
p(t) = V3+Int/4,|p|l = 1/2,®(||ulc) = |lullc and (Hz) holds true for M > 7.05996548 (M, =
1.46447352, g = 1) with a particular choice of k = 1/4. Thus all the conditions of Theorem 1 hold true.
Hence the problem (10) and (11) has at least one solution on [1/2, ¢] by the conclusion of Theorem 1.
In a similar manner, one can check that the hypotheses of Theorem 2 hold with M > 1.71978641 and
consequently the conclusion of Theorem 2 applies to the problem (10) and (11).
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In order to illustrate Theorem 3, let us take

15+ (Int)2 |y n 1

F(t,y:) = |0, 1
(t:y) 8 (it 4

12)

in (10). Then ||m| = 1/2 and from the condition (9), 6 ~ 0.74950391 < 1. Clearly the hypothesis of
Theorem 3 is satisfied. Therefore, there exists at least one solution for the problem (10) and (11) with
F(t,y:) givenby (12) on [1/2,¢].

5. Conclusions

In this paper, we have derived several existence results for an initial value problem of neutral
functional Hadamard-type fractional differential inclusions. In our first result (Theorem 1), we apply
a nonlinear alternative for Kakutani multivalued maps to prove the existence of solutions for the
problem at hand when the multivalued map F is assumed to be convex-valued. The nonlinear
alternative for contractive maps is applied to prove the existence of solutions for the given problem
in Theorem 2. In Theorem 3, we show the existence of solutions for the given problem involving
non-convex valued maps with the aid of Covitz and Nadler’s fixed point theorem. Our final existence
result (Theorem 4) relies on the multivalued version of Krasnoselskii’s fixed point theorem. In the
nutshell, we have presented a comprehensive study of neutral functional Hadamard-type fractional
differential inclusions by making use of different tools of fixed point theory for multivalued maps.
In our future work, we plan to investigate the existence of solutions to an initial value problem for
neutral functional fractional differential inclusions involving a combination of Caputo and Hadamard
fractional derivatives.
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Abstract: In this study, we establish new integral inequalities of the Hermite-Hadamard type for
s-convexity via the Katugampola fractional integral. This generalizes the Hadamard fractional
integrals and Riemann-Liouville into a single form. We show that the new integral inequalities of
Hermite-Hadamard type can be obtained via the Riemann-Liouville fractional integral. Finally, we give
some applications to special means.

Keywords: Katugampola fractional integrals; s-convex function; Hermite-Hadamard inequality; fractal space

1. Introduction

Fractional calculus, whose applications can be found in many disciplines including economics,
life and physical sciences, as well as engineering, can be considered as one of the modern branches of
mathematics [1-4]. Many problems of interests from these fields can be analyzed through fractional
integrals, which can also be regarded as an interesting sub-discipline of fractional calculus. Some of the
applications of integral calculus can be seen in the following papers [5-10], through which problems in
physics, chemistry, and population dynamics were studied. The fractional integrals were extended to
include the Hermite-Hadamard inequality, which is classically given as follows.

Consider a convex function, h : E C R — R, w, z € E if, and only if,

h<wT+Z> = zjw th(x)dx = w @

Following this, many important generalizations of Hermite-Hadamard inequality were
studied [11-17], some of which were formulated via generalized s-convexity, which is defined as follows.

Definition 1. Let 0 < s < 1. The function h : [w,z] C Ry — R* is said to be generalized s-convex on fractal sets
R* (0 < & < 1) in the second sense if

h(tw+ (1—1)z) < (O h(w)+ (1) h(z).

This class of function is denoted by GK? (see Mo and Sui [18]).
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Hermite-Hadamard-type inequalities have been extended to include fractional integrals. For example,
Chen and Katugampola [19] generalized Equation (1) via generalized fractional integrals. Other important
extensions of Equation (1) include the work of Mehran and Anwar [20], who studied the
Hermite-Hadamard-type inequalities for s-convex functions involving generalized fractional integrals.
The definitions of the generalized fractional integrals were given in [21], and we present them as follows.

Definition 2. Suppose [w,z] C R is a finite interval. For order & > 0, the two sides of Katugampola fractional
integrals for h € X! (w, z) are defined by

PI% h(x) = Pt (xf — )L =Ly (1)dt
wt r(a) Jo ’

and X
—u

PI* h(x) = p
=T T

Z
/ (t° — x*)* L () dt,
X

wherew < x < z,p > 0, and X! (w,z)(c € R,1 < p < ) represents the space of complex-valued Lebesgue
measurable functions h on [w, z] for ||h\|x§<w. The norm is given as

z 1/p
Il = ([ 1enor ) <o
¢ Jw

for1 < p < oo,c € R. For the case p = oo, we get
11l x> = ess sup [¢[R()]],
w<t<z
whereby ess sup is the essential supremum.

Even though Katugampola fractional integrals have been used to generalize many inequalities, such as
Griss [22,23], Hermite-Hadamard [24], and Lyapunov [25], this work generalizes Hermite-Hadamard
inequality involving Katugampola on fractal sets.

When improving the results in Mehran and Anwar [20], we used Definition 2 together with the
following lemma.

Lemma 1. [19] Suppose that h : [wf,z°] C Ry — Ris a differentiable function on (w®,z°), where 0 < w < z for
« > 0and p > 0. If the fractional integrals exist, we get

h(wP) +h(z)  ap"T(a+1) oy Lo a oy 2 —wh
. S gt PR () 42 1 )] = 25

3 ‘/01 [ =) = ()] 710 (t0wP + (1 — t9) 2°) dit.

This paper is aimed at establishing some new integral inequalities for generalized s-convexity via
Katugampola fractional integrals on fractal sets linked with Equation (1). We presented some inequalities
for the class of mappings whose derivatives in absolute value are the generalized s-convexity. In addition,
we obtained some new inequalities linked with convexity and generalized s-convexity via classical integrals
as well as Riemann-Liouville fractional integrals in form of a corollary. As an application, the inequalities
for special means are derived.
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2. Main Results

Hermite-Hadamard inequality for s-convexity via generalized fractional integral can be written with
the aid of the following theorem.

Theorem 1. Let i : [wf,z°] C Ry — R® be a positive function for 0 < w < zand h € X! (w,z°) for a > 0
and p > 0. If h is a generalized s-convex function on [w*, zf], then

P P &
20‘(571)]1 <w + z ) < 14 F(lX+1) [Plg+h(zp) +p1§(7h(wp)}

2 = 2(z0 —wP)" ) ) @
< L’(l +9) +ap(a,as +1) w
Proof. Since & is generalized s-convex function on [w?,z°], for t € [0,1], we get
h(FwP + (1 —1)z°) < (1) h(wP) + (1 =) h(zF),
and
B(tPzP + (1= t)wP) < () h(z°) + (1 — ) h (wP).
Combining the above inequalities, we have
B (Wl + (1 =) 2°) + h (P20 + (1 — ) wf) < (7)™ + (1 = t°)") [h (wf) + 1 (z°)] . (3)

Multiplying both sides of Equation (3) by t*~1, for « > 0 and integrating it over [0, 1] with respect to
t, we obtain

% [”I;‘ h(zf) +F I;‘ h (w")} < /01 =1 ((tﬁ)"‘S +(1- tf’)”‘s) [h(wf) + h (zF)] dt. 4)
Since . .
asp+ap—1 —
fp et = oy

applying the change of variable ¥ = a gives the following

/'1 tap—l (l _ tp)D(S dr = ﬁ("‘/ as + 1)
0

0

Thus, Equation (4) becomes
PT@HY) 0w o0y o (g h(wP) +h(2)
2 —wh) (P18 1 (2°) +0 1% h (wf)] < ST T+ D) . ‘

In order to prove the first part of Equation (2), since h is generalized s-convex function on [w?, z°],
the following inequality is obtained:

xP +yf h(xf) +h (y°)
h( : >g ), ©)

for xf, yf € [wf,zP],a > 0.
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Consider x = tPwf 4+ (1 — ) z° and y* = t°z° + (1 — #*) wP, where t € [0,1].
Applying Equation (5), we have

wsy [WP 4 2P
2%h 5 <h(tPwl 4+ (1 —10)20) + h (HF2° + (1 =) wl). (6)

Multiplying both sides of the Equation (6) by t~1, for « > 0 and integrating over [0, 1] with respect
to t gives the following:

5 P P 1 1
i—ph <w ;Z > g/ t“f’*lh(tf’wf’qt(1—tP)zP)dt+/ 0y (1020 4 (1 — t0) W) dt
0 0
W A0 — xP a—1 xP71
= oy -
/Z <zP—wP> () o=z
a—1 -1 (7)
/z yppr h( P) yP i
+.w zP — wf Y zp—wﬁy
a1y '
:7(’;) — HEP)) 151 (2F) +° I b (wf)]
Then, it follows that

a(s—1) wf 4 2° p“r(a+1) oTa 0 L p TN 0
> h( ) < LR P ) ek (w)],

where B(w, z) is the Beta function. [J

Remark 1. When substituting p = 1 and « = 1 in Equation (2), we obtained the results reported by
Dragomir and Fitzpatrick [11].

Example 1. Consider a function h : [w?,zf] C Ry — R, such that h(x) = x> belongs to GK2, s € (0,1] with
he XF (wf,zP), where « > 0and p > 0. Suppose w = 0and z = 1. For a = 2,5 = % and p = 1, the first, second,
and third parts of Equation (2) give 0.25,0.33 and 0.50, respectively. Thus, the Equation (2) holds. Similarly, when
a=1,5=%and p =2, we get 0.35,0.50 and 0.80, respectively, which satisfies Theorem 1.

In the next theorem, the new upper bound for the right-hand side of Equation (1) for generalized
s-convexity is proposed. Thus, the generalized beta function is defined as

1
Bo(w,2) = [ p(1— )1 (x)" 13,
0
Note that, as p — 1, Bp(w,z) — B(w, z).

Theorem 2. Let &« > Oand p > 0. Let hh : [wf,zf] C Ry — R be a differentiable function on (wf,zf),
and ' € L'[w, z] with 0 < w < z. If |I'|1 is generalized s-convex on [wf,z°] for g > 1, we obtain

q—1

h(wP)+h(zf “T(a+1 T KR
(W) o (P15 b (2) 4 Ig,h(w")]‘ — (—(a jl)p)

Bo(as+1,a41) 1 1
X { S + (ap<s+1)+1)}

(I (@) |7 4 I (29)[7)7.
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Proof. In view of Lemma 1, we have

=77 o [ = )" — (@) ] oo

h(w?)+h(zF ST (a+1
(w );r (=) _ gf(’ng;)g [PI% ki (20) 4+ I% b (w)] ‘

®)
xh' (WP + (1 —tP) z°) dt|.

For the first case, when g = 1, and |//| is generalized s-convex on [w*, zf], we have
B (fPwf + (1 —10)2°) < () h' (wf) + (1 — )Y 1 (2P).
Therefore,

S [ =) — ()] 070 (100 + (1= 19) 2P)db| < [ [(1— 1)+ (10)%] 0 2(10)% I (aoP])

O

= W) fo [ (1)) (1= 80)* 5 (10)*)] at ©)
HIH @] L0711 = 1)) (1= 1) + (#9)%)]
=51+ 5.

Calculating S; and Sy, we get

Sy = |h’(wP|){f01(1 1)t (40) 5t 4 [ (10) X+ o 1dt}

— 1 () | [Belestlat) 1 (10)
a | (w ) | [ 4 + p(as+v¢+1)] ’
and
Sy =W (zf)) {fol(l — tP)"‘(SH)tP*ldt + fol(tp)lxtp—l(l - tf’)"‘sdt}
(1D
_ 1 Bo(a+1,as4+1)
— W (z)] [MWH) 4 Balert }
Thus, if we use Equations (10) and (11) in (9), we obtain
- s+1,a+1
=100 = 0] 4 (1) )| < o) [ 1] 12)
Bo(a+1,as5+1)
+|h/(zp)| |:p(1xs+a+1) + = 0 :|
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Obtaining Equations (8) and (12) completes the proof for this case. Consider the second case, g > 1.
Using Equation (8) and the power mean inequality, we obtain

ST ) = @) (et 4 (1 tﬂ)zﬂ)dt\ < (fol (- - (tﬂw*m)l7
) (.f& 11— t0)" — (1) eI (100 + (1 — tp)zm\”d’) E

1-1

= fol ([(1 — )% + (tf’)"]tpfldt)

x (jgl (= t0)% + () e [(#) [ () |7
1 (13)

(- tF’)“S\h’(zF’)\q]dt) !

g1

_ 1 1
=\ plat])

Bp(as+1a+1)
x((iﬂ 5 + SstarDy }1“‘1)>\h’(wﬂ)|q

1 [i,(o(+1,as+1))
T —— L |h'<zﬂ>v).

=i

The Equations (8) and (13) complete the proof. [

Corollary 1. Using the similar assumptions given in Theorem 2.

1. Ifp=1,weget

9-1

h(w) +h(z) al(a+1), , " z—w/( 1 7
P S ) + 12 a)| < 257 ()

1
q

X |:‘B(DLS+1,IX+1) +m:|

x (|W(w)| + [ (2)])-

2. Ifp=1ands=1,then

hw)+h(z) al(a+1),, . i—w( 1 \7
P e ) + 12w < 250 ()

1

1+ 2a>
< (K ()| + [H (2)|).

X <ﬁ(zx+1,zx+1)+

3. Ifp=1s=1anda =1, weobtain

ML EHE) 1 ] < 25 (1) (M)
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Theorem 3. With the similar assumptions stated in Theorem 2, we get the following inequality:

1-1
h(wP) h(zf o T,
(w )2+ (=) _ gf(lzf(wr;) [pIa h(zP) 4P 1247;1 (wp)] ‘ < (%) %

1
Bo(as+1,a41) 1 1 14
X [ . <a<s+1>+1>p} (9
1
x <|h’(wP)|‘7 + |h’(zP)|‘7> "
Proof. Using the fact ||, a generalized s-convex on [wf,zf] with g > 1, we get
B (FPwP + (1 —10)2°) < ()1 (wf) + (1 — ) 1 (2P).

Applying Equation (8) together with the power mean inequality, we get

-1
JE [ =10y — (19)*] o0 (P + (1 —tP)zﬂ)df' < (fn1 tHdt> !
1

<f0 |(1— t0)e 7(tf’)“\tp’l\h’(t*’wPJr(17tf’)zp)\’7dt>q

“

+(1- t")“\h’(z")|’7]dt> !

) ﬁ(fo (1= 0)% 4 () ]t (#0) " |1 (wr) |7

1

==

11
<(3) T(wenn Ra- e+ (e

RGO 10 =)0 =0 4 ()= ) )

()

Bp(as+1,a+1) 1
x (Ih’(w")\q {% + m}

Polat+las+1) 1 T
e R )

|
Remark 2. Choosing p = 1 in Theorem 3, we get the following

zZ—w
2

h(w) +h(z) al(a+1)
2 2( w)«

[I5h(z) + I h(w)]| <

1

1

X |:‘B(Dés+1,lx+1)+m:|ﬁ

x ([H (w)] + K (2)])-

Remark 3. When choosing p = 1 and s = % in Theorem 3, we get

h h T(a+1 - 1 \7
(zu)2+ (z) g(z(“_tu))“ﬁ*”(z) +I§,h(w)]’ <z 2w<ﬁ<%+l,a+l> + 3a+1>

2
x (|H' ()| + K (2)]7).
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Corollary 2. Choosing p =1, s = 1 and a = 1in Theorem 3, we obtain

MOEHE) L o] < z—2w<h'<w>|q+h'<z>|ﬂ>%

2 z—w Jw 2
The other type is given by the next theorem.

Theorem 4. Let « > Oand p > 0. Let hh : [wf,zf] C Ry — R be a differentiable function on (wf,zf),
where h' € L'[w,z) with 0 < w < z. For q > 1, if |h'|7 is generalized s-convex on [w®, zP], we get

h(wf)+h(zf) ap*T(a+1)
2 T 2(zp —wh)®

0 _ P 1 7
pra Y 1P ¥ o Z-w
[Ierh(Z )+ Iz*h(w )}‘S 2 (F(p71)+1)

y [‘Bp(:strl,chrl) 1 ]%
P plas +a+1)

1

x <|h’(wp)|'7+ |h/(2p)|q>“’
11
with sts= 1.

Proof. Using the Holder’s inequality, we obtain the following:

1

S [ = 0)" — (#0)%] 0= (0P + (1 7tf’)zf’)dt‘ < <j;]1(tp’1)%’dt> !

1

x (fol[(l — )% 4 () B (PP + (1 tf’)zp)\‘ldt> g

The fact || is generalized s-convex, and it can be used to obtain the following:

fo [(1—t9)" — ()] 0~ H! (tPwl + (1ftP)zP)dt‘ < (W) '

) (-fﬁl[(l — 1Y% o (80) ] (80)" 1 (P |7

HL= ) )

LV
< (P(P*l)Jrl)
xowwwﬁw4wwmfwwwﬂwwwww

HI ()] fy [ (1 — )% (1 — 1)

HOI(0)* (1 - tf’)"“]dt> !

1

_ 1 v
—\ rlp-1+1

/ Bp(as+1,a+1) 1
(1o [ Bl d

(CICSES
1
N 1, 1 a
I sty + )
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Corollary 3. From Theorems 2—4, for 4 > 1, we obtain the following inequality:

'h (wP) ;r hzp) ;‘F(?Z;(i";piz P18 () +© 1% h ()] ‘ < min(My, My, M3)(zﬂ—27wﬂ),
where
- 1 % Bolas+1,a+1) 1 i , ) :
My = <p(zx+1)) [ : o ((S+1)tx+1)p} (|1 (wP)|T+ |1 (2F)|7)7,
_ (1 w Bo(as +1,a+1) 1 i , .
M= <;> { i 1Y + ola(s+1) +1)} (|H (wP)|T + |H' (2°)|7)1,
and
- 1 5 Bolas+1,a+1) 1 3 , ) 1
Mo <1+(P*1)p> { 0 (&(S+l)+1)pj| (I ()T + 1 (20) )7

3. Applications to Special Means

The applications to special means for positive real numbers w and z can be studied through the
results obtained.

1. The arithmetic mean:
A= A(w,z) = Y=
2. The logarithmic mean:
L(w,z) - logz:ﬁ)} w*
3. The generalized lgogarithmic mean:

1
i1 il | D,
Li(w,z) = {éﬂ}%} ;ieZ\ {-1,0}.
Applying the results in Section 2, together with the applications of means, gives the following propositions.

Proposition 1. Leti € Z, |i| > 2and w,z € R where 0 < w < z. For q > 1, we obtain the following:

(z—w)lil

q-1
21

‘A<w’; 2) ~ Liw,z)| < AT (Jro]61), 2]96-D),

Proof. This follows from Corollary 1 (i) when applied on h(w) = w'. [
Proposition 2. Leti € Z, |i| > 2and w,z € R, where 0 < x < y. For g > 1, we obtain the following:

’A(wilzi) _ Lf(w,z) < %/\%wa(u), |Z‘q(i—1)).

Proof. This follows from Corollary 2 when applied on ii(w) = w'. [
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Proposition 3. Let w,z € R, where 0 < w < z. For g > 1, we obtain

(z—w) 1, _ _
< ANl 7 (27,

‘A(w’l,zfl) —L(w,z)
207 +1

1

Proof. This follows from Corollary 1 (iii) when applied on h(w) = ;. [

Proposition 4. Let w,z € R, where 0 < w < z. For ¢ > 1, we obtain

_ 1
< MAa(‘wrZ“Zqu).

‘A(w’l,z’l) —L(w,z) 3

1

Proof. This follows from Corollary 2 when applied for h(w) = . O

w
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Abstract: In this paper, we study a class of Caputo fractional g-difference inclusions in Banach spaces.
We obtain some existence results by using the set-valued analysis, the measure of noncompactness,
and the fixed point theory (Darbo and Ménch’s fixed point theorems). Finally we give an illustrative
example in the last section. We initiate the study of fractional g-difference inclusions on infinite
dimensional Banach spaces.
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1. Introduction

Fractional differential equations and inclusions have attracted much more interest of
mathematicians and physicists which provides an efficiency for the description of many practical
dynamical arising in engineering, vulnerability of networks (fractional percolation on random graphs),
and other applied sciences [1-8]. Recently, Riemann-Liouville and Caputo fractional differential
equations with initial and boundary conditions are studied by many authors; [2,9-14]. In [15-18] the
authors present some interesting results for classes of fractional differential inclusions.

g-calculus (quantum calculus) has a rich history and the details of its basic notions, results and
methods can be found in [19-21]. The subject of g-difference calculus, initiated in the first quarter of
20th century, has been developed over the years. Some interesting results about initial and boundary
value problems of ordinary and fractional g-difference equations can be found in [22-27].

Difference inclusions arise in the mathematical modeling of various problems in economics,
optimal control, and stochastic analysis, see for instance [28-30]. However g-difference inclusions
are studied in few papers; see for example [31,32]. In this article we consider the Caputo fractional
g-difference inclusion

(“Dgu)(t) € F(t,u(t)), t € 1:=[0,T], (1)
with the initial condition
u(0) =ug € E, 2

where (E, || - ||) is a real or complex Banach space, g € (0,1), « € (0,1], T >0, F: I xE — P(E)isa
multivalued map, P(E) = {Y C E : y # @}, and “Dj is the Caputo fractional g-difference derivative
of order a.

This paper initiates the study of fractional q-difference inclusions on Banach spaces.
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2. Preliminaries

Consider the Banach space C(I) := C(I, E) of continuous functions from I into E equipped with
the supremum (uniform) norm

[[t#]leo == sup [[u(£)]].
tel

As usual, L'(I) denotes the space of measurable functions v : I — E which are Bochner integrable
with the norm

lollx = /1 llo(t)]|dt.

Fora € R, we set
_1-7
[“]q* 1-q

The g-analogue of the power (a —b)" is
(a-0)® =1 (a-b)" =1 a—bg"); a,beR neN.
In general,

a— bg

(a—b)(ﬂé) = a1, (a—bq““) ; a,b,a € R,

Definition 1 ([21]). The q-gamma function is defined by

— )1
@ - Yl ter— (012,

Notice that Ty(1 4 &) = [£];T4(E).
Definition 2 ([21]). The g-derivative of order n € N of a function u : I — E is defined by (Dgu)(t) =u(t),

(D)) = (DY) () = "=, 1 2 0, (Dy)(0) = limy( Dy,

and
(Dju)(t) = (DgDy'u)(t); t € I, n € {1,2,...}.
Set I; := {tq" : n € N} U{0}.

Definition 3 ([21]). The g-integral of a function u : Iy — E is defined by

t 0
(1gu)(1) = [ u(s)dgs = - H1 = )q" F(1a"),
n=0
provided that the series converges.
We note that (Dglu)(t) = u(t), while if u is continuous at 0, then

(IgDgu)(t) = u(t) — u(0).
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Definition 4 ([33]). The Riemann—Liouville fractional g-integral of order x« € Ry := [0, c0) of a function
u : I — E is defined by (Igu)(t) = u(t), and

f(t—gs)*V
Tg()

Lemma 1 ([34]). Fora € Ry and A € (—1,00) we have

u(s)dgs; t € I.

T,(1+A)

(A+A)
F(1+A+a)(t a) O0<a<t<T.

(IX(t = a) M) (1) =

In particular,

1
1) (t) = ——— @),
(G1®) I;(1+a)
Definition 5 ([35]). The Riemann—Liouville fractional g-derivative of order &« € Ry of a function u : I — E is
defined by (Dgu)(t) = u(t), and

(D) (1) = (D L wy(1); b e 1,
where [a] is the integer part of a.

Definition 6 ([35]). The Caputo fractional g-derivative of order « € R of a function u : I — E is defined by
(CDYu)(t) = u(t), and

(CDRu)(t) = (I *Du)(1); t e 1.

Lemma 2 ([35]). Let « € R. Then the following equality holds:

Coa [a] 1 ik
(I8 CD3u)(t) = u(t) - k)::o m(D’;u)(o).

In particular, if « € (0,1), then
(Ig CD,’;‘u)(t) =u(t) — u(0).
We define the following subsets of P (E) :

Py(E) ={Y € P(E) : Y isclosed},

Pyy(E) ={Y € P(E) : Y isbounded},

Pep(E) = {Y € P(E) : Y is compact},
(E) ={ gE

Py Y € P(E) : Y is convex},
Pcp ?}(E ( PCU( )

Definition 7. A multivalued map G : E — P(E) is said to be convex (closed) valued if G(x) is convex (closed)
forall x € E. A multivalued map G is bounded on bounded sets if G(B) = UyepG(x) is bounded in E for all
B € Py(E) (ie. sup, g{sup{|y| : y € G(x)} exists).

Definition 8. A multivalued map G : E — P(E) is called upper semi-continuous (u.s.c.) on E if G(xg) €
P, (E); for each xo € E, and for each open set N C E with G(xo) € N, there exists an open neighborhood
Ny of xg such that G(Ny) C N. G is said to be completely continuous if G(B) is relatively compact for every
B € Pyy(E). An element x € E is a fixed point of G if x € G(x).

We denote by FixG the fixed point set of the multivalued operator G.
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Lemma 3 ([28]). Let G : X — P(E) be completely continuous with nonempty compact values. Then G is
w.s.c. if and only if G has a closed graph, that is,

Xn = X, Yn = Yo, Yn € G(X) = ¥« € G(x4).
Definition 9. A multivalued map G : | — Py (E) is said to be measurable if for every y € E, the function
t—d(y,G(t)) =inf{ly —z| : z € G(#)}
is measurable.

Definition 10. A multivalued map F : I x R — P(E) is said to be Carathéodory if:

(1) t — F(t,u) is measurable for each u € E;
(2) u — F(t,u) is upper semicontinuous for almost all t € I.

F is said to be L'-Carathéodory if Equations (1) and (2) and the following condition holds:
(3) Foreach q > 0, there exists g5 € L*(I,Ry) such that

|E(t,u)|lp = sup{|o| : v € F(t,u)} < @4 forall |u| <q andforae tel
For each u € C(I), define the set of selections of F by
Skou = {v € LY(I) 1 0(t) € F(t,u(t)) ae. t € I}.

Let (E, d) be a metric space induced from the normed space (E, | - |). The function H; : P(E) X
P(E) = R4+ U {0} given by:

Hy(A, B) = max{supd(a, B),supd(A,b)}.
acA beB

is known as the Hausdorff-Pompeiu metric. For more details on multivalued maps see the books of
Hu and Papageorgiou [28].

Let M x be the class of all bounded subsets of a metric space X.

Definition 11. A function y: Mx — [0, 00) is said to be a measure of noncompactness on X if the following
conditions are verified for all B, B, By € M.

(a) Regularity, i.e., u(B) = 0 if and only if B is precompact,
(b) invariance under closure, i.e., u(B) = u(B),
(c) semi-additivity, i.e., (B U By) = max{p(B1), 1t(B2)}.

Definition 12 ([36,37]). Let E be a Banach space and denote by Qg the family of bounded subsets of E. the map
i Qp — [0, 00) defined by

u(M)=inf{fe >0: M C UL, Mj, diam(M;) < €}, M € Q,
is called the Kuratowski measure of noncompactness.

Theorem 1 ([38]). Let E be a Banach space. Let C C L'(I) be a countable set with |u(t)| < h(t) forae. t €
and every u € C, where h € L'(I,Ry). Then ¢(t) = u(C(t)) € L'(I,R ) and verifies

w({ [ voasiuech) <2 [ ucenas,

where y is the Kuratowski measure of noncompactness on the set E.
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Lemma 4 ([39]). Let F be a Carathéodory multivalued map and ® : L1(I) — C(I); be a linear continuous
map. Then the operator
© 0 Sroy : C(I) = Pev,ep(C(I)), 1 (O 0 Spoy) (1) = O(SFou)
is a closed graph operator in C(I) x C(I).

Definition 13. Let E be Banach space. A multivalued mapping T : E — P ,(E) is called k—set-Lipschitz
if there exists a constant k > 0, such that u(T (X)) < ku(X) for all X € Py p(E) with T(X) € Py p(E). If
k < 1, then T is called a k—set-contraction on E.

Now, we recall the set-valued versions of the Darbo and Monch fixed point theorems.

Theorem 2 ((Darbo fixed point theorem) [40]). Let X be a bounded, closed, and convex subset of a Banach
space E and let T : X — Py ;(X) be a closed and k—set-contraction. Then T has a fixed point.

Theorem 3 ((Monch fixed point theorem) [41]). Let E be a Banach space and K C E be a closed and convex
set. Also, let U be a relatively open subset of K and N : U — P.(K). Suppose that N maps compact sets into
relatively compact sets, graph(N) is closed and for some xo € U, we have

conv(xgUN(M)) D M C Uand M = U (C C M countable) imply M is compact (3)

and
x& (1—A)xg+AN(x) VxeU\U, A€ (0,1). 4)

Then there exists x € U with x € N(x).

3. Existence Results

First, we state the definition of a solution of the problem found in Equations (1) and (2).

Definition 14. By a solution of the problem in Equations (1) and (2) we mean a function u € C(I) that satisfies
the initial condition in Equation (2) and the equation (CDg‘u)(t) = o(t) on I, where v € Spoy.

In the sequel, we need the following hypotheses.
Hypothesis 1. (Hy). The multivalued map F : I x E — Pepco(E) is Carathéodory.
Hypothesis 2. (H). There exists a function p € L®(I,R.) such that
IF( )l = sup{lo]lc s o(t) € F(t,u)} < p(t);
forae. t €1, andeachu € E,
Hypothesis 3. (H3). For each bounded set B C C(I) and for each t € I, we have
u(E(t B(t)) < p()u(B(t)),
where B(t) = {u(t) : u € B},
Hypothesis 4. (Hy) The function ¢ = 0 is the unique solution in C(I) of the inequality

(1) < 2p"([gP)(1),
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where p is the function defined in (Hs), and

p* = esssupicrp(t).
Remark 1. In (H3), u is the Kuratowski measure of noncompactness on the space E.
Theorem 4. If the hypotheses (Hy )—(Hs) and the condition

p* T(’X)

Li=—+—7——
I(1+a)

<1

hold, then the problem in Equations (1) and (2) has at least one solution defined on I.

Proof. Consider the multivalued operator N : C(I) — P(C(I)) defined by:

N = {necny s =po+ [ t’rqs@ 0(s)dgs; 0 € Sru . )

From Lemma 2, the fixed points of N are solutions of the problem in Equations (1) and (2). Set

p*T(’x)

R:= |lug| + =o——,
o] T,(1+a)

and let Bg := {u € C(I) : |Jullo < R} be the bounded, closed and convex ball of C(I). We shall
show in three steps that the multivalued operator N : B — P ;,(C(I)) satisfies all assumptions of
Theorem 2.

Step 1. N(BR) € P(BR)
Let u € Bg,and h € N(u). Then for each t € [ we have

t _ (a—1)
t) = ug+ ./0 %v(s)dqs,

for some v € Sg,,. On the other hand,
't (t—gs) =D
< RS
IO < ol + 751 o(6) s

t(t— gg)(a—1)
<ol + [ e

T (t—gs) Y

< |luo| +esssupt€1p(t)/0 T, (o) dgs

*
= lu + s
” OH (1_,'_“)

Hence
[|7]lc < R, and so N(Bg) € P(Bg).

Step 2. N(u) € P, (Bg) for each u € Bg.

Let {uy}n>0 € N(u) such that u, — i in C(I).Then, ii € Br and there exists f,(-) € Sgo, be such
that, for each t € I, we have

—uo+/ tqu) fu(s)dgs.
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From (Hj), and since F has compact values, then we may pass to a subsequence if necessary to
get that f,(-) converges to f in L!(I), and then f € Sro,,. Thus, for each t € I, we get

R
U)—»M)—uo+/—i—%%——ﬂﬂ%&

Hence 71 € N(u).

Step 3. N satisfies the Darbo condition.
Let U C Bg, then for each t € I, we have

p(INU)(8)) = p({(Nu)(#) - u € U}).

Let h € N(u). Then, there exists f € Sgoy such that for each t € I, we have
(t —gs)le=b)
_%+/ q F(5)dgs.
From Theorem 1 and since U C Bg C C(I), then

(t —gs)@1)
u(( <2/ <{t ) @ f(s):uell})dqs.

Now, since f € Sgo, and u(s) € U(s), we have

n({(t=q9) "V f(9)}) = (t—g9) Vp(s)u(U(s))-

Then
uou e <2 [ n ({“rz()())m}) "
Thus
u(NU)©) <29 [ t‘qs HUE) s,
Hence
H(N) o >>_é’gﬁ;) W,
Therefore,

which implies the N is a L—set-contraction.
As a consequence of Theorem 2, we deduce that N has a fixed point that is a solution of the problem in
Equations (1) and (2). O

Now, we prove an other existence result by applying Theorem 3.

Theorem 5. If the hypotheses (Hy) — (Hy) hold, then there exists at least one solution of our problem in
Equations (1) and (2).

Proof. Consider the multivalued operator N : C(I) — P(C(I)) defined in Equation (5). We shall
show in five steps that the multivalued operator N satisfies all assumptions of Theorem 3.
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Step 1. N(u) is convex for each u € C(I).
Let 1y, hy € N(u), then there existvy, v € Sgo,, such that

—yo-i-/ t_qs vi(s)dgs; tE T, i=1,2.
Let0 < A < 1.Then, for each t € I, we have

t(t— gg)(a=1)
(A + (1= A)hp)(t) = ./0 %(Avl (s) + (1= A)va(s))dys.

Since Sgo,, is convex (because F has convex values), we have Ahy + (1 — A)hy € N(u).

Step 2. For each compact M C C(I), N(M) is relatively compact.
Let (h,) be any sequence in N(M), where M C C(I) is compact.We show that (/) has a convergent
subsequence from Arzéla—Ascoli compactness criterion in C(I). Since h, € N(M) there are u, € M
and v, € Spoy, such that

t —
=1 +/ qs n(s)dqs.

Using Theorem 1 and the properties of the measure 1, we have

<2/ <{ t—gs) () )vn(s)}> dgs. ©)

On the other hand, since M is compact, the set {v,,(s) : n > 1} is compact. Consequently, u({v,(s) :
n>1}) = 0fora.e. s € I. Furthermore

n{(t=g5)* Vou(s)}) = (t = g9)* Vp({oa(s) :n 2 1}) =

fora.e. t,s € I. Now Equation (6) implies that {h,(t) : n > 1} is relatively compact for each t € I. In
addition, for each t1,t; € I; with #; < t,, we have

([ (t2) = ha (1)

tr (t, — gs)(@—1) t(t; — gs)@—1)
/0 (h—gs) ") p(s)dqsf/o (h—gs)*") p(s)dys

< oy Ty(@)
< [ s

+ /Ot1 |(t2 — qs)wlr)qza()tl sl p(s)dgs 7
< %(tz —t)*

b [ 122 qs)(flr)qza()tl —as) ],

— 0asty — t.

This shows that {h, : n > 1} is equicontinuous. Consequently, {h, : n > 1} is relatively compact
in C(I).

Step 3. The graph of N is closed.
Let (un, hy) € graph(N), n > 1, with(|lu, — u|, |hx — h||) — (0.0), as n — co. We have to show
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that (u, h) € graph(N). (uy,hy,) € graph(N) means that h, € N(u,), which implies that there exists
Uy € SFou,, such that for each t € I,

= uo+/ tqu) n(s)dqs.

Consider the continuous linear operator @ : L' (I) — C(I),

R

Clearly, ||h,(t) — h(t)|| — 0 as as n — oco. From Lemma 4 it follows that ® o Sr is a closed graph
operator. Moreover, h,(t) € ©(Sroy, ). Since u, — u, Lemma 4 implies

=ug+ / (t= qs (s)dqs.

for some v € Spoy.

Step 4. M is relatively compact in C(I).
Let M C U; with M C conv({0} UN(M)), and let M = C; for some countable set C C M. the set
N(M) is equicontinuous from Equation (7). Therefore,

M C conv({0} UN(M)) = M is equicontinuous.

By applying the Arzéla—Ascoli theorem; the set M(t) is relatively compact for each t € I. Since
C C M C conv({0} UN(M)), then there exists a countable set H = {h,, : n > 1} C N(M) such that
C C conv ({0} U H). Thus, there exist u, € M and v, € Spoy, such that

s
=1y +/ q ) n(s)dqs.
From Theorem 1, we get

M c C ceomo({0} UH)) = u(M(t)) < u(C(t)) < p(H(t)) = p({hn(t) :n > 1}).

Using now the inequality Equation (6) in step 2, we obtain

<2/ <{ t—qs) () )U”(s)}> dys.

Since v, € Spoy, and u,(s) € M(s), we have

<2/ <{ tqu)) v(s):n21}>dqs.

Also, since v, € Spoy, and u,(s) € M(s), then from (Hz) we get

n({(t = gs) " Dou(s); n = 1}) = (£ —g5)* Vp(s)u(M(s)).

Hence

* (= gs)D)

p(M(0) < 2" [ S M)y
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Consequently, from (Hy), the function ® given by ®(t) = pu(M(t)) satisfies @ = 0; thatis, u(M(t)) =0
for all t € I. Finally, the Arzéla-Ascoli theorem implies that M is relatively compact in C(I).

Step 5. The priori estimate.
Letu € C(I) such that u € AN(u) for some 0 < A < 1. Then

N f(t—gs) Y
u(t) = Aug + /\‘/0 Wv(s)dqs,
for each t € I, where v € Sgg;,. On the other hand,

_ gs)(@-D)
Jue)) < ol + [ o) s

t(t— gg)la—1)
< ol + | N s

Iy
p*T("‘)
< |luo|| + =F——-
ol + £y
Then @
p*Tuc
< - =
< ol + gy =4
Set

U={ueC,:|lu] <1+d}.

Hence, the condition in Equation (4) is satisfied. Finally, Theorem 3 implies that N has at least one
fixed point u € C(I) which is a solution of our problem in Equations (1) and (2). O

4. An Example

Let
E=1'= {u = (ug,up, ..., Un,...), Z [un| < oo}
n=1
be the Banach space with the norm

o
lulle = 3 unl-
n=1

Consider now the following problem of fractional %—difference inclusion
1
(‘D2uy)(t) € Fy(t,u(t)); t € [0,¢], ®)
1
u(0) = (1,0,...,0,...),
where

t2€747t

Fu(tu(t)) s [un(t) = Lu,(t)]; t€[0¢],

T ul)

with u = (ug,up, ..., Uy, ...). Sete = %,andF =(F,F,...,Fy,..0).
Foreachu € Eand t € [0,¢], we have

[E(tu)lp < p(t),
with p(t) = t2e~'~*. Hence, the hypothesis (H,) is satisfied with p* = ¢~2. A simple computation

shows that conditions of Theorem 5 are satisfied. Hence, the problem in Equation (8) has at least one
solution defined on [0, ¢].
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5. Conclusions

We have provided some sufficient conditions guaranteeing the existence of solutions for
some fractional g-difference inclusions involving the Caputo fractional derivative in Banach spaces.
The achieved results are obtained using the fixed point theory and the notion of measure of
noncompactness. Such notion requires the use of the set-valued analysis conditions on the right-hand
side, like the upper semi-continuity. In the forthcoming paper we shall provide sufficient conditions
ensuring the existence of weak solutions by using the concept measure of weak noncompactness, the
Pettis integration and an appropriate fixed point theorem.
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1. Introduction

Integral inequalities play a vital role in the field of fractional differential equations. In the past few
decades, researchers have paid their valuable consideration to this area. The significant developments
in this area have been investigated, for example, [1-3], and [4] (cf. references cited therein). In [5],
Ngo et al. established the following inequalities

/1g”+1(t)dt > /1 t7g(t)dt 6
JO 0
and
[swar= [N, ®
0 0

where ¢ > 0 and the positive continuous function g on [0, 1] such that

[sar> [rarxe

x

Later on, Liu et al. [6] established the following inequalities

b b
[errmie> [ -argrn, ©
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where ¢ > 0,y > 0, and the positive continuous g on [4, b] is such that

b b
/ L (tdt > / (t —a)°dt,6 = min(1,7),t € [a,b].
a a
Liu et al. [7] derived two theorems for integral inequalities as follows:

Theorem 1. Suppose that the functions fi and gy are positive and continuous on [a, b, (a < b) with f1 < g
on |a, b] such that the function %, (g1 # 0) is decreasing and the function fi is increasing. Assume that the
function ® is a convex with ®(0) = 0. Then, the following inequality holds

b b
[} A _ [} () dr
b = b :
Jo gi(Bdt [ @ (g1(t))dt
Theorem 2. Suppose that the functions f1, fa, and f3 be positive and continuous on [a,b], (a < b) with

f1 < foon [a,b] such ‘that t@e function %, (f2 # 0) is decreasing and tl%e fufzctionsf f1 and f3 are increasing.
Assume that the function @ is a convex with ®(0) = 0. Then, the following inequality holds

Ji fildt [ @ (i(0) fo)d
I pdt — [1o (L) fbdt

The inequalities in Equations (1)—(3) and their various generalizations have gained attention of
the researchers [8-12].

Furthermore, the research of fractional integral inequalities is also of prominent importance.
In [13,14], the authors presented some weighted Griiss type and new inequalities involving
Riemann-Liouville (R-L) fractional integrals. In [15], Nisar et al. introduced many inequalities
for extended gamma and confluent hypergeometric k-functions. Certain Gronwall inequalities for
R-L and Hadamard k-fractional derivatives with applications are observed in [16]. The inequalities
concerning the generalized (k, p)-fractional integral operators can be seen in [17].

The generalized fractional integral and Griiss type inequalities via generalized fractional integrals
can be found in [18,19]. In [20], the authors examined the (k,s)-R-L fractional integral and its
applications. In [21], the authors presented generalized Hermite-Hadamard type inequalities through
fractional integral operators. Dahmani [22] introduced some classes of fractional integral inequalities by
employing a family of n positive functions. Further the applications of fractional integral inequalities
can be found [23,24].

In the last few decades, the researchers have paid their valuable consideration to the field
of fractional calculus. This field has received more attention from various researchers due to its
wide applications in various fields. In the growth of fractional calculus, researchers concentrate to
develop several fractional integral operators and their applications in distinct fields (see, e.g., [25-33]).
Zaher et al. [34] presented a new fractional nonlocal model.

Such types of these new fractional integral operators promote the future study to develop

certain new approaches to unify the fractional operators and secure fractional integral inequalities.
Especially, several striking inequalities, properties, and applicability for the fractional conformable
integrals and derivatives are recently studied by various researchers. We refer the interesting readers
to the works by [35-44], and [45]. The applications of conformable derivative can be found in [46-49]
(cf. references cited therein).
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2. Preliminaries

Jarad et al. [50] proposed the following left and right generalized proportional integral operators,
which are sequentially defined by

(:7F) () = sz | ol Dl(r = 0 (< = @

and

(5F) ) = 5157 . Cexpl L (- T — T (e < b, ©)

where the proportional index 6 € (0,1] and ¢ € C with Re(¢) > 0 and I'(7) is the well-know gamma
function defined by T'(t) = [;~ t* le~*dt [51-53].

Remark 1. Setting 6 = 1in Equations (4) and (5), we obtain the following left and right R-L:

(7)) = 1y [ (=1 it <

and
b
(jbéf) (1) = NG /T (t— )" f(bdt, T < b,
where & € C with Re(g) > 0.

Recently, the generalized proportional derivative, and integral operators are established and
studied in [54,55]. Certain new classes of integral inequalities for a class of n (n € N) positive
continuous and decreasing functions on [4, b] via generalized proportional fractional integrals can
be found in the work of Rahman et al. [56]. The generalized Hadamard proportional fractional
integrals and certain inequalities for convex functions by employing were recently proposed by
Rahman et al. [57]. The bounds of proportional integrals in the sense of another function can be found
in the work of Rahman et al. [58].

3. Main Results

In this section, we establish proportional fractional integral inequalities for convex functions by
employing proportional fractional integral operators.

Theorem 3. Suppose that the functions f and g are positive and continuous on the interval [a, b], (a < b) and
f < gon|a,b]. If the function é, (g # 0) is decreasing and the function f is increasing on [a, b], then, for any
convex function ® with ®(0) = 0, the following inequality satisfies the proportional fractional integral operator
given by Equation (4)

T [@(f(7))
T4 [®(g(1))

T [f(1)
T [8(7)

where § € (0,1], & € C with Re(&) > 0.

] ]
] > K 6)

415



Mathematics 2020, 8, 222

Proof. Since ® is convex function with ®(0) = 0, the function @ ( Lis increasing. As f is increasing,

the function CD}JZ(T))) is also increasing. Obviously, £ E ; is decreasmg function. Thus, for all p, 0 € [a,b],
we have

fle) £(6)

(cb(f(p)) <1>(f(9))> @93 ?3) > 0.

It follows that

(U (p)) £(6) | 2(f(6)) flp) _ 2(f(6)) F(8) _ (f(p)) flp

=

fo) 80 T 1O s(0) fO) $O)  flo) so) " @
Multiplying Equation (7) by g(p)g(8), we have

2(f(p)) 2(f(6)) _2(/)
o) L O8lo)+ == flR)g(0) = =gy

=

£(8)8(0) - %ﬂp)g(e) S0 @

Multiplying Equation (8) by 55%@) exp[% (T —p))(t — p)¥", and integrating with respect to

pover [a,7],a < T < b, we have

s L erl g o= 2D se)g()do

f(p)
1 T 6—1 d>(f(9))
1 T 6—1 D(f(0))
g [, Pl o) R (o)
~ser el =l =0t EE D sopg(erap > 0
Then, it follows that
76) a7t (P ) + (P s0)) a7 (2
- (P art (s - s(@)a7% (T pm) > 0 ©)

Again, multiplying both sides of Equation (9) by ng}(g)e p[ 1( -9t - 0%,

and integrating the resultant inequality with respect to 0 over [a,7],a < 7 < b we get

T (F(1)) 0T (%S”g(r)) g (%g(r)) T (F(1)

20T (3(7) o T (R(F(D))) + T (@(f(1))) 0T ((7)) -

It follows that

an'f(f(T))> T (P(f(T)
T (g(7)) jé5( g))g(f))

(10)

Now, since f < g on [a,b] and ( ) is an increasing function, for p € [a,7],a < T < b, we have

2(f(p)) o 2(8(p))

flo) = s an
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Multiplying both sides of Equation (11) by

i P 5 (7~ p))(T — ) g(p) and

integrating the resultant inequality with respect to p over [a,7],a < T § b, we get

tsérlﬁ A ol —P”(T—P)@‘l%g@w

L M=t L19(2(p))
) | el 5 (ol o) o) s
which, in view of Equation (4), can be written as
o (%8“)) < W T¥ (@(8(7))) (12)

Hence, from Equations (10) and (12), we get Equation (6). [
Remark 2. Applying Theorem 3 for § = 1, we get Theorem 3.1 proved by [59].
Remark 3. Applying Theorem 3 for { = 6 = 1 and x = b, we get Theorem 1.

Theorem 4. Suppose that the functions f and g are positive and continuous on [a,b], (a < b) and f < gon
[a, b]. If the function é, (g # 0) is decreasing and the function f is increasing on [a, b], then, for any convex
function ® with ®(0) = 0, the following inequality satisfies the proportional fractional integral operator given
by Equation (4)

oI [F(0)] oI @O + T ()] 1T [@((0))]
DT (O] 0T [@(F(0)] + T [3(0)] 15 [@(F (1))

where 6 € (0,1], &, A € Cwith Re(¢) > 0and Re(A) > 0.

Y

1,

Proof. Since ® is convex function with ®(0) = 0, the function @ ( Lis increasing. As f is increasing,
(f (1)) [

the function iG] is also increasing. Clearly, the functlon 20 is decreasing for all p, 6 € [a,7],a <

T < b. Multiplying Equation (9) by —— ( —8)](7 — )1 and integrating the resultant

1
SAT(A)
inequality with respect to 6 over [a, 7], < T < b, we get

T4 a7t (P g@)) + 07 (2F D g(0)) 078 (0)

(
@(f(7) e [ 2(f(1) A5
L 50) 4% (B r0) 7 sy 0y

( T s

> ajg'é (g(7)) HJMS (

Now, since f < g on [a,b] and is an increasing function, for p € [a,7], 2 < T < b, we have

D(f(p) _ P(gp))
fo) = sl (4

Multiplying both sides of Equation (14) by 551,1( )exp[ 1( - 0)(t — p)*'g(p) and

integrating the resultant inequality with respect to p over [, 7], a4 < T < b, we get

L[ exp2 =t L0(f(0))
m/u eXp[T(T_p)](T_p)g ' f(o) 8(p)dp
o-1 1)

1 T
< [ el ol - TS so)ap
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which, in view of Equation (4), can be written as

g (PUM) 0 &0
78 (P g(0)) < w78 (@(s(r)). (15)
Similarly, one can obtain
5 (2U) ,
7 (B Dg0)) < o7 (@(5(0). (16

Hence, from Equations (12), (13), (15), and (16), we get the desired result. [
Remark 4. Setting ¢ = A, Theorem 4 leads to Theorem 3.
Remark 5. Applying Theorem 4 for 6 = 1, we get Theorem 3.3 proved by Dahmani [59].

Theorem 5. Suppose that the functions f, h, and g are positive and continuous on [a, b, (a < b)and f < h
on [a, b]. If the function f is decreasing and the functions f and h are increasing on [a, b], then, for any convex
function ® with ®(0) = 0, the following inequality satisfies the proportional fractional integral operator given
by Equation (4)

WTXf()] o T [@(f(0)h(T)]
WTE(T)] T 2T [@(g(T)R(T)]

where § € (0,1], ¢ € Cwith Re(&) > 0.

Proof. Since @ is convex function such that ®(0) = 0, the function <T)

(f(D)) ; (@) ;

f is increasing, G is also increasing. Clearly, the function @ is decreasmg forallp, 0 € [a,7],a <
T <b.

is increasing. As the function

f(p) f(0)
It follows that
D(f(p)h(p) D(f(0))n(0) ~ D(f(0))h(0) _ @(f(p)h(p)
o) f(0)g(p) + F0) f(p)g(6) £0) f(0)g(p) o) f(p)g(6) >0. (17)

Multiplying Equation (17) by 551,1 @ exp[5 ! (T —p)](t — p)¢~! and integrating the resultant

inequality with respect to p over [a,7],4 < T < b, we have

1 T 6—1 )
m/ eXp[T(T_p)](T_p)g ! flo) f(0)g(p)h(p)dp

i L erl g ol = 2L o) nerdp
_%(g)/areXp[(s(s;l(T‘P”(T—P)‘f*l%ﬂ@)h(ﬂ)g(p)@

AR @ (f(p))
g1 [, Pl o o) T fhie)a(0)dp > 0
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It follows that
£(6) 0T (%g(r)h(r)) + (q’;{ h<e>) T (f
- (P rme) w7 5o - 56) a7 (PUE fome )) o ay

Again, multiplying both sides of Equation (18) by 15‘31"1(5) ex p[ 1( —0))(t—6)°"" and

integrating the resultant inequality with respect to 6 over [a,7],a < T < b we get

T (F(0)) a J“( Y “”g(r)h(r)) I (Mgw)h(r)) T (f(0))

) f(7)
2,75 (3(1) o (S(F(D)H(D)) + T % (@(F(2)(D) T ((7)).
It follows that
T S )
. g (on(r) )
In addition, since f < g on [a,b] and * is an increasing function, for 1,6 € [a,b], we have
®(f(n) _ ®(gn). (20)

fn) g(n)

Multiplying both sides of Equation (20) by (Sél}w exp[(s%l('r — )t =) g(n)h(y) and

integrating the resultant inequality with respect to 17 over [a,7],a < T < b, we get

%@ /”TeXp[éé;l(r — (T —y)i1 (£ (1))

<srie [ ool 5 it 2SI gy

which, in view of Equation (4), can be written as

N (%g(ﬂh(ro < WT (@(g(0))h(T)). 1)

Hence, from Equations (21) and (19), we obtain the required result. [
Remark 6. Applying Theorem 5 for 6 = 1, we get Theorem 3.5 proved by Dahmani [59].
Remark 7. Applying Theorem 5 for 6 = ¢ = 1 and x = b, we get Theorem 2.

Theorem 6. Suppose that the functions f, h, and g are positive and continuous on [a,b], (a < b)and f < g
on [a, b]. If the function Lis decreasing and the functions f and h are increasing on [a, b], then, for any convex
function @ with ®(0) = 0, the following inequality satisfies the proportional fractional integral operator given
by Equation (4)

oI [f(0)] TV [@(DI(T)] + o TV [f(1)] 2T [@(g(1T)) (7))
oT (0] o TM [@(f(D))1(T)] + T [g(T)] 2T [@(f (7)) 1(7)]

where § € (0,1], &, A € Cwith Re(¢) > 0and Re(A) > 0.

>1

, (22)
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Proof. Multiplying both sides of Equation (18) by N exp| (T —0))(t — 0)* " and integrating

SAT(A)
the resultant inequality with respect to 6 over [a,T],a < T < b, we get
AS es (P(f(1) A (PUf(T)) &5
740 o7t (PUE g ) + 07 (B stomn) ) 0 o)
) 1o (@(f(T)) e ((P(f(T)) )
>, (g(0) o7 (EFf0h)) + 073 (2L fom0) ) o7 (5000 @)
Since f < g on [4,b] and @ is an increasing function, for 77,0 € [1,x],a < T < b, we have
D(f(n) _ P(g(n))
fo) = sln) 9
Multiplying both sides of Equation (24) by ﬁflﬁ exp[%(r — )t =) e(mn(y), 4 €
[a,x],a < T < b and integrating the resultant inequality with respect to 17 over [4, 7], a < T < b, we get
75 (g o)) < 1T (@(s(0)h()). 25)

Similarly, one can obtain

T (%gmhm) < oI (D(g(1)h(1))) (26)

Hence, from Equations (23), (25), and (26), we obtain the required inequality in Equation (22). [
Remark 8. If we consider { = A, then Theorem 6 leads to Theorem 5.

Remark 9. Applying Theorem 6 for 6 = 1, we get Theorem 3.7 of Dahmani [59].

4. Concluding Remarks

Some interesting integral inequalities for convex functions were presented by Liu et al. ([7]
Theorems 9 and 10). Later, Dahmani [59] improved these integral inequalities by utilizing the R-L
fractional integral operator. Here, we present some new fractional proportional integral inequalities
for convex functions by utilizing the proportional fractional integrals. In fact, we established the
inequalities presented in Theorem 1 and Theorem 2 using the fractional proportional integrals, which
are nonlocal and their orders depend on two indices: §, which is the proportional index, and ¢, which
is the iterated index.
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Abstract: In this paper, we study the existence of solutions for a new nonlocal boundary
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1. Introduction

In the last few decades, fractional-order single-valued and multivalued boundary value problems
containing different fractional derivatives such as Caputo, Riemann-Liouville, Hadamard, etc.,
and classical, nonlocal, integral boundary conditions have been extensively studied, for example,
see the articles [1-12] and the references cited therein.

In the study of variational principles, fractional differential equations involving both left and
right fractional derivatives give rise to a special class of Euler-Lagrange equations, for details, see [13]
and the references cited therein. Let us consider some works on mixed fractional-order boundary
value problems. In [14], the authors discussed the existence of an extremal solution to a nonlinear
system involving the right-handed Riemann-Liouville fractional derivative. In [15], a two-point
nonlinear higher order fractional boundary value problem involving left Riemann-Liouville and right
Caputo fractional derivatives was investigated, while a problem in terms of left Caputo and right
Riemann-Liouville fractional derivatives was studied in [16]. A nonlinear fractional oscillator equation
containing left Riemann-Liouville and right Caputo fractional derivatives was investigated in [17].
In a recent paper [18], the authors proved some existence results for nonlocal boundary value problems
of differential equations and inclusions containing both left Caputo and right Riemann-Liouville
fractional derivatives.

Integro-differential equations appear in the mathematical modeling of several real world problems
such as, heat transfer phenomena [19,20], forced-convective flow over a heat-conducting plate [21], etc.
In [22], the authors studied the steady heat-transfer in fractal media via the local fractional nonlinear
Volterra integro-differential equations. Electromagnetic waves in a variety of dielectric media with
susceptibility following a fractional power-law are described by the fractional integro-differential
equations [23].

Mathematics 2020, 8, 336; doi:10.3390 /math8030336 425 www.mdpi.com/journal /mathematics
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Motivated by aforementioned applications of integro-differential equations and [18], we introduce
a new kind of integro-differential equation involving right-Caputo and left-Riemann-Liouville
fractional derivatives of different orders and right-left Riemann-Liouville fractional integrals and
solve it subject to nonlocal boundary conditions. In precise terms, we prove existence and uniqueness
of solutions for the problem given by

CDY_REDE, y(t) + AL I h(Ly (1) = f(Ly(1), te]:=[01], M

y(0) =y() =0, y(1)=dy(u), 0<g<u<l, 2)

where °D§_ and Rt Dg , denote the right Caputo fractional derivative of order & € (1,2] and the left
Riemann-Liouville fractional derivative of order g € (0,1], I{l and Ig . denote the right and left
Riemann-Liouville fractional integrals of orders p, g > 0 respectively, f, : [0,1] x R — R are given
continuous functions and J, A € R. It is imperative to notice that the integro-differential equation in (1)
and (2) contains mixed type (integral and nonintegral) nonlinearities.

We organize the rest of the paper as follows. Section 2 contains some preliminary concepts related
to our work. In Section 3, we prove an auxiliary lemma for the linear variant of the problem (1) and (2).
Then we derive the existence results for the problem (1) and (2) by applying a fixed point theorem due
to Krasnoselski and Leray-Schauder nonlinear alternative, while the uniqueness result is established
via Banach contraction mapping principle. Examples illustrating the main results are also presented.

2. Preliminaries
In this section, we recall some related definitions of fractional calculus [1].

Definition 1. The left and right Riemann—Liouville fractional integrals of order p > 0 for an integrable
function g : (0,00) — R are respectively defined by

t _<\p-1 _ \B-1
Bost) = [ Lo st 1 g = [ O

Definition 2. The left Riemann—Liouville fractional derivative and the right Caputo fractional derivative of
order B € (n—1,n],n € N for a function g : (0,00) — R with g € C"((0,00),R) are respectively given by

g(s)ds.

n _g)n—p-1 s — t)n—p-1
Df.s) = 5 [ Cr i seas and <D gt = (-1 [ EL g oy

Lemma 1. If p > 0and q > 0, then the following relations hold almost everywhere on [a, b]:
+
B _f(0) =BT, K1, f(x) = BT (x).
3. Main Results

In the following lemma, we solve a linear variant of the problem (1) and (2).

Lemma 2. Let H,F € C[0,1] N L(0,1). Then the linear problem

{ cpy "'DF y(t) + AT 11, H(t) = F(t), te]:=1[0,1], "

y(0) =y(&) =0, y(1)=2dy(p),
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is equivalent to the fractional integral equation:

_¢\p-1
y(t) = /Ot (=)™ [ F(s) = AL H Hs) | ds

T'(p)
_ )1
+ al(t){5/oy % (B F(s) = AL 71 H(s) | ds )
1 (1 7s)ﬁ71 o o
—/0 W[Il,lf(s)—Allf”l&H(s)]ds}
¢ (& —s)P1 .
+u2(t)/0 ((:1,(72)[[%_1:(5) f)\llpr&H(s)}ds,
where 1 ) : 1 X :
m(t) = + [P =P, ap(r) = L[#P(1—opPHh) — BT (1 — opf), 5)
and it is assumed that
A =P opf) = 2P (1 - ot # 0. 6)

Proof. Applying the left and right fractional integrals I and 165 . successively to the
integro-differential equation in (3), and then using Lemma 1, we get

B tﬁ+1

£ o1
B+1) Ty T 7

y(t) = Ig, B F(5) = AIg, P L H(E + cog

where ¢y, ¢; and c¢; are unknown arbitrary constants.

In view of the condition y(0) = 0, it follows from (7) that ¢, = 0. Inserting ¢, = 0 in (7) and then
using the nonlocal boundary conditions y(&) = 0,y(1) = dy(u) in the resulting equation, we obtain
a system of equations in ¢y and ¢; given by

—opb _ §yPtl
CO(l}(ﬁ j‘ul)) ta <11"(;.}|1. 2) ) =0A1— Ay,

gﬁ (;I/S+1
(i) lrgaz) =4

®)

where

Ay =I5, I F(u) — AR IVPIL H(p), Ay = 15,13 F(1) — ALS, I I0, H(),
ho— .18 FQ) AT P, ).

Solving the system (8), we find that

= W [P0 (041 = A2) + (1= 6P *1) 45,

¢ = w [P (01 — A2) + (1= 3P 3],

where A is defined by (6). Substituting the values of ¢y and ¢1 together with the notations (5) in (7),
we obtain the solution (4). The converse follows by direct computation. This completes the proof. [
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Let X = C([0,1], R) denote the Banach space of all continuous functions from [0, 1] — R equipped

with the norm ||y|| = sup {|y(#)| : t € [0,1]}. By Lemma 2, we define an operator G : X — X associated
with the problem (1) and (2) as

t(t_ o\B—1
o) = [ o [ ) - AL o)
_g)B-1
far(1) {5 S [ )~ AR R o)
_ -1
7/0 (1 S"B) {Il f(s,y( A1f+plg+h(s,y(s))]ds}

—1
raaft) [ O 1 ov(s) ~ AT G s

Notice that the fixed points of the operator G are solutions of the problem (1) and (2).
In the forthcoming analysis, we use the following estimates:

- s)P L p(—s)Bl (st pu (g gy

b s = L ey b g druds
b

rB+1)(a+p+1)I(g+1)

E(t—s)ft E(t—s)P=1 1 (u—s)r ! th
Ll v e B e L res e

where we have used u1 <1, (1 —s)*"" <1; p,g>0,1<a <2
In the sequel, we set

_ A _ |A]A
O = 0, = I(a+p+1)I(g+1) ©)

where

- ﬁ{l—i—ﬁl(w\yﬁ-&-l) +azgﬁ],

a1 = max |a aimaxa
1 t6[01|1()\, 2 = max laz (t)].

3.1. Existence Results

In the following, we prove our first existence result for the problem (1) and (2), which relies on
Krasnoselskii’s fixed point theorem [24].

Theorem 1. Assumed that:

(By) Thereexist L > 0 such that |f(t,x) — f(t,y)] < L|x —y|, Vt € [0,1], x,y € R;
(By) There exist K > 0 such that |h(t,x) — h(t,y)| < K|x —y|, Vt € [0,1], x,y € R;
(B3) If(ty)l < o(t) and [h(t,y)| < p(t), where o,p € C([0,1],RT).

Then the problem (1) and (2) has at least one solution on [0,1] if Ly; + Ky, < 1, where

1 Al

Mo+ Da+1) 2 T+ (et p+r DI(g+1) (10)
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Proof. Introduce the ball By = {y € X : |y| < 60}, where |o]| = SUP;eo,1] lot)], el =
supyepo) lo(t)] and

0 > [lo]|Q1 + [[p]|Q2. 1)
Let us split the operator G : X — X on By as G = G; + Go, where

t—sﬂ 1

ot (p—g)B-1
G = [T S —a [

al(t){é(/oﬂ (y;(sﬁ)) If_f(s,y(s) dsf)\/

—</01(17())/3 IY_f(s,y(s) ds—/\/
st [ C LI sl o) -2 /0‘

Now, we verify that the operators G; and G, satisfy the hypothesis of Krasnoselskii’s theorem [24]
in three steps.
(i) For y, x € By, we have

I“ij&h(s,y(s))ds,

Gay(t) - Ifpr&h(s,y(s))ds)

p-1 o+
Ilplg+h(s,y(s))ds):|

§)F1
ﬁ)) Ilirpl&h(s,y(s))ds].

91y + Gox|l
< sup { [ 1)

te[0,1]

B—1
LEPI. (s, y(s)) ds

— S .B — S p-1 &
a1 ([ P 1 G e s+ A / U I (s () s

e Sy vl [T R s (o)}

)
Haa|{ [T s xopias+ ) [ E ’zi‘*ﬁgw(s,x(s)nds}}

r</s>
(5Pt .
”"“E}éﬁ]{ s+ ) [|<s| e /3 L s

+/01 (1 ;(ﬁ))ﬁ Il—ds} + |aa(t |/ Il_ds}

IN

E(p— B—1 -
+lolliA s?p]{/o ( r(’z) frad ds+|a { L as
tefo
T(A—s)P ! or Tt
+/O T(8) 'x plq ds} + ‘az f plg+ds}

{ o] lellIA] }
T(a+1)  Tla+p+1)I(g+1)
o101 + [l Q2 < 6,

where we used (11). Thus Gy + Gox € By.
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(ii) Using (B1) and (By), it is easy to show that

t (tfs)ﬁil ®
(GGl < sup { [T (e v(e) — s x(0)s

. _s)B1
+|A|/Ot%llfplg+|h(s,y(s)) —h(s,x(s))\ds}
< (Im+Ky)lly —x[,

which, in view of the condition: Ly; + K7, < 1, implies that the operator G, is a contraction.
(iii) Continuity of the functions f, i implies that the operator G, is continuous. In addition, G, is
uniformly bounded on By as

12yl < tsup{|a1 {|zs|/ " [ G y 1+ A1, s, () s
T = H [ vt >>|+\A|I““’I‘mh<s,y<s>>|]ds}

_¢\p-1
+aa (1) / r—s[fmf(s,y(s))\ + |A|I““’ﬂ+lh<s,y<s>>}ds}

o]l s {\al [m/ (=Pt ds+/ A=)y ds]
+|112 |/ S) _ Il ds}

el sup {\al o [ s [T e

p-1
+|az |/ S) “erIngds}
< el @1 =) + ||P||(Qz*72)f

IN

where (), and 1y; (i = 1,2) are defined by (9) and (10) respectively.
To show the compactness of Gy, we fix sup(, (0.1 x5, [f(t,y)| =T, SUP (4 ) [0,1] % By |h(t,y)| = h.
Then, for 0 < t; < t; < 1, we have

(Ga)(t2) ~ (G ()
_g)\B-1
ovte2) = (o) {1 " BT [y -+ I s, ) s

IN

_ )1
* ./01 % [ 1f(s ()] + |A|I“+”ﬂ+|h(s,y(s))@ds}

gyl .
+|a2(f2) — az(t1)|{ /O§ % [If7|f(s, (s)) + 1AL +’71'7+|h(s,y(s))\]ds}

o [P +1
(7 -+ { (@165 - 1+ gpp et — g D)

IN

B
(= o1 - )+ - o 7 - ) EL

which tends to zero independent of i as f, — t;. This shows that G, is equicontinuous. It is clear from
the foregoing arguments that the operator G, is relatively compact on By. Hence, by the Arzela-Ascoli
theorem, G, is compact on By.
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In view of the foregoing arguments (i)-(iii), the hypothesis of the Krasnoselskii’s fixed point
theorem [24] holds true. Thus, the operator G; + G» = G has a fixed point, which implies that the
problem (1) and (2) has at least one solution on [0, 1]. The proof is finished. [

Remark 1. If we interchange the roles of the operators G and Gy in the previous result, the condition Ly +
Ko <1, is replaced with the following one:

L1 —7) +K(Q2 —12) <1,
where (01, Qp and 1, 2 are defined by (9), (10) respectively.
The following existence result relies on Leray—Schauder nonlinear alternative [25].

Theorem 2. Suppose that the following conditions hold:

(By) There exist continuous nondecreasing functions ¢, 9 : [0,00) — (0, 00) such that ¥(t,y) € [0,1] X R,

Lf ()] < wr(O¢(llyl]) and [h(t,y)| < w2()P([lyll), where wy, wy € C([0, T],RY).
(Bs) There exist a constant M > 0 such that

M
[cor[p(M)Oq + [|wa [ (M)

>1,

Then, the problem (1) and (2) has at least one solution on [0, 1].

Proof. First we show that the operator G is completely continuous. This will be established in
several steps.

(i) G maps bounded sets into bounded sets in X'.

Lety € B, = {y € X : ||ly|| < r}, where r is a fixed number. Then, using the strategy employed in
the proof of Theorem 1, we obtain

Gy

IN

llwollg(r) l|lwallgp(r)[A]
{ F(;+1) + F(a+;ﬂz+l)r(q+1)}A
lwillp(r)O + [lwa |l (r) Oy < 0.

(if) G maps bounded sets into equicontinuous sets.

Let0 < t; < tp < 1and y € B,, where B, is bounded set in X'. Then we obtain
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Gy (t2) — Gy()
< | e I )+ IR syt s
| [ S s vt + I, Tty
antz) —an )| {1 (" B I [ w06+ A1 )
([ o v+ s visas ) )
+ax(ty) — ﬂz(f1)|{ /f % [1{‘,|f(s,y(s))| + \/\|I“+p1q+\h(s,y(s))|]ds}
. [(lencp(r) R PATTTCTRY ]

FrB+1)T(a+1) T(B+1)T (a+p+1)r(q+1)

SluP +1

8 (- P - - P tf“\) }

Notice that the right-hand side of the above inequality tends to 0 as f, — t;, independent of
y € B;. In view of the foregoing arguments, it follows by the Arzeld—-Ascoli theorem that G : X' — X
is completely continuous.

The conclusion of the Leray—Schauder nonlinear alternative [25] will be applicable once it is
shown that there exists an open set U C C([0,1],R) with y # vGy for v € (0,1) and y € oU.
Lety € C([0,1],R) such that y = vGy for v € (0,1). As argued in proving that the operator G is
bounded, one can obtain that

(O] = [vGy()] < lwi(®)I¢(lyNOn + [wa(B)[9(llyl) Oz,

which can be written as

Iyl )
TeorTo(Ty T + [wallp(Tyli0n =

On the other hand, we can find a positive number M such that ||y|| # M by assumption (Bs).
Let us set

U={yed:|y| <M}

Clearly, 0U contains a solution only when ||y|| = M. In other words, there is no solution y € oU
such that y = vGy for some v € (0,1). Therefore, G has a fixed point y € U which is a solution of the
problem (1) and (2). The proof is finished. [

3.2. Uniqueness Result

Here we prove a uniqueness result for the problem (1) and (2) with the aid of Banach contraction
mapping principle.

Theorem 3. If the conditions (By) and (By) hold, then the problem (1) and (2) has a unique solution on [0,1] if
LO; + KO, <1, (12)

where ()1 and Q) are defined by (9).
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Proof. In the first step, we show that GB, C B,, where B, = {y € X : |ly|| < r} with

fou + hop
r> e, fo = sup |f(t,0)], ho = sup |h(t,0)].
1—(LOg +KO2) te[0,1] te[0,1]

For y € B, and using the condition (B;), we have

[f(ty)]

If(ty) — f(£0) + f(£,0)] < |f(ty) — f(£,0)| +[f(t0)]
Llly|l + fo < Lr + fo.

IN

Similarly, using (B,), we get
h(t,y)] < Kr + ho.

In view of (13) and (14), we obtain

Gyl = sup 1Gy(r)
te[0,1]
t—S)ﬁ 1 o
< oo ([ S oot v
)B- 1
a1 [ U5 [y -+ A s ) s
_s5)B
e {1% A5 9D+ NG, DG ) s |
Harto] [ I [ ())\+|A|I“*”I'L|h<s,y<s>)\]ds}
(t—S)ﬁ o
< (Lr—&-fo)tzt[zg]{/o T,B)Il ds + |ay (t |{\5\/ I ds

1(1—g)p-1 ¢ (F—g)p1
+./O %Il’{ds} +\u2(t)|/0 @r(i‘g)ws}

ot (t—S)ﬁ71 o+
+(Kr + hg)|A| su { I ds
0 tE[OI;] /0 T(B) 1- "0+

+]a1(t) {W/ ~ 'leq ds+/ - ‘HpIngds}

+|aa(t |/ F(ﬁ)i “plq ds}

(Lr + fo) (Kr 4+ ho)|A|
< {r(,x+1) + F(uc+p+1)F(q+1)}A
= (Lr +f0)01 + (Ki’ -+ ho)Qz <r,

(13)

(14)

which implies that Gy € B,, for any y € B,. Therefore, GB, C B,. Next, we prove that G is a

contraction. For that, let x,iy € X and t € [0, 1]. Then, by the conditions (B;) and (B;), we obtain
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199Gl = sup (@)D~ (62)()
su ( S)Ij ' S S))— S, X(s S
< te[oﬁ]{/ o (e y(6) — (s x(e))ld
—s)p-1
Al [ trfg) LI (s, y(s) = s, x(s))lds
Hane |[|o\ 15— S
p-1
AL [ U I, (s y(9) — s () s )
s)p-1
([ (fj) H_IF(5y(5)) — £, (5)) s
sl [ SR s y(9) ~ s x|
Sel| /f@r()) I 1F(5,y(5)) — fls,x(5)ds
p-1
s [P “*”I‘Uh(sy( 5)) (s, (5)l |}
< Lly=sl mp /O et PR

+a1(t) {I&\/ I] ds+/ I] ds}
Haa(t |/ ()it ds}

t(t75)571 at
+K||ly — x]|||A] su {/ 2 TP ds
by ==l |te[0p] bt b
+a () [|5\/ _ “*Pﬂ ds+/ - f*”ﬂ ds}
o [ S5 50}

KwA
{F(a+l) T Tarprr (q+1)}”y*"”
(LOy + KDp)ly — x||.

From the above inequality, it follows by the assumption (L0 + K();) < 1 that G is a contraction.
Therefore, we deduce by Banach contraction mapping principle that there exists a unique fixed point for
the operator G, which corresponds to a unique solution for the problem (1) and (2) on [0, 1]. The proof
is completed. O

3.3. Examples

In this subsection, we construct examples to illustrate the existence and uniqueness results
obtained in the last two subsections. Let us consider the following problem:

{ DYDY 2y (1) + 202 1 *h(k () = f(Ly(1), t€ ] :=[0,1], -

y(0) =y(2/3) =0, y(1) = 3y(3/4).

434



Mathematics 2020, 8, 336

Herea =3/2,=1/2,A=2,p=4/3,q=5/4,y=3/4,0=1/2,§ =2/3,and

7; -1 —t ,# |yl —t
f(t,y)f(ters)(tan y+el), h(t,y)fzm(l_i_'y'—i-e ). (16)

Using the given data, it is found that L =1/8, K =1/6,

a = m[ax lay(t)] = |ay()]i=1 ~ 1.121394517474712,
tef0,1

a2 = max |a2(£)] = [a2(8)]—,, ~ 1.168623082364286,
tel0,1

where

_ syBt1
by = PUZOHT) 6 306975661732535.
(1—opuf)(B+1)

In consequence, we get
O ~ 3.022797441671726, )y ~ 1.451691300771574, | A| ~ 0.242702744426469,

where ()1,0); are defined by (9) and A is given by (6).
(i) For illustrating Theorem 1, we have

(/2 1
T ey <) =

< = = -
‘f(t/y)‘ —U(t) t2+8 - 2 t2+9’

and that
Ly1 + K =~ 0.174044436618777 < 1,

where 71 ~ 0.848826363156775 and 7, =~ 0.407646847345084. Clearly, the hypothesis of Theorem 1 is
satisfied and consequently its conclusion applies to the problem (15).
(ii) In order to explain Theorem 2, we take the following values (instead of (16)) in the problem (15):

1 1
ty) = ——m—— 2), h(t,y) = ———={si 1/4), 17
flby) = s ycosy +/2), htyy) = 7 (siny +1/4) (17)

and note that wi (t) = —Z— llw1]| = 1/5, wa(t) = 5=, llwall = 1710, ¢(llyl) =yl + /2 and
P(llyl) = llyll +1/4. By the condition (Bs), we find that M > 3.939452045479877. Thus, all the
conditions of Theorem 2 are satisfied and, hence the problem (15) with f(t,y) and h(t,y) given by (17)
has at least one solution on [0, 1].

(ifi) It is easy to show that f(t,y) and h(t,y) satisfy the conditions (B;) and (B;) respectively with
L =1/8and K = 1/6 and that LQ); + Ky ~ 0.619798230337561 < 1. Thus, all the assumptions of
Theorem 3 hold true and hence the problem (15) has a unique solution on [0, 1].

4. Conclusions

We considered a fractional differential equation involving left Caputo and right Riemann-Liouville
fractional derivatives of different orders and a pair of nonlinearities: I I Lhty(t) =

ft (= t p ' I (= v (v,y(v))dods (integral type) and f (¢, y(t)), equipped with four-point nonlocal
boundary condltlons Different criteria ensuring the existence of solutions for the given problem
are presented in Theorems 1 and 2, while the uniqueness of solutions is shown in Theorem 3.
An interesting and scientific feature of the fractional differential Equation (1) is that the integral
type of nonlinearity can describe composition of a physical quantity (like density) over two different
arbitrary subsegments of the given domain. In the case of p = g = 1, this composition takes the form
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/tl Jo 1'(0,y(v))dvds. As pointed out in the introduction, fractional differential equations containing
mixed (left Caputo and right Riemann-Liouville) fractional derivatives appear as Euler-Lagrange
equations in the study of variational principles. So, such equations in the presence of the integral type
of nonlinearity of the form introduced in (1) enhances the scope of Euler-Lagrange equations studied
in [26]. Moreover, the fractional integro-differential Equation (1) can improve the description of the
electromagnetic waves in dielectric media considered in [23]. As a special case, our results correspond
to a three-point nonlocal mixed fractional order boundary value problem by letting 6 = 0, which is
indeed new in the given configuration.
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Abstract: The aim of this work is to obtain an integral representation formula for the solutions of
initial value problems for autonomous linear fractional neutral systems with Caputo type derivatives
and distributed delays. The results obtained improve and extend the corresponding results in the
particular case of fractional systems with constant delays and will be a useful tool for studying
different kinds of stability properties. The proposed results coincide with the corresponding ones for
first order neutral linear differential systems with integer order derivatives.
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1. Introduction and Notations

Fractional Calculus has a long history, but it has attracted considerable attention recently as an
important tool for modeling of various real problems, such as viscoelastic systems, diffusion processes,
signal and control processing, and seismic processes. Detailed information about the fractional calculus
theory and its applications can be found in the monographs [1-4]. Some results for fractional linear
systems with delays are in given in the book [5]. The monograph [6] is devoted to the impulsive
differential and functional differential equations with fractional derivatives, as well as to some of
their applications.

It is well known that the study of linear fractional equations (integral representation, several
types of stability, etc.) is an evergreen theme for research. Concerning these fields of fundamental
and qualitative investigations for linear fractional ordinary differential equations and systems we
refer to [2,4,7] and the references therein. Using the Laplace transform method, several interesting
results in this direction are obtained in [8,9] as well. Regarding works concerning fractional differential
systems with constant delays, we point out [10-13]. Concerning the retarded differential systems
with variable or distributed delays—fundamental theory and application (stability properties)—we
refer to [11,14-18]. Neutral fractional systems with distributed delays are essentially studied less
(see [19-21]). Stability properties of retarded fractional systems with derivatives of distributed order
are studied in [22]. One of the existing best applications of fractional order equations with delays is
modeling human manual control, in which perceptual and neuromuscular delays introduce a delay
term. As interesting studies, we refer to [23,24].

The problem of establishing an integral representation for the solutions for neutral or delayed
linear fractional differential equations and/or systems needs a theorem for the existence of a
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fundamental matrix, i.e., theorem for existence and uniqueness of the solution to the initial value
problem (IVP) in the case of discontinuous initial functions. As far as we know, there are only a few
results concerning the IVP for delayed and neutral systems with discontinuous initial function, for the
delayed case [14,15,25-27] and for the neutral case [28].

The aim of the work is to prove an integral representation formula for the general solution of
an autonomous linear fractional neutral system with Caputo type derivatives and distributed delays.
Note that our results extend and improve the results obtained in [10,12,15]. The proposed results
coincide with the corresponding ones for a first order neutral linear differential system with integer
order derivatives.

The paper is organized as follows. In Section 2, we recall some necessary definitions of
Riemann-Liouville and Caputo fractional derivatives, as well as part of their properties. In this section,
we also present the linear neutral fractional system under consideration together with some conditions.
In Section 3, as a main result, integral representations of the solutions of the IVP for autonomous linear
fractional neutral system with Caputo type derivatives and distributed delays are obtained for the
homogeneous and inhomogeneous case. In Section 4, we present an illustrative example. In Section 5
we explain the practical benefits and application options of the obtained theoretical results.

In what follows, we use the notations: N, R and C - the sets of natural, real and complex numbers,
respectively; (m, n) — the set of integers m, m +1,...,n (m < n); R"*" — the space of real n X n matrices
A with elements Apy; R" = R™1; AT — the transposed matrix A with elements (A7), = Agp.
The elements of R" are the real column n-vectors x = [xq;x3;...;X,] with elements x;. The row
n-vectors are denoted as ¢ = [&1, 2, . . ., n](note that the elements of a vector column and a vector row
are separated by “;” and “,”, respectively). The identity and the zero matrices are denoted by E and
O, respectively.

We also denote C. = {p € C|Re(p) >0},Cy = {p € C|Rep >0},C_ =C\Cy, Ry = (0,00),
and J; = [s,00). Forp € C,y = [y1;y2...;yn] € C" and B = (B1,B2,---,Bn), Bx € [—1,1] we

set Ig(p) = diag (pP1,pP2,..., pPr) and I4(y) = diag (yl ,yz S ,yﬁ”) The linear space of locally

Lebesgue integrable functions f : R — R is denoted by LI°°(R, R).

2. Preliminaries and Problem Statement

Below, the definitions of Riemann-Liouville and Caputo fractional derivatives and some of their
properties necessary for our exposition are described in order to avoid possible misunderstandings.
For more details and other properties, we refer to [2—4].

Leta € (0,1) be an arbitrary number. Then for a € R, each t > aand f € LI°°(R, R) the left-sided
fractional integral operator, the left side Riemann-Liouville and Caputo fractional derivatives of order
« are defined by

(D)) = %) [e=s1 1 p(o)ds, Dz, £ = 3 (D),

DS = wDiIF(s) ~ @) = D8 f0) — 1 — ),

respectively. The following relations [4] involving fractional derivatives will be used

(D2 )(t) = f(1), D Do f(t) = f(t), Diff cDay f(1) = f(t) = f(a).

Concerning the Laplace transform £,

2(p) = [T ewp(=psat, peC,
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we shall need the relations

LD f(p) = p~"(££)(p), LreDE, f(p) = P*(£f)(p) — [ReDy; £ (B)]i=0,
£cDg, f(p) = p*(£f)(p) — p* ' £(0).

In what follows, we consider the autonomous linear neutral fractional system with
distributed delay

0
- d ’9 9 d i ] ,
Z;/_T[gv( X(t+ 2/ pU'(0) | X(t+0) + F(t) 1)

as well as the corresponding homogeneous system
r 0 m
72/ [dov'(6)] X(t+6)) = Z/ [dotr’(0)] x(t +6), @
=177 i=0
where
X,F:Jo— R ULV iR — R™™, U(0) = [u;;j((?)} , Vo) = [v’k].(s)],
7,0>0, € (0,t],1€(1,7r),0€(0,0],i€(1,m)y, h=max(c,T), 0p =0,
o= (aq,00,...,a,), & € (0,1), k € (1,n), Js = [s, 00).

For simplicity, D* denotes the left side Caputo fractional derivative Cng_ in (1) and (2), and we
use the notations

DEX() = [D% 1 (£); D*2x3(); ... ; D¥xy (1)], D* = diag(D%, D%, ..., D),
X(t) = [xa(t);xa(t); ..o xa(B)], F(8) = [f(8); f2(£); - fu ()]

Denote by BV [—h, 0] the linear space of matrix valued functions
W:R — R™", W(8) = [wkj(e)}

with bounded variation in 6 on [—£, 0],

Var[ IzO]W Z Var howk]() |W 9)‘ - Z ‘wk]
kj=1

As a space of initial functions, we use the Banach space C = PC([—,0],R") of the piecewise
continuous on [—£, 0] vector functions ® = [¢1; p2;...; Pl : [—h, 0] — R"” with norm

n
[l =3 sup [gx(s)| < oo.
k=1s€[—h,0]
The initial condition for the system (1) or (2) is

X(t) = ®(t), t € [~h,0]. 3)

Definition 1. The vector function X is a solution of the IVP (1), (3) in the interval J_y, if X|;, € C(Jo, R")
and if it satisfies the system (1) for t € R and the initial condition (3) for t € [—h,0].

We say that for the kernels U’ : R — R"*", V! : R — R"*" the assumptions (SA) are fulfilled, if
foreachi € (0,m)and ! € (1,r) the following conditions hold.
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(SA1) The matrix valued functions 8 — U'(f) and 6 +— V!(8) are measurable in # € R and
normalized so that U(8) = 0 and V!(§) = 0 for § > 0, U'(#) = U!(—0;) for § < —0; and VI (0) =
Vi(—7) for 6 < —1.

(SA2) The kernels U'(0) and V!(0) are left continuous for § € (—¢,0) and 6 € (—7,0] and
ui(+), Vi(-) € BV[-h,0].

(SA3) The Lebesgue decomposition of the kernels U'(#) and V!(8) for 0 € [—h,0] is

uie) = +/ s)ds +Y/(9),

vie) = ﬁ’(9)+‘/7 Bl(s)ds+Y'(0),
where A’ = [af{]},gl = {Zi}(j] € R"™ " and
N (0) = [al;H(o + )], N (0) = [aH(e+ )],
Y/(0) = [g};(0)], Y!(6) = [2};(0)] € CRR™M),
B'(6) = [b};(6)], B'(6) = [B;(0)] € Lie(®m, Rm<).

Remark 1. The conditions (SA) are used essentially in the work [21] to establish an apriory estimate of all
solutions of the IP (1), (3), which estimate guaranties that the Laplace transform can be correct applied to System
(2) and to System (1) too, when the function F is exponentially bounded.

Let s > 0 be an arbitrary number, J; = [s, o) and consider the matrix IVP

r o0 m
Dt <Q(t,s)—2/ [dev'(@)] Q t+95) Z/ doll!(1,0)] Q(t+6,5) @)
=177

with initial condition

Q(tt) =1 Q(t,s) =0, t <s. (5)

Definition 2. For each s > 0 the matrix valued function

te Q(ts) = [1(t9)], QL9) e — RO,

is called a solution of the IVP (4), (5) for t € Js, if Q(+,s) is continuous in t on Js; and satisfies the matrix
Equation (4) for t € (s,00) and the initial condition (5).

It is well known that the problem of existence of a fundamental matrix for a linear homogeneous
fractional system (delayed or neutral) leads to establishing that the corresponding IVP (4), (5) with
discontinuous initial function has a unique solution. In the case when s = 0, the matrix Q(t) = Q(t,0)
will be called fundamental (or Cauchy) matrix of system (2).

Following [20,21], we introduce the characteristic matrix of System (2)

G(p) = L(p) —W(p), (6)
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where

r

W(p) =i P+ 1) Y Vilp), i € 0m), 1€ (1),

I=1

£
=
=
=
[

exp (po) duk] 0)} , Vilp) = { 3 exp(p@)dvk]( )| -

3. Main Results

The results in this section are a generalization of the results concerning the autonomous case
obtained in [10,15,16,25].

Theorem 1. Let us assume the conditions (SA) are satisfied. Then the IVP (4), (5) has a unique solution Q(t,s)
in Js for every s > 0 and the fundamental matrix Q(t,0) = Q(t) of Equation (2) is

Q) = £ (L1 (PG~ () (1), )

Proof. Using the results from [28], we obtain that the IVP (4), (5) has a unique solution Q(#,s) in Js
for every s > 0, and hence, a fundamental matrix Q(t,0) = Q(t). In virtue of Theorem 3 [21], we
can conclude that the Laplace transform can be applied to both sides of Equation (4). Substituting
t 4+ 6 = 1 we obtain

o m 0 ) mo 0 ) 0
Jy et X [ @] ot +od= ). [ faue)] (ewive) | exp(—pn)@(n)dn)
+ [Teppmaar L [ exp(p0)dsti’(0) = 20(p) Y- [ explp)doti 0)
/0 iz’ ~h =0/~
In a similar way for the left-hand side of Equation (4), we have that
0 "0
D* - deV'(6 ] =1 E- xp(pf)da V' (6
<Q(t) L[ [avie]ae ))(p) (») { L [, e ©)
r 0
— I E-— deVi (6 0)|.
m{ 1121/4[9 ()}Q()]

From Equation (8), it follows that

®)

£Q(p) |:Lx — L(p 2/ exp(po) dgV’ Z/ exp p9)dgul( ) _1(p)

and hence, £Q(p) = I,_1(p)G~(p), which completes the proof. []

Let us introduce the following functions:
Di(t) =@(t), t € [-7,0], O)(t) =0, t e R\ [-7,0], [ €(L,r),

and
Di(t) =®(t), t € [—0;,0], ®;(t) =0, t € R\ [—0;,0], i€ (1,m).
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Then, applying the Laplace transform second shifting theorem, we obtain

[ exp(—pln —0)@i(n)ay = exp(po) (1)),

0 )
|} exp(=p(1 =)@ = exp(p0)20(1) ().

Now we are in position to prove the following theorem.

Theorem 2. Let us assume the conditions (SA) are satisfied. Then for each ® € C the IVP (2), (3) has a unique
solution X (t) with the integral representation:

Xd>(t) = Q(t) <CD(O) - i ./70 {dgV’(G)] ¢](9)> 4 i/f [deV](g)] q)l(t+9)
+E/ deV’ DAQ(H) D3 (¢ +6) +Z/ 0)]D' T Q(t) « ®;(t+0)  (10)
+;}/ﬁh[deui(e)]Dﬂqui(t_‘_e).

Proof. Let ® € C. Then using the results from [26], we can conclude that the IVP (2), (3) has a unique
solution X (t). In virtue of Theorem 3 from [21], we can conclude that the Laplace transform can be
applied to both sides of Equation (2). Then, substituting X¢(t) in Equation (2), applying the Laplace
transform to Equation (2) and substituting t 4- 6 = 77, we obtain for the right-hand side of Equation (2)

m

m 0 .
2(;'2(:) | h[deu%e)]xww))(p)— Jy ept-pnXotnan 1 / exp(p0)doLI*(0)
m 0 . 0
1 [t exp(p(0 1) Xon)dn) = Xo)p) 3 [ explpo)dotr(0) b
> [ oo [ 0 ®;(17)d
+ 1 [, @) [ exp(po =),
Similarly, for the left-hand side of Equation (2), one obtains that
£D ( L[ lavie) x¢<t+9)><p>:71a 10 ( £ [ v <e>>
+ £Xo(1)(p) (mp) L)L [ eXP(PG)dGVl(9)> (12)
=1/
L) L [ o0 [[ exp(pie - ).
From Equations (11) and (12), it follows
£Xo(p) (Ia(p) ~ L(p Z/ exp(p8)dy V' (6) Z/ exp(p0)dpLI! (0 )>
=l p>< 2 / [0V (@) >) +Iu(p) Zzzl [ [a0v'@)] [ exppto - mitan
+f0 [ [0’ @) [ expip(o -~ moinan
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and hence,
1 . 0 1
£Xo(p) = G (P) Ll (p) <<D<o> -% [ [aevio)] <1>z(e>>
I=1""
r 0 0
+6 )+ L [ [V @] [ ew(po —meina (13)
mo 0 . 0
T L [ [ O] [ ew(pe - neonan
The representations of Equations (7) and (13) imply that
Xo(p) = £Q1)( ( 2/71 [doV (©))1(0 ))
r 0
“10)OM L [ [4r'©] [ exelro - (19
- 0
+ L (p)£Q(H) (p I;OL deU'( 9 /9 exp(p(6 —17))@i(n)dy.
In view of Equation (9), we obtain for the second term in the right-hand side of Equation (14) that

T -0
h(p2eW(p) L [, [ @] [ exw(po —minay

0

P)2OW0) L [ [0V @] o+ 0p)

WY [ [av'©)] st +0)(p) (15

h

[deV!(0)] 1 ()21 (t +0)(p)

For the first term in the right-hand side of Equation (15) we have
ro0
D20 ) [ [deV' O] 1y (p)2ei(t +6)(p)
I=1
- [ [av' @] eptau)(penie + 0)(p)

and hence, from Equation (15) it follows

r

hipee L [ [v'e)] [ exp(pio—n)e
_ 2/_ [devl(g)] (2D3Q(t)(p)ED oy (t + 6)(p) 16)

£ [ v o) s +0)(p)

445



Mathematics 2020, 8, 364

Analogously, for the third term in the right-hand side of Equation (14), we have
mo 0 . 0
hoa(P)2QW(P) Y [, [del0)] [ exp(p(0 —m)@iln)ey
i=0""

=1 (PP Y [ [dU)] s+ 0)(p)
i=0""

. . 17)
=1 [ [6tr@] e rouea + o
+3 [ ot @)D w1+ 0)(p)
i=0"""
From Equations (14), (16) and (17), it follows that
0
£Xo(p) = £QU)( ( 2 / [0V (0)] @6 >) Y [, [dav'®)] ot +0)(p)
=177
+3 [ @' @] spiowpenie o) 18)
=177

- [ doUi(8)| £D'*Q () (p) £D;(t + 0)( du' QD*%» 0
+1 [, [au @] ep Qs+ +2/9 (t+0)(p)

Applying the inverse Laplace transform to both sides of Equation (18), we obtain
Equation (10). O

Theorem 3. Let the following conditions be satisfied:

(i) The conditions (SA) hold.
(ii) The function F € LI°°(Ry., R") is exponentially bounded.

Then the solution XF(t) of the IVP (1), (3) with initial function ®(t) = 0, t € [~h,0] has the
following representation.:

xXF(t) = /0: D'=*Q(t — s)F(s)ds + D™*F(t), (19)

where Q(t) is the fundamental matrix of System (2).

Proof. First we substitute Xo(t) in Equation (1) and use the fact that X' (t) = 0, t € [~,0]. Since the
function F is exponentially bounded, then we can apply to both sides the Laplace transform in order
to get
ext()(p) < LY / exp(p)dsV'(6) - 3 /0 eXp(PG)deU’(9)>
=1 iz0/—h (20)
= £X (1)(p)G(p) = LE()(p)-
Now it follows from the equality G~1(p) = I;_,(p)£Q(t)(p) that
EXF(1)(p) = h-a(p)la—1(p)G ™ (p) SF(1) (p)
= Li-o(p)SQ(H) (P F(1) (p) = (£D'*Q1)(p) + L-a(p) ) SF(1)(p) @
= SD'Q()(p)SE () (p) + £D"F(t)(p)-

Finally, we apply the inverse Laplace transform to Equation (21) and the representation
Equation (19) follows. [
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Corollary 1. Let the conditions of Theorem 3 hold. Then for every initial function ® € C, the corresponding
unique solution XX (t) of the IVP (1), (3) has the integral representation

Pty = /ot D'=Q(t —s)F(s)ds + D™*F(t) + Q(t < i /0 [devl ] ®(9)>

—17—h

+ deV'(0)] @( +6) +2/ [4V'(6)] D2Q(t) + DAyt +-0)

-

[
[

M=

)]
Ly /[ deuf(e)] Dl""Q(t)*q),-(tnL@)JrZ/ dgui(e)} D@, (t + ),
i h i—0”/~h

0"

where Q(t) is the fundamental matrix of System (2).

Proof. Let ® ¢ C be an arbitrary initial function and let the functions Xg (t) and X* (t) be defined by
the Equalities (9) and (19), respectively. Then, according to the superposition principle, the function
Xo(t) + XF(t) is the unique solution of the IVP (1), (3). Now the statement of Corollary 1 follows
immediately from Theorems 2 and 3. [

4. Example

First, we give some results needed for the illustrative example presented below:
The delayed Mittag-Leffler type matrix function Ef 1 : R — R™" for every matrix B € R"*" and
for T € R is defined by

Al Bk t 1) )D‘
Bt L T — >
EZ =1+ z ak 1) H(k t), t>0 (22)

with BB (0) := I, EB* (t) := @ for t < 0 and H(t) is the Heavyside function with H(0) = 1. This is
a slight modification of the original definition in [29], and note that for each t > 0, the sum in
Equation (22) is finite and for T = 0 we have

EBY (1) := Eo(Bt") = i B £>0 (23)
= T(ak+1) -

where the right side is the standard Mittag-Leffler type matrix function.
Example 1. Consider the nonhomogeneous system for t > 0:

Dgxi(t) = x1(t—=1)+1

(24)
D2 (xa(t) + x1(t = 1) + x2(t = 1)) = x2(t) + x2(t — 1) + 21 (£ — 2)
with the initial conditions
@) = (0,2)T,t € [-2,0] ie x1(t) =0, x(t) =2 for te[-2,0]. (25)
The homogenious system has the form
DY (1) = (¢ —1) o)
DY (%o(t) + %1 (t—1) + Tt — 1)) = Ta(H) + T2 (t = 1) + T (t —2)
and introduce the following initial conditions necessary for the calculating the fundamental matrix Q(t):
1.x1(0) =1,x(0) =0 and x1(t) =0,x2(t) =0 for te[-2,0); (27)
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2.x1(0) =0,x2(0) =1 and x1(t) =0,x(t) =0 for te[-2,0). (28)
Let consider the IP (26), (27). Then the first Equation of (26) in virtue of Theorem 3.1 in [29]
has the solution X7 (t) = Eﬁo‘s (t =1, =0.5). Taking into account Equation (27), it is simple to check
that (DQ5%{ (s —1))(t) = (D§>%{(s))(t — 1), and then in virtue of Theorem 3.1 in [29] we have that
(D0 S%1)(t — 1) = %} (t — 2), and hense, from the second equation and Equation (27), we obtain that ¥3(t) = 0
for t € [—2,00). Thus the IP (26), (27) have the following solution ¥} (t) = Eﬁos, T3(t) =0fort € [—1,00).
Consider the IP (26), (28) . Then obviously X2(t) = 0 for t € [~2,c0) and the second equation become the
form: DYS(Xa(t) + Fa(t — 1)) = F2(t) +Xa(t — 1) and by making the substitutuon y(t) = %2 (t) + X (t — 1)
we obtain the equations D0 Sy(t) = y(t) with initial codition y(0) = 1, i.e., the following IP

DR2y(t) =y(t), >0, y(0)=1. (29)
Applying Lemma 2.23 in [2] for the case when A =1, T = 1, « = 0.5 we obtain that the solution of the
0 pak

1P (29) is the fuction y(t) — Eio.s (t) = 2 m Then, using the step method, we obtain for each k € N
k=

[}

and t € [k —1,k)] that T3 (¢ Z 1)k 1Et05 — (k—1))H(k —t) for t > 0. Thus, we obtain that the

fundamental matrix have the form7

e: 0] 0
o) = < L e e (kt)>.

In the IP (24), (25) we have that: ®(t) = (0,2)T,t € [-2,0]; F(t) = (1,0)T. Then from Equation (19),
we have

(30)

1 rt rt—s 05\
X{(t) = F(OS) /0 (/O (t —5—= 77)_0‘5 (Ei ) (’7)‘51’7) ds + 1"(1\/25)
x5 () =0
From Equation (10), it follows

x?(t) =0,

® ) :2+2./0t <./Os(s (i k 1Ef05 (kl))H(kU)> dﬂ) ds + 1,2(17\/;)

Then, the solution of the IP (24), (25), according Corollary 1, is

x1(t) = xip(t) +xf(t) = ﬁ /Ot (/Otis(f — sy (E,lo.s)/ (U)dﬂ) o W\/.ES),

w(t) =f(0) +xf(0) =2+2 [ ( [ (i(l)“ﬁi“‘sw - (k- 1))H(k11)> dﬂ) ds

k=1
24/t
r(1.5)°
5. Conclusions

Following the investigations way in the case of functional differential systems with integer order
derivatives, we proved a formula for integral representation of the solutions of Cauchy problem for
fractional neutral systems, which improves and extends the corresponding former results obtained in
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the particular case of fractional systems with constant delays. However, the main idea is not only to
make a standard generalization of existing results, but as in the case of systems with integer derivatives,
the proved formula to be an useful tool for further study of different kinds stability properties of linear
neutral fractional systems, which have a lot of practical applications.

As examples in this direction, we refer to the works [29,30], where finite time stability is studied
by this approach, i.e., in the partial case of one constant delay. In the mentioned articles, first a formula
for integral representation of the solutions of Cauchy problem is proved, and then, using the obtained
result, sufficient conditions for finite time stability of the considered fractional delayed system are
established. Furthermore, applying the same approach, in [16], the asymptotic stability properties of
nonlinear perturbed linear fractional delayed systems are studied .
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In 1920, Hardy [1] established the inequality

o n k P
z ] ko k k
Z(ngw(l)> S(k—l) ng:lw(n), > 1. W

n=1

where w(n) is a positive sequence defined for all n > 1. After that, Hardy [2], by using the calculus of
variations, proved the continuous inequality of (1) which has the form

Gy xg(s)ds)kdx < (%)k I g @

for a given positive function g, which is integrable over (0, x), and g¥ is convergent and integrable over
(0,00) and k > 1. In (1) and (2), (k/ (k — 1))k is a sharp constant. As a generalization of (2), Hardy [3]
showed that when k > 1, then

© x k koo
/0 xh ( /0 g(S)ds> dxg<%> /0 gk (x)dx, forh > 1, ®)

o s k k reo
/O ol (/ g(s)ds) dx < (%) /0 xk_hgk(x)dx,forh <1 4)

and
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The constants (k/(h — l))k and (k/(1— h))k in (3) and (4) are the best possible. Copson [4] demonstrated
that if g(x) > 0,k > 1 and g*(x) is integrable on the interval (0, ), then

/ ” (ﬁ) ds,
/0oo (/xw g(s—s)ds>kdx <kt /0°° & (x)dx, 5)

where k¥ is the best possible constant. Some of the generalizations of the discrete Hardy inequality (1)
and the discrete version of (5) and its extensions are due to Leindler, we refer to the papers the
papers [5-8]. For example, Leindler in [5] proved thatif p > 1, A(n), g(n) > 0, then

converges for x > 0 and

i (Zg >p<PpZA1’“ (ZA >ng ©6)

n=1

and

£ (Eew) < £ (Fam) o o

n=1

The converses of (6) and (7) are proved by Leindler in [6]. He proved thatif 0 < p <1, then

o " P p
Y An) (Zg(k)> >p”ZA1 P(n (ZA > g’ (n ®)
n=1 k=1

and N , N ) ,
Z (28 ) > pF Zl/\lf”(") (kzl/\(l?)> gh(n). ©)

For more generalization Copson in [9] showed that if k > 1, A(j) > 0, w(j) > 0, Vj > 1,
Q(m) = ;"Zl A(j),and h > 1, then

k
[es] A(m) m . . k k oo -
mgl Q' (m) (ZW(])/\(])> = (h—l) m;l/\(m)nk " (m)wt (m), (10)

and if 0 < h < land k > 1, then

k
= Am) (S K= (Y
Em(m(ZwW@) (+55) £ Ao romuton an

j=m m=1

The integral versions of the inequalities (10) and (11) was proved by Copson in [10] (Theorems 1
and 3). In particular, he proved thatifk > 1, > 1, and Q(s fo t)dt, then

Ol s) DF(s)ds < ( 71> / Qh k s)ds, (12)
where ®(s) = [; A(t)g(t)dt,andif k > 1,0 < 1 <1, then
= AMs) g kO = AG)
/0 Qi(s) T = (1—11) /0 k(5§ () (13)
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where ®(s) = [” A(t)g(t)dt. Leindler in [5] and Bennett in [11] presented interesting different
inequalities. Leindler established thatif k > 1, QO*(m) = Y2, A(j) < c0,and 0 < h < 1, then

j=m
k
DA RIS kg e
and Bennett in [11] showed thatif 1 < i <k, then
k k
00 )\ o0 X . k o) . -,
EI% </me(]))t(])> < (7}1—1) mZ::]A(m)(Q ()~ (). (15)

In last decades, studying the dynamic equations and inequalities on time scales become a main
field in applied and pure mathematics, we refer to [12-14] and the references they are cited. In fact, the
book [13] includes forms of the above inequalities on time-scale and their extensions. The timescales
idea is returned to Stefan Hilger [15], who investigated the research of dynamic equations on timescales.
The books by Bohner and Peterson in [16,17] summarized and organized most timescales calculus. The
three most common timescales calculuses are difference, differential, and quantum calculus (see [18]),
ie,atT=N,T=R,and T = g™ = {g°: s € Ny} where g > 1.

In recent years, a lot of work has been published for fractional inequalities and the subject becomes
an active field of research and several authors were interested in proving inequalities of fractional type
by using the Riemann-Liouville and Caputo derivative (see [19-21]).

On the other hand, the authors in [22,23] introduced a new fractional calculus called the
conformable calculus and gave a new definition of the derivative with the base properties of the
calculus based on the new definition of derivative and integrals. By using conformable calculus, some
authors have studied classical inequalities like Chebyshev’s inequality [24], Hermite-Hadamard’s
inequality [25-27], Opial’s inequality [28,29] and Steffensen’s inequality [30].

The main question that arises now is: Is it possible to prove new fractional inequalities on
timescales and give a unified approach of such studies? This in fact needs a new fractional calculus on
timescales. Very recently Torres and others, in [31,32], combined a time scale calculus and conformable
calculus and obtained the new fractional calculus on timescales. So, it is natural to look on new
fractional inequalities on timescales and give an affirmative answer to the above question.

In particular, in this paper, we will prove the fractional forms of the classical Hardy, Bennett,
Copson and Leindler inequalities. The paper is divided into two sections. Section 2 is an introduction
of basics of fractional calculus on timescales and Section 3 contains the main results.

1. Preliminaries and Basic Lemmas

We present the fundamental results about the fractional timescales calculus. The results are
adapted from [16,17,31,32]. A time-scale T is non-empty closed subset of R (R is the real numbers).
The operators of backward jump and forward jump express of the closest point € T on the right and
left of t is defined by, respectively:

p(t) :==sup{s € T:s < t}, (16)

o(t):=inf{s € T:s > t}, (17)

where sup ¢ = inf T and inf ¢ = sup T (¢ denotes the empty set), for any ¢+ € T the notation f7(t) refer
to f(o(t)),ie., f7 = f oo. The graininess function y : T — [0, o0), defined by p(t) := o(t) —t.
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Definition 1. The number T2 (f)(t) (provided it exists) of the function f : T — R, fort > 0and a € (0,1]
is the number which has the property that for any € > 0, there exists a neighborhood U of t S. T.

|F7(5) = FOI = TR (D)o (t) = 5)| Selo(t) =), forallte U

TA(f(t)) is called the conformable a—fractional derivative of function f of order a at t , for conformable
fractional derivative on T at 0, we define it with T2 (f(0) = lim,_,o+ T2(f(t)).

The conformable fractional derivative has the following properties

Theorem 1. Let v, u : T — R are conformable fractional derivative from order « € (0, 1], then the following
properties are hold:

(i)  Thev+u:T — R is conformable fractional derivative and

T2 (v 4 u) = T2 (v) + T2 (u).

(ii)  Foraall k € R, then kv : T — R is a—fractional differentiable and
T2 (kv) = kT2 (v).
(iii)  If v and u are a—fractional differentiable, we have vu : T — R is a—fractional differentiable and
TA(vu) = T2 (v) u+ (vo o) TA(u) = T2 (v) (w0 ) 4+ v T (u).
(iv)  If vis a—fractional differentiable, then 1/v is a—fractional differentiable with
r() - T
v v (voo)

(v)  Ifvand u are a—fractional differentiable, then v/u is a—fractional differentiable with

T2 (v)u — oT2(u)
u(uoo)

TA(v/ ) = ,

valid ¥ t € T where u(t) (u(c(t)) # 0.

Lemmal. Let v : T — Ris continuous and a—fractional differentiableat t € T fora € (0,1}, andu : R — R
is continuous and differentiable. Then there exists d € [t, o (t)] with

T2 (uov)(t) = ' (v(d)) T2 (u(t)). (18)

Lemma 2. Let u : R — R is continuously differentiable, « € (0,1], and v : T — R be a—fractional
differentiable. Then (1 o v) : T — R is a—fractional differentiable and we have

1
T2 (10 0)(s (/u )+ hu( )“Tﬁ(v@)))dh)m(v(s)). (19)

Definition 2. Let 0 < a < 1, the a—fractional integral of f, is defined as

/f(s)AaS = '/f(s)s“’lAs.

The conformable fractional integral satisfying the next properties
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Theorem 2. Assumea,b,c € T,A € R. Let u,v: T — R. Then

(i) [ lo(s)+u ()}Aas—j 0(5) s + [ 11(5)Ags.
(i) [P Ao(s)Das = A [0 Aas

(i) [ 0(s)Aes = = [y o
(iv) fab 0(8)Ans = ;v Aas—&-f iS5
(v) f: (S)Aa =

Lemma 3. Assume T be a time-scale, a,b € T whereb > a. Let u, v are conformable x—fractional differentiable,
« € (0,1]. Then the formula of integration by parts is given by

/b 0(s)TEU(s)Ags = [v(s)u(s)]z - /b 1 (5)T20(s) Ags. (20)

Lemma 4. Assume T be a time-scale, a, b € T and o € (0,1]. Let u, v : T — R. Then

[ etsruts)ios < [ [ ots %ﬁ}{/\ \Aﬁ}/ e

wherek > 1and 1/k+1/1 = 1.

2. Main Results

Throughout the paper, we will assume that the functions are nonnegative on [a, o) and its
integrals exist and are finite. We start with the fractional time-scale inequality of Copson’s type.

Theorem 3. Assume 1 < ¢ < k, define
X X
P(x) := / A(8)Ays and Q(x) := / A(s)g(s)Ans.
Ja Ja

If

O(co )<oound/ %Aa5<w,

then

o Ax) N k \F peo Ax) DK =) ()
/ @;——f—wa(m>ng( ) : F@hr. (@)

(x))c a+1 c—u q)v(x))(C*“Jr])(l*k)

Proof. By employing the formula of integration by parts (20) on the term

it /\(x) I k
/a F(Q (x))" Aux,

(x))c a+1

with 1 (x) = (Q7(x))F and x2o(x) = ﬁ, we have that

[ ot (08 = o

T [T ot (0F @) A @)

where
I A(s) B A 0\ -
w(x)_/x Wms-/’( 2B (s) (@7 (5)) ! Ags.
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By using the chain rule (18), we obtain that

—x3 (@ (x)) = —(a—c)®" T 1(d)xfP(x), where d € [x,0(x)]
(€ —a) p®(x)

(bcfaﬂrl(d)
(c —a) xg (®(x))

> .
- (@U(x))cfﬂﬁﬂ
Then we have 1
x5 (@(x)) (97(0))" T < — "),
and thus
—o(x) = /oo M) pec 1 /oo pr—c(g)p,s < ) (24)
x (q;v(s))“ﬂ“r c—a Jx c—u

Again, by using the chain rule (18) to calculate
b (Qk(x)> = kO 1(d)x2 (Q(x)), where d € [x, ()],
at x8 (Q(x)) = A(x)g(x) > 0and d < o(x), we get that
x (0F(x)) < kAx)g(x) (@F (). (25)

Since O)(a) = 0, v(o0) = 0 and from (24), (25) and (23) we have

[ iy @70 A < [T e gt @) o

which reformulated as

Ix @(% (07(x))" B

koo Ax)d*(x)g(x) Ax) (Q7(x))*
/a ) L ( (q;a(x))c—zx+1 ) AVES
(M) (@7 () ~)

Tc—a

Using Hoélder’s inequality (21) on

k=1

[ A (A(x) <o‘7<x>)f> o
B k%l Do c—a+ o
(A @reety T N @D
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with indices k and k/ (k — 1), we have

[ iy e (@) s

(x))L‘*DH»l
k k
k * A(x) P (x)g(x)
c—u /a ) ket Aax
[A(x) (@9 ()]

k=1 —1
T

oo | [A(x) (Q7(x))*
/a |: (q)a(x))C—oH—l :l Agx ’

then

bk [ I AP I gk, 1F
C—K

oo Ax) o
[/ (@t (V)" e o (@ ()l T

(x))c—tx-H

This leads to

T MY kS M@K (g (x)
[ @t aa s (L) [t o

that is the desired inequality (22). The proof is complete. [

Corollary 1. At « = 1in Theorem 3, we obtain the inequality

©  Ax) ” P k koo @k(l—c)(x)
[ty @entess (L) [ G g e

that is the timescales version of inequality (2.8) in [33].

Corollary 2. Ata =1,and T =R (®7(x) = ®(x)) in Theorem 3, we obtain the integral inequality
k

[ ([ A(s)g(s)ds)kdx <(55) [fomwstwa

which is of Copson type.

Corollary 3. Ata =1, T= R, A(x) = land a = 0, (®(x) = [y A(s)ds = x) in Theorem 3, we have
Hardy-Littlewood integral inequality (3)

/Ow% </Oxg(s)ds>kdx < (%)k./ooo xc{kgk(x)dx'

Also, if ¢ = k, we obtain the standard Hardy inequality (2)

s "g(s)ds)kdx < (%)k JARES

Theorem 4. Let 0 < ¢ < 1and k > 1. Define

o

P(x) := /”x/\(s)Aas and Q(x) ::/x A(5)g(s)Ags.
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If

Q()<ooand/ %A

then

o0 k o
/" %Qk(ﬂ%xg(“ﬁc) /ﬂ (q)o(x))kicﬂil)‘(x)gk(x)A.xx.

Proof. By using the formula of integration by parts (20) on

o Ax)
/’Z Fﬂk(x)%x,

(x))t a+1
with o(x) = QOF(x) and x2u(x) = %, we have
M) k k(y
/a WQ (x)Apx = u(x)Q( +/ u’ )) Ayx,

where
uix) = ' & s = xxA s T g
( ) /a (q;y(s))cfaJrlA”‘ /u aq>( )(q> ( )) Agys.

By using chain rule (18), then for d € [x, o (x)], we get that

a—c)xd X
2 (@) = (@) (o() — ELEEE)

(@)

So

2 (@(x)) (@7(1)" 7 < L (@ (),

and then,

=
Q
—~

=
N>

Il

[ 22 @) (@76 s
1 /J(X) 0 (D%(5)) Aus < M

& —CJa 0 —cC

Again, by using chain rule (18), we obtain
b (Qk(x)) = —kQF1(d)x2 (Q(x)), where d € [x,0(x)],
since x2 (Q(x)) = —A(x)g(x) > 0and d > x, then
1@ (0f(0)) < M0 ).

Using ®(a) = 0, Q(c0) = 0 and (28), (29) and (27), we have that

e Alx *© a—c -
[ it < [T @) Aws00t 0
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which reformulated as

[ iyt =
k /'°° (P7(x)" " Ax)g(x) (A(X)Qk(x) >kAax.

“oe (@)

(M) (@7 () )

—1
k

By employing Holder’s inequality (21) on
%
< (27(x))" T A(x)g(x) A(x) O (x)
Ayx
/u k (@U(x))57“+1

(M) (@)

—1
7
with indices k and k/ (k — 1), we have

~
|
o
|

[ [ Aot A
" ((I)U(x))67'x+l o ’

then we have

* MY kg x% ke g,
|:/a (q;a(x))c—a+10 ( )Aa :| < T—c [/a (q)g(x))cfk—o&lA"‘

This leads to

)k |7 @ ) T A ()b,

a—c
that is the desired inequality (26). The proof is complete. O

Corollary 4. At « = 1in Theorem 4, then

/aoo %Qk(x)Ax < (

which is the timescales version inequality (2.22) in [33].

)k |7 @ @) Awgiar,

1—c¢

Corollary 5. At « =1, and T= R in Theorem 4, we obtain the next integral inequality
© A(x) 00 k k O\ jo e .
<
[ ([T agons) ax< () [T o e gt
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which considered an extension of Hardy’s inequality (4) as in the following corollary.

Corollary 6. At « = 1, T= R, A(x) = 1and a = 0 in Theorem 4, we have Hardy-Littlewood integral

inequality (4)

/0.00% </Xwg(5)ds)kdx < <1fc>k/:° xc{kgk(x)dx_

A generalization of Leindler’s inequality (14) on fractional time scales will be proved in the

next theorem.

Theorem 5. Assume 0 < ¢ <1 < k, define

PO(x) := /:o)x(s)Aas and Q(x) = /;A(s)g(s)Aas.
If
Afs)

© s
Q(oo)<oo,and/a T

Ays < o0,

then
/ " R () A ()85 (x) Aar.

a

« /\(X) o k k K
N\ < (2
/a de—atl(x) (Q7())" Aax < x—c
Proof. Using the formula of integration by parts (20) on

o)
/u @%fl)(x)ﬂk(x)m‘x,

with u7(x) = (Q‘T(x))k and x{v(x) = #ﬂm, we have

. / N 7@3(3) & (Q7 (1) Agx = 0(x)Q(x) ]“’ + / ¥ o(x)xd (04)) Ao,

where

' A(s
v(x) = —/x @%%Aas.

By chain rule (18), we see for d € [x,o(x)] that

() = —(x— @ty (@() =~
(=) A)

Hence

©A(®s) e, d*¢(x)
_ _ < a—c <
o) = [ G S g [, WA < T,

from chain rule (18), we obtain
8 (Qk(x)) = kO (d)x? (Q(x)), where d € [x,0(x)],

since

X8 (Q(x)) = A(x)g(x) > 0and d < o(x),

we get
xt (0F(x)) < kA(x)g(x) (O (x)" "

460

(30)

€]

(32)

(33)



Mathematics 2020, 8, 434

Using Q(a) = 0, v(o0) = 0 and (32), (33) and (31 ), we get that

[ et @00 b s L [T e or s 00 ) o

x—c
which reformulated as
*©  Mx)
Ja ¢C*0(+l (x)
k /oo q>(cfa+1)(k%) (x)
a—cla AT (x)den(x)

(Q7(x))f Agx <

ME () (@)
q)(c—chrl)(k%) (x)

A(x)g(x)

aX.

Using Hoélder’s inequality (21) on

/-oo @(cfoHrl)(k%l)(x)/\(x)g(x)/\%(x) (Q7 (x))F1
= A ()@ (x) ol () ()
with indices k and k/ (k — 1), we have

* A
B Pe—at+l (x)

then
[ /ﬂm@#ﬁ)m (0"(x))"Aax}k < af . [ ﬂw q>k*f+“*1(x)A(x)gk(x)Aax] "
This leads to
00 x k
[ i @t e () [T mams @

that is the desired inequality (30). The proof is complete. [
Corollary 7. At « = 1in Theorem 5, we get

00 x ke
[ @t ars (15) [T wieogwas,

which inequality (2.36) in [33].

A generalization of Bennett’s inequality (15) on fractional timescales will be proved in the
next theorem.

Theorem 6. Assume 0 < a <1,1 < ¢ <k, and define

(e}

P(x) := /:)A(s)Aas and Q(x) := / A(s)g(s)Ags.

X
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If
Q(a) < coand /uoo #%Aas < oo,
then
00 k 00
[ stgotwan < ((5) [T oot mamgon (34)

Proof. Using the formula of integration by parts (20) on

©  AMx) k
/[z S O )Ax,

(x)
with o(x) = 0% (x) and x8u(x) = 2% - then
© )\ (5] [e]
/u ﬁfl)(x)ﬂk(xmx = u(x)0f(x) . +/u u’ (x)x4 <7Qk(x)) Apx, (35)

where

X A(s
u(x):/a <I>C++3(S)A“S'

By using chain rule (18), we see for d € [x, o (x)] that

—c a—c— —c)(—A
B (@) = @-0@ T o) - CEOGH)

(c—a)A(x)

= ety

we get,
o(x) s o (x)
u(x) = /,1 @Cf‘u(+3(s) Nys < c i tx /u xzqu)lx_c(S)Aas
L @) @) () 6
c—u c—u c—u

from chain rule (18), we find that
Xl (Qk(x)> = kO 1(d)x2Q(x), where d € [x,0(x)],

since
X8 (Q(x)) = —A(x)g(x) < 0and x < d,

then
@ (0f(0)) < (g0 (). )

Using v(a) = 0, Q(o0) = 0 and (36), (37) and (35), we get that

/ © MY arfan <

Pe—at(x) c—a /:o q;a—C(x)A(x)g(x)Qk—l (x)Agx,
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which reformulated as

[ imamas <

Qk*l(x
k—
3

. A W
(D(cfvﬁl)(*)(x) o

k /oo q)(cfaﬁrl)(k’Tl) (x)
el AT ey

-\

Mx)g(R)AF (x)

Using Hoélder’s inequality (21) on

@) () A'F ()1 (x)

k=1 k=1 Agx
AT ()@ (x) D) (x)

JARGHE
with indices k and k/ (k — 1), we have

©  Ax)
/a mﬂk(x)Aax <

=

k=1

k o0 q)(c—zx-%—l)(kkl)(x)}k
/ [A( LCSC rrered I IS

then

This leads to

~00 AMx) o k k g /oo k—c+a—1 k
——— (O < P

/a et (x) (Q7(x))" Aux < c—a/) /. ()A(x)g" (x)Anx,

that is the desired inequality (34). The proof is complete. [

Corollary 8. At « = 1 in Theorem 5, we have the inequality

00 x k "o
[ e ermtars (5) [Towmstmas

which the inequality (2.49) in [33].

3. Conclusions

The new fractional calculus on timescales is presented with applications to some new fractional
inequalities on timescales like Hardy, Bennett, Copson and Leindler types. Inequalities are considered
in rather general forms and contain several special integral and discrete inequalities. The technique is
based on the applications of well-known inequalities and new tools from fractional calculus.
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Abstract: In this paper, we propose sequential fractional delta-nabla sum-difference equations with
nonlocal fractional delta-nabla sum boundary conditions. The Banach contraction principle and the
Schauder’s fixed point theorem are used to prove the existence and uniqueness results of the problem.
The different orders in one fractional delta differences, one fractional nabla differences, two fractional
delta sum, and two fractional nabla sum are considered. Finally, we present an illustrative example.

Keywords: sequential fractional delta-nabla sum-difference equations; nonlocal fractional delta-nabla
sum boundary value problem; existence; uniqueness

JEL Classification: 39A05; 39A12

1. Introduction

Nowaday, fractional calculus is attractive knowledge for many reseachers in many fields.
In particular, the fractional calculus has been used in many research works related to biological,
biomechanics, magnetic fields, echanics of micro/nano structures, and physical problems (see [1-7]).
We can find fractional delta difference calculus and fractional nabla difference calculus in [8-24]
and [25-36], respectively. Definitions and properties of fractional difference calculus are presented in
the book [37].

We note that there are a few papers using the delta-nabla calculus as a tool. For example,
Malinowska and Torres [38] presented the delta-nabla calculus of variations. Dryl and Torres [39,40]
studied the delta-nabla calculus of variations for composition functionals on time scales, and a general
delta-nabla calculus of variations on time scales with application to economics. Ghorbanian and
Rezapour [41] proposed a two-dimensional system of delta-nabla fractional difference inclusions.
Liu, Jin and Hou [42] investigated existence of positive solutions for discrete delta-nabla fractional
boundary value problems with p-Laplacian.

In this paper, we aim to extend the study of delta-nabla calculus that has appeared in discrete
fractional boundary value problems. We have found that the research works related to delta-nabla
calculus were presented as above. However, the boundary value problem for sequential fractional
delta-nabla difference equation has not been studied before. Our problem is sequential fractional
delta-nabla sum-difference equations with nonlocal fractional delta-nabla sum boundary conditions as
given by

Mathematics 2020, 8, 476; doi:10.3390 / math8040476 467 www.mdpi.com/journal /mathematics
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A*VAu(t) = F [t o= Tu(t+a—1), (S%) (F+a—1), (TP) (t+a— 1)]
A Yu(a+w—2) V" Yu(a —2)
u(T +a) Au(), 1€ Ny 11401 1)

wheret € Nor:={0,1,...,T}; a € (1,2]; B,0,¢,w,y € (0,1]; a+ B € (2,3]; T > 0; «, A are given
constants; F € C(Ny_27+4 x R%,R); and for ¢, € C(Ny—2,74a X Ny_2,74a,[0,00)), we define

(5%) (0= [T 0] 0= g L= 06)" ol0,9)ute),
1

(T#0) (1) = [a#yu] (t+9) = 2 (=) (e + ) s + ).

((P) s=a—¢—2

The objective of this research is to investigate the solution of the boundary value problem (1).
The basic knowledge is disscussed in Section 2, the existence results are presented in Section 3, and an
example is provided in Section 4.

2. Preliminaries

We give the notations, definitions, and lemmas as follows. The forward operator and the backward
operator are defined as o(t) := t + 1, and p(t) := t — 1, respectively.
For t,a € R, we define the generalized falling and rising functions as follows:

o The generalized falling function
e Tt
F(t+1—a)
for any ¢t + 1 — a is not a pole of the Gamma function. If  + 1 — a is a pole and ¢ + 1 is not a pole,
then t* = 0.

o The generalized rising function
o Lt +a)
T

for any t is not a pole of the Gamma function. If # is a pole and t + « is not a pole, then t* = 0.

Definition 1. For « > 0 and f defined on N, := {a,a+1,...}, the a-order fractional delta sum of f is
defined by

ACF(E) = ﬁ S(t — 0(5))2Lf(s), t € Nova

The a-order fractional nabla sum of f is defined by

V) ri Lt “1f(s), tEN,.

Definition 2. For « > 0, N € Nwhere 0 < N—1 < a < N and f defined on N,, the a-order
Riemann-Liouville fractional delta difference of f is defined by

AF(1) = ANA- N (1) i DL E(s), £ € Nownn,
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The w-order Riemann-Liouville fractional nabla difference of f is defined by

VEf() = VNV (N0 £(p)

ia) Yo (E=p(s) T f(s), € Nos

Lemma 1 ([15]). Let0 < N—-1<a <N, Ne Nandy : N, — R. Then,

AT A%y (t) = y(t) + Ci(t — a)ﬂ—&- Co(t — a)u +...+Cn(t— a)""N,
forsome C; € R, with1 <i < N.
Lemma 2 ([28]). Let0 < N—-1<a <N, Ne Nandy : Ny, 1 — R. Then,

y(t), a ¢ N

V= V*y(t) =
/0 {(t) oY v (), w=N,

forsomet € Ny n.

We next provide a linear variant of our problem (1).

Lemma 3. Let A #0; « € (1,2]; B,w,y € (0,1); a+ B € (2,3; T > 0; x,A are given constants;

and h € C(Ny_p, 1+, R). Then the problem
A*VPu(t) h(t+a—1), t€Nor
A Yula+w—-2) = xV Tu(a—2)
u(T +a) Au(n), 1€ Ny1,740-1

has the unique solution

t
u(t) = Zpgy L (t=e)”
=a—1
1 [ N

s 3 ) (E= ()P (s —o(n) T h(r +a - 1)

where the functional O[h] and the constant A are defined by

N s—a —
Ol = (ﬁ)AM ;70 N (s — o () Lh(r+a—1)
AW iZ Tta—p) (s =0t hr a1,
T+a — Ui N
A= g L T g e B B () et

Proof. Using the fractional delta sum of order « for (2), we obtain

Z Ylp(s +a—1),

VPu(t) = Ciit=l4 a2 4 (1a

fort € Na72,T+tx~
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Taking the fractional nabla sum of order f for (8), we get

t [
W) = g L (=) o o] o
1 I os—u s Tls_ . L
i L L PO 6 o) e )

A = *Z“’; U(S)g?jl)(rs(;)p(r)) - [Clrﬁ+ Czrﬁ} (10)
f—w s r—a (t — g(s))ﬂ(s — p(?’))ﬁj(r _ U(g))tx 1 -
= r;w;;) (@B (@) (E+a—1)

fort € Na+w—1,T+tx+w~

Taking the fractional nabla sum of order v for (9), we have

L — () (s = p(r))F T
v = 3y P et e a
LSt p(s) TN s — )P 0@t
Ly (@) (B (@) (Ea—1)

fort € Na72,T+rx~
By substituting t = # + w —2 and t = & — 2 into (10) and (11), respectively; and using the
condition (3), we obtain
C=0
Substitute C, = 0 and apply the condition (4). Then, we obtain
Olnl

C=—

where O[h] and A are defined by (6)—(7), respectively. Substituting the constants C; and C; into (9),
we obtain (5). O

3. Existence and Uniqueness Result
Define C = C(Ny_p 144, R) is the Banach space of all function 1 and define the norm as
llle = Neell + IV~ 0ull + [|A~0ul|
where |[u|| = max |u(t)], |V u] = max |V %(t)|and [[A%ul| = max |[APu(t+¢)|.
teN teN, teN )

w—2,T+ua a—2,T+u a—2,T+u

In addition, we define the operator F : C — C by

¢ o
PO = A (g s S (gt o)
F r+a—1,u(r+a—1),<$9u) (r+a—1),(T%u) (r—&-a—l)}, (12)
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where A # 0 is defined by (7) and the functional O[F(u)] is defined by

N s—uw N
OF(w)] = W; L0100 (s o)) x

F [H—tx—l,u(r—i—a—l), (89u> (r+a—1),(T%u) (r—i—zx—l)]

THas—a I
ROROPY Z (T+a—p(s))P ' (s —o(r)" x
F [r+uc—1,u(r+a—1), (8 u) (r+a—1),(T%) (r+(x—1)]. (13)

Obviously, the operator F has the fixed points if and only if the boundary value problem (1) has
solutions. Firstly, we show the existence and uniqueness result of the boundary value problem (1) by
using the Banach contraction principle.

Theorem 1. Assume that F : Ny _ori, X R® — R is continuous, QP Nypria X
Na72,T+a —r [0, OO) with o = max{(p(t — l,S) : (i’, S) € Ntx72,T+tx X Na72,T+a} and Yo =
max {¢(t —1,5) : (t,5) € Ny_o 714 X No_o 744} Suppose that the following conditions hold:

(Hy)  there exist constants Ly, Ly, Ly > 0 such that for eacht € Ny_p 114 and u,v € R

‘F(t, u, (Seu) ,(T?u)) —F(t,0, (S%) ,(T%) )‘
< Lylu—v|+ Ly| (8914) - (Sev) |+ Ls| (T%u) — (T%0) |.

Then the problem (1) has a unique solution on Ny_p 1., provided that

xi= {L1+L2¢0(r€9++3i)+ 3¢0§?¢+f1)}[01+02+03] <1 (14)

where
o = m[mﬁ(qwﬂ)ﬁ (T + )™ (T+1)ﬂ (15)
0 = oy | T+ T 2P T E T P, (16)
% = DG ﬁ‘(T—&-a)“ 1(T+z)ﬁ7(T+z)§+(r( i)(T—&-l) (T+1)7], a7)
0 = g A TP R s
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Proof. We shall show that F is a contraction. For any u,v € C and for each f € N,_5 7;,, we have

N s—« oy

rw L, L 01— p(s))F 7 (s — o(r)) =L x
[L1|”‘U|+L2\(39)—(8 o) |+ La| (T9u) - (T90) ]

THas—a T

—rerw L, L (THa—pls )P (s —a(r))

|OlF@)] - OlF (v)]] <

-1
=2 %

[Lalu = o] + Lo | (8%) = (8%0) | + Ls| (T%u) = (T90) ]

(19)
< Hu—vHC{Ll-i-ngog(r(aH +L3%(rT;+21 } ésiz )))" X
<sfurv<(;>)>ﬂ _ Té go <T+a—p<sr>(>;;(<;)—a<r>>;l
< |H—U|C{L1+Lz¢o(r(9+1 +L31PorT;+21¢}®
and
[(Fu)(t) — (Fo)(1)] -
O[F] - O[F@]| 8= o, o F T, 5 (T+a—p(s))"" o
< |2 L (Trem @) e 3 Y )
a1
R [t el ] (5%0) (%) |+ 1] (700 (799
(T+3)° (T+2)2) [ O(T 4 a)2=L
e P NS (T p(s)P ! (s —o(r)==
w—p(s))F T
s:%l (T+ S;tx ; r(ﬁ)r ‘X)
7 9
< u—UI|C{L1+L2(P0(( i) 3¢0(€¢+_~_21)}01
Next, we consider the following (V¢ Fu) and (A~¢Fu) as
OF(u)] & & o) s —p(r))fT
(VOFu) ) = [lj\( )] S;M:;l (t—p( ))r(e ﬁ(ﬁ)p( D
L (= p()" (s —p(r)P T (r—o(@))* !
Ly NORGERE) " @
Fleta—1u@+a—1),AuE+a—0+1) Wu(g+a+1)]]
and
~ _ ORI & (9o s —p(r)P oy
(877w +) AL NN
W (g — ()2 (s — p(r)P T (r — 0(8) "
Ly T(IT(AT(a) @2
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Similarly to the above, we have

0 ¢
|(V*9.7-'u)(t) — (V’G}'v)(t)| < lu-— v|C{L1 + szpo (T+ @+ i) + L3t 1(,](17;_21)}02, (23)
0 ¢
A0 Fu)(t+ 9) — A0 F0) (t+ )] < [lu— U|C{L1 +Lap (gt Lm%}m (24)
From (20), (23) and (24), we get
0 ¢
|(Fu) = (Fo)le < lu —vnc{Ll i +L3¢01%} [0+ 0z + 03
= xllu—olle. 25)

By (14), we have || (Fu)(t) — (]-'v)(t)”c < |lu—||c.
Consequently, F is a contraction. Therefore, by the Banach fixed point theorem, we get that 7
has a fixed point which is a unique solution of the problem (I)ont € Ny o 11,. O

4. Existence of at Least One Solution
Next, we provide Arzeld-Ascoli theorem and Schauder’s fixed point theorem that will be used to

prove the existence of at least one solution of (1).

Lemma 4 ([43]). (Arzeld-Ascoli theorem) A set of function in Cla, b] with the sup norm is relatively compact if
and only it is uniformly bounded and equicontinuous on [a,b].

Lemma 5 ([43]). A set is compact if it is closed and relatively compact.

Lemma 6 ([44]). (Schauder’s fixed point theorem) Let (D, d) be a complete metric space, U be a closed convex
subset of D, and T : D — D be the map such that the set Tu : u € U is relatively compact in D. Then the
operator T has at least one fixed point u* € U: Tu* = u*.

Theorem 2. Assuming that (Hy) holds, problem (1) has at least one solution on Ny_5 7. 4.

Proof. The proof is organized as follows.
Step I. Verify 7 map bounded sets into bounded sets in Bg = {u € C(Ny_o744) : |ltt]c < R}.

Let max |F(t,0,0,0)| = M and choose a constant
teNa—Z,T+A

M [01 + Oy + 03}
1-— [Ql + Oy + 03} {L1 + LZ(PO i—<9+1 + L3l/)0

R > (26)

T+2‘P}
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For each u € Bg, we obtain

‘O[P(u)]‘
Lt (= p(s)P (s — o)t TS (T a—p(s)" " (s — o(r)*=
< PLL ARG L L)
H [r+a—Lu(r+a-1), ($9u> (r+a—0+1),(T%) (r+a+1)] (27)
—F(r+2—1,0,0,0)| +|F(r +2—1,0,0,0)]]
< { L1+L2¢0(r€9+3i)+ 3¢°(r€¢++2)) [l ||c+M}®
and
|(Fu)(t)] -
- ‘O[F Ti (T+amp(s)fTszty 30y (Tre—p)
S=n— s=ua r=0 r(ﬂ)
1
%{‘F[r-&-a—l u(r+a—1),<89u)(r+a—9+l), (28)
(T90) (r+zx+1)},F(r+(x71,0,0,0))+|F(r+uc71,0,0,0)|]
(T+3)" , , (T+2?
< { L1+L24’or(9+1) Lsypos Tgp+1) flu c+M}Q
In addition, we have
6 (T+3)° (T+2)?
(VRO < 4 L+ Lagorg 1)+L3¢0r( Ty | e + M 0o, (29)
- (T+ )§ (T+2)*
(AP Fu)(t+9)] < | |Lut Lagopg gy + Lavorg gy | ulle + M pOs. (30)
From (28), (29) and (30), we have
7
H(]—'u)(t)|c<{ L1+L2¢01(_€9++31))+L3¢0((¢ )) |u|c+M} [O1 + O + Q]
< R. (31

So, || Fulle < R. Therefore F is uniformly bounded.
Step IL Since F and H are continuous, the operator F is continuous on Bg.

Step IIL Prove that F is equicontinuous on Bg. For any € > 0, there exists a positive constant
p* = max{d1,2,03,04,05,,06} such that for t1,tr € Ny_o 744
_ B_ _ B eT(B+1)|A|

)(fz a+2)f —(t —a+2) ﬁ‘ < Srra=le]H]
el (a+1T(B+1)
6(T+a)e[[F[| 7

where |t — t| < 6y,

)(tszl)ﬁf(t] —a+1) ﬁ‘ where |ty — t| < &, |(t —a +2)7 —

el (B+1T(0+1)[A|
6(T+2)F(T+a)2=10||F||”

)(tz—a+1)§—(t1—a+1ﬂ <

where |t; — t| < 63,

el (a+ DI (B+1)I(0+1)
6(T+1)F(T+a)2O| F|

(tl—a+2) ’ <

where |t — t1| < d4,
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_ ¢ (4 _ ¢ eL(B+1)I(¢+1)|A|
)Uz s+ 1E-(h—atl) 6(T-+2)B(T+a)e=10)| F|/

’(tz —a)?— () — :x)f‘ < %, where |t — 1] < Je.

< where |t — t| < J5,

Then we have

|(Fu)(t2) — (fu)( )|

[F(u)] ols ﬁjsﬂ_i t B =
: ‘ A R 1(fz p(s)) () 52;1(t1 p(s))
b s—a (tr — p(s ))/3 (s—o(r )) a—1
;;0 ()T (a) .
P[7’+04 Lu(r+a—1) ( )r+p¢71) ('T‘Pu)(r+,x71)]
IR = R IO) W Gt 4(0) el
S;Wr;o (BT (w) (32)
F[r—i—zx—l,u(r—i-uc—l),(s@u)(r+/x—1),(7’4>u)(r+,x_1)]'
O|IF|(T + 0=t 5|y IFIT+ o)
- W‘t*”‘*@ﬁ “ﬂwz)ﬁMW
‘(tz—a+1)5—(t1—a+1)ﬁ‘
€ € €
< g+g—§.

Similarly to the above, we have

a—1 a
[(V0Fu)(t2) — (VOFu)(t)| < —®”‘f\”|ggﬂ) Tt~ +2)7 = ( —a+ 2|

FI[(T+ T+1)F 33
+%§fw)ﬂ)’(tz—a+1) (1—o¢+1)‘ (33)

€
< £+¢

w\m

_ _ a-1 B _ _
[(A~0Fu)(tr + @) — (A ¢ Fu)(t +¢)| < %\( fa+2)‘/’7(tlfac+2)4"

F[(T+ T+1 - — 34
T e | (2 — 0 = (6~ o)) (34)
< £+£=5.
Hence

H(}'u)(tz)—(}'u)(tl)HC < §+§+§ - (35)

It implies that the set 7 (Bg) is equicontinuous. By the results of Steps I to IIl and the Arzela-Ascoli
theorem, F : C — C is completely continuous. By Schauder fixed point theorem, the boundary value
problem (1) has at least one solution. [
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5. An Example
Here, we provide a sequential fractional delta-nabla sum-difference equations with nonlocal

fractional delta-nabla sum boundary conditions

i _ e [auen | (e (e
A2V ( ) (Hzm )2 |:|i(t+r;)|+1 + ‘ S%“ (H—%) +1 '(7—%1,)(,+%)
f s (36)
A au(f% = 2v 514(7%)
u (5% = 3u(-9),
where
1 1 2 1 (st
<89u) <t+§> = . (%) S:_% <t+* *,0(3)) <i+221)4 M(S)/
1 1 i “i (i) 3
(T‘/’u)( E) :F(%) =2 <t+§ft7(s)> (i+2(2n>2u<s+4>
3 2 = = =% =75rx=21=

: 1 3 1
Letting a = 35, f = 3,06 = 5 ¢ = 3w =3 7 =
—(s+1) t

(43
3, T =6 9ts) = g ¥(ts+9) = 645170;))2 and F [t,u(t), (8%)(t), (T?u)(t)] = oo

1 3
2u) | |S5wm] |, TR ,
+3 , we find that
SO | sswml+ T [Tinm]+ wetmd tha

|A| =3.29500, © = 29.34125, () = 57.88022, (), = 246.53142, Q3 = 699.50153.

=
X

where |A[, ©®, ), Oy, O are defined by (7), (15)—(18), respectively. In addition, for (t,s) € N_
N 1 15, we find that

115
22

Nl
)

@0 = max {@(t —1,5)} = 0.0000745 and o = max {y(t —1,5)} = 0.0000787.

Foreacht € N ; 15, we obtain

‘F (L), (8%) (1), (TPu) ()] = F [t o), (8%) (1), (T?0) (1)] ‘
_ 1 o =Pl | (%) | — | (8%) |

(Cy om0y LT RIERT T [ 1] (%) |1

| (T%u) | | (T%0) |
[ (Tou)|+1] | (T%0) | +1]
8
= 30601 * ~ 1 39601 39601 ‘(89”> - (s )’ * m (T%u) = (T*0)].
Therefore, (H) holds with L; = %, L, = ﬁ, and L3 = %~

Then, we can show that (25) is true as follows

T
(9)s

X = 1L1+ Lago— + L3t
{ r(¢)

81
r(7)

} [+ + Q3] ~ 020294 < 1.

476



Mathematics 2020, 8, 476

Hence, by Theorem 1, the problem (36) has a unique solution.

6. Conclusions

We estabish the conditions for the existence and unique results of the solution for a fractional
delta-nabla difference equations with fractional delta-nabla sum-difference boundary value conditions
by using Banach contraction principle and the conditions for result of at least one solution by using the
Schauder’s fixed point theorem.
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Abstract: In this present paper we study the non-local Hadmard proportional integrals recently
proposed by Rahman et al. (Advances in Difference Equations, (2019) 2019:454) which containing
exponential functions in their kernels. Then we establish certain new weighted fractional integral
inequalities involving a family of n (n € N) positive functions by utilizing Hadamard proportional
fractional integral operator. The inequalities presented in this paper are more general than the
inequalities existing in the literature.

Keywords: fractional integrals; hadamard proportional fractional integrals; fractional integral inequalities

MSC: 26A33; 26D10; 26D53

1. Introduction

The field of fractional integral inequalities play an important role in the field of differential
equations and applied mathematics. These inequalities have many applications in applied sciences
such as probability, statistical problems, numerical quadrature and transform theory. In the last few
decades, many mathematicians have paid their valuable considerations to this field and obtained
a bulk of various fractional integral inequalities and their applications. The interested readers are
referred to the work of [1-5] and the references cited therein. A variety of different kinds of certain
classical integral inequalities and their extensions have been investigated by considering the classical
Riemann-Liouville (RL) fractional integrals, fractional derivatives and their various extensions. In [6],
the authors presented integral inequalities via generalized (k, s)-fractional integrals. Dahmani and
Tabharit [7] proposed weighted Griiss-type inequalities by utilizing Riemann-Liouville fractional
integrals. Dahmani [8] presented several new inequalities in fractional integrals. Nisar et al. [9]
investigated several inequalities for extended gamma function and confluent hypergeometric
k-function. Gronwall type inequalities associated with Riemann-Liouville k and Hadamard k-fractional
derivative with applications can be found in the work of Nisar et al. [10]. Rahman et al. [11] presented
certain inequalities for generalized fractional integrals. Sarikaya and Budak [12] investigated Ostrowski
type inequalities by employing local fractional integrals. The generalized (k, s)-fractional integrals
and their applications can be found in the work of Sarikaya et al. [13]. In [14], Set et al. proposed
the generalized Griiss-type inequalities by employing generalized k-fractional integrals. Set et al. [15]
have introduced the generalized version of Hermite-Hadamard type inequalities via fractional
integrals. Agarwal et al. [16] studied the Hermite-Hadamard type inequalities by considering
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the Riemann-Liouville k-fractional integrals. Fractional integral inequalities via Hadamard fractional
integral, Saigo fractional integral and fractional g-integral operators are found in [17-19]. In [20],
Huang et al. investigated Hermite-Hadamard type inequalities for k-fractional conformable integrals.
Mubeen et al. [21] proposed the Minkowski’s inequalities involving the generalized k-fractional
conformable integrals. The chebyshev type inequalities involving generalized k-fractional conformable
integrals can be found in the work of Qi et al. [22]. Rahman et al. investigated Chebyshev type
inequalities by utilizing fractional conformable integrals [23,24]. In [25,26], Nisar et al. proposed
generalized Chebyshev-type inequalities and certain Minkowski’s type inequalities by employing
generalized conformable integrals. Recently, Tassaddiq et al. [27] investigated certain inequalities
for the weighted and the extended Chebyshev functionals by using fractional conformable integrals.
Nisar et al. [28] established certain new inequalities for a class of n(n € N) positive continuous and
decreasing functions by employing generalized conformable fractional integrals. Certain generalized
fractional integral inequalities for Marichev-Saigo-Maeda (MSM) fractional integral operators were
recently established by Nisar et al. [29]. Rahman et al. [30] recently investigated Griiss type inequalities
for generalized k-fractional conformable integrals. In [31-33], Rahman et al. recently investigated
Minkowski’s inequalities, fractional proportional integral inequalities and fractional proportional
inequalities for convex functions by employing fractional proportional integrals.

Moreover, the recent research focuses to the development of the theory of fractional calculus
and its applications in multiple disciplines of sciences. In last three centuries, the field of fractional
calculus has earned more recognition due to its wide applications in diverse domains. Recently, several
kinds of various fractional integral and derivative operators have been investigated. The idea of
fractional conformable derivative operators with some drawbacks was proposed by Khalil et al. [34].
The properties of the fractional conformable derivative operators was investigated by Abdeljawad [35].
Abdeljawad and Baleanu [36] proposed several monotonicity results for fractional difference operators
with discrete exponential kernels. Abdeljawad and Baleanu [37] have presented fractional derivative
operator with exponential kernel and their discrete version. A new fractional derivative operator with
the non-local and non-singular kernel was proposed by Atangana and Baleanu [38]. Jarad et al. [39]
proposed the fractional conformable integral and derivative operators. The idea of conformable
derivative by employing local proportional derivatives was proposed by Anderson and Unless [40].
In [41], Caputo and Fabrizio proposed fractional derivative without a singular kernel. Later on,
Losada and Nieto [42] gave certain properties of fractional derivative without a singular kernel.

In [43], Liu et al. investigated several integral inequalities. Later on, Dahmani [44] proposed
certain classes of weighted fractional integral inequalities for a family of n positive increasing
and decreasing functions by utilizing Riemann-Liouville fractional integrals. Houas [45] utilized
Hadamard fractional integrals and established several weighted type integral inequalities. Recently,
Jarad et al. [46] and Rahman et al. [47] proposed the idea of non-local fractional proportional and
Hadamard proportional integrals which concerning exponential functions in their kernels. The aim
of this paper is to establish weighted type inequalities by using the non-local Hdamard proportional
integrals. The paper is organized as follows. In Section 2, we present some basic definitions and
mathematical formulas. In Section 3, we establish certain weighted Hadamard proportional fractional
integral inequalities. Section 4 containing concluding remarks.

2. Preliminaries

This section is devoted to some well-known definitions and mathematical preliminaries of
fractional calculus which will be used in this article. Jarad et al. [46] presented the left and right
proportional integral operators.
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Definition 1. The left and right sided proportional fractional integrals are respectively defined by

(aT™U) (6) = Vrrlm [ el @0 - uwa <o M

and

1 b v—1 _
(T7U) () = ey, @@l (= Ol =0 (a0 <o @
where the proportionality index v € (0,1] and T € C with R(t) > 0.

Remark 1. If we consider v =1 in (1) and (2), then we get the well-known left and right Riemann—Liouville
integrals which are respectively defined by

(TU) () = s [ 0= Uta <0 o)
and
1 b
(T5U) 0) = 15 /6 (t—0)71U(t)dt,0 < b @)

where T € C with R(7) > 0.

Recently, Rahman et al. [47] proposed the following generalized Hadamard proportional
fractional integrals.

Definition 2. The left sided generalized Hadamard proportional fractional integral of order T > 0 and
proportional index v € (0,1] is defined by

(aH™'U) (0) =

1 o -1 u
T /ﬂ expl” (I — In1)](In6 — 1nt)7*1@dt,a <. 5)

Definition 3. The right sided generalized Hadamard proportional fractional integral of order T > 0 and
proportional index v € (0,1] is defined by

v 1 b -1 e
(Hy'U) (6) = V(D) /9 exp[v " (Int —Inf)](Int —In6) 1@5#,9 <b. (6)

Definition 4. The one sided generalized Hadamard proportional fractional integral of order T > 0 and
proportional index v € (0,1] is defined by

Vv _ 1 /9 v-1 _ _ T—lu(t)
(#isu) (6) = s J, ol (ne—Inp](ne — It dne > 1, @)
where T'(T) is the classical well-known gamma function.

Remark 2. Ifwe consider v =1, then (5)—(7) will led to the following well-known Hadamard fractional integrals

(«HU)(0) = % /:(ln() - lnt)T*l@dt,a <0, (8)
2 (0) = —— ["(nt—me)y 14 g 0 < 9
(H5U) (0) = gy ) Ot =100y 15200 < ©)
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and
1 _qU(t)
T _ _ T—1
() (0) = 55 /1 (no —tnt) 1= dr > 1. (10)
One can easily prove the following results
Lemma 1.
v v—1 A-1 _ I v-1 THA-1
(Hl,ﬂ exp| " (In6)](In0) > (0) = VT (T + 1) exp| (In6)](In6) (11)
and the semi group property
(mzs) (7 ) ute) = (is™ ) u(o). 12
Remark 3. Ifv =1, then (11) will reduce to the result of [48] as defined by
- T'(A) -
T A-1 _ T+A-1
(Ho(mo)* ) (0) = Fr g o (13)

3. Main Results

In this section, we present certain new proportional fractional integral inequalities by utilizing
Hadamard proportional fractional integral. Employ the left generalized proportional fractional integral
operator to establish the generalization of some classical inequalities.

Theorem 1. Let the two functions U and V be positive and continuous on the interval [1, 00) and satisfy

(VU (p) =V (p)t? () (o) ~ U2 () ) 20, (14)
where p,{ € (1,0),0 > 1 and forany o > 0,6 > & > 0. Assume that the function W : [1,00) — R is
positive and continuous. Then for all 6 > 1, the following inequality for Hadamard proportional fractional
integral operator (7) holds;

Hyy o)) wyg ey ot o))
=M WO )] 1y [we)v ou o), (15)

where > & > 0,T,v,0 > 0.

Proof. Consider the function

v ¢
F(0,p) = ! ¢'7 (Inf-Inp) (In6 — lnp)Tflw

vIT(T) 0 ! (16)

where T >0, >0andp € (1,6),0 > 1.
Since the functions U and V satisfy (14) for all p,{ € (1,60),0 > 1 and forany ¢ > 0,6 > & > 0.
Therefore, from (14), we have

VIQUTH(p) + VI (0)UTHE Q) = V(U (U (@) + VI (U (@)U (p).  (17)

We observe that the function F(6,p) remains positive for all p € (1,0), 6 > 1. Therefore
multiplying (17) by F (6, p) (where F (6, p) is defined in (16)) and integrating the resultant estimates
with respect to p over (1,60), we get
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1
VT (T)

V‘T(g) /ee%(]ne—lnp) (11’19 _ lnp)-r—lW(p)ug(P)utr+5—f§(p)d‘D
1 o

_ 1 0 1 no—In W ut
e g(g)ﬂm/l 7 (Inf-Inp) (1 g In p)T 1#1}”@)@

Zva(ou&g(g) VTI}(T /19 e‘/l;,l(lneflnp) (11’19 _ lnp)771 W(p);/lg(p)ug(p)dp

~—

+M‘7(C) /9 evl;,](lné)flnp) (11‘19 _ lnp)'“] W(p);/lg(p) Va(p)u‘sig(p)dp,

viI(t) J1

which in view of (7) becomes,

VI VOUTH0)] + U@ )mTy [Wie)v )t (0)]
>V QU EQHTY (WO ()] + U @HTy [Wen el 6)]. as)

Now, multiplying (18) by F (6, () (where F (6, () can be obtain from (16) by replacing p by ¢) and
integrating the resultant estimates with respect to { over (1,60) and then by using (7), we obtain

M {V\J(e)vv(e)z,zg (9)] M [W(e)um(e))} +HTY [W(e)w”(e)} M [W(e)me)ué‘(e)]
>HTy WOV OU 0)] My [WOU™(p)] + Hiy [WOUT0)] 1Ty (WO (0 )],
which gives the desired assertion (15). [
Remark 4. If the inequality (14) reverses, then the inequality (15) will also reverse.

Theorem 2. Let the two functions U and V be positive and continuous on the interval [1,00) and satisfy (14).
Assume that the function W : [1,00) — R is positive and continuous. Then for all § > 1, the following
inequality for Hadamard proportional fractional integral operator (7) holds;

Hiy VOU(6)] Hyyg VOV (O)UE(6)] +Hy [W(O)V (O)U(6)] Hyp (0)
> HTy IVOUTE ()] Hiy VOV (0)U(0)] + My [V(O)VT (0)US(0)] Hyy [W(OUT+E(6)],
where § > ¢ > 0,7,A,v,0>0.

1

A (In6-Ind) (1n 0 —
v)‘l"(/\)e (In6

Proof. Taking product on both sides of (18) by G(6,0)
A WQUE()

InQ)

with respect to { over (1,60), we have

,where A >0, > 0and { € (1,6),0 > 1. and integrating the resultant estimates

,Hf,lg W(G)ua+(5(9)] V/\rl()\) Aee%(he—lng)(lne_lng))»—lw(g)gué(é)va(g)dg

+HT W(e)va(e)ué(e)] ” ! /lge%ﬂnf’*lné)(meflng)“%mu””fﬁ(é)dé

v—

|
|

=1y (WO (p)] ! /1 ! 00-m0) (10 — 1)V Y OUE D o o522y
{

) ¢
s VO O] e e - ingy VO Dy g,
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which in view of (7) yields,
Hyy @)U+ o)) 1iy eV Ut )] + iy [we)v ot )] #iy [weu @)
>HT WO ()] Hiy [WO) (0 (0)] + HTy WOV 0 (0)] 13y (W (0)],
which completes the proof of (19). [
Remark 5. Applying Theorem 2 for T = A, we get Theorem 1.

Theorem 3. Let the two functions U and V be positive and continuous on the interval [1,00) such that the
function U is decreasing and the function V is increasing on [1,00) and assume that the function W : [1,00) —
R is positive and continuous. Then for all § > 1, the following inequality for Hadamard proportional fractional
integral operator (7) holds;

Hyy [ )] 1y [weyv (o)t )]
=HT (WOEO)| 1Ty WOV (O (6)], (20)
where d > & >0, 1,v,0 > 0.

Proof. Since the two functions ¢ and V are positive and continuous on [1, c0) such that !/ is decreasing
and V is increasing on [1,00), then forallc > 0,5 > ¢ > 0,p,{ € (1,6), 0 > 1, we have

(V@) = V(o)) (U (p) — U (D)) = 0,
which follows that
VU () + V7 (U E(Q) = VI (U E(Q) + V7 (0)U* ¢ (p). 1)

Multiplying (21) by F(6,p) (where F(6,p) is defined in (16)) and integrating the resultant
estimates with respect to p over (1,0), we get

L ¢
W(é)iﬂ}(r) /1 eV (lnﬂflnp)(lng,1np)rflwuéfé(p)dp
-1 4
H/{&ig(g)vfrl(r) /19 o'y (In6—Inp) (Inf — ]_np)r—l W(P)pu (0) V7 (p)dp

zva(g)uofé(g) 1(T) /16 em;,l(lngflnp)(lne _ 11’1p)T71 W(p);/{é (P) dp

vl

1 LT W)U (p) _
A (In0-Inp) (149 — In o)1 P o 6=E(0)d
+VTF(T)/1 € (In 0) : V7 (p)U* % (p)dp,

which in view of (7) becomes,
VI@HTy [ 0)] +ulE @y o)y (o) )]
>VIQUOEQHTY [WOUE(0)] + My Vo)V e (6)] . (22)

Again, multiplying (22) by F (6, {) (where F (6, () can be obtained from (16)) and integrating the
resultant estimates with respect to  over (1,60) and then employing (7), we get
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Hyy [weyvr e )] iy oo e)] +1iy [wiens )] iy pre)veeude)]
=HTy WOV (O (0)] 1Ty WOt (0)] + Ay [wiont (0)] 1y [wieyv e’ 0)],
which gives the desired assertion (20). [

Theorem 4. Let the two functions U and V be positive and continuous on the interval [1, c0) such that the
function U is decreasing and the function V is increasing on [1,00) and assume that the function VW : [1,00) —
R is positive and continuous. Then for all § > 1, the following inequality for Hadamard proportional fractional
integral operator (7) holds;

Hy VO ©)] 1y [weve @ut )] + w1y (W e)] ®iy [wen eude)]
>HTy [WOUEE)| 1y VOV OU (0)] + 1ig WOt )] 1iy [WEev eu' )], @3
where > ¢ > 0,7,A,v,0>0.

1
vAT(A)

Proof. Taking product on both sides of (22) by G(6,0) eﬂ;,l(meflng)(lne -

In g)k*] W(g)ué (6)

with respect to  over (1,6), we have

,where A >0, > 0and { € (1,6),0 > 1. and integrating the resultant estimates

H‘lf/,é/ W(e)ué(g)} 1 /19 e%(ln97ln§) (11’19 711,15))171 W(g)é/{é(g) V”(C)d@

W(e)vv(e)ué(e)] 1 -/10 E‘/l;,l(lnﬁflné)(lne _lng)/\fl W(g)é’lé(é)uéfé(g)dg

[ vAT(A)
25 WO )] ol [ 000 g ingy LD e 010
v=1 ¢
+HTG [W(e)v”(e)ué(e)] er( ) /1 eeﬂh‘*lné)(lne—1ng)A*17W(g)€” ©) .

Consequently, in view of (7) it can be written as,
Mo [W(e)ué(e)] M [W(e)v‘f(e)ué(e)] +HTY [W(e)v"(s)uﬁ(e)] M [W(e)u‘f(s)]
>HT WEOEO)] iy WOV (00U 0)] +Hy [We)v o) 0)] Hiy [Westo)],
which gives the desired inequality (23). [
Remark 6. Applying Theorem 4 for T = A, we get Theorem 3.

Next, we present some fractional proportional inequalities for a family of n positive functions
defined on [1, 00) by utilizing Hadamard proportional fractional integral (7).

Theorem 5. Let the functionsU;, (j = 1,2,--- ,n) and V be positive and continuous on the interval [1,00).
Suppose that for any fixedk = 1,2,--- ,n,

(V7 @UE (o) =V () (2)) (U (0) =t () = 0, @4
where p,{ € (1,0),0 > 1,0 > 0,6 > & > 0. Assume that the function W : [1,00) — R is positive

and continuous. Then for all § > 1, the following inequality for Hadamard proportional fractional integral
operator (7) holds;
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HEY {W(G)M“" Hugf } HTY [W(G)V"(G) 1w (9)}
j#k
Gj Gj
>Hiy {W(e)uﬁ (6) 1‘{% ’(9)} Hijp {W( HU ( } (25)
=
where § > ¢ >0, t,v,0 >0andk=1,2,--- ,n

Proof. Consider the function

C’.
1 g, _ W(TTZ U (p)
Fi(6,0) = T 7 (Inf-Inp) (1 g — In )T 1%, (26)

§>0j=12--,np€(16),6>1

Since the functions U;, (j = 1,2,--- ,n) and V satisfy (24) for any fixed k = 1,2, - -, n. Therefore,
we can write

VIOUTT (o) + VI ()T (E) > VIQUL (o) () + VI (00U (U (o). (27)

Multiplying (27) by F1(6,p) (where F;(6,p) is defined in (26)) and integrating the resultant
estimates with respect to p over (1,6),0 > 1, we have

W) T U (o)

V@) ey e R (0~ g U T )
R gy T e - gy T 7;1 e V7 (p)dp
=V (@ (0) Vrrl(r) [T e i - lnf’)”W(pmilufj(p)W (0)dp
VTF viT(7) / e 1n9*1nP)T’1‘W(P) élug(p) V(o) (o),
which with aid of (7) gives
VI(QHTY { Ut (6 Hzﬁ +UTTTROHTY {W(G)V"(G)ﬁuff(e)} 28)
j#k j=1

>Ve QU U= ék(g)H{g [W(B)L{g(g)ﬁu]@(e)
j=

UMY {W(e)v"(e)u“” 9)1—[”@ } (29)
j#k

Now, multiplying (28) by F3 (6, {) (where F; (6, ) can be obtained from (26) by replacing p by )
and integrating the resultant estimates with respect to  over (1,6),0 > 1 and then by applying (7),
we obtain
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HIY WO (0 Hugf }’Hf; [W(G)V"(G)Hu}?”(e)}
L j#k j=1
+HTy W(e)v”(e)nuff(e)} 7-[;},’{ OU (6 Hu@ }
L =1 j#k
=3y oo o1 o w3 oo T14 o)
L j#k
Ay wev e e ] U o) }H;’z {W(e)uﬂe)Huff(e)},
I i =1

which completes the desired assertion (25). [

Theorem 6. Let the functions U, (j =1,2,--- ,n) and V be positive and continuous on the interval [1, co)
and satisfy (24) for any fixed k = 1,2,--- ,n. Assume that the function W : [1,00) — R¥ is positive
and continuous. Then for all 6 > 1, the following inequality for Hadamard proportional fractional integral
operator (7) holds;

n .
My (WO (0 Hué' }Hf;g {W(e)vv(e)]‘[u]@(e)}
I 7k =1
FHI WU (0 ]’[uﬁf }%;f {W( 0)V” e)]’[u‘ff }
L j#k j=1
[ o (an T 7 /G :
>Hiy (WO (G)HU/(G)} My {W( I_[Uf } (30)
L =1 j#k
+HY W(e)uk”(e)ﬂuff(e)} iy {W( gzﬁ

where § > & > 0,T,A,v,0 >0andk=1,2,--- ,n

Proof. Taking product on both sides of (28) by Gi(6,0) = ! e%(lng’lné)(ln() -

VAT (A)
WO TTL U (D)

lng)Afl

the resultant estimates with respect to { over (1,6), we have

,where A >0,¢; >0and { € (1,6),6 >1,j=1,2,--- ,n and integrating

i n 76
Tw Sty T 7/5 1 O e (nog) g g A YOITL U ©)
HIY (WO (9)]_131{0{/, (9)} T e (Inf ~Ing) : VO(Q)dg

g
Q) 2 U@ s g
WO T, U ()
{

WO T, U ()
7

FHTY >W(9)v”(9)11[U-¢"(9) - /Ge%(1“9*l“§)(ln971n6)
10 BTy A

>Hiy [ WOU () f[uf’(e)} e [ "5 0-108) (g —n )1 VU (@)t

i VAT (M)

i W<9>V"<e>u£*”<9>IﬁIUf%e)} g J e g~ gy U (0)de,
i

vAT(A) )1
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which in view of (7) yields the desired assertion

HEY W+ o Hu‘:'

]H?a” {W( )W(e)ﬁuff(e)}
L j#k j=1
+Hy WOUT (60 Hug’ @) } HTY {w v"(e)lﬂluff (9)}
L i#k j=1
203 [won o)1 o) 103 o oo 1)
- =1 j#k
+Hf,'9” C)ZHC Hugf } Hiy {W( Hu‘f} }
B j#k

|
Remark 7. Applying Theorem 6 for T = A, we get Theorem 5.

Theorem 7. Let the functions U, (j = 1,2, ,n) and V be positive and continuous on the interval [1, c0)
such that the function V is increasing and the function U; for j = 1,2, ,n are decreasing on [1,00).
Assume that the function W : [1,00) — R is positive and continuous. Then for all 6 > 1, the following
inequality for Hadamard proportional fractional integral operator (7) holds;

Hip { gug’ } Hip [W(G)V”(G)ﬁuf"(f?)}
] =
>Hig {W( gu‘” ] Hiy {W(e)ﬁuff(e)} , @31)
] =

where § > ¢ >0, t,v,0 >0andk=1,2,--- ,n
Proof. Under the conditions stated in Theorem 7, we can write
5— 5—
(V@) = V(o)) (1 *(p) — % (9)) = 0 (32

foranyp,¢ € (1,0),6 >1,0>0,0 > & >0,k=1,2,3,--- ,n
From (32), we have

VU (0) + VI (o)U 5 (8) = V(U (Q) + VI (o)Uy (p). (33)

Multiplying (27) by F1(6,p) (where F;(6,p) is defined in (26)) and integrating the resultant
estimates with respect to p over (1,6),0 > 1, we have

1

W) T, U’
W(g)wr(r) (o) I Uy (p)

Y

W) T U, (),

W(o) T, U (o)
P

0
/ e —1(Ino— lnp)(lng_lnp)-r—l U:igk(p)dp

1
vTT(T)

0
+uk5*§k(€) /1 e%(lne—lnp)(lng _ h'l‘O)T_l

- 1 Y1 (1 6—In _
ZV”(C)UI? gk(g)]/fr(-[) /1 e —L(Ing-1 P)(IDQflnp)T 1 dp
n Gj
1 0 W(o) IT—1 U} (o) ~
2 (In6—Inp) _ -1 ] ] I 0=k
o e (In6 — Inp) ; V(o)1 ™5 (o),
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which in view of Hadamard proportional fractional integral (7) becomes

VI(Q)HTY { Hu"'r' UMY {W(G)W(e)ﬁu]@(e)]
j#k j=1
>V7OU () %”{ Hu‘; HTY [W( YV (O)UL () Hu"ff ] (34)
j#k

Now, multiplying (34) by F3 (6, {) (where F; (6, () can be obtained from (26) by replacing p by ¢ )
and integrating the resultant estimates with respect to  over (1,6),0 > 1 and then by applying (7),
we obtain

Hf;;{ {0140 0) }Hfz[ <e>v0<e>ﬁuff<e>}
j#k j=1
7 {vw o114 0wy o Tld o],

j#k j=1

which is the desired assertion (31). O

Theorem 8. Let the functions U, (j =1,2,--- ,n) and V be positive and continuous on the interval [1, c0)
such that the function V is increasing and the function U; for j = 1,2, ,n are decreasing on [1,00).
Assume that the function W : [1,00) — R is positive and continuous. Then for all > 1, the following
inequality for Hadamard proportional fractional integral operator (7) holds;

v [ G v 1 g ]
Hip |W H“’ )| His {W(G)V”(G)H“/(G)
L j#k j=1 ]
+HL (W ]‘[u""f } o {W(G)V”(G)Huf/(e)
L j#k j=1 ]
>Hip |W(O) HUC’ } Hiy [W(G)Huf’(e) (35)
I j#k j=1 ]
FHTY [ W(e)Ve (6 ]‘[ugf }H{‘;’ [w Huff ,
L j#k

where § > & > 0,T,A,v,0 >0andk=1,2,--- ,n

1
vAT (M)

Proof. To obtain the desire assertion (35), we multiply (34) by G1(6,{) = o7 (In6-Ing) (Ino —

L0 LU Q)

the resultant estimates with respect to { over (1,6), we have

,where A >0,¢; >0and ¢ € (1,0),0 > 1,j =1,2,--- ,n and integrating

491



Mathematics 2020, 8, 504
n S
WO T, U7 (©)
¢

n 70
_ 1 e g o WO Y7 ()
T /1 e (In6 — In) :

1 6 1 W() nzlu;j(g)
- 7 (Inf-In¢) _ A—1 VW AN=1T AR
21//\1“(/\)/1 e (Inf —1n¢) 7

1 60 v=1
2 (In6-Ing) A1
vAT(A) /1 ¢ (In6 =Ing)

V()T {W(e)ufw) f[uff(e)}
ik

U (Q)dgHTy [W(ew”(e) f{uf’(e)}
1

VU (A H Ty [Ww) ﬁUf"(e)]
j=1

n &
1 6 %(ln97ln§) - A— W(g) j=1 Z/{] (g)
9)} v)‘l"()\)/1 e (inf —Ing)' ! =

AT {W(e)ww)uf(e)guf%
]

which in view of Hadamard proportional fractional integral (7) gives

iy ww)uf(e)@uff(e)} " {ww)w(e)ﬁu;f(e)
L j j=1 |
+Hyp (WO (@@uﬁf (9)} Mo {W(B)V"(B) ﬁluff(e)
- J j= i
>Hiy W(G)V”(9)U;f(9)]jkuj€f(9)} My [W(e)ﬁu]_‘:f(g)
L j i=1

i W(G)V”(B)Mf(f))guf’(ﬂ)} My [W(e)ﬁu]?f(e) ,
- J j= i

which completes the proof of (35). [
Remark 8. Applying Theorem 8 for T = A, we get Theorem 7.

4. Concluding Remarks

Recently Jarad et al. [46] introduced the idea of generalized proportional fractional integral
operators which comprises exponential in their kernels. Later on, Rahman et al. [47] studied
these operators and defined Hadamard proportional fractional integrals. They established certain
inequalities for convex functions by employing Hadamard proportional fractional integrals. In [49],
the authors defined bounds of generalized proportional fractional integral operators for convex
functions and their applications. Motivated by the above, here we presented certain inequalities
by employing Hadamard proportional fractional integrals. The inequalities obtained in this paper
generalized the inequalities presented earlier by Houas [45].
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Abstract: In this paper, firstly we prove the relationship between interval h-convex functions
and interval harmonically h-convex functions. Secondly, several new Hermite-Hadamard type
inequalities for interval h-convex functions via interval Riemann-Liouville type fractional integrals
are established. Finally, we obtain some new fractional Hadamard-Hermite type inequalities for
interval harmonically h-convex functions by using the above relationship. Also we discuss the
importance of our results and some special cases. Our results extend and improve some previously
known results.

Keywords: Hermite-Hadamard type inequalities; interval-valued functions; fractional integrals

1. Introduction

Hermite-Hadamard inequality was firstly discovered by Hermite and Hadamard for convex
functions are considerable significant in the literature. Since Hermite-Hadamard inequality has been
regarded as one of the most useful inequalities in mathematical analysis and optimization, many papers
have provided generalizations, refinements and extensions, see [1-4]. Due to the fractional integral
has played a irreplaceable part in various scientific fields and importance of Hermite-Hadamard type
inequalities, Sarikaya et al. [5] presented Hermite-Hadamard type inequalities via fractional integrals.
Moreover, many papers relating to fractional integral inequalities have been obtained for different
classes of functions, see [6-8].

On the other hand, interval analysis was initially developed as an attempt to deal with
interval uncertainty that appears in computer graphics [9], automatic error analysis [10], and many
others. Recently, several authors have extended their research by combining integral inequalities
with interval-valued functions (IVFs), one can see Chalco-Cano et al. [11], Roman-Flores et al. [12],
Flores-Franuli¢ et al. [13], Zhao et al. [14,15], An et al. [16]. As a further extension, more and more
Hermite-Hadamard type inequalities involving interval Riemann-Liouville type fractional integral
have been obtained for different classes of IVFs, see for interval convex functions [17], for interval
harmonically convex functions [18] and the references therein.

Motivated by the ongoing research, We proved the relationship between interval
h-convex functions and interval harmonically h-convex functions, then we establish some new
Hermite-Hadamard type inequalities for interval h-convex functions and interval harmonically
h-convex functions via interval Riemann-Liouville type fractional integrals. Our results extend and
improve some known results. Also we discuss the importance of our results and some special cases.
In addition, results obtained in this paper may be extended for other classes of convex functions
including interval (hy, h)-convex functions and interval Log-h-convex functions and used as a tool to
investigate the research of optimization and probability, among others.

Mathematics 2020, 8, 534; doi:10.3390 / math8040534 495 www.mdpi.com/journal /mathematics



Mathematics 2020, 8, 534

2. Preliminaries and Result

Let us denote by Rz the collection of all nonempty closed intervals of the real line R. We call
[z] = [z,Z] positive if z > 0. We denote by R} and R™ the set of all positive intervals and the set of all
positive numbers of R, respectively. For [z| = [z,Z], [s] = [s,5] € Rz, the inclusion “C” is defined by

[zZ] C s8] &s<z z<5
For A € R, the Minkowski addition and scalar multiplication are defined by
[zZ] +[s] =22+ [58] = [z+52Z+5];

Az,Az], A>0,
Azl = Alzz] = {0}, A=0,
[AZ,Az], A<0

respectively. The conception of Riemann integral for interval-valued function is introduced in [19].
Moreover, we have

Definition 1. [19] Let f : [a,b] — Ry be an interval-valued function such that f = [f, f]. Then the f is
Riemann integrable on [a, b] iff f and f are Riemann integrable on [a,b] and

/abf(t)dt = Mi(t)dt, /ﬂbf(t)dt} ‘

The set of all Riemann integrable IVFs on [a,b] will be denoted by ZR [, ). For more basic
notations with interval analysis, see [19,20]. Furthermore, we recall the following results in [17].

Definition 2. Let f : [a,b] — Rz be an interval-valued function and f € IR,y Then the interval
Riemann—Liouville type fractional integrals of f are defined by

TEf(t) = ﬁ _/at(t )" f(v)dv, t>a.

and

TEf0 = 5 [ -0, 1<

w) Ji

where « > 0 and T is the Gamma function.

Definition 3. [14] Let h : [0,1] — R be a non-negative function. We say that f : [a,b) — R¥ is interval
h-convex function or that f € SX(h, [a, b], RY), if for all x,y € [a,b] and v € [0,1], we have

flvx+ (1 =v)y) 2 (V) f(x) + (1 =v)f(y)-

Definition 4. [15] Let h : [0,1] — R be a non-negative function. We say that f : [a,b) — R¥ is interval
harmonically h-convex function or that f € SHX(h, [a, b], R}r), if forall x,y € [a,b] and v € [0, 1], we have

F (il ) 2 10 =05 +h)f ),

Next, we will present the relationship between interval h-convex functions and interval
harmonically h-convex functions which will be used in Section 4.

Theorem 1. f(x) € SHX(h, [a,b], RS ) iff f(L1) € SX(h, [a,b], RY).
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Proof. Let (x) = f(1). Since f € SHX(h, [a,b],R),

. — ) f(x v .
F () 20 -0+ )

By using A =l and B = i to replace x and y, respectively, applying (1)

1
Xy 1
f<v;+<1y—v) >:f<(1v)x+vy>

1

Yy
=9 ((1—v)x+wvy)
Snf (5 ) +ha-f ()
= h(W)p(y) + (1 - v)p(x),

which gives that ¢ € SX(h, [a,b], R¥).
On the other hand, if ¢ € SX(h, [a,b], R}r ), then

¥ (x4 (1 =v)y) 2 h(v)p(x) +h(1 = v)$(y).
In the same way as above, we have

¢(V§+<1—v>§) :f<vi+(1—v)1> :f<%>

y

S h(v)p (%) Fh(1—v)p G)

= h(@)f(x) +h(1=v)f(y),
which gives that f € SHX(h, [a,b], R} ). We have completed the proof. [
Remark 1. Ifh(v) = vand f = f, then we get the Lemma 2.1 of [6].

3. Fractional Hermite—-Hadamard Type Inequalities of Interval i-Convex Functions

In this section, we will prove some new Hermite-Hadamard type inequalities for interval i-convex
functions via interval Riemann-Liouville type integrals.

Theorem 2. Let f : [a,b] — R} be an interval-valued function such that f = [f, f] and f € TR (), I :
[0,1] — R™ be a non-negative function and h (%) #0.If f € SX(h,[a,b],RF), then

1 a+b I'(«) . .
gy (727) 2 e 0+ 5 0]

@
2 [7(a) + FO)] [ v [h(w) + 1= )

with « > 0.

Proof. Since f € SX(h, [a, b],R}'), we have

! (57) 250+
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Letx =va+ (1 —v)b, y=(1—v)a+vb,v € |0,1], then

1 a+b
h(%)f< ) ) D flva+(1—v)b)+ f(1—v)a+vb). &)
Multiplying both sides (3) by &1 and integrating on [0, 1], we get
1 a+b
ah(%)f ( 2 )

:%%)f <u—£b>/01va71dv
2 {/01 Vaflf(va-i-(l—v)b)dy+/olva71f((1_V)a+yb)dy}
= {/01 1 (i(vu+ (1-v)b)+ f((1 71/)u+1/b)) dv,

/01 vl (7(1/11 +(1=v)b)+ f(1—v)a +vb)) dv} 4)

_ {/ba (T(y))kl 1(?‘)% 4 /ub (1- T(%))ail [(V) bdfa,

[ o 2+ [ = e R0

— e [ £+ @), 1 T8+ 1 7]

@) a «
:(b _ IZ)'X [jfrf(b) + jb*f(a)}‘

where T(p) = %4
Similarly, since f € SX(h, [a, b],R}),

fva+ (1 —v)b) + f(1 —v)a+vb) 2 [h(v) + k(1 —v)][f(a) + f(b)]. (5)
Multiplying both sides (5) by v*~! and integrating on [0, 1], we have
(bl"ﬁvcu))a (T f(0) + T f(a)] 2 [f(a) + f(D)] /(;l v h(v) + h(1 - v)]dv. (6)

By combining (4) with (6), and the result follows. O
Example 1. Suppose that [a,b] = [1,2]. Let h(v) = v forallv € [0,1] and « = 3§, f : [a,b] — R be defined by

ft)y=[-Vt+2,vVt+2].

We obtain ) f<u+b>:[872\@8+2\/6]
ah(3)” \ 2 ' '
(brfif"a))a (T8 £(0) + T fla)] = [7- V2 - g —10g(V2+1),9+ V2 + g +1log(vV2+1)],

1

[f(a) + £(b)] /0 v [hv) + (1 v)]dv = [6-2v2,6+2v2].
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Then we get
[8-2v6,8+2V6] 2 [7-v2— 7 —10g(vVZ+1),9+V2+ 7 +10g(vVZ+1)] 2 [6-2v2,6+2V2].
Consequently, Theorem 2 is verified.

Remark 2. Ifa =1, then we get Theorem 4.1 of [14]. If h(v) = v, then we get Theorem 2.5 of [17]. If f = fand
a =1, then we get Theorem 6 of [4]. If f = f and h(v) = v, then we get Theorem 2 of [5].

Theorem 3. Let f,g : [a,b] — R} be two interval-valued functions such that f = [f,f], § = [8,8]
and fg € IR (ap)), M, ha = [0, 1] — R be non-negative functions. If f € SX(hy,[a,b],R}), g €
SX(hy,[a,b], R}r), then
I'(«
T[T 0 + T f@ga)]
1
SM(a,b) /O Vg (V) I (v) + By (1= v)a (1 — )| dv 7

+N(a,b) /(: v Ry (V) (1 = v) + hy (1 — v)ha(v)]dv

where

M(a,b) = f(a)g(a) + f(b)g(b), N(a,b) = f(a)g(b) + f(b)g(a).
Proof. By hypothesis, one has
flva+ (1 —=v)b) 2 (v)f(a) + (1 —-v)f(b),
gva+ (1 —=v)b) 2 ha(v)g(a) + ha(1 —v)g(b).
Since f, ¢ € R}, we obtain
fva+ (1—v)b)g(va+ (1—v)b)

2 (v)ha(v)f(@)g(a) + (1 —v)ha(1 —v) f(b)g(b) ®)
+ I (V)ha(1=v)f(a)g(b) + (1 —v)ha(v)f(b)g(a).

In the same way as above, we have

f((1=v)a+vb)g((1—v)a+vb)
2 (1 =v)ha(1 —v)f(a)g(a) + i (v)ha(v) f(b)g(D) )
+h1(1 = v)ha(v) f(a)g(b) + by (v)ha (1 — v) f(b)g(a).

By adding (8) and (9), we obtain

flva+(1—-v) b)g(va+ 17v)b)+f( 1—v)a+vb)g((1—v)a+vb)

D[mw)f(a) +h (1 —v)f(b)] [ha(v)g(a) + ha(1 —v)g(b)]
+ (1 —=v)f(a )+h1 v)f(b)] [h2(1*1/ a) + hy(v)g(b)] (10)
=M(a,b)[h1 (V)2 (v) + I (1 = v)ha (1 = v)]

+N(ﬂ,b) [hl(l —1/)]12( )+h1( )hz(l —1/)}.
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Multiplying both sides (10) by v*~! and integrating on [0, 1], we have

/01 v f(va+ (1 —v)b)g(va+ (1 —v)b)dv

+ /01 V(1= v)a+vb)g((1—v)a+vb)dy

1 ()
QM(a,b)/O VLl () (v) + By (1 — 0) (1 — )] dv
+ N (a,b) /01 V[ (1= v)a(v) + by (V) o (1 — v)] dv.
By Definition 2, we obtain
1o T(a) 4
/O v va+ (1= vb)g(vat (1 —v)b)dv = 7 g T f ()3 0), (12)
/01 V(1= v)a+ vb)g (1 — v)a+ vb)dy = (brfau))ajba;f(a)g(a). (13)

By substituting the equalities (12) and (13) in (11), then we have inequality (7). O

Remark 3. Ifh(v) = v, then we get Theorem 3.5 of [17]. Ifa = 1, then we get Theorem 4.5 of [14]. I f = fand
« =1, then we get Theorem 7 of [4].

Theorem 4. Let f,g : [a,b] — R be two interval-valued functions such that f = [f, f], g = [g,g] and fg €
IR (o)), I, b2 [0,1] — RY be non-negative functions and hi(D)ho(3) #0.If f € SX(hy, [a,b],R), g €
SX(hy, [a,b),RY), then

1 a+b a+b
thl(%)hz(%)f( ; )s( ; )

2 (9 F0g(8) + T fla)g(@)]

X (14)
+ M(a,b) /0 [T+ (1= 1) Iy () iy (1 — v)dv

+ N (a,b) /01 [1/"‘71 +(1- v)“*l}hl(l —v)hy(1 —v)dv.
Proof. Since f € SX (I, [a,b],R}), g € SX(ha, [a,b], RE), we get
a+b a+b
1(557)s(557)
_qva+(1—v)b  (1—v)a+vb\ (va+(1—-v)b (1—v)a+vb
=/ L B

th(%)hz(—)[f(va—i- (1—v)b) + f((1 —v)u—i—vb)} [q(va—i— (1-v)b) +4((1 —v)a+vb)]

—_ N

(15)

— N

th(%)hz(i) [f(va +(1—v)b)g(va+ (1—v)b) + f(1—v)a+vb)g((1—v)a +vb)]
Fin(ha() [( (a1~ ) + (1~ ) M@,b)
+ (@) (v) + (1= V(1 = v) )N (a,b)]

Multiplying both sides (15) by v*~! and integrating on [0, 1], we have inequality (14). [
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Remark 4. Ifhi(v) = v, then we get Theorem 3.6 of [17]. If & = 1, then we get Theorem 4.6 of [14]. If f = fand

« =1, then we get Theorem 8 of [4].

4. Fractional Hermite-Hadamard Type Inequalities of Interval Harmonically /i-Convex Functions

In this section, we will use the above results to get some Hermite-Hadamard type inequalities
for interval harmonically i-convex functions via interval Riemann-Liouville type integrals and some

special cases are also discussed.

Theorem 5. Let f : [a,b] — R} be an interval-valued function such that f = [f, f] and f € TR (), I :

[0,1] — R be a non-negative function and h (%) #0.If f € SHX(h, [a,b], R), then
1 f< 2ab >
oh (%) a+b

or(w) (ba_ba>a [‘7<a%>*(f°§) <%> Il G)]

2 [f() + £®)] [ v h(w) + (1 =)

where &(x) = 1.

Proof. Let )(x) = f(1). By Theorem 1, we have ¢ € SX(h, [a, b},R}) and

(e () 2v ()0 )

v € [0,1]. Then

Letx =

vu+(alb71/)b’ y= (171.7)l:l+1/b’
1 a+b va+ (1—v)b (1-v)a+vb
h(;)v}(hb)Dtp( ab >+1/1< ab !
Multiplying both sides (17) by v*~! and integrating on [0, 1], we have
1 a+b
()’ ()
wh (%) 2ab
1 1
a1, (va+(1—v)b w1, [((I=v)a+vb
2{/01/ lp(iab dv—&-/ov P T dv
B ab \*T . 1 N 1
=T(e) (b - u) [‘7@)*"’ <E> Iy ¥ (E)]

Similarly, we have

" <”+(;7b’”)b> > h(v)p (%) +h(1-v)p (%) ,

" <mv;++w> S h(v)p (%) Fh(1—v)p (%) .
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Then,
l/J(Va+ (albfV)b) ‘HP((l fva);Jrvb) S [h(v) + (1 - v)] |:l[J (%) o (%)} . (19)
Multiplying both sides (19) by v*~! and integrating on [0, 1], we have
o (2 [ v(2) o1,
> {l[l G) o (%)] /(: VL (v) + k(1 — )] dt.

By (18) and (20), we have inequality (16). [

Remark 5. If h(v) = v, then we get Theorem 3.6 of [18]. If & = 1, then we get Theorem 2 of [15]. If f =
f and & = 1, then we get Theorem 3.2 of [3]. Iff= f and h(v) = v, then we get Theorem 4 of [7].

Theorem 6. Let f,g : [a,b] — RE be two interval-valued functions such that f = [f,f], § = [g, }
and fg € IR(jqp), M2 ¢ [0,1] — R* be non-negative functions. If f € SHX( (h1, [a,b], R
SHX(hy, [a,b],RF ), then

r@(;25)" |7y 00 (5) 600 (3) + - 0o0 (3) s=0 (5]

DM(a,b) /0 ' {u“—l +(- 1/)"‘_1] I (v)ha (v)dv (1)

1
+N(a,b)/ [+ (1= )1 ()2 (1 = )
0
where &(x) = %
Proof. The proof is completed by combining Theorems 1,3 and 5. [
Remark 6. If hy(v) = hy(v) = v, then
ab \« " 1 1
r)(;25)" |70 000 (3) o0 (3) + 7,000 (5) 500 (5)]
DM(a,b) /1 v2 [v"“] +(1- v)”"l} dv+N(a,b) /1 v(l—v) {v‘“l +(1- 1/)""1] dv.
2 ) b))
If o = 1, then we get Theorem 4 of [15]. If f = f and « = 1, then we get Theorem 3.6 of [3].
Theorem 7. Let f,g : [a,b] — R} be two interval-valued functions such that f = [f,f], § = [8,8]
1
2

and fg € IR(qp), M+ [0,1] — R™ be non-negative functions and hl(%)hz( #0.Iff €
SHX(hy,[a,b],RT), § € SHX(hy, [a,b], RY), then

,1 (%) (fibb) (5)
“ [y ven (3) e (5) gy o0 (5) oo ()]

+/0 [+ (1= v)* ] [l (v)ha (1 = v) M(a,b) + hy (v)ho (V)N (a, b)|dv
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where &(x) = 1.
Proof. The proof is completed by combining Theorem 1,4 and 5. [

Remark 7. If hy(v) = hy(v) = v, then

4f (azibb>g (uzj—bb)
orw+1)(;2,)" (78,000 (3) o0 (5) + 7500 (5) o0 ()]

+ /01 [V (1= v)* " [v(1 — v)M(a, b) + V2N (a,b)]dv.

If & = 1, then we get Theorem 4 of [15].

5. Conclusions

This paper proved the relationship between interval i-convex functions and interval harmonically
h-convex functions. Further, we obtained some Hermite-Hadamard type inequalities for IVFs via
interval Riemann-Liouville type fractional integrals. The results obtained in this article are the
generalizations and refinements of the earlier works. Moreover, these results may be extended for
other kinds of convex functions including interval (h, iip)-convex functions and interval Log-/-convex
functions and used as a method to establish the Hermite-Hadamard type inequalities for other types of
interval harmonically convex functions. As a future research direction, we intend to investigate
Hermite-Hadamard type inequalities for IVFs on time scales and some applications in interval
optimization, probability, among others.
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