28,979 research outputs found

    Cauchyness and convergence in fuzzy metric spaces

    Full text link
    [EN] In this paper we survey some concepts of convergence and Cauchyness appeared separately in the context of fuzzy metric spaces in the sense of George and Veeramani. For each convergence (Cauchyness) concept we find a compatible Cauchyness (convergence) concept. We also study the relationship among them and the relationship with compactness and completeness (defined in a natural sense for each one of the Cauchy concepts). In particular, we prove that compactness implies p-completeness.Almanzor Sapena acknowledges the support of Ministry of Economy and Competitiveness of Spain under grant TEC2013-45492-R. Valentín Gregori acknowledges the support of Ministry of Economy and Competitiveness of Spain under grant MTM 2012-37894-C02-01.Gregori Gregori, V.; Miñana, J.; Morillas, S.; Sapena Piera, A. (2017). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 111(1):25-37. https://doi.org/10.1007/s13398-015-0272-0S25371111Alaca, C., Turkoglu, D., Yildiz, C.: Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 29, 1073–1078 (2006)Edalat, A., Heckmann, R.: A computational model for metric spaces. Theor. Comput. Sci. 193, 53–73 (1998)Engelking, R.: General topology. PWN-Polish Sci. Publ, Warsawa (1977)Fang, J.X.: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 46(1), 107–113 (1992)George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64, 395–399 (1994)George, A., Veeramani, P.: Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3, 933–940 (1995)George, A., Veeramani, P.: On some results of analysis for fuzzy metric spaces. Fuzzy Sets Syst. 90, 365–368 (1997)Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1989)Gregori, V., Romaguera, S.: Some properties of fuzzy metric spaces. Fuzzy Sets Syst. 115, 485–489 (2000)Gregori, V., Romaguera, S.: On completion of fuzzy metric spaces. Fuzzy Sets Syst. 130, 399–404 (2002)Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy Sets Syst. 144, 411–420 (2004)Gregori, V., López-Crevillén, A., Morillas, S., Sapena, A.: On convergence in fuzzy metric spaces. Topol. Appl. 156, 3002–3006 (2009)Gregori, V., Miñana, J.J.: Some concepts realted to continuity in fuzzy metric spaces. In: Proceedings of the conference in applied topology WiAT’13, pp. 85–91 (2013)Gregori, V., Miñana, J.-J., Sapena, A.: On Banach contraction principles in fuzzy metric spaces (2015, submitted)Gregori, V., Miñana, J.-J.: std-Convergence in fuzzy metric spaces. Fuzzy Sets Syst. 267, 140–143 (2015)Gregori, V., Miñana, J.-J.: Strong convergence in fuzzy metric spaces Filomat (2015, accepted)Gregori, V., Miñana, J.-J., Morillas, S.: Some questions in fuzzy metric spaces. Fuzzy Sets Syst. 204, 71–85 (2012)Gregori, V., Miñana, J.-J., Morillas, S.: A note on convergence in fuzzy metric spaces. Iran. J. Fuzzy Syst. 11(4), 75–85 (2014)Gregori, V., Morillas, S., Sapena, A.: On a class of completable fuzzy metric spaces. Fuzzy Sets Syst. 161, 2193–2205 (2010)Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metric spaces and applications. Fuzzy Sets Syst. 170, 95–111 (2011)Kramosil, I., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11, 326–334 (1975)Mihet, D.: On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets Syst. 158, 915–921 (2007)Mihet, D.: Fuzzy φ\varphi φ -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 159, 739–744 (2008)Mihet, D.: A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst. 144, 431–439 (2004)Mishra, S.N., Sharma, N., Singh, S.L.: Common fixed points of maps on fuzzy metric spaces Internat. J. Math. Math. Sci. 17(2), 253–258 (1994)Morillas, S., Sapena, A.: On Cauchy sequences in fuzzy metric spaces. In: Proceedings of the conference in applied topology (WiAT’13), pp. 101–108 (2013)Ricarte, L.A., Romaguera, S.: A domain-theoretic approach to fuzzy metric spaces. Topol. Appl. 163, 149–159 (2014)Sherwood, H.: On the completion of probabilistic metric spaces. Z.Wahrschein-lichkeitstheorie verw. Geb. 6, 62–64 (1966)Sherwood, H.: Complete Probabilistic Metric Spaces. Z. Wahrschein-lichkeitstheorie verw. Geb. 20, 117–128 (1971)Tirado, P.: On compactness and G-completeness in fuzzy metric spaces. Iran. J. Fuzzy Syst. 9(4), 151–158 (2012)Tirado, P.: Contraction mappings in fuzzy quasi-metric spaces and [0,1]-fuzzy posets. Fixed Point Theory 13(1), 273–283 (2012)Vasuki, R., Veeramani, P.: Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets Syst. 135(3), 415–417 (2003)Veeramani, P.: Best approximation in fuzzy metric spaces. J. Fuzzy Math. 9, 75–80 (2001

    A construction of a fuzzy topology from a strong fuzzy metric

    Full text link
    [EN] After the inception of the concept of a fuzzy metric by I. Kramosil and J. Michalek, and especially after its revision by A. George and G. Veeramani, the attention of many researches was attracted to the topology induced by a fuzzy metric. In most of the works devoted to this subject the resulting topology is an ordinary, that is a crisp one. Recently some researchers showed interest in the fuzzy-type topologies induced by fuzzy metrics. In particular, in the paper  (J.J. Mi\~{n}ana, A. \v{S}ostak, {\it Fuzzifying topology induced by a strong fuzzy metric}, Fuzzy Sets and Systems,  6938 DOI information: 10.1016/j.fss.2015.11.005.) a fuzzifying topology T:2X[0,1]{\mathcal T}:2^X \to [0,1] induced by a fuzzy metric  m:X×X×[0,)m: X\times X \times [0,\infty) was constructed. In this paper we extend  this construction to get the fuzzy topology T:[0,1]X[0,1]{\mathcal T}: [0,1]^X \to [0,1] and study some properties of this fuzzy topology.54AGrecova, S.; Sostak, A.; Uljane, I. (2016). A construction of a fuzzy topology from a strong fuzzy metric. Applied General Topology. 17(2):105-116. doi:10.4995/agt.2016.4495.SWORD105116172Chang, C. . (1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 24(1), 182-190. doi:10.1016/0022-247x(68)90057-7Goguen, J. . (1967). L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18(1), 145-174. doi:10.1016/0022-247x(67)90189-8Goguen, J. . (1973). The fuzzy tychonoff theorem. Journal of Mathematical Analysis and Applications, 43(3), 734-742. doi:10.1016/0022-247x(73)90288-6George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7George, A., & Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), 365-368. doi:10.1016/s0165-0114(96)00207-2V. Gregori, A. López-Crevillén and S. Morillas, On continuity and uniform continuity in fuzzy metric spaces, Proc. Workshop Appl. Topology WiAT'09 (2009), 85-91.Gregori, V., López-Crevillén, A., Morillas, S., & Sapena, A. (2009). On convergence in fuzzy metric spaces. Topology and its Applications, 156(18), 3002-3006. doi:10.1016/j.topol.2008.12.043V. Gregori and J. Mi-ana, Some concepts related to continuity in fuzzy metric spaces, Proc. Workshop Appl. Topology WiAT'13 (2013), 85-91.Gregori, V., Morillas, S., & Sapena, A. (2010). On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems, 161(16), 2193-2205. doi:10.1016/j.fss.2010.03.013Gregori, V., & Romaguera, S. (2004). Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144(3), 411-420. doi:10.1016/s0165-0114(03)00161-1Höhle, U. (1980). Upper semicontinuous fuzzy sets and applications. Journal of Mathematical Analysis and Applications, 78(2), 659-673. doi:10.1016/0022-247x(80)90173-0I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 336-344.Kubiak, T., & Sostak, A. P. (2004). A fuzzification of the category of M-valued L-topological spaces. Applied General Topology, 5(2), 137. doi:10.4995/agt.2004.1965Lowen, R. (1976). Fuzzy topological spaces and fuzzy compactness. Journal of Mathematical Analysis and Applications, 56(3), 621-633. doi:10.1016/0022-247x(76)90029-9Lowen, R. (1977). Initial and final fuzzy topologies and the fuzzy Tychonoff theorem. Journal of Mathematical Analysis and Applications, 58(1), 11-21. doi:10.1016/0022-247x(77)90223-2Mardones-Pérez, I., & de Prada Vicente, M. A. (2015). Fuzzy pseudometric spaces vs fuzzifying structures. Fuzzy Sets and Systems, 267, 117-132. doi:10.1016/j.fss.2014.06.003Mardones-Pérez, I., & de Prada Vicente, M. A. (2012). A representation theorem for fuzzy pseudometrics. Fuzzy Sets and Systems, 195, 90-99. doi:10.1016/j.fss.2011.11.008Menger, K. (1951). Probabilistic Geometry. Proceedings of the National Academy of Sciences, 37(4), 226-229. doi:10.1073/pnas.37.4.226Miheţ, D. (2007). On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets and Systems, 158(8), 915-921. doi:10.1016/j.fss.2006.11.012Miñana, J.-J., & Šostak, A. (2016). Fuzzifying topology induced by a strong fuzzy metric. Fuzzy Sets and Systems, 300, 24-39. doi:10.1016/j.fss.2015.11.005Sapena Piera, A. (2001). A contribution to the study of fuzzy metric spaces. Applied General Topology, 2(1), 63. doi:10.4995/agt.2001.3016A. Sapena and S. Morillas, On strong fuzzy metrics, Proc. Workshop Appl. Topology WiAT'09 (2009), 135-141.Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334. doi:10.2140/pjm.1960.10.313A. Sostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo, Ser II 11 (1985), 125-186.Shostak, A. P. (1989). Two decades of fuzzy topology: basic ideas, notions, and results. Russian Mathematical Surveys, 44(6), 125-186. doi:10.1070/rm1989v044n06abeh002295Šostak, A. P. (1996). Basic structures of fuzzy topology. Journal of Mathematical Sciences, 78(6), 662-701. doi:10.1007/bf02363065Ying, M. (1991). A new approach for fuzzy topology (I). Fuzzy Sets and Systems, 39(3), 303-321. doi:10.1016/0165-0114(91)90100-5Ying, M. (1992). A new approach for fuzzy topology (II). Fuzzy Sets and Systems, 47(2), 221-232. doi:10.1016/0165-0114(92)90181-3Ying, M. (1993). A new approach for fuzzy topology (III). Fuzzy Sets and Systems, 55(2), 193-207. doi:10.1016/0165-0114(93)90132-2Ying, M. (1993). Compactness in fuzzifying topology. Fuzzy Sets and Systems, 55(1), 79-92. doi:10.1016/0165-0114(93)90303-yYue, Y., & Shi, F.-G. (2010). On fuzzy pseudo-metric spaces. Fuzzy Sets and Systems, 161(8), 1105-1116. doi:10.1016/j.fss.2009.10.00

    On some results of analysis in metric spaces and fuzzy metric spaces

    Get PDF
    The notion of a fuzzy metric space due to George and Veeramani has many advantages in analysis since many notions and results from classical metric space theory can be extended and generalized to the setting of fuzzy metric spaces, for instance: the notion of completeness, completion of spaces as well as extension of maps. The layout of the dissertation is as follows: Chapter 1 provide the necessary background in the context of metric spaces, while chapter 2 presents some concepts and results from classical metric spaces in the setting of fuzzy metric spaces. In chapter 3 we continue with the study of fuzzy metric spaces, among others we show that: the product of two complete fuzzy metric spaces is also a complete fuzzy metric space. Our main contribution is in chapter 4. We introduce the concept of a standard fuzzy pseudo metric space and present some results on fuzzy metric identification. Furthermore, we discuss some properties of t-nonexpansive maps.Mathematical SciencesM. Sc. (Mathematics

    w-Distances on Fuzzy Metric Spaces and Fixed Points

    Full text link
    [EN] We propose a notion of w-distance for fuzzy metric spaces, in the sense of Kramosil and Michalek, which allows us to obtain a characterization of complete fuzzy metric spaces via a suitable fixed point theorem that is proved here. Our main result provides a fuzzy counterpart of a renowned characterization of complete metric spaces due to Suzuki and Takahashi.Romaguera Bonilla, S. (2020). w-Distances on Fuzzy Metric Spaces and Fixed Points. Mathematics. 8(11):1-9. https://doi.org/10.3390/math8111909S19811Suzuki, T., & Takahashi, W. (1996). Fixed point theorems and characterizations of metric completeness. Topological Methods in Nonlinear Analysis, 8(2), 371. doi:10.12775/tmna.1996.040Suzuki, T. (2001). Generalized Distance and Existence Theorems in Complete Metric Spaces. Journal of Mathematical Analysis and Applications, 253(2), 440-458. doi:10.1006/jmaa.2000.7151Al-Homidan, S., Ansari, Q. H., & Yao, J.-C. (2008). Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Analysis: Theory, Methods & Applications, 69(1), 126-139. doi:10.1016/j.na.2007.05.004Lakzian, H., & Lin, I.-J. (2012). The Existence of Fixed Points for Nonlinear Contractive Maps in Metric Spaces with -Distances. Journal of Applied Mathematics, 2012, 1-11. doi:10.1155/2012/161470Alegre, C., Marín, J., & Romaguera, S. (2014). A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces. Fixed Point Theory and Applications, 2014(1). doi:10.1186/1687-1812-2014-40Alegre, C., & Marín, J. (2016). Modified w-distances on quasi-metric spaces and a fixed point theorem on complete quasi-metric spaces. Topology and its Applications, 203, 32-41. doi:10.1016/j.topol.2015.12.073Lakzian, H., Rakočević, V., & Aydi, H. (2019). Extensions of Kannan contraction via w-distances. Aequationes mathematicae, 93(6), 1231-1244. doi:10.1007/s00010-019-00673-6Alegre, C., Fulga, A., Karapinar, E., & Tirado, P. (2020). A Discussion on p-Geraghty Contraction on mw-Quasi-Metric Spaces. Mathematics, 8(9), 1437. doi:10.3390/math8091437Abbas, M., Ali, B., & Romaguera, S. (2015). Multivalued Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness. Filomat, 29(6), 1217-1222. doi:10.2298/fil1506217aRomaguera, S., & Tirado, P. (2020). Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results. Mathematics, 8(2), 273. doi:10.3390/math8020273Kirk, W. A. (1976). Caristi’s fixed point theorem and metric convexity. Colloquium Mathematicum, 36(1), 81-86. doi:10.4064/cm-36-1-81-86Hu, T. K. (1967). On a Fixed-Point Theorem for Metric Spaces. The American Mathematical Monthly, 74(4), 436. doi:10.2307/2314587Subrahmanyam, P. V. (1975). Completeness and fixed-points. Monatshefte f�r Mathematik, 80(4), 325-330. doi:10.1007/bf01472580Grabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4Radu, V. (1987). Some fixed point theorems probabilistic metric spaces. Lecture Notes in Mathematics, 125-133. doi:10.1007/bfb0072718Riaz, M., & Hashmi, M. R. (2018). Fixed points of fuzzy neutrosophic soft mapping with decision-making. Fixed Point Theory and Applications, 2018(1). doi:10.1186/s13663-018-0632-5Riaz, M., & Hashmi, M. R. (2019). Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems. Journal of Intelligent & Fuzzy Systems, 37(4), 5417-5439. doi:10.3233/jifs-190550Hashmi, M. R., & Riaz, M. (2020). A novel approach to censuses process by using Pythagorean m-polar fuzzy Dombi’s aggregation operators. Journal of Intelligent & Fuzzy Systems, 38(2), 1977-1995. doi:10.3233/jifs-19061

    A Characterization of Strong Completeness in Fuzzy Metric Spaces

    Full text link
    [EN] Here, we deal with the concept of fuzzy metric space(X,M,*), due to George and Veeramani. Based on the fuzzy diameter for a subset ofX, we introduce the notion of strong fuzzy diameter zero for a family of subsets. Then, we characterize nested sequences of subsets having strong fuzzy diameter zero using their fuzzy diameter. Examples of sequences of subsets which do or do not have strong fuzzy diameter zero are provided. Our main result is the following characterization: a fuzzy metric space is strongly complete if and only if every nested sequence of close subsets which has strong fuzzy diameter zero has a singleton intersection. Moreover, the standard fuzzy metric is studied as a particular case. Finally, this work points out a route of research in fuzzy fixed point theory.Juan-Jose Minana acknowledges financial support from FEDER/Ministerio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion/Proyecto PGC2018-095709-B-C21, and by Spanish Ministry of Economy and Competitiveness under contract DPI2017-86372-C3-3-R (AEI, FEDER, UE). This work was also partially supported by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by projects ROBINS and BUGWRIGHT2. These two latest projects have received funding from the European Union's Horizon 2020 research and innovation program under grant agreements Nos. 779776 and 871260, respectively. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Roig, B.; Sapena Piera, A. (2020). A Characterization of Strong Completeness in Fuzzy Metric Spaces. Mathematics. 8(6):1-11. https://doi.org/10.3390/math8060861S11186Menger, K. (1942). Statistical Metrics. Proceedings of the National Academy of Sciences, 28(12), 535-537. doi:10.1073/pnas.28.12.535George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Gregori, V., & Romaguera, S. (2000). Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115(3), 485-489. doi:10.1016/s0165-0114(98)00281-4Gregori, V. (2002). On completion of fuzzy metric spaces. Fuzzy Sets and Systems, 130(3), 399-404. doi:10.1016/s0165-0114(02)00115-xAtanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. doi:10.1016/s0165-0114(86)80034-3Gregori, V., Romaguera, S., & Veeramani, P. (2006). A note on intuitionistic fuzzy metric spaces☆. Chaos, Solitons & Fractals, 28(4), 902-905. doi:10.1016/j.chaos.2005.08.113Gregori, V., & Sapena, A. (2018). Remarks to «on strong intuitionistic fuzzy metrics». Journal of Nonlinear Sciences and Applications, 11(02), 316-322. doi:10.22436/jnsa.011.02.12Abu-Donia, H. M., Atia, H. A., & Khater, O. M. A. (2020). Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic (ϕ,ψ)-contractive mappings. Journal of Nonlinear Sciences and Applications, 13(06), 323-329. doi:10.22436/jnsa.013.06.03Gregori, V., & Miñana, J.-J. (2016). On fuzzy ψ -contractive sequences and fixed point theorems. Fuzzy Sets and Systems, 300, 93-101. doi:10.1016/j.fss.2015.12.010Miheţ, D. (2007). On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets and Systems, 158(8), 915-921. doi:10.1016/j.fss.2006.11.012Wardowski, D. (2013). Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 222, 108-114. doi:10.1016/j.fss.2013.01.012Gregori, V., Miñana, J.-J., Morillas, S., & Sapena, A. (2016). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(1), 25-37. doi:10.1007/s13398-015-0272-0Gregori, V., & Miñana, J.-J. (2017). Strong convergence in fuzzy metric spaces. Filomat, 31(6), 1619-1625. doi:10.2298/fil1706619gGrabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4George, A., & Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), 365-368. doi:10.1016/s0165-0114(96)00207-2Miheţ, D. (2008). Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6), 739-744. doi:10.1016/j.fss.2007.07.006Vasuki, R., & Veeramani, P. (2003). Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets and Systems, 135(3), 415-417. doi:10.1016/s0165-0114(02)00132-xGregori, V., & Romaguera, S. (2004). Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144(3), 411-420. doi:10.1016/s0165-0114(03)00161-1Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008Ricarte, L. A., & Romaguera, S. (2014). A domain-theoretic approach to fuzzy metric spaces. Topology and its Applications, 163, 149-159. doi:10.1016/j.topol.2013.10.014Gregori, V., López-Crevillén, A., Morillas, S., & Sapena, A. (2009). On convergence in fuzzy metric spaces. Topology and its Applications, 156(18), 3002-3006. doi:10.1016/j.topol.2008.12.043Sherwood, H. (1966). On the completion of probabilistic metric spaces. Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete, 6(1), 62-64. doi:10.1007/bf00531809Shukla, S., Gopal, D., & Sintunavarat, W. (2018). A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets and Systems, 350, 85-94. doi:10.1016/j.fss.2018.02.010Beg, I., Gopal, D., Došenović, T., … Rakić, D. (2018). α-type fuzzy H-contractive mappings in fuzzy metric spaces. Fixed Point Theory, 19(2), 463-474. doi:10.24193/fpt-ro.2018.2.37Zheng, D., & Wang, P. (2019). Meir–Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, 120-128. doi:10.1016/j.fss.2018.08.014Rakić, D., Došenović, T., Mitrović, Z. D., de la Sen, M., & Radenović, S. (2020). Some Fixed Point Theorems of Ćirić Type in Fuzzy Metric Spaces. Mathematics, 8(2), 297. doi:10.3390/math802029

    Common fixed points for generalized ψ-contractions in weak non-Archimedean fuzzy metric spaces

    Get PDF
    [EN] Fixed point theory in fuzzy metric spaces plays very important role in theory of nonlinear problems in applied science. In this paper, we prove an existence result of common fixed point of four nonlinear mappings satisfying a new type of contractive condition in a generalized fuzzy metric space, called weak non-Archimedean fuzzy metric space. Our main results can be applied to solve the existence of solutions of non-linear equations in fuzzy metric spaces. Some examples supporting our main theorem are also given. Our results improve and generalize some recent results contained in Vetro (2011)[16]to generalized contractive conditions under some suitable conditions and many known results in the literature.S. Suantai was partially supported by Chiang Mai University. Yeol Je Cho was supported by Basic Science Research Program through National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2014R1A2A2A01002100). J. Tiammee would like to thank the Thailand Research Fund and Office of the Higher Education Commission under Grant No. MRG6180050 for the financial support and Chiang Mai Rajabhat University.Suantai, S.; Cho, YJ.; Tiammee, J. (2019). Common fixed points for generalized ψ-contractions in weak non-Archimedean fuzzy metric spaces. Applied General Topology. 20(1):1-18. https://doi.org/10.4995/agt.2019.7638SWORD118201Y. J. Cho, Fixed points in fuzzy metric spaces, J. Fuzzy Math. 5 (1997), 949-962.A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems. 90 (1997), 365-368. https://doi.org/10.1016/S0165-0114(96)00207-2M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1989), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9M. Jain, K. Tas, S. Kumar and N. Gupta, Coupled fixed point theorems for a pair of weakly compatible maps along with CLRg-property in fuzzy metric spaces, J. Appl. Math. 2012 (2012) Art. ID 961210, 13 pp. https://doi.org/10.7763/ijapm.2012.v2.130G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), 771-779. https://doi.org/10.1155/S0161171286000935G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4 (1996), 19-215.I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 336-344.S. Manro and C. Vetro, Common fixed point theorems in fuzzy metric spaces employing CLRg and JCLRst properties, Ser. Math. Inform. 29 (2014), 77-90.J. Martínez-Moreno, A. Roldán, C. Roldán and Y. J. Cho, Multi-dimensional coincidence point theorems for weakly compatible mappings with the CLRg-property in (fuzzy) metric spaces, Fixed Point Theory Appl. 2015, 2015:53. https://doi.org/10.1186/s13663-015-0297-2D. Mihet, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems 159 (2008), 739-744. https://doi.org/10.1016/j.fss.2007.07.006A.-F. Roldán-López-de-Hierro and W. Sintunavarat, Common fixed point theorems in fuzzy metric spaces using the CLRg-property, Fuzzy Sets and Systems 282 (2016), 131-142. https://doi.org/10.1016/j.fss.2014.11.005A. Sapena, A contribution to the study of fuzzy metric spaces, Applied General Topology 2, no. 1 (2001), 63-75. https://doi.org/10.4995/agt.2001.3016B. Schweizer and A. Sklar, Statistical metric space, Pacific J. Math. 10 (1960), 314-334. https://doi.org/10.2140/pjm.1960.10.313C. Vetro, Fixed points in weak non-Archimedean fuzzy metric spaces, Fuzzy Sets Syst. 162 (2011), 84-90. https://doi.org/10.1016/j.fss.2010.09.018L. A. Zadeh, Fuzzy sets, Inform. Control. 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-

    Extended Proinov X-contractions in metric spaces and fuzzy metric spaces satisfying the property NC by avoiding the monotone condition

    Get PDF
    In recent years, Fixed Point Theory has achieved great importance within Nonlinear Analysis especially due to its interesting applications in real-world contexts. Its methodology is based on the comparison between the distances between two points and their respective images through a nonlinear operator. This comparison is made through contractive conditions involving auxiliary functions whose role is increasingly decisive, and which are acquiring a prominent role in Functional Analysis. Very recently, Proinov introduced new fixed point results that have very much attracted the researchers’ attention especially due to the extraordinarily weak conditions on the auxiliary functions considered. However, one of them, the nondecreasing character of the main function, has been used for many years without the chance of being replaced by another alternative property. In this way, several researchers have recently raised this question as an open problem in this field of study. In order to face this open problem, in this work we introduce a novel class of auxiliary functions that serve to define contractions, both in metric spaces and in fuzzy metric spaces, which, in addition to generalizing to Proinov contractions, avoid the nondecreasing character of themain auxiliary function. Furthermore, we present these new results in the setting of fuzzy metric spaces that satisfy the conditionNC, which open new possibilities in the metric theory compared to classic non-Archimedean fuzzy metric spaces. Finally, we include some illustrative examples to show how to apply the novel theorems to cases that are not covered by other previous results.Universidad de Granada / CBU

    Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results

    Full text link
    [EN] With the help of C-contractions having a fixed point, we obtain a characterization of complete fuzzy metric spaces, in the sense of Kramosil and Michalek, that extends the classical theorem of H. Hu (see "Am. Math. Month. 1967, 74, 436-437") that a metric space is complete if and only if any Banach contraction on any of its closed subsets has a fixed point. We apply our main result to deduce that a well-known fixed point theorem due to D. Mihet (see "Fixed Point Theory 2005, 6, 71-78") also allows us to characterize the fuzzy metric completeness.This research was partially funded by Ministerio de Ciencia, Innovacion y Universidades, under grant PGC2018-095709-B-C21 and AEI/FEDER, UE funds.Romaguera Bonilla, S.; Tirado Peláez, P. (2020). Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results. Mathematics. 8(2):1-7. https://doi.org/10.3390/math8020273S1782Connell, E. H. (1959). Properties of fixed point spaces. Proceedings of the American Mathematical Society, 10(6), 974-979. doi:10.1090/s0002-9939-1959-0110093-3Hu, T. K. (1967). On a Fixed-Point Theorem for Metric Spaces. The American Mathematical Monthly, 74(4), 436. doi:10.2307/2314587Subrahmanyam, P. V. (1975). Completeness and fixed-points. Monatshefte f�r Mathematik, 80(4), 325-330. doi:10.1007/bf01472580Kirk, W. A. (1976). Caristi’s fixed point theorem and metric convexity. Colloquium Mathematicum, 36(1), 81-86. doi:10.4064/cm-36-1-81-86Caristi, J. (1976). Fixed point theorems for mappings satisfying inwardness conditions. Transactions of the American Mathematical Society, 215, 241-241. doi:10.1090/s0002-9947-1976-0394329-4Suzuki, T., & Takahashi, W. (1996). Fixed point theorems and characterizations of metric completeness. Topological Methods in Nonlinear Analysis, 8(2), 371. doi:10.12775/tmna.1996.040Suzuki, T. (2007). A generalized Banach contraction principle that characterizes metric completeness. Proceedings of the American Mathematical Society, 136(05), 1861-1870. doi:10.1090/s0002-9939-07-09055-7Romaguera, S., & Tirado, P. (2019). A Characterization of Quasi-Metric Completeness in Terms of α–ψ-Contractive Mappings Having Fixed Points. Mathematics, 8(1), 16. doi:10.3390/math8010016Samet, B., Vetro, C., & Vetro, P. (2012). Fixed point theorems for -contractive type mappings. Nonlinear Analysis: Theory, Methods & Applications, 75(4), 2154-2165. doi:10.1016/j.na.2011.10.014Abbas, M., Ali, B., & Romaguera, S. (2015). Multivalued Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness. Filomat, 29(6), 1217-1222. doi:10.2298/fil1506217aCastro-Company, F., Romaguera, S., & Tirado, P. (2015). On the construction of metrics from fuzzy metrics and its application to the fixed point theory of multivalued mappings. Fixed Point Theory and Applications, 2015(1). doi:10.1186/s13663-015-0476-1Radu, V. (1987). Some fixed point theorems probabilistic metric spaces. Lecture Notes in Mathematics, 125-133. doi:10.1007/bfb0072718Sehgal, V. M., & Bharucha-Reid, A. T. (1972). Fixed points of contraction mappings on probabilistic metric spaces. Mathematical Systems Theory, 6(1-2), 97-102. doi:10.1007/bf01706080Ćirić, L. (2010). Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 72(3-4), 2009-2018. doi:10.1016/j.na.2009.10.00

    Sequentially compact subsets and monotone functions: An application to fuzzy theory

    Get PDF
    Let (X,<,τO) be a first countable compact linearly ordered topological space. If (Y,D) is a uniform sequentially compact linearly ordered space with weight less than the splitting number s, then we characterize the sequentially compact subsets of the space M(X,Y) of all monotone functions from X into Y endowed with the topology of the uniform convergence induced by the uniformity D. In particular, our results are applied to identify the compact subsets of M([0,1],Y) for a wide class of linearly ordered topological spaces, including Y=R. This allows us to provide a characterization of the compact subsets of an extended version of the fuzzy number space (with the supremum metric) where the reals are replaced by certain linearly ordered topological spaces, which corrects some characterizations which appear in the literature. Since fuzzy analysis is based on the notion of fuzzy number just as much as classical analysis is based on the concept of real number, our results open new possibilities of research in this field

    Stavovi o nepokretnoj tački na prostorima sa nedeterminističkom metrikom

    Get PDF
    From Freschet’s definition of metric space in the early twentieth century, the various generalizations of metric spaces such as Menger spaces, fuzzy metric spaces, intuitionistic fuzzy metric spaces, L-fuzzy metric spaces and others, were obtained. On the other hand, the fundamental theorem in the theory of fixed points in metric spaces represents Banach contractive Principle. This theorem, which for some special cases has already been considered by a Liouville, Picard and Goursat, in the past eight decades till today, has found many important applications and has been generalized in many directions. One of them is the introduction of nonlinear contractive condition by Rakotch in 1962, and then by Boyd and Wong in 1969. The field of research in this dissertation belongs to the nonlinear functional analysis, and partly to the topology and applied mathematics. Since the basic structures on which we conduct our research are the spaces with nondeterministic distances, the obtained results have applications in modern scientific research in physics. In this dissertation,the nonlinear contractive condition which is associated with different forms of the boundness of sets in the spaces with nondeterministic distances, will be discussed. In addition, we will be discussing the existence and uniqueness of fixed and common fixed points, under conditions of weak commutativity and compatibility for different types of mappings. The hypothesis of the proceeding is that with qualitatively characterization for the domain of mapping, we can relax the conditions of nonlinear contraction and thereby obtain information about the existence or absence of fixed points for this mapping. A special place in this dissertation takes convexity and topological characterization of completeness and compactness of the spaces with nondeterministic distances. These results are associated with the existence of fixed and common fixed points for non-expansive mappings, with nonlinear contractive condition. The main question is how the convex structure and the previously mentioned results, can be transferred to the spaces with nondeterministic distances
    corecore