15 research outputs found

    Iterative Approximations for Zeros of Sum of Accretive Operators in Banach Spaces

    Get PDF

    An Exponential Time Differencing Scheme with a Real Distinct Poles Rational Function for Advection-Diffusion Reaction Equations

    Get PDF
    A second order Exponential Time Differencing (ETD) scheme for advection-diffusion reaction systems is developed by using a real distinct poles rational function for approximating the underlying matrix exponential. The scheme is proved to be second order convergent. It is demonstrated to be robust for reaction-diffusion systems with non-smooth initial and boundary conditions, sharp solution gradients, and stiff reaction terms. In order to apply the scheme efficiently to higher dimensional problems, a dimensional splitting technique is also developed. This technique can be applied to all ETD schemes and has been found, in the test problems considered, to reduce computational time by up to 80%

    Convergence Analysis and Improvements for Projection Algorithms and Splitting Methods

    Get PDF
    Non-smooth convex optimization problems occur in all fields of engineering. A common approach to solving this class of problems is proximal algorithms, or splitting methods. These first-order optimization algorithms are often simple, well suited to solve large-scale problems and have a low computational cost per iteration. Essentially, they encode the solution to an optimization problem as a fixed point of some operator, and iterating this operator eventually results in convergence to an optimal point. However, as for other first order methods, the convergence rate is heavily dependent on the conditioning of the problem. Even though the per-iteration cost is usually low, the number of iterations can become prohibitively large for ill-conditioned problems, especially if a high accuracy solution is sought.In this thesis, a few methods for alleviating this slow convergence are studied, which can be divided into two main approaches. The first are heuristic methods that can be applied to a range of fixed-point algorithms. They are based on understanding typical behavior of these algorithms. While these methods are shown to converge, they come with no guarantees on improved convergence rates.The other approach studies the theoretical rates of a class of projection methods that are used to solve convex feasibility problems. These are problems where the goal is to find a point in the intersection of two, or possibly more, convex sets. A study of how the parameters in the algorithm affect the theoretical convergence rate is presented, as well as how they can be chosen to optimize this rate

    Angles, Majorization, Wielandt Inequality and Applications

    Get PDF
    In this thesis we revisit two classical definitions of angle in an inner product space: real-part angle and Hermitian angle. Special attention is paid to Krein’s inequality and its analogue. Some applications are given, leading to a simple proof of a basic lemma for a trace inequality of unitary matrices and also its extension. A brief survey on recent results of angles between subspaces is presented. This naturally brings us to the world of majorization. After introducing the notion of majorization, we present some classical as well as recent results on eigenvalue majorization. Several new norm inequalities are derived by making use of a powerful decomposition lemma for positive semidefinite matrices. We also consider coneigenvalue majorization. Some discussion on the possible generalization of the majorization bounds for Ritz values is presented. We then turn to a basic notion in convex analysis, the Legendre-Fenchel conjugate. The convexity of a function is important in finding the explicit expression of the transform for certain functions. A sufficient convexity condition is given for the product of positive definite quadratic forms. When the number of quadratic forms is two, the condition is also necessary. The condition is in terms of the condition number of the underlying matrices. The key lemma in our derivation is found to have some connection with the generalized Wielandt inequality. A new inequality between angles in inner product spaces is formulated and proved. This leads directly to a concise statement and proof of the generalized Wielandt inequality, including a simple description of all cases of equality. As a consequence, several recent results in matrix analysis and inner product spaces are improved

    Theory and Application of Fixed Point

    Get PDF
    In the past few decades, several interesting problems have been solved using fixed point theory. In addition to classical ordinary differential equations and integral equation, researchers also focus on fractional differential equations (FDE) and fractional integral equations (FIE). Indeed, FDE and FIE lead to a better understanding of several physical phenomena, which is why such differential equations have been highly appreciated and explored. We also note the importance of distinct abstract spaces, such as quasi-metric, b-metric, symmetric, partial metric, and dislocated metric. Sometimes, one of these spaces is more suitable for a particular application. Fixed point theory techniques in partial metric spaces have been used to solve classical problems of the semantic and domain theory of computer science. This book contains some very recent theoretical results related to some new types of contraction mappings defined in various types of spaces. There are also studies related to applications of the theoretical findings to mathematical models of specific problems, and their approximate computations. In this sense, this book will contribute to the area and provide directions for further developments in fixed point theory and its applications

    Abstract book

    Get PDF
    Welcome at the International Conference on Differential and Difference Equations & Applications 2015. The main aim of this conference is to promote, encourage, cooperate, and bring together researchers in the fields of differential and difference equations. All areas of differential & difference equations will be represented with special emphasis on applications. It will be mathematically enriching and socially exciting event. List of registered participants consists of 169 persons from 45 countries. The five-day scientific program runs from May 18 (Monday) till May 22, 2015 (Friday). It consists of invited lectures (plenary lectures and invited lectures in sections) and contributed talks in the following areas: Ordinary differential equations, Partial differential equations, Numerical methods and applications, other topics
    corecore