2,292 research outputs found

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called ā€œcolorsā€ to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k āˆ’ 1), conļ¬rming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We deļ¬ne the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive diļ¬€erent colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    An updated survey on rainbow connections of graphs - a dynamic survey

    Get PDF
    The concept of rainbow connection was introduced by Chartrand, Johns, McKeon and Zhang in 2008. Nowadays it has become a new and active subject in graph theory. There is a book on this topic by Li and Sun in 2012, and a survey paper by Li, Shi and Sun in 2013. More and more researchers are working in this field, and many new papers have been published in journals. In this survey we attempt to bring together most of the new results and papers that deal with this topic. We begin with an introduction, and then try to organize the work into the following categories, rainbow connection coloring of edge-version, rainbow connection coloring of vertex-version, rainbow kk-connectivity, rainbow index, rainbow connection coloring of total-version, rainbow connection on digraphs, rainbow connection on hypergraphs. This survey also contains some conjectures, open problems and questions for further study

    Gallai-Ramsey and vertex proper connection numbers

    Get PDF
    Given a complete graph G, we consider two separate scenarios. First, we consider the minimum number N such that every coloring of G using exactly k colors contains either a rainbow triangle or a monochromatic star on t vertices. This number is known for small cases and generalized for larger cases for a fixed k. Second, we introduce the vertex proper connection number of a graph and provide a relationship to the chromatic number of minimally connected subgraphs. Also a notion of total proper connection is introduced and a question is asked about a possible relationship between the total proper connection number and the vertex and edge proper connection numbers

    On the fine-grained complexity of rainbow coloring

    Get PDF
    The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored in kk colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all edges of different colors. Our main result states that for any kā‰„2k\ge 2, there is no algorithm for Rainbow k-Coloring running in time 2o(n3/2)2^{o(n^{3/2})}, unless ETH fails. Motivated by this negative result we consider two parameterized variants of the problem. In Subset Rainbow k-Coloring problem, introduced by Chakraborty et al. [STACS 2009, J. Comb. Opt. 2009], we are additionally given a set SS of pairs of vertices and we ask if there is a coloring in which all the pairs in SS are connected by rainbow paths. We show that Subset Rainbow k-Coloring is FPT when parameterized by āˆ£Sāˆ£|S|. We also study Maximum Rainbow k-Coloring problem, where we are additionally given an integer qq and we ask if there is a coloring in which at least qq anti-edges are connected by rainbow paths. We show that the problem is FPT when parameterized by qq and has a kernel of size O(q)O(q) for every kā‰„2k\ge 2 (thus proving that the problem is FPT), extending the result of Ananth et al. [FSTTCS 2011]
    • ā€¦
    corecore