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Abstract

We first synthesize and unify notions of regularity, both of individual functions/sets and of
families of functions/sets, as they appear in the convergence theory of fixed point iterations.
Several new primal and dual characterizations of regularity notions are presented with the
focus on convergence analysis of numerical methods. A theory of almost averaged mappings
is developed with a specialization to the projectors and reflectors associated with elemental
regular sets.

Based on the knowledge of regularity notions, we develop a framework for quantita-
tive convergence analysis of Picard iterations of expansive set-valued fixed point mappings.
As application of the theory, we provide a number of results showing local convergence of
nonconvex cyclic projections for both inconsistent and consistent feasibility problems, local
convergence of the forward–backward algorithm for structured optimization without con-
vexity, and local convergence of the Douglas–Rachford algorithm for structured nonconvex
minimization. In particular, we establish a unified and weakest criterion for linear conver-
gence of consistent alternating projections. As preparation for subsequent applications, we
also discuss convergence of several relaxed versions of Douglas–Rachford algorithm and the
alternating direction method of multipliers (ADMM).

Our development of regularity theory also sheds light on the relations between seemingly
different ideas and point to possible necessary conditions for local linear convergence of fixed
point iterations. We show that metric subregularity is necessary for linear monotonicity of
fixed point iterations. This is specialized to an intensive discussion on subtransversality and
alternating projections. In particular, we show that subtransversality is not only sufficient
but also necessary for linear convergence of convex consistent alternating projections. More
general results on gauge metric subregularity as necessary conditions for convergence are
also discussed.

The algorithms together with their convergence theory are illustrated and simulated for
the source location and phase retrieval problems.
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Chapter 1

Introduction and preliminary results

1.1 Introduction

Convergence analysis has been one of the central and very active applications of variational
analysis and mathematical optimization. Examples of recent contributions to the theory of
the field that have initiated efficient programs of analysis are [4, 5, 26, 27, 97, 103]. It is
the common recipe emphasized in these and many other works that there are two key in-
gredients required in order to derive convergence of a numerical method 1) regularity of the
individual functions or sets such as convexity and averagedness, and 2) regularity of fami-
lies of functions or sets at their critical points such as transversality, Kurdyka-Łojasiewicz
property and metric regularity. The question of convergence for a given method can there-
fore be reduced to checking regularity properties of the problem data. There have been
a considerable number of works studying the two ingredients of convergence analysis in
order to provide sharper tools in various circumstances, especially in nonconvex cases, e.g.,
[20, 51, 59, 84, 83, 88, 90, 103, 118, 125]. The current thesis on “Algorithms for structured
nonconvex optimization: theory and practice” consists of an investigation on this important
and currently active research topic with application to source location and phase retrieval
problems.

In Chapter 1, following this introductory section is an explanation of notation and basic
definitions that will be used in the thesis.

Chapter 2 is devoted to a study of regularity theory with the emphasis on convergence
analysis of numerical methods. This chapter consists of recent developments on 1) regularity
of individual functions and sets, 2) theory of almost averaged mappings, 3) regularity of set-
valued mappings and collections of sets, and 4) relationships amongst a range of regularity
notions. Several new primal and dual characterizations of regularity notions are presented.

Chapter 3 is devoted to study convergence analysis of numerical algorithms based on
the knowledge of regularity notions developed in Chapter 2. An abstract analysis program
of Picard iterations of expansive set-valued fixed point mappings is established. As ap-
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CHAPTER 1. INTRODUCTION AND PRELIMINARY RESULTS 8

plications, we provide a number of results showing local convergence of nonconvex cyclic
projections for feasibility, forward–backward algorithm for structured optimization, and
Douglas–Rachford algorithm for structured minimization. In particular, we establish a
unified and weakest criterion for linear convergence of consistent alternating projection-
s. For subsequent applications, we also discuss convergence of several relaxed versions of
Douglas–Rachford algorithm and the alternating direction method of multipliers.

Chapter 4 is devoted to discuss necessary conditions for linear convergence of fixed point
iterations based on the knowledge of Chapters 2 and 3. This chapter consists of results
on metric subregularity/error bounds for general fixed point iterations and an intensive
specialization to subtransversality and the alternating projections method. In particular, we
show that subtransversality is not only sufficient but also necessary for linear convergence of
convex consistent alternating projections. More general results on nonlinear model of metric
subregularity as necessary conditions for convergence are also discussed in this chapter.

Chapter 5 is devoted to application and numerical simulation. The source location
and the phase retrieval problems are analyzed and simulated for the methods discussed in
Chapter 3. Regularity properties from the problem data are discussed in accordance with
the available convergence theory for each of the algorithms.

Most of the main results of the thesis can be found in [84, 83, 103, 102, 101] which are
the joint research papers of the author with his advisor and collaborators during his Ph.D.
candidature.

1.2 Notation and basic definitions

The underlying spaces will be specified in each section of this thesis. We use notation
X,Y for general normed linear spaces, H for infinite dimensional Hilbert spaces and E
for finite dimensional Euclidean spaces. For a normed linear space X, its topological dual
is denoted X∗ while 〈·, ·〉 denotes the bilinear form defining the pairing between the two
spaces. For Hilbert space H, H∗ is identified with H while 〈·, ·〉 denotes the scalar product.
Finite dimensional spaces are assumed equipped with the Euclidean norm. The notation
‖ · ‖ denotes the norm in the current setting. The open unit ball and the unit sphere are
respectively denoted B and S while B∗ stands for the closed unit ball of the dual space X∗.
Bδ(x) stands for the open ball with radius δ > 0 and center x. We denote the extended
reals by (−∞,+∞] := R∪{+∞}. The domain of a function f : U → (−∞,+∞] is defined
by dom f = {u ∈ E | f(u) < +∞}. The (Fréchet) subdifferential of f at x̄ ∈ dom f is
defined by

∂f(x̄) :=
{
v | ∃vk → v and xk f→ x̄ such that f(x) ≥ f(xk) +

〈
vk, x− xk

〉
+ o(‖x− xk‖)

}
.

(1.1)
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Here the notation xk
f→ x̄ means that xk → x̄ ∈ dom f and f(xk) → f(x̄). When f is

convex, (1.1) reduces to the usual convex subdifferential given by

∂f(x̄) := {v ∈ U | 〈v, x− x̄〉 ≤ f(x)− f(x̄), for all x ∈ U } .

When x̄ /∈ dom f the subdifferential is defined to be empty. Elements of the subdifferential
are called subgradients.

A set-valued mapping T from X to another space Y is denoted T : X ⇒ Y and its
inverse is given by

T−1(y) := {x ∈ X | y ∈ T (x)} .

In the Hilbert space setting, a self mapping T : H⇒ H is said to be monotone on A ⊂ H
if

∀ x, y ∈ A inf
x+ ∈ T (x)
y+ ∈ T (y)

〈x+ − y+, x− y〉 ≥ 0.

T is called strongly monotone on A if there exists a τ > 0 such that

∀ x, y ∈ A inf
x+ ∈ T (x)

y+ ∈ T (y)

〈x+ − y+, x− y〉 ≥ τ‖x− y‖2.

A maximally monotone mapping is one whose graph cannot be augmented by any more
points without violating monotonicity. The subdifferential of a proper, lower semicontinuous
(l.s.c.), convex function, for example, is a maximally monotone set-valued mapping [129,
Theorem 12.17]. We denote the resolvent of T by JT := (Id +T )−1 where Id denotes the
identity mapping. The corresponding reflector is defined by RT := 2JT − Id. A basic and
fundamental fact is that the resolvent of a monotone mapping is firmly nonexpansive and
hence single-valued [33, 105]. Of particular interest are polyhedral (or piecewise polyhedral
[129]) mappings, that is, mappings T : H1 ⇒ H2 whose graph is the union of finitely many
sets that are polyhedral convex in H1 ×H2 [50].

Notions of continuity of set-valued mappings have been thoroughly developed over the
last 40 years. Readers are referred to the monographs [8, 50, 129] for basic results. A
mapping T : H1 ⇒ H2 is said to be Lipschitz continuous if it is closed-valued and there
exists a τ ≥ 0 such that, for all u, u′ ∈ H1,

T (u′) ⊂ T (u) + τ‖u′ − u‖B.

Lipschitz continuity is, however, too strong a notion for set-valued mappings. We will mostly
only require calmness, which is a pointwise version of Lipschitz continuity. A mapping
T : H1 ⇒ H2 is said to be calm at ū for v̄ if (ū, v̄) ∈ gphT and there is a constant κ
together with neighborhoods U × V of (ū, v̄) such that

T (u) ∩ V ⊂ T (ū) + κ‖u− ū‖ ∀ u ∈ U.
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When T is single-valued, calmness is just pointwise Lipschitz continuity:

‖T (u)− T (ū)‖ ≤ κ‖u− ū‖ ∀ u ∈ U.

The graphical derivative of a mapping T : H1 ⇒ H2 at a point (x, y) ∈ gphT is denoted
DT (x|y) : H1 ⇒ H2 and defined as the mapping whose graph is the tangent cone to gphT
at (x, y) (see [7] where it is called the contingent derivative). That is,

v ∈ DT (x|y)(u) ⇐⇒ (u, v) ∈ TgphT (x, y) (1.2)

where TA is the tangent cone mapping associated with the set A defined by

TA(x̄) :=

{
w

∣∣∣∣ (xk − x̄)

τ
→ w for some xk

A→ x̄, τ ↘ 0

}
.

Here the notation xk A→ x̄ means that the sequence of points {xk} approaches x̄ from within
A.

The distance to a set A ⊂ H with respect to the bivariate function dist(·, ·) is defined
by

dist(·, A) : H → R : x 7→ inf
y∈A

dist(x, y).

We use the convention that the distance to the empty set is +∞. We use the excess to
characterize the distance between two sets A and B

excess(A,B)] := sup{dist(x,B) : x ∈ A}

This is finite whenever B is nonempty and A is bounded and nonempty.
The set-valued mapping

PA : H⇒ H : x 7→ {y ∈ A | dist(x,A) = dist(x, y)}

is the projector on A. An element y ∈ PA(x) is called a projection. A projection is a
selection from the projector. This exists for any closed nonempty set A ⊂ H, as can be
deduced by the continuity and coercivity of the norm. Note that the projector is not, in
general, single-valued, and indeed uniqueness of the projector defines a type of regularity
of the set A: local uniqueness characterizes prox-regularity [127] while in finite dimensional
settings global uniqueness characterizes convexity [34].

Closely related to the projector is the prox mapping [111]

proxλ,f (x) := argmin y∈H

{
f(y) + 1

2λ ‖y − x‖
2
}
.

When f(x) = ιA, then proxλ,ιA = PA for all λ > 0. The value function corresponding
to the prox mapping is known as the Moreau envelope, which we denote by eλ,f (x) :=
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infy∈H

{
f(y) + 1

2λ ‖y − x‖
2
}
. When λ = 1 and f = ιA the Moreau envelope is just one-half

the squared distance to the set A: e1,ιA(x) = 1
2 dist2(x,A). The inverse projector P−1

A is
defined by

P−1
A (y) := {x ∈ H |PA(x) 3 y} .

In the finite dimensional Euclidean space setting, we will assume the distance corre-
sponds to the Euclidean norm unless otherwise specified. When dist(x, y) = ‖x − y‖ then
one has the following variational characterization of the projector: z̄ ∈ P−1

A x̄ if and only if

〈z̄ − x̄, x− x̄〉 ≤ 1
2 ‖x− x̄‖

2 ∀x ∈ A.

The Fréchet normal cone to A ⊂ X at x̄ ∈ A is defined

N̂A(x̄) :=

v
∣∣∣∣∣∣ lim sup
x
A→x̄, x6=x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0

 . (1.3)

The (limiting) normal cone to A at x̄ ∈ A, denoted NA (x̄), is defined as the limsup
of the Fréchet normal cones. That is, a vector v ∈ NA (x̄) if there are sequences xk A→ x̄,
vk → v with vk ∈ N̂A

(
xk
)
. The proximal normal cone to A at x̄ is the set

Nprox
A (x̄) := cone

(
P−1
A x̄− x̄

)
.

If x̄ /∈ A, then all normal cones are defined to be empty.
The proximal normal cone need not be closed. The limiting normal cone is, of course,

closed by definition. See [109, Definition 1.1] or [129, Definition 6.3] (where this is called
the regular normal cone) for an in-depth treatment as well as [109, page 141] for historical
notes. All these three sets are clearly cones. Unlike the first two cones, the third one can
be nonconvex. It is easy to verify that Nprox

A (x̄) ⊆ N̂A(x̄).
If x̄ ∈ bdA, then NA(x̄) 6= {0}. If A is a convex set, then all three cones N̂A(x̄), NA(x̄)

and Nprox
A (x̄) coincide and reduce to the normal cone in the sense of convex analysis:

NA(x̄) := {v ∈ X | 〈v, x− x̄〉 ≤ 0 for all x ∈ A} . (1.4)

In the finite dimensional setting, when the projection is with respect to the Euclidean
norm, the limiting normal cone can be written as the limsup of proximal normal cones:

NA(x̄) = Lim sup
x
A→x̄

Nprox
A (x). (1.5)

In differential geometry it is more common to work with the tangent space, but for
smooth manifolds the normal cone (1.3) (the same as (1.5)) is a subspace and dual to the
tangent space. Following Rockafellar and Wets [129, Example 6.8], we say that a subset
A ⊂ E is a k-dimensional (0 < k < n := dimE) smooth manifold around a point x̄ ∈ A if
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there are a neighborhood U of x̄ in E and a smooth (i.e., of C1 class) mapping F : U → Rm
(m := n − k) with ∇F (x̄) of full rank m such that A ∩ U = {x ∈ U | F (x) = 0}. The
tangent space to A at x̄ is a linear approximation of A near x̄ and is given by

TA(x̄) := {x ∈ E | ∇F (x̄)x = 0} .

The normal space to A at x̄ is defined as the orthogonal complement of TA(x̄) and can be
written as

NA(x̄) := {∇F (x̄)∗y | y ∈ Rm} . (1.6)

It is in a sense a dual space object. If A is a smooth manifold, then cones (1.3), (1.5) and
(1.4) reduce to the normal space (1.6).

Normal cones are central to characterizations both of the regularity of individual sets as
well as of the regularity (transversality) of collections of sets. For collections of sets, when
dealing with projection algorithms, it is important to account for the relation of the sets
to each other and so the classical definitions of the normal cones above are too blunt for a
refined numerical analysis. A typical situation: two nonempty sets A and B such that the
affine span of A∪B is not equal to the whole space (e.g., two distinct intersecting lines in R3).
One would expect all projections to lie in this affine span and the convergence to depend
only on the mutual arrangement of the sets within the span. However, the normals (of any
kind) to this affine span are also normals to the sets. They make a nontrivial subspace and
this causes problems for the regularity conditions on collections of sets discussed below.
In the context of algorithms, the only regularity conditions that are relevant are those
that apply to the space where the iterates lie. In the case of algorithms like alternating
projections, this is often an affine subspace of dimension smaller than the space in which the
problem is formulated, as the example above illustrates. The essence of what we call “dual
regularity conditions” consists in computing appropriate normal cones (limiting, Fréchet,
or proximal) to each of the sets at the reference point (or nearby) and ensuring that the
cones do not contain oppositely directed nonzero vectors. Such conditions are important
for many applications including convergence analysis of projection algorithms.

For a subspace V of a Euclidean space E, V ⊥ := {u ∈ E | 〈u, v〉 = 0 for all v ∈ V } is
the orthogonal complement subspace of V . For a real number α, [α]+ denotes max{α, 0}.

To quantify convergence of sequences and fixed point iterations, we encounter various
forms of linear convergence listed next.

Definition 1.2.1 (R- and Q-linear convergence to points, Chapter 9 of [120]). Let (xk)k∈N
be a sequence in X.

(i) (xk)k∈N is said to converge R-linearly to x̃ with rate c ∈ [0, 1) if there is a constant
γ > 0 such that

‖xk − x̃‖ ≤ γck ∀k ∈ N.
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(ii) (xk)k∈N is said to converge Q-linearly to x̃ with rate c ∈ [0, 1) if

‖xk+1 − x̃‖ ≤ c ‖xk − x̃‖ ∀k ∈ N.

By definition, Q-linear convergence implies R-linear convergence with the same rate.
Elementary examples show that the inverse implication does not hold in general.

One of the central concepts in the convergence of sequences is Fejér monotonicity [16,
Definition 5.1]: a sequence (xk)k∈N is Fejér monotone with respect to a nonempty convex
set A if

‖xk+1 − x‖ ≤ ‖xk − x‖, ∀x ∈ A,∀k ∈ N.

In the context of convergence analysis of fixed point iterations, the following generalization
of Fejér monotonicity of sequences is central.

Definition 1.2.2 (µ-monotonicity). [101, Definition 2.2] Let (xk)k∈N be a sequence in X,
A ⊂ X be nonempty and µ : R+ → R+ satisfy µ(0) = 0 and

µ(t1) < µ(t2) ≤ t2 whenever 0 ≤ t1 < t2.

(i) (xk)k∈N is said to be µ-monotone with respect to A if

dist(xk+1, A) ≤ µ (dist(xk, A)) ∀k ∈ N. (1.7)

(ii) (xk)k∈N is said to be linearly monotone with respect to A if (1.7) is satisfied for
µ(t) = c · t for all t ∈ R+ and some constant c ∈ [0, 1].

The next result is clear.

Proposition 1.2.3 (Fejér monotonicity implies µ-monotonicity). [101, Proposition 2.3] If
the sequence (xk)k∈N is Fejér monotone with respect to A ⊂ X, then it is µ-monotone with
respect to A with µ = Id.

The converse is not true, as the next example shows.

Example 1.2.4 (µ-monotonicity is not Fejér monotonicity). [101, Example 2.4] Let A :={
(x, y) ∈ R2 | y ≤ 0

}
and consider the sequence xk :=

(
1/2k, 1/2k

)
for all k ∈ N. This se-

quence is linearly monotone with respect to A with constant c = 1/2, but not Fejér monotone
since ‖xk+1 − (2, 0)‖ > ‖xk − (2, 0)‖ for all k.

The next definition will come into play in Sections 4.2 and 4.3. It provides a way to
analyze fixed point iterations which, like the classical example of alternating projections,
are compositions of mappings.

The subset Λ appearing in Definition 1.2.5 and throughout this thesis is always assumed
to be closed and nonempty. We use this set to isolate specific elements of the fixed point set
(most often restricted to affine subspaces). This is more than just a formal generalization
since in some concrete situations the required assumptions do not hold on X but they do
hold on relevant subsets.
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Definition 1.2.5 (linearly extendible sequences). [101, Definition 2.5] A sequence (xk)k∈N
on Λ ⊂ X is said to be linearly extendible on Λ with frequency m ≥ 1 (m ∈ N is fixed) and
rate c ∈ [0, 1) if there is a sequence (zk)k∈N on Λ such that xk = zmk for all k ∈ N and the
following conditions are satisfied for all k ∈ N:

‖zk+2 − zk+1‖ ≤ ‖zk+1 − zk‖,
‖zm(k+1)+1 − zm(k+1)‖ ≤ c‖zmk+1 − zmk‖.

When Λ = X, the quantifier “on Λ” is dropped.

The requirement on the linear extension sequence (zk)k∈N means that the sequence of
the distances between its two consecutive iterates is uniformly non-increasing and possesses
a subsequence of type (‖zmk+1 − zmk‖)k∈N that converges Q-linearly with a global rate to
zero.

The extension of sequences of fixed point iterations (xk)k∈N will most often be to the
intermediate points generated by the composite mappings. In the case of alternating pro-
jections this is z2k := xk ∈ PAPBxk−1, and z2k+1 ∈ PBz2k. This strategy of analyzing
alternating projections by keeping track of the intermediate projections has been exploited
to great effect in [20, 51, 90, 91, 118, 103]. From the Cauchy property of (zk)k∈N, one can
deduce R-linear convergence from linear extendability.

Proposition 1.2.6 (linear extendability implies R-linear convergence). [101, Proposition
2.6] If the sequence (xk)k∈N on Λ ⊂ X is linearly extendible on Λ with some frequency
m ≥ 1 and rate c ∈ [0, 1), then (xk)k∈N converges R-linearly to a point x̃ ∈ Λ with rate c.

For ease of exposition, in most of discussion of collections of sets we consider the case
of two nonempty subsets A,B ⊂ X except in Subsection 3.2 where the most general con-
vergence result for cyclic projections is of target. The analogous extension of most of the
results to the case of any finite collection of n sets (n > 2) does not require much effort (cf.
[78, 79, 80, 85, 87]).

Recall that a Banach space is Asplund if the dual of each its separable subspace is
separable; see, e.g., [30, 109] for discussions and characterizations of Asplund spaces. All
reflexive, in particular, all finite dimensional Banach spaces are Asplund.

A function µ : [0,∞) → [0,∞) is a gauge function if µ is continuous and strictly
increasing with µ(0) = 0 and limt→∞ µ(t) =∞.

1.3 Theory of pointwise almost averaging operators

The underlying space in this section is a finite dimensional Euclidean space E. The content
of this section is taken from our joint work with Dr. Matthew K. Tam [103].

We first clarify what is meant by a fixed point of a set-valued mapping.
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Definition 1.3.1 (fixed points of set-valued mappings). [103, Definition 2.1] The set of
fixed points of a set-valued mapping T : E⇒ E is defined by

Fix T := {x ∈ E |x ∈ T (x)} .

In the set-valued setting, it is important to keep in mind a few things that can happen
that cannot happen when the mapping is single-valued.

Example 1.3.2 (inhomogeneous fixed point sets). [103, Example 2.1] Let T := PAPB where

A =
{

(x1, x2) ∈ R2 |x2 ≥ −2x1 + 3
}
∩
{

(x1, x2) ∈ R2 |x2 ≥ 1
}
,

B = R2 \ (0,+∞)2.

Here PB(1, 1) = {(0, 1), (1, 0)} and the point (1, 1) is a fixed point of T since (1, 1) ∈
PA {(0, 1), (1, 0)}. However, the point PA(0, 1) is also in T (1, 1), and this is not a fixed
point of T .

To help rule out inhomogeneous fixed point sets like the one in the previous example,
we introduce the following strong calmness of fixed point mappings that is an extension of
conventional nonexpansiveness and firm nonexpansiveness. What we call almost nonexpan-
sive mappings below were called (S, ε)-nonexpansive mappings in [59, Definition 2.3], and
almost averaged mappings are slight generalization of (S, ε)-firmly nonexpansive mappings
also defined there.

Definition 1.3.3 (almost nonexpansive/averaged mappings). [103, Definition 2.2] Let D
be a nonempty subset of E and let T be a (set-valued) mapping from D to E.

(i) T is said to be pointwise almost nonexpansive on D at y ∈ D if there exists a constant
ε ∈ [0, 1) such that ∥∥x+ − y+

∥∥ ≤ √1 + ε ‖x− y‖ (1.8)
∀ y+ ∈ Ty and ∀ x+ ∈ Tx whenever x ∈ D.

If (1.8) holds with ε = 0 then T is called pointwise nonexpansive at y on D.

If T is pointwise (almost) nonexpansive at every point on a neighborhood of y (with
the same violation constant ε) on D, then T is said to be (almost) nonexpansive at y
(with violation ε) on D.

If T is pointwise (almost) nonexpansive on D at every point y ∈ D (with the same
violation constant ε), then T is said to be pointwise (almost) nonexpansive onD (with
violation ε). If D is open and T is pointwise (almost) nonexpansive on D, then it is
(almost) nonexpansive on D.
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(ii) T is called pointwise almost averaged on D at y ∈ D if there is an averaging constant
α ∈ (0, 1) and a violation constant ε ∈ [0, 1) such that the mapping T̃ defined by

T = (1− α) Id +αT̃

is pointwise almost nonexpansive at y with violation ε/α on D.

Likewise if T̃ is (pointwise) (almost) nonexpansive on D (at y) (with violation ε), then
T is said to be (pointwise) (almost) averaged on D (at y) (with averaging constant α
and violation αε).

If the averaging constant α = 1/2, then T is said to be (pointwise) (almost) firmly
nonexpansive on D (with violation ε) (at y).

Note that the mapping T need not be a self-mapping from D to itself. In the special case
where T is (firmly) nonexpansive at all points y ∈ Fix T , mappings satisfying (1.8) are also
called quasi-(firmly)nonexpansive [16].

The term “almost nonexpansive” has been used for different purposes by Nussbaum
[119] and Rouhani [130]. Rouhani uses the term to indicate sequences, in the Hilbert space
setting, that are asymptotically nonexpansive. Nussbaum’s definition is the closest in spirit
and definition to ours, except that he defines f to be locally almost nonexpansive when
‖f(y)− f(x)‖ ≤ ‖y − x‖+ ε. In this context, see also [128]. At the risk of some confusion,
we re-purpose the term here. Our definition of pointwise almost nonexpansiveness of T
at x̄ is stronger than calmness [129, Chapter 8.F] with constant λ =

√
1 + ε since the

inequality must hold for all pairs x+ ∈ Tx and y+ ∈ Ty, while for calmness the inequality
would hold only for points x+ ∈ Tx and their projections onto Ty. We have avoided the
temptation to call this property “strong calmness” in order to make clearer the connection
to the classical notions of (firm) nonexpansiveness. A theory based only on calm mappings,
what one might call “weakly almost averaged/nonexpansive” operators is possible and would
yield statements about the existence of convergent selections from sequences of iterated set-
valued mappings. In light of the other requirement of the mapping T that we will explore in
Section 2.2, namely metric subregularity, this would illuminate an aesthetically pleasing and
fundamental symmetry between requirements on T and its inverse. We leave this avenue
of investigation open. Our development of the properties of almost averaged operators
parallels the treatment of averaged operators in [16].

Proposition 1.3.4 (characterizations of almost averaged operators). [103, Proposition 2.1]
Let T : E⇒ E , U ⊂ E and let α ∈ (0, 1). The following are equivalent.

(i) T is pointwise almost averaged at y on U with violation ε and averaging constant α.

(ii)
(
1− 1

α

)
Id + 1

αT is pointwise almost nonexpansive at y on U ⊂ E with violation ε/α.

(iii) For all x ∈ U, x+ ∈ T (x) and y+ ∈ T (y) it holds that∥∥x+ − y+
∥∥2 ≤ (1 + ε) ‖x− y‖2 − 1− α

α

∥∥(x− x+
)
−
(
y − y+

)∥∥2
.
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Consequently, if T is pointwise almost averaged at y on U with violation ε and averaging
constant α then T is pointwise almost nonexpansive at y on U with violation at most ε.

Proposition 1.3.4 is a slight extension of [16, Proposition 4.25].

Example 1.3.5 (alternating projections). [103, Example 2.2] Let T := PAPB for the closed
sets A and B defined below.

(i) If A and B are convex, then T is nonexpansive and averaged (i.e. pointwise every-
where, no violation).

(ii) Let

A =
{

(x1, x2) ∈ R2
∣∣x2

1 + x2
2 ≤ 1, − 1/2x1 ≤ x2 ≤ x1, x1 ≥ 0

}
⊂ R2

B =
{

(x1, x2) ∈ R2
∣∣x2

1 + x2
2 ≤ 1, x1 ≤ |x2|

}
⊂ R2,

x̄ = (0, 0).

The mapping T is not almost nonexpansive on any neighborhood for any finite viola-
tion at y = (0, 0) ∈ Fix T , but it is pointwise nonexpansive (no violation) at y = (0, 0)
and nonexpansive at all y ∈ (A∩B) \ {(0, 0)} on small enough neighborhoods of these
points.

(iii) T is pointwise averaged at (1, 1) when

A =
{

(x1, x2) ∈ R2 |x2 ≤ 2x1 − 1
}
∩
{

(x1, x2) ∈ R2
∣∣x2 ≥ 1

2x1 + 1
2

}
B = R2 \ R2

++.

This illustrates that whether or not A and B have points in common is not relevant
to the property.

(iv) T is not pointwise almost averaged at (1, 1) for any ε > 0 when

A =
{

(x1, x2) ∈ R2 |x2 ≥ −2x1 + 3
}
∩
{

(x1, x2) ∈ R2 |x2 ≥ 1
}

B = R2 \ R2
++

In light of Example 1.3.2, this shows that the pointwise almost averaged property is
incompatible with inhomogeneous fixed points (see Proposition 1.3.6).

Proposition 1.3.6 (pointwise single-valuedness). [103, Proposition 2.2] If T : E ⇒ E
is pointwise almost nonexpansive on D ⊆ E at x̄ ∈ D with violation ε ≥ 0, then T is
single-valued at x̄. In particular, if x̄ ∈ Fix T (that is x̄ ∈ T x̄) then T x̄ = {x̄}.

Example 1.3.7 (pointwise almost nonexpansive mappings not single-valued). [103, Exam-
ple 2.3] Although a pointwise almost nonexpansive mapping is single-valued at the reference
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point, it need not be single-valued on neighborhoods of the reference points. Consider, for
example, the coordinate axes in R2,

A = R× {0} ∪ {0} × R.

The metric projector PA is single-valued and even pointwise nonexpansive (no almost) at
every point in A, but multivalued on L :=

{
(x, y) ∈ R2 \ {0} | |x| = |y|

}
.

Almost firmly nonexpansive mappings have particularly convenient characterizations.
In our development below and thereafter we use the set S to denote the collection of points
at which the property holds. This is useful for distinguishing points where the regularity
holds. In Section 3.1, the set S is used to isolate a subset of fixed points. The idea here
is that the properties required for quantifying convergence need not hold on the space
where a problem is formulated, but may only hold on a subset of this space where the
iterates of a particular algorithm may be, naturally, confined. This is used in [4] to achieve
linear convergence results for the alternating directions method of multipliers algorithm.
Alternatively, S can also include points that are not fixed points of constituent operators
in an algorithm, but are closely related to fixed points. One example of this is local best
approximation points, that is, points in one set that are locally nearest to another. In
Section 2.1 we will need to quantify the violation of the averaging property for a projector
onto a nonconvex set A at points in another set, say B, that are locally nearest points to
A. This will allow us to tackle inconsistent feasibility where the alternating projections
iteration converges not to the intersection, but to local best approximation points.

Proposition 1.3.8 (almost firmly nonexpansive mappings). [103, Proposition 2.3] Let
S ⊂ U ⊂ E be nonempty and T : U ⇒ E . The following are equivalent.

(i) T is pointwise almost firmly nonexpansive on U at all y ∈ S with violation ε.

(ii) The mapping T̃ : U ⇒ E given by

T̃ x := (2Tx− x) ∀x ∈ U

is pointwise almost nonexpansive on U at all y ∈ S with violation 2ε.

(iii) ‖x+ − y+‖2 ≤ ε
2 ‖x− y‖

2 + 〈x+− y+, x− y〉 for all x+ ∈ Tx, and all y+ ∈ Ty at each
y ∈ S whenever x ∈ U .

(iv) Let F : E ⇒ E be a mapping whose resolvent is T , i.e., T = (Id +F )−1. At each
x ∈ U , for all u ∈ Tx, y ∈ S and v ∈ Ty, the points (u, z) and (v, w) are in gphF
where z = x− u and w = y − v, and satisfy

− ε
2 ‖(u+ z)− (v + w)‖2 ≤ 〈z − w, u− v〉 .
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Property (iv) of Proposition 1.3.8 characterizes a type of nonmonotonicity of the map-
ping F onD with respect to S; for lack of a better terminology we call this Type-I nonmono-
tonicity. It can be shown that, for small enough parameter values, this is a generalization
of another well-established property known as hypomonotonicity [127]. In [42] the notion of
submonotonicity proposed by Spingarn [132] in relation to approximate convexity [115] was
studied. Their relation to the definition below is the topic of future research.

Definition 1.3.9 (nonmonotone mappings). [103, Definition 2.3]

(a) A mapping F : E ⇒ E is pointwise Type-I nonmonotone at v̄ if there is a constant
τ together with a neighborhood U of v̄ such that

−τ ‖(u+ z)− (v̄ + w)‖2 ≤ 〈z − w, u− v̄〉 ∀z ∈ Fu, ∀u ∈ U, ∀w ∈ F v̄. (1.9)

The mapping F is said to be Type-I nonmonotone on U if (1.9) holds for all v̄ on U .

(b) The mapping F : E⇒ E is said to be pointwise hypomonotone at v̄ with constant τ
on U if

−τ ‖u− v̄‖2 ≤ 〈z − w, u− v̄〉 ∀ z ∈ Fu, ∀u ∈ U, ∀w ∈ F v̄. (1.10)

If (1.10) holds for all v̄ ∈ U then F is said to be hypomonotone with constant τ on
U .

In the event that T is in fact firmly nonexpansive (that is, S = D and τ = 0) then
Proposition 1.3.8(iv) just establishes the well known equivalence between monotonicity of a
mapping and firm nonexpansiveness of its resolvent [105]. Moreover, if a single-valued map-
ping f : E→ E is calm at v̄ with calmness modulus L, then it is pointwise hypomonotone
at v̄ with violation at most L. Indeed,

〈u− v̄, f (u)− f (v̄)〉 ≥ −‖u− v̄‖ ‖f (u)− f (v̄)‖ ≥ −L ‖u− v̄‖2 .

This also points to a relationship to cohypomonotonicity developed in [41]. More recently
the notion of pointwise quadratically supportable functions was introduced [100, Definition
2.1]; for smooth functions, this class – which is not limited to convex functions – was
shown to include functions whose gradients are pointwise strongly monotone (pointwise
hypomonotone with constant τ < 0) [100, Proposition 2.2].

The next result shows the inheritance of the averaging property under compositions and
averages of averaged mappings.

Proposition 1.3.10 (compositions and averages of relatively averaged operators). [103,
Proposition 2.4] Let Tj : E ⇒ E for j = 1, 2, . . . ,m be pointwise almost averaged on Uj
at all yj ∈ Sj ⊂ E with violation εj and averaging constant αj ∈ (0, 1) where Uj ⊃ Sj for
j = 1, 2, . . . ,m.
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(i) If U := U1 = U2 = · · · = Um and S := S1 = S2 = · · · = Sm then the weighted
mapping T :=

∑m
j=1wjTj with weights wj ∈ [0, 1],

∑m
j=1wj = 1, is pointwise almost

averaged at all y ∈ S with violation ε =
∑m

j=1wjεj and averaging constant α =
maxj=1,2,...,m {αj} on U .

(ii) If TjUj ⊆ Uj−1 and TjSj ⊆ Sj−1 for j = 2, 3, . . . ,m, then the composite mapping
T := T1 ◦ T2 ◦ · · · ◦ Tm is pointwise almost nonexpansive at all y ∈ Sm on Um with
violation at most

ε =
m∏
j=1

(1 + εj)− 1. (1.11)

(iii) If TjUj ⊆ Uj−1 and TjSj ⊆ Sj−1 for j = 2, 3, . . . ,m, then the composite mapping
T := T1 ◦T2 ◦ · · · ◦Tm is pointwise almost averaged at all y ∈ Sm on Um with violation
at most ε given by (1.11) and averaging constant at least

α =
m

m− 1 + 1
maxj=1,2,...,m{αj}

.

Remark 1.3.11. [103, Remark 2.1] We remark that Proposition 1.3.10(ii) holds in the case
when Tj (j = 1, 2, . . . ,m) are merely pointwise almost nonexpansive. The counterpart for Tj
(j = 1, . . . ,m) pointwise almost nonexpansive to Proposition 1.3.10(i) is given by allowing
α = 0.

Corollary 1.3.12 (Krasnoselski–Mann relaxations). [103, Corollary 2.1] Let λ ∈ [0, 1]
and define Tλ := (1− λ) Id +λT for T pointwise almost averaged at y with violation ε and
averaging constant α on U . Then Tλ is pointwise almost averaged at y with violation λε
and averaging constant α on U . In particular, when λ = 1/2 the mapping T1/2 is pointwise
almost firmly nonexpansive at y with violation ε/2 on U .

A particularly attractive consequence of Corollary 1.3.12 is that the violation of al-
most averaged mappings can be mitigated by taking smaller steps via Krasnoselski-Mann
relaxation.

To conclude this section we prove the following lemma, a special case of which will be
required in Section 3.2, which relates the fixed point set of the composition of pointwise
almost averaged operators to the corresponding difference vector.

Definition 1.3.13 (difference vectors of composite mappings). [103, Definition 2.4] For a
collection of operators Tj : E ⇒ E (j = 1, 2, . . . ,m) and T := T1 ◦ T2 ◦ · · · ◦ Tm the set of
difference vectors of T at u is given by the mapping Z : E⇒ Em defined by

Z(u) := {ζ := z −Πz | z ∈W0 ⊂ Em, z1 = u} ,

where
Π : (x1, x2, . . . , xm) 7→ (x2, . . . , xm, x1) ∀(x1, x2, . . . , xm) ∈ Em (1.12)
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is the permutation mapping and

W0 := {x = (x1, . . . , xm) ∈ Em |xm ∈ Tmx1, xj ∈ Tj(xj+1), j = 1, 2, . . . ,m− 1} .

Lemma 1.3.14 (difference vectors of averaged compositions). [103, Lemma 2.1] Given a col-
lection of operators Tj : E⇒ E (j = 1, 2, . . . ,m), set T := T1 ◦T2 ◦ · · ·◦Tm. Let S0 ⊂ Fix T ,
let U0 be a neighborhood of S0 and define U := {z = (z1, z2, . . . , zm) ∈W0 | z1 ∈ U0 }. Fix
ū ∈ S0 and the difference vector ζ ∈ Z(ū) with ζ = z̄−Πz̄ for the point z̄ = (z̄1, z̄2, . . . , z̄m) ∈
W0 having z̄1 = ū. Let Tj be pointwise almost averaged at z̄j with violation εj and aver-
aging constant αj on Uj := pj(U) where pj : Em → E denotes the jth coordinate projec-
tion operator (j = 1, 2, . . . ,m). Then, for u ∈ S0 and ζ ∈ Z(u) with ζ = z − Πz for
z = (z1, z2, . . . , zm) ∈W0 having z1 = u,

1− α
α
‖ζ − ζ‖2 ≤

m∑
j=1

εj‖z̄j − zj‖2 where α = max
j=1,2,...,m

αj .

If the mapping Tj is in fact pointwise averaged at z̄j on Uj (j = 1, 2, . . . ,m), then the set
of difference vectors of T is a singleton and independent of the initial point; that is, there
exists ζ ∈ Em such that Z(u) = {ζ} for all u ∈ S0.



Chapter 2

Regularity theory

In the last decade there has been a great deal of interest in extending the classical no-
tions of regularity to include nonconvex and nonsmooth sets, motivated to a large extent
by nonsmooth and nonconvex optimization and attendant subdifferential and coderivative
calculus, optimality and stationarity conditions and convergence analysis of algorithms.

On the one hand convergence analysis has clearly served as a main motivator for the
regularity theory, but on the other hand these regularity properties, which are amongst
the corner stones of variational analysis and mathematical optimization, are themselves of
importance. In fact, investigations of these regularity properties have led to many fun-
damental ideas and important applications in variational analysis and optimization, e.g.,
[73, 79, 87].

2.1 Elemental regularity of sets

The underlying space in this section is a finite dimensional Euclidean space E. The content
of this section is taken from our joint papers with Prof. Alexander Y. Kruger [84] and Dr.
Matthew K. Tam [103].

This section discusses a general framework for elemental regularity of sets that provides
a common language for the many different definitions that have appeared to date. This
new framework makes the cascade of implications between the different types of regularity
more transparent, namely that convexity =⇒ prox-regularity =⇒ super-regularity =⇒
Clarke regularity =⇒ (ε, δ)-regularity =⇒ (ε, δ)-subregularity =⇒ σ-Hölder regularity
see Theorem 2.1.4.

We first recall these widely known regularity notions of individual sets.

Definition 2.1.1 (regularity notions of sets). Let A ⊂ E be closed and nonempty.

(i) A is convex if it holds that tx+ (1− t)y ∈ A for all t ∈ [0, 1] whenever x, y ∈ A.

22
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(ii) [127] A is prox-regular at x̄ ∈ A if the projector PA is single-valued around x̄.

(iii) [90, Definition 4.3] A is super-regular at x̄ ∈ A if for every ε > 0, there exists a
number δ > 0 such that

〈x− z, y − z〉 ≤ ε‖x− z‖‖y − z‖ ∀x ∈ A ∩ Bδ(x̄), y ∈ Bδ(x̄), z ∈ PA(y).

(iv) [129, Definition 6.4] A is Clarke regular at x̄ ∈ A if every (limiting) normal vector
to A at x̄ is a Fréchet normal vector, i.e., N̂A(x̄) = NA(x̄).

(v) [21, Definition 8.1] Let ε, δ > 0. A is (ε, δ)-regular at x̄ ∈ A if

〈u, x− z〉 ≤ ε‖u‖‖x− z‖ ∀x, z ∈ A ∩ Bδ(x̄), u ∈ Nprox
A (z).

(vi) [59, Definition 2.9] Let B ⊂ E and ε, δ > 0. A is (ε, δ)-subregular at x̄ ∈ A relative
to B if

〈u, x− z〉 ≤ ε‖u‖‖x− z‖ ∀z ∈ A ∩ Bδ(x̄), x ∈ B ∩ Bδ(x̄), u ∈ Nprox
A (z).

(vii) [118, Definition 2] Let B ⊂ E and σ ∈ [0, 1). A is σ-Hölder regular at x̄ ∈ A
relative to B with neighborhood U and constant γ ∈ [0, 1) if for every b ∈ B ∩ U and
a+ ∈ PA(b) ∩ U , it holds that

A∩B(1+γ2)‖b−a+‖(b)∩ {a ∈ P−1
B (b) :

〈
b− a+, a− a+

〉
> γ‖b− a+‖σ+1‖a− a+‖} = ∅.

The following concept of elemental regularity places under one schema the many different
kinds of set regularity appearing in Definition 2.1.1.

Definition 2.1.2 (elemental regularity of sets). [84, Definition 5] Let A ⊂ E be nonempty
and let (ȳ, v̄) ∈ gph (NA).

(i) A is elementally subregular of order σ relative to Λ at x̄ for (ȳ, v̄) with constant ε if
there exists a neighborhood U of x̄ such that〈
v̄ −

(
x− x+

)
, x+ − ȳ

〉
≤ ε

∥∥v̄ − (x− x+
)∥∥1+σ ∥∥x+ − ȳ

∥∥ , ∀x ∈ Λ∩U, x+ ∈ PA(x).
(2.1)

(ii) The set A is said to be uniformly elementally subregular of order σ relative to Λ at x̄
for (ȳ, v̄) if for any ε > 0 there is a neighborhood U (depending on ε) of x̄ such that
(2.1) holds.

(iii) The set A is said to be elementally regular of order σ at x̄ for (ȳ, v̄) with constant
ε if it is elementally subregular of order σ relative to Λ = A at x̄ for all (ȳ, v) with
constant ε where v ∈ NA(ȳ) ∩ V for some neighborhood V of v̄.
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(iv) The set A is said to be uniformly elementally regular of order σ at x̄ for (ȳ, v̄) if it is
uniformly elementally subregular of order σ relative to Λ = A at x̄ for all (ȳ, v) where
v ∈ NA(ȳ) ∩ V for some neighborhood V of v̄.

If Λ = {x̄} in (i) or (ii), then the respective qualifier “relative to” is dropped. If σ = 0,
then the respective qualifier “of order” is dropped in the description of the properties. The
modulus of elemental (sub)regularity is the infimum over all ε for which (2.1) holds.

In all properties in Definition 2.1.2, x̄ need not be in Λ and ȳ need not be in either U
or Λ. In case of order σ = 0, the properties are trivial for any constant ε ≥ 1. When saying
a set is not elementally (sub)regular but without specifying a constant, it is meant for any
constant ε < 1.

Example 2.1.3. [84, Example 2]

(a) (cross) Consider the set
A = R× {0} ∪ {0} × R.

This example is of particular interest for the study of sparsity constrained opti-
mization. A is elementally regular at any x̄ 6= (0, 0), say ‖x̄‖ > δ > 0, for all
(a, v) ∈ gphNA where a ∈ Bδ(x̄) with constant ε = 0 and neighborhood Bδ(x̄). The
set A is not elementally regular at the point x̄ = (0, 0) for any ((0, 0), v) ∈ gphNA

since NA(0, 0) = A. However, A is elementally subregular at the point x̄ = (0, 0) for
all (a, v) ∈ gphNA with constant ε = 0 and neighborhood E since all vectors a ∈ A
are orthogonal to NA(a).

(b) (circle) The circle is central to the phase retrieval problem,

A =
{

(x1, x2) ∈ R2
∣∣x2

1 + x2
2 = 1

}
.

The set A is uniformly elementally regular at any x̄ ∈ A for all (x̄, v) ∈ gphNA.
Indeed, note first that for any x̄ ∈ A, NA(x̄) consists of the line passing through the
origin and x̄. Now, for any ε ∈ (0, 1), we choose δ = ε. Then for any x ∈ A ∩ Bδ(x̄),
it holds cos∠(−x̄, x− x̄) ≤ δ = ε. Hence, for all x ∈ A ∩ Bδ(x̄) and v ∈ NA(x̄),

〈v, x− x̄〉 = cos∠(v, x− x̄)‖v‖‖x− x̄‖ ≤ cos∠(−x̄, x− x̄)‖v‖‖x− x̄‖ ≤ ε‖v‖‖x− x̄‖.

(c) Let us consider

A =
{

(x1, x2) ∈ R2
∣∣x2

1 + x2
2 ≤ 1, − 1/2x1 ≤ x2 ≤ x1, x1 ≥ 0

}
⊂ R2,

B =
{

(x1, x2) ∈ R2
∣∣x2

1 + x2
2 ≤ 1, x1 ≤ |x2|

}
⊂ R2,

x̄ = (0, 0).
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The set B is elementally subregular relative to A at x̄ = (0, 0) for all (b, v) ∈
gph (NB ∩A) with constant ε = 0 and neighborhood E since for all a ∈ A, aB ∈ PB(a)
and v ∈ NB(b) ∩A, there holds

〈v − (a− aB), aB − b〉 = 〈v, aB − b〉 − 〈a− aB, aB − b〉 = 0.

The set B, however, is not elementally regular at x̄ = (0, 0) for any ((0, 0), v) ∈
gphNB because by choosing x = tv ∈ B (where (0, 0) 6= v ∈ B ∩ NB((0, 0)), t ↓ 0),
we get

〈v, x〉 = ‖v‖‖x‖ > 0.

The following equivalences explain how the language of elemental regularity to some
extent unifies the existing regularity notions of sets.

Proposition 2.1.4. [84, Proposition 4] Let A, A′ and B be closed nonempty subsets of E.

(i) Let A∩B 6= ∅ and suppose that there is a neighborhood W of x̄ ∈ A∩B and a constant
ε > 0 such that for each

(a, v) ∈ V :=

{
(bA, u) ∈ gphNprox

A

∣∣∣∣u = b− bA,
for b ∈ B ∩W

and bA ∈ PA(b) ∩W

}
, (2.2)

it holds that
x̄ ∈ B(1+ε2)‖v‖(a+ v). (2.3)

Then, A is σ-Hölder regular relative to B at x̄ with constant c = ε2 and neighborhood
W of x̄ if and only if A is elementally subregular of order σ relative to A∩P−1

B (a+ v)
at x̄ for each (a, v) ∈ V with constant ε =

√
c and the respective neighborhood U(a, v).

(ii) Let B ⊂ A. The set A is (ε, δ)-subregular relative to B at x̄ ∈ A if and only if A is
elementally subregular relative to B at x̄ for all (a, v) ∈ gphNprox

A where a ∈ Bδ(x̄)
with constant ε and neighborhood Bδ(x̄). Consequently, (ε, δ)-subregularity implies
0-Hölder regularity.

(iii) If the set A is (E, ε, δ)-regular at x̄, then A is elementally regular at x̄ for all (x̄, v)
with constant ε, where 0 6= v ∈ Nprox

A (x̄). Consequently, (E, ε, δ)-regularity implies
(ε, δ)-subregularity.

(iv) The set A is Clarke regular at x̄ ∈ A if and only if A is uniformly elementally regular
at x̄ for all (x̄, v) with v ∈ NA(x̄). Consequently, Clarke regularity implies (ε, δ)-
regularity.

(v) The set A is super-regular at x̄ ∈ A if and only if for any ε > 0, there is a δ > 0
such that A is elementally regular at x̄ for all (a, v) ∈ gphNA where a ∈ Bδ(x̄) with
constant ε and neighborhood Bδ(x̄). Consequently, super-regularity implies Clarke
regularity.
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(vi) If A is prox-regular at x̄, then there exist positive constants ε and δ such that, for any
ε > 0 and δ := εδ

ε defined correspondingly, A is elementally regular at x̄ for all (a, v) ∈
gphNA where a ∈ Bδ(x̄) with constant ε and neighborhood Bδ(x̄). Consequently, prox-
regularity implies super-regularity.

(vii) If A is convex then it is elementally regular at all x ∈ A for all (a, v) ∈ gphNA with
constant ε = 0 and the neighborhood E for both x and v.

The following relations reveal the almost (firm)-nonexpansiveness of the projector onto
elementally subregular sets.

Proposition 2.1.5 (characterizations of elemental subregularity). [103, Proposition 3.2]

(i) A nonempty set A ⊂ E is elementally subregular at x̄ relative to Λ for (y, v) ∈
gph

(
Nprox
A

)
where y ∈ PA(y+v) if and only if there is a neighborhood U of x̄ together

with a constant ε ≥ 0 such that

‖x− y‖2 ≤ ε
∥∥(y′ − y)− (x′ − x)∥∥ ‖x− y‖+

〈
x′ − y′, x− y

〉
holds with y′ = y + v whenever x′ ∈ U ∩ Λ and x ∈ PAx′.

(ii) Let the nonempty set A ⊂ E be elementally subregular at x̄ relative to Λ for (y, v) ∈
gph

(
Nprox
A

)
where y ∈ PA(y + v) with the constant ε ≥ 0 for the neighborhood U of

x̄. Then
‖x− y‖ ≤ ε

∥∥(y′ − y)− (x′ − x)∥∥+
∥∥x′ − y′∥∥

holds with y′ = y + v whenever x′ ∈ U ∩ Λ and x ∈ PAx′.

The next theorem establishes the connection between elemental subregularity of a set
and almost nonexpansiveness/averaging of the projector onto that set. Since the cyclic
projections algorithm applied to inconsistent feasibility problems involves the properties of
the projectors at points that are outside the sets, we show how the properties depend on
whether the reference points are inside or outside of the sets. The theorem uses the symbol
Λ to indicate subsets of the sets and the symbol Λ′ to indicate points on some neighborhood
whose projection lies in Λ. Later, the sets Λ′ will be specialized in the context of cyclic
projections to sets of points Sj whose projections lie in Aj . One thing to note in the theorem
below is that the almost nonexpansive/averaging property degrades rapidly as the reference
points move away from the sets.

Theorem 2.1.6 (projectors and reflectors onto elementally subregular sets). [103, Theorem
3.1] Let A ⊂ E be nonempty closed, and let U be a neighborhood of x̄ ∈ A. Let Λ ⊂ A ∩ U
and Λ′ := P−1

A (Λ) ∩ U . If A is elementally subregular at x̄ relative to Λ′ for each

(x, v) ∈ V :=
{

(z, w) ∈ gphNprox
A | z + w ∈ U and z ∈ PA(z + w)

}
with constant ε on the neighborhood U , then the following hold.
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(i) The projector PA is pointwise almost nonexpansive at each y ∈ Λ on U with violation
ε′ := 2ε+ ε2. That is, at each y ∈ Λ

‖x− y‖ ≤
√

1 + ε′
∥∥x′ − y∥∥ ∀x′ ∈ U, x ∈ PAx′.

(ii) Let ε ∈ [0, 1). The projector PA is pointwise almost nonexpansive at each y′ ∈ Λ′ with
violation ε̃ on U for ε̃ := 4ε/ (1− ε)2. That is, at each y′ ∈ Λ′

‖x− y‖ ≤ 1 + ε

1− ε
∥∥x′ − y′∥∥ ∀x′ ∈ U, x ∈ PAx′, y ∈ PAy′.

(iii) The projector PA is pointwise almost firmly nonexpansive at each y ∈ Λ with violation
ε′2 := 2ε+ 2ε2 on U . That is, at each y ∈ Λ

‖x− y‖2 +
∥∥x′ − x∥∥2 ≤ (1 + ε′2)

∥∥x′ − y∥∥2 ∀x′ ∈ U, x ∈ PAx′.

(iv) Let ε ∈ [0, 1). The projector PA is pointwise almost firmly nonexpansive at each
y′ ∈ Λ′ with violation ε̃2 := 4ε (1 + ε) / (1− ε)2 on U . That is, at each y′ ∈ Λ′

‖x− y‖2+
∥∥(x′ − x)− (y′ − y)

∥∥2 ≤ (1 + ε̃2)
∥∥x′ − y′∥∥2 ∀x′ ∈ U, x ∈ PAx′, y ∈ PAy′.

(v) The reflector RA is pointwise almost nonexpansive at each y ∈ Λ (respectively, y′ ∈ Λ′)
with violation ε′3 := 4ε + 4ε2 (respectively, ε̃3 := 8ε (1 + ε) / (1− ε)2) on U ; that is,
for all y ∈ Λ (respectively, y′ ∈ Λ′)

‖x− y‖ ≤
√

1 + ε′3
∥∥x′ − y∥∥ ∀x′ ∈ U, x ∈ RAx′

(respectively, ‖x− y‖ ≤
√

1 + ε̃3

∥∥x′ − y′∥∥ ∀x′ ∈ U, x ∈ RAx′, y ∈ RAy′.)

2.2 Metric (sub)regularity of set-valued mappings

The underlying spaces in this section are infinite dimensional normed linear spaces if not
otherwise specified. For clarity, we use notation E whenever presenting results in finite
dimensional Euclidean spaces.

2.2.1 Primal characterizations

Metric regularity of set-valued mappings is one of the corner stones of variational analysis.
The property is regarded as a natural extension to set-valued mappings of the regularity
estimates provided by the classical Banach-Schauder open mapping theorem (for linear op-
erators) and the Lyusternik-Graves theorem (for nonlinear operators) [47, 48, 65, 109, 129].
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The Robinson-Ursescu theorem gives an important example of this property, in particu-
lar, a closed convex set-valued mapping F is metrically regular at a point x̄ ∈ dom F for
ȳ ∈ F (x̄) if and only if ȳ is an interior point of rangeF .

The following concept of metric regularity with functional modulus on a set characterizes
the stability of mappings at points in their image and has played a central role, implicitly
and explicitly, in our analysis of convergence of Picard iterations [4, 59, 103]. In particular,
the key insight into condition (b) of Theorem 3.1.1 is the connection to metric regularity
of set-valued mappings (cf., [50, 129]). This approach to the study of algorithms has been
advanced by several authors [2, 3, 70, 74, 122]. We modify the concept of metric regularity
with functional modulus on a set suggested in [66, Definition 2.1 (b)] and [67, Definition 1
(b)] so that the property is relativized to appropriate sets for iterative methods.

Definition 2.2.1 (metric regularity on a set). [103, Definition 2.5] Let F : X ⇒ Y ,
U ⊂ X, V ⊂ Y . The mapping F is called metrically regular with gauge µ on U × V
relative to Λ ⊂ X if

dist
(
x, F−1(y) ∩ Λ

)
≤ µ (dist (y, F (x))) (2.4)

holds for all x ∈ U ∩ Λ and y ∈ V with 0 < µ (dist (y, F (x))). When the set V consists of
a single point, V = {ȳ}, then F is said to be metrically subregular for ȳ on U with gauge
µ relative to Λ ⊂ X.

When µ is a linear function (that is, µ(t) = κt, ∀t ∈ [0,∞)), one says “with constant
κ” instead of “with gauge µ(t) = κt”. When Λ = X, the quantifier “relative to” is dropped.
When µ is linear, the infimum of κ for which (2.4) holds is called the modulus of metric
regularity on U × V .

The conventional concept of metric regularity [10, 50, 129] (and metric regularity of
order ω, respectively [86]) at a point x̄ ∈ X for ȳ ∈ F (x̄) corresponds to the setting in
Definition 2.2.1 where Λ = X, U and V are neighborhoods of x̄ and ȳ, respectively, and the
gauge function µ(t) = κt (µ(t) = κtω for metric regularity of order ω < 1) for all t ∈ [0,∞),
with κ > 0. The infimum of κ over all neighborhoods U and V such that (2.4) is satisfied
is the regularity modulus of F at x̄ for ȳ and denoted by reg(F ; x̄|ȳ).

The flexibility of choosing the sets U and V in Definition 2.2.1 allows the same definition
and terminology to cover well-known relaxations of metric regularity such as metric sub-
regularity (U is a neighborhood of x̄ and V = {ȳ} [50]. In this case, the infimum of κ over
all neighborhoods U of x̄ such that (2.4) is satisfied is the modulus of metric subregularity
of F at x̄ for ȳ and denoted by subreg(F ; x̄|ȳ).) and metric hemi/semiregularity (U = {x̄}
and V is a neighborhood of ȳ [109, Definition 1.47]). For our purposes, we will use the
flexibility of choosing U and V in Definition 2.2.1 to exclude the reference point x̄ and to
isolate the image point ȳ. This is reminiscent of the Kurdyka-Łojasiewicz (KL) property
[25] for functions which requires that the subdifferential possesses a sharpness property near
(but not at) critical points of the function. However, since the restriction of V to a point
features prominently in our development, we retain the terminology metric subregularity to
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ease the technicality of the presentation. The reader is cautioned, however, that our usage
of metric subregularity does not precisely correspond to the usual definition (see [50]) since
we do not require the domain U to be a neighborhood.

The metric regularity of a set-valued mapping F can be used for measuring the “condi-
tioning” of the generalized equation: for a given y ∈ Y ,

find x ∈ X such that y ∈ F (x). (2.5)

Inequality (2.4) then provides an estimate of how far a point x can be from the solution
set of (2.5) corresponding to the right-hand side y; this distance is bounded from above
by a multiple κ of the “residual” dist(y, F (x)). In other words, the presence of metric
regularity of F at x̄ for ȳ ∈ F (x̄) means that (2.5) is, from a certain perspective, well-posed
around there. This conditioning is stable under small perturbations on F [48, 49], where
quantitative estimates of how large a perturbation can be before metric regularity breaks
down are also established.

Metric regularity admits several equivalent descriptions to (2.4). Recall that [65, p.510]
F is called metrically graph-regular at x̄ for ȳ ∈ F (x̄) if there exist positive numbers κ and
δ such that

dist
(
x, F−1(y)

)
≤ dκ ((x, y), gphF ) , ∀x ∈ Bδ(x̄), y ∈ Bδ(ȳ), (2.6)

where
dκ ((x, y), gphF ) := inf

(u,w)∈gphF
(dist(x, u) + κdist(y, w)) .

The two descriptions (2.4) and (2.6) are equivalent with the same κ (and possibly different
δ), in particular, metric regularity of F at x̄ for ȳ is equivalent to metric graph-regularity
of F at x̄ for ȳ [65, Proposition 4, p.510]. We also refer the reader to that paper for other
equivalent descriptions of metric regularity. The main idea for these possibilities is that
the definition of the conventional metric regularity would be qualitatively unchanged when
reasonable restriction on x and y was added, for example, (x, y) /∈ gphF .

Dmitruk et al. [46] and Ioffe [63] showed the equivalence between the metric regularity
and the linear openness property of a set-valued mapping F , which are determined by
the first-order behaviour of the mapping and invariant under sufficiently small first-order
perturbations [46, 48, 65]. The two properties are also equivalent to the Aubin property of
the inverse mapping F−1 thanks to Borwein and Zhuang [31] and Penot [123].

Definition 2.2.2. (i) A set-valued mapping F is linearly open at x̄ for ȳ ∈ F (x̄) if there
exist κ ≥ 0 and δ > 0 such that

F (x+ κρ int B) ⊃ [F (x) + ρ int B] ∩Bδ(ȳ), ∀x ∈ Bδ(x̄), ∀ρ > 0. (2.7)

The infimum of κ over all δ such that (2.7) is satisfied is the modulus of linear openness
of F at x̄ for ȳ and denoted by lop(F ; x̄|ȳ).
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(ii) F has the Aubin property at x̄ for ȳ ∈ F (x̄) if there exist κ ≥ 0 and δ > 0 such that

excess(F (x) ∩Bδ(ȳ), F (x′)) ≤ κdist(x, x′), ∀x, x′ ∈ Bδ(x̄). (2.8)

The infimum of κ over all combinations of κ and δ such that (2.8) is satisfied is the
Lipschitz modulus of F at x̄ for ȳ ∈ F (x̄) and denoted by lip(F ; x̄|ȳ).

Proposition 2.2.3. Metric regularity and linear openness of a set-valued mapping F at x̄
for ȳ ∈ F (x̄) are equivalent. They are also equivalent to the Aubin property of the mapping
F−1 at ȳ for x̄. Moreover, it holds

reg(F ; x̄|ȳ) = lop(F ; x̄|ȳ) = lip(F−1; ȳ|x̄).

Metric subregularity also enjoys the relationships analogous to those stated in Propo-
sition 2.2.3 with the sub-versions of linear openness and Aubin properties. The interested
reader is referred to [1, 50, 58, 129].

Metric subregularity can also be characterized via the concept of local error bound of
extended real-valued functions. A function f : X → R ∪ {∞} having a local error bound
at a point x̄ with f(x̄) = 0 simply coincides with the set-valued mapping x 7→ [f(x),+∞)
(∀x ∈ X) being metrically regular at x̄ for 0 [80, Proposition 9(ii)]. This transition allows
one to deduce criteria for local error bounds of l.s.c. extended real-valued functions from
those for metric subregularity.

In the finite dimensional setting E, the following proposition, taken from [50], charac-
terizes metric subregularity in terms of the graphical derivative defined by (1.2).

Proposition 2.2.4 (characterization of metric subregularity). Let T : E⇒ E have locally
closed graph at (x̄, ȳ) ∈ gphT , F := T −Id, and z̄ := ȳ− x̄. Then F is metrically subregular
at x̄ for z̄ with constant κ and some neighborhood U of x̄ satisfying U ∩ F−1(z̄) = {x̄} if
and only if the graphical derivative satisfies

DF (x̄|z̄)−1(0) = {0}. (2.9)

If, in addition, T is single-valued and continuously differentiable on U , then the two prop-
erties hold if and only if ∇F has rank n at x̄ with

∥∥∥[[∇F (x)]ᵀ]−1
∥∥∥ ≤ κ for all x on U .

While the characterization (2.9) appears daunting, the property comes almost for free
for polyhedral mappings.

Proposition 2.2.5 (polyhedrality implies metric subregularity). [103, Proposition 2.6] Let
Λ ⊂ E be an affine subspace and T : Λ⇒ Λ . If T is polyhedral and Fix T ∩Λ is an isolated
point, {x̄}, then F := T − Id is metrically subregular at x̄ for 0 relative to Λ with some
constant κ and some neighborhood U of x̄ satisfying U ∩ F−1(0) = {x̄}.
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The property characterized in Proposition 2.2.4 is known as the strong metric sub-
regularity [50, Section 3I] while Proposition 2.2.5 characterizes its relative version. For
completeness, F is strongly metrically subregular at x̄ for ȳ ∈ F (x̄) (relative to Λ, respec-
tively) if it is metrically subregular at x̄ for ȳ and x̄ is an isolated point of F−1(ȳ) (relative
to Λ, respectively). For certain applications in stability and numerical analysis, the strong
metric subregularity is needed instead of metric subregularity due to its persistence under
small perturbations on F .

2.2.2 Dual characterizations

Metric regularities of set-valued mappings defined in Definition d:(str)metric (sub)reg are
obviously properties in the primal space. They can also be characterized via objectives
of dual spaces [69, 107, 136]. The following coderivative [106] and outer coderivative [69]
of set-valued mappings are the central concepts in this subsection. Similar to speaking of
subdifferentials of functions, the adjective “outer” means that the sequence (xn) in Definition
2.2.6 (ii) is outside the solution set of the inverse problem of finding x such that ȳ ∈ F (x).
The latter problem is one of primal motivations for the development of the theory of metric
subregularity. For the history of coderivative, we refer the reader to the monograph [109].

Definition 2.2.6. Let F : X ⇒ Y and x̄ ∈ dom F .

(i) The (limiting or Mordukhovich) coderivative of F at x̄ for ȳ ∈ F (x̄) is the set-valued
mapping D∗F (x̄|ȳ) : Y ⇒ X defined by

x∗ ∈ D∗F (x̄|ȳ)(y∗)⇐⇒ (x∗,−y∗) ∈ NgphF (x̄, ȳ).

(ii) The outer coderivative of F at x̄ for ȳ ∈ F (x̄) is the set-valued mapping D∗>F (x̄|ȳ) :
Y ⇒ X defined by x∗ ∈ D∗F (x̄|ȳ)(y∗) if there exists a sequence of quadruples
(xn, yn, x

∗
n, y
∗
n) converging to (x̄, ȳ, x∗, y∗) such that, for n = 1, 2, . . .,

ȳ /∈ F (xn), yn ∈ PF (xn)(ȳ), y∗n = λn(yn − ȳ), λn > 0, x∗n ∈ D∗F (xn|yn)(y∗n).

The coderivative mapping D∗F (x̄|ȳ) is positively homogeneous, i.e., its graph is a cone.
Recall that [48] the outer norm of a positively homogeneous set-valued mapping S is defined
by

‖S‖+ := sup
‖x‖≤1

sup
y∈S(x)

‖y‖ .

The following famous Mordukhovich criterion provides not only a handy test for metric
regularity of F at x̄ for ȳ ∈ F (x̄) (equivalently, the linear openness and Aubin proper-
ties) but also an estimate of the regularity modulus reg(F ; x̄|ȳ) via the knowledge of the
coderivative mapping D∗F (x̄|ȳ). This criterion also encompasses dual characterizations of
transversality of collections of sets thanks to the relationships that we will discuss in Section
2.3.
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Proposition 2.2.7 (Mordukhovich criterion). [107] Let F : X ⇒ Y be a set-valued map-
ping between Euclidean spaces. Suppose that gphF is locally closed at a point (x̄, ȳ) ∈ gphF .
Then F is metrically regular at x̄ for ȳ if and only if

D∗F (x̄|ȳ)−1(0) = {0}. (2.10)

In that case,
reg(F ; x̄|ȳ) =

∥∥D∗F (x̄|ȳ)−1
∥∥+

.

It is worth mentioning that the Mordukhovich criterion is also true in the much more
general setting of Asplund spaces provided that a more general (mixed) coderivative is
used and F−1 satisfies a certain compactness assumption (the partial sequential normal
compactness) [110]. Sufficient and/or necessary conditions for metric regularity in the
infinite dimensional setting were also established, for example, in [77, 108].

Dual characterizations of metric subregularity can often be obtained in two directions.
The first direction is based on the fact that (2.10) is straightforwardly a sufficient condi-
tion for metric subregularity. By reducing in an appropriate way the size of (the graph
of) the mapping D∗F (x̄|ȳ) in the Mordukhovich criterion (2.10), for example, to the outer
coderivative - Proposition 2.2.8, one can naturally expect to come up with dual necessary
and/or sufficient conditions [69, 136, 137]. The second direction is based on the equivalence
between the metric subregularity of F at x̄ for ȳ ∈ F (x̄) and the existence of a local error
bound for the function x 7→ dist(ȳ, F (x)) at x̄. Whenever this function is l.s.c. around x̄,
for example, when F is outer semicontinuous), subdifferential criteria for local error bounds
can automatically be interpreted as dual characterizations for metric subregularity [81]. In-
timate relationships between subdifferentials of a function x 7→ f(x) and the corresponding
coderivatives of the mapping x 7→ [f(x),+∞) to some extent unify the two directions, see
[81].

For closed convex set-valued mappings, the following criterion, which is analogous to
(2.10) for metric regularity, for metric subregularity was proved in [136]. The statement
also holds true when X is an Asplund space.

Proposition 2.2.8. [136, Corollary 3.2] Suppose that F : X ⇒ Y is convex and gphF is
locally closed at a point (x̄, ȳ) ∈ gphF . Then F is metrically subregular at x̄ for ȳ if and
only if

D∗>F (x̄|ȳ)−1(0) = {0}.

Proposition 2.2.9. [136, Theorem 3.6 (ii)] Let gphF be locally closed at a point (x̄, ȳ) ∈
gphF . Suppose that there exist positive numbers γ, δ such that

dist (0, D∗F (x|y)(y − ȳ)) ≥ γ ‖y − ȳ‖ ,

for all x ∈ Bδ(x̄) \ F−1(ȳ) and y ∈ Bδ(ȳ) ∩ PF (x)(ȳ). Then F is metrically subregular at x̄
for ȳ with the modulus of metric subregularity not greater than 1

γ .
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Proposition 2.2.9 obviously yields an estimate of modulus of metric subregularity:

subreg(F ; x̄|ȳ) ≤

lim
δ↓0

inf

{
dist (0, D∗F (x|y)(y − ȳ))

‖y − ȳ‖
: x ∈ Bδ(x̄) \ F−1(ȳ), y ∈ Bδ(ȳ) ∩ PF (x)(ȳ)

}
.

The following estimate of modulus of metric subregularity was also proved in [136,
Theorem 3.1], where the authors made use of the Fréchet coderivative D̂∗F , whose definition
is similar to Definition 2.2.6 (i) for the (limiting) coderivative D∗F with the only change
that the Fréchet normal cone is used instead of the (limiting) one. Note that the inequality
can be strict.

subreg(F ; x̄|ȳ) ≤ inf
δ>0

sup

{∥∥∥D̂∗F (x|y)−1
∥∥∥+

: x ∈ Bδ(x̄) \ F−1(ȳ), y ∈ Bδ(ȳ) ∩ F (x)

}
.

Further discussion regarding dual characterizations of metric subregularity of set-valued
mappings in more general settings can be found in [81, 136, 137, 138].

We refer the readers to the monographs [50, 109] and surveys [1, 10, 65, 68] for a
comprehensive exposition of the properties of set-valued mappings in variational analysis.

2.3 (Sub)transversality of collections of sets

The underlying spaces in this section are infinite dimensional normed linear spaces if not
otherwise specified. For clarity, we use notation E whenever presenting results in finite
dimensional Euclidean spaces. The content of this section is taken from our joint papers
with Prof. Alexander Y. Kruger [84, 83] except Definition 2.3.12 and Proposition 2.3.13
taken from our joint work with Dr. Matthew K. Tam [103].

2.3.1 Primal characterizations

In this section we discuss these two standard regularity properties of a pair of sets, namely
transversality and subtransversality (also known under other names). Subtransversality of
collections of sets has emerged as a key - by some estimates the key - notion in the analysis
of convergence of simple iterative methods for solving feasibility problems. The origins of
the concept can be traced back to that of transversality in differential geometry which deals
of course with smooth manifolds (see, for instance, [57, 61]). The notion of transversality
in differential geometry is motivated by the problem of determining when the intersection
of two smooth manifolds is also a manifold near some point in the intersection. A sufficient
condition for this to happen is when the collection {A,B} of smooth manifolds is transversal
at x̄ ∈ A ∩ B, i.e., the sum of the tangent spaces to A and B at x̄ generates the ambient
space. Under this assumption, A∩B is a smooth manifold around x̄ and the tangent space
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to the intersection is equal to the intersection of the tangent spaces at x̄ and the normal
spaces to the sets at x̄ have only the origin in common (cf. [57, 68, 91]). The tangent
space intersection property is only a necessary condition and is in general weaker than the
condition on the normal spaces.

Definition 2.3.1 (transversality and subtransversality). [84, Definition 6]

(i) {A,B} is subtransversal at x̄ if there exist numbers α > 0 and δ > 0 such that

(A+ (αρ)B) ∩ (B + (αρ)B) ∩ Bδ(x̄) ⊆ (A ∩B) + ρB (2.11)

for all ρ ∈ (0, δ).

If, additionally, x̄ is an isolated point of A ∩ B, then {A,B} is called strongly sub-
transversal at x̄. The (possibly infinite) supremum of all α above is denoted sr[A,B](x̄)
with the convention that the supremum of the empty set is zero.

(ii) {A,B} is transversal at x̄ if there exist numbers α > 0 and δ > 0 such that

(A− a− x1) ∩ (B − b− x2) ∩ (ρB) 6= ∅ (2.12)

for all ρ ∈ (0, δ), a ∈ A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄), and all x1, x2 ∈ E with

max{‖x1‖, ‖x2‖} < αρ.

The (possibly infinite) supremum of all α above is denoted by r[A,B](x̄) with the
convention that the supremum of the empty set is zero.

Remark 2.3.2. [84, Remark 3] The maximum of the norms in Definition 2.3.1 – explicitly
present in part ((ii)) and implicitly also in part ((i)) – corresponds to the maximum norm
in R2 employed in these definitions and subsequent assertions. It can be replaced every-
where by the sum norm (pretty common in this type of definition in the literature) or any
other equivalent norm. All the assertions that follow including the quantitative character-
izations remain valid (as long as the same norm is used everywhere), although the exact
values sr[A,B](x̄) and r[A,B](x̄) do depend on the chosen norm and some estimates can
change. Note that the currently used maximum norm is not Euclidean. These details be-
come important in the context of applications where one norm may be more appropriate
than another.

Definition 2.3.1((i)) was introduced recently in [87] and can be viewed as a local ana-
logue of the global uniform normal property introduced in the convex setting in [11, Def-
inition 3.1(4)] as a generalization of the property (N) of convex cones by Jameson [71]. A
particular case of the Jameson property (N) for convex cones A and B such that B = −A
and A ∩ (−A) = {0} was studied by M. Krein in the 1940s. Definition 2.3.1((ii)) first
appeared in [78] (see also [79, 80]) in the normed linear space setting, where the property
was referred to as simply regularity (and later as strong regularity and uniform regularity).
In [90], the property is called linearly regular intersection.
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Example 2.3.3. [84, Example 3] If x̄ ∈ int (A∩B), then {A,B} is trivially transversal (and
consequently subtransversal) at x̄ with any α > 0. Thus, r[A,B](x̄) = sr[A,B](x̄) =∞.

Example 2.3.4. [84, Example 4] If A = B and x̄ ∈ bd (A∩B), then A+(αρ)B = B+(αρ)B
and A ∩ B + ρB = A + ρB. Hence, condition (2.11) holds (with any δ > 0) if and only if
α ≤ 1. Thus, {A,B} is subtransversal at x̄ and sr[A,B](x̄) = 1.

Note that, under the conditions of Example 2.3.4, {A,B} does not have to be transversal
at x̄.

Example 2.3.5. [84, Example 5] Let E = R2, A = B = R × {0} and x̄ = (0, 0). Thanks
to Example 2.3.4, {A,B} is subtransversal at x̄ and sr[A,B](x̄) = 1. At the same time,
A − a = B − b = R × {0} for any a ∈ A and b ∈ B. If x1 = (0, ε) and x2 = (0, 0), then
condition (2.12) does not hold for any ε > 0 and ρ > 0. Thus, {A,B} is not transversal at
x̄ and r[A,B](x̄) = 0.

The next two results are a catalog of the main primal characterizations of subtransver-
sality and transversality, respectively.

Theorem 2.3.6 (characterizations of subtransversality). [84, Theorem 1] The following
statements are equivalent to {A,B} being subtransversal at x̄.

(i) There exist numbers δ > 0 and α > 0 such that

(A− x) ∩ (B − x) ∩ (ρB) 6= ∅

for all x ∈ Bδ(x̄) such that x = a+x1 = b+x2 for some a ∈ A, b ∈ B and x1, x2 ∈ E
with max{‖x1‖, ‖x2‖} < αρ. Moreover, sr[A,B](x̄) is the exact upper bound of all
numbers α such that the condition above is satisfied.

(ii) There exist numbers δ > 0 and α > 0 such that

α dist (x,A ∩B) ≤ max {dist(x,A), dist(x,B)} for all x ∈ Bδ(x̄). (2.13)

Moreover, sr[A,B](x̄) is the exact upper bound of all numbers α such that (2.13) is
satisfied.

(iii) There exist numbers α ∈ (0, 1) and δ > 0 such that

α dist(x,A ∩B) ≤ dist(x,B) for all x ∈ A ∩ Bδ(x̄). (2.14)

Moreover,
1

2(sr′[A,B](x̄))−1 + 1
≤ sr[A,B](x̄) ≤ sr′[A,B](x̄),

where sr′[A,B](x̄) is the exact upper bound of all numbers α ∈ (0, 1) such that condi-
tion (2.14) is satisfied, with the convention that the supremum of the empty subset of
R+ equals 0.
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Remark 2.3.7 (Historical remarks and further relations). [84, Remark 4] Thanks to char-
acterization (ii) of Theorem 2.3.6, subtransversality of a collection of sets can be recognized
as a well known regularity property that has been around for more than 20 years under the
names of (local) linear regularity, metric regularity, linear coherence, metric inequality, and
subtransversality; cf. [11, 12, 13, 51, 59, 64, 65, 68, 75, 92, 117, 121, 124, 135, 139]. It has
been used as the key assumption when establishing linear convergence of sequences generated
by cyclic projections algorithms and a qualification condition for subdifferential and normal
cone calculus formulae. This property is implied by the bounded linearly regularity [13]. If
A and B are closed convex sets and the collection {A,B} is subtransversal at any point in
A ∩ B, then it is boundedly linear regular; cf. [11, Remark 6.1(d)]. Characterization (iii)
of Theorem 2.3.6 can be considered as a nonconvex extension of [113, Theorem 3.1].

One can also observe that condition (2.13) is equivalent to the function

x 7→ max{dist(x,A), dist(x,B)}

having a local error bound [9, 52, 81]/weak sharp minimum [35, 36, 37] at x̄ with constant
α.

In the finite dimensional setting E, the geometrical property (2.13) of a collection of
sets {A,B} can also be viewed as a certain property of a collection of distance functions
x 7→ dist(x,A) and x 7→ dist(x,B). It is sufficient to notice that

A ∩B = {x ∈ E | max{dist(x,A),dist(x,B)} ≤ 0} .

One can study regularity properties of collections of arbitrary (not necessarily distance)
functions. Such an attempt has been made recently in the convex setting by Pang [121].
Given a collection of convex functions {f1, f2}, the following analogue of condition (2.13)
is considered in [121]:

α dist (x,C) ≤ max {dist(x,H1(x)),dist(x,H2(x))} for all x ∈ E,

where C := {u ∈ E | max{f1(u), f2(u)} ≤ 0}, Hi(x) := {u ∈ E | fi(x) + 〈vi, u− x〉 ≤ 0}
for some chosen vi ∈ ∂fi(x) if fi(x) > 0 and Hi(x) := E otherwise, i = 1, 2. It is easy to
check that, in the case of distance functions, this property reduces to (2.13).

Theorem 2.3.8 (metric characterizations of transversality). [84, Theorem 2 (i)–(ii)] The
following statements are equivalent to {A,B} being transversal at x̄.

(i) There exist numbers δ > 0 and α > 0 such that

α dist (x, (A− x1) ∩ (B − x2)) ≤ max {dist(x,A− x1), dist(x,B − x2)} , (2.15)

for all x ∈ Bδ(x̄) and x1, x2 ∈ δB. Moreover, r[A,B](x̄) is the exact upper bound of
all numbers α such that (2.15) is satisfied.
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(ii) There exist numbers δ > 0 and α > 0 such that

α dist(x, (A− x1)∩ (B − x2)) ≤ dist(x,B − x2), ∀x ∈ (A− x1)∩Bδ(x̄), x1, x2 ∈ δB.
(2.16)

Moreover,
r′[A,B](x̄)

r′[A,B](x̄) + 2
≤ r[A,B](x̄) ≤ r′[A,B](x̄),

where r′[A,B](x̄) is the exact upper bound of all numbers α such that condition (2.16)
is satisfied.

Remark 2.3.9. [84, Remark 5] Characterization (i) of Theorem 2.3.8 reveals that the
transversality of a collection of sets corresponds to subtransversality/linear regularity of
all their small translations holding uniformly (cf. [51, page 1638]). Property (2.15) was re-
ferred to in [78, 79, 80] as strong metric inequality. If A and B are closed convex sets and
intA 6= ∅, then the transversality of the collection {A,B} is equivalent to the conventional
qualification condition: intA ∩B 6= ∅; cf. [78, Proposition 14]. One can think of condition
(2.15) as a kind of uniform local error bound/relaxed weak sharp minimum property; cf.
[79].

The characterization of subtransversality given in Theorem 2.3.6(i) and the definition
of transversality shows that transversality implies subtransversality (see Theorem 2.3.10
below). Alternatively, the implication is also immediate from Theorem 2.3.6(ii) and Theo-
rem 2.3.8(i). There are a number of other useful sufficient conditions for subtransversality,
detailed in the next theorem.

Theorem 2.3.10 (primal sufficient conditions for subtransversality). [84, Theorem 4 (i) &
(iii)–(iv)] If one of the following hold, then {A,B} is subtransversal at x̄.

(i) The collection {A,B} is transversal at x̄. Moreover, r[A,B](x̄) ≤ sr[A,B](x̄).

(ii) The sets A and B are intrinsically transversal at x̄.

(iii) The set B intersects A separably at x̄ and B is 0-Hölder regular relative to A at x̄
with an adequate compromise between the constants.

Remark 2.3.11 (entanglement of elemental regularity and regularity of collections of sets).
[84, Remark 12] Theorem 2.3.10(iii) demonstrates that regularity of individual sets has
implications for the regularity of the collection of sets. The converse entanglement has also
been observed in [118, Proposition 8]: if A and B are intrinsically transversal at x̄ with
constant α, then A is σ-Hölder regular at x̄ relative to B for every σ ∈ [0, 1) with any
constant c < α2

1−α2 .
As a consequence of Proposition 2.1.4(i), if A and B are intrinsically transversal at x̄

with constant α ∈ (0, 1] and, in addition, there is a neighborhood W of x̄ and a positive
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constant ε < α√
1−α2

such that for each (a, v) ∈ V defined in (2.2), condition (2.3) holds
true, then A is elementally subregular of any order σ ∈ [0, 1) relative to A ∩ P−1

B (a+ v) at
x̄ for each (a, v) ∈ V with constant ε and the respective neighborhood U(a, v).

For analyzing convergence of algorithms dealing with inconsistent feasibility in Sec-
tion 3.2, one needs to extend the (sub)transversality concepts to collections of sets that
don’t necessarily intersect. The idea behind the following definition stems from the equiv-
alence between metric subregularity of an appropriate set-valued mapping on the product
space and subtransversality of sets at common points [84, Theorem 3]. The trick to ex-
tending this to points that do not belong to all the sets is to define the correct set-valued
mapping.

Definition 2.3.12 (subtransversality of (inconsistent) collections of sets). [103, Definition
3.2] Let {A1, A2, . . . , Am} be a collection of nonempty closed subsets of E and define Ψ :
Em ⇒ Em by Ψ(x) := PA (Πx) − Πx where A := A1 × A2 × · · · × Am, the projection PA
is with respect to the Euclidean norm on Em and Π is the permutation mapping given by
(1.12). Let x̄ = (x̄1, x̄2, . . . , x̄m) ∈ Em and ȳ ∈ Ψ(x̄).

(i) The collection of sets is said to be subtransversal with gauge µ relative to Λ ⊂ Em at x̄
for ȳ if Ψ is metrically subregular at x̄ for ȳ on some neighborhood U of x̄ (metrically
regular on U × {ȳ}) with gauge µ relative to Λ.

(ii) The collection of sets is said to be transversal with gauge µ relative to Λ ⊂ Em at
x̄ for ȳ if Ψ is metrically regular with gauge µ relative to Λ on U × V , for some
neighborhoods U of x̄ and V of ȳ.

As in Definition 2.2.1, when µ(t) = κt, ∀t ∈ [0,∞), one says “constant κ” instead of “gauge
µ(t) = κt”. When Λ = E, the quantifier “relative to” is dropped.

Consistent with the terminology of metric regularity and subregularity, the prefix “sub”
is meant to indicate the pointwise version of the more classical, though restrictive, idea of
transversality. When the point x̄ = (ū, · · · , ū) for ū ∈ ∩mj=1Aj the following characterization
of substransversality holds.

Examples of subtransversality for inconsistent collections of sets are later given in Ex-
amples 3.2.10 and 3.2.11.

Proposition 2.3.13 (subtransversality at common points). [103, Proposition 3.3] Let Em

be endowed with 2-norm, that is, ‖(x1, x2, . . . , xm)‖2 =
(∑m

j=1 ‖xj‖
2
E

)1/2
. A collection

{A1, A2, . . . , Am} of nonempty closed subsets of E is subtransversal relative to

Λ := {x = (u, u, . . . , u) ∈ Em |u ∈ E}
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at x̄ = (ū, · · · , ū) with ū ∈ ∩mj=1Aj for ȳ = 0 with gauge µ if there exists a neighborhood U ′

of ū together with a gauge µ′ satisfying
√
mµ′ ≤ µ such that

dist
(
u,∩mj=1Aj

)
≤ µ′

(
max

j=1,...,m
dist (u,Ai)

)
, ∀ u ∈ U ′. (2.17)

Conversely, if {A1, A2, . . . , Am} is subtransversal relative to Λ at x̄ for ȳ = 0 with gauge µ,
then (2.17) is satisfied with any gauge µ′ for which µ(

√
mt) ≤

√
mµ′(t) for all t ∈ [0,∞).

Note that if one endows Em with the maximum norm,

‖(x1, x2, . . . , xm)‖Em := max
1≤j≤m

‖xj‖E ,

then it holds that

dist
(
x,
(
∩mj=1Aj ,∩mj=1Aj , . . . ,∩mj=1Aj

)
∩ Λ
)

= dist
(
u,∩mj=1Aj

)
;

dist (x,A) = max
j=1,...,m

dist (u,Aj) for all u and x as above.

Then the two properties in Proposition 2.3.13 are equivalent for the same gauge µ′ = µ.

2.3.2 (Sub)transversality versus metric (sub)regularity

The regularity/transversality properties of the collection {A,B} in X can be understood
in terms of the corresponding properties of the set-valued mapping F : X ⇒ X2 defined by
(cf. [51, 65, 68, 90])

F (x) := (A− x)× (B − x). (2.18)

For x ∈ X and u = (u1, u2) ∈ X2, we have

x ∈ A ∩B ⇐⇒ (0, 0) ∈ F (x), F−1(u) = (A− u1) ∩ (B − u2), and F−1(0) = A ∩B.

The mapping (2.18) is not the only possibility. Another useful construction is given by the
set-valued mapping G : X2 ⇒ X (cf. [91, page 226], [51, page 1638], [68, Corollary 7.13])
defined as follows:

G(x1, x2) :=

{
{x1 − x2} if x1 ∈ A and x2 ∈ B,
∅ otherwise.

(2.19)

Obviously,
0 ∈ G(x1, x2) ⇐⇒ x1 = x2 ∈ A ∩B.

Conversely, the regularity of certain set-valued mappings can be understood in terms
of the corresponding properties of collections of sets. Indeed, given a set-valued mapping
F : X ⇒ Y , its regularity properties at a point (x̄, ȳ) in its graph gphF := {(x, y) ∈
X × Y | y ∈ F (x)} are connected to those of the collection of sets (cf. [78, Corollary 2.1])

A := gphF and B := X × {ȳ} (2.20)

in X × Y . One can check that (x̄, ȳ) ∈ A ∩B = F−1(ȳ)× {ȳ}.
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Theorem 2.3.14 (characterizations of (sub)transversality via set-valued mappings). [84,
Theorem 3] Subtransversality of the collection {A,B} at a point x̄ ∈ A∩B has the following
equivalent characterizations.

(i) The set-valued mapping F : X ⇒ X2 given by (2.18) with the max norm on X2 is
metrically subregular at x̄ for (0, 0). Moreover,

sr[A,B](x̄) = sr[F ](x̄, (0, 0)).

The mapping F is strongly metrically subregular at x̄ for (0, 0) if and only if the
collection {A,B} is strongly subtransversal there.

(ii) The set-valued mapping G : X2 ⇒ X given by (2.19) with the l2-norm on X2 (i.e.,
‖(x, x′)‖ =

√
‖x‖2 + ‖x′‖2 for all x, x′ ∈ X) is metrically subregular at (x̄, x̄) for 0.

Moreover,√
2

1 + (sr[A,B](x̄))−2
≤ sr[G]((x̄, x̄), 0) ≤ 2

[(sr[A,B](x̄))−1 − 1]+
. (2.21)

Transversality of the collection {A,B} at a point x̄ ∈ A∩B has the following equivalent
characterizations.

(i′) The set-valued mapping F : X ⇒ X2 given by (2.18) with the max norm on X2 is
metrically regular at x̄ for (0, 0). Moreover,

r[A,B](x̄) = r[F ](x̄, (0, 0)).

(ii′) The set-valued mapping G : X2 ⇒ X given by (2.19) with the l2-norm on X2 is
metrically regular at (x̄, x̄) for 0. Moreover,√

2

1 + (r[A,B](x̄))−2
≤ r[G]((x̄, x̄), 0) ≤ 2

[(r[A,B](x̄))−1 − 1]+
. (2.22)

Theorem 2.3.15. [86, Theorem 5.1]

(i) F is metrically subregular at (x̄, ȳ) if and only if the collection of sets {A,B} defined
at (2.20) is subregular at (x̄, ȳ). Moreover,

sr[F ](x̄, ȳ)

sr[F ](x̄, ȳ) + 2
≤ sr[A,B](x̄) ≤ min {sr[F ](x̄, ȳ)/2, 1} .

(ii) F is metrically regular at (x̄, ȳ) if and only if the collection of sets {A,B} defined at
(2.20) is transversal at (x̄, ȳ). Moreover,

r[F ](x̄, ȳ)

r[F ](x̄, ȳ) + 2
≤ r[A,B](x̄) ≤ min{r[F ](x̄, ȳ)/2, 1}.
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Remark 2.3.16 (collections of sets and set-valued mappings). [84, Remark 10] The char-
acterizations in Theorem 2.3.14 provide a one-to-one correspondence between regularity
properties of collections of sets and the corresponding ones of set-valued mappings. They
remain true for arbitrarily finite collections of sets.

The ‘positive part’ sign in the right-hand sides of the conditions (2.21) and (2.22) is
used to accommodate for the case when x̄ ∈ intA ∩ intB and, hence, r[A,B](x̄) = +∞. In
this case, conditions (2.21) and (2.22) impose no upper bound on the values sr[G]((x̄, x̄), 0)
and r[G]((x̄, x̄), 0).

In view of characterization (ii′), the property of regular intersection of sets considered
in [91, Section 5] is equivalent to their collection being transversal. This fact also follows
from [91, Theorem 5.1].

Thanks to characterizations of Theorem 2.3.14, when investigating regularity properties
of collections of sets one can employ the well developed regularity theory of set-valued map-
pings, particularly, the celebrated coderivative criterion for metric regularity [50, 109, 129]
(see also [77]) as well as criteria of metric subregularity based on outer coderivatives (see
[69, 81, 136, 137, 138]). On the other hand, related studies in [80, Theorem 7], [87, Theorem
5.1(ii)] have shown that regularity criteria developed for collections of sets can be used when
studying the corresponding properties of set-valued mappings. The coderivatives (Fréchet,
limiting or other) of the mappings (2.18) and (2.19) employed in Theorem 2.3.14 admit
simple representations in terms of the corresponding normal cones to the sets involved in
their definitions; see [80, the proof of Theorem 8], [91, Lemma 5.1], [90, page 491], and [68,
Theorem 7.12 and Corollary 7.13]. As a consequence, the coderivative criteria of regularity
of set-valued mappings easily translate into the dual characterizations of the correspond-
ing regularity properties of collections of sets. Not surprisingly, this way one rediscovers
(some of) the known characterizations collected in Theorem 2.3.14; see [80, Theorem 8],
[91, Theorem 5.1], and [68, Theorems 7.12 and 7.15].

2.3.3 Dual characterizations

The dual criterion for the transversality in Asplund spaces is well known, see [78, 79, 80,
85, 87].

Theorem 2.3.17 (dual characterizations of transversality). [84, Theorem 2 (iii)–(vii)] The
following statements are equivalent to {A,B} being transversal at x̄.

(i) There exist numbers α > 0 and δ > 0 such that ‖v1 + v2‖ > α for all a ∈ A ∩ Bδ(x̄),
b ∈ B∩Bδ(x̄), v1 ∈ N̂A(a) and v2 ∈ N̂B(b) with ‖v1‖+‖v2‖ = 1. Moreover, r[A,B](x̄)
is the exact upper bound of all numbers α above.

(ii) There exists a number α > 0 such that ‖v1 + v2‖ > α for all v1 ∈ NA(a) and
v2 ∈ NB(b) with ‖v1‖ + ‖v2‖ = 1. Moreover, r[A,B](x̄) is the exact upper bound of
all such numbers α.
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(iii) NA(x̄) ∩ (−NB(x̄)) = {0}.

(iv) There is a number α > 0 such that d2 (v,NA(x̄)) + d2 (v,−NB(x̄)) > α2 for all v ∈ S.
Moreover, the exact upper bound of all such numbers α, denoted rv[A,B](x̄), satisfies
rv[A,B](x̄) =

√
2 r[A,B](x̄).

(v) There is a number α < 1 such that −〈v1, v2〉 < α for all v1 ∈ NA(x̄) and v2 ∈ NB(x̄)
with ‖v1‖ = ‖v2‖ = 1. Moreover, the exact lower bound of all such numbers α, denoted
ra[A,B](x̄), satisfies ra[A,B](x̄) + 2(r[A,B](x̄))2 = 1.

Remark 2.3.18. [83, page 705] Characterization (iii) is a well known qualification condi-
tion/nonseparabilty property that has been around for about 30 years under various names,
e.g., transversality [40], normal qualification condition [109, 124], linearly regular intersec-
tion [90], alliedness property [124], and transversal intersection [51, 68].

Remark 2.3.19 (characterization (i) and Jameson’s property). [84, Remark 6] Character-
ization (i) in Theorem 2.3.17 can be formulated equivalently as follows:
there exist numbers α > 0 and δ > 0 such that ‖v1 + v2‖ ≥ α(‖v1‖ + ‖v2‖) for all a ∈
A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄), v1 ∈ N̂A(a) and v2 ∈ N̂B(b).
This characterization can be interpreted as a strengthened version of the Jameson’s property
(G) [71] (cf. [11, 15, 113]). As with all dual characterizations, it basically requires that
among all admissible pairs of nonzero normals to the sets there is no pair of normals which
are oppositely directed.

Remark 2.3.20 (characterization (iii) and related notions). [84, Remark 7] Note that, un-
like the other characterizations, (iii) provides only a qualitative criterion of transversality.
It has the interpretation that the cones NA(x̄) and NB(x̄) are strongly additively regu-
lar [36], and has been described as a “concise, fundamental, and widely studied geometric
property” [51] extensively used in nonconvex optimization and calculus.

An immediate consequence of characterization (iii) is the following crucial inclusion
expressed in terms of the limiting normal cones (cf. [40, page 99], [129, Theorem 6.42],
[109, page 142]):

NA∩B(x̄) ⊆ NA(x̄) +NB(x̄), (2.23)

which can be considered as an extension of the strong conical hull intersection property
(strong CHIP) [45] (cf. [11, Definition 5.1(2)]) to nonconvex sets. Indeed, since the opposite
inclusion in terms of Fréchet normal cones holds true trivially:

N̂A∩B(x̄) ⊃ N̂A(x̄) + N̂B(x̄), (2.24)



CHAPTER 2. REGULARITY THEORY 43

and both cones reduce in the convex case to the normal cone (1.4), inclusion (2.23) is
equivalent in the convex setting to the strong CHIP:

NA∩B(x̄) = NA(x̄) +NB(x̄). (2.25)

The last equality has proved to be a fundamental regularity property in several areas of convex
optimization; see the discussion of the role of this property (and many other regularity
properties of collections of convex sets) in [11, 15]. Inclusion (2.23) plays a similar role in
nonconvex optimization and calculus. Thus, thanks to Theorem 2.3.17(iii), transversality
implies the extended strong CHIP (2.23).

In fact, it is now well recognized that inclusion (2.23) is ensured by the weaker sub-
transversality property. The next proposition is a consequence of [69, Proposition 3.2] (or
[124, Theorem 6.41]) and the characterization of subtransversality in Theorem 2.3.6(ii).

Proposition 2.3.21. [84, Proposition 5] If {A,B} is subtransversal at x̄, then inclusion
(2.23) holds true.

In the convex case, a nonlocal version of Proposition 2.3.21 together with certain quan-
titative estimates can be found in [11, 15].

If a stronger than (2.23) condition (2.25) is satisfied in the nonconvex case (with Fréchet
subdifferentials), then this property is referred to in [114] as the strong Fréchet-CHIP. S-
ince inclusion (2.24) always holds, this is equivalent to inclusion (2.23) with Fréchet subd-
ifferentials in place of the limiting ones. A quantitative (by a positive number α) version
of the strong Fréchet-CHIP property was studied in the convex and nonconvex settings in
[114, 135]:

N̂A∩B(x̄) ∩ B ⊆ α
((
N̂A(x̄) ∩ B

)
+
(
N̂B(x̄) ∩ B

))
.

A number of important links with other regularity properties were established there, and
variants of the above property involving Clarke normal cones were also considered.

Remark 2.3.22 (characterizations in the Euclidean space setting). The following equivalent
characterizations of transversality have been established in [85, Theorem 2]).

(i) There exists a number α > 0 such that ‖v1 + v2‖ > 2α for all v1 ∈ NA(x̄) and
v2 ∈ NB(x̄) with ‖v1‖ = ‖v2‖ = 1. Moreover, the exact upper bound of all such
numbers α equals r[A,B](x̄).

(ii) There exists a number α < 1 such that ‖v1 − v2‖ < 2α for all v1 ∈ NA(x̄) and
v2 ∈ NB(x̄) with ‖v1‖ = ‖v2‖ = 1. Moreover, the exact lower bound of all such
numbers α, denoted rd[A,B](x̄), satisfies (r[A,B](x̄))2 + (rd[A,B](x̄))2 = 1.

For brevity, the characterizations above are in terms of limiting normals only. The corre-
sponding (approximate) statements in terms of Fréchet and proximal normals can be for-
mulated in a similar way. These characterizations as well as that of Theorem 2.3.17(iv) for
the proximal normal cone only hold in Euclidean spaces.
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Remark 2.3.23. [84, Remark 9] Theorem 2.3.17(v) also has analogues in terms of Fréchet
and proximal normals. The expression −〈v1, v2〉 can be interpreted as the cosine of the angle
between the vectors v1 and −v2. Note that, unlike r[A,B](x̄), rd[A,B](x̄), and rv[A,B](x̄),
constant ra[A,B](x̄) can be negative. Constant ra[A,B](x̄) is a modification of another one:

c̄ := max {− 〈v1, v2〉 | v1 ∈ NA(x̄) ∩ B, v2 ∈ NB(x̄) ∩ B} ,

used in [90] for characterizing transversality. It is easy to check that c̄ = (ra[A,B](x̄))+,
and c̄ < 1 if and only if ra[A,B](x̄) < 1.

The next characterization of transversality following from Theorem 2.3.17(ii) and the
relationships among normal cones is needed for the analysis in Section 3.5.

Proposition 2.3.24. [90, Theorem 5.16] Let A and B be two closed sets in E. Suppose
that {A,B} is transversal at x̄ ∈ A ∩B, or equivalently,

θ̄ := sup{〈u, v〉 | u ∈ NA(x̄), v ∈ NB(x̄), ‖u‖ = ‖v‖ = 1} < 1. (2.26)

Then for any θ ∈ (θ̄, 1), there exists a δ > 0 such that

a ∈ A ∩Bδ(x̄), b ∈ B ∩Bδ(x̄),
u ∈ Nprox

A (a), v ∈ Nprox
B (b)

}
=⇒ 〈u, v〉 ≥ −θ‖u‖ · ‖v‖.

The next theorem deals with the subtransversality property. It provides a dual sufficient
condition for this property in an Asplund space.

Theorem 2.3.25. [83, Theorem 2] Suppose X is Asplund, A,B ⊂ X are closed, and x̄ ∈
A∩B. Then {A,B} is subtransversal at x̄ if there exist numbers α ∈ (0, 1) and δ > 0 such
that, for all a ∈ (A\B)∩Bδ(x̄), b ∈ (B \A)∩Bδ(x̄) and x ∈ Bδ(x̄) with ‖x− a‖ = ‖x− b‖,
there exists an ε > 0 such that ‖x∗1 + x∗2‖ > α for all a′ ∈ A ∩ Bε(a), b′ ∈ B ∩ Bε(b),
x′1 ∈ Bε(a), x′2 ∈ Bε(b), x′ ∈ Bε(x), and x∗1, x

∗
2 ∈ X∗ satisfying∥∥x′ − x′1∥∥ =
∥∥x′ − x′2∥∥ , (2.27)

‖x∗1‖+ ‖x∗2‖ = 1,
〈
x∗1, x

′ − x′1
〉

= ‖x∗1‖‖x′ − x′1‖,
〈
x∗2, x

′ − x′2
〉

= ‖x∗2‖‖x′ − x′2‖,
(2.28)

dist(x∗1, NA(a′)) < δ, dist(x∗2, NB(b′)) < δ. (2.29)

Moreover, sr[A,B](x̄) ≥ α.

In the convex case, one can formulate a necessary and sufficient dual criterion of sub-
transversality in general Banach spaces which takes a simpler form.

Theorem 2.3.26. [83, Theorem 3] Suppose X is a Banach space, A,B ⊂ X are closed and
convex, and x̄ ∈ A∩B. Then {A,B} is subtransversal at x̄ if and only if there exist numbers
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α ∈ (0, 1) and δ > 0 such that ‖x∗1 +x∗2‖ > α for all a ∈ (A\B)∩Bδ(x̄), b ∈ (B \A)∩Bδ(x̄),
x ∈ Bδ(x̄) with ‖x− a‖ = ‖x− b‖, and x∗1, x∗2 ∈ X∗ satisfying

‖x∗1‖+ ‖x∗2‖ = 1, 〈x∗1, x− a〉 = ‖x∗1‖‖x− a‖, 〈x∗2, x− b〉 = ‖x∗2‖‖x− b‖,
dist(x∗1, NA(a)) < δ, dist(x∗2, NB(b)) < δ.

Moreover, the exact upper bound of all such α equals sr[A,B](x̄).

Remark 2.3.27. [83, Remark 3]

(i) It is sufficient to check the conditions of Theorems 2.3.25 and 2.3.26 only for x∗1 6= 0
and x∗2 6= 0. Indeed, if one of the vectors x∗1 and x∗2 equals 0, then by the normalization
condition ‖x∗1‖ + ‖x∗2‖ = 1, the norm of the other one equals 1, and consequently
‖x∗1 + x∗2‖ = 1, i.e., such pairs x∗1, x

∗
2 do not impose any restrictions on α.

(ii) Similarly to the classical characterization (iii) in Theorem 2.3.17 of transversality, the
subtransversality characterizations in Theorems 2.3.25 and 2.3.26 require that among
all admissible (i.e., satisfying all the conditions of the theorems) pairs of nonzero
elements x∗1 and x∗2 there is no one with x∗1 and x∗2 oppositely directed.

(iii) The sum ‖x∗1‖+‖x∗2‖ in Theorems 2.3.25 and 2.3.26 corresponds to the sum norm on
R2, which is dual to the maximum norm on R2 used in the definitions of subtransver-
sality. It can be replaced by max{‖x∗1‖, ‖x∗2‖} (cf. [124, (6.11)]) or any other norm
on R2.

The proof of Theorem 2.3.25 follows the sequence proposed in [81] when deducing metric
subregularity characterizations for set-valued mappings and consists of a series of propo-
sitions providing lower primal and dual estimates for the constant sr[A,B](x̄) and, thus,
sufficient conditions for the subtransversality of the pair {A,B} at x̄ which can be of inde-
pendent interest.

First observe that constant sr[A,B](x̄) characterizing subtransversality and introduced
in Definition 2.3.1 can be written explicitly as

sr[A,B](x̄) = lim inf
a→x̄, b→x̄, x→x̄
a∈A, b∈B, x/∈A∩B

f(a, b, x)

dist (x,A ∩B)
= lim inf

a→x̄, b→x̄, x→x̄
x/∈A∩B

f̂(a, b, x)

dist (x,A ∩B)
(2.30)

with the convention that the infimum over the empty set equals 1, and the functions f :
X3 → R and f̂ : X3 → R∞ defined, respectively, by

f(x1, x2, x) := max{‖x1 − x‖ , ‖x2 − x‖}, x1, x2, x ∈ X, (2.31)

f̂(x1, x2, x) := f(x1, x2, x) + iA×B(x1, x2), x1, x2, x ∈ X, (2.32)

where iA×B is the indicator function of A × B: iA×B(x1, x2) = 0 if x1 ∈ A, x2 ∈ B and
iA×B(x1, x2) = +∞ otherwise.
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Below, we are going to use two different norms onX3: a norm depending on a parameter
ρ > 0 and defined as follows:

‖(x1, x2, x)‖ρ := max {‖x‖ , ρ ‖x1‖ , ρ ‖x2‖} , x1, x2, x ∈ X, (2.33)

and the conventional maximum norm ‖(·, ·, ·)‖ corresponding to ρ = 1 in the above def-
inition; we drop the subscript ρ in this case. It is easy to check that the dual norm
corresponding to (2.33) has the following form:

‖(x∗1, x∗2, x∗)‖ρ = ‖x∗‖+ ρ−1(‖x∗1‖+ ‖x∗2‖), x∗1, x
∗
2, x
∗ ∈ X∗.

The next proposition provides an equivalent primal space representation of the sub-
transversality constant (2.30).

Proposition 2.3.28. [83, Proposition 7] Suppose X is a Banach space, A,B ⊂ X are
closed, and x̄ ∈ A ∩B. Then the following representation of the subtransversality constant
(2.30) is true:

sr[A,B](x̄) = lim
ρ↓0

inf
a∈A∩Bρ(x̄), b∈B∩Bρ(x̄)

x∈Bρ(x̄), max{‖x−a‖,‖x−b‖}>0

sup
a′∈A, b′∈B, u∈X
(a′,b′,u)6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+

‖(a′, b′, u)− (a, b, x)‖ρ
,

(2.34)

with the convention that the infimum over the empty set equals 1.

Remark 2.3.29. [83, Remark 4]

(i) The right-hand side of (2.34) is the uniform strict outer slope [81] of the function
(2.32) (considered as a function of two variables x and (x1, x2)) at (x̄, (x̄, x̄)).

(ii) The inequality ‘≤’ in (2.34) is valid in arbitrary (not necessarily complete) normed
linear spaces. The completeness of the space X is only needed for the inequality ‘≥’,
the proof of which is based on the application of the Ekeland variational principle.

The next proposition provides another two primal space representations of the sub-
transversality constant (2.30) which impose additional restrictions on the choice of a, b and
x under the inf in (2.34).

Proposition 2.3.30. [83, Proposition 8] Suppose X is a Banach space, A,B ⊂ X are
closed, and x̄ ∈ A∩B. Then the following representations of the subtransversality constant
(2.30) are true:

sr[A,B](x̄) = lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄)

sup
a′∈A, b′∈B, u∈X
(a′,b′,u)6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+

‖(a′, b′, u)− (a, b, x)‖ρ

= lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄), ‖x−a‖=‖x−b‖

sup
a′∈A, b′∈B, u∈X
(a′,b′,u)6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+

‖(a′, b′, u)− (a, b, x)‖ρ
,

(2.35)
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with the convention that the infimum over the empty set equals 1.

Remark 2.3.31. [83, Remark 5] The expression after sup in the right-hand sides of (2.34)
and (2.35) can be greater than 1. Nevertheless, sr[A,B](x̄) computed in accordance with
(2.34) or (2.35) (under the conventions employed in Propositions 2.3.28 and 2.3.30) is
always less than or equal to 1.

Now we define a ‘localized’ subtransversality constant:

str1[A,B](x̄) := lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄)

lim sup
a′→a, b′→b, u→x

a′∈A, b′∈B
(a′,b′,u)6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+

‖(a′, b′, u)− (a, b, x)‖ρ
,

(2.36)

with the convention that the infimum over the empty set equals 1. It corresponds to the
first expression in (2.35) with sup replaced by lim sup. Observe that

lim sup
u→x, a′→a, b′→b

a′∈A, b′∈B
(a′,b′,u) 6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+

‖(a′, b′, u)− (a, b, x)‖ρ
.

in the above definition is the ρ-slope [81] (i.e., the slope [9, 44, 52, 65] with respect to the
distance in X3 corresponding to the norm defined by (2.33)) at (x, (a, b)) of the function
(u, (a′, b′)) 7→ f(a′, b′, u).

Proposition 2.3.32. [83, Proposition 9] Suppose X is a normed linear space, A,B ⊂ X are
closed, and x̄ ∈ A ∩B. Then the following representation of the subtransversality constant
(2.36) is true:

str1[A,B](x̄) = lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄), ‖x−a‖=‖x−b‖

lim sup
a′→a, b′→b, u→x

a′∈A, b′∈B
(a′,b′,u)6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+

‖(a′, b′, u)− (a, b, x)‖ρ
,

with the convention that the infimum over the empty set equals 1.

Remark 2.3.33. [83, Remark 6] One can define an analogue of str1[A,B](x̄) using the lim-
iting procedure in the representation of sr[A,B](x̄) in (2.34). Unlike the ‘nonlocal’ case
in Propositions 2.3.28 and 2.3.30, such an analogue does not coincide in general with
str1[A,B](x̄) defined by (2.36), although it can still be used for formulating sufficient con-
ditions of subtransversality.

The next proposition clarifies the relationship between str1[A,B](x̄) and sr[A,B](x̄).
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Proposition 2.3.34. [83, Proposition 10] Suppose X is a Banach space, A,B ⊂ X are
closed, and x̄ ∈ A ∩B. Then

(i) str1[A,B](x̄) ≤ sr[A,B](x̄);

(ii) if A and B are convex, then (i) holds as equality.

Remark 2.3.35. [83, Remark 7] Proposition 2.3.21 is valid in arbitrary (not necessarily
complete) normed linear spaces if sr[A,B](x̄) is defined by one of the expressions in (2.35)
(see Remark 2.3.29(ii)).

To proceed to dual characterizations of subtransversality, we need a representation of
the subdifferential of the convex function f given by (2.31).

Lemma 2.3.36. [83, Lemma 3] Let X be a normed space and f be given by (2.31). Then

∂f(x1, x2, x) =
{

(x∗1, x
∗
2,−x∗1 − x∗2) ∈ (X∗)3 | (x∗1, x∗2) ∈ ∂g(x1 − x, x2 − x)

}
for all x1, x2, x ∈ X, where g is the maximum norm on X2:

g(x1, x2) := max{‖x1‖ , ‖x2‖}, x1, x2 ∈ X.

If x1 6= x or x2 6= x, then (x∗1, x
∗
2, x
∗) ∈ ∂f(x1, x2, x) if and only if the following conditions

are satisfied:

x∗1 + x∗2 + x∗ = 0, ‖x∗1‖+ ‖x∗2‖ = 1,

〈x∗1, x1 − x〉 = ‖x∗1‖ ‖x1 − x‖ , 〈x∗2, x2 − x〉 = ‖x∗2‖ ‖x2 − x‖ ,
if ‖x1 − x‖ < ‖x2 − x‖ , then x∗1 = 0,

if ‖x2 − x‖ < ‖x1 − x‖ , then x∗2 = 0.

The subtransversality constant (2.36) admits dual estimates which are crucial for the
conclusions of Theorems 2.3.25 and 2.3.26. In what follows we will use notations itrw[A,B](x̄)
and itrc[A,B](x̄) for the supremum of all α in Theorems 2.3.25 and 2.3.26, respectively, with
the convention that the supremum over the empty set equals 0. It is easy to check the fol-
lowing explicit representations of the two constants:

itrw[A,B](x̄) := lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄), ‖x−a‖=‖x−b‖

lim inf
x′→x, x′1→a, x′2→b, a′→a, b′→b
a′∈A, b′∈B, ‖x′−x′1‖=‖x′−x′2‖

dist(x∗1,NA(a′))<ρ, dist(x∗2,NB(b′))<ρ, ‖x∗1‖+‖x∗2‖=1
〈x∗1,x′−x′1〉=‖x∗1‖ ‖x′−x′1‖, 〈x∗2,x′−x′2〉=‖x∗2‖ ‖x′−x′2‖

‖x∗1 + x∗2‖, (2.37)

itrc[A,B](x̄) := lim inf
x→x̄, a→x̄, b→x̄

a∈A\B, b∈B\A, ‖x−a‖=‖x−b‖
dist(x∗1,NA(a))→0, dist(x∗2,NB(b))→0, ‖x∗1‖+‖x∗2‖=1
〈x∗1,x−a〉=‖x∗1‖ ‖x−a‖, 〈x∗2,x−b〉=‖x∗2‖ ‖x−b‖

‖x∗1 + x∗2‖ (2.38)
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with the convention that the infimum over the empty set equals 1.

Proposition 2.3.37. [83, Proposition 11] Suppose X is a Banach space, A,B ⊂ X are
closed, and x̄ ∈ A ∩B.

(i) If either X is Asplund or A and B are convex, then the following dual representations
of the subtransversality constant (2.36) are true:

str1[A,B](x̄) = lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄)

(x∗1,x
∗
2,x
∗)∈∂f̂(a,b,x), ‖x∗1‖+‖x∗2‖<ρ

‖x∗‖

= lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄), ‖x−a‖=‖x−b‖
(x∗1,x

∗
2,x
∗)∈∂f̂(a,b,x), ‖x∗1‖+‖x∗2‖<ρ

‖x∗‖ , (2.39)

where the function f̂ : X3 → R∞ is defined by (2.32) and the convention that the
infimum over the empty set equals 1 is in force. Moreover,

(ii) if X is Asplund, then str1[A,B](x̄) ≥ itrw[A,B](x̄);

(iii) if A and B are convex, then str1[A,B](x̄) = itrc[A,B](x̄).

Remark 2.3.38. [83, Remark 8] The inequality ‘≤’ in both representations in (2.39) as
well as the opposite inequalities in the convex case are valid in arbitrary (not necessarily
complete) normed linear spaces.

Proposition 2.3.39. [83, Proposition 12] Suppose X is a Banach space, A,B ⊂ X are
closed and convex, and x̄ ∈ A ∩B. Then sr[A,B](x̄) = str1[A,B](x̄) = itrc[A,B](x̄).

Remark 2.3.40. [83, Remark 9] Using the representations in Propositions 2.3.28, 2.3.30,
2.3.32 and 2.3.37, one can formulate several intermediate sufficient (and in some cases also
necessary) conditions of subtransversality.

The two-limit definition (2.37) as well as the corresponding dual space characterization
of subtransversality in Theorem 2.3.25 look complicated and difficult to verify. The following
one-limit modification of (2.37) in terms of Fréchet normals can be useful:

itr[A,B](x̄) := lim inf
a→x̄, b→x̄, x→x̄

a∈A\B, b∈B\A, x 6=a, x 6=b
x∗1∈NA(a)\{0}, x∗2∈NB(b)\{0}, ‖x∗1‖+‖x∗2‖=1

‖x−a‖
‖x−b‖→1,

〈x∗1,x−a〉
‖x∗1‖‖x−a‖

→1,
〈x∗2,x−b〉
‖x∗2‖‖x−b‖

→1

‖x∗1 + x∗2‖ (2.40)

with the convention that the infimum over the empty set equals 1. The relationship between
the constants (2.37), (2.38) and (2.40) is given by the next proposition.
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Proposition 2.3.41. [83, Proposition 13] Suppose X is a Banach space, A,B ⊂ X are
closed, and x̄ ∈ A ∩B.

(i) 0 ≤ itr[A,B](x̄) ≤ itrw[A,B](x̄) ≤ itrc[A,B](x̄) ≤ 1;

(ii) if dimX <∞, then

itrw[A,B](x̄) = lim inf
a→x̄, b→x̄, x→x̄

a∈A\B, b∈B\A, ‖x−a‖=‖x−b‖
dist(x∗1,NA(a))→0, dist(x∗2,NB(b))→0, ‖x∗1‖+‖x∗2‖=1
〈x∗1,x−a〉=‖x∗1‖ ‖x−a‖, 〈x∗2,x−b〉=‖x∗2‖ ‖x−b‖

‖x∗1 + x∗2‖

with the convention that the infimum over the empty set equals 1;

(iii) if dimX <∞, and A and B are convex, then

itrw[A,B](x̄) = itrc[A,B](x̄) = sr[A,B](x̄).

The property introduced in Theorem 2.3.25 as a sufficient dual space characterization
of subtransversality and corresponding to the condition itrw[A,B](x̄) > 0 as well as the
stronger property corresponding to the condition itr[A,B](x̄) > 0 are themselves important
transversality properties of the pair {A,B} at x̄. Borrowing partially the terminology
from [51], we are going to call these properties weak intrinsic transversality and intrinsic
transversality, respectively.

Definition 2.3.42. [83, Definition 4] Suppose X is a normed linear space, A,B ⊂ X are
closed, and x̄ ∈ A ∩B. The pair {A,B} is

(i) weakly intrinsically transversal at x̄ if itrw[A,B](x̄) > 0, i.e., there exist numbers
α ∈ (0, 1) and δ > 0 such that, for all a ∈ (A \ B) ∩ Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄) and
x ∈ Bδ(x̄) with ‖x− a‖ = ‖x− b‖, one has ‖x∗1 + x∗2‖ > α for some ε > 0 and all
a′ ∈ A ∩ Bε(a), b′ ∈ B ∩ Bε(b), x′1 ∈ Bε(a), x′2 ∈ Bε(b), x′ ∈ Bε(x), and x∗1, x

∗
2 ∈ X∗

satisfying conditions (2.27), (2.28) and (2.29);

(ii) intrinsically transversal at x̄ if itr[A,B](x̄) > 0, i.e., there exist numbers α ∈ (0, 1)
and δ > 0 such that ‖x∗1 + x∗2‖ > α for all a ∈ (A \ B) ∩ Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄),
x ∈ Bδ(x̄), x∗1 ∈ NA(a) \ {0} and x∗2 ∈ NB(b) \ {0} satisfying

x 6= a, x 6= b, 1− δ < ‖x− a‖
‖x− b‖

< 1 + δ, (2.41)

‖x∗1‖+ ‖x∗2‖ = 1,
〈x∗1, x− a〉
‖x∗1‖‖x− a‖

> 1− δ, 〈x∗2, x− b〉
‖x∗2‖‖x− b‖

> 1− δ. (2.42)

Remark 2.3.43. The properties introduced in Definition 2.3.42 are less restrictive than the
dual criterion of transversality in Theorem 2.3.17.
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In view of Definition 2.3.42, Theorem 2.3.25 says that in Asplund spaces weak intrinsic
transversality (and consequently intrinsic transversality) implies subtransversality. Thanks
to Proposition 2.3.41(i) and Remark 2.3.43, we have the following chain of implications in
Asplund spaces:

transversality =⇒ intrinsic transversality
=⇒ weak intrinsic transversality =⇒ subtransversality.

By Proposition 2.3.41(iii), when the space is finite dimensional and the sets are convex, the
last two properties are equivalent.

For a further discussion on the intrinsic transversality, we would like to refer to the
paper [51, 82].

As a consequence of Proposition 2.3.41(i), we obtain the following dual sufficient con-
dition of subtransversality of a pair of closed sets in an Asplund space.

Corollary 2.3.44. [83, Corollary 2] Suppose X is Asplund, A,B ⊂ X are closed, and
x̄ ∈ A ∩B. Then {A,B} is subtransversal at x̄ if there exist numbers α ∈ (0, 1) and δ > 0
such that ‖x∗1 + x∗2‖ > α for all a ∈ (A \ B) ∩ Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄), x ∈ Bδ(x̄),
x∗1 ∈ NA(a) \ {0} and x∗2 ∈ NB(b) \ {0} satisfying (2.41) and (2.42).

2.3.4 Special cases: convex sets, cones and manifolds

The underlying space in this section is a finite dimensional Euclidean space E.

A number of simplifications are possible in the convex setting, for cones and for mani-
folds.

The next representations follow from the simplified representations for r[A,B](x̄) that
are possible for convex sets or cones (cf. [78, Propositions 13 and 15]).

Proposition 2.3.45 (collections of convex sets). [84, Proposition 6] Suppose A and B are
convex. The collection {A,B} is transversal at x̄ if and only if one of the next two equivalent
conditions holds true:

(i) there exists a number α > 0 such that

(A− x1) ∩ (B − x2) ∩ Bρ(x̄) 6= ∅ (2.43)

for all ρ > 0 and all x1, x2 ∈ E with max{‖x1‖, ‖x2‖} < αρ;

(ii) there exists a number α > 0 such that condition (2.43) is satisfied for some ρ > 0 and
all x1, x2 ∈ E with max{‖x1‖, ‖x2‖} < αρ.

Moreover, the exact upper bound of all numbers α in any of the above conditions equals
r[A,B](x̄).
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Proposition 2.3.46 (cones). [84, Proposition 7] Suppose A and B are cones. The collection
{A,B} is transversal at 0 if and only if there exists a number α > 0 such that

(A− a− x1) ∩ (B − b− x2) ∩ B 6= ∅

for all a ∈ A, b ∈ B and all x1, x2 ∈ E with max{‖x1‖, ‖x2‖} < α. Moreover, the exact
upper bound of all numbers α in any of the above conditions equals r[A,B](0).

In the case when A and B are smooth manifolds, one can deduce the Friedrichs angle
characterization of transversality established in [91, Theorem 5.2].

Proposition 2.3.47 (manifolds). [84, Proposition 8] Let A and B be smooth manifolds
around a point x̄ ∈ A ∩B. Then

ra[A,B](x̄) = c(A,B, x̄),

c(A,B, x̄) is the Friedrichs angle between the two normal spaces NA(x̄) NB(x̄).

Remark 2.3.48. [84, Remark 14] Some sufficient and also necessary characterizations of
the subtransversality property in terms of the Fréchet subdifferentials of the function x 7→
dist(x,A) + dist(x,B) were formulated [117, Theorem 3.1].

The next example illustrates the computation of the constants characterizing regularity.

Example 2.3.49. [84, Example 6] Let E = R2, A = R×{0}, B = {(t, t) | t ∈ R}, x̄ = (0, 0).
A and B are linear subspaces. We have A ∩ B = {(0, 0)}, TA(x̄) = A, TB(x̄) = B,
TA∩B(x̄) = {(0, 0)}, NA(x̄) = A⊥ = {0} × R, NB(x̄) = B⊥ = {(t,−t) | t ∈ R}. The
collection {A,B} is transversal at x̄ in the classical sense and, thanks to Proposition 2.3.47,
also transversal at x̄ in the sense of Definition 2.3.1((ii)). By the representations in Theorem
2.3.8(i)-(v), after performing some simple computations, we obtain:

r[A,B](x̄) =
1

2

∥∥∥∥( 1√
2
− 1,

1√
2

)∥∥∥∥ = t2,

rd[A,B](x̄) =
1

2

∥∥∥∥( 1√
2

+ 1,
1√
2

)∥∥∥∥ = t1,

rv[A,B](x̄) =
√
d2 ((t1, t2) , A) + d2 ((t1, t2) , B)

=

√
‖(t1, t2)− (t1, 0)‖2 +

∥∥∥∥(t1, t2)−
(
t1 + t2

2
,
t1 + t2

2

)∥∥∥∥2

= t2
√

2,

ra[A,B](x̄) =

〈(
1√
2
,

1√
2

)
, (1, 0)

〉
=

1√
2
,

where t1 :=

√
2+
√

2
2 and t2 :=

√
2−
√

2
2 . It is easy to check that all the relations in Theorem

2.3.8(i)-(v) are satisfied.



Chapter 3

Convergence analysis

In recent years there has been a tremendous interest in first-order methods for solving
variational problems. As the name suggests, these methods only use information that, in
some way, encodes the gradient of a function to be minimized. Often one has in mind the
following universal optimization problem for such methods

minimize
x∈E

m∑
j=1

fj(x) (3.1)

where fj are scalar extended-valued functions, not necessarily smooth or convex, on a
Hilbert space. This specializes to constrained optimization in the case that one or more of
the functions fj is an indicator function for a set.

Based on the knowledge of regularity notions discussed in Chapter 2, several abstract
programs of analysis are studied in this chapter. As consequences, a number of convergence
results are derived for a variety of projection algorithms for solving the feasibility problem

find x̄ ∈ ∩mj=1Aj ,

which is the specialization of (3.1) to the case

fj(x) = ιAj (x) :=

{
0 if x ∈ Aj
+∞ else

(j = 1, 2, . . . ,m).

3.1 Abstract convergence of Picard iterations

Regarding the underlying space in this section, E stands for a Euclidean space while H
stands for an infinite dimensional space. The content of this section is taken from our joint
papers with Dr. Matthew K. Tam [103, 102].

53
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The next theorem serves as the basic template for the quantitative convergence analysis
of fixed point iterations and generalizes [59, Lemma 3.1]. By the notation T : Λ ⇒ Λ
where Λ is a subset or an affine subspace of E, we mean that T : E⇒ E and T (x) ⊂ Λ for
all x ∈ Λ. This simplification of notation should not lead to any confusion if one keeps in
mind that there may exist fixed points of T that are not in Λ. For the importance of the
use of Λ in isolating the desirable fixed point, we refer the reader to [4, Example 1.8].

Theorem 3.1.1. [103, Theorem 2.1] Let T : Λ ⇒ Λ for Λ ⊂ E and let S ⊂ ri Λ be closed
and nonempty with Ty ⊂ Fix T ∩ S for all y ∈ S. Let O be a neighborhood of S such that
O ∩ Λ ⊂ ri Λ. Suppose

(a) T is pointwise almost averaged at all points y ∈ S with violation ε and averaging
constant α ∈ (0, 1) on O ∩ Λ, and

(b) there exists a neighborhood V of Fix T ∩ S and a κ > 0, such that for all y+ ∈ Ty,
y ∈ S, and all x+ ∈ Tx the estimate

dist(x, S) ≤ κ‖
(
x− x+

)
−
(
y − y+

)
‖ (3.2)

holds true whenever x ∈ (O ∩ Λ) \ (V ∩ Λ).

Then for all x+ ∈ Tx

dist
(
x+,Fix T ∩ S

)
≤
√

1 + ε− 1− α
κ2α

dist(x, S) (3.3)

whenever x ∈ (O ∩ Λ) \ (V ∩ Λ).

In particular, if κ <
√

1−α
εα , then for all x0 ∈ O ∩ Λ the iteration xj+1 ∈ Txj satisfies

dist
(
xj+1,Fix T ∩ S

)
≤ cj dist(x0, S)

with c :=
(
1 + ε− 1−α

ακ2

)1/2
< 1 for all j such that xi ∈ (O ∩ Λ) \ (V ∩ Λ) for i = 1, 2, . . . , j.

Some remarks will help clarify the technicalities. The role of assumption (a) is clear in
the two-property scheme we have set up. The second assumption (b) is a characterization
of the required stability of the fixed points and their preimages. It is helpful to consider a
specialization of this assumption which simplifies things considerably. First, by Proposition
1.3.6, since T is almost averaged at all points in S, then it is single-valued there and one
can simply write Ty for all y ∈ S instead of y+ ∈ Ty. The real simplification comes when
one considers the case S = Fix T . In this case Ty = y for all y ∈ S and condition (3.2)
simplifies to

dist(x,Fix T ) ≤ κdist(0, x− Tx) ⇐⇒ dist(x, F−1(0)) ≤ κdist(0, F (x))
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for all x ∈ (O ∩ Λ) \ (V ∩ Λ) where F := T − Id. The statement on annular regions
(O ∩ Λ) \ (V ∩ Λ) can be viewed as an assumption about the existence of an error bound
on that region. For earlier manifestations of this and connections to previous work on error
bounds see [104] and [116]. In the present context, this condition has been identified in
Section 2.2 with metric subregularity of F .

The assumptions lead to the conclusion that the iterates approach the set of fixed
points at some rate that can be bounded below by a linear characterization on the region
(O ∩ Λ)\(V ∩ Λ). This will lead to convergence in Corollary 3.1.2 where on all such annular
regions there is some lower linear convergence bound.

The possibility to have S ⊂ Fix T and not S = Fix T allows one to sidestep compli-
cations arising from the not-so-exotic occurrence of fixed point mappings that are almost
nonexpansive at some points in Fix T and not at others (see Example 1.3.5(ii)). It would
be too restrictive in the statement of the theorem, however, to have S ⊆ Fix T , since this
does not allow one to tackle inconsistent feasibility, studied in depth in Section 3.2. In
particular, we have in mind the situation where sets A and B do not intersect, but still
the alternating projections mapping TAP := PAPB has nice properties at points in B that,
while not fixed points, at least locally are nearest to A. The full richness of the structure
is used in Theorem 3.2.7 were we establish, for the first time, sufficient conditions for local
linear convergence of the method of cyclic projections for nonconvex inconsistent feasibility.

The inequality (3.3) by itself says nothing about convergence of the iteration xj+1 =
Txj , but it does clearly indicate what needs to hold in order for the iterates to move closer
to a fixed point of T . This is stated explicitly in the next corollary.

Corollary 3.1.2 (convergence). [103, Corollary 2.2] Let T : Λ ⇒ Λ for Λ ⊂ E and let
S ⊂ ri Λ be closed and nonempty with T x̄ ⊂ Fix T ∩ S for all x̄ ∈ S. Define Oδ := S + δB
and Vδ := Fix T ∩ S + δB. Suppose that for γ ∈ (0, 1) fixed and for all δ > 0 small enough,
there is a triplet (ε, δ, α) ∈ R+ × (0, γδ]× (0, 1) such that

(a) T is pointwise almost averaged at all y ∈ S with violation ε and averaging constant α
on Oδ ∩ Λ, and

(b) at each y+ ∈ Ty for all y ∈ S there exists a κ ∈
[
0,
√

1−α
εα

)
such that

dist(x, S) ≤ κ‖
(
x− x+

)
−
(
y − y+

)
‖

at each x+ ∈ Tx for all x ∈
(
Oδ ∩ Λ

)
\ (Vδ ∩ Λ).

Then for any x0 close enough to S the iterates xi+1 ∈ Txi satisfy dist(xi,Fix T ∩ S) → 0
as i→∞.

An interesting avenue of investigation would be to see to what extent the proof mining
techniques of [76] could be applied to quantify convergence in the present setting.
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Theorem 3.1.3 ((sub)linear convergence with metric regularity). [103, Theorem 2.2] Let
T : Λ ⇒ Λ for Λ ⊂ E, F := T − Id and let S ⊂ ri Λ be closed and nonempty with
TS ⊂ Fix T ∩ S. Denote (S + δB) ∩Λ by Sδ for a nonnegative real δ. Suppose that, for all
δ > 0 small enough, there are γ ∈ (0, 1), a nonnegative sequence of scalars (εi)i∈N and a
sequence of positive constants αi bounded above by α < 1, such that, for each i ∈ N,

(a) T is pointwise almost averaged at all y ∈ S with averaging constant αi and violation
εi on Sγiδ, and

(b) for
Ri := Sγiδ \

(
Fix T ∩ S + γi+1δB

)
,

(i) dist (x, S) ≤ dist
(
x, F−1(ȳ) ∩ Λ

)
for all x ∈ Ri and ȳ ∈ F (PS(x)) \ F (x),

(ii) F is metrically regular with gauge µi relative to Λ on Ri × F (PS(Ri)), where µi
satisfies

sup
x∈Ri,ȳ∈F (PS(Ri)),ȳ /∈F (x)

µi (dist (ȳ, F (x)))

dist (ȳ, F (x))
≤ κi <

√
1− αi
εiαi

. (3.4)

Then, for any x0 ∈ Λ close enough to S, the iterates xj+1 ∈ Txj satisfy dist
(
xj ,Fix T ∩ S

)
→

0 and
dist

(
xj+1,Fix T ∩ S

)
≤ ci dist

(
xj , S

)
∀ xj ∈ Ri,

where ci :=

√
1 + εi −

(
1−αi
κ2iαi

)
< 1.

In particular, if εi is bounded above by ε and κi ≤ κ <
√

1−α
α ε for all i large enough,

then convergence is eventually at least linear with rate at most c̄ :=

√
1 + ε−

(
1−α
κ2α

)
< 1.

The first inequality in (3.4) is a condition on the gauge function µi and would not be
needed if the statement were limited to linearly metrically regular mappings. Essentially,
it says that the gauge function characterizing metric regularity of F can be bounded above
by a linear function. The second inequality states that the constant of metric regularity κi
is small enough relative to the violation of the averaging property εi to guarantee a linear
progression of the iterates through the region Ri.

When S = Fix T ∩ Λ in Theorem 3.1.3, the condition (b)(i) can be dropped from the
assumptions, as the next corollary shows.

Corollary 3.1.4. [103, Corollary 2.3] Let T : Λ ⇒ Λ for Λ ⊂ E with Fix T nonempty
and closed, F := T − Id. Denote (Fix T + δB) ∩ Λ by Sδ for a nonnegative real δ. Suppose
that, for all δ > 0 small enough, there are γ ∈ (0, 1), a nonnegative sequence of scalars
(εi)i∈N and a sequence of positive constants αi bounded above by α < 1, such that, for each
i ∈ N,
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(a) T is pointwise almost averaged at all y ∈ Fix T ∩ Λ with averaging constant αi and
violation εi on Sγiδ, and

(b) for
Ri := Sγiδ \

(
Fix T + γi+1δB

)
,

F is metrically subregular for 0 on Ri (metrically regular on Ri × {0}) with gauge µi
relative to Λ, where µi satisfies

sup
x∈Ri

µi (dist (0, F (x)))

dist (0, F (x))
≤ κi <

√
1− αi
εiαi

.

Then, for any x0 ∈ Λ close enough to Fix T ∩ Λ, the iterates xj+1 ∈ Txj satisfy

dist
(
xj ,Fix T ∩ Λ

)
→ 0

and
dist

(
xj+1,Fix T ∩ Λ

)
≤ ci dist

(
xj ,Fix T ∩ Λ

)
∀ xj ∈ Ri,

where ci :=

√
1 + εi −

(
1−αi
κ2iαi

)
< 1.

In particular, if εi is bounded above by ε and κi ≤ κ <
√

1−α
α ε for all i large enough,

then convergence is eventually at least linear with rate at most c̄ :=

√
1 + ε−

(
1−α
κ2α

)
< 1.

The following example explains why gauge metric regularity on a set (Definition 2.2.1)
fits well in the framework of Theorem 3.1.3, whereas the conventional metric (sub)regularity
does not.

Example 3.1.5 (a line tangent to a circle). [103, Example 2.4] In R2, consider the two sets

A := {(u,−1) ∈ R2 | u ∈ R},
B := {(u, v) ∈ R2 | u2 + v2 = 1},

and the point x̄ = (0,−1). It is well known that the alternating projections algorithm T :=
PAPB does not converge linearly to x̄ unless with the starting points on {(0, v) ∈ R2 : v ∈ R}
(in this special case, the method reaches x̄ in one step). Note that T behaves the same if
B is replaced by the closed unit ball (the case of two closed convex sets). In particular,
T is averaged with constant α = 2/3 by Proposition 1.3.10(iii). Hence, the absence of
linear convergence of T here can be explained as the lack of regularity of the fixed point set
A ∩ B = {x̄}. In fact, the mapping F := T − Id is not (linearly) metrically subregular at
x̄ for 0 on any set Bδ(x̄), for any δ > 0. However, T does converge sublinearly to x̄. This
can be characterized in two different ways.
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• Using Corollary 3.1.4, we characterize sublinear convergence in this example as linear
convergence on annular sets. To proceed, we set

Ri := B2−i(x̄) \ B2−(i+1)(x̄), (i = 0, 1, . . .).

This corresponds to setting δ = 1 and γ = 1/2 in Corollary 3.1.4. The task that
remains is to estimate the constant of metric subregularity, κi, of F on each Ri.
Indeed, we have

inf
x∈Ri∩A

‖x− Tx‖
‖x− x̄‖

=
‖x∗ − Tx∗‖
‖x∗ − x̄‖

= 1− 1√
2−2(i+1) + 1

:= κi > 0, (i = 0, 1, . . .),

where x∗ = (2−(i+1),−1).

Hence, on each ring Ri, T converges linearly to a point in B2−(i+1)(x̄) with rate ci not

worse than
√

1− 1/(2κ2
i ) < 1 by Corollary 3.1.4.

• The discussion above uses the linear gauge functions µi(t) := t
κi

on annular regions,
and hence a piecewise linear gauge function for the characterization of metric sub-
regularity. Alternatively, we can construct a smooth gauge function µ that works on
neighborhoods of the fixed point. For analyzing convergence of PAPB, we must have
F metrically subregular at 0 with gauge µ on R2 relative to A. But we have

dist (0, F (x)) = ‖x− x+‖ = f (‖x− x̄‖) = f
(
dist

(
x, F−1(0)

))
, ∀x ∈ A, (3.5)

where f : [0,∞) → [0,∞) is given by f(t) := t
(

1− 1/
√
t2 + 1

)
. The function f is

continuous strictly increasing and satisfies f(0) = 0 and limt→∞ f(t) =∞. Hence, f
is a gauge function.

We can now characterize sublinear convergence of PAPB explicitly without resorting
to annular sets. Note first that since f(t) < t for all t ∈ (0,∞) the function g :
[0,∞)→ [0,∞) given by

g(t) :=

√
t2 − 1

2
(f(t))2

is a gauge function and satisfies g(t) < t for all t ∈ (0,∞). Note next that T := PAPB
is (for all points in A) averaged with constant 2/3 together with (3.5), we get for any
x ∈ A ∥∥x+ − x̄

∥∥2 ≤ ‖x− x̄‖2 − (1/2)
∥∥x− x+

∥∥2

= ‖x− x̄‖2 − (1/2) (f (‖x− x̄‖))2 .

This implies

dist(x+, S) =
∥∥x+ − x̄

∥∥ ≤√‖x− x̄‖2 − (1/2) (f (‖x− x̄‖))2

= g (‖x− x̄‖) = g (dist(x, S)) , ∀x ∈ A.
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4

Remark 3.1.6 (global (sub)linear convergence of pointwise averaged mappings). [103, Re-
mark 2.2] As Example 3.1.5 illustrates, Theorem 3.1.3 is not an asymptotic result and
does not gainsay the possibility that the required properties hold with neighborhood U = E,
which would then lead to a global quantification of convergence. First order methods for
convex problems lead generically to globally averaged fixed point mappings T . Convergence
for convex problems can be determined from the averaging property of T and existence of
fixed points. Hence in order to quantify convergence the only thing to be determined is the
gauge of metric regularity at the fixed points of T . In this context, see [28]. Example 3.1.5
illustrates how this can be done. This instance will be revisited in Example 3.2.11.

Proposition 3.1.7 (local linear convergence: polyhedral fixed point iterations). [103,
Proposition 2.7] Let Λ ⊂ E be an affine subspace and T : Λ ⇒ Λ be pointwise almost
averaged at {x̄} = Fix T ∩Λ on Λ with violation constant ε and averaging constant α. If T
is polyhedral, then there is a neighborhood U of x̄ such that∥∥x+ − x̄

∥∥ ≤ c ‖x− x̄‖ ∀x ∈ U ∩ Λ, x+ ∈ Tx,

where c =
√

1 + ε− 1−α
κ2α

and κ is the modulus of metric subregularity of F := T − Id for

0 on U relative to Λ. If, in addition κ <
√

(1− α)/(αε), then the fixed point iteration
xj+1 ∈ Txj converges linearly to x̄ with rate c < 1 for all x0 ∈ U ∩ Λ.

In what follows, the n-fold composition of a function ϕ : R→ R is denoted

ϕn := ϕ ◦ . . . ϕ ◦ ϕ︸ ︷︷ ︸
n times

.

Theorem 3.1.8 (error bound estimate for convergence rate). [102, Theorem 2] Let D be
a nonempty closed convex subset of H and let T : D → D be averaged with Fix T 6= ∅.
Suppose that, on each bounded subset U of D, there exists a gauge function κ : R+ → R+

such that condition
dist(x,Fix T ) ≤ κ(‖x− Tx‖) ∀x ∈ U.

is satisfied and

lim
n→∞

ϕn(t) = 0 ∀t ≥ 0 where ϕ(t) :=
√
t2 − γκ−1(t)2.

For any x0 ∈ D, define xn+1 := Txn for all n ∈ N. Then xn → x∗ ∈ Fix T and

‖xn − x∗‖ ≤ 2ϕn (dist(x0,Fix T ))→ 0 as n→∞.

In other words, (xn) converges strongly to x∗ with rate no worse than the rate at which
ϕn (dist(x0,Fix T ))↘ 0.



CHAPTER 3. CONVERGENCE ANALYSIS 60

Remark 3.1.9. [102, Remark 1] We discuss some important special cases of Theorem 3.1.8.

(i) (linear regularity). The setting in which κ is linear ( i.e., κ(t) = Kt for some K > 0)
corresponds to bounded linear regularity of T as discussed in [23, 89]. In this case,
κ−1(t) = t/K and so

ϕ(t) =

√
t2 − γ t2

K2
= t

√
1− γ

K2
=⇒ ϕn(t) = t

(√
1− γ

K2

)n
.

Theorem 3.1.8 implies R-linear convergence with rate no worse than
√

1− γ
K2 which

recovers the single operator specialization of [23].

(ii) (Hölder regularity). The case in which κ is a “Hölder-type function" ( i.e., κ(t) = Ktτ

for constants K > 0 and τ ∈ (0, 1]) corresponds to bounded Hölder regularity of T
as was discussed in [28]. In this case, κ−1(t) = τ

√
t/K and so

ϕ(t) =

√
t2 − γ

K
2
τ

t
2
τ = t

√
1− γ

K
2
τ

tα,

where α := 2/τ − 2 = 2(1− τ)/τ > 0. By [29, §4] this yields

ϕn(t) ≤
(
t−α + αn

γ

K2/τ

)−α
= O(n−1/α) = O

(
n
− τ

2(1−τ)
)
.

Theorem 3.1.8 then implies convergence with order O
(
n
− τ

2(1−τ)
)
which recovers [28,

Proposition 3.1].

As the following example shows, at least in principle, Theorem 3.1.8 opens the possibility
of characterizing different convergence rates by choosing U appropriately.

Example 3.1.10 (convergence rate by regions of a fixed point). [102, Example 1] Consider
the alternating projections operator T := PAPB for the two convex subsets A and B of R2

given by

A := {(x1, x2) ∈ R2 : x2 = 0}, B := epi(f) where f(t) =

{
t if t ≥ 0,

t2 if t < 0.

In this setting, we have Fix T = A ∩ B = {0}. The alternating projections sequence given
by xn+1 := Txn always converges to 0. However, the rate which it does so depends on the
starting point x0 ∈ R2. We consider two cases:

(i) Let U1 := R+ × R. Then the linear error bound condition is satisfied on U1 and (xn)
converges linearly.

(ii) Let U2 := R− × R. Then there is a Hölder-type gauge function κ such that the error
bound condition with gauge κ is satisfied on U2 and (xn) converges sublinearly.



CHAPTER 3. CONVERGENCE ANALYSIS 61

3.2 Cyclic projections

The underlying space in this section is a finite dimensional Euclidean space E. The content
of this section is taken from our joint work with Dr. Matthew K. Tam [103] except Theorem
3.2.13.

Having established the basic geometric language of set feasibility and its connection
to the averaging and stability properties of fixed point mappings, we can now present
convergence results for cyclic projections between sets with possibly empty intersection,
Theorem 3.2.7 and Corollary 3.2.8. The majority of the work, and the source of technical
complications, lies in constructing an appropriate fixed point mapping in the right space
in order to be able to apply Theorem 3.1.3. As we have already said, establishing the
extent of almost averaging is a straight-forward application of Theorem 2.1.6. Thanks to
Proposition 1.3.10 this can be stated in terms of the more primitive property of elemental
set regularity. The challenging part is to show that subtransversality as introduced above
leads to metric subregularity of an appropriate fixed point surrogate for cyclic projections,
Proposition 3.2.4. In the process we show in Proposition 3.2.6 that elemental regularity
and subtransversality become entangled and it is not clear whether they can be completely
separated when it comes to necessary conditions for convergence of cyclic projections.

Given a collection of closed subsets of E, {A1, A2, . . . , Am} (m ≥ 2), and an initial point
u0, the cyclic projections algorithm generates the sequence (uk)k∈N by

uk+1 ∈ TCPuk, TCP := PA1PA2 · · ·PAm .

We will assume throughout this section that Fix TCP 6= ∅.
Our analysis proceeds on an appropriate product space designed for the cycles associated

with a given fixed point of TCP . As above we will use A to denote the product set on Em:
A := A1,×A2 × · · · ×Am. Let ū ∈ Fix TCP and let ζ ∈ Z(ū) where

Z(u) := {ζ := z −Πz | z ∈W0 ⊂ Em, z1 = u}

for the permutation mapping Π given by (1.12) and

W0 :=
{
x ∈ Em

∣∣xm ∈ PAmx1, xj ∈ PAjxj+1, j = 1, 2, . . . ,m− 1
}
.

Note that
∑m

j=1 ζj = 0. The vector ζ is a difference vector which gives information regarding
the intra-steps of the cyclic projections operator TCP at the fixed point ū. In the case of
only two sets, a difference vector is frequently called a gap vector [12, 17, 22, 96]. This is
unique in the convex case, but need not be in the nonconvex case (see Lemma 3.2.3 below).
In the more general setting we have here, this corresponds to nonuniqueness of cycles for
cyclic projections. This greatly complicates matters since the fixed points associated with
TCP will not, in general, be associated with cycles that are the same length and orientation.
Consequently, the usual trick of looking at the zeros of TCP − Id is rather uninformative,
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and another mapping needs to be constructed which distinguishes fixed points associated
with different cycles. The following development establishes some of the key properties of
difference vectors and cycles which then motivates the mapping that we construct for this
purpose.

To analyze the cyclic projections algorithm we consider the sequence on the product
space on Em,

(
xk
)
k∈N generated by xk+1 ∈ Tζx

k with

Tζ : Em ⇒ Em : x 7→


x+

1 , x
+
1 − ζ1, . . . , x

+
1 −

m−1∑
j=1

ζj

 ∣∣x+
1 ∈ TCPx1

 (3.6)

for ζ ∈ Z(ū) where ū ∈ Fix TCP . In order to isolate cycles we restrict our attention to
relevant subsets of Em. These are

W (ζ) :=
{
x ∈ Em

∣∣x−Πx = ζ
}
, (3.7)

L := an affine subspace with Tζ : L⇒ L ,

Λ := L ∩W (ζ).

The set W (ζ) is an affine transformation of the diagonal of the product space and thus
an affine subspace: for x, y ∈ W (ζ), z = λx + (1 − λ)y satisfies z − Πz = ζ for all λ ∈ R.
This affine subspace is used to characterize the local geometry of the sets in relation to each
other at fixed points of the cyclic projections operator.

Points in Fix TCP can correspond to cycles of different lengths, hence an element x ∈
Fix Tζ need not be in W0 and vice verse, as the next example demonstrates.

Example 3.2.1 (Fix Tζ and W0). [103, Example 3.2] Consider the sets A1 = {0, 1} and
A2 = {0, 3/4}. The cyclic projections operator TCP has fixed points {0, 1} and two cor-
responding cycles, Z(0) = {(0, 0)} and Z(1) = {(1/4,−1/4)}. Let ζ = (1/4,−1/4).
Then (0,−1/4) ∈ Fix Tζ but (0,−1/4) /∈ W0. Conversely, the vector (0, 0) ∈ W0, but
(0, 0) /∈ Fix Tζ . The point (1, 3/4), however, belongs to both W0 and Fix Tζ .

The example above shows that what distinguishes elements in Fix Tζ from each other is
whether or not they also belong to W0. The next lemma establishes that, on appropriate
subsets, a fixed point of Tζ can be identified meaningfully with a vector in the image of
the mapping Ψ in Definition 2.3.12 which is used to characterize the alignment of the sets
Aj to each other at points of interest (in particular, fixed points of the cyclic projections
operator).

Lemma 3.2.2. [103, Lemma 3.1] Let ū ∈ Fix TCP and let ζ ∈ Z(ū). Define Ψ := (PA − Id)◦
Π and Fζ := Tζ − Id.
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(i) Tζ maps W (ζ) to itself. Moreover x ∈ Fix Tζ if and only if x ∈ W (ζ) with x1 ∈
Fix TCP . Indeed,

Fix Tζ =

{
x = (x1, x2, . . . , xm) ∈ Em

∣∣∣∣∣x1 ∈ Fix TCP , xj = x1 −
j−1∑
i=1

ζi, j = 2, 3, . . . ,m

}
.

(ii) A point z̄ ∈ Fix Tζ ∩W0 if and only if ζ ∈ Ψ(z̄) if and only if ζ ∈
(
Fζ ◦Π

)
(z̄).

(iii) Ψ−1(ζ) ∩W (ζ) ⊆ F−1
ζ

(0) ∩W (ζ).

(iv) If the distance is with respect to the Euclidean norm then

dist
(

0, Fζ(x)
)

=
√
m dist (x1, TCPx1) .

Lemma 3.2.3 (difference vectors: cyclic projections). [103, Lemma 3.2] Let Aj ⊆ E be
nonempty and closed (j = 1, 2, . . . ,m). Let S0 ⊂ Fix TCP , let U0 be a neighborhood of S0

and define U := {z = (z1, z2, . . . , zm) ∈W0 | z1 ∈ U0 }. Fix ū ∈ S0 and the difference vector
ζ ∈ Z(ū) with ζ = z̄ − Πz̄ for the point z̄ = (z̄1, z̄2, . . . , z̄m) ∈ W0 having z̄1 = ū. If Aj
is elementally subregular at z̄j for (z̄j , 0) ∈ gphNprox

Aj
with constant εj and neighborhood

Uj := pj(U) of z̄j (where pj is the jth coordinate projection operator), then

‖ζ − ζ‖2 ≤
m∑
j=1

εj‖z̄j − zj‖2 (εj := 2εj + 2ε2
j )

for the difference vector ζ ∈ Z(u) with u ∈ S0 and ζ = z −Πz where z = (z1, z2, . . . , zm) ∈
W0 with z1 = u. If the sets Aj (j = 1, 2, . . . ,m) are in fact convex, then the difference
vector is unique and independent of the initial point ū, that is, Z(u) = {ζ} for all u ∈ S0.

Proposition 3.2.4 (metric subregularity of cyclic projections). [103, Proposition 3.4] Let
ū ∈ Fix TCP and ζ ∈ Z(ū) and let x̄ = (x̄1, x̄2, . . . , x̄m) ∈ W0 satisfy ζ = x̄ − Πx̄ with
x̄1 = ū. For L an affine subspace containing x̄, let Tζ : L ⇒ L and define the mapping
Fζ := Tζ − Id. Suppose the following hold:

(a) the collection of sets {A1, A2, . . . , Am} is subtransversal at x̄ for ζ relative to Λ :=
L ∩W (ζ) with constant κ and neighborhood U of x̄;

(b) there exists a positive constant σ such that

dist
(
ζ,Ψ(x)

)
≤ σ dist(0, Fζ(x)), ∀x ∈ Λ ∩ U with x1 ∈ A1. (3.8)

Then F is metrically subregular for 0 on U (metrically regular on U × {0}) relative to Λ
with constant κ = κσ.
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Example 3.2.5 (two intersecting sets). [103, Example 3.3] To provide some insight into
condition (b) of Proposition 3.2.4 it is instructive to examine the case of two sets with
nonempty intersection. Let x̄ = (ū, ū) with ū ∈ A1 ∩ A2 and the difference vector ζ = 0 ∈
Z(x̄). To simplify the presentation, let us consider L = E2 and U = U ′×U ′, where U ′ is a
neighborhood of ū. Then, one has Λ = W (0) = {(u, u) : u ∈ E} and, hence, x ∈ Λ∩U with
x1 ∈ A1 is equivalent to x = (u, u) ∈ U with u ∈ A1 ∩ U ′. For such a point x = (u, u), one
has

dist(0,Ψ(x)) = dist(u,A2),

dist(0, F0(x)) =
√

2 dist (u, PA1PA2(u)) ,

where the last equality follows from the representation

F0(x) = {(z − u, z − u) ∈ E2 : z ∈ PA1PA2(u)}.

Condition (b) of Proposition 3.2.4 becomes

dist(u,A2) ≤ γ dist(u, PA1PA2(u)), ∀u ∈ A1 ∩ U ′. (3.9)

where γ :=
√

2σ > 0. In [84, Remark 12] the phenomenon of entanglement of elemental
subregularity and regularity of collections of sets is briefly discussed in the context of other
notions of regularity in the literature. Inequality (3.9) serves as a type of conduit for this
entanglement of regularities as Proposition 3.2.6 demonstrates.

Proposition 3.2.6 (elemental subregularity and (3.9) imply subtransversality). [103, Propo-
sition 3.5] Let ū ∈ A1 ∩ A2 and U ′ be the neighborhood of ū as in Example 3.2.5. Suppose
that condition (3.9) holds and that the set A1 is elementally subregular relative to A2 at ū
for all (ȳ, 0) with ȳ ∈ A1 ∩U ′ with constant ε < 1/(1 + γ2) and the neighborhood U ′. Then
{A1, A2} is subtransversal at ū.

The main result of this section can now be presented. This statement uses the full tech-
nology of regularities relativized to certain sets of points Sj introduced in Definitions 2.1.2
and 1.3.3 and used in Proposition 1.3.10, as well as the expanded notion of subtransversality
of inconsistent collections of sets introduced in Definition 2.3.12 and applied in Proposition
3.2.4.

Theorem 3.2.7 (convergence of cyclic projections). [103, Theorem 3.2] Let S0 ⊂ Fix TCP 6=
∅ and Z := ∪u∈S0Z(u). Define

Sj :=
⋃
ζ∈Z

(
S0 −

j−1∑
i=1

ζi

)
(j = 1, 2 . . . ,m). (3.10)
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Let U := U1 × U2,× · · · × Um be a neighborhood of S := S1 × S2 × · · · × Sm and suppose
that

PAj

(
u−

j∑
i=1

ζi

)
⊆ S0 −

j−1∑
i=1

ζi ∀ u ∈ S0,∀ ζ ∈ Z for each j = 1, 2 . . . ,m, (3.11a)

PAjUj+1 ⊆ Uj for each j = 1, 2 . . . ,m (Um+1 := U1). (3.11b)

For ζ ∈ Z fixed and x̄ ∈ S with ζ = Πx̄− x̄, generate the sequence
(
xk
)
k∈N by xk+1 ∈ Tζx

k

for Tζ defined by (3.6), seeded by a point x0 ∈ W (ζ) ∩ U for W (ζ) defined by (3.7) with
x0

1 ∈ A1 ∩ U1.
Suppose that, for Λ := L∩ aff (∪ζ∈ZW (ζ)) ⊃ S such that Tζ : Λ⇒ Λ for all ζ ∈ Z and

an affine subspace L ⊃ aff
(
xk
)
k∈N, the following hold:

(a) the set Aj is elementally subregular at all x̂j ∈ Sj relative to Sj for each

(xj , vj) ∈ Vj :=
{

(z, w) ∈ gphNprox
Aj

∣∣ z + w ∈ Uj and z ∈ PAj (z + w)
}

with constant εj ∈ (0, 1) on the neighborhood Uj for j = 1, 2, . . . ,m;

(b) for each x̂ = (x̂1, x̂2, . . . , x̂m) ∈ S, the collection of sets {A1, A2, . . . , Am} is sub-
transversal at x̂ for ζ̂ := x̂ − Πx̂ relative to Λ with constant κ on the neighborhood
U ;

(c) for F
ζ̂

:= T
ζ̂
− Id and Ψ := (PA − Id) ◦Π there exists a positive constant σ such that

for all ζ̂ ∈ Z
dist

(
ζ̂,Ψ(x)

)
≤ σ dist(0, F

ζ̂
(x))

holds whenever x ∈ Λ ∩ U with x1 ∈ A1;

(d) dist(x, S) ≤ dist
(
x, F−1

ζ̂
(0) ∩ Λ

)
for all x ∈ U ∩ Λ, for all ζ̂ ∈ Z.

Then the sequence
(
xk
)
k∈N seeded by a point x0 ∈W (ζ) ∩ U with x0

1 ∈ A1 ∩ U1 satisfies

dist
(
xk+1,Fix Tζ ∩ S

)
≤ cdist(xk, S)

whenever xk ∈ U with

c :=

√
1 + ε− 1− α

ακ2

for

ε :=
m∏
j=1

(1 + ε̃j)− 1, ε̃j := 4εj
1 + εj

(1− εj)2 , α :=
m

m+ 1
(3.12)
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and κ = κσ. If, in addition,

κ <

√
1− α
εα

,

then dist
(
xk,Fix Tζ ∩ S

)
→ 0, and hence dist

(
xk1,Fix TCP ∩ S1

)
→ 0, at least linearly with

rate c < 1.

Corollary 3.2.8 (global R-linear convergence of convex cyclic projections). [103, Corol-
lary 3.1] Let the sets Aj (j = 1, 2, . . . ,m) be nonempty, closed and convex, let S0 =
Fix TCP 6= ∅ and let S = S1 × S2 × · · · × Sm for Sj defined by (3.10). Let Λ := W (ζ)
for ζ ∈ Z(u) and any u ∈ S0. Suppose, in addition, that

(b′) for each x̂ = (x̂1, x̂2, . . . , x̂m) ∈ S, the collection of sets {A1, A2, . . . , Am} is sub-
transversal at x̂ for ζ = x̂−Πx̂ relative to Λ with neighborhood U ⊃ S;

(c′) there exists a positive constant σ such that

dist
(
ζ,Ψ(x)

)
≤ σ dist(0, Fζ(x))

holds whenever x ∈ Λ ∩ U with x1 ∈ A1.

Then the sequence
(
xk
)
k∈N generated by xk+1 ∈ Tζx

k seeded by any point x0 ∈ W (ζ) with
x0

1 ∈ A1 satisfies
dist

(
xk+1,Fix Tζ ∩ S

)
≤ cdist(xk, S)

for all k large enough where

c :=

√
1− 1− α

ακ2 < 1

with κ = κσ for κ a constant of metric subregularity of Ψ for ζ on U relative to Λ and α given
by (3.12). In other words, dist

(
xk,Fix Tζ ∩ S

)
→ 0, and hence dist

(
xk1,Fix TCP ∩ S0

)
→

0, at least R-linearly with rate c < 1.

When the sets Aj are affine, then it is easy to see that the sets are subtransversal to each
other at collections of nearest points corresponding to the gap between the sets. If the cyclic
projection algorithm does not converge in one step (which it will in the case of either parallel
or orthogonally arranged sets) the above corollary shows that cyclic projections converge
linearly with rate

√
1− κ where κ is the constant of metric subregularity, reflecting the

angle between the affine subspaces. This much for the affine case has already been shown
in [14, Theorem 5.7.8].

Remark 3.2.9 (global convergence for nonconvex alternating projections). [103, Remark
3.1] Convexity is not necessary for global linear convergence of alternating projections. This
has been demonstrated using earlier versions of the theory presented here for sparse affine
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feasibility in [60, Corollary III.13 and Theorem III.15]. A sufficient property for global
results in sparse affine feasibility is a common restricted isometry property [60, Eq. (32)]
familiar to experts in signal processing with sparsity constraints. The restricted isometry
property was shown in [60, Proposition III.14] to imply transversality of the affine subspace
with all subspaces of a certain dimension.

Example 3.2.10 (an equilateral triangle – three affine subspaces with a hole). [103, Ex-
ample 3.4] Consider the problem specified by the following three sets in R2

A1 = R(1, 0) =
{
x ∈ R2 | 〈(0, 1), x〉 = 0

}
,

A2 = (0,−1) + R
(
−
√

3, 1
)

=
{
x ∈ R2 |

〈(
−
√

3, 1
)
, x
〉

=
√

3
}
,

A3 = (0, 1) + R
(√

3, 1
)

=
{
x ∈ R2 |

〈(√
3, 1
)
, x
〉

= 1
}
.

The following statements regarding the assumptions of Corollary 3.2.8 are easily verified.

(i) The set S0 = Fix TCP = {(−1/3, 0)}.

(ii) There is a unique fixed point x̄ = (x̄1, x̄2, x̄3) =
(
(−1/3, 0) ,

(
−1/3, 2/

√
3
)
,
(
2/3, 1/

√
3
))
.

(iii) The set of difference vectors is a singleton:

Z =
{
ζ
}

=
{

(ζ1, ζ2, ζ3)
}

=
{((

0,−2/
√

3
)
,
(
−1, 1/

√
3
)
,
(

1, 1/
√

3
))}

.

(iv) The sets S1, S2 and S3 are given by

S1 = S0 − ζ1 =
{(
−1/3, 2/

√
3
)}

S2 = S0 − ζ1 − ζ2 =
{(

2/3, 1/
√

3
)}

S3 = S0 = {(−1/3, 0)} .

(v) Condition (3.11a) is satisfied and condition (3.11b) is satisfied with Uj = R2 (j =
1, 2, 3).

(vi) For j ∈ {1, 2, 3}, Aj is convex and hence elementally regular at x̄j with constant
εj = 0 [84, Proposition 4].

(vii) The mapping Ψ is metrically subregular for ζ on
(
R2
)3 with constant κ =

√
2 relative

to W (ζ):

dist
(
x,Ψ−1(ζ) ∩W (ζ)

)
≤
√

2 dist
(
ζ,Ψ(x)

)
∀x ∈

(
R2
)3
.
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(viii) For all x ∈ W (ζ), the inequality dist
(
ζ,Ψ(x)

)
≤ σ dist

(
0, Fζ(x)

)
holds with σ =

4
√

2/9.

The assumptions of Corollary 3.2.8 are satisfied. Furthermore, Proposition 3.2.4 shows
that the mapping Fζ is metrically subregular for 0 on

(
R2
)3 relative to W (ζ) with constant

κ = κσ =
√

2 × 4
√

2/9 = 8/9. Altogether, Corollary 3.2.8 yields that, from any starting
point, the cyclic projections method converges linearly to ū with rate at most c =

√
37/8.

The next example is new and rather unexpected.

Example 3.2.11 (two non-intersecting circles). [103, Example 3.5] Fix r > 0 and consider
the problem specified by the following two sets in R2

A1 = {x ∈ R2 | ‖x‖ = 1},
A2 = {x ∈ R2 | ‖x+ (0, 1/2 + r)‖ = 2 + r}.

In this example we focus on (local) behavior around the point ū = (0, 1). For U1, a suf-
ficiently small neighborhood of ū, the following statements regarding the assumptions of
Theorem 3.2.7 can be verified.

(i) S0 = Fix TCP ∩ U1 = {ū} = {(0, 1)};

(ii) x̄ = (x̄1, x̄2) = (ū, (0, 3/2)) = ((0, 1), (0, 3/2));

(iii) Z = {ζ} = {(ζ1, ζ2)} = {((0,−1/2), (0, 1/2))};

(iv) the sets S1 and S2 are given by

S1 = S0 − ζ1 = {(0, 1/2)}
S2 = S0 − ζ1 − ζ2 = {(0, 1)} ;

(v) (3.11a) is satisfied, and (3.11b) holds with U1 already given and U2 equal to a scaled-
translate of U1– more precisely, U1 and U2 are related by

U2 =
2 + r

dist
(
ū, (0,−1

2 − r)
) U1 + (0, 1/2);

(vi) L = R2 × R2;

(vii) for j ∈ {1, 2}, Aj is uniformly elementally regular at x̄j for any εj ∈ (0, 1) [84,
Example 2(b)];

In order to verify the remaining conditions of Theorem 3.2.7, we use the following parametriza-
tion: any x = (x1, x2) ∈W (ζ) with x1 ∈ A1 may be expressed in the form x1 = (b,

√
1− b2) ∈

A1 where b ∈ R is a parameter.
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(viii) {A1, A2} is subtransversal at x̄ relative to W (ζ̄), i.e., Ψ is metrically subregular at x̄
for ζ on U (metrically regular at (x̄, ζ) on U × {ζ}) relative to W (ζ̄) with constant

κ lim
b→0

dist
(
x,Ψ−1(ζ) ∩W (ζ)

)
dist

(
ζ,Ψ(x)

) =
3(2r + 3)√
2r2 + 6r + 9

.

(ix) For any ρ > 0 such that

ρ > lim
b→0

dist(ζ,Ψ(x))

dist(0, Fζ(x))
=

√
2
√

2 r2 + 6 r + 9 (2 r + 3)

2
√

4 r2 + 12 r + 13 (r + 2)
,

the following inequality holds

dist(ζ,Ψ(x)) ≤ ρ dist(0, Fζ(x))

for all x ∈W (ζ) sufficiently close to x̄.

The assumptions of Theorem 3.2.7 are satisfied. Furthermore, Proposition 3.2.4 shows that
the mapping Fζ is metrically subregular at x̄ for 0 relative to W (ζ) on U with the constant
κ equal to the product of constant of subtransversality κ in (viii) and ρ. That is,

κ =
3
√

2(2 r + 3)2

2
√

4 r2 + 12 r + 13 (r + 2)
.

Altogether, Theorem 3.2.7 yields that, for any c with

1 > c >

√
1− (4 r2 + 12 r + 13)(r + 2)2

9 (2 r + 3)4 ,

there exists a neighborhood of ū such that the cyclic projections method converges linearly
to ū with rate c.

Remark 3.2.12 (non-intersecting circle and line). [103, Remark 3.2] A analysis similar to
Example 3.2.11 can be performed for the case in which the second circle A2 is replaced with
the line (0, 3/2) + R(1, 0). Formally, this corresponds to setting the parameter r = +∞
in Example 3.2.11. Although there are some technicalities involved in order to make such
an argument fully rigorous, a separate computation has verified the constants obtained in
this way agree with those obtained from a direct computation. When the circle and line are
tangent, then Example 3.1.5 shows how sublinear convergence of alternating projections can
be quantified.

We conclude this section which a more intuitive result which will be applied directly to
the source location problem in Section 5.1.
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Theorem 3.2.13 (linear convergence from strong subtransversality and prox-regularity).
Consider a collection of prox-regular sets {A1, A2, . . . , Am} and suppose that it is strongly
subtransversal at x̄ ∈ ∩mi=1Ai. Then every sequence generated by TCP converges linearly to
x̄ provided that the initial point is sufficiently close to x̄.

Proof. By the strong subtransversality assumption, there exist κ > 0 and ∆ > 0 such that
(∩mi=1Ai) ∩ B2∆(x̄) = {x̄} and

‖x− x̄‖ = dist(x,∩mi=1Ai) ≤ κ max
1≤i≤m

dist(x,Ai) ∀x ∈ B∆(x̄). (3.13)

By the prox-subregularity assumption, for any given ε ∈ (0, 1), there exists δε > 0 such
that

〈x− PAix, x̄− PAix〉 ≤ ε ‖x− PAix‖ ‖x̄− PAix‖ ∀x ∈ Bδε(x̄), ∀i = 1,m. (3.14)

Fix a number
0 < ε <

1

2m(κ+ 1)
(3.15)

and a corresponding δε > 0 satisfying condition (3.14). Let us define δ = min{δε,∆} > 0
and show that every sequence generated by TCP starting in Bδ(x̄) converges linearly to x̄.

Indeed, let any x ∈ Am ∩ Bδ(x̄) and x+ ∈ TCPx. Let us denote xi ∈ PAixi−1 (i =
1, 2, . . . ,m), where x0 = x and xm = x+. By (3.13) and the choice of δ, we have that

‖x− x̄‖ ≤ κ max
1≤i≤m

dist(x,Ai). (3.16)

Since xi ∈ Ai (1 ≤ i ≤ m),

dist(x,Ai) = dist(x0, Ai) ≤
i−1∑
j=0

‖xj − xj+1‖ ≤
m−1∑
j=0

‖xj − xj+1‖ . (3.17)

Plugging (3.17) into (3.16) yields

‖x− x̄‖ ≤ κ
m−1∑
j=0

‖xj − xj+1‖ . (3.18)

Note also that

‖x− xi+1‖ = ‖x0 − xi+1‖ ≤
i∑

j=0

‖xj − xj+1‖ ≤
m−1∑
j=0

‖xj − xj+1‖ . (3.19)
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Using (3.14), triangle inequality, (3.18) and (3.19) successively yields that for each i =
0, 1, . . . ,m− 1,

〈xi − xi+1, x̄− xi+1〉 ≤ ε ‖xi − xi+1‖ ‖x̄− xi+1‖
≤ ε ‖xi − xi+1‖ (‖x̄− x‖+ ‖x− xi+1‖)

≤ ε ‖xi − xi+1‖

κm−1∑
j=0

‖xj − xj+1‖+
m−1∑
j=0

‖xj − xj+1‖


= ε(κ+ 1) ‖xi − xi+1‖

m−1∑
j=0

‖xj − xj+1‖ .

Then we get

‖xi − x̄‖2 = ‖xi+1 − x̄‖2 + ‖xi − xi+1‖2 − 2 〈xi − xi+1, x̄− xi+1〉

≥ ‖xi+1 − x̄‖2 + ‖xi − xi+1‖2 − 2ε(κ+ 1) ‖xi − xi+1‖
m−1∑
j=0

‖xj − xj+1‖ .

Adding the above inequalities over i = 0, 1, . . . ,m− 1, we obtain

‖x− x̄‖2 ≥
∥∥x+ − x̄

∥∥2
+

m−1∑
i=0

‖xi − xi+1‖2 − 2ε(κ+ 1)

(
m−1∑
i=0

‖xi − xi+1‖

)2

.

Thanks to the Cauchy-Schwarz inequality and (3.18), the last estimate implies

‖x− x̄‖2 ≥
∥∥x+ − x̄

∥∥2
+

1

m

(
m−1∑
i=0

‖xi − xi+1‖

)2

− 2ε(κ+ 1)

(
m−1∑
i=0

‖xi − xi+1‖

)2

=
∥∥x+ − x̄

∥∥2
+

(
1

m
− 2ε(κ+ 1)

)(m−1∑
i=0

‖xi − xi+1‖

)2

≥
∥∥x+ − x̄

∥∥2
+

(
1

m
− 2ε(κ+ 1)

)
1

κ2
‖x− x̄‖2 .

Hence ∥∥x+ − x̄
∥∥2 ≤

(
1 +

2ε(κ+ 1)

κ2
− 1

mκ2

)
‖x− x̄‖2 .

Due to (3.15) we have c :=
(

1 + 2ε(κ+1)
κ2

− 1
mκ2

)
< 1 and the proof is complete.

Remark 3.2.14. Since the parameter ε ↓ 0 as xk → x̄, the rate c estimated above tends to
1− 1

mκ2
which is governed by the modulus of the strong subtransversality property.
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Remark 3.2.15. It is not difficult to see that Theorem 3.2.13 is encompassed in the frame-
work of Theorem 3.2.7. The proof given above can be viewed as a shortcut for verifying the
assumptions of that theorem.

3.3 Alternating projections

The underlying space in this section is a finite dimensional Euclidean space E.

Given two sets A and B, the feasibility problem consists in finding a point in their
intersection A ∩B. If these are closed sets in finite dimensions, alternating projections are
determined by a sequence (xk) starting with some point x0 and such that

xk+1 ∈ PAPB(xk) (k = 0, 1, . . .).

In analyzing convergence of the alternating projections (xk), it is usually helpful to
look at the sequence of intermediate points (bk) with bk ∈ PB(xk) and xk+1 ∈ PA(bk)
(k = 0, 1, . . .). We denote the joining sequence by (zk), that is

z2n = xn and z2n+1 = bn, (n = 0, 1, . . .). (3.20)

For simplicity of presentation let us assume throughout the discussion, without loss of
generality, that x0 ∈ A.

Bregman [32] and Gubin et al [56] showed that, if A ∩ B 6= ∅ and the sets are closed
and convex, the sequence converges to a point in A ∩ B. In the case of two subspaces,
this fact was established by von Neumann in the mid-1930s; that is why the method of
alternating projections is sometimes referred to as von Neumann’s method. It was noted in
[118] that alternating projections can be traced back to the 1869 work by Schwarz. It was
shown in [56] that, if riA ∩ riB 6= ∅, the convergence is R-linear. A systematic analysis of
the convergence of alternating projections in the convex setting was done by Bauschke and
Borwein [12, 13], who demonstrated that it is the subtransversality property that is needed
to ensure R-linear convergence.

In this section, let us consider the consistent feasibility problem of finding x ∈ A ∩ B.
Let x̄ ∈ A ∩B.

Proposition 3.3.1. Let A,B ⊂ E be closed and convex, and x̄ ∈ A ∩ B. If {A,B} is
subtransversal at x̄, then alternating projections converge locally linearly with rate at most
1− sr[A,B](x̄)2.

In fact, Section 4.3 will show that subtransversality in the convex setting is not only
sufficient but also necessary for linear convergence of alternating projections. The picture
becomes much more complicated if the convexity assumption is dropped. We next recall
the two approaches for proving linear convergence of nonconvex alternating projections.
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It was established in [59] that subtransversality of the collection of sets (with a reason-
ably good quantitative constant as always for convergence analysis of nonconvex alternating
projections) is sufficient for linear monotonicity of the method for (ε, δ)-subregular sets.
This result is updated here in light of more recent terminology.

Proposition 3.3.2 (convergence of alternating projections with nonempty intersection).
[101, Proposition 4.9] Let S ⊂ A ∩B 6= ∅. Let U be a neighborhood of S and suppose that

PAU ⊆ U and PBU ⊆ U.

Let Λ be an affine subspace of E with Λ ⊃ S such that TAP := PAPB : Λ ⇒ Λ . Define
F := TAP − Id. Let the sets A and B be elementally subregular at all x̄ ∈ S relative to S
respectively for each

(x, vA) ∈ VA :=
{

(z, w) ∈ gphNprox
A | z + w ∈ U and z ∈ PA(z + w)

}
(x, vB) ∈ VB :=

{
(z, w) ∈ gphNprox

B | z + w ∈ U and z ∈ PB(z + w)
}

with respective constants εA, εB ∈ [0, 1) on the neighborhood U . Suppose that the following
hold:

(a) for each x̄ ∈ S, the collection {A,B} is subtransversal at x̄ relative to Λ with constant
κ on the neighborhood U ;

(b) there exists a positive constant σ such that condition (3.8) holds true;

(c) dist(x, S) ≤ dist (x,A ∩B ∩ Λ) for all x ∈ U ∩ Λ.

Then every sequence (xk)k∈N generated by xk+1 ∈ TAPxk seeded by any point x0 ∈ A∩U∩Λ
is linearly monotone with respect to S with constant

c :=

√
1 + ε̃A + ε̃B + ε̃Aε̃B −

1

(κσ)2

with
ε̃A/B := 4εA/B

1 + εA/B(
1− εA/B

)2 .
Consequently, if

ε̃A + ε̃B + ε̃Aε̃B <
1

(κσ)2
.

then dist (xk, S)→ 0 at least linearly with rate c < 1.
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If S = A ∩ B ∩ Λ in the above theorem, then assumption (d) in Proposition 3.2.7 can
obviously be removed.

The next proposition catalogs the mentioned results which complements Proposition
3.2.7.

Proposition 3.3.3 (R-linear convergence of nonconvex alternating projections). For A and
B closed with nonempty intersection and x̄ ∈ A ∩ B, the alternating projections algorithm
locally converges R-linearly if one of the following collection of conditions holds.

(i) [91, Theorem 4.3] A and B are smooth manifolds around x̄ and {A,B} is transversal
at x̄.

(ii) [51, Theorem 6.1] {A,B} is intrinsically transversal at x̄.

(iii) [90, Theorem 5.16] A is super-regular at x̄ and {A,B} is transversal at x̄.

(iv) [20, Theorem 3.17] A is (B, ε, δ)-regular at x̄ and the (A,B)-qualification condition
holds at x̄.

(v) [118, Theorem 2] A is 0-Hölder regular relative to B at x̄ and {A,B} intersects
separably at x̄.

Remark 3.3.4. Amongst criteria listed in Proposition 3.3.3, item (v) has been known to
use weakest regularity assumptions [118].

An attempt on comparing the two approaches of Propositions 3.3.2 and 3.3.3 leads to
the following unified criterion for linear convergence of alternating projections for consistent
feasibility. The following theorem indeed establishes the weakest known sufficient condition
for linear convergence of alternating projections.

Theorem 3.3.5 (unified criterion for linear convergence of TAP ). Suppose that

(i) A is 0-Hölder at x̄ relative to B with constant γ ∈ [0, 1) on a neighborhood U of x̄;

(ii) there is a positive constant κ <
√

1−γ
γ such that

dist(x,A ∩B) ≤ κ‖x− x+‖ ∀x ∈ U and x+ ∈ TAPx. (3.21)

Then every sequence (xk)k∈N generated by xk+1 ∈ TAPxk seeded by any point sufficiently
close to x̄ is linearly convergent to a point in A ∩B.

Proof. Let us denote c := max
{√

1
1−γ −

1
κ2
, 1

1+γ2

}
and note that c < 1 as κ <

√
1−γ
γ as

assumed. Without loss of generality, it can be assumed that c ∈ (0, 1). Let δ > 0 be so
small that B 2δ

1−c
(x̄) ⊂ U .
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Take any x ∈ A ∩ Bδ(x̄) and x+ ∈ TAPx and let b ∈ PB(x) such that x+ ∈ PA(b). We
consider the two cases of b relative to x and x+ as follows.

Case 1: ‖b− x‖ ≥ (1 + γ2)‖b− x+‖. Then

‖b− x+‖ ≤ 1

1 + γ2
‖b− x‖. (3.22)

Case 2: ‖b− x‖ < (1 + γ2)‖b− x+‖. Note that both x and b are in U . By definition of
0-Hölder regularity, we have that〈

b− x+, x− x+
〉
≤ γ‖b− x+‖‖x− x+‖.

Then

‖x− b‖2 = ‖x− x+‖2 + ‖b− x+‖2 − 2
〈
b− x+, x− x+

〉
≥ ‖x− x+‖2 + ‖b− x+‖2 − 2γ‖b− x+‖‖x− x+‖

= (1− γ)
(
‖x− x+‖2 + ‖b− x+‖2

)
+ γ

(
‖x− x+‖ − ‖b− x+‖

)2
.

≥ (1− γ)
(
‖x− x+‖2 + ‖b− x+‖2

)
.

This together with inequality (3.21) implies that

1

1− γ
‖x− b‖2 ≥ ‖x− x+‖2 + ‖b− x+‖2

≥ 1

κ2
dist(x,A ∩B) + ‖b− x+‖2

≥ 1

κ2
dist(x,B) + ‖b− x+‖2

=
1

κ2
‖x− b‖2 + ‖b− x+‖2.

Hence

‖b− x+‖ ≤
√

1

1− γ
− 1

κ2
‖b− x‖. (3.23)

A combination of (3.22) and (3.23) yields that

‖b− x+‖ ≤ c‖b− x‖ ∀x ∈ A ∩ Bδ(x̄), b ∈ PB(x), x+ ∈ PA(b). (3.24)

Using (3.24) and noting the choice of δ, one can infer from the induction procedure in
[90, Theorem 2] that verify that every sequence (xk) generated by xk+1 ∈ TAPxk seeded by
any point A ∩ Bδ(x̄) is linearly extendible with frequency 2 and rate c. Proposition 2.6 of
[101] then implies that (xk) converges linearly with rate

√
c to a point x̃, which belongs to

A∩B due to the closeness of the sets and the nature of alternating projections. The proof
is complete.
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Condition (3.21) is also known as the coercivity property of TAP .
We next clarify the relationships amongst regularity notions imposed in Propositions

3.3.2 and 3.3.3 and Theorem 3.3.5 in order to demonstrate the unification of the latter
result. The elemental regularity condition imposed in Proposition 3.3.2 implies the 0-Hölder
regularity imposed in the other two results [84, Proposition 4]. The relationships amongst
the subtransversality, separate intersection and coercivity properties are more fundamental
for explaining the relationships amongst the above results.

Lemma 3.3.6. The two regularity conditions imposed in Proposition 3.3.2 imply the coerciv-
ity property of TAP . As a consequence, Theorem 3.3.5 theoretically encompasses Proposition
3.3.2.

Proof. Let x ∈ A be sufficiently close to x̄, b ∈ PB(x) and x+ ∈ PA(b). The assumptions
of Proposition 3.3.2 imply the linear monotonicity of TAP with respect to A∩B with some
constant c ∈ [0, 1) (see the proof of [59, Corollary 3.13]), in particular,

dist(x+, A ∩B) ≤ cdist(x,A ∩B).

This property obviously implies the coercivity of TAP since

‖x− x+‖ ≥ dist(x,A ∩B)− dist(x+, A ∩B) ≥ (1− c) dist(x,A ∩B).

The proof is complete.

Lemma 3.3.7. The two regularity conditions imposed in Proposition 3.3.3 (v) imply the
coercivity property of TAP . As a consequence, Theorem 3.3.5 theoretically encompasses
Proposition 3.3.3 in view of Remark 3.3.4.

Proof. Let x ∈ A be sufficiently close to x̄, b ∈ PB(x) and x+ ∈ PA(b). The assumptions
of Proposition Proposition 3.3.3 (v) imply the linear extendibility of TAP with frequency 2
and some constant c ∈ [0, 1) (see the proof of [118, Theorem 2]), in particular,

‖b− x+‖ ≤ c‖b− x‖.

Thanks to [101, Theorem 4.16], linear extendibility of TAP with frequency 2 and some
constant c also implies the subtransversality of {A,B} at x̄, in particular,

dist(x,A ∩B) ≤ 2

1− c
dist(x,B).

A combination of the two inequalities yields the coercivity property as claimed:

‖x−x+‖ ≥ ‖b−x‖−‖b−x+‖ ≥ (1−c)‖b−x‖ = (1−c) dist(x,B) ≥ (1− c)2

2
dist(x,A∩B).

The proof is complete.
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Lemma 3.3.8. When the sets A and B are convex, the coercivity property of TAP is equiv-
alent to the subtransversality of {A,B} at x̄.

Proof. The implication that subtransversality implies the coercivity property is covered in
Lemma 3.3.6 since convexity implies elemental regularity, see also the original work in the
convex setting [13]. Thanks to Lemma 3.1 of [59], the coercivity property implies linear
monotonicity of all iterations generated by TAP seeded sufficiently close to x̄. The latter
property in turn implies subtransversality of {A,B} at x̄ as claimed thanks to Theorem
4.12 of [101].

In view of Lemmas 3.3.6, 3.3.7 and 3.3.8, Theorem 3.3.5 theoretically unifies all ex-
isting criteria for linear convergence of alternating projections for consistent feasibility in
both convex and nonconvex settings. We note that each of the above convergence criteria
requires its own technical constraint on the quantitative constants of the relevant regular-
ity notions, however, it seems challenging to make a rigorous comparison amongst such
technical constraints.

We conclude this section which a specific result about alternating projections on the
product space which will be applied directly to the source location problem in Section 5.1.
Given a collection of sets {A1, A2, . . . , Am}, we define the two sets in the cartesian product
space Em as follows:

A :=
m∏
i=1

Ai, D := {(x, x, . . . , x) ∈ Em | x ∈ E}.

It is well known that alternating projections for the two sets A and D corresponds exactly
to the averaged projections for the m sets {A1, A2, . . . , Am} [126]:

PDPA([x]m) =

[
1

m

m∑
i=1

PAix

]
m

∀x ∈ E.

Theorem 3.3.9 (linear convergence from strong subtransversality and prox-regularity).
Consider a collection of prox-regular sets {A1, A2, . . . , Am} and suppose that it is strongly
subtransversal at x̄ ∈ ∩mi=1Ai. Then every sequence generated by PDPA converges linearly
to [x̄]m provided that the initial point is sufficiently close to [x̄]m.

Proof. By the strong subtransversality assumption, there exist κ > 0 and ∆ > 0 such that
(∩mi=1Ai) ∩ B2∆(x̄) = {x̄} and

‖x− x̄‖ = dist(x,∩mi=1Ai) ≤ κ max
1≤i≤m

dist(x,Ai) ∀x ∈ B∆(x̄). (3.25)

By the prox-subregularity assumption, for any given ε ∈ (0, 1), there exists δε > 0 such
that

〈x− PAix, x̄− PAix〉 ≤ ε ‖x− PAix‖ ‖x̄− PAix‖ ∀x ∈ Bδε(x̄), ∀i = 1,m.
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This in particular implies that for any given ε ∈ (0, 1), there exists δε > 0 such that

〈u− PAu, ū− PAu〉 ≤ ε ‖u− PAu‖ ‖ū− PAu‖ ∀x ∈ Bδε(x̄), u = [x]m, ū = [x̄]m. (3.26)

Fix a number ε > 0 satisfying

ε+ ε2 +
ε

2(1− ε)
<

1

mκ2
(3.27)

and a corresponding δε > 0 satisfying condition (3.26). Let us define δ = min{δε,∆} > 0
and show that every sequence generated by TAP starting at [x]m with x ∈ Bδ(x̄) converges
linearly to [x̄]m.

Indeed, consider any x ∈ Bδ(x̄), u = [x]m, ū = [x̄]m and u+ ∈ PDPAu. Due to the
prox-regularity assumption, we can assume the singleton of the projections involved in this
proof. By (3.25) and the choice of δ, we have that

‖x− x̄‖ ≤ κ max
1≤i≤m

dist(x,Ai). (3.28)

Since max1≤i≤m dist(x,Ai) ≤ dist(u,A), the inequality (3.28) implies that

‖u− ū‖ =
√
m ‖x− x̄‖ ≤

√
mκ max

1≤i≤m
dist(x,Ai) ≤

√
mκdist(u,A) =

√
mκ ‖u− PAu‖ .

(3.29)

Using the Cauchy-Schwarz inequality and (3.26), we get

‖u− ū‖2 = ‖u− PAu‖2 + ‖PAu− ū‖2 − 2 〈u− PAu, ū− PAu〉
≥ ‖u− PAu‖2 + ‖PAu− ū‖2 − 2ε ‖u− PAu‖ ‖ū− PAu‖

≥ (1− ε)
(
‖u− PAu‖2 + ‖PAu− ū‖2

)
. (3.30)

Plugging (3.29) into (3.30) we get

‖PAu− ū‖2 ≤
1

1− ε
‖u− ū‖2 − ‖u− PAu‖2

≤ 1

1− ε
‖u− ū‖2 − 1

mκ2
‖u− ū‖2

=

(
1

1− ε
− 1

mκ2

)
‖u− ū‖2 . (3.31)

Since u+ = PDPAu and D is a subspace containing u and ū, we have∥∥u− u+
∥∥2

= ‖u− PAu‖2 −
∥∥u+ − PAu

∥∥2

= ‖u− PAu‖2 − ‖PAu− ū‖2 +
∥∥u+ − ū

∥∥2
. (3.32)
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Plugging (3.29) and (3.31) into (3.32) we get

∥∥u− u+
∥∥2 ≥ 1

mκ2
‖u− ū‖2 −

(
1

1− ε
− 1

mκ2

)
‖u− ū‖2 +

∥∥u+ − ū
∥∥2

=

(
2

mκ2
− 1

1− ε

)
‖u− ū‖2 +

∥∥u+ − ū
∥∥2
. (3.33)

Thanks to Theorem 2.1.6(iii) the projectors PAi (i = 1, 2, . . . ,m) are almost firmly
nonexpansive at x̄ with violation at most 2ε + 2ε2 on Bδ(x̄). Proposition 1.3.10(i) then
ensures that ∥∥u+ − ū

∥∥2
+
∥∥u− u+

∥∥2 ≤ (1 + 2ε+ 2ε2) ‖u− ū‖2 . (3.34)

Plugging (3.33) into (3.34), we obtain

∥∥u+ − ū
∥∥2

+

(
2

mκ2
− 1

1− ε

)
‖u− ū‖2 +

∥∥u+ − ū
∥∥2 ≤ (1 + 2ε+ 2ε2) ‖u− ū‖2 .

Equivalently,

∥∥u+ − ū
∥∥2 ≤

(
1 + ε+ ε2 +

ε

2(1− ε)
− 1

mκ2

)
‖u− ū‖2 .

Due to (3.27) we have c :=
(

1 + ε+ ε2 + ε
2(1−ε) −

1
mκ2

)
< 1 and the proof is complete.

Remark 3.3.10. Since the parameter ε ↓ 0 as uk → ū, the rate c estimated above tends to
1− 1

mκ2
which is governed by the modulus of the strong subtransversality property. Compared

to Remark 3.2.14, we see that the estimated rates for the cyclic projections and the averaged
projections are very much the same.

Remark 3.3.11. Again, Theorem 3.3.9 is encompassed in the framework of Theorem 3.2.7
and the proof given above can be viewed as a shortcut for verifying the assumptions of that
theorem.

3.4 Forward–backward algorithms

The underlying space in this section is a finite dimensional Euclidean space E. The content
of this section is taken from our joint work with Dr. Matthew K. Tam [103].

We consider the structured optimization problem

minimize
x∈E

f(x) + g(x) (P)
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under different assumptions on the functions f and g. At the very least, we will assume
that these functions are proper, lower semicontinuous functions.

We consider the ubiquitous forward–backward algorithm: given x0 ∈ E, generate the
sequence

(
xk
)
k∈N via

xk+1 ∈ TFB(xk) := prox1,g

(
xk − t∇f(xk)

)
. (3.35)

We keep the step-length fixed for simplicity. This is a reasonable strategy, obviously, when
f is continuously differentiable with Lipschitz continuous gradient and when g is convex
(not necessarily smooth), which we will assume throughout this subsection. For the case
that g is the indicator function of a set C, that is g = ιC , then (3.35) is just the projected
gradient algorithm for constrained optimization with a smooth objective. For simplicity,
we will take the proximal parameter λ = 1 and use the notation proxg instead of prox1,g.
The following discussion uses the property of hypomonotonicity (Definition 1.3.9(b)).

Proposition 3.4.1 (almost averaged: steepest descent). [103, Proposition 3.6] Let U be a
nonempty open subset of E. Let f : E → R be a continuously differentiable function with
calm gradient at x̄ and calmness modulus L on the neighborhood U of x̄. In addition, let
∇f be pointwise hypomonotone at x̄ with violation constant τ on U . Choose β > 0 and
let t ∈ (0, β). Then the mapping Tt,f := Id−t∇f is pointwise almost averaged at x̄ with
averaging constant α = t/β ∈ (0, 1) and violation constant ε = α(2βτ +β2L2) on U . If ∇f
is pointwise strongly monotone at x̄ with modulus |τ | > 0 (that is, pointwise hypomonotone
with constant τ < 0) and calm with modulus L on U and t < 2|τ |/L2, then Tt,f is pointwise
averaged at x̄ with averaging constant α = tL2/ (2|τ |) ∈ (0, 1) on U .

Note the trade-off between the step-length and the averaging property: the smaller
the step, the smaller the averaging constant. In the case that ∇f is not monotone, the
violation constant of nonexpansivity can also be chosen to be arbitrarily small by choosing
β arbitrarily small, regardless of the size of the hypomonotonicity constant τ or the Lipschitz
constant L. This will be exploited in Theorem 3.4.4 below. If ∇f is strongly monotone, the
theorem establishes an upper limit on the stepsize for which nonexpansivity holds, but this
does not rule out the possibility that, even for nonexpansive mappings, it might be more
efficient to take a larger step that technically renders the mapping only almost nonexpansive.
As we have seen in Theorem 3.1.3, if the fixed point set is attractive enough, then linear
convergence of the iteration can still be guaranteed, even with this larger stepsize. This
yields a local justification of extrapolation, or excessively large stepsizes.

Proposition 3.4.2 (almost averaged: nonconvex forward–backward). [103, Proposition
3.7] Let g : E → (−∞,+∞] be proper and l.s.c. with nonempty, pointwise Type-I non-
monotone subdifferential at all points on S′g ⊂ U ′g with violation τg on U ′g, that is, at each
w ∈ ∂g(v) and v ∈ S′g the inequality

−τg ‖(u+ z)− (v + w)‖2 ≤ 〈z − w, u− v〉
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holds whenever z ∈ ∂g(u) for u ∈ U ′g. Let f : E → R be a continuously differen-
tiable function with calm gradient (modulus L) which is also pointwise hypomonotone at
all x̄ ∈ Sf ⊂ Uf with violation constant τf on Uf . For Tt,f := Id−t∇f , suppose that
Tt,fUf ⊂ Ug where Ug :=

{
u+ z

∣∣u ∈ U ′g, z ∈ ∂g(u)
}
and that Tt,fSf ⊂ Sg where Sg :={

v + w
∣∣ v ∈ S′g, w ∈ ∂g(v)

}
. Choose β > 0 and t ∈ (0, β). Then the forward–backward

mapping TFB := proxg (Id−t∇f) is pointwise almost averaged at all x̄ ∈ Sf with violation
constant ε = (1 + 2τg)

(
1 + t

(
2τf + βL2

))
− 1 and averaging constant α on Uf where

α =

{
2
3 , for all α0 ≤ 1

2 ,
2α0
α0+1 , for all α0 >

1
2 ,

and α0 =
t

β
. (3.36)

Corollary 3.4.3 (almost averaged: semi-convex forward–backward). [103, Corollary 3.2]
Let g : E → (−∞,+∞] be proper, l.s.c. and convex. Let f : E → R be a continuously
differentiable function with calm gradient (calmness modulus L) which is also pointwise
hypomonotone at all x̄ ∈ Sf ⊂ Uf with violation constant τf on Uf . Choose β > 0 and
t ∈ (0, β). Then the forward–backward mapping TFB := proxg (Id−t∇f) is pointwise almost
averaged at all x̄ ∈ Sf with violation constant ε = t

(
2τf + βL2

)
and averaging constant α

given by (3.36) on Uf .

As the above proposition shows, the almost averaging property comes relatively nat-
urally. A little more challenging is to show that Assumption (b) of Theorem 3.1.3 holds
for a given application. The next theorem is formulated in terms of metric subregularity,
but for the forward–backward iteration, the graphical derivative characterization given in
Proposition 2.2.4 can allow for a direct verification of the regularity assumptions.

Theorem 3.4.4 (local linear convergence: forward–backward). [103, Theorem 3.3] Let
f : E→ R be a continuously differentiable function with calm gradient (modulus L) which
is also pointwise hypomonotone at all x̄ ∈ Fix TFB ⊂ Uf with violation constant τf on Uf .
Let g : E → (−∞,+∞] be proper and l.s.c. with nonempty, pointwise Type-I nonmono-
tone subdifferential at all v ∈ S′g ⊂ U ′g, with violation τg on U ′g whenever z ∈ ∂g(u) for
u ∈ U ′g. For Tt,f := Id−t∇f let Tt,fUf ⊂ Ug where Ug :=

{
u+ z

∣∣u ∈ U ′g, z ∈ ∂g(u)
}

and let Tt,f Fix TFB ⊂ Sg where Sg :=
{
v + w

∣∣ v ∈ S′g, w ∈ ∂g(v)
}
. If, for all t ≥ 0 s-

mall enough, FFB := TFB − Id is metrically subregular for 0 on Uf with modulus κ ≤ κ <
1/
(
2
√
τg
)
, then for all t small enough, the forward–backward iteration xk+1 ∈ TFBx

k satis-
fies dist

(
xk,Fix TFB

)
→ 0 at least linearly for all x0 close enough to Fix TFB. In particular,

if g is convex, and κ is finite, then the distance of the iterates to Fix TFB converges linearly
to zero from any initial point x0 close enough provided that the stepsize t is sufficiently
small.

Corollary 3.4.5 (global linear convergence: convex forward–backward). [103, Corollary
3.3] Let f : E→ R be a continuously differentiable function with calm gradient (modulus L)
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which is also pointwise strongly monotone at all x̄ ∈ Fix TFB on Rn. Let g : E→ (−∞,+∞]
be proper, convex and l.s.c. Let Tt,f Fix TFB ⊂ Sg where

Sg :=
{
v + w

∣∣ v ∈ S′g, w ∈ ∂g(v)
}
.

If, for all t ≥ 0 small enough, FFB := TFB − Id is metrically subregular for 0 on Rn with
modulus κ ≤ κ < +∞, then for all fixed step-length t small enough, the forward–backward
iteration xk+1 = TFBx

k satisfies dist
(
xk,Fix TFB

)
→ 0 at least linearly for all x0 ∈ Rn.

Remark 3.4.6 (extrapolation). In Corollary 3.4.5 it is not necessary to choose the stepsize
small enough that TFB is pointwise averaged. It suffices to choose the stepsize t small enough
that c :=

√
1 + ε− 1

2κ2
< 1 where ε = β/2

(
2τf + βL2

)
. In this case, TFB is only almost

pointwise averaged with violation ε on Rn.

Remark 3.4.7. Optimization problems involving the sum of a smooth function and a nons-
mooth function are commonly found in applications and accelerations to forward–backward
algorithms have been a subject of intense study [6, 24, 38, 112]. To this point the theory on
quantitative convergence of the iterates is limited to the convex setting under the addition-
al assumption of strong convexity/strong monotonicity. Theorem 3.4.4 shows that locally,
convexity of the smooth function plays no role in the convergence of the iterates or the or-
der of convergence, and strong convexity, much less convexity, of the function g is also not
crucial - it is primarily the regularity of the fixed points that matters locally. This agrees
nicely with recent global linear convergence results of a primal-dual method for saddle point
problems that uses pointwise quadratic supportability in place of the much stronger strong
convexity assumption [100]. Moreover, local linear convergence is guaranteed by metric sub-
regularity on an appropriate set without any fine-tuning of the only algorithm parameter t,
other than assuring that this parameter is small enough. When the nonsmooth term is the
indicator function of some constraint set, then the regularity assumption can be replaced by
the characterization in terms of the graphical derivative (2.9) to yield a familiar constraint
qualification at fixed points.

If the functions in (P) are piecewise linear-quadratic, then the forward–backward mapping
has polyhedral structure (Proposition 3.4.9), which, following Proposition 3.1.7, allows for
easy verification of the conditions for linear convergence (Proposition 3.4.10).

Definition 3.4.8 (piecewise linear-quadratic functions). A function f : Rn → [−∞,+∞]
is called piecewise linear-quadratic if dom f can be represented as the union of finitely
many polyhedral sets, relative to each of which f(x) is given by an expression of the form
1
2〈x,Ax〉+〈a, x〉+α for some scalar α ∈ R vector a ∈ Rn, and symmetric matrix A ∈ Rn×n.
If f can be represented by a single linear-quadratic equation on Rn, then f is said to be
linear-quadratic.

For instance, if f is piecewise linear-quadratic, then the subdifferential of f and its
proximal mapping proxf are polyhedral [129, Proposition 12.30].
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Proposition 3.4.9 (polyhedral forward–backward). [103, Proposition 3.8] Let f : E→ R
be quadratic and let g : E → (−∞,+∞] be proper, l.s.c. and piecewise linear-quadratic
convex. The mapping TFB defined by (3.35) is single-valued and polyhedral.

Proposition 3.4.10 (linear convergence of polyhedral forward–backward). [103, Proposi-
tion 3.9] Let f : E → R be quadratic and let g : E → (−∞,+∞] be proper, l.s.c. and
piecewise linear-quadratic convex. Suppose Fix TFB is an isolated point {x̄}, where TFB :=
proxg (Id−t∇f). Suppose also that the modulus of metric subregularity κ of F := TFB− Id
at x̄ for 0 is bounded above by some constant κ for all t > 0 small enough. Then, for all
t small enough, the forward–backward iteration xk+1 = TFB

(
xk
)
converges at least linearly

to x̄ whenever x0 is close enough to x̄.

Example 3.4.11 (iterative soft-thresholding). [103, Example 3.7] Let f(x) = xTAx +
xT b and g(x) = α‖Bx‖1 for A ∈ Rn×n symmetric and B ∈ Rm×n full rank. The
forward–backward algorithm applied to the problem minimize f(x) + g(x) is the iterative
soft-thresholding algorithm [43] with fixed step-length t in the forward step x − t∇f(x) =
x− t(2Ax+b). The function g is piecewise linear, so proxg is polyhedral hence the forward–
backward fixed point mapping TFB is single-valued and polyhedral. As long as Fix TFB is an
isolated point relative to the affine hull of the iterates xk+1 = TFBx

k, and the modulus of
metric subregularity is independent of the stepsize t for all t small enough, then, by Propo-
sition 3.4.10 for small enough stepsize t the iterates xk converge linearly to Fix TFB for all
starting points close enough to Fix TFB. If A is positive definite (i.e., f is convex) then the
set of fixed points is a singleton and convergence is linear from any starting point x0.

As a special case, the forward–backward algorithm with parameter λ ∈ (0, 2] for feasi-
bility of two sets takes the form

xk+1 ∈ TFB(xk) := PA((1− λ)xk + λPB(xk)), (k = 0, 1, . . .). (3.37)

Following the analysis of [90, Theorem 5.2], one can obtain the following convergence result.

Theorem 3.4.12 (linear convergence: forward–backward for feasibility). Suppose that {A,B}
is transversal at x̄ and A is super-regular at x̄. Then the forward–backward algorithm (3.37)
converges locally linearly around x̄.

3.5 Douglas–Rachford algorithm and its relaxations

The underlying space in this section is a finite dimensional Euclidean space E. The first
half of this section is taken from our joint work with Dr. Matthew K. Tam [103] while the
rest has been published recently in [133].

The Douglas–Rachford algorithm is commonly encountered in one form or another for
solving both feasibility problems and structured optimization. In the context of problem
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(P) the iteration takes the form

xk+1 ∈ TDR(xk) := 1
2 (RfRg + Id) (xk). (3.38)

where Rf := 2 proxf − Id (i.e., the proximal reflector) and Rg is similarly given.
Revisiting the setting of [96], we use the tools developed in the present paper to show

when one can expect local linear convergence of the Douglas–Rachford iteration. For sim-
plicity, as in [96], we will assume that f is convex in order to arrive at a clean final statement,
though convexity is not needed for local linear convergence.

Proposition 3.5.1. [103, Proposition 3.10] Let g = ιC for C ⊂ E a manifold, and let
f : E → R be convex and linear-quadratic. Fix x̄ ∈ Fix TDR. Then for any ε > 0 small
enough, there exists δ > 0 such that TDR is single-valued and almost firmly nonexpansive
with violation εg = 4ε+ 4ε2 on Bδ(x̄).

Theorem 3.5.2. [103, Theorem 3.4] Let g = ιC for C ⊂ E a manifold and let f : E→ R be
linear-quadratic convex. Let (xk)k∈N be iterates of the Douglas–Rachford (3.38) algorithm
and let Λ = aff(xk). If TDR − Id is metrically subregular at all points x̄ ∈ Fix TDR ∩ Λ 6= ∅
relative to Λ then for all x0 close enough to Fix TDR∩Λ, the sequence xk converges linearly
to a point in Fix T ∩Λ with constant at most c =

√
1 + ε− 1/κ2 < 1 where κ is the constant

of metric subregularity for F := TDR− Id on some neighborhood U containing the sequence
and ε is the violation of almost firm nonexpansiveness on the neighborhood U .

Remark 3.5.3. [103, Remark 3.5] Assuming that the fixed points, restricted to the affine hull
of the iterates, are isolated points, polyhedrality was used in [4] to verify that the Douglas–
Rachford mapping is indeed metrically subregular at the fixed points. While in principle the
graphical derivative formulas (see Proposition 2.2.4) could be used for more general situa-
tions, it is not easy to compute the graphical derivative of the Douglas–Rachford operator,
even in the simple setting above. This is a theoretical bottleneck for the practical applicability
of metric subregularity for more general algorithms.

Applied to feasibility problems, the Douglas–Rachford algorithm is also described as
averaged alternating reflections [17]. Here, both f = ιA and g = ιB are the indicator
functions of individual constraint sets. When the sets A and B are sufficiently regular, as
they certainly are in the phase retrieval problem, and intersect transversally, local linear
convergence of the Douglas–Rachford algorithm in this instance was established in [125]. As
discussed in Example 3.1.5, however, for any phase retrieval problem arising from a physical
noncrystallographic diffraction experiment, the constraint sets cannot intersect when finite
support is required of the reconstructed object. This fact, seldom acknowledged in the
phase retrieval literature, is borne out in the observed instability of the Douglas–Rachford
algorithm applied to phase retrieval [95]: it cannot converge when the constraint sets do
not intersect [17, Theorem 3.13].

To address this issue, a relaxation for nonconvex feasibility was studied in [95, 96] that
amounts to (3.38) where f is the Moreau envelope of a nonsmooth function and g is the
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indicator function of a sufficiently regular set. Optimization problems with this structure
are guaranteed to have solutions. In particular, when f is the Moreau envelope to ιA with
parameter λ, the corresponding iteration given by (3.38) can be expressed as a convex
combination of the underlying basic Douglas–Rachford operator and the projector of the
constraint set encoded by g [96, Proposition 2.5]:

xk+1 ∈ TRAARxk := 1
2(λ+1) (RARB + Id) (xk) +

λ

λ+ 1
PBx

k

where RA = 2PA− Id, RB = 2PB − Id and β = 1
λ+1 . In [95] and the physics literature this

is known as relaxed alternating averaged reflections.
We consider RAAR for the special structure of feasibility problem of

finding ȳ ∈ Aχ ∩ Y, (3.39)

where χ = Cn and A : Cn → CN (N ≥ 2n) is linear isometric and Y ⊂ CN given by

Y := {y ∈ CN | |y| = b pointwise}, for a given b ∈ RN+ .

This model is for the phase retrieval problem in Fourier domain and the RAAR algorithm
for solving (3.39) takes the explicit form

TRAAR(y) = β

(
y +AA∗

(
2b� y

|y|
− y
)
− 2β − 1

β
b� y

|y|

)
. (3.40)

The next linear convergence result is formulated in [93] which extends the analogous
result for the Douglas–Rachford algorithm [39, Theorem 5.1].

Theorem 3.5.4. [93, Theorem 4] Let x̄ ∈ Cn and A ∈ CN×n isometric with N ≥ 2n. Let
ȳ = Ax̄, b = |ȳ| and suppose

bmin = min
1≤j≤N

b(j) > 0. (3.41)

Let
B := diag

(
ȳ∗

|ȳ|

)
A (3.42)

and suppose that

λ2 := max {‖Im(Bu)‖ : u ∈ Cn, ‖u‖ = 1, u ⊥ ix̄} < 1. (3.43)

Let yk be an RAAR iteration sequence with y1 = Ax1 and xk = A∗yk. If x1 is sufficiently
close to x̄, then for some constant η < 1,∥∥∥xk − x̄∥∥∥

Opt
≤ ηk−1

∥∥x1 − x̄
∥∥

Opt
,

where ∥∥∥xk − x̄∥∥∥
Opt

:= min
c∈C,|c|=1

‖cxk − x̄‖.
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We consider another relaxed version of the Douglas–Rachford method [133]:

TDRAPx = PB (PAx+ λ(PAx− x))− λ (PAx− x) ,

where λ ∈ (0, 1) is a parameter.

Remark 3.5.5. TDRAP with λ = 0 is the alternating projections method and TDRAP with
λ = 1 is the Douglas–Rachford method.

Following the lines of [125, Theorem 4.3] and [59, Theorem 3.18], as preliminary results
we obtain local linear convergence of TDRAP under the assumption of transversality.

Let us consider the consistent feasibility for two sets {A,B} and let x̄ ∈ A ∩B.
The next lemma is an extension of [125, Lemma 4.2].

Lemma 3.5.6. [133, Lemma 3] Suppose that {A,B} is transversal at x̄, i.e., θ̄ < 1 where θ̄
is defined by (2.26). Then for any θ ∈ (θ̄, 1), there exists a number δ > 0 such that for all
x ∈ Bδ(x̄) and x+ ∈ TDRAPx,

κdist(x,A ∩B) ≤
∥∥x− x+

∥∥ ,
where κ is defined by

κ :=
(1− θ)

√
1 + θ

√
2 max

{
1, λ+

√
1− θ2

} > 0. (3.44)

We are now ready to prove local linear convergence for algorithm TDRAP which gener-
alizes the corresponding results established in [59, 125] for the DR method.

Theorem 3.5.7 (linear convergence of algorithm TDRAP ). [133, Theorem 4] Suppose that
{A,B} is transversal at x̄. Let θ ∈ (θ̄, 1) where θ̄ is defined by (2.26). Suppose that A and
B are (ε, δ)-regular at x̄ with ε̃ < (1+λ)κ2

2 , where κ and ε̃ are respectively given by (3.44)
and

ε̃ := 2(2ε+ 2ε2) + (1 + λ)(2ε+ 2ε2)2.

Then every iteration xk+1 ∈ TDRAPxk starting sufficiently close to x̄ converges R-linearly
to a point in A ∩B.

Remark 3.5.8. Theorem 3.5.7 remains valid if the transversality assumption is weakened
to the transversality relative to the affine hull of A ∪B.
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3.6 ADMM algorithms

The underlying space in this section is a finite dimensional Euclidean space.

The following minimization problem which covers both source location and phase re-
trieval problems discussed in Section 5.

minimize
E×E

F (x, u) :=
1

2
‖x− a‖ − 〈u, x− a〉+ ιA(x) + ιB(u), (3.45)

where A and B are convex sets in E.
The augmented Lagrangian for the problem (3.45) is

Lρ (x, u, v, w) =
1

2
‖x− a‖2 − 〈v, x− a〉+ 〈w, u− v〉+

ρ

2
‖u− v‖2 .

Here ρ > 0 is the penalty parameter and w ∈ E is the multiplier corresponding to the
constraint u− v = 0. We will always assume that ρ > 2.

The basic ADMM algorithm for solving (3.45) can be rewritten as a projection algo-
rithm.

Algorithm 3.6.1. [99] For any starting point (x0, u0, v0, w0) ∈ E4, one generates an iter-
ation

{
yk :=

(
xk, uk, vk, wk

)}
k∈N as follows:

xk+1 ∈ PA(a+ vk),

uk+1 ∈ PB
(
vk − ρ−1wk

)
,

vk+1 =
1

ρ

(
ρuk+1 + xk+1 − a+ wk

)
,

wk+1 = a− xk+1.

Algorithm 3.6.1 determines a set-valued operator T : E4 ⇒ E4 which assigns each input
(x, u, v, w) with T (x, u, v, w) consisting of all points (x+, u+, v+, w+) generated by the main
loop of Algorithm 3.6.1. It was shown in [99] that fixed points of T are critical points of F .

Denote yk =
(
xk, uk, vk, wk

)
, k ∈ N.

The following global convergence of Algorithm 3.6.1 was established in [99].

Theorem 3.6.2 (Global convergence of Algorithm 3.6.1). Let
{
yk
}
k∈N be a sequence gen-

erated by Algorithm 3.6.1. Then the sequence
{
yk
}
k∈N converges globally to some point

y∗ = (x̄, ū, v̄, w̄) with (x̄, ū) being a critical point of F .



Chapter 4

Necessary conditions for convergence

In recent years there has been a lot of progress in determining ever weaker conditions
to guarantee local linear convergence of elementary fixed point algorithms, with particular
attention given to the method of alternating projections and the Douglas–Rachford iteration
[20, 51, 59, 90, 91, 118, 125]. These works beg the question: what are necessary conditions
for linear convergence? We shed some light on this question for expansive fixed point
iterations and show how our theory specializes for the alternating projections iteration in
nonconvex and convex settings. The content of this chapter is taken from our joint papers
with Prof. Marc Teboulle and Dr. Matthew K. Tam [101, 102].

4.1 Existence of implicit error bounds

The underlying space in this section is an infinite dimensional Hilbert space if not otherwise
specified.

We first present necessary conditions for the existence of a gauge-type subregularity
property – what we refer to as an implicit error bound.

The next lemma will be referred to frequently in the subsequent development.

Lemma 4.1.1. [102, Lemma 1] Let T : H ⇒ H satisfy Fix T 6= ∅. Let U ⊂ H with
U ∩ Fix T 6= ∅. Define the set-valued map S : R+ ⇒ H by

S(t) := {y ∈ H : dist(y, Ty) ≤ t}

and define the function κ : R+ → R+ ∪ {+∞} by

κ(t) := sup
y∈S(t)∩U

{dist(y,Fix T )}. (4.1)

The following assertions hold.

88
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(i) The set S(t) is a nonempty subset of dom T for all t ≥ 0 and satisfies

∅ 6= Fix T = S(0) ⊂ S(s) ⊂ S(t) ∀t ≥ s ≥ 0.

(ii) The function κ is nonnegative, nondecreasing, κ(0) = 0 and satisfies

dist(x,Fix T ) ≤ κ(‖x− Tx‖) ∀x ∈ U. (4.2)

If any of the following hold, then κ is bounded:

(a) there is a bounded set V with S(t) ∩ U ⊂ V for all t;

(b) the function dist(·,Fix T ) is bounded on U .

The next results show that nonexpansiveness alone is enough to guarantee the existence
of an error bound. This is remarkable since, without asymptotic regularity, the fixed point
iteration need not even converge.

Theorem 4.1.2 (error bounds of nonexpansive operators: finite dimensional version). [102,
Theorem 3] Let H be a finite dimensional Hilbert space. Suppose that T : H → H is
nonexpansive with Fix T 6= ∅. Then, for each bounded set U containing a fixed point of T ,
the nondecreasing function κ : R+ → R+ defined by (4.1) is bounded, right-continuous at
t = 0 with κ(0) = 0 and satisfies (4.2).

Note that the proof Theorem 4.1.2 is not valid in infinite dimensions, since in this case
the bounded sequence (yn) need only contain a weakly convergent subsequence and the
dist(·,Fix T ) need not be weakly (sequentially) continuous.

Remark 4.1.3 (Infinite dimensional counterexamples). [102, Remark 2] In general, the
assumption of finite dimensionality of H in Theorem 4.1.2 cannot be dropped. Indeed, if H
is infinite dimensional, then a concrete counterexample is provided by any averaged operator
with a fixed point, T , for which there is a starting point, x0 ∈ H, such that the sequence
(Tnx0)∞n=0 converges weakly but not strongly. The explicit constructions of such an examples
can be found, for instance, in [55] and in [62].

We make the following observation.

Lemma 4.1.4. [102, Lemma 2] Let H be a Hilbert space, and let T : H → H be averaged with
Fix T 6= ∅. For each Picard iteration (xn) generated by T from a starting point x0 ∈ H,
let us define d0 := dist(x0,Fix T ) and d := limn→∞ dist(xn,Fix T ). Then there exists
a continuous and nondecreasing function µ : [d, d0] → [d, d0] satisfying µ(t) < t for all
t ∈ (d, d0] such that

dist(xn+1,Fix T ) = µ(dist(xn,Fix T )) ∀n ∈ N. (4.3)
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Proof. Since the proof is constructive and needed in the subsequent analysis, it is presented
here for completeness. Let us denote dn := dist(xn,Fix T ) for all n ∈ N. We first claim
that there exists a sequence (cn) ⊂ [0, 1), dependent on x0, such that

dn+1 = cndn ∀n ∈ N. (4.4)

For any N ∈ N, if xN+1 ∈ Fix T , then one can take cn = 0 for all n > N . Suppose, then,
that xn+1 /∈ Fix T , hence xn /∈ Fix T and xn 6= xn+1. In particular, ‖xn−xn+1‖ > 0. Since
T is averaged, there is a constant γ > 0 such that

d2
n+1 ≤ d2

n − γ‖xn − xn+1‖2.

Consequently, we have 0 < dn+1 < dn and it follows that

cn :=
dn+1

dn
∈ (0, 1)

is well-defined and satisfies (4.4).
We next define the piecewise linear function, µ, on [d, d0] such that

µ(d) := d, µ(dn) := cndn ∀n ∈ N. (4.5)

and, on each interval of the form [dn+1, dn], the value of µ is given by a linear interpolation
of its values defined by (4.5).

To complete the proof, we check that µ is nondecreasing on [d, d0]. By the construction
of µ, the sequence (µ(dn)) in nonincreasing as n → ∞. It suffices to check that µ is
nondecreasing on each (nontrivial) interval [dn+1, dn]. Indeed, let dn+1 ≤ t1 < t2 ≤ dn,
then

µ(t1) = µ (dn+1) +
t1 − dn+1

dn − dn+1
(µ (dn)− µ (dn+1))

≤ µ (dn+1) +
t2 − dn+1

dn − dn+1
(µ (dn)− µ (dn+1)) = µ(t2).

Proposition 4.1.5. [102, Proposition 1] Let H be a Hilbert space and consider an operator
T : H → H with Fix T 6= ∅. Let (xn)n∈N be a Picard sequence such that dist(xn,Fix T )→ 0.
Then the function κ defined by (4.1) with U := (xn)n∈N is nonnegative, nondecreasing,
bounded, κ(0) = 0 and satisfies

dist(xn,Fix T ) ≤ κ(‖xn − Txn‖) ∀n ∈ N.

In addition, if T is averaged, then the sequence (xn)n∈N converges strongly to some point
x in Fix T and the function κ is right continuous at 0.
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It is clear from the above observation that, in order to obtain a meaningful error bound,
a suitable function κ needs to be found for all possible starting points on a bounded set
containing fixed points of T . Nevertheless, the sequence (cn) given by Lemma 4.1.4 does
characterize strong convergence of the corresponding iteration (xn). More specifically, we
have the following.

Proposition 4.1.6 (equivalences). [102, Proposition 2] Let H be a Hilbert space, let T :
H → H be averaged with Fix T 6= ∅ and let (xn) be a Picard iteration generated by T with
initial point x0 ∈ H. The following statements are equivalent.

(i) (xn) converges strongly to a point x in H.

(ii) (xn) converges strongly to a point x in Fix T .

(iii) dist(xn,Fix T ) converges to zero.

(iv) There exists a nondecreasing function µ : [0, d0] → [0, d0] satisfying µ(t) < t for all
t ∈ [0, d0] such that (4.3) holds and µn (dist(x0,Fix T ))→ 0 as n→∞.

Remark 4.1.7. [102, Remark 3] The function µ in Proposition 4.1.6(iv) characterizes the
convergence rate of (xn).

(i) When µ is majorized by a linear function with slope c ∈ [0, 1) on some interval [0, τ)
where τ > 0, that is,

µ (dist(xn,Fix T )) ≤ cdist(xn,Fix T ) ∀n sufficiently large

– equivalently, the sequence (cn) defined in (4.4) satisfies c := supn∈N cn < 1 – then
we have a linearly monotone sequence as defined in [101] and R-linear convergence
as detailed in [16, Theorem 5.12].

(ii) When µn(dist(x0,Fix T )) tends to zero slower or faster than a linear rate, the se-
quence (xn) is said to converge sublinearly or superlinearly, respectively. An example
of sublinear convergence corresponding to µ(t) = t√

t2+1
for all t ∈ [0, dist(x0,Fix T )]

is detailed in Example 4.1.10 below.

In order to deduce a uniform version of the previous results, a property which holds
uniformly on U is needed.

Theorem 4.1.8 (sufficient condition for an error bound). [102, Theorem 4] Let H be a
Hilbert space, let T : H → H with Fix T 6= ∅, let U be a bounded subset of H containing
a fixed point of T . Suppose that there exists a function c : [0,∞) → [0, 1] which is upper
semi-continuous on (0, exc(U,Fix T )] and satisfies c(t) < 1 for all t in this interval such
that

dist(Tx,Fix T ) ≤ c (dist(x,Fix T )) dist(x,Fix T ) ∀x ∈ U. (4.6)

Then the nonnegative, nondecreasing function κ : R+ → R+ defined by (4.1) is bounded,
right-continuous at t = 0 and satisfies (4.2).
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Example 4.1.9 (arbitrarily slow convergence). [102, Example 2] There are two things to
point out about the theorem above, both hinging on the choice of the subset U . The first
point is that it is possible to choose U such that no c satisfying the requirements of the
theorem exists. We demonstrate this when U is simply a ball. Such a phenomenon shows
that uniform linear error bounds are not always possible. The second point, however, is that
when an iteration converges it is always possible to choose a set U such that a function c
exists satisfying the requirements of Theorem 4.1.8, but the resulting error bound may not
always be informative. We also show an example of this below.

To put the above results in context, consider the method of alternating projections for
finding the intersection of two closed subspaces of a Hilbert space, call them A and B.
The alternating projections fixed point mapping is T := PAPB with Fix TAB = A ∩ B.
Von Neumann showed that the iterates of the method of alternating projections converges
strongly to the projection of the starting point onto the intersection [134]. In the mid 1950’s
a rate was established in terms of what is known as the Friedrich’s angle [54] between the
sets defined as the number in [0, π2 ] whose cosine is given by

c(A,B) := sup

{
| 〈a, b〉 |

∣∣∣∣ a ∈ A ∩ (A ∩B)⊥, ‖a‖ ≤ 1,
b ∈ B ∩ (A ∩B)⊥, ‖b‖ ≤ 1.

}
It is straightforward to see that c(A,B) ≤ 1. Moreover, c(A,B) < 1 if and only if A+B is
closed [12, Lemma 4.10]. In this case, a bound on the rate of convergence in terms of the
Friedrichs angle follows from the fact that [72]

‖Tn − PA∩B‖ = c(A,B)2n−1 ∀n ∈ N. (4.7)

If A+B is not closed, then it was shown in [18] ( i.e., c(A,B) = 1) that convergence can be
arbitrarily slow in the sense that for any nonincreasing sequence λn → 0 with λ0 < 1, there
is a starting point xλ such that

‖Tnxλ − PA∩Bxλ‖ ≥ λn ∀n ∈ N

In the context of Theorem 4.1.8, if A + B is closed, then the function c : [0,∞) → [0, 1]
can be simply chosen to be the cosine of the Friedrichs angle [19, Theorem 3.16].

On the other hand, if A + B is not closed, then no such function exists as soon as the
bounded set U contains dilate of the sphere S := {x ∈ H : ‖x‖ = 1}. To see this, suppose
on the contrary, that there exists a function c satisfying Theorem 4.1.8. In particular, we
have that c(t) < 1 (t > 0). Then for any x ∈ S ⊆ U we have

‖Tx− PA∩Bx‖ = dist(Tx,Fix T ) ≤ c(dist(x,Fix T )) dist(x,Fix T )

= c(dist(x,Fix T ))‖x− PA∩Bx‖
≤ c(dist(x,Fix T ))‖x‖.



CHAPTER 4. NECESSARY CONDITIONS FOR CONVERGENCE 93

Dividing both sides of the inequality by ‖x‖, taking the supremum over S, and substituting
(4.7) gives

1 ≤ sup
x∈S

c(dist(x,Fix T )),

which contradicts the assumption that c(t) < 1 (as c satisfies Theorem 4.1.8). The choice
of U to be a scaled ball is the natural choice when one is interested in uniform error bounds.
This example shows that even for the simple alternating projections algorithm, such bounds
are not always possible.

To the second point, if for the above example, instead of choosing U to be a ball, we
restrict U to be the iterates xn of the alternating projections sequence together with their
limit x∞ for a fixed x0, then we can construct a function c satisfying the assumptions of
Theorem 4.1.8. Indeed, choose c(t) to be a linear interpolation of the points

c(tn) :=
‖Txn − x∞‖
‖xn − x∞‖

for tn = ‖xn − x∞‖ whenever ‖xn − x∞‖ > 0.

Such a function satisfies the requirements of Theorem 4.1.8 and hence guarantees the exis-
tence of an error bound. But this is not informative, because the error bound depends on
the iteration itself, and hence the initial guess x0. Returning to the fact that if A + B is
not closed the alternating projections algorithm exhibits arbitrarily slow convergence, then
even though we have an error bound for a particular instance we cannot say anything about
uniform rates of convergence.

The following example illustrates the role of the function c satisfying condition (4.6) as
in Theorem 4.1.8.

Example 4.1.10. [102, Example 3] Consider the alternating projections operator T :=
PAPB for the two convex subsets A and B of R2 given by

A := {(x1, x2) ∈ R2 : x2 = 0}, B := {(x1, x2) ∈ R2 : x2
1 + (x2 − 1)2 ≤ 1}.

Then we have Fix T = A ∩ B = {0} and the only set U of interest is U = A. For each
x ∈ U , say x = (t, 0), it holds Tx =

(
t√
t2+1

, 0
)
and consequently

dist(x,Fix T ) = |t|, dist(Tx,Fix T ) =
|t|√
t2 + 1

, ‖x− Tx‖ = |t|
(

1− 1√
t2 + 1

)
.

In this setting, we now can directly check the following statements.

(i) The function c defined by

c(t) :=
1√
t2 + 1

, ∀t ∈ R+
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satisfies all the assumptions of Theorem 4.1.8. It is worth emphasizing that for each
α > 0,

cα := sup{c(t) : t ≥ α} =
1√

α2 + 1
< 1 while sup{c(t) : t ≥ 0} = 1.

(ii) The function ϕ : R+ → R+ defined by

ϕ(t) := t

(
1− 1√

t2 + 1

)
, ∀t ∈ R+,

is a gauge function and the desired function, κ, defined by (4.1) is the inverse function
ϕ−1 which is also a gauge function.

(iii) This development is an extension of µ-monotonicity introduced in [101]. A sequence
(xk) on H, is said to be µ-monotone with respect to Ω (∅ 6= Ω ⊂ H) if there exists a
nonnegative function µ : R+ → R+ satisfying µ(0) = 0 and

µ(t1, k1) < µ(t2, k2) when (t1 < t2 and k1 = k2) or (t1 = t2 6= 0 and k1 > k2)

with
(∀k ∈ N) dist(xk+1,Ω) ≤ µ (dist(xk,Ω)) .

In the present example, the sequence (xn) generated by T is µ-monotone with respect
to Fix T , where µ : R+ → R+ is given by

µ(t) :=
t√

t2 + 1
, ∀t ∈ R+.

Remark 4.1.11. [102, Remark 4] Condition (4.6) can be viewed as the functional extension
of the linear result in [101, Theorem 3.12] where linear monotonicity (part (ii) of Example
4.1.10) was shown to be sufficient for the existence of linear error bounds. Indeed, (4.6) is a
realization of the notion of µ-monotonicity introduced in [101] in which the function µ has
the form µ(t) := c(t) · t for all t ≥ 0. In particular, if c(t) := c0 for some constant c0 < 1,
Theorem 4.1.8 recovers [101, Theorem 3.12].

Note that in Theorem 4.1.8, condition (4.6) is the only assumption required to obtained
the error bound. An implicit consequence of the condition is that the distance of Picard
iterates to Fix T converges to zero as soon as T has a fixed point and that the initial point
of the iteration is in a set U which satisfies T (U) ⊂ U .

Proposition 4.1.12 (convergence to zero of the distance to fixed points). [102, Proposition
3] Let H be a Hilbert space, let T : H → H with Fix T 6= ∅, and let U be a bounded
subset containing a fixed point of T and T (U) ⊂ U . Suppose that there exists a function
c : [0,∞)→ [0, 1] being upper semi-continuous on (0, exc(U,Fix T )] and satisfying c(t) < 1
for all t in this interval such that condition (4.6) is satisfied. Then every Picard iteration
(xn) with x0 ∈ U generated by T satisfies dist(xn,Fix T )→ 0 as n→∞.
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In light of Proposition 4.1.12, Theorem 4.1.8 can be viewed as a uniform version of
Proposition 4.1.5.

We discuss some insights of condition (4.6) in the averaged operator setting.

Remark 4.1.13. [102, Remark 5] Let T : H → H be averaged with Fix T 6= ∅.

(i) Lemma 4.1.4 implies that, for each x ∈ H, there exists a number cx < 1 such that

dist(Tx,Fix T ) ≤ cx dist(x,Fix T ).

Note that, the existence of a function c satisfying condition (4.6) would require that the
supremum of all such numbers cx taken over each level set Lt := {x : dist(x,Fix T ) =
t} exists and is less than 1. In this case, c can be any function which is upper semi-
continuous on (0, exc(U,Fix T )] and satisfies

sup{cx : x ∈ Lt} ≤ c(t) < 1, ∀t > 0.

Note that the function f : H → R+ given by

f(x) :=

{
dist(Tx,Fix T )
dist(x,Fix T ) if x /∈ Fix T,

0 if otherwise

is continuous at all points x /∈ Fix T as a quotient of two continuous functions
dist(·,Fix T ) and dist(T (·),Fix T ) (because T is averaged). Thus, in particular, if
H is finite dimensional and Fix T is bounded, then Lt is compact and hence, for all
t > 0, sup{cx : x ∈ Lt} is trivially less than one. In other words, for an averaged
operator in a finite dimensional space, condition (4.6) in Theorem 4.1.8 is superfluous
and only upper semi-continuity of c need be assumed.

(ii) Condition (4.6) quantifies the rate of decrease of dist(·,Fix T ) on each level set Lt.
More precisely, if xn ∈ Lt, then the distance to Fix T will decrease by a factor of
at least c(t) in the next iterate xn+1. Furthermore, a closer look at the proof of
Proposition 4.1.12 shows that condition (4.6) can actually provide an estimate of the
rate at which dist(Tnx,Fix T )→ 0 even in infinite dimensional setting.

(iii) On one hand, Theorem 4.1.8 can be viewed as an attempt to extend Theorem 4.1.2
to infinite dimensional settings. On the other hand, it shows that an error bound in
the form of (4.2) is a necessary condition for a certain type of µ-monotonicity (see
Example 4.1.10 and Remark 4.1.11). More precisely, µ-monotonicity with µ of the
form µ(t) = c(t)t for all t ≥ 0 where c denotes the function in (4.6).

We next discuss the linear metric subregularity/error bounds as necessary conditions
for linear convergence of fixed point iterations.

The following result shows that metric subregularity is necessary for linearly mono-
tone sequences, without any assumptions about the averaging properties of T , almost or
otherwise.
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Theorem 4.1.14 (necessity of metric subregularity). [101, Theorem 3.12] Let T : E⇒ E ,
fix Ω ⊂ Λ ⊂ E where Fix T ∩Λ is closed and nonempty. If for each x0 ∈ Ω, every sequence
(xk)k∈N generated by xk+1 ∈ Txk ⊂ Λ is linearly monotone with respect to Fix T ∩ Λ with
constant c ∈ [0, 1), then the mapping Φ := T −Id is metrically subregular on Ω for 0 relative
to Λ with constant κ ≤ 1

1−c .

Corollary 4.1.15 (necessary conditions for linear convergence). [101, Corollary 3.13] For
a fixed number δ ∈ (0,∞] let T : E⇒ E be almost averaged with violation ε and averaging
constant α on (Fix T + Bδ) ∩ Λ where Fix T is assumed closed and nonempty. If, for each
x0 ∈ ((Fix T + Bδ) ∩ Λ) \ Fix T , every sequence (xk)k∈N generated by xk+1 ∈ Txk ⊂ Λ is
linearly monotone with respect to Fix T ∩Λ with constant c ∈ [0, 1), then all such sequences
converge R-linearly with rate c to some point in Fix T ∩ Λ and Φ := T − Id is metrically
subregular on (Fix T + Bδ) \ Fix T for 0 relative to Λ with constant κ ≤ 1

1−c .

4.2 Necessary conditions for linear convergence of alternating
projections

The underlying space in this section is a finite dimensional Hilbert space.

The next theorem shows that the converse to Proposition 3.3.2 holds more generally
without any assumption on the elemental regularity of the individual sets. Its proof uses
the idea in the proof of [51, Theorem 6.2].

Theorem 4.2.1 (necessary condition for linear monotonicity). [101, Theorem 4.12 with
n = 1] Let A and B be closed sets with x̄ ∈ S ⊂ A ∩ B. Let Λ be an affine subspace
containing S and c ∈ [0, 1). Suppose that every sequence of alternating projections starting
in Λ and sufficiently close to x̄ is contained in Λ and is linearly monotone with respect to
S with constant c. Then the collection of sets {A,B} is subtransversal at x̄ relative to Λ
with constant sr′[A,B](x̄) ≥ 1−c

2 .

The next statement is an immediate consequence of Proposition 3.3.2 and Theorem
4.2.1.

Corollary 4.2.2 (subtransversality is necessary and sufficient for linear monotonicity).
[101, Corollary 4.13] Let Λ ⊂ E be an affine subspace and let A and B be closed subsets of
E that are elementally subregular relative to S ⊂ A ∩ B ∩ Λ at x̄ ∈ S with constant ε and
neighborhood Bδ(x̄) ∩ Λ for all (a, v) ∈ gphNprox

A with a ∈ Bδ(x̄) ∩ Λ.
Suppose that every sequence of alternating projections with the starting point sufficiently

close to x̄ is contained in Λ. All such sequences of alternating projections are linearly
monotone with respect to S with constant c ∈ [0, 1) if and only if the collection of sets is
subtransversal at x̄ relative to Λ (with an adequate balance of quantitative constants).
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The next technical lemma allows us to formally avoid the restriction “monotone” in
Theorem 4.2.1.

Lemma 4.2.3. [101, Lemma 4.14] Let (xk)k∈N be a sequence generated by TAP that converges
R-linearly to x̄ ∈ A ∩B with rate c ∈ [0, 1). Then there exists a subsequence (xkn)n∈N that
is linearly monotone with respect to any set S ⊂ A ∩B with x̄ ∈ S.

Proof. We present the proof for subsequent discussion. By definition of R-linear conver-
gence, there is γ < +∞ such that ‖xk − x̄‖ ≤ γck for all k ∈ N. Let S be any set such
that x̄ ∈ S ⊂ A ∩ B. If xk0 := x0 /∈ S, i.e., dist(xk0 , S) > 0, then there exists an iterate of
(xk)k∈N (we choose the first one) relabeled xk1 such that

dist(xk1 , S) ≤ ‖xk1 − x̄‖ ≤ γck1 ≤ cdist(xk0 , S). (4.8)

Repeating this argument for xk1 in place of xk0 and so on, we extract a subsequence (xkn)n∈N
satisfying

dist(xkn+1 , S) ≤ cdist(xkn , S) ∀n ∈ N.

The proof is complete.

The above observation allows us to obtain the statement about necessary conditions for
linear convergence of the alternating projections algorithm which extends Theorem 4.2.1.
Here, the index number k1 depending on the sequence (xk)k∈N will come into play in
determining the constant of linear regularity.

Theorem 4.2.4 (subtransversality is necessary for linear convergence). [101, Theorem 4.15]
Let m ∈ N be fixed and c ∈ [0, 1). Let Λ, A and B be closed subsets of E and let x̄ ∈ S ⊂
A∩B∩Λ. Suppose that any alternating projections sequence (xk)k∈N starting in A∩Λ and
sufficiently close to x̄ is contained in Λ, converges R-linearly to a point in S with rate c,
and satisfies k1 ≤ m where k1 is determined as in (4.8). Then the collection of sets {A,B}
is subtransversal at x̄ relative to Λ with constant sr′[A,B](x̄) ≥ 1−c

2m .

Theorem 4.2.5 (necessary condition for linear extendability). [101, Theorem 4.16 with n =
1] Let Λ be an affine subspace, and let A and B be closed sets, x̄ ∈ A∩B ∩Λ and c ∈ [0, 1).
Suppose that for any alternating projections sequence (xk)k∈N starting in Λ and sufficiently
close to x̄, the joining sequence (zk)k∈N given by (3.20) is a linear extension of (xk)k∈N on
Λ with frequency 2 and rate c. Then the collection of sets {A,B} is subtransversal at x̄
relative to Λ with constant sr′[A,B](x̄) ≥ 1−c

2 .

The joining alternating projections sequence (zk)k∈N given by (3.20) often plays a role
as an intermediate step in the analysis of alternating projections. As we shall see, prop-
erty of linear extendability itself can also be of interest when dealing with the alternating
projections algorithm, especially for nonconvex setting. This observation can be seen for
example in [20, 51, 90, 91, 118].
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Theorems 4.2.1 and 4.2.5 remain valid if instead of the whole alternating projections
sequence (xk)k∈N, one supposes there exists a subsequence of form (xj+nk)k∈N for some
j ∈ {0, 1, . . . , n− 1} that fulfills the required property.

Theorem 4.2.6 (subtransversality is necessary for linear monotonicity of subsequences).
[101, Theorem 4.12] Let Λ, A, and B be closed subsets of E, let x̄ ∈ S ⊂ A∩B ∩Λ, and let
1 ≤ n ∈ N and c ∈ [0, 1) be fixed. Suppose that for any sequence of alternating projections
(xk)k∈N starting in Λ and sufficiently close to x̄, there exists a subsequence of the form
(xj+nk)k∈N for some j ∈ {0, 1, . . . , n− 1} that remains in Λ and is linearly monotone with
respect to S with constant c. Then the collection of sets {A,B} is subtransversal at x̄
relative to Λ with constant sr′[A,B](x̄) ≥ 1−c

2(2n2−1−c(n−1))
.

Theorem 4.2.7 (subtransversality is necessary for linear extendability of subsequences).
[101, Theorem 4.16] Let Λ, A, and B be closed subsets of E, let x̄ ∈ A ∩ B ∩ Λ, and
let 1 ≤ n ∈ N and c ∈ [0, 1) be fixed. Suppose that every alternating projections sequence
(xk)k∈N starting in A∩Λ and sufficiently close to x̄ has a subsequence of the form (xj+nk)k∈N
for some j ∈ {0, 1, . . . , n − 1} such that the joining sequence (zk)k∈N given by (3.20) is a
linear extension of (xj+nk) on Λ with frequency 2n and rate c. Then the collection of sets
{A,B} is subtransversal at x̄ relative to Λ with constant sr′[A,B](x̄) ≥ 1−c

2(2n−1−c(n−1)) .

Note that Theorems 4.2.1 and 4.2.5 turn out to be special cases of Theorems 4.2.6 and
4.2.7, respectively with n = 1, i.e., the desired subsequence is actually the whole alternating
projections sequence.

In general, subtransversality is not a sufficient condition for an alternating projections
sequence to converge to a point in the intersection of the sets. For example, let us define
the function f : [0, 1]→ R by f(0) = 0 and on each interval of form (1/2n+1, 1/2n],

f(t) =

{
−t+ 1/2n+1, if t ∈ (1/2n+1, 3/2n+2],
t− 1/2n, if t ∈ (3/2n+2, 1/2n],

(∀n ∈ N)

and consider the sets: A = gph f and B = {(t, t/3) | t ∈ [0, 1]} and the point x = (0, 0) ∈
A ∩B in R2. Then it can be verified that the collection of sets {A,B} is subtransversal at
x while the alternating projections method gets stuck at points (1/2n, 0) /∈ A ∩B.

In the remainder of this section, we show that the property of subtransversality of
the collection of sets has been imposed either explicitly or implicitly in all existing linear
convergence criteria for the alternating projections method that we are aware of.

It can be recognized without much effort that under any item of Proposition 3.3.3, the
sequences generated by alternating projections starting sufficiently close to x̄ are actually
linearly extendible.

Proposition 4.2.8 (ubiquity of subtransversality in linear convergence criteria). [101,
Proposition 4.18] Suppose than one of the conditions (i)–(v) of Proposition 3.3.3 is satisfied.
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Then for any alternating projections sequence (xk)k∈N starting sufficiently close to x̄, the
corresponding joining sequence (zk)k∈N given by (3.20) is a linear extension of (xk)k∈N with
frequency 2 and rate c ∈ [0, 1).

Taking Theorem 4.2.5 into account we conclude that subtransversality of the collection
of sets {A,B} at x̄ is a consequence of each item listed in Proposition 3.3.3. This observation
gives some insights about relationships between various regularity notions of collections of
sets and has been formulated partly in [51, Theorem 6.2] and [84, Theorem 4]. Hence,
the subtransversality property lies at the foundation of all linear convergence criteria for
the method of alternating projections for both convex and nonconvex sets appearing in the
literature to this point.

Based on the results obtained in this section we conjecture that, for alternating projec-
tions applied to consistent feasibility, subtransversality is necessary for R-linear convergence
of the iterates to fixed points, but not sufficient unless the sets are convex. On the other
hand, transversality is sufficient, but is far from being necessary even in the convex case.
For example, transversality always fails when the affine span of the union of the sets is
not equal to the whole space, while alternating projections can still converge linearly as
in the case when the sets are convex with nonempty intersection of their relative interi-
ors. A quest has started for the weakest regularity property lying between transversality
and subtransversality and being sufficient for the local linear convergence of alternating
projections. We mention here the articles by Bauschke et al. [20, 21] utilizing restricted
normal cones, Drusvyatskiy et al. [51] introducing and successfully employing intrinsic
transversality, Noll and Rondepierre [118] introducing a concept of separable intersection,
with 0-separability being a weaker property than intrinsic transversality and still implying
the local linear convergence of alternating projections under the additional assumption that
one of the sets is 0-Hölder regular at the reference point with respect to the other.

4.3 Further discussion on convex alternating projections

The underlying space in this section is a finite dimensional Hilbert space.

In the convex setting, statements with sharper convergence rate estimates are possible.
This is the main goal of the present section. Note that a convex set is elementally regular
at all points in the set for all normal vectors with constant ε = 0 and neighborhood E [83,
Proposition 4(vii)]. We can thus, without loss of generality, remove the restriction to the
subset Λ that is omnipresent in the nonconvex setting. We also write PAx and PBx for the
projections since the projectors are single-valued.

The next technical lemma is fundamental for the subsequent analysis.

Lemma 4.3.1 (nondecrease of rate). [101, Lemma 5.1] Let A and B be two closed convex
sets in E. We have

‖PBPAPBx− PAPBx‖ · ‖PBx− x‖ ≥ ‖PAPBx− PBx‖2 ∀x ∈ A.
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Lemma 4.3.1 implies that for any sequence (xk)k∈N of alternating projections for convex
sets, the rate ‖xk+1−xk‖

‖xk−xk−1‖ is nondecreasing when k increases. This allows us to deduce the
following fact about the algorithm.

Theorem 4.3.2 (lower bound of complexity). [101, Theorem 5.2] Consider the alternating
projections algorithm for two closed convex sets A and B with a nonempty intersection.
Then one of the following statements holds true.

(i) The alternating projections method finds a solution after one iterate.

(ii) Alternating projections will not reach a solution after any finite number of iterates.

Remark 4.3.3. [101, Remark 5.3] In contrast to Theorem 4.3.2 for convex sets, there are
simple examples of nonconvex sets such that for any given number n ∈ N, the alternating
projections method will find a solution after exactly n iterates. For instance, let us consider
a geometric sequence zk =

(
1
3

)k
z0 where 0 6= z0 ∈ E. For any number n ∈ N, one can

construct the two finite sets by A := {z2k | k = 0, 1, . . . , n} and B := {z2n} ∪ {z2k+1 | k =
0, 1, . . . , n− 1}. Then the alternating projections method starting at z0 will find the unique
solution z2n after exactly n iterates.

Theorem 4.3.4 (necessary and sufficient condition: local version). [101, Theorem 5.4] Let
A and B be closed convex sets and x̄ ∈ A∩B. If the collection of sets {A,B} is subtransver-
sal at x̄ with constant sr′[A,B](x̄) ∈ (0, 1), then for any number c ∈ (1 − sr′[A,B](x̄)2, 1),
all alternating projections sequences starting sufficiently close to x̄ are linearly monotone
with respect to A ∩B with rate not greater than c.

Conversely, if there exists a number c ∈ [0, 1) such that every alternating projections
iteration starting sufficiently close to x̄ converges R-linearly to some point in A∩B with rate
not greater than c, then the collection of sets {A,B} is subtransversal at x̄ with constant
sr′[A,B](x̄) ≥ 1− c.

The next theorem is a global version of Theorem 4.3.4.

Theorem 4.3.5 (necessary and sufficient condition: global version). [101, Theorem 5.5]
Let A and B be closed convex sets with nonempty intersection. If the collection of sets
{A,B} is subtransversal at every point of (the boundary of) A ∩B with constants bounded
from below by κ ∈ (0, 1), then for any number c ∈ (1− κ2, 1), every alternating projections
iteration converges R-linearly to a point in A ∩B with rate not greater than c.

Conversely, if there exists a number c ∈ [0, 1) such that every alternating projections
sequence eventually converges R-linearly to a point in A ∩ B with rate not greater than c,
then the collection of sets {A,B} is globally subtransversal with constant κ ≥ 1− c, that is,

(1− c) dist(x,A ∩B) ≤ dist(x,B) ∀x ∈ A.

It is clear that Theorem 4.3.4 does not cover Theorem 4.3.5. The following example
also rules out the inverse inclusion.
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Example 4.3.6 (Theorem 4.3.5 does not cover Theorem 4.3.4). [101, Example 5.6] Consider
the convex function f : R→ R given by

f(t) =


t2, if t ∈ [0,∞),

0, if t ∈ [−1, 0),

−t− 1, if t ∈ (−∞,−1).

In R2, we define two closed convex sets A := epi f and B := R × R− and a point x̄ =
(−1, 0) ∈ A ∩ B. Then the two equivalent properties (transversality of {A,B} at x̄ and
local linear convergence of TAP around x̄) involved in Theorem 4.3.4 hold true while the two
global ones involved in Theorem 4.3.5 do not.

To establish global convergence of a fixed point iteration, one normally needs some kind
of global regularity behavior of the fixed point set. In Theorem 4.3.5, we formally impose
only subtransversality in order to deduce global R-linear convergence and vice versa. Beside
the global behavior of convexity, the hidden reason behind this seemingly contradicting
phenomenon is a well known fact about subtransversality of collections of convex sets. We
next deduce this result from the convergence analysis above.

Corollary 4.3.7. [94, Theorem 8] Let A and B be closed and convex subsets of E with
nonempty intersection. The collection of sets {A,B} is globally subtransversal, that is, there
is a constant κ > 0 such that

κdist(x,A ∩B) ≤ dist(x,B) ∀x ∈ A,

if and only if {A,B} is subtransversal at every point in bd (A ∩B) with constants bounded
from below by some κ > 0.

The convergence counterpart of Corollary 4.3.7 can also be of interest.

Corollary 4.3.8. [101, Corollary 5.8] Let (xk)k∈N be an alternating projections sequence
for two closed convex subsets of E with nonempty intersection and c ∈ [0, 1). If there exists
a natural number p ∈ N such that ‖xk− x̃‖ ≤ γck for all k ≥ p, then ‖xk− x̃‖ ≤ γck for all
k ∈ N.

We emphasize that the two convergence properties appearing in Corollary 4.3.8 are
always equivalent (by the argument for the second part of Theorem 4.3.5) if the constant
γ is not required to be the same. However, this requirement becomes important when one
wants to estimate global rate of convergence via the local rate of convergence. The next
statement can easily be observed as a by-product via the proof of Theorem 4.3.4.

Proposition 4.3.9 (equivalence of linear monotonicity and R-linear convergence). [101,
Proposition 5.9] For sequences of alternating projections between convex sets, R-linear con-
vergence and linear monotonicity of the sequence of iterates are equivalent.
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The next statement can serve as a motivation for Definition 1.2.5.

Proposition 4.3.10 (Q-linear convergence implies linear extendability). [101, Proposition
5.10] Let (xk)k∈N be a sequence of alternating projections for two closed convex sets A,B ⊂ E
with nonempty intersection. If (xk)k∈N converges Q-linearly to a point x̃ ∈ A ∩ B with
rate c ∈ [0, 1), then (xk)k∈N is linearly extendible with frequency 2 and rate c, and the
corresponding joining sequence (zk)k∈N is such a linear extension sequence.



Chapter 5

Applications

The algorithms discussed in Chapter 3 are simulated for the source location and phase
retrieval problems. Regularity properties from the problem data are discussed in accordance
with the convergence theory of each method.

5.1 Source location problem

The ideal mathematical model for source location problem is geometrically very simple,
find the unique common point of a collection of spheres

find x̄ ∈ ∩mj=1Sj , (5.1)

where Sj (j = 1, 2, . . . ,m) is the sphere in Rn centered at aj and with radius rj > 0.
The simplicity of (5.1) provides a useful intuition of rather technical regularity notions

involved in the convergence theory in Chapter 3.
Let us consider (5.1) in R3 and make the following natural assumption on the sensors.

The treatment for the problem in n-dimensional case is analogous.

Assumption 5.1.1. There are always three sensors {aj1 , aj2 , aj3} that together with the
true source x̄ are affinely independent.

The following facts follow from the prox-regularity of the spheres and Assumption 5.1.1.

Fact 5.1.2 (prox-regularity of spheres). Each Sj (j = 1, 2, . . . ,m) is prox-regular at x̄, i.e.,
for any given ε ∈ (0, 1) it holds〈

x− PSjx, x̄− PSjx
〉
≤ ε

∥∥x− PSjx∥∥∥∥x̄− PSjx∥∥ ∀x ∈ Bδ(x̄), (5.2)

where δ := 2rjε
√

1− ε2 > 0.

103
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For all δ > 0 sufficiently small, the constant ε in (5.2) can be represented as a functional
of δ,

ε = f(δ) :=
1√
2

(
1−

√
1− δ2

r2
j

)1/2

∈ (0, 1/
√

2). (5.3)

This function will be needed for estimating radius of linear convergence of algorithms.
It is important to note that f(δ) ↓ 0 as δ ↓ 0.

Fact 5.1.3 (strong subtransversality). Assumption 5.1.1 implies that {Sj1 ,Sj2 ,Sj3} is
strongly subtransversal at x̄, that is, there exist κ,∆ > 0 such that

(
∩3
i=1Sji

)
∩B2∆(x̄) = {x̄}

and

‖x− x̄‖ = dist(x,∩3
i=1Sji) ≤ κ max

i=1,2,3
dist(x,Sji) ∀x ∈ B∆(x̄).

Let us denote
r := min{rj > 0 : 1 ≤ j ≤ m} > 0.

5.1.1 Cyclic and averaged projections

The following theorem guarantees local linear convergence of TCP for solving (5.1) under
Assumption 5.1.1.

Theorem 5.1.4 (linear convergence for TCP ). Let δ ∈ (0,min{r,∆}) satisfy

f(δ) <
1

2m(κ+ 1)
,

where f(δ) is given by (5.3). Then for any starting point in Bδ(x̄), the method TCP for
solving (5.1) converges linearly to x̄ with rate at most

c =

(
1 +

2f(δ)(κ+ 1)

κ2
− 1

mκ2

)1/2

∈ (0, 1).

Proof. Assumption 5.1.1 implies the strong subtransversality of {Sj1 ,Sj2 ,Sj3} at x̄ by Fact
5.1.3. The latter in turn implies the strong subtransversality of the collection {Si} at x̄.
The statement now follows from Theorem 3.2.13 in view of Fact 5.1.2.

The following theorem guarantees local linear convergence of TAP for solving (5.1) under
Assumption 5.1.1.

Theorem 5.1.5 (linear convergence for TAP ). Let δ ∈ (0,min{r,∆}) satisfy

f(δ) + f(δ)2 +
f(δ)

2(1− f(δ))
≤ 1

mκ2
,
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where f(δ) is given by (5.3). Then for any starting point in Bδ(x̄), the method TAP for
solving (5.1) converges linearly to x̄ with rate at most

c =

(
1 + f(δ) + f(δ)2 +

f(δ)

2(1− f(δ))
− 1

mκ2

)1/2

.

Proof. Assumption 5.1.1 implies the strong subtransversality of {Sj1 ,Sj2 ,Sj3} at x̄ by Fact
5.1.3. The latter in turn implies the strong subtransversality of the collection {Si} at x̄.
The statement now follows from Theorem 3.3.9 in view of Fact 5.1.2.

Remark 5.1.6. Since f(δ) ↓ 0 as δ ↓ 0, the rate c estimated in Theorems 5.1.4 and
5.1.5 must be strictly smaller than 1 when the starting point is sufficiently close to x̄.
This convergence rate is improving (smaller) when the iterates get closer to x̄ (i.e., δ is
decreasing).

5.1.2 Forward–backward algorithm and variants of the DR method

We discuss the source location problem with three sensors in the product space

find ū ∈ Λ ∩ S,

where Λ is the diagonal and S :=
∏3
j=1 Sj in R3×3.

The following lemma ensures that {Λ,S} is transversal at the solution under Assumption
5.1.1.

Lemma 5.1.7. If the three sensors satisfy Assumption 5.1.1, then {Λ,S} is transversal at
the solution.

Proof. The statement follows from the linear independence of three nonzero normal vectors
of the spheres at the solution.

In turn, the transversality of {Λ,S} implies the metric subregularity condition imposed
in Corollary 3.1.4 for these algorithms, and as a consequence these algorithms are locally
linearly convergent.

5.1.3 ADMM algorithm

Let us consider the source location problem with noise, that is to find an appropriate
approximation of the true source x̄ that is descibed by the following system of equations

rj = ‖x̄− aj‖+ εj (j = 1, 2, . . . ,m), (5.4)

where εj is the j-th unknown noise. The parameters a = (a1, a2, . . . , am) ∈ Rnm and
r = (r1, r2, . . . , rm) ∈ Rm+ are the receiver locations and distances of the receivers to the
unknown sender x̄, respectively.
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One strategy proposed in [99] to address (5.4) is to find a solution to the following
minimization problem

min
(x,u)∈Rn×Rnm

f (x, u) :=
m∑
j=1

(
1

2
‖x− aj‖2 − rj 〈uj , x− aj〉+ ιB(uj)

)
. (5.5)

Let us denote

A := {x ∈ Rnm | ∃ z ∈ Rn such that x+ a = (z, z, . . . , z)} ,
B := (r1B)× . . .× (rmB),

E := (Rn)m the product space endowed with the 2-norm.

The problem (5.5) then takes the form of (3.45), and hence Algorithm 3.6.1 applied to
this problem converges globally thanks to Theorem 3.6.2.

5.1.4 Numerical simulation

We do simulation for the source location problem in R3 with m = 20 sensors.

• Generate randomly the sensor locations aj , j = 1, 2, . . . ,m, and the true source
location x̄, from a uniform distribution over the box [−10000, 10000]3.

• Compute the ranges rj , j = 1, 2, . . . ,m, using the relation

rj = ‖x̄− aj‖+ εj ,

where εj are noise.

• Generate random starting point again from uniform distribution over the box for all
methods.

The stopping criterion ‖x − x+‖ < 10−10 is used. We run all the above algorithms
in Matlab and observe their convergence behaviors which appear to be consistent with
the convergence theory discussed above. The parameter is chosen with seemingly best
performance for each method: λ = .15 for FB, β = .8 for RAAR, λ = .15 for DRAP, and
ρ = 1.15 for ADMM.

The change of the distance between two consecutive iterates is of interest. When linear
convergence appears to be the case, this observable information may provide the rate of
convergence. Under the assumption that the iteration will remain in the convergent area,
one can obtain practically useful error bound for the distance from the iterate to a solution.

We also pay attention to the iterate gap that in a sense measures the infeasibility at the
iterates. If we think feasibility as the problem of minimizing the function that is the sum of
(the squares of) the distance functions to the sets, then iterate gaps are simply the values of
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Figure 5.1: Source location problem without noise: the change in iterates (left) and the gap
in iterates (right).

that function evaluated at the iterates. For the RAAR and DRAP algorithms, the iterates
are themselves not informative but their shadows, by which we mean the projections of
the iterates on one of the sets. Hence, the iterate gap corresponding to these methods is
calculated for the shadow iterates instead of the iterates themselves.

Figures 5.1 and 5.2 present the changes and the gaps of the algorithms for solving the
source location problem both without noise and with noise, respectively. In the simulation
with noise, the noise εj (j = 1, 2, . . . ,m) are generated from a normal distribution with
zero mean and standard deviation 20.
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Figure 5.2: Source location problem with noise: the change in iterates (left) and the gap in
iterates (right).

5.2 Phase retrieval problem

The phase retrieval problem of recovering a complex signal from several measured intensity
patterns has great interests in optics and imaging science [53, 95, 98, 131].

For an unknown object x̄ ∈ Cn, let A ∈ CN×n be the propagation matrix (A can be
normalized to be isometric) and b ∈ RN be the data vector of |Ax̄|2 (elementwise squared
amplitude). We consider the phase retrieval problem of finding a solution to the equation

|Ax|2 = b. (5.6)

We first consider
A =

1√
m

(F T1 F T2 · · ·F Tm)T ,

where Fj ∈ Cn×n are unitary matrices and b = (bT1 bT2 · · · bTm)T . For each j = 1, 2, . . . ,m,
let us define

Sj :=
{
x ∈ Cn : |Fjx|2 = bj

}
. (5.7)

Then the phase retrieval problem (5.6) can be reformulated as a nonconvex feasibility:

find x̄ ∈
m⋂
j=0

Sj , (5.8)

where S0 describes a priori information.
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5.2.1 Cyclic and averaged projections

Geometrically, each of the sets Sj defined by (5.7) is the cartesian product of a number of
circles in the complex plane and hence it is prox-regular and semi-algebraic. It is worth
mentioning that the analysis regarding prox-regularity in the context of the phase retrieval
problem was first given in [96].

The sets Sj on the one hand can be identified as prox-regular and semi-algebraic sets
in R2n. On the other hand, for any m ≥ 2, it is almost surely that {S1,S2, . . . ,Sm} is sub-
transversal at points of intersection. In fact, the subtransversality property holds pairwise
almost surely, that is for all subcollections of two sets. Hence, these algorithms converge
locally linearly thanks to Chapter 3. In view of Example 3.2.11, the subtransversality in
the extended sense (Definition 2.3.12 (i)) holds true almost surely, and as a result, these
convergence results are also valid for the inconsistent case of (5.8) which corresponds to the
presence of noise or model mismatch of phase retrieval.

5.2.2 Forward–backward algorithm and variants of the DR method

Reformulate problem (5.8) in the product space

find ū ∈ Λ ∩ S,

where Λ is the diagonal and S := S1 × S2 × · · · × Sm in (Cn)m.
Again the sets S and Λ can be identified as prox-regular and semi-algebraic sets in

R2mn. Under the assumption of metric subregularity of T − Id as in Corollary 3.1.4, these
algorithms are known to be locally linearly convergent by Chapter 3. In the special case
of m = 2, the transversality of {Λ,S} at the solution implies the metric subregularity of
T − Id, and as a result this assumption is satisfied almost surely. However, for m > 2, the
transversality property of {Λ,S} becomes infeasible. This phenomenon will be investigated
in a future research.

In (5.6), let us consider A ∈ CN×n (N ≥ 2n) an isometric propagation matrix. Then
we can consider the phase retrieval problem in the Fourier domain as follows:

find ȳ ∈ A ∩ B, (5.9)

where A := A(Cn) and B is the set of points satisfying the Fourier domain constraint, i.e.,

B = {y ∈ CN | |y|2 = b}.

For (5.9), let us assume that the mask functions, which together with the Fourier/Fresnel
transform compose the propagation matrix A, are continuous random variables. Then
ȳ = Ax̄ almost surely vanishes nowhere, i.e. condition (3.41) in Theorem 3.5.4 is satisfied.
The number λ2 defined by (3.43) in that theorem is indeed the second largest singular
value of the matrix (Re(B) − Im(B)) ∈ RN×2n (the largest one is 1), where B is defined
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by (3.42). Condition (3.43) essentially requires the spectral gap of this real matrix. In the
current setting, condition (3.43) is satisfied by, for example, [39, Proposition 6.1]. As a
result, Theorem 3.5.4 yields local linear convergence of the RAAR algorithm (3.40).

5.2.3 ADMM algorithm

We consider the minimization problem for solving (5.6) as follows:

min
x∈Cn

f(x) :=

m∑
j=1

‖|Fjx| − bj‖2 . (5.10)

Decompose the variable x = Re(x) + iIm(x), where Re(x), Im(x) ∈ Rn. Let z = p(x),
where p : Cn → R2n is defined by

Re(x) + iIm(x) = x 7→ p(x) := (Re(x)T , Im(x)T )T .

Decompose uniquely also Fj = Re(Fj)+ iIm(Fj), (j = 1, . . . ,m), where Re(Fj) and Im(Fj)
are real matrices in Rn×n. Define the linear operators Lj : R2n → R2n by

Lj =

(
Re(Fj) −Im(Fj)
Im(Fj) Re(Fj)

)
= p ◦ Fj ◦ p−1.

Note that Lj (j = 1, . . . ,m) are isomorphic linear mappings since both Fj and p are so.
Denote also Lij : R2n → R2 the linear mappings consisting of the i and i+n rows of Lj ,

(i = 1, . . . , n, j = 1, . . . ,m). Then

|(Fjx)(i)| =
∥∥Lijz∥∥ .

Hence, the problem (5.10) is equivalent to

min
z∈R2n

m∑
j=1

n∑
i=1

(
1

2

∥∥Lijz∥∥2 − bij
∥∥Lijz∥∥) . (5.11)

Note that ∥∥Lijz∥∥ = max
uij∈B

〈
uij , L

i
jz
〉

(i = 1, . . . , n, j = 1, . . . ,m).

The problem (5.11) is equivalent to

min
z∈R2n


m∑
j=1

n∑
i=1

(
1

2

∥∥Lijz∥∥2 −
〈
uij , L

i
jz
〉)

, uij ∈ bijB

 . (5.12)
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Define the two closed and convex subsets in E = R2mn as follows:

A =
{

(zij) ∈ (R2)mn | ∃z ∈ R2n : zij = Lijz
}
,

B =
∏

1≤j≤m,1≤i≤n
bijB.

Then (5.12) is equivalently rewritten as

min
x,u∈E

{
1

2
‖x‖2 − 〈u, x〉 : x ∈ A, u ∈ B

}
which turns out to be problem (3.45) with a = 0.

Hence, Algorithm 3.6.1 is known to converge globally thanks to Theorem 3.6.2.

5.2.4 Numerical simulation

Consider a complex object x̄ ∈ C128×128 with the support constraint χ. We can scale and
normalize the data such that

x̄ = ιχ � exp(2πθ)/‖ιχ � exp(2πθ)‖.

Let us consider the phase retrieval problem with four images generated via the corresponding
unitary transforms

F1 = F ◦ exp(−2πθ), F2 = F, F3 = F ◦ exp(2πΘ), F4 = F ◦ exp(−2πΘ),

where F is the Fourier transform (normalized to be unitary) and Θ ∈ (−1, 1]128×128 is a
given defocus.

The stopping criteria ‖x−x+‖ < 10−15 is used. The parameter is chosen with seemingly
best performance for each method: λ = .45 for FB, β = .8 for RAAR, λ = .35 for DRAP,
and ρ = 1.25 for ADMM.

Due to the ambiguity up to a total piston term of phase retrieval, the iterative gap is
measured up the optimal total phase shift:

‖x− x̄‖Opt = ‖(x∗x̄)x/|x∗x̄| − x̄‖ .

In the experiment with noise a white Gaussian noise at 30dB was added to the intensity
measurement and the negative entries of the obtained images were then reset to zeros.
Figures 5.3 and 5.4 present the iterative change and gap of the algorithms for solving this
phase retrieval problem without noise and with noise, respectively. The reconstruction
phase up to an optimal total phase shift for the problem with noise is presented in Figure
5.5.
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Figure 5.3: Phase retrieval JWST experiment without noise: the change in iterates (left)
and the gap in iterates (right).
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Figure 5.4: Phase retrieval JWST experiment with noise: the change in iterates (left) and
the gap in iterates (right).
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Figure 5.5: Phase retrieval JWST experiment with noise: reconstruction up to a total
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Chapter 6

Conclusion

A case study on algorithms for structured nonconvex optimization has been conducted in
the thesis. Its contribution to the field of convergence analysis is twofold: 1) regularity
theory essential for convergence analysis, and 2) convergence criteria of numerical methods
with application.

We synthesize and unify notions of regularity, especially those of individual sets and
of collections of sets, as they appear in the convergence theory of projection methods for
feasibility problems. Several new characterizations of regularity notions are presented.
A number of new relationships amongst regularity properties are established. Based on
the knowledge of regularity notions, we develop a framework for quantitative convergence
analysis of fixed point iterations with a number of subsequent results showing convergence
of fundamental optimization algorithms. Several new convergence criteria for projection
methods are presented. New understanding on regularity theory also paves the way to a
development on necessary conditions for local linear convergence of fundamental algorithms.
Metric subregularity is shown to be necessary for linear monotonicity of Picard iterations.
An intensive discussion on subtransversality as necessary conditions for linear convergence
of alternating projections is presented. In particular, subtransversality is shown to be not
only sufficient but also necessary for linear convergence of convex consistent alternating
projections. We apply and illustrate the theory to the source location and phase retrieval
problems.

In summary, the thesis contributes new insight into the bilateral research topics that,
on the one hand, understanding of regularity properties of the problem data allows one to
establish convergence criteria for optimization algorithms, and on the other hand, analyzing
convergence of numerical methods often leads to a search for more subtle characterizations
of the input data, and hence provides a fruitful platform for investigating regularity notions.

114



Bibliography

[1] M. Apetrii, M. Durea, and R. Strugariu. On subregularity properties of set-valued
mappings. Set-Valued Var. Anal., 21(1):93–126, 2013.

[2] F. J. Aragón Artacho, A. L. Dontchev, and M. H. Geoffroy. Convergence of the
proximal point method for metrically regular mappings. ESAIM: Proc., 17:1–8, 2007.

[3] F. J. Aragón Artacho and M. H. Geoffroy. Uniformity and inexact version of a
proximal method for metrically regular mappings. J. Math. Anal. Appl., 335(1):168–
183, 2007.

[4] T. Aspelmeier, C. Charitha, and D. R. Luke. Local linear convergence of the
ADMM/Douglas–Rachford algorithms without strong convexity and application to
statistical imaging. SIAM J. Imaging Sci., 9(2):842–868, 2016.

[5] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimiza-
tion and projection methods for nonconvex problems: An approach based on the
Kurdyka–Lojasiewicz inequality. Math. Oper. Res., 35(2):438–457, 2010.

[6] H. Attouch and J. Peypouquet. The rate of convergence of Nesterov’s accelerated
forward-backward method is actually faster than 1/k2. SIAM J. Optim., 26(3):1824–
1834, 2016.

[7] J.-P. Aubin. Contingent Derivatives of Set-valued Maps and Existence of Solutions
to Nonlinear Inclusions and Differential Inclusions. Cahiers du CEREMADE. Math-
ematics Research Center, University of Wisconsin, 1980.

[8] J.-P. Aubin and H. Frankowska. Set-valued analysis. Birkhäuser, Boston, 1990.

[9] D. Azé. A survey on error bounds for lower semicontinuous functions. In Proceedings
of 2003 MODE-SMAI Conference, volume 13 of ESAIM Proc., pages 1–17. EDP Sci.,
Les Ulis, 2003.

[10] D. Azé. A unified theory for metric regularity of multifunctions. J. Convex Anal.,
13:225–252, 2006.

115



BIBLIOGRAPHY 116

[11] A. Bakan, F. Deutsch, and W. Li. Strong CHIP, normality, and linear regularity of
convex sets. Trans. Amer. Math. Soc., 357(10):3831–3863, 2005.

[12] H. H. Bauschke and J. M. Borwein. On the convergence of von Neumann’s alternating
projection algorithm for two sets. Set-Valued Anal., 1(2):185–212, 1993.

[13] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex
feasibility problems. SIAM Rev., 38(3):367–426, 1996.

[14] H. H. Bauschke, J. M. Borwein, and A. S. Lewis. The method of cyclic projections
for closed convex sets in Hilbert space. In Recent developments in optimization theory
and nonlinear analysis (Jerusalem, 1995), pages 1–38. Amer. Math. Soc., Providence,
RI, 1997.

[15] H. H. Bauschke, J. M. Borwein, and W. Li. Strong conical hull intersection proper-
ty, bounded linear regularity, Jameson’s property (G), and error bounds in convex
optimization. Math. Program., Ser. A, 86(1):135–160, 1999.

[16] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. CMS Books Math./Ouvrages Math. SMC. Springer, New
York, 2011.

[17] H. H. Bauschke, P. L. Combettes, and D. R. Luke. Finding best approximation pairs
relative to two closed convex sets in Hilbert spaces. J. Approx. Theory, 127:178–92,
2004.

[18] H. H. Bauschke, F. Deutsch, and H. Hundal. Characterizing arbitrarily slow conver-
gence in the method of alternating projections. Int. Trans. Oper. Res., 16(4):413–425,
2009.

[19] H. H. Bauschke, F. Deutsch, H. Hundal, and S.-H. Park. Accelerating the convergence
of the method of alternating projections. Trans. Amer. Math. Soc., 355(9):3433–3461,
2003.

[20] H. H. Bauschke, D. R. Luke, H. M. Phan, and X. Wang. Restricted normal cones and
the method of alternating projections: Applications. Set-Valued Var. Anal., 21:475–
501, 2013.

[21] H. H. Bauschke, D. R. Luke, H. M. Phan, and X. Wang. Restricted normal cones and
the method of alternating projections: Theory. Set-Valued Var. Anal., 21:431–473,
2013.

[22] H. H. Bauschke and W. M. Moursi. The Douglas–Rachford algorithm for two (not
necessarily intersecting) affine subspaces. SIAM J. Optim., 26(2):968–985, 2016.



BIBLIOGRAPHY 117

[23] H. H. Bauschke, D. Noll, and H. M. Phan. Linear and strong convergence of algorithms
involving averaged nonexpansive operators. J. Math. Anal. Appl., (421):1–20, 2015.

[24] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[25] J. Bolte, A. Daniilidis, O. Ley, and L. Mazet. Characterizations of Łojasiewicz
inequalities: subgradient flows, talweg, convexity. Trans. Amer. Math. Soc.,
362(6):3319–3363, 2010.

[26] J. Bolte, Nguyen T. Phong, J. Peypouquet, and B. W. Suter. From error bounds to
the complexity of first-order descent methods for convex functions. Math. Program.,
Ser. A, 165(2):471–507, 2017.

[27] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization
for nonconvex and nonsmooth problems. Math. Program., Ser. A, 146(1-2):459–494,
2014.

[28] J. M. Borwein, G. Li, and M. K. Tam. Convergence rate analysis for averaged fixed
point iterations in common fixed point problems. SIAM J. Optim., 27(1):1–33, 2017.

[29] J. M. Borwein, G. Li, and L. Yao. Analysis of the convergence rate for the cyclic
projection algorithm applied to basic semialgebraic convex sets. SIAM J. Optim.,
24(1):498–527, 2014.

[30] J. M. Borwein and Q. J. Zhu. Techniques of Variational Analysis. Springer, New
York, 2005.

[31] J. M. Borwein and D. M. Zhuang. Verifiable necessary and sufficient conditions for
openness and regularity of set-valued and single-valued maps. J. Math. Anal. Appl.,
134(2):441–459, 1988.

[32] L. M. Bregman. The method of successive projection for finding a common point of
convex sets. Soviet Mathematics - Doklady, 6:688–692, 1965.

[33] R. E. Bruck and S. Reich. Nonexpansive projections and resolvents of accretive
operators in Banach spaces. Houston J. Math., 3(4):459–470, 1977.

[34] L. N. H. Bunt. Bitdrage tot de theorie der konvekse puntverzamelingen. PhD thesis,
Univ. of Groningen, Amsterdam, 1934.

[35] J. V. Burke and S. Deng. Weak sharp minima revisited. I. Basic theory. Control
Cybernet., 31(3):439–469, 2002.

[36] J. V. Burke and S. Deng. Weak sharp minima revisited. II. Application to linear
regularity and error bounds. Math. Program., Ser. B, 104(2-3):235–261, 2005.



BIBLIOGRAPHY 118

[37] J. V. Burke and M. C. Ferris. Weak sharp minima in mathematical programming.
SIAM J. Control Optim., 31:1340–1359, 1993.

[38] A. Chambolle and C. Dossal. On the convergence of the iterates of the “fast iterative
shrinkage/thresholding algorithm”. J. Optim. Theory Appl., 166(3):968–982, 2015.

[39] P. Chen and A. Fannjiang. Fourier phase retrieval with a single mask by Douglas–
Rachford algorithms. Appl. Comput. Harmon. Anal., 44(3):665–699, 2018.

[40] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Nonsmooth Analysis
and Control Theory, volume 178 of Graduate Texts in Mathematics. Springer, New
York, 1998.

[41] P. L. Combettes and T. Pennanen. Proximal methods for cohypomonotone operators.
SIAM J. Control Optim., 43(2):731–742, 2004.

[42] A. Daniilidis and P. Georgiev. Approximate convexity and submonotonicity. J. Math.
Anal. Appl., 291(1):292–301, 2004.

[43] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math., 57:1413–
1457, 2004.

[44] E. De Giorgi, A. Marino, and M. Tosques. Evolution problerns in in metric spaces
and steepest descent curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.
(8), 68(3):180–187, 1980.

[45] F. Deutsch, W. Li, and J. D. Ward. A dual approach to constrained interpolation
from a convex subset of Hilbert space. J. Approx. Theory, 90(3):385–414, 1997.

[46] A. V. Dmitruk, A. A. Milyutin, and N. P. Osmolovsky. Lyusternik’s theorem and the
theory of extrema. Russian Math. Surveys, 35:11–51, 1980.

[47] A. L. Dontchev. The Graves theorem revisited. J. Convex Anal., 3(1):45–53, 1996.

[48] A. L. Dontchev, A. S. Lewis, and R. T. Rockafellar. The radius of metric regularity.
Trans. Amer. Math. Soc., 355:493–517, 2003.

[49] A. L. Dontchev and R. T. Rockafellar. Regularity and conditioning of solution map-
pings in variational analysis. Set-Valued Anal., 12(1-2):79–109, 2004.

[50] A. L. Dontchev and R. T. Rockafellar. Implicit Functions and Solution Mapppings.
Srpinger-Verlag, New York, second edition, 2014.

[51] D. Drusvyatskiy, A. D. Ioffe, and A. S. Lewis. Transversality and alternating projec-
tions for nonconvex sets. Found. Comput. Math., 15(6):1637–1651, 2015.



BIBLIOGRAPHY 119

[52] M. J. Fabian, R. Henrion, A. Y. Kruger, and J. V. Outrata. Error bounds: necessary
and sufficient conditions. Set-Valued Var. Anal., 18(2):121–149, 2010.

[53] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21:2758–2769,
1982.

[54] K. Friedrichs. On certain inequalities and characteristic value problems for analytic
functions and for functions of two variables. Trans. Amer. Math. Soc., 41:321–364,
1937.

[55] A. Genel and J. Lindenstrauss. An example concerning fixed points. Israel Journal
of Mathematics, 22:81–86, 1975.

[56] L. Gubin, B. Polyak, and E. Raik. The method of projections for finding the common
point of convex sets. USSR Comput. Math and Math Phys., 7(6):1–24, 1967.

[57] V. Guillemin and A. Pollack. Differential Topology. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1974.

[58] R. Henrion and J. V. Outrata. Calmness of constraint systems with applications.
Math. Program., Ser. B, 104(2-3):437–464, 2005.

[59] R. Hesse and D. R. Luke. Nonconvex notions of regularity and convergence of funda-
mental algorithms for feasibility problems. SIAM J. Optim., 23(4):2397–2419, 2013.

[60] R. Hesse, D. R. Luke, and P. Neumann. Alternating projections and Douglas–
Rachford for sparse affine feasibility. IEEE Trans. Signal Process., 62(18):4868–4881,
2014.

[61] M. Hirsch. Differential Topology. Springer Verlag, New York, 1976.

[62] H. Hundal. An alternating projection that does not converge in norm. Nonlinear
Anal., 57:35–61, 2004.

[63] A. D. Ioffe. Nonsmooth analysis: differential calculus of nondifferentiable mappings.
Trans. Amer. Math. Soc., 266:1–56, 1981.

[64] A. D. Ioffe. Approximate subdifferentials and applications: III. Mathematika,
36(71):1–38, 1989.

[65] A. D. Ioffe. Metric regularity and subdifferential calculus. Russian Mathematical
Surveys, 55(3):103–162, 2000.

[66] A. D. Ioffe. Regularity on a fixed set. SIAM J. Optim., 21(4):1345–1370, 2011.

[67] A. D. Ioffe. Nonlinear regularity models. Math. Program., Ser. B, 139(1-2):223–242,
2013.



BIBLIOGRAPHY 120

[68] A. D. Ioffe. Metric regularity – a survey. Part I. Theory. J. Aust. Math. Soc.,
101(2):188–243, 2016.

[69] A. D. Ioffe and J. V. Outrata. On metric and calmness qualification conditions in
subdifferential calculus. Set-Valued Anal., 16(2-3):199–227, 2008.

[70] A. N. Iusem, T. Pennanen, and B. F. Svaiter. Inexact versions of the proximal point
algorithm without monotonicity. SIAM J. Optim., 13:1080–1097, 2003.

[71] G. J. O. Jameson. The duality of pairs of wedges. Proc. London Math. Soc., 24:531–
547, 1972.

[72] S. Kayalar and H. Weinert. Error bounds for the method of alternating projections.
Math. Control Signals Syst., 1:43–59, 1988.

[73] Phan Q. Khanh, A. Y. Kruger, and Nguyen H. Thao. An induction theorem and
nonlinear regularity models. SIAM J. Optim., 25(4):2561–2588, 2015.

[74] D. Klatte and B. Kummer. Optimization methods and stability of inclusions in
Banach spaces. Math. Program., Ser. B, 117(1-2):305–330, 2009.

[75] D. Klatte and W. Li. Asymptotic constraint qualifications and global error bounds
for convex inequalities. Math. Program., Ser. A, 84(1):137–160, 1999.

[76] U. Kohlenbach, G. López-Acedo, and A. Nicolae. Quantitative asymptotic regularity
results for the composition of two mappings. Optimization, 66(8):1291–1299, 2017.

[77] A. Y. Kruger. A covering theorem for set-valued mappings. Optimization, 19(6):763–
780, 1988.

[78] A. Y. Kruger. Stationarity and regularity of set systems. Pac. J. Optim., 1(1):101–
126, 2005.

[79] A. Y. Kruger. About regularity of collections of sets. Set-Valued Anal., 14:187–206,
2006.

[80] A. Y. Kruger. About stationarity and regularity in variational analysis. Taiwanese
J. Math., 13(6A):1737–1785, 2009.

[81] A. Y. Kruger. Error bounds and metric subregularity. Optimization, 64(1):49–79,
2015.

[82] A. Y. Kruger. About intrinsic transversality of pairs of sets. Set-Valued Var. Anal.,
26(1):111–142, 2018.

[83] A. Y. Kruger, D. R. Luke, and Nguyen H. Thao. Set-Valued Var. Anal., 25(4):701–
729, 2017.



BIBLIOGRAPHY 121

[84] A. Y. Kruger, D. R. Luke, and Nguyen H. Thao. Set regularities and feasibility
problems. Math. Program., Ser. B, 168(1):1–33, 2018.

[85] A. Y. Kruger and Nguyen H. Thao. About uniform regularity of collections of sets.
Serdica Math. J., 39:287–312, 2013.

[86] A. Y. Kruger and Nguyen H. Thao. About [q]-regularity properties of collections of
sets. J. Math. Anal. Appl., 416(2):471–496, 2014.

[87] A. Y. Kruger and Nguyen H. Thao. Quantitative characterizations of regularity
properties of collections of sets. J. Optim. Theory and Appl., 164:41–67, 2015.

[88] A. Y. Kruger and Nguyen H. Thao. Regularity of collections of sets and convergence
of inexact alternating projections. J. Convex Anal., 23(3):823–847, 2016.

[89] D. Leventhal. Metric subregularity and the proximal point method. J. Math. Anal.
Appl., 360(2):681–688, 2009.

[90] A. S. Lewis, D. R. Luke, and J. Malick. Local linear convergence of alternating and
averaged projections. Found. Comput. Math., 9(4):485–513, 2009.

[91] A. S. Lewis and J. Malick. Alternating projections on manifolds. Math. Oper. Res.,
33:216–234, 2008.

[92] C. Li, K. F. Ng, and T. K. Pong. The SECQ, linear regularity, and the strong CHIP
for an infinite system of closed convex sets in normed linear spaces. SIAM J. Optim.,
18(2):643–665, 2007.

[93] J. Li and T. Zhou. On relaxed averaged alternating reflections (RAAR) algorithm for
phase retrieval with structured illumination. Inverse Problems, 33(2):025012 (20pp),
2017.

[94] W. Li. Abadie’s constraint qualification, metric regularity, and error bounds for
differentiable convex inequalities. SIAM J. Optim., 7(4):966–978, 1997.

[95] D. R. Luke. Relaxed averaged alternating reflections for diffraction imaging. Inverse
Problems, 21:37–50, 2005.

[96] D. R. Luke. Finding best approximation pairs relative to a convex and prox-regular
set in a Hilbert space. SIAM J. Optim., 19(2):714–739, 2008.

[97] D. R. Luke. Lecture Notes in Numerical Variational Analysis. Institute for Numerical
and Applied Mathematics, Univ. of Gottingen, 2017.

[98] D. R. Luke, J. V. Burke, and R. G. Lyon. Optical wavefront reconstruction: theory
and numerical methods. SIAM Rev., 44(2):169–224, 2002.



BIBLIOGRAPHY 122

[99] D. R. Luke, S. Sabach, M. Teboulle, and K. Zatlawey. A simple globally convergent
algorithm for the nonsmooth nonconvex single source localization problem. J. Global
Optim., 69(4):889–909, 2017.

[100] D. R. Luke and R. Shefi. A globally linearly convergent method for pointwise quadrat-
ically supportable convex-concave saddle point problems. J. Math. Anal. Appl.,
457(2):1568–1590, 2018.

[101] D. R. Luke, M. Teboulle, and Nguyen H. Thao. Necessary conditions for linear
convergence of iterated expansive, set-valued mappings with application to alternating
projections. Submitted January 2017.

[102] D. R. Luke, Nguyen H. Thao, and M. K. Tam. Implicit error bounds for Picard
iterations on Hilbert spaces. Vietnam J. Math., 46(2):243–258, 2018.

[103] D. R. Luke, Nguyen H. Thao, and M. K. Tam. Quantitative convergence analysis of
iterated expansive, set-valued mappings. Math. Oper. Res., to appear.

[104] Z.-Q. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent
methods: a general approach. Ann. Oper. Res., 46/47(1-4):157–178, 1993.

[105] G. J. Minty. Monotone (nonlinear) operators in Hilbert space. Duke. Math. J.,
29(3):341–346, 1962.

[106] B. S. Mordukhovich. Approximation Methods in Problems of Optimization and Con-
trol. Nauka, Moscow, 1988.

[107] B. S. Mordukhovich. Complete characterization of openness, metric regularity, and
Lipschitzian properties of multifunctions. Trans. Amer. Math. Soc., 340(1):1–35,
1993.

[108] B. S. Mordukhovich. Coderivatives of set-valued mappings: calculus and applications.
In Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens,
1996), volume 30, pages 3059–3070, 1997.

[109] B. S. Mordukhovich. Variational Analysis and Generalized Differentiation. I: Basic
Theory, volume 330 of Grundlehren der Mathematischen Wissenschaften [Fundamen-
tal Principles of Mathematical Sciences]. Springer, Berlin, 2006.

[110] B. S. Mordukhovich and Y. Shao. Extremal characterizations of Asplund spaces.
Proc. Amer. Math. Soc., 124(1):197–205, 1996.

[111] J. J. Moreau. Fonctions convexes duales et points proximaux dans un espace Hilber-
tien. Comptes Rendus de l’Académie des Sciences de Paris, 255:2897–2899, 1962.



BIBLIOGRAPHY 123

[112] Y. Nesterov. Gradient methods for minimizing composite objective function. Tech-
nical report, CORE Discussion Papers, 2007.

[113] K. F. Ng and W. H. Yang. Regularities and their relations to error bounds. Math.
Program., Ser. A, 99(3):521–538, 2004.

[114] K. F. Ng and R. Zang. Linear regularity and φ-regularity of nonconvex sets. J. Math.
Anal. Appl., 328(1):257–280, 2007.

[115] Huynh V. Ngai, Dinh T. Luc, and M. Théra. Approximate convex functions. J.
Nonlinear Convex Anal., 1:155–176, 2000.

[116] Huynh V. Ngai, Dinh T. Luc, and M. Théra. Extensions of Fréchet ε-subdifferential
calculus and applications. J. Math. Anal. Appl., 268(1):266–290, 2002.

[117] Huynh V. Ngai and M. Théra. Metric inequality, subdifferential calculus and appli-
cations. Set-Valued Analysis, 9:187–216, 2001.

[118] D. Noll and A. Rondepierre. On local convergence of the method of alternating
projections. Found. Comput. Math., 16(2):425–455, 2016.

[119] R. D. Nussbaum. Degree theory for local condensing maps. J. Math. Anal. and Appl.,
37:741–766, 1972.

[120] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in
Several Variables. Academic Press, New York, 1970.

[121] C. H. Jeffrey Pang. First order constrained optimization algorithms with feasibility
updates. arXiv:1506.08247v1, 2015.

[122] T. Pennanen. Local convergence of the proximal point algorithm and multiplier
methods without monotonicity. Math. Oper. Res., 27:170–191, 2002.

[123] J.-P. Penot. Metric regularity, openness and Lipschitzian behavior of multifunctions.
Nonlinear Anal., 13(6):629–643, 1989.

[124] J.-P. Penot. Calculus Without Derivatives. Springer, New York, 2013.

[125] H. M. Phan. Linear convergence of the Douglas–Rachford method for two closed sets.
Optimization, 65:369–385, 2016.

[126] G. Pierra. Decomposition through formalization in a product space. Math. Program-
ming, 28(1):96–115, 1984.

[127] R. A. Poliquin, R. T. Rockafellar, and L. Thibault. Local differentiability of distance
functions. Trans. Amer. Math. Soc., 352(11):5231–5249, 2000.



BIBLIOGRAPHY 124

[128] S. Reich. Fixed points of condensing functions. J. Math. Anal. Appl., 41:460–467,
1973.

[129] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Grundlehren Math. Wiss.
Springer-Verlag, Berlin, 1998.

[130] B. D. Rouhani. Asymptotic behaviour of almost nonexpansive sequences in a Hilbert
space. J. Math. Anal. Appl., 151(1):226–235, 1990.

[131] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev. Phase
retrieval with application to optical imaging: a contemporary overview. IEEE signal
processing magazine, 32(3):87–109, 2015.

[132] J. E. Spingarn. Submonotone subdifferentials of Lipschitz functions. Trans. Amer.
Math. Soc., 264:77–89, 1981.

[133] Nguyen H. Thao. A convergent relaxation of the Douglas–Rachford algorithm. Com-
put. Optim. Appl., 70(3):841–863, 2018.

[134] J. von Neumann. Functional Operators, Vol II. The geometry of orthogonal spaces,
volume 22 of Ann. Math Stud. Princeton University Press, 1950.

[135] X. Y. Zheng and K. F. Ng. Linear regularity for a collection of subsmooth sets in
Banach spaces. SIAM J. Optim., 19(1):62–76, 2008.

[136] X. Y. Zheng and K. F. Ng. Metric subregularity and calmness for nonconvex gener-
alized equations in Banach spaces. SIAM J. Optim., 20(5):2119–2136, 2010.

[137] X. Y. Zheng and K. F. Ng. Metric subregularity for nonclosed convex multifunctions
in normed spaces. ESAIM Control Optim. Calc. Var., 16(3):601–617, 2010.

[138] X. Y. Zheng and K. F. Ng. Metric subregularity for proximal generalized equations
in Hilbert spaces. Nonlinear Anal., 75(3):1686–1699, 2012.

[139] X. Y. Zheng, Z. Wei, and J.-C. Yao. Uniform subsmoothness and linear regularity
for a collection of infinitely many closed sets. Nonlinear Anal., 73(2):413–430, 2010.


	Dedication
	Introduction and preliminary results
	Introduction
	Notation and basic definitions
	Theory of pointwise almost averaging operators

	Regularity theory
	Elemental regularity of sets
	Metric (sub)regularity of set-valued mappings
	(Sub)transversality of collections of sets

	Convergence analysis
	Abstract convergence of Picard iterations
	Cyclic projections
	Alternating projections
	Forward–backward algorithms
	Douglas–Rachford algorithm and its relaxations
	ADMM algorithms

	Necessary conditions for convergence
	Existence of implicit error bounds
	Necessary conditions for linear convergence of alternating projections
	Further discussion on convex alternating projections

	Applications
	Source location problem
	Phase retrieval problem

	Conclusion

