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Abstract

In this paper we survey most of the recent and often surprising results on packings of congruent
spheres ird-dimensional spaces of constant curvature. The topics discussed are as follows:

— Hadwiger numbers of convex bodies and kissing numbers of spheres;

— touching numbers of convex bodies;

— Newton numbers of convex bodies;

— one-sided Hadwiger and kissing numbers;

— oontact graphs of finite packings and the combinatorial Kepler problem;

— isoperimetric problems for Voronoi cells, the strong dodecahedral conjecture and the truncated
octahedral conjecture;

— the stong Kepler conjecture;

— bounds on the density of sphere packings in higher dimensions;

— oolidity and uniform stability.

Each topic is discussed in details along with some of the “most wanted” research problems.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

A family of (not necessarily infinitely many) non-overlapping congruent balls in
d-dimensional space of constant curvature is called a packing of congruent balls in the
givend-space thais either in the Euclidead-spaceE? or in the sphericatl-spaces® or
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in the hyperbolicd-spaceHd. The goal of this paper is to survey the most recent results on
d-dimensional sphere packings, in particular, the ones that study the geometry of packings
in general, without assuming some extanditions on the packings, for example being
lattice like. (For the recent progress on lattice sphere packings we refer the reader to the
latest edition of the outstanding reference bo8% [and also to 77].) On the one hand,

the research on sphere packings seems to be one of the most active areas of (discrete)
geometry; on the other hand, it is one of the oldest areas of mathematics ever studied. The
topics discussed in separate sewt of this paper are the following:

— Hadwiger numbers of convex bodies and kissing numbers of spheres;

— touching numbers of convex bodies;

— Newton numbers of convex bodies;

— one-sided Hadwiger and kissing numbers;

— oontact graphs of finite packings and the combinatorial Kepler problem;

— isoperimetric problems for Voronoi cellshe strong dodecahedral conjecture and the
truncated o@ahalral conjecture;

— the stong Kepler conjecture;

— bounds on the density of sphere packings in higher dimensions;

— oolidity and uniform stability.

Each section outlines the state of the art of relevant research along with some of the
“most wanted” research problems. Generally speaking the material covered belongs to
combinatorics, convexity and discrete geometry; however, often the methods indicated
cover a much broader spectrum of mathéosaincluding computational geometry,
hyperbolic geometry, the geometry of Banh spaces, coding theory, convex analysis,
geometric measure theory, (geometric) rigidity, topology, linear programming and non-
linear optimization. Last but not least thepaa intends to complement the very recent
papers of CasselmaB?] andof Pfender and Zieglef7[7] on similar topics.

2. Hadwiger number s of convex bodies and kissing number s of spheres

Let K be a convex body (i.e. a compact convex set with non-empty interior) in
d-dimensional Euclidean spad@, d > 2. Then the Hadwiger numbéi (K) of K is
the largest number of non-overlapping translated«ofhat can all touctK. An elegant
observation of Hadwige#p] is the fdlowing.

Theorem 2.1. For every d-dimensional convex boly
H(K) <3%-1,
where equality holds if and only i is anaffine d-cube.

On the other hand, innther elegant paper Swinnerton-Dy&4][proved the fdowing
lower bound for Hadwiger numbers of convex bodies.

Theorem 2.2. For every d-dimensionald > 2) convex bod¥,

d?+d < H(K).
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Actually, finding a better lower bound for Hadwiger numbersledimensional convex
bodies is a highly challenging open problem forélk 4. (It is not hard to see that the
above theorem of Swinnerton-Dyer is sharp for dimensions 2 and 3.) The best lower bound
known in dimensiongl > 4 is due to Téata [85], who applying Dvoretzky’s theorem
on spherical sections of centrally symmetric convex bodies succeeded in showing the
following inequality.

Theorem 2.3. There exists an albdute constant ¢~ 0 suchthat
274 < H(K)
holds for every positive integer d and for every d-dimensional convexody

Now, if we look at convex bodies different from a Euclidean ball in dimensions larger
than 2, then our understanding of their Hadwiger numbers is very limited. That is, we know
the Hadwiger numbers of the following convex bodies different from a ball. The result for
tetrahedra is due to Talat8q] and the rest was proved by Larman and Zong(.

Theorem 2.4. The Hadwiger numbers of tetrahedra, octahedra and rhombic dodecahedra
are all equal to18.

In order to gain some more insight into Hadwiger numbers it is natural to pose the
following question.

Problem 2.5. For what ntegersk with 12 < k < 26 does there exist a 3-dimensional
convex body with Hadwiger numb&P What is he Hadwiger number of d-dimensional
simplex (resp., @sspolytope) fod > 47?

The second main problem in this section is fondly known as the kissing number prob-
lem. The kssingnumberzy is the maximum number of non-overlappirdydimensional
balls of equal size that can touch a congruent orié%inin threedimensions this question
was the subject of a famous discussion between Isaac Newton and David Gregory in 1694.
So, itis not surprising that the literature tire kissing number problem is “huge”. Perhaps
the best source of information on this problem is the bo8¥ [of Conway and Sloane. In
what follows we give a short descriptiofithe present status of this problem.

79 = 6 is trivial. However, cgetermining the value ofs is not a trivial issue. Actually the
first complete ad correct proof oft3 = 12 was given by Schiitte and van der Waerd#h [
in 1953. The subsequent (two pages) often cited proof of Le&l3hwhich is impressively
short, contrary to common belief does contain some gaps. It can be completed though; see,
for example, §6]. Further, more recent proofs can be found28,1] and in [72]. None of
these are short proofs either and one may wonder whether there exists a preoef 42
in THE BOOK at all. (For more informatioon this,see the vey visual paper32].) Thus,
we have the following theorem.

Theorem 2.6. 7o = 6andr3 = 12

The race for finding out the kissing numbers of Euclidean balls of dimension larger than
3 wasalways and is even today one of the most visible research projects of mathematics.
Fadlowing the chronological ordering, here are the major inputs. Cox@gcpnjectured
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and Boroczky 27] proved he fdlowing theorem, wherd(«) = g‘!’_wu is the Schlafli
function with U standing for the spherical volume of a regular spheri¢dl — 1)-
dimensional simplex of dihedral angle: 2and withwg denoting the surface volume of

thed-dimensional unit ball.

2F4-1(B) _1
Theorem 2.7. 14 < Fd(%) , whereg = sarcsed.

It was another breakthrough when Delsarte’s linear programming method (for details
see for eample [7/7]) was applied to the kissing number problem and also when
Kabatiansky and Levenshteirbq] succeeded in improving the upper bound of the
previous theorem for largé as follows. The lower bound mentioned below was found
by Wyner B7] seveal years earlier.

Theorem 2.8. 20.207&(14»0(1)) <19 < 20.401d(l+0(l)).

As the gap between the lower and upper bounds is exponential it was a great surprise
when Leveashtein p1] and Odlyzko ad Sloane 75| independently found the following
exact values forg.

Theorem 2.9. g = 240andtz4 = 196 560
In addition, Bannai and Sloan8][were able to prove the following.

Theorem 2.10. There is a unique way (up to isometry) of arrangi2g0 (resp.,196 560
non-overlapping unit spheres Brdimensional (resp.24-dimensional) Euclidean space
swhthat they touch another unit sphere.

The latest surprise came when Musi0[71] extending Delsarte’s method found the
kissing number of 4-dimensional Euclidean balls. Thus, we have:

Theorem 2.11. 74 = 24.
In connection with Musin’s result wedlieve in the following conjecture.

Conjecture2.12. There is a unique way (up to isometry) of arrangi24jnon-overlapping
unit spheres i-dimensional Euclidean space such that they touch another unit sphere.

Using the spherical analogue of the technique developedih K. Bezdek p2] gave
a poof of the following theorem that one can regard as the local version of the above
conjecture.

Theorem 2.13. Take aunit ball B of E* touched by24 other (non-overlapping) unit balls
B1, Bo, ..., Boswith centers @, Co, ..., Cos such that the centersiCCo, ..., Cos form
the vertice®f a regular24-cell {3, 4, 3} in E*. Then here ejsts ane > 0with the following
property: if the non-overlapping unit balB’, B, ..., B, with centers G, C;, ..., C;,
are chosen such th&;, B, ..., B,, are all tangent tB in E* and for eachj1 < i < 24,
the Euclidean distance between énd G is at moste, then G, C,, ..., C;, form the
vertices of a regulaR4-cell {3, 4, 3} in E%.
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There is a great list of record kissing numbers in dimensions from 32 to 1284jn [
and also we refer the intested reader to the pap&9 of Edel & al. for some anazingly
elementary but efficient constructions.

3. Touching numbers of convex bodies

The touching number(K) of a convex bod in d-dimensional Euclidean spat¥ is
the largest poskle number of mutually touching translatestoflying in EY. The ekgant
paper B7] of Danzer and Griinbaum gives a proof of the following fundamental inequality.
In fact, this inequality was phrased by Pet®6] as wel as by Sltan [83] in another
equivalent form saying that the cardinality of an equilateral set in digymensional
normed space is at most 2

Theorem 3.1. For an arbitrary convex bodi of E¢,
t(K) <29
with equality if and only iK is anaffine d-cube.

In connection with the above inequality K. Bezdek and Path fonjecture the
following even stronger result.

Conjecture 3.2. For any convex bodi in E¢, d > 3, the maxinumnumber of pairwise
tangent positively homothetic copiestofs not more thard.

This problem is still quite open. It seems that the only published upper boufld-sl3
in[15).

It is natural to ask for a non-trivial lower bound fofK). Brass B(] as an apfication
of Dvoretzky’s well-known theorem gave a partial answer for the existence of such a lower
bound.

Theorem 3.3. For each k thee exists a ¢k) such that for any convex bod of E9 with
d > dk)

k <t(K).

It is remarkable that the natural sounding conjecture of P&t ftated next is still
open for alld > 4.

Conjecture 3.4. For each convex bodit of EY, d > 4,
d+1<t(K).

A gereralization of the concept of touching numbers was introduced by K. Bezdek
et al. [19 as fdlows. Themth touding number (or thenth Petty numberj(m, K) of a
convex bodyK of E¢ is the largest cardinality of (possibly overlapping) translatek of
in EY such tlat among anyn translates always there ar@o touching ones. Note that
t(2, K) = t(K). The fdlowing theorem proved by K. Bezdek et al9] states sme upper
bounds foit (m, K).
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Theorem 3.5. Let t(K) be an arbitrary convex body iB9. Then

d
t(m, K) < min{(m— 1)49, (2 +2rg1— 1)}

holds for all m> 2,d > 2. Also, we have the inequalities
t3,K)<2-39  t(mK)<m-=1[m-13%—(m-2)]

forallm > 4,d > 2. Moreover, if B (resp.,Cd) denotes a d-dimensional ball (resp.,
d-dimensional affine cube) &, then

t2,BY) =d+1, t(m, BY) < (m—1)3, t(m, C%) = (m— 1)
holdforallm=> 2,d > 2.
We cannot resist raising the following question (for more details $6p.[

Problem 3.6. Prove or disprove that K is an arbitrary convex body iR with d > 2 and
m > 2, then

(m—1)(d+1) <t(mK)<m-129

4. Newton numbers of convex bodies

According to L. Fejes T6th44] the Nenton numberN(K) of a convex bod in E¢

is defined as the largest number of congruent copids thfat can touctk without having
interior points in common. (Note that unlike in the case of Hadwiger numbers, here it is
not necessary at all to use translated copies of the given convex body. In fact, often it is
better to use rotated or reflected ones.) For the special caseKvizea ball we refer the
reader toSection 20f this paper. Here we focus on the case wheris different from a

ball. Somewhat surprisingly, in this case only planar results are known. That is, Linhart
[65] and B&oczky [26] determined the Newton numbers of regular convex polygons.

Theorem 4.1. If N(n) denotes the Newton number of a regular convex n-gd&?jrthen
N@3) =12, N@4) =8 and N(n) =6 foralln > 5.

L. Fejes Téth 42 proved the following — in some cases quite sharp — upper bound for
the Newton numbers of convex domains (i.e. compact convex sets with non-empty interior)
in E2.

Theorem 4.2. A convex domain with diameter D and minimum width W cannot be touched
by more than

D
non-overlapping congruent copies of it.

D W
[(4+ ZJT)W +2+ —j|

This result was improved by Schog]] as fdlows.
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Theorem 4.3. The Newtomumber of any convex domain of constant widttEmis at
most7 and the Newton number of a Reuleaux triangle is exattly

We close his section with a rather natural question, which to the best of our knowledge
has not yet been studied.

Problem 4.4. Prove or disprove thahe Newtonnumber of ad-dimensional(d > 3)
Euclidean cube isB— 1.

5. One-sided Hadwiger and kissing numbers

K. Bezdek and Brass2[)] assgned to each convex bodg in EY a specific positive
integer called the oneded Hadwiger numbeh(K) as follows:h(K) is the largstnumber
of non-overlapping translates Kfthat touchk and that all lie in a closed supporting half-
space ofK. In [20], using the Brunn—Minkowski inequality, K. Bezdek and Brass proved
the following sharp upper bound for the one-sided Hadwiger numbers of convex bodies.

Theorem 5.1. If K is an arbitrary convex body iit?, then
hK)<2.39"1-1.
Moreover, equality is attained if and onlyK is a d-dimensional affine cube.

The notion of one-sided Hadwiger numbers was introduced for studying the (discrete)
geometry of the so-calleki™-neighbour packings, which are packings of translates of a
given convex body irE4 with the property that each packing element is touched by at
leastk others from the packing, whekes a given positive integer. As this area of discrete
geometry has a rather large literature we refer the interested read#i]tof a brief survey
on the relevant results. Here, we emphasiedthowing corollary of the previous theorem
proved also in 20].

Theorem 5.2. If K is an arbitrary convex body ift?, thenany k™-neighbour packing by
translates o with k > 2. 39~1 must have a positive density . Moreover, there is

a (2 - 3971 — 1)*-neighbour packing by translates of a d-dimensional affine cube with
density0 in E9.

It is obvious that the one-sided Hadwiger number of any circular disk4ris 4.
However, the three-dimensional analogue statement is harder to get. As it turns out, the
one-sided Hadwiger number of the three-dimensional Euclidean ball is 9. One of the
shortest proofs of this fact was found by A. Bezdek and K. Bezdgk [Since here we
are studying Euclidean balls, we simply call their one-sided Hadwiger numbers one-sided
kissing numbers.

Theorem 5.3. The one-sided ksingnumber of th&-dimensional Euclidean ball i8.

As we have metioned before, Musin71] has just announced a proof of the long-
standing conjecture that the kissing number loé 4-dimensional Euclidean ball is 24. On
the basis of this result K. BezdeR7] gave a poof of the following.
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Theorem 5.4. The one-sided ksing number of thed4-dimensional Euclidean ball is
either18or 19.

The proof of the above theorem supports the following conjecture.

Conjecture5.5. The one-sided ksingnumber of thel-dimensional Euclidean ball i$8.

6. Contact graphsof finite packings and the combinatorial Kepler problem

LetK be an arbitrary convex body ifi%. Then he contact graph of an arbitrary finite
packing by non-overlapping translates kfin E9 is the (simple) graph whose vertices
correspond to the packing elements and whose two vertices are connected by an edge if
and only if the corresponding two packintements touch each other. One of the most
basic problems on contact graphs is finding the maximum number of edges that a contact
graph ofn translates of the given convex bo#lycan have inE9. Hamorth [55] proved
the following remarkable result on the contact graphs of congruent circular disk packings
in E2.

Theorem 6.1. The maximum number of touching pairs in a packing of n congruent
circular disks inE? is precisely

LSn—MJ.

In a very recent papeB[] Brass extaded the above reKuo the “unit circular disk
packings” of normed planes as follows.

Theorem 6.2. The maximmm number of touching pairs in a packing of n translates
of a convex domairk in E? is [3n — 4/12n — 3] if K is not a parallelogram and

[4n — 4/28n — 12] if K is a paralldogram.

The analogue question in the hyperbolic plane has been studied by Bovwas). e
prefer to quote his result in the following geometric way.

Theorem 6.3. Consider circle packings in the hyperbolic plane, by finitely many congruent
circles, which maximize the number of touching pairs for the given number of congruent
circles. Then such a packing must have all of its centers located on the vertices of a
triangulation of the hyperbolic plane by congruent equilateral triangles, provided the
diameter D of the circles is such that an equilateral triangle in the hyperbolic plane of
side length D has each of its angles equaﬁ,@’ofor some N> 6.

It is not hard to see that one can extend the above res@ft exadly in the way the
above phrasing suggests. However, we get a more general approach if we do the following:
Take n non-overlapping unit diameter balls in a convex positiorEf that is, assume
that there exists @-dimensional convex polyhedron whose vertices are center points and,
moreover, each center point belongs to boeindary of that convex polyhedron, where
n > 4 is a given integer. Obviously, the shortest distance among the center points is at
least one. Then count the unit distances showing up between pairs of center points but
count only those pairs that generate a unit line segment on the boundary of the given
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3-dimensional convex polyhedron. Finally, maximize this number for the giard label

this maximum byc(n). The following theorem was found by D. Bezdek?] who also
pointed out its intergting relation to protein folding as well as that to Durer’s unsolved
geometric problem on edge-unfolding of convex polyhedra. He calls the convex polyhedra
showing up in the theorem below “higher ordéeltahedra” mainly because they form an
extenson of “deltahedra” classified earlieyb-reudenthal and van der Waerden #v].

Theorem 6.4. c(n) < 3n — 6, where equality is attained foinfinitely many n namely,

for those for which there existsaadimensional convex polyhedron whose each face is an
edge-to-edge union of some regular triangles of side length one such that the total number
of generating regular triangles on the boundary of the convex polyhedron is precisely
2n — 4 with a otal number of3n — 6 sides of legth one and with a total number of n
vertices.

Now, we are ready to phrase tBembinatorial Kepler Problem. Asits name suggests
this problem is strongly related to the Kepler Conjecture on the densest unit sphere
packings inE2 (for more details seBection 7of this paper).

Problem 6.5. For a givem find the largest numbe€ (n) of touching pairs in a packing of
n congruent balls if3.

This problem is quite open. The first part of the following theorem was proved by
D. Bezdek L2 and the seand part by K. BezdekZ2).

Theorem 6.6. (i) C(4) =6,C(5) =9,C(6) =12and C(7) = 15.
(i) C(n) < 6n— 0.59n5 for all n > 4.

We close this section with two upper bounds for the number of touching pairs in an
arbitrary finite packing of translates of a convex body, proved by K. Bezdekdh [n
order to state these theorems in a short way we need a bit of notatidf.lhestin arbitrary
convex body inE9,d > 3. Then lets(K) denote the density of a densest packing of

translates of the convex bod¢ in E4,d > 3. Moreover, let IgK) = W
be the isoperimetric quotient of the convex bady where Svoly_1(bdK) denotes the
(d — 1)-dimensional surface volume of the boundarKbaf K and Vol (K) denotes the
d-dimensional volume df . Moreover, letB denote the closedidimensional ball of radius
1 centered at the origin iBY. Findly, let Ko = %(K + (—K)) be the normatied (centrally
symmetric) difference body assigned ko with H (Kg) (resp.,h(Kp)) standing for the

Hadwigernumber (resp., one-sided Hadwiger number gf

Theorem 6.7. Thenumber of touching pairs in an arbitrary packing ofsa 1 translates
of the convex bodk in E9, d > 3, is at most

1
H (Ko) 1 ( 1q(B) )H @-1
-n . -n"d — (HKp —h(Kp) —1).
> sk %E \iaKo) (H(Ko) —h(Ko) — 1)
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Theorem 6.8. Thenumber of touching pairs in an arbitrary packing ofn 1 translates
of the convex bodl¢ in E9, d > 3, is at most
1

3d_1 a)g (d-1)
2 n- 2d+1 n ’
g
wherewg = F_(nf‘+_1) is the volume of a d-dimensional ball of radidsin E9.
2

7. Isoperimetric problemsfor Voronoi cells—the strong dodecahedral conjectureand
thetruncated octahedral conjecture

Recall that a family of non-overlapping threlmensional balls of radii 1 in Euclidean
3-spacel?, is cdled a unit ball packing if23. The density of the packing is the proportion
of space covered by these unit balls. The sphere packing problem asks for the densest
packing ofunit bdls in E3. The mnjecture that the density of any unit ball packing@h
is at mostﬁ = 0.74078... is often attributed to Kepler, stated in 1611. The problem
of proving the Kepler conjecture appears as part of Hilbert’s 18th proB&mnsing an
ingenious argument which works in any dimension, Rogésdbtained the upper bound
0.77963. .for the density of unit ball packings if°. This bound has been improved by
Lindsey [64] and Muder 68,69 to 0.773055... Hsiang $7,58 proposed an elaborate
line o attack (along the lines of what L. Fejes Toth suggested 40 years earlier), but his
claim that he settled Kepler’s conjecture seems exaggerated. However, so far no one has
found any serious gap in the approach of HaE3J53, although no one has been able
to fully verify it either. This is not too surfging, given that the detailed argument is
described in several papers and relies on long computer aided calculations of more than
5000 subproblems. Hales shows the following remarkable theorem.

Theorem 7.1. The densest packj of unit balls inE3 has densityJLl_s, which isattained
by the “cannonball packing”.

For several of the above-mentioned papers Voronoi cells of unit ball packings play a
central role. Recall that the Voronoi cefl@unit ball in a packing of unit balls ifi® is the
set ofpoints that are not farther away from the center of the given ball than from any other
ball's center. As is well known, the Voronoi cells of a unit ball packin@form atiling
of E3. One of the most attractive problems on Wai cells is the Dodecahedral Conjecture
first phrasedy L. Fejes Téth in40]. According to this the volume of any Voronoi cell in
a packing of unit balls inE3 is at least as large as the volume of a regular dodecahedron
with inradius 1. Very recently Hales and McLaughl®4] announced a solution to this
problem:

Theorem 7.2. The wlume of any Voronoi cell in a packing of unit ballsif is at least as
large as the volumef a regular dodecahedron with inradids

Now, we can make a step further and take a look of the following stronger version of
the Dodecahedral Conjecture called ®teong Dodecahedral Conjecture. It was first
articulated in 1L6].
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Conjecture 7.3. The surface area of any Voronoi cell in a packing with unit ballsHA is
at least as large a46.6508 . ., the surface area of a regulaiodecahedron of inradius.

It is easy to see that if true, the above @mijre implies the Dodecahedral Conjecture.
The strongest inequality known towards t8&ong Dodecahedral Conjecture is due to
K. Bezdek and Daréczy-Kiss published 21]. In order to phrase it properly we introduce
a hit of terminology. A face cone of a Voronoi cell in a packing with unit ball&is the
convex hull of the face chosen and the cemfethe unit ball sitting m the given Voronoi
cell. The surface area density of a unit ball in a face cone is simply the spherical area of
the regon of the unit sphere (centered at the apex of the face cone) that belongs to the face
cone divided by the Euclidean area of tlaed. It should be clear from these definitions
that if we have an upper bound for the surface area density in face cones of Voronoi cells,
then the reciprocal of this upper bound times @he surface area of a unit ball) is a lower
bound for the surface area of Voronoi cells. Now, we are ready to state the main theorem
of [21].

Theorem 7.4. The aurface area density of a unit ball in any face cone of a Voronoi cell in
an arbitrary packing of unit balls oE2 is at most

—97 4+ 30 arccos<§’ sin (%))
5tan(%)

=0.77836.. .,

and so the surface area of any Voronoi cell in a packing with unit balls3ristt least
207 tan(%)
—97 + 30 arccos(@ sin (%))

=16.1445. . ..

Moreover, the above upper boun@l77836..for the surface area density is the best
possible in the following sense. The surface area density in the face cone of any n-sided
face with n= 4, 5 of a Voronoi cell in an arbitrary packing of unit balls & is at most

3(2—n)r +6n- arccos(@ sin(%))

ntan(%)

andequality is achieved when the face is a regular n-gon inscribed in a circle of radius
m and positioned such that it is tangent to the corresponding unit ball of the

packing at its center.

The Kelvin problem asks for the surface minimizing partitiorsfinto cells of equal
volume. According to Lhuilier's memoird3] of 1781, the problem has been described
as one of the most difficult in geometry. The solution proposed by Kelvin is a natural
generalization of the hexagonal honeycomhEf Take the Voronoi cells of the dual
lattice giving the densest sphere packing. This gives truncated octahedra, the Voronoi
cells of the body centered cubic lattice. A small deformation of the faces produces a
minimal surface, which is Kelvin's proposedution. Just recently Phelan and Weairg]
produced a remarkable counter-example to the Kelvin conjecture. Their work indicates also
that Kelvin's original question is even hardéan it was gpected. In fact, the following
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simpler and quite fundamental question seems to be still open. One can regard this as
the isoperimetric inequality for parallelohedra and one can call the conjecture below the
Truncated Octahedral Conjecture. (Recall that a parallelohedron is a 3-dimensional
convex polyhedron that tileg® by translation.)

Conjecture 7.5. The surfacearea of any parallelohedron of voluniein E2 is at least as
large & the surface area of the truncated octahedral Voronoi cell of the body-centered
cubic lattice of voluméd in ES.

8. Thestrong Kepler conjecture

In this section we propose a way to extend Kepler’s conjecture to finite packings
of congruent balls in 3-space of constant curvature, that is in Euclidean 3-Epaue
spherical 3-spac8? and in hyperbolic 3-spadé®. The ideagoes back to the theorems of
L. Fejes Toth £1] in E2, Molnér [67] in S and K. Bezdek13,14] in H? which, in short,
can be phrased as follows:

Theorem 8.1. If at least two congruent circular disks are packed in a circular disk in the
plane of constant curvature, then the packing density is always Iessﬁazan

The hyperbolic case of this theorem proved by K. Bezdek 8 (see also14]) seemed
quite unexpected because there are (infirpeckings of congruentircular disks inH2
in which the density of a circular disk in its respective Voronoi cell is significantly larger
than Jsz Also, wenote that the constan%2 is the best possiblaithe almve theorem.
Last, we have to mention that since the standard methods do not give a good definition of
densty in H? (in fact all of them fail to work, as was observed by BéroczR§|J and since
even today we know only a rather “fancy” way of defining density in hyperbolic space (see
the work of Bowen and Radir2fl]), it seems important to study finite packings in bounded
containers of the hyperbolic space where there® complication withlthe proper definition
of density. All this supports the idea of the following conjecture that we cal&heng
Kepler Conjecture:

Conjecture8.2. The density of at least two non-overlapping congruent balls in a ball of
the 3-pace of constant curvature (having radius strictly less tHaim the case 08%) is
always less thaH”T8 =0.74048....

The following theorem proved by K. BezdeRd supports the above conjecture.

Theorem 8.3. The density of at least two non-overlapping congruent balls in a ball of
the 3-pace of constant curvature (having radius strictly less tHaim the case 08%) is
always less than Rogers’ upper bound for the density of packings of congruent dls in
that is less tha®.77963. ..

9. Bounds on the density of sphere packingsin higher dimensions

Recall that a family of non-overlapping-dimension& balls of radii 1 in the
d-dimensional Euclidean spad is called a unit ball packing oE9. The density of
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the packing is the proportion of space covered by these unit balls. The sphere packing
problem asks for the densest packing of unit ball&$ Indubitably, of all the problems
concerning packing it was the sphere pagikmoblem which attractethe most attention
in the past decade. It has its roots in geometmynber theory and information theory and it
is part of Hilbert's18th problem. The reader is referred 8%] (especially the third edition,
which has about 800 references covering 198®8) for further information, definitions
and references. In what follows we report ofea selected developments, some of which
are fantastic recent news.

The Voronoi cell of a unit ball in a packing of unit balls Ef' is the set opoints that
are not farther away from the center of the given ball than from any other ball's center. As
is well known, the Voronoi cells of a unit ball packinglif form atiling of E9. Oneof the
most attractive results on the sphere packing problem was proved by R@gfins 1958.
It was rediscovered by Baranovskdi[and extended to spherical and hyperbolic spaces by
Boroczky [27]. It can be phrased as follows. Take a regdatimensional simplex of edge
length 2 inEY and the draw ad-dimensional unit ball around each vertex of the simplex.
Let o4 denote the ratio of the volume of the portion of the simplex covered by balls to the
volume of the simplex. Then the volume of any Voronoi cell in a packing of unit balls in
EY is at least?d, wherewy denotes the volume of@dimensional unit ball. This has the
following immediate corollary.

Theorem 9.1. The (upper) density of any unit ball packing &f' is at mosioy.
Daniel's agmptotic formula B(Q] yields that

d
ou =~ o—(0.5+0(1))d

Then 20 years later, in 1978 Kabatjanskii and Levensh&9/6p] improved this bound in
the exponential order of magnitude as follows. They proved the following theorem.

(asd — 00).

Theorem 9.2. The (upper) density of any unit ball packing if is at most
2705990 (35 d — o0).

In fact, Rogers’ bound is better than the Kabatjanskii-Levenshtein bound<fod 4<
42 and above that the Kabatjanskii—Levenshtein bound takes @& rg[ 20).
There has been some very important recent progress concerning the existence of
economical packings. On the one hand, improving earlier results, Bar¢ved through
a very elegat compleely new variational argument the following statement. (See di8p [
for a similar result of Schmidt on centrally symmetric convex bodies.)

Theorem 9.3. For each d, there is a lattice packing of unit balls ifi¢ with density at least
d-—1
F“d)’

wherez(d) = Y2, kid is the Riemann zeta function.

On the other hiad, for some small values df there are xplicit (lattice) packings which
give densities (considerably) higher thAe bound just stated. The reader is referre@% [
and [73] for a comprehensive view of results of this type.
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All these explicit onstructions raise the well-known challenging question of whether
one can find a smaller upper bound than Rogers’ bound for the density of unit ball packings,
especially in low dimensions. The next theorem due to K. Bezd@kdoes exatty this
by improving Rogers’ upper bound for the density of unit ball packings in Euclidean
d-space for alld > 8. Since this result extends also some of the resulSeation 7to
higher dimensions we phrase it in detail. For this we need a bit of notation. As usual, let
lin(...), aff(...), con«...), Volq(...), wg, SVoly_1(...), dist(...), || ... || ando refer to
the linear hull, the affine hull, the convex hull i, thed-dimensional Edidean volume
measure, thd-dimensional volume of d-dimensionalnit bdl, the (d — 1)-dimensional
spherical volume measure, the distance functioR4nthe stadard Euclidean norm and
the origin inEY.

Let cono, wy, ..., wq} be ad-dimensional simplex having the property that the linear
hull linfwj —w; | i < j < d} is orthogonal to the vectow; in Ed, d > 8, for all
1<i <d-1;thatis, let

cono, w, ..., Wq}

be ad-dimensional orthoscheme &f’; moreover, let

[ 2i
wWil| =,/ —— foralll <i <d.
[lwi |l 1 <1 =

Itis clear that in the right trianglen wg_2wg_1wg with the right angle at the vertexwg_1
we have the inequalitywg — wq—_1]| = \/ﬁ < \/ﬁ = |Wg—1 — Wg—2|| and

therefore/wq_1wWg_owg < %. Now, in theplane affwg_2, wg_1, wg} of the triangle
A Wg_oWg_1Wyqg, let

< Wg—2WaWd-+1

denote the circular sector of central angl&gwg-oWdq11 = 7 — ZWg-1Wd—2Wqg

and of centemwy_» sitting over the circular arc with endpoinisy, wg+1 and radius
Wy — Wg—2| = [[Wd+1 — Wd—2| suchthat < wg_oWgWg+1 and A Wg—2Wg-1Wq are
adjacent along the line segmem§_>wgy and are separated by the linewd_owg. Then
let

D(Wg—2, Wd—1, Wd, Wg+1) =A Wd—2Wd—-1WdU <1 Wq—2WgWd+1

be the convex domain generated by the triangley_>wq_1wq with constat angle

b
AWy —1Wd—2Wd+1 = 7
Now, let
W = conv({o, w1, ..., Wq_3} U D(Wq—2, Wg—1, Wd, Wd+1))

be thed-dimensional wedge (or cone) witld — 1)-dimensional base
Qw = conu({wy, ..., Wg_3} U D(Wq_2, Wg—1, Wd, Wg+1)) and  apex.

Finally, if B = {x € EY | dist(o,x) = [x| < 1} denotes thed-dimensional unit
ball certered at the origiro andS = {x € EY | dist(0,x) = ||x|| = 1} denotes the
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(d — 1)-dimensional unit sphere centeredathen let
. SVolg-1(WNS  Wolg(WnB)
T Volg_i(Qw)  Volg(W)
be the surface density (resp., volume density) of the unit sghérsp., of the unit balB)
in the wedgeaW. For the sakefoccompleteness we remark that as the regdlaiimensional

simplex of elge length 2 can be dissected intb+ 1)! pieces each being congruent to
convo, wi, ..., Wq}, we theréore have

_ \Volg(cono, Wy, ..., Wq} N B)
" Volg(cono, wq, ..., Wq)})

Now, we are ready to state the main resultbi][ Recall that the surface density of any
unit sphere in its Voronoi cell in a unit sphere packingifis defined as the ratio of the
suface area of the unit sphere to the surface area of its Voronoi cell.

Theorem 9.4. The aurface area of any Voronoi cell |n a packing of unit balls in the
d-dimensional Euclidean spadé®,d > 8, is at least | that is the surface density

of any unit sphere in its Voronoi cell in a unit sphere packm@lﬁ‘)fd > 8, is at mosGy.
Thus, the volume of any Voronoi cell in a packing of unit ball@hd > 8, is at Ieast“’?‘i'j

and so the (upper) density of any unit ball packingifh d > 8, is at mos&4 < og.

In fact, K. Bezdek 22] extended the above theorem to spherical sp&e as well as to
hyperbolic spac€H?) in the following local sense. Consider packings of congruent balls

of small radii only. Then for sufficiently small radiiof the given spacg® (resp.;H%) one

can define the quantifja(r) = V‘\’,'SI(WVCB) (resp.oga(r) = YEnr2) verylike in the
Euclidean case. (Here we simply omlt t;1e obvious details.) WItF1 th|s notation the following

theoremholds.

Theorem 9.5. Consider an arbitrary packing of spheres of radius rSf (resp.,HY) with

d > 8. Then here exiss an r(d) > 0 such that the (volume) dsity of eachball (of the
given packing) in its respective Voronoi cell is at m@gt(r ) (resp.,o3d (r)) provided that
r <r(d).

Further improvements on the upper boufdof K. Bezdek for the dimensions from 4 to
36 have been obtained very recently by Cohn and Ell&8k They developed an analogue
for sphere packing of the linear programming bounds for error correcting codes, and used
it to prove new upper bounds for the density of sphere packings, which are better than K.
Bezdek’s upper boundg; are for the dimensions 4 through 36. Their method together with
the besknown sphere packings yields the following remarkable theorem in dimensions 8
and 24.

Theorem 9.6. The density of the densteunit ball packing inE® (resp., E2%) is at
least0.2536 .. (resp.0.00192..) and is at mosD.2537.. . (resp.0.00196. . ).

Cohn and Elkies33] conjecture that their approach can be used to solve the sphere
packing problem ifk8 (resp.E?%).
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Conjecture9.7. The E root lattice (resp., the Leech lattice) that produces the
corresponding lower bound in the previous theorem in fact represents the largest possible
density for unit sphere packingsi? (resp.,E2%).

If linear programming bounds can indeed be used to prove optimality of these lattices, it
would not come as a complete surprise, becaiaseexample, the kissing number problem
in these dimensions was solved similarly (for more detailsSssion 2.

Last but not least we mention the following striking result of Cohn and Kur@dfr [
according to which the Leech lattice is the densest lattice packifitfin(The censet
lattices have been knowip to dimension 8.)

Theorem 9.8. The Leech lattice is the unique densest latticé&&#, up to scéing and
isometries oft24,

We close this section with a short summarytbe recent progress of L. Fejes Tothg]
“sausage conjecture” that is one of the main problems of the theory of finite sphere
packings. According to this conjecture, if Bf, d > 5, we taken > 1 non-overlapping
unit balls, then the volume of their convex hull is at least as large as the volume of the
convex hull of the “sausage arrangement’mohon-overlapping unit balls under which
we mean an arrangent whose centslie on a line ofEY such that the unit balls of any
two consecutive centers touch each otheroByimizing the methods developed by Betke
et al. [7,8], finally, Betke and Henk§] succeeded in proving the sausage conjecture of
L. Fejes Tath in any dimension of at least 42. Thus, we have the following natural looking
but farfrom trivial theorem.

Theorem 9.9. The swusage conjecture holds B for all d > 42.

It remains a highly interesting challenge to prove or disprove the sausage conjecture of
L. Fejes Tath for the dimensions between 5 and 41.

Conjecture9.10. Let5 < d < 41 be given. Then the volume of the convex hull of &
non-overlapping unit balls ift? is at least asdrge as the volume of the convex hull of the
“sausage arrangement” of n non-overlapping unit balls which is an arrangement whose
centers lie on a line oEY such hat the unit balls of any two consecutive centers touch
each other.

10. Solidity and uniform stability

The notion of solidity, introduced by L. Fejes Téth3 to overcome dfficulties in
the proper definition of density in the hypalic plane, has been proved very useful and
stimulating. Roughly speaking, a family of convex sets generating a packing is said to be
solid if no proper rearrangement of any finite subset of the packing elements can provide
a packing. More concretely, a circle packing in the plane of constant curvature is called
solid if no finite subset of the circles can bearranged such that the rearranged circles
together with the rest of the circles form a packing not congruent to the original. An (easy)
example for solid circle packings is the family of incircles of a regular tiliqmg 3} for
any p > 3. In fact, a closer look of this example led L. Fejes Téth][to the fdlowing
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simple sounding but difficult problem: he conjantd that the incircles of a regular tiling

{p, 3} form a strongly solid packing for ang > 5; i.e. by removing any circle from the
packing the remaining circles still form a solid packing. This conjecture has been verified
for p = 5 by Boczky [28] and Danzer [38] and for p > 8 by A. Bezdek P]. Thus, we

have the éllowing theorem.

Theorem 10.1. The incircles of a regular tiling p, 3} form a grongly solid packing for
p = 5and for any p> 8.

The outstanding open question left is the following.

Conjecture10.2. The incircles of a regular tilind p, 3} form a grongly solid packing for
p = 6 as well as for p=7.

In connection with solidity and finite stability (of circle packings) the notion of uniform
stability (of sphere packings) hagén introduced by K. Bezdek et all]. According to
this a sphere packing (in the space of constant curvature) is said to be uniformly stable if
there exists am > 0 such that no finitsubset of the balls of the packing can be rearranged
sweh that each ball is moved by a distance less thand the rearranged balls together with
the rest of the balls form a packing not congruent to the original one. Now, suppose that
is a packing of (not necessarily) congruent ballsHf. Let G be the contact graph @2,
where the centers of the balls serve as the vertic&arfid an edge is placed between two
vertices when the corresponding two balls are tangent. The following basic principle can
be used to show that many packings are uniformly stable.

Theorem 10.3. Suppose thafd can be tiled face to face by congruent copies of finitely
many convex polytopd?;, Py, .. ., P, such that the vertices and edges of that tiling form
the vertex and edge system oé tiontact graph G of the packing of someballs in E9.

If eachP; is strictly locally volume expanding with respect to G, then the pacing
uniformly stable.

By taking a closer look of the Delaunay tilings of some lattice sphere packings one can
derive the ftlowing corollary (for more details seé]).

Theorem 10.4. The densest lattice sphere packings, Az, D4, Ds, Eg, E7, Eg up to
dimensiorB are all uriformly stable.

Last we mention another corollary (for details sdd]], which was observed also
by Barany and Dolbilin ] and which supports the above-mentioned conjecture of
L. Fejes Téth.

Theorem 10.5. Consider the triangular packing of circular disks of equal radii |t?
where each disis tangent to exactly six others. Remove one disk to obtain the packing
P’. Then he packingP’ is uniformly stable.
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