446 research outputs found

    Density of Spherically-Embedded Stiefel and Grassmann Codes

    Full text link
    The density of a code is the fraction of the coding space covered by packing balls centered around the codewords. This paper investigates the density of codes in the complex Stiefel and Grassmann manifolds equipped with the chordal distance. The choice of distance enables the treatment of the manifolds as subspaces of Euclidean hyperspheres. In this geometry, the densest packings are not necessarily equivalent to maximum-minimum-distance codes. Computing a code's density follows from computing: i) the normalized volume of a metric ball and ii) the kissing radius, the radius of the largest balls one can pack around the codewords without overlapping. First, the normalized volume of a metric ball is evaluated by asymptotic approximations. The volume of a small ball can be well-approximated by the volume of a locally-equivalent tangential ball. In order to properly normalize this approximation, the precise volumes of the manifolds induced by their spherical embedding are computed. For larger balls, a hyperspherical cap approximation is used, which is justified by a volume comparison theorem showing that the normalized volume of a ball in the Stiefel or Grassmann manifold is asymptotically equal to the normalized volume of a ball in its embedding sphere as the dimension grows to infinity. Then, bounds on the kissing radius are derived alongside corresponding bounds on the density. Unlike spherical codes or codes in flat spaces, the kissing radius of Grassmann or Stiefel codes cannot be exactly determined from its minimum distance. It is nonetheless possible to derive bounds on density as functions of the minimum distance. Stiefel and Grassmann codes have larger density than their image spherical codes when dimensions tend to infinity. Finally, the bounds on density lead to refinements of the standard Hamming bounds for Stiefel and Grassmann codes.Comment: Two-column version (24 pages, 6 figures, 4 tables). To appear in IEEE Transactions on Information Theor

    Rigidity of spherical codes

    Full text link
    A packing of spherical caps on the surface of a sphere (that is, a spherical code) is called rigid or jammed if it is isolated within the space of packings. In other words, aside from applying a global isometry, the packing cannot be deformed. In this paper, we systematically study the rigidity of spherical codes, particularly kissing configurations. One surprise is that the kissing configuration of the Coxeter-Todd lattice is not jammed, despite being locally jammed (each individual cap is held in place if its neighbors are fixed); in this respect, the Coxeter-Todd lattice is analogous to the face-centered cubic lattice in three dimensions. By contrast, we find that many other packings have jammed kissing configurations, including the Barnes-Wall lattice and all of the best kissing configurations known in four through twelve dimensions. Jamming seems to become much less common for large kissing configurations in higher dimensions, and in particular it fails for the best kissing configurations known in 25 through 31 dimensions. Motivated by this phenomenon, we find new kissing configurations in these dimensions, which improve on the records set in 1982 by the laminated lattices.Comment: 39 pages, 8 figure

    A method for dense packing discovery

    Full text link
    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting \textit{de novo} (from-scratch) searches for dense packings becomes crucial. In this paper, we use the \textit{divide and concur} framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and 11 dimensions respectively (the first such numerical evidence for their optimality in some of these dimensions). For non-spherical particles, we report a new dense packing of regular four-dimensional simplices with density ϕ=128/2190.5845\phi=128/219\approx0.5845 and with a similar structure to the densest known tetrahedron packing.Comment: 15 pages, 5 figure

    Asymptotic bounds for spherical codes

    Get PDF
    The set of all error-correcting codes C over a fixed finite alphabet F of cardinality q determines the set of code points in the unit square with coordinates (R(C), delta (C)):= (relative transmission rate, relative minimal distance). The central problem of the theory of such codes consists in maximizing simultaneously the transmission rate of the code and the relative minimum Hamming distance between two different code words. The classical approach to this problem explored in vast literature consists in the inventing explicit constructions of "good codes" and comparing new classes of codes with earlier ones. Less classical approach studies the geometry of the whole set of code points (R,delta) (with q fixed), at first independently of its computability properties, and only afterwords turning to the problems of computability, analogies with statistical physics etc. The main purpose of this article consists in extending this latter strategy to domain of spherical codes.Comment: 34 pages amstex, 3 figure

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page

    Sphere packings revisited

    Get PDF
    AbstractIn this paper we survey most of the recent and often surprising results on packings of congruent spheres in d-dimensional spaces of constant curvature. The topics discussed are as follows:–Hadwiger numbers of convex bodies and kissing numbers of spheres;–touching numbers of convex bodies;–Newton numbers of convex bodies;–one-sided Hadwiger and kissing numbers;–contact graphs of finite packings and the combinatorial Kepler problem;–isoperimetric problems for Voronoi cells, the strong dodecahedral conjecture and the truncated octahedral conjecture;–the strong Kepler conjecture;–bounds on the density of sphere packings in higher dimensions;–solidity and uniform stability.Each topic is discussed in details along with some of the “most wanted” research problems

    Basic Understanding of Condensed Phases of Matter via Packing Models

    Full text link
    Packing problems have been a source of fascination for millenia and their study has produced a rich literature that spans numerous disciplines. Investigations of hard-particle packing models have provided basic insights into the structure and bulk properties of condensed phases of matter, including low-temperature states (e.g., molecular and colloidal liquids, crystals and glasses), multiphase heterogeneous media, granular media, and biological systems. The densest packings are of great interest in pure mathematics, including discrete geometry and number theory. This perspective reviews pertinent theoretical and computational literature concerning the equilibrium, metastable and nonequilibrium packings of hard-particle packings in various Euclidean space dimensions. In the case of jammed packings, emphasis will be placed on the "geometric-structure" approach, which provides a powerful and unified means to quantitatively characterize individual packings via jamming categories and "order" maps. It incorporates extremal jammed states, including the densest packings, maximally random jammed states, and lowest-density jammed structures. Packings of identical spheres, spheres with a size distribution, and nonspherical particles are also surveyed. We close this review by identifying challenges and open questions for future research.Comment: 33 pages, 20 figures, Invited "Perspective" submitted to the Journal of Chemical Physics. arXiv admin note: text overlap with arXiv:1008.298

    Random Sequential Addition of Hard Spheres in High Euclidean Dimensions

    Full text link
    Employing numerical and theoretical methods, we investigate the structural characteristics of random sequential addition (RSA) of congruent spheres in dd-dimensional Euclidean space Rd\mathbb{R}^d in the infinite-time or saturation limit for the first six space dimensions (1d61 \le d \le 6). Specifically, we determine the saturation density, pair correlation function, cumulative coordination number and the structure factor in each =of these dimensions. We find that for 2d62 \le d \le 6, the saturation density ϕs\phi_s scales with dimension as ϕs=c1/2d+c2d/2d\phi_s= c_1/2^d+c_2 d/2^d, where c1=0.202048c_1=0.202048 and c2=0.973872c_2=0.973872. We also show analytically that the same density scaling persists in the high-dimensional limit, albeit with different coefficients. A byproduct of this high-dimensional analysis is a relatively sharp lower bound on the saturation density for any dd given by ϕs(d+2)(1S0)/2d+1\phi_s \ge (d+2)(1-S_0)/2^{d+1}, where S0[0,1]S_0\in [0,1] is the structure factor at k=0k=0 (i.e., infinite-wavelength number variance) in the high-dimensional limit. Consistent with the recent "decorrelation principle," we find that pair correlations markedly diminish as the space dimension increases up to six. Our work has implications for the possible existence of disordered classical ground states for some continuous potentials in sufficiently high dimensions.Comment: 38 pages, 9 figures, 4 table
    corecore