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Abstract

A graph coloring is an assignment of labels called “colors” to certain elements of
a graph subject to certain constraints. The proper vertex coloring is the most common
type of graph coloring, where each vertex of a graph is assigned one color such that no
two adjacent vertices share the same color, with the objective of minimizing the number of
colors used. One can obtain various generalizations of the proper vertex coloring problem,
by strengthening or relaxing the constraints or changing the objective. We study several

types of such generalizations in this thesis.

Series-parallel graphs are multigraphs that have no Ky-minor. We provide bounds
on their fractional and circular chromatic numbers and the defective version of these pa-
rameters. In particular we show that the fractional chromatic number of any series-parallel

graph of odd girth k is exactly 2k/(k — 1), confirming a conjecture by Wang and Yu.

We introduce a generalization of defective coloring: each vertex of a graph is assigned
a fraction of each color, with the total amount of colors at each vertex summing to 1. We
define the fractional defect of a vertex v to be the sum of the overlaps with each neighbor
of v, and the fractional defect of the graph to be the maximum of the defects over all vertices.
We provide results on the minimum fractional defect of 2-colorings of some graphs. We also

propose some open questions and conjectures.

Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called
rainbow if all its vertices receive different colors, and monochromatic if all its vertices receive

the same color. We consider several types of coloring here: a no-rainbow-F' coloring of G

ii



is a coloring of the vertices of G without rainbow subgraph isomorphic to F'; an F~-WORM
coloring of GG is a coloring of the vertices of G without rainbow or monochromatic subgraph
isomorphic to F; an (M, R)-WORM coloring of G is a coloring of the vertices of G with
neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to
R. We present some results on these concepts especially with regards to the existence of
colorings, complexity, and optimization within certain graph classes. Our focus is on the

case that F', M or R is a path, cycle, star, or clique.
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Chapter 1

Introduction

A graph coloring is an assignment of labels called “colors” to certain elements of a
graph subject to certain constraints. The proper vertex coloring is the most common type
of graph coloring, where each vertex of a graph is assigned one color such that adjacent

vertices receive different colors, with the objective of minimizing the number of colors used.

One can obtain various generalizations of the proper vertex coloring problem, by
strengthening or relaxing the constraints or changing the objective. For example, in a
distance d-coloring (see, for example, [55, 32, 48]), no two vertices within distance d of each
other share the same color; in a defective coloring (see, for example, [20, 21]), a vertex
can receive the same color as some of its neighbors do; in a fractional coloring (see, for

example, [57, 67]), each vertex receives a set of colors instead of one color.

We study several types of such generalizations in this thesis. For comprehensive

surveys of graph coloring problems, we refer readers to [49, 69, 17].

1.1 Definitions and Notations

Our definitions and notations are fairly standard. For additional background and

examples, see [78].



A graph G consists of a set V(G) of vertices and a set E(G) of edges, such that each
edge is an unordered pair of distinct vertices; thus, each edge is associated with two vertices
called its endpoints. For brevity we write uv instead of (u,v) for an edge with endpoints u
and v. If uv is an edge, then vertices u and v are adjacent and are neighbors, and they are

each incident to uv. Edges are incident if they have a common endpoint.

More generally, a multigraph G consists of a set V(G) of vertices and a multiset E(G)
of edges, such that each edge is an unordered pair of (not necessarily distinct) vertices. Mul-
tiple edges are edges having the same pair of endpoints. A loop is an edge whose endpoints
are equal. When discussing multigraphs, we may emphasize the absence of multiple edges

and loops by calling a graph a simple graph.

The number of vertices of a graph G is its order. We say a graph is trivial if its
order is 0 or 1. The number of edges of a graph G is its size. We say a graph is empty if its
size is 0. The degree d(v) of a vertex v is the number of edges incident to v. The minimum
degree 0(QG) of a graph G is min{d(v)|v € V(G)}. The mazimum degree A(G) of a graph G
is max{d(v)|v € V(G)}. If every vertex of a graph G has degree k, then G is k-regular. In
particular, a 3-regular graph is also called a cubic graph. A clique in a graph is a set of
pairwise adjacent vertices. The clique number w(G) of a graph G is the maximum size of a
clique in GG. An independent set in a graph is a set of pairwise nonadjacent vertices. The

independence number a(G) of a graph G is the maximum size of an independent set in G.

An isomorphism from a graph G to a graph H is a bijection f : V(G) — V(H) such
that uwv € E(G) if and only if f(u)f(v) € E(H). If there is an isomorphism from G to H,

then we say that G is isomorphic to H, written G = H.

The complement G of a graph G is the graph with vertex set V(G) such that
wv € E(G) if and only if uv ¢ E(G). A graph H is called a subgraph of a graph G if
V(H) CV(G) and E(H) C E(G). If H is a subgraph of G and H # G, then H is a proper
subgraph of G. If H is a subgraph of G and V(H) = V(G), then H is a spanning subgraph
of G. If H is a subgraph of G, and H contains all the edges uwv € E(G) with u,v € V(H),



then H is an induced subgraph G; we say that V(H) (or E(H)) induces H. A graph G is
H -free if G has no induced subgraph isomorphic to H. The open neighborhood of a vertex v
in a graph G, written Ng(v) or simply N (v), is the subgraph of G induced by all neighbors
of v. The closed neighborhood of a vertex v in a graph G, written Ng[v] or simply N[v], is

the subgraph of GG induced by v and all neighbors of v.

In a graph G, the subdivision of an edge wv is the operation that replaces uv with a
path u, w,v through a new vertex w; while the contraction of an edge uv, written G /uwv, is
the operation that replaces © and v with a new vertex such that the new vertex is incident
to the edges, other than uwv, that were incident to v or v. We write G — e for the subgraph
of G obtained by deleting an edge e, and G — M for the subgraph of G obtained by deleting
a set of edges M. We write G — v for the subgraph of G obtained by deleting a vertex v
and all its incident edges, and G — S for the subgraph of G obtained by deleting a set of
vertices S and all their incident edges. A graph H is a minor of G if H can be formed from
G by deleting vertices or edges or by contracting edges. A graph H is a subdivision of G

if H can be formed from G by successive edge subdivisions.

A complete graph is a graph whose vertices are all pairwise adjacent. The complete
graph with n vertices is denoted K, ; in particular, K3 is also called a triangle. A path is
a graph of the form V(G) = {v1,ve,...,v,} and E(G) = {vive,vovs,...,vy_10,}, where
n > 1 and the v; are all distinct. The path with n vertices is denoted P,,. A cycle is a graph
of the form V(G) = {vy,v,...,v,} and E(G) = {v1ve, vovs, . .., Uy_1Un, Vyv1 }, where n > 3
and the v; are all distinct. The cycle with n vertices is denoted C,,. The number of edges
of a path (or cycle) is called its length. A cyclic graph is a graph that contains a cycle. A
forest (acyclic graph) is a graph that does not contain any cycle. A chord of a cycle C is
an edge not in C whose endpoints lie in C. A chordal graph is a graph in which all cycles
with four or more vertices have a chord. Equivalently, every induced cycle in the graph has

at most three vertices.

A graph G is connected if there is a path between every pair of distinct vertices of G.



The components of a graph are its maximal connected subgraphs. A tree is a connected
forest. A connected graph G is said to be k-connected if it has more than k vertices and

remains connected whenever fewer than k vertices (and their incident edges) are removed.

Let 7 > 2 be an integer. A graph G is r-partite if V(G) admits a partition into r
independent sets. These independent sets are called partite sets of G. Usually we say
bipartite instead of “2-partite”, and tripartite instead of “3-partite”. An r-partite graph G
in which every two vertices from different partite sets are adjacent is called a complete r-
partite graph. Equivalently, every component of G is a complete graph. We write K, ...n.
for the complete r-partite graph with partite sets of size nq,...,n,. A complete bipartite
graph is also called a bicliqgue. The complete bipartite graph K7, is also called a star. The
Turdn graph T, , is the complete r-partite graph with n vertices whose partite sets differ

in size by at most 1.

The cartesian product of G and H, written GO H, is the graph whose vertex set is
V(G) x V(H), in which two vertices (u1,us) and (v1,ve2) are adjacent if ujv; € F(G) and
ug2 = v, or u; = v and ugvy € E(H). The m-by-n rooks graph is K,,0K,. The m-by-n

grid graph is P, OPF,. The prism of order 2n is KoOC,.

The disjoint union of graphs Gi,Go,...,G, written G; U Go U ... U Gy, is the
graph with vertex set Ule V(G;) and edge set Ule E(G;). The join of graphs G and H,
written G V H, is the graph obtained from the disjoint union G U H by adding the edges
{zy:2€V(G),ye V(H)}.

The Petersen graph is a graph whose vertices are the 2-element subsets of a 5-element

set and whose edges are the pairs of disjoint 2-element subsets.

A k-tree is a graph obtained by starting with K} and repeatedly adding a vertex
and adding all possible edges between the new vertex and a k-clique. A partial k-tree is a

spanning subgraph of a k-tree.

A graph is planar if it can be drawn on the plane without crossing edges. Such a

drawing is called a planar embedding of the graph. A plane graph is a particular planar
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embedding of a planar graph. The dual graph G* of a plane graph G is a plane multigraph
such that there is a bijection f from the set of faces of G to the set of vertices of G*. The
edges of G* correspond to the edges of G as follows: if e is an edge of G with face X on
one side and face Y on the other side, then e* is an edge of G* with endpoints f(X) and
f(Y). The weak dual of a plane graph G is the graph obtained from the dual graph G* by
deleting the vertex that corresponds to the unbounded face of G. A graph is outerplanar if
it admits a planar embedding in which every vertex lies on the boundary of the outer face.
An outerplanar graph is mazimal outerplanar if it does not allow addition of edges while

preserving outerplanarity.

The distance from u to v, written dg(u,v) or simply d(u,v), is the length of a
shortest path from u to v in G. It is defined to be infinity if G does not contain such a
path. The eccentricity of a vertex u, written €(u), is max,cy () d(u,v). The diameter of
a graph G, written diam(G), is max, ,cv () d(u,v). The girth of a graph G, written g(G),
is the length of a shortest cycle contained in G. It is defined to be infinity if G does not
contain any cycles. The odd girth of a graph is the length of a shortest odd cycle contained

in the graph. It is defined to be infinity if the graph does not contain any odd cycles.

A wvertex cover in a graph is a set of vertices that contains at least one endpoint
of every edge. The wvertex cover number B(G) of a graph G is the minimum size of a
vertex cover in G. A matching in a graph is a set of edges without common vertices. The
endpoints of the edges of a matching M are saturated by M. A perfect matching is a
matching that saturates all vertices of the graph. The matching number m(G) of a graph
G is the maximum size of a matching in G. A set of vertices S is dominating if every vertex
not in S has a neighbor in S. The domination number Y(G) of a graph G is the minimum

size of a dominating set in G.

A graph coloring is an assignment of labels to certain elements of a graph subject
to certain constraints. The labels are called colors. In particular, a vertex coloring is an

assignment of colors to vertices of a graph. In this thesis, we consider only vertex colorings.



Given a vertex coloring of a graph, we say that the vertices having the same color
form a color class. A k-coloring of a graph G is a vertex coloring of G using k colors.
A proper k-coloring of a graph G is a k-coloring of G such that each vertex of G receives
exactly one color and adjacent vertices receive different colors. Note that a proper k-coloring
is equivalent to a partition of the vertex set into k independent sets. A graph is k-colorable
if it has a proper k-coloring. The chromatic number X(G) of a graph G is the smallest

integer k such that G is k-colorable.

Given a (not necessarily proper) vertex coloring of a graph G where each vertex
of G receives one color, we say a subgraph of G is rainbow (or heterochromatic) if all its

vertices receive distinct colors, and monochromatic if all its vertices receive the same color.

In this thesis, we mostly deal with graphs. But sometimes we need to consider a
generalization of graphs: a hypergraph H consists of a set V() of vertices and a set E(H)
of hyperedges, such that each hyperedge is a nonempty set of vertices. A hypergraph H is
r-uniform if every hyperedge of H contains r vertices. (So a simple graph is just a 2-uniform
hypergraph.) The degree d(v) of a vertex v is the number of hyperedges that contain v. A
hypergraph H is k-regular if every vertex of H has degree k. More generally, if we allow

E(H) to be a multiset, then H will be a multihypergraph instead of hypergraph.

1.2 Thesis Organization

The rest of this thesis is organized as follows:

In Chapter 2, we study several types of generalized vertex colorings of series-parallel
graphs. The main result is that the fractional chromatic number of a series-parallel graph
of odd girth k is exactly 2+ 2/(k — 1), confirming a conjecture by Wang and Yu [77]. We
also provide additional results on defective fractional coloring and defective circular coloring
of series-parallel graphs addressing conjectures and results in the literature. In particular,
we answer a question of Klostermeyer by showing that for every d there is a series-parallel

graph whose d-defective fractional and circular chromatic numbers are both 3.
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In Chapter 3, we introduce a generalization of defective coloring: each vertex of a
graph is assigned a fraction of each color, with the total amount of colors at each vertex
summing to 1. We define the fractional defect of a vertex v to be the sum of the overlaps
with each neighbor of v, and the fractional defect of the graph to be the maximum of the
defects over all vertices. We provide results on the minimum fractional defect of 2-colorings
of some graphs. For example, we show that the minimum fractional defect of 2-colorings of

the complete tripartite graph Ko . with a < b < cis be/(b+ ¢ — a).

The next few chapters are devoted to the problem of coloring the vertices of a graph

while forbidding rainbow or monochromatic subgraphs.

In Chapter 4, we define a no-rainbow-F coloring of G as a coloring of the vertices
of G without rainbow subgraph isomorphic to F', and the F-upper chromatic number of G
as the maximum number of colors in such a coloring. We present some results on this
parameter for certain graph classes. The focus is on the case that F' is a star or triangle.
For example, we show that the Ks-upper chromatic number of any maximal outerplanar

graph on n vertices is [n/2] + 1.

In Chapter 5, we define an F~-WORM coloring of G as a coloring of the vertices of G
without rainbow or monochromatic subgraph isomorphic to F. We present some results
on this concept especially as regards to the existence, complexity, and optimization within

certain graph classes. The focus is on the case that F' = Ps.

In Chapter 6, we consider some other cases of WORM coloring, in particular the

cases that F'is a cycle and that F'is a complete graph.

In Chapter 7, we consider a generalization of WORM coloring. Specifically, for
graphs M and R, we define an (M, R)-WORM coloring of G to be a coloring of the vertices
of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph

isomorphic to R. The focus is on the case that M = K.

In Chapter 8, we briefly summarize the main results of the thesis and propose some

future directions of research.



Chapter 2

Fractional, Circular, and Defective

Coloring of Series-Parallel Graphs

2.1 Introduction

This chapter is based on joint work with Wayne Goddard [42]. As all proofs in the

original paper are provided, we do not give specific references to that paper.

A two-terminal series-parallel graph (G;1,r) is a multigraph with two distinguished

vertices [ and r called the terminals, formed recursively as follows:

o (Ko;lg,m0) is a two-terminal series-parallel graph.

e Series join: let (G1;l1,71) and (Ga;l2, r2) be two-terminal series-parallel graphs. We
define G1 @ G4 to be the graph obtained from the union of G; and G2 by identifying
r1 and [y into a single vertex, and choosing (l1,72) as the new terminal pair. Then

(G1 e G4 is a two-terminal series-parallel graph.

e Parallel join: let (G1;l1,71) and (Gg;l2, 72) be two-terminal series-parallel graphs. We

define G1//G3 to be the graph obtained from the union of G; and G2 by identifying Iy



and [y into a single vertex [, identifying 1 and ro into a single vertex r, and choosing

(I,7) as the new terminal pair. Then G1//Gs is a two-terminal series-parallel graph.

e There are no other two-terminal series-parallel graphs.

For convenience, we shall use the following notations: for a two-terminal series-
parallel graph G, we let G<"~ denote the series join of n copies of G, and let G ,,~ denote
the parallel join of n copies of G. For example, the 5-cycle C5 with non-adjacent terminals

is denoted by (K e K3)//(Ko e Ko e K5), or alternatively (Kz)<?>//(K2)<3>.

A series-parallel graph is a multigraph without a Ky-minor (as used for example
in [50]). It is well known that every block of a series-parallel graph is a two-terminal

series-parallel graph for some choice of distinguished vertices.

We will consider the following colorings. A (k, q)-fractional coloring [67] is an as-
signment of ¢ colors to each vertex, where the colors are drawn from a palette of k colors,
such that adjacent vertices receive disjoint g-sets. A (k, q)-circular coloring [72] (originally
called star coloring) is an assignment of one color to each vertex, where the colors are drawn
from Zj, such that adjacent vertices receive colors that are at least ¢ (mod k) apart. It is
well known that if there is a (k, g)-circular coloring, then there is a (k, ¢)-fractional coloring.
For a survey of circular colorings, see Zhu [80]. The fractional chromatic number x ¢(G) and
the circular chromatic number x.(G) of a graph G are defined as the infimum of k/q taken
over all fractional colorings and all circular colorings of G respectively. It is well known that
the infimum is achieved; that is, one can replace infimum by minimum. Also, by definition,

we have x¢(G) < x.(G) < X(G) for every graph G.

A d-defective coloring [20] (also called a d-improper coloring) is an assignment of
one color to each vertex such that every vertex has at most d neighbors of the same color.
Equivalently, a graph has a d-defective coloring if one can remove the edges of a subgraph of
maximum degree d such that the result is a proper coloring. Similarly, a d-defective (k,q)-

fractional coloring [29] is an assignment of ¢ colors to each vertex, where the colors are



Figure 2.1: A series-parallel graph with circular chromatic number 8/3

drawn from a palette of k colors, such that every vertex v is adjacent to at most d vertices u
where the g-set of v overlaps the g-set of u. A d-defective (k,q)-circular coloring [53] is
an assignment of one color to each vertex, where the colors are drawn from Zjg, such that
every vertex v is adjacent to at most d vertices u where the difference between the color
of v and the color of u is less than ¢ (mod k). Since the number of subgraphs of a graph
is finite, it follows similarly that one can define the d-defective fractional chromatic number
and the d-defective circular chromatic number as the minimum of k/q taken over all d-
defective (k, q)-fractional colorings and all d-defective (k,q)-circular colorings of a graph
respectively. (Defective circular colorings have been generalized by Mihdk et al. [60] by

considering alternative requirements on the graph induced by the improper edges.)

It is well known that series-parallel graphs are 3-colorable. Thus, if such a graph
has a triangle, then its fractional and circular chromatic number are 3. Hell and Zhu [47]
showed that a triangle-free series-parallel graph has circular chromatic number at most 8/3,
and that this is best possible because of the graph of Figure 2.1. Pan and Zhu provided
bounds for series-parallel graphs of higher girth in [62], and proved that their bounds are

best possible in [63].

Outerplanar graphs may be characterized as graphs without a K4-minor or a K 3-
minor (see, for example, [15]). Thus, outerplanar graphs form a subclass of the series-
parallel graphs. The results simplify for such graphs. Klostermeyer and Zhang [54] (and

later Kemnitz and Wellmann [51]) observed that every outerplanar graph of odd girth k has
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circular chromatic number (and fractional chromatic number) exactly 2k/(k —1). This was
extended by Wang et al. [76] who showed that the same result holds for circular list colorings
of outerplanar graphs. The defective choosability of outerplanar and series-parallel graphs

was studied by Woodall [79].

We proceed as follows: in Section 2.2 we show that the fractional chromatic number
of any series-parallel graph of odd girth k is exactly 2k/(k — 1). In Section 2.3 we first
note that a series-parallel graph of girth 5 is 2-colorable with defect 1, and then provide
constructions that show that in many cases the upper bound for the defective version of the
parameter is the same as the upper bound for the ordinary fractional or circular chromatic

numbers. In Section 2.4 we propose some related questions.

2.2 Proper Fractional Colorings

Wang and Yu [77] (assuming a typo in the paper) conjectured that the fractional
chromatic number of any series-parallel graph of odd girth at least k is at most 2k/(k — 1).
The main goal of this section is to show that the fractional chromatic number of any series-

parallel graph of odd girth k is exactly 2k/(k — 1), which proves their conjecture.

2.2.1 Combining Intervals

We need the following definitions and notations. Fix k£ to be an odd integer; say
k =20+ 1. Fix a palette of k colors, and let £ be the set of all subsets of £ colors. Given
integers i and j such that 0 < 4,5 < ¢, define ¢ @ j as the set of all |S; N Sy| such that
S1,82, 83 € £ with [S1 N S3| =i and |Sa N S3| = j. Given integers a and b, let [a, b] denote

the set of consecutive integers {a,a + 1,...,b}, and call it an integer interval.

The proof of our main result is based on the following lemma.

Lemma 1 (a)i@® j is the nonempty integer interval [max({ —i —j —1,i+ j — £), min(¢ —
i+ 0+i— 7).

11



l—i ] —i |i+1

Figure 2.2: §] and S5 as subsets of ¢ colors

(b) Given any integer intervals Iy and I, the set Iy ®Io = {i@j:i € I} and j € I} is an

integer interval.

Proof. (a) It is easy to verify that max({ —i —j —1,i+j— ) <min({ — i+ j, 0 +1i— j),
and so the above interval is nonempty. Suppose that S1,S3 € £ with [S; N S3| = i. Note

that there are k + i — 2¢ = ¢ + 1 elements outside S; U S3. See Figure 2.2.

To maximize |S; N Sq|, we take j elements from S3 using S; as much as possible,
and then ¢ — j elements outside S using S; as much as possible. The overlap [S; N Sy
is min(4,j) + min(¢ — j,¢ — ¢), which simplifies to min(¢ — i + j,¢ + i — j). To minimize
|S1 N Sa|, we take j elements from S3 avoiding S; as much as possible, and then ¢ — j
elements outside S3 avoiding S; as much as possible. The overlap |S; N Sq| is max(j —
(¢ —14),0) + max(¢ — j — (i + 1),0) which simplifies to max(¢{ —i — j — 1,4 + j — £), since
(j—(l—19)+(—7—(i+1)) = —1 and therefore at least one of j — (£ —i) and £ —j— (i+1)

is nonnegative.

To complete the proof, note that we can get any value between the two extremes,

by choosing differently.

(b) This follows from noting that the upper and lower limits of i @ j change by at

most 1 when we change either i or 5 by 1. O

2.2.2 Coloring Two-terminal Series-parallel Graphs

For a two-terminal series-parallel graph G, let o(G) denote the length of the shortest

odd path between the two terminals of G if such a path exists, and let o(G) = oo otherwise.
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Similarly, let e(G) denote the length of the shortest even path between the two terminals of G
if such a path exists, and let e(G) = oo otherwise. Let I;(G) = [( — e(G)/2, (o(G) — 1)/2]N
[0,¢]. For any series-parallel graph G with odd girth at least k, clearly o(G) + e(G) > k,

and hence ¢ — e(G)/2 < (o(G) — 1)/2. Therefore, I;(G) is nonempty for such a graph.

Theorem 2 Let G be a two-terminal series-parallel graph with odd girth at least k, where
k =20+ 1. Then there is a (k,)-fractional coloring of G. Furthermore, the color sets for

the two terminals of G can be specified as any pair (S1,S2) such that |S1 N Sa| € Iy(G).

Proof. We prove the theorem by induction. The base case is G = K3. Here o(G) = 1 and
e(G) = o0, so I;(G) = {0}. Choosing disjoint color sets S; and Sy for the two terminals

yields the requisite coloring.

Suppose G is obtained from graphs G; and G2 by the parallel join. Let color sets
Sy and Sy with |S1 N S| € I(G) be specified for the two terminals of G. Note that
¢ —e(G})/2 < max(f — e(G)/2,0) < [S1 N Sz| < min((o(G) — 1)/2,4) < (o(Gj) —1)/2
for j = 1,2; therefore |S1 N Sa| € I;(G1) N I;(G2). By the inductive hypothesis, graphs G
and G5 have the desired coloring with S7 and Sy at their terminals. This yields the requisite

coloring of G.

Suppose G is obtained from graphs G; and Gy by the series join. Let color sets 51
and Sy with |S1NSa| € I;(G) be specified for the two terminals of G. To complete the proof
by induction, we need to show that we can find a color set S3 with |S; N .S3| € I;(G1) and
|So N S3| € I)(G2), since then we can color Gy with S7 and S5 at its terminals and Gy with
S3 and Sy at its terminals to obtain the requisite coloring. This means that |S; N S| €
|S1NS3| @S2 S3]. That is, it suffices to show that I,(G) C I,(G1) & I;(G2). By Lemma 1,

it suffices to show that the extrema of Iy(G) are contained in I;(G1) & I;(G2).

Consider the upper limit of I;(G). Assume first that (o(G) — 1)/2 > ¢, so that
the upper limit of I;(G) is £. Since o(G) = min(o(G1) + e(G2),e(G1) + o(G2)), we have
(o(G1) —1)/2 > £ —e(G2)/2 and (o(G2) —1)/2 > £ — e(G1)/2. Therefore, z = max(0,¢ —
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min(e(G1),e(G2))/2) € I;(G1) N I;(G2). By Lemma 1, we have ¢ € = @ x; that is, £ €
Ig(G1) D I[(Gg).

Assume second that (o(G)—1)/2 < ¢, so that the upper limit of I;(G) is (o(G)—1)/2.
Without loss of generality we may assume o(G) = o(G1) + €¢(G2). Then we have (o(G1) —
1)/2 < £ —e(Gy)/2. Take i = (o(G1) —1)/2 and j = ¢ — e(G2)/2; then by Lemma 1, it
follows that (o(G) —1)/2=L4+i—j€i®j C L[i(G1) P 1i(G2).

Consider the lower limit of I;(G). Assume first that ¢ — e(G)/2 < 0. Then, define
¢ —1;(G1) to be theset {j:j=4¢—1i,i € I)(G1)}. Note that both £ — I;(G;) and I;(G2)
are nonempty, and £ — Iy(G1) = [{+ (1 —0o(G1))/2,e(G1)/2] N [0,4]. It is easy to verify
that ¢ — I,(G1) and Iy(G2) intersect; say containing integer j. Hence, 0 = (¢ —j)+j— L €
(L—3)®J C L(G1) & Li(Ga).

So suppose ¢ — ¢(G)/2 > 0. Without loss of generality we may assume e(G) =
0o(G1) + o(G2). Then take i = (o(G1) —1)/2 and j = (o(G2) — 1)/2, and by Lemma 1, we
have ¢ —e(G)/2=0—i—j—1€i®jC [)(G1) P Li(G2). O

Our main result follows from Theorem 2.

Theorem 3 If G is a series-parallel graph of odd girth k then x(G) = 2k/(k —1).

Proof. The expression 2k/(k — 1) is a lower bound, since that is the fractional chromatic
number of the k-cycle (see, for example, [67]). The upper bound follows from Theorem 2 and
the fact that the fractional chromatic number of a graph is the maximum of the fractional

chromatic numbers of its blocks. O

In particular, Theorem 3 shows that the fractional chromatic number of a series-

parallel graph is polynomial-time computable.

We point out here that Feder and Subi [31] independently obtained the same result

by using a different method.

14



2.3 Defective Colorings

2.3.1 Girth 5

We show below (the probably known fact) that for all d there is a triangle-free series-
parallel graph whose d-defective chromatic number is 3. Indeed, we note in Theorem 7 that

the same is true for fractional chromatic number. However, for girth 5 the situation changes.

We will need the following observation from [6]:

Observation 4 [6] A cyclic series-parallel graph G with girth g contains a path with
| (g — 1)/2] wvertices each with degree 2 in G.

Theorem 5 A series-parallel graph G of girth 5 is 1-defective 2-colorable.

Proof. The graph G either contains a vertex of degree 1 (in which case induction is imme-
diate), or is cyclic and therefore by the above observation, contains two adjacent vertices
of degree 2, say x and y. Apply the induction hypothesis to G — {z,y}. Then color x the

opposite color to its neighbor in G — {z, y} and similarly with y. O

We note that Borodin et al. [6] considered the case where the defect condition is
different for each color. A [dy,...,dy]-coloring is a k-coloring of the vertices such that for
each 7, the vertices of color ¢ induce a graph of maximum degree at most d;. They showed
that a series-parallel graph of girth 7 has a [1, 0]-coloring, and this is best possible; indeed

that for all k£ there is a series-parallel graph of girth 6 that does not have a [k, 0]-coloring.

2.3.2 Defective Fractional and Circular Colorings

We start with a construction.

Lemma 6 For all d and k > 3, there is a series-parallel graph of odd girth k such that

removing the edges of a subgraph of maximum degree d cannot destroy every k-cycle.
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Slk+2)/4] S .,{_@,

a copies

Figure 2.3: A series-parallel graph Gy (k > 5) with given odd girth and large d-defective
fractional chromatic number

Proof. Assume first that £k = 3. Construct graph G3 as follows. Start with a complete
bipartite graph K 441 and then for every edge, join its ends by 2d + 1 disjoint paths of
length 2. In our notation, G3 = [((K2 ® K3)<2q41>//K2)<*7]<ds1>. Removal of the edges

of a subgraph of maximum degree d from (GG3 must leave at least one triangle.

Assume second that k > 5. Let graph S, = ((K2 @ K3)<2411>)<%. (Thus S, has
diameter 2a.) Then let graph Gy = (S|1/4] ® K2)<dt1>//S|(k+2)/4)- See Figure 2.3. Clearly
G, has odd girth &, and removal of the edges of a subgraph of maximum degree d from Gy,

must leave at least one k-cycle. O

From this it follows:

Theorem 7 For all d and k > 3, the mazximum d-defective fractional chromatic number of

a series-parallel graph of odd girth k is 2k/(k — 1).

Proof. The upper bound follows from Theorem 3. The lower bound follows from the above

construction. O

In particular, this theorem shows that for every d there is a series-parallel graph
whose d-defective fractional and circular chromatic numbers are both 3. This gives a neg-
ative answer to Klostermeyer’s question [53] whether every series-parallel graph has a 2-

defective (5, 2)-circular coloring.

The above construction carries over partially to d-defective circular chromatic num-

ber. In particular:
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Figure 2.4: The graph H; whose 1-defective circular chromatic number is 8/3

Theorem 8 For all d, the mazximum d-defective circular chromatic number of a triangle-

free series-parallel graph is 8/3.

Proof. The upper bound follows from the result of Hell and Zhu (see Theorem 1.1 in [47]).

For the lower bound, let graph Fy = [(K20 K3)<2d+1> @ Ka|<at1>// (K20 K2) <2a+1>,
graph G = [Kye (K20 K2)<24+1>]<d+1>// (K20 K2)<2d+1>, and graph Hy = (Fye Fy)//Ga.
The graph H; is shown in Figure 2.4. Clearly Hy is triangle-free. It can readily be shown
that if we remove the edges of a subgraph of maximum degree d from Hy, the remaining
graph still contains a copy of the graph of Figure 2.1. Hence H, has d-defective circular

chromatic number 8/3. O

The above construction also provides a counterexample to Klostermeyer’s claimed
result [53] that every triangle-free series-parallel graph has a 2-defective (5, 2)-circular col-

oring.

By starting with the graphs constructed by Pan and Zhu [63], one can similarly
show that the maximum d-defective circular chromatic number of a series-parallel graph of
odd girth k is at least the maximum circular chromatic number of a series-parallel graph
of girth k. But there does not seem any reason to believe that the values are equal, since
the question of the maximum circular chromatic number of a series-parallel graph of odd

girth £ is unresolved.

17



2.4 Related Questions

Note that simple series-parallel graphs are also the partial 2-trees (see, for exam-
ple, [25]). So it is natural to consider partial k-trees in general. For example, Chlebikova [18]
showed that: for k > 3, every triangle-free partial k-tree has chromatic number at most k.
So one question is whether this is best possible? Also what happens for fractional/circular

coloring and/or higher girth/odd girth?
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Chapter 3

Colorings with Fractional Defect

3.1 Introduction

This chapter is based on joint work with Wayne Goddard [39]. As all proofs in the

original paper are provided, we do not give specific references to that paper.

In a proper vertex coloring of a graph, every vertex is assigned one color and that
color is different from each of its neighbors. We consider here a two-fold generalization
of this: a vertex can receive multiple colors and can overlap slightly with each neighbor.
Specifically, each vertex is assigned a fraction of each color, with the total amount of colors
at each vertex summing to 1. The (fractional) defect of a vertex v is defined to be the sum of
the overlaps over all colors and all neighbors of v; the (fractional) defect of the graph is the
maximum of the defects over all vertices. We say that a vertex is monochromatic if it has
only one color, and an edge is monochromatic if both of its endpoints are monochromatic and
they have the same color. Note that if every vertex is monochromatic, then our fractional

defect coincides with the usual definition of defect (see for example [20]).

The idea of assigning vertices multiple colors has been used most notably in frac-
tional colorings (e.g. [64, 57]), but also for example in ¢-tone colorings [23]. Like in ¢-tone

colorings (and unlike in fractional colorings), we consider here the situation where one pays
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for each color used, regardless of how much the color is used. Note that for proper colorings,
allowing one to color a vertex with multiple colors does not yield anything new. For, one
can just choose for each vertex v one color present at v and recolor it entirely that color, and
therefore the minimum number of colors needed is just the chromatic number. Similarly,
with the usual definition of the defect of a vertex as the number of neighbors that share
a color, there is no advantage to using more than one color at a vertex. But we consider

colorings where a vertex overlaps only slightly with each neighbor.

Consider, for example, the Hajoés graph. Figure 3.1 gives a 2-coloring of this graph
with defect 4/3 (and this is best possible in that any 2-coloring has at least this much
defect). For another example, consider the complete graph on 3 vertices. Any 2-coloring
of K3 has defect at least 1, but there are multiple optimal colorings: color one vertex red,

one vertex blue, and the third vertex any combination of red and blue.

2 1
3 I'ed, 3 blue

Red Blue

2 red, % blue Blue Red

Figure 3.1: An optimal 2-coloring of the Hajos graph

Our objective is to minimize the defect of the graph. Specifically, for a given number
of colors, what is the minimum defect that can be obtained? If the number of colors is the
chromatic number, then of course there need be no defect. But if the number of colors is

smaller, then there is a defect.

In the rest of the chapter we proceed as follows: in Section 3.2 we introduce notation
and provide elementary results about monochromatic vertices. Thereafter, in Section 3.3,
we consider calculating the parameter in 2-colorings for several graph families, including
fans, wheels, complete multipartite graphs, rooks graphs, and regular graphs. We give exact

values in some cases and bounds in others. We also pose several conjectures. Finally in
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Section 3.4 we observe that the decision problem is NP-hard.

3.2 Preliminaries

Consider coloring a graph G by using k colors. For color j, let f;j(v) be the usage
of color j on vertex v. For each edge vw in G, we call Z;?:l min (f;(v), fj(w)) the overlap

between v and w (or alternately, the edge defect of vw).

The defect of vertex v is given by

k
df(v) = Y min (f;(v), f;(w)). (3.1)
weN (v) j=1
In general, the problem is to minimize
max df (v)

over all colorings such that f;(v) is nonnegative and Z;?ZI fj(v) =1 for all vertices v. We
denote this minimum by D(G, k), and call it the minimum defect. We call a k-coloring

optimal if it achieves the minimum defect D(G, k).

Note that the existence of the minimum defect is guaranteed, since the objective
function above is continuous and the feasible region is a closed bounded set. Further, the
calculation is at least finite, since, for example, we can prescribe which of f;(v) and f;(w)
are smaller in every min in Equation 3.1 for each vertex v, and thus D(G, k) is the minimum

over exponentially many linear programs.

A related parameter, called the total defect, is 3, .y df(v). Note that the total
defect is equal to twice the sum of all edge defects. We define TD(G, k) to be the minimum
of 3 ¢y df (v) over all colorings, and call it the minimum total defect. We prove that there
always exists a coloring that achieves the minimum total defect in which every vertex is

monochromatic:
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Lemma 9 For graph G and number of colors k, there is a k-coloring that achieves TD (G, k)

in which every vertex is monochromatic.

Proof. Consider any vertex v that is not monochromatic: say fi(v), fa(v) > 0 with fi(v) +
fa(v) = A. Then consider adjusting the coloring such that fi(v) = z and fa(v) = A — z.
As a function of x, the defect of v with any neighbor w is a (piecewise-linear) concave-
down function. Thus, the total defect of the graph, as a function of z, is a concave-down
function, and so its minimum is attained at an endpoint. This means that one can either
replace color 1 by color 2 or replace color 2 by color 1 at v without increasing the total defect.
Repeated application of this replacement yields a coloring with every vertex monochromatic.

a

From the above lemma, it follows that:
Corollary 10 TD(K,,k) = [n/k|(2n —k — [n/k|k).

Proof. By Lemma 9, there is a coloring f that achieves T'D(K,, k) in which every vertex is
monochromatic. Note that the total defect in such a coloring is equal to twice the number
of monochromatic edges. If there exist two color classes whose sizes differ by at least 2, say
there are aq vertices having color 1, ao vertices having color 2, and a1 > ao + 2, then we
recolor one vertex that has color 1 with color 2. Let M denote the increase in the number

of monochromatic edges. We have

a;—1 ai as + 1 as
_ — = a9 — 1 .
(") () () - (5) om0
This contradicts that f achieves minimum total defect. So we may assume that the sizes of
the color classes in f differ by at most 1. Thus there are n— [n/k|k color classes having size

In/k] + 1 and k —n + [n/k|k color classes having size |n/k|. For simplicity, let ¢ denote

|n/k|. Then the number of monochromatic edges is

<g>(k—n+qk)+ <q;1>(n—qk)—q<n—(q+21)k>.
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So TD (K, k) = q(2n — k — gk), and the result follows. O

There are several fundamental results about monochromatic vertices for minimum
defect D(G, k). One is that we may assume that there is a monochromatic vertex of each

color.

Lemma 11 Let k be an integer and G be a graph with at least k vertices. Then there is an

optimal k-coloring of G that has at least one monochromatic vertex for each color.

Proof. Consider any optimal k-coloring, and consider each color j = 1,2,...,k in turn.
Each time, define vertex v; as any vertex other than vy,...,v;_1 with the largest usage of
color j; then recolor v; (if needed) such that f;(v;) =1 and f;(v;) = 0 for all ¢ # j. Such a
recoloring does not increase the defect at any vertex. So we will reach an optimal coloring

with the desired property. O

We next show that the minimum defect is either 0 or at least 1.
Lemma 12 For any graph G and positive integer k, if D(G,k) > 0 then D(G,k) > 1

Proof. If every vertex is monochromatic, then the defect is an integer and so the result
is immediate. So consider any vertex v that is not monochromatic. If for any color j we
have f;(v) > f;(w) for all neighbors w of v, then we can recolor v to be monochromatically
color j without increasing the defect of any vertex. So we may assume that for every color j

at v, vertex v has a neighbor w; with f;(w;) > f;(v). It follows that
k
df ()= me filv Z v), f(wj)) ng
weN (w) j=1 j=1

The result follows. O

It follows from Lemma 12 that the minimum defect in a 2-coloring of a nonbipartite

graph is at least 1. One example of equality is the odd cycle Cop11: let vy, v, ..., vop41

23



denote the vertices of Co,11. Color v; red if ¢ is an odd integer and blue otherwise. That

coloring has defect exactly 1.

Proposition 13 The complete graph K, has D(K,, k) = [n/k] — 1.

Proof. This defect is achieved by (inter alia) coloring each vertex with a single color and

using each color as equitably as possible. (This is trivially the best coloring for total defect.)

To see that [n/k] — 1 is best possible, we proceed by induction on n, noting that
the result is trivial if n < k. So assume n > k. By Lemma 11, there is an optimal k-
coloring of K, that has at least one monochromatic vertex v; for each color 1 < j < k. Let
A ={v1,...,v;}. Then the defect of any other vertex w in G equals 1 plus the defect of w
in G — A. By the induction hypothesis, there exists a vertex in G — A that has defect at
least [(n — k)/k] — 1 in G — A. This proves the lower bound. O

3.3 Two-Colorings of Some Graph Families

We now consider 2-colorings. Unless otherwise specified, we assume the colors are

red and blue, and denote the red usage at vertex v by r(v) (so that the blue usage is 1—r(v)).

3.3.1 Fans

The fan, denoted by F},, is the graph obtained from a path of order n by adding a

new vertex v and adding an edge between u and every vertex of the path.

Lemma 14 In any 2-coloring of F3 it holds that df (v) + df (w) > 2 where v and w are the

dominating vertices.

Proof. Suppose the dominating vertices are v and w and the other two vertices are a and b.

Let ez, denote the overlap min(r(x), r(y)) +min(1—r(x), 1 —r(y)) between vertices x and y.
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Then df (v)+df (w) = eya+evb+ewa~+ewp+2€uy; further, it follows from Corollary 10) that a
triangle has total defect at least 2, and so we have e,q+€yq+epw = 1 and eyp+eyp+epw > 1.

The result follows. O

Note that F} is just Ky and Fy is just K3, and so it holds that D(F1,2) = 0 and

D(F5,,2) = 1. For the general cases of F),, we have the following:
Proposition 15 The minimum defect in a 2-coloring of F,, (n > 3) is

_ 2[n/3]
D(F,,2) = DSt

Proof. Let vivs ... v, denote the path of order n, and let u denote the dominating vertex.

We prove the upper bound by the following construction. Set z = 2/(|n/3| + 1).
Let r(u) = 1. Let r(v;) = @ if ¢ is a multiple of 3, and 0 otherwise. It can readily be checked
that every vertex v; has defect at most 2 — z, and that vertex u has defect |n/3]x. The

result follows since both these values equal the claimed upper bound.

To prove the lower bound, it suffices to show that D(F,,2) > 2n/(n + 3) if n is
a multiple of 3. We partition the path P, into n/3 copies of Ps; thus each P3 along with
vertex u forms a copy of Fj. It follows from Lemma 14 that df (u)+ Zf:/? df (v3i—1) > 2n/3,

whence the result. O

Note that the defect D(F,,,2) tends to 2 as n increases. The fan is outerplanar.
Several researchers [7, 59] showed that one can ordinarily 2-color an outerplanar graph with
defect at most 2. However, we conjecture that this bound can be improved slightly in the

following sense:

Conjecture 1 D(G,2) < 2 for any outerplanar graph G.
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3.3.2 Wheels

The wheel, denoted by W, is the graph formed from a cycle of order n by adding a
new vertex and joining it to every vertex of the cycle. The vertex of degree n is called the

hub of the wheel.

Proposition 16 For n > 3, the minimum defect in a 2-coloring of W, is

2\n/3
O

Proof. Let x = 2/([n/3] + 1) and let D be a minimum independent dominating set of
the cycle. For a vertex v on the cycle, let r(v) = z if v € D, and r(v) = 0 otherwise.
Let r(h) = 1 for the hub h. It can readily be checked that every vertex on the cycle has
defect at most 2 — x, and that the hub has defect x|D|. The upper bound follows, since
2—x==z|D|=2[n/3]/([n/3] +1).

Next we prove the lower bound. When n = 3k, the lower bound follows directly
from Proposition 15. Indeed, D(Wsy,2) > D(Fs,2) = 2k/(k + 1). So we need to establish

the lower bound for n = 3k + 1 and n = 3k + 2.

Consider an optimal coloring of W,, with hub h and cycle vy, vs,...,vy,v1. By
Lemma 11, we may assume there exist vertices u and ' such that r(u) = 0 and r(u) = 1.

There are two possible cases.

(a) If h ¢ {u,u'}, then we can form k — 1 edge-disjoint copies of P35 without using
vertex h, u, or u/. Let S denote the set of centers of these copies. By Lemma 14, it follows
that the total defect of S'U{h} within these copies is at least 2(k — 1). Further, vertices u
and v’ together contribute defect 1 to the hub h. It follows that, in the graph as a whole,
df (h) + > .cs df(s) > 2k — 1, and so G has defect at least (2k —1)/k. If k& > 2, then
(2k —1)/k > (2k 4+ 2)/(k + 2), and we are done.

So consider the case when k = 1. Assume first that n = 5. Suppose u and u’ are

consecutive on the cycle; say u = v; and v/ = vy. Then G — {u,u'} is a copy of F3. Since u
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and v’ together contribute defect 1 to h, it follows from Lemma 14 that df (h) + df (v4) > 3,
and so G has defect at least 3/2. So assume without loss of generality that v = v; and
u' = v3. If h has two neighbors that are at least as red as h, and two other neighbors that
are at most as red as h, then h has defect at least 2. So, without loss of generality, we
may assume that r(vy),r(vs),r(vs) < r(h). Then, the defect that h receives from {vg,vs}
is 2—2r(h) +r(ve) + r(vs), and the defect that u receives from {vg,v5} is 2 — r(ve) — r(vs).
That is, the sum of the defects that h and wu receive from {vq, vs} is at least 2. Since h also
receives defect 1 from u and o/, it follows that df (u) + df(h) > 3, and the result follows.

The argument for n = 4 is similar and omitted.

(b) If h € {u,u'}, then, without loss of generality, we may assume that v = v; and
u' = h. Note that v, receives defect 1 from {vi,h}. Let index j be such that v; is the
redder vertex of v,_1 and v,. Then v,—1 and v, have at least 1 —r(v;) of blue overlap and

so df (vn) > 2 —r(vj).

Further, one can form k edge-disjoint copies of P3 without using vertex h or v;.
Let S denote the set of centers of these copies. By Lemma 14 and noting that the hub h

receives defect 7(v;) from vertex vy, it follows that df (h) + 3 g df(s) > 2k 4 7(v)).

Thus df (h) + df (vn) + > ,cq df (s) > 2k 4 2, and the result follows. O

3.3.3 Complete multipartite graphs and compositions

We consider here complete multipartite graphs. These can be thought of as taking
a complete graph and replacing each vertex by an independent set with the same adjacency.
In general, we define G[aK1] to be the composition of G with the empty graph on a vertices;
that is, the graph obtained by replacing every vertex v of G with a vertex set I, of size a
such that a vertex of I, is adjacent to a vertex of I, if and only if v and w are adjacent

in G.

There are two simple bounds:
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Proposition 17 For any graph G,
(a) TD(GlaK1), k) > a® TD(G, k).
(b) D(GlaK1),k) < aD(G,k).

Proof. (a) Let n denote the order of G. Consider a k-coloring of G[aK;] that achieves
TD(GlaK], k). Note that G[aK| contains a™ copies of G (by choosing one vertex from
each set I, of size a). The sum of the total defects of those a” graphs is at least a™ TD(G, k).
Since each edge of GJaK1] is contained in exactly a”~2 of those graphs, the result follows
by averaging.

(b) Take an optimal coloring of G and replicate it. O

We let KC(Lm) denote the complete m-partite graph with a vertices in each partite

set; that is K((lm) = Ky [akK]. Tt follows that:

Proposition 18 If m is a multiple of k, then the complete multipartite graph Kc(bm) can be

k-colored with defect (m/k — 1)a, and this is best possible.

But if m is not a multiple of k, the result is not clear. We have the following

conjecture:
Conjecture 2 The minimum defect in a k-coloring of K™ s ([m/k] —1a.

In fact, we do not have an example that precludes it being the case that it always

holds that D(G[aK1],k) = aD(G, k).

We shall prove Conjecture 2 for 2 colors. We need the following definitions. Define
a vertex x as large if r(x) > 1/2 and small if r(x) < 1/2. Also we let N(x) denote the set
of neighbors of x, U(z) denote the set of vertices y in N(x) with r(y) > r(x), and L(x)

denote the set of vertices y in N(x) with r(y) < r(z).

We also need the following observations and lemmas. Some of them are very easy

to verify and so the proofs are omitted:
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Observation 19 If r(z) = 1/2, then df (x) > |N(x)|/2.

Observation 20 If two vertices are both large (or both small), then the overlap between

them is greater than 1/2.

Observation 21 df(z) > min (|U ()|, |L(x)]).

Lemma 22 df(z) > |N(x)|/2 if either
(a) x is large and |U(z)| > |L(x)|,
or (b) x is small and |U(x)| < |L(z)|.

Proof. Tt suffices to prove it for the case that x is large. We pair each vertex in L(x) with a
vertex in U(x). Then each pair contributes at least 1 to df (x). By Observation 20, each of
the remaining vertices in U (x) contributes more than 1/2 to df (x). Hence df (z) > |N(z)|/2.

a

Lemma 23 If = is large and y is small, then max (df (x), df (y)) > |N(z) N N(y)|/2.

Proof. If |U(x)| > |L(z)|, then we have df (xz) > |N(x)|/2 > |N(x) N N(y)|/2 by Lemma 22.
So we may assume |U(z)| < |L(x)|. Similarly we may assume |U(y)| > |L(y)|. Note that we
can increase r(x) to 1 and decrease r(y) to 0 without increasing the defect of either vertex.

It follows that df (x) + df (y) is at least their common degree, whence the result. O

Lemma 24 If all neighbors of x are large (small), then r(x) can be changed to 0 (1) without

increasing the defect of any verter.

Proof. It suffices to prove it for the case that all neighbors of x are large. Let v be any
neighbor of x. The overlap between them is 1 — |r(v) — r(x)|. If r(z) is changed to 0, then
the overlap becomes 1 — r(v). Since r(v) > 1/2, we have 1 — |r(v) — r(z)| > 1 — r(v) and

the conclusion follows. O

29



Proposition 25 The minimum defect in a 2-coloring of K™ s ([m/2] = 1)a.

Proof. Such defect is attained by coloring all vertices in |m /2] of the partite sets with red,

and the remaining vertices blue. So we need to prove that this is best possible.

If m is even, Proposition 17 shows that TD(KC(Lm), 2) > m(m/2 — 1)a?, and thus

some vertex has defect at least (m/2 — 1)a. So assume m is odd.

If there is a vertex v in the graph with r(v) = 1/2, then df(v) > (m — 1)a/2 =
([m/2] — 1)a by Observation 19. Also, if there is a partite set that contains both a large

vertex and a small vertex, then the result follows from Lemma 23.

Hence, we may assume every partite set contains either only large vertices or only
small vertices. Without loss of generality, assume at least (m + 1)/2 partite sets contain
only large vertices. Let = be the large vertex with minimum r(x). Note that |U(x)| >

(m —1)a/2 > |L(x)|, and therefore df (x) > (m — 1)a/2 = ([m/2] — 1)a by Lemma 22. O

Proposition 26 The minimum defect in a 2-coloring of the complete tripartite graph K, .

with a < b < cisbe/(b+ c—a).

Proof. Let A, B, and C denote the partite sets of order a, b, and ¢, respectively. The
upper bound is attained by coloring all vertices v in A with r(v) = 0, all vertices in C' with
r(v) = 1, and all vertices in B with 7(v) = x, where x is chosen to give the vertices in A

and B the same defect, namely x = (b —a)/(b+ ¢ — a).

Now we prove the lower bound. Let z1,z2,...,x, be the vertices in A with r(z1) <
r(ze) < ...<r(xa), Y1,Y2,---,Yp be the vertices in B with r(y1) < r(y2) < ... < r(y), and

21,22, - .., Z¢c be the vertices in C with r7(z1) < 7(22) < ... <r(z).
Case 1: a<b<c<a-+b.
Then we have (b+¢)/2 > (a+¢)/2 > (a+b)/2 > be/(b+ ¢ — a). If there is a

vertex v in the graph with r(v) = 1/2, then the conclusion follows from Observation 19.
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Also, if there is a partite set that contains both a large vertex and a small vertex, then the
conclusion follows from Lemma 23. Hence we may assume every partite set contains either
only large vertices or only small vertices, and by symmetry we only need to consider the

following four cases:
Case 1.1: all vertices in the graph are large.

By Observation 20, we have df (z;) > (b+c¢)/2 for every 1 < i < a. So the conclusion

follows.
Case 1.2: all vertices in A are small and all the other vertices are large.

Let u be the large vertex with minimum r(u). By Lemma 22, df (u) > (a + b)/2

and the conclusion follows.
Case 1.3: all vertices in B are small and all the other vertices are large.

By Lemma 24, we may assume r(y;) = 0 for every 1 < j <b. If r(x1) < r(21), then

by Lemma 22, df (z1) > (b+ ¢)/2. So assume r(z1) > r(21). We have

df (za) = bl —r(za) + D (1 —|r(za) = r(z1)])

k=1
> (1 —r(za)) + ) (r(za) +r(z4) —1)
k=1
= (b= —r(za)) + Y r(zn)
k=1
> (b—o)(1 —r(za)) + ¢ r(21),

and

df(z1) = > (1= (r(zi) —r(21))) +b(1 = r(z1))
i=1
= Z(l —r(z;) + (a—b)r(z1) +0b
i=1
a(l —r(za)) + (a —b)r(z1) +b.

Vv
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Hence, (b—a) df (zq) +cdf (21) > [(b—a)(b—c)+ac](1 —r(zq)) +bc > be. It follows
that max (df (z,), df (21)) > be/(b+ ¢ — a).

Case 1.4: all vertices in C are small and all the other vertices are large.

By Lemma 24, we may assume r(z;) = 0 for every 1 <k <ec. If r(z1) < 7(y1), then

we have
b
df(x1) = el —r(x1))+ > (1= (r(y;) —r(21)))
j=1
b
= ct+(b—or(x)+ Y _(1—r(y))
j=1
> c+ (b—co)r(xy),
and

df (1) = Y (1= r(z:) —r(y)]) + c(1 = (1))
i=1
> (@) +r(yr) — 1) +e(1 = r(y))

=1

v

= (c—a)(1=r(y) +)_r(z)
i=1

> ()

=1

a r(zxy).

v

Y

Hence, b df (xz1)+ (c—a) df (y1) > bc+ [b(b—c)+ (c—a)a|r(z1) = be+ (b+a—c)(b—
a)r(xy) > be. Tt follows that max (df (x1), df (y1)) > be/(b+ ¢ — a).
Similarly, if 7(z1) > r(y1), then it can be verified that
b

df (21) > (e = b)(L —z1) + ) r(y;) = br(y),

J=1
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and

a

df () =D _(L—r(@:) +c+(a—)r(y) = c+ (a—)r(y).
i=1
Hence, (¢ —a) df (x1) + b df (y1) > be. It follows that max (df (z1), df (y1)) > be/(b+

c—a).
Case 2: a<b<a-+b<ec.

Then we have (b+¢)/2 > (a+¢)/2 > ¢/2 > be/(b+ ¢ — a). By Observation 19 and
Lemma 23, we only consider the case that the vertices of A U B are either all large or all
small. Without loss of generality, assume they are all large. Then by Lemma 24, we may

assume 7(zx) = 0 for every 1 <k <ec.

If r(x1) < r(y1), then df (x1) > b by Observation 21. So assume r(x1) > r(y1). But
then by the same argument as that in Case 1.4, we have max (df (z1), df (y1)) > be/(b+c—a).

|

For another composition, consider C),[aK;] where m is odd. We now prove that
D(Cy,[2K1],2) = 2. There are at least two different optimal colorings. The first such
coloring is obtained by taking an optimal coloring for C), and replicating it. The second
such coloring is obtained by, for each copy of 2K, coloring one vertex red and one vertex

blue.
Proposition 27 For m odd, D(Cy,[2K1],2) = 2.

Proof. Consider a 2-coloring of Cp,[2K1]. We need to show that the defect is at least 2.
As in the proof of Proposition 25, we may assume that every copy of 2K; contains either
two large vertices or two small vertices. Since m is odd, it follows that there must be two
adjacent copies of the same type. Without loss of generality, assume u; and us are adjacent
to v; and vy with all four vertices being large. If any = € {uy,ua,v1,v2} has |U(z)| > 2,

then the lower bound follows from Lemma 22(a). Therefore we may assume that |U(x)| <1
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for every x € {uy,u2,v1,v2}. This means that each u; is redder than some v; and vice versa,

a contradiction. O

3.3.4 Rooks graphs and Cartesian products

Recall that the Cartesian product GOH is the graph whose vertex set is V(G) x
V(H), in which two vertices (u1,u2) and (v1,vy) are adjacent if ujvy € E(G) and ug = va,

or u; = v1 and ugvy € E(H).

We will need the obvious lower bound for the total defect of Cartesian products.

Proposition 28 Let G and H be graphs of order m and n respectively. Then
TD(GOH,k)>m TD(H,k)+n TD(G,k).

Proof. The defect of a vertex in the product is the sum of the defects in its copies of G
and H. O

Recall that rooks graphs are the Cartesian product of complete graphs. We denote
the vertices of K, 0K, by (i,j) with 1 <7 <m,1<j<n.

Lemma 29 The rooks graph K,, 0K, can be 2-colored with defect [m/2] + [n/2] — 2.

Proof. Color vertex (i,7) red if i and j have the same parity and blue otherwise. O

Corollary 30 Let m and n be even integers. Then D(K,,0K,,2) =m/2+n/2—2.

Proof. The upper bound follows from Lemma 29. The lower bound follows from Proposi-
tion 28, since TD(Ks,2) = s(s/2—1) for s even (Corollary 10), and thus TD(K,, 0 K,,2) >

mn(n/2 —1) +nm(m/2 —1). O

We show below that the upper bound in Lemma 29 is not always optimal. In fact
we conjecture that it is never optimal when m and n are both odd, except for the case that

m=n=3.
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Lemma 31 D(K30Kj3,2) =2.

Proof. The upper bound is from Lemma 29.

We have two proofs of the lower bound, one by computer and one by hand. Both

proofs entail converting the question to a set of linear programs.

Observe that given a coloring, one can generate an acyclic orientation by orienting
each edge from smaller to larger proportion of red (with ties broken by vertex number).
Further, if N is the set of neighbors of vertex v with more red and Ny is the set of

neighbors of v with less red, then Equation 3.1 simplifies to

df (v) = [Ni|r(v) + [ Na[b(v) + D r(w) + D bw),

wE N2 weNy
where b(z) =1 — r(x).

We continue by enumerating the acyclic orientations. For each such orientation, we
add the constraints that r(u) < r(v) for all arcs uv. That is, minimizing the defect for a

given orientation is a linear program.

Further, if any vertex has in- and out-degree 2 for the orientation, the defect is
definitely at least 2 (by Observation 21). With several pages of calculation or by using a
computer, one can show that K30 K3 has eight acyclic orientations (up to symmetry) that
need to be considered, and then solve the eight associated linear programs. We omit the

details. 0

In contrast, we found a coloring of K30 K5 that beats the bound of Lemma 29:
Lemma 32 D(K30Kj5,2) < 38/13.

Proof. A 2-coloring of K3OKj5 is shown in the matrix below. The element (i,5) of the

matrix is the red-usage on vertex (i, 7).
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@)

8/13 0
0 0 8/13
1 11/13 0

1 0 11/13
| 6/13 1 I
It can be verified that the defect of the coloring is 38/13. O

The above coloring can be extended to show that Lemma 29 is not optimal for m = 3
and n odd, n > 5, and indeed that D(K30K,,2) < n/2+ 11/26 in this case. However,
this is still not best possible. For example, one can get defect 42/11 for K30 K7 and defect

14/3 for K3OKg by the colorings illustrated in the matrices below:

(23 0 0 |
1 0 1] 0 2/3 0
411 1 1 0 0 2/3
0 811 0 0 1 1
1 1 4/11 0 1 1
1/11 0 1 1 0 1
0 811 0 10 1
i 1 0 1/11 | 1 1 0
1 1 0

We used simulated annealing computer search (that is, a randomized search for a
coloring) to find upper bounds. Though we have no exact values, it seems to us that the

search results suggest the following;:

Conjecture 3 (a) If m + n is odd, then D(K,,0K,,2) = (m+n —3)/2.
(b) If mn is odd and greater than 9, then D(K,,0K,,2) < [m/2] + [n/2] — 2.
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Note that Conjecture 3 (a) is trivially true for the case that m = 2 (or n = 2), since

D(Ky0K,,2) > D(K,,2) = (n—1)/2.

Proposition 28 yields the following lower bounds:

Corollary 33
(a) If both m and n are odd, D(K;,0K,,2) > (m+n)/2—-2+1/(2m)+1/(2n).
(b) If m is even and n is odd, D(K,,0K,,2) > (m+n)/2—2+1/(2n).

For more colors we have the trivial observation that D(K, 0G,k) = [n/k] — 1 for

any k-partite graph G, as a corollary of Proposition 13.

3.3.5 Regular graphs

Lovész [58] showed that we can ordinarily 2-color a cubic graph with defect at

most 1. Therefore D(G,2) =1 for all nonbipartite cubic graphs G.

For a 4-regular graph, Lovasz’s result shows that one can ordinarily 2-color it with
defect at most 2. We conjecture that this can be improved. Proposition 27 shows that the
composition G = C,[2K7] where m is odd has D(G,2) = 2. Using simulated annealing,
the computer can find a 2-coloring with defect smaller than 2 for all 4-regular graphs on
up to 14 vertices, except for the compositions of odd cycles, and the two graphs K5 and
K30OKj3, which we saw earlier have minimum defect 2. We give a conjecture for the general

behavior:

Conjecture 4 Apart from G = Cp[2K1] where m is odd, it holds that D(G) < 2 for all

but finitely many connected 4-reqular graphs.

3.4 Complexity

Unsurprisingly, it is NP-hard to determine if there is a coloring with defect at most

some specified d.
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One way to see this is that fractional defect 2-coloring is NP-hard even for d = 1.
One can extend Lemma 11 to show that in graphs of minimum degree at least 3, a 2-coloring
with defect 1 can only be a coloring with monochromatic vertices. Thus the fractional defect
2-coloring problem is equivalent to the ordinary defective 2-coloring problem in such graphs.
The latter problem was shown to be NP-hard by Cowen [22]. (Actually, we need ordinary
1-defect coloring to be NP-hard in graphs with minimum degree at least 3. But one can
transform a graph to having minimum degree at least 3 without changing the coloring

property by adding, for each vertex v, a copy of K4 and joining v to one vertex of the Kj.)
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Chapter 4

Vertex Colorings without Rainbow

Subgraphs

4.1 Introduction

This chapter is based on joint work with Wayne Goddard [41]. As all proofs in the

original paper are provided, we do not give specific references to that paper.

Given a (not necessarily proper) vertex coloring of a graph G, recall that a subgraph
is rainbow if all its vertices receive distinct colors and monochromatic if all its vertices receive
the same color. For a graph F', we refer to a (not necessarily proper) vertex coloring of G
without rainbow subgraphs isomorphic to F as a no-rainbow-F' coloring of G (valid coloring
for short); we define the F-upper chromatic number of G as the maximum number of colors
that can be used in a valid coloring. We denote this maximum by NRp(G). A valid coloring

is optimal if it uses exactly NRp(G) colors.

There are many papers on the edge-coloring version, where the parameter is called
the anti-Ramsey number. Note that this parameter is also exactly 1 less than the rainbow
number, which is the minimum number of colors such that every edge-coloring of G with

at least that many colors produces a rainbow F. For the edge-coloring case, the most
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studied situation is when G is complete and F is a cycle, clique, tree, or matching. For
example, a Gallai-coloring is an edge-coloring of the complete graph without a rainbow

triangle [44, 43]. For a survey of anti-Ramsey theory, see [33].

In contrast, not much has been written about the vertex-coloring case. There are
two papers on avoiding rainbow induced subgraphs: [3] and [52]. More recently, the special
case where F'is P3 was considered by Bujtés et al. [10] (under the name 3-consecutive upper
chromatic number), and then the case where F' is K was considered by Bujtds et al. [9]
(under the name star-[k] upper chromatic number). Besides these, a related question that

has been studied is coloring embedded graphs with no rainbow faces, see for example [24, 65].

Graph colorings without rainbow (monochromatic) subgraphs fall within the theory
of mixed hypergraphs introduced by Voloshin (see, for example, [74]; see [75] for an overview

of the theory, and see [71] for a survey of results and open problems).

In general, a mized hypergraph H is a triple (X,C, D), where X is the vertex set, and
C and D are families of subsets of X, called the C-edges and D-edges, respectively. A proper
coloring of ‘H is an assignment of one color to each vertex in X such that each C-edge has
at least two vertices with a Common color, and each D-edge has at least two vertices with
Distinct colors. The case that C is an empty set is just the proper coloring of hypergraphs;

while the case that D is an empty set leads to the notion called C-coloring (see [12]).

Note that the theory of mixed hypergraphs provides a general framework for graph
colorings without rainbow (monochromatic) subgraphs: say we color a graph G with vertex
set V forbidding monochromatic subgraph M and rainbow subgraph R, then consider the
mixed hypergraph ‘H = (X,C, D) where X = V, C consists of the vertex subsets of cardi-
nality |V (R)| which induces a subgraph containing R in G, and D consists of the vertex
subsets of cardinality |V (M)| which induces a subgraph containing M in G. One can see

that there is a bijection between the colorings of G and the proper colorings of H.

In this chapter, we investigate the F-upper chromatic number for certain graph

classes. We proceed as follows: in Section 4.2 we present some basic observations. Then in
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Section 4.3 we consider the case that F'is a path on three vertices, in Section 4.4 the case

that F'is a triangle, and in Section 4.5 the case that F' is the star K7 .

4.2 Preliminaries

Bujtés et al. [9] observed the following when F' is a star, but the results hold in

general:

e For fixed F, the parameter is monotonic: if H is a spanning subgraph of G, then

NRp(G) < NRy(H).

e If F'is connected and G is disconnected, then NRr(G) is the sum of the NRg’s of the

components of G.

e The chromatic spectrum has no gaps: G has a coloring without a rainbow F' using k
colors for 1 < k < NRp(G). Simply take an optimal coloring and successively merge

color classes.
e NRp(G) =|V(G)] if and only if G is F-free.

e NRp(G) > |F| — 1, provided G has that many vertices.

For a natural lower bound, one can define an F'-bi-cover of a graph as a set of vertices
that contains at least two vertices from every copy of F. It follows that one can obtain a
no-rainbow-F' coloring by giving all vertices in an F-bi-cover the same color and giving all
other vertices unique colors. For example, if G is a connected graph of order at least 3, then
a Ps-bi-cover is the complement of a packing. (A packing is a set of vertices at pairwise
distance at least 3; the packing number p(G) is the maximum size of a packing.) The lower
bound NRp,(G) > p(G) + 1 follows. A vertex cover is an F-bi-cover for any connected
non-star graph F. In this case we have NRp(G) > a(G) + 1 (where a(G) denotes the

independence number) provided G is not empty.
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We say that a set S bi-covers a subgraph H if at least two vertices of H are in S.
For positive integer s, define pp(s) to be the maximum number of copies of F' that can be

bi-covered by using a set of size s. Note that pr(1) = 0.

Proposition 34 Suppose that graph G of order n contains f copies of F' and that pp(s) <
a(s — 1) for all s. Then NRrp(G) <n— f/a.

Proof. Consider a no-rainbow-F' coloring. Say one uses k colors, being used s1, ..., s times
respectively. Then k = n — Zle(si — 1). Since every copy of F' has to be bi-covered by

some color class, Zle br(si) > f. It follows that k <n — f/a. O

4.3 Forbidden P;

The parameter NRp,(G) can also be thought of as the maximum number of colors

in a coloring such that each vertex sees at most one color other than its own.

4.3.1 Fundamentals

There are two natural lower bounds.

Proposition 35
(a) For a graph G, NRp,(G) > diam(G)/2 + 1.
(b) For any nonempty graph G, NRp,(G) > p(G) + 1.

Proof. (a) Let x be a vertex of eccentricity diam(G), and color each vertex v by [d(z,v)/2],

where d(x,v) denotes the distance from x to v.

(b) See the previous section. (Give every vertex in a maximum packing a unique

color, and give all other vertices the same color.) O

Bujtés et al. [10] showed a partial converse to the first lower bound:
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Proposition 36 [10] If G has diameter 2, then NRp,(G) = 2.

For example, rooks graphs have diameter 2 and so they have Ps-upper chromatic

number 2.

Bujtas et al. [10] showed that the Ps-upper chromatic number of a connected graph

is at most one more than its vertex cover number:

Theorem 37 [10] For every connected graph G, it holds that NRp,(G) < B(G) + 1.

Bujtés et al. [10] also showed that for every tree T', NRp,(T) is one more than the

matching number of T":

Theorem 38 [10] For every tree T, it holds that NRp,(T) = m(T) + 1.

From the above theorem, we obtain the following upper bound for NRp,(G):

Corollary 39 For a connected graph G of order n, NRp,(G) < |n/2| + 1.

Proof. Let T' be a spanning tree of G. By theorem 38, NRp,(T) = m(T) +1 < [n/2] + 1.
Since NRp,(G) < NRp,(T), the result follows. O

It is natural to ask what graphs achieve equality in Corollary 39.

The corona cor(G) of a graph G is the graph obtained from G by adding, for each
vertex v in G, a new vertex v’ and the edge vv’. The new vertices are called the leaves of

the corona. Note that coronas achieve equality in Corollary 39:

Observation 40 If G is connected, then NRp,(cor(G)) = |G| + 1.

Proof. The lower bound follows from Proposition 35(b). That is, give all the leaves unique
colors and give all the original vertices of G the same color. The upper bound is from

Corollary 39. O
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Note that in an optimal no-rainbow-P3 coloring of a graph, the subgraphs that are
induced by the color classes do not have to be connected. For example, Figure 4.1 shows
a graph G with NRp,(G) = 4, which is uniquely attained by giving each white vertex a

unique color and all black vertices the same color.

Figure 4.1: A graph whose optimal no-rainbow-P3 coloring has a disconnected color class

4.3.2 Complexity

We next show that calculating NRp,(G) is NP-hard. We will need the following
construction: for graph G, define graph M(G) by adding, for every vertex v in G, a new

vertex v' adjacent to v, and adding edges to make C' = {v': v € V(G) } a clique.

Observation 41 For any nontrivial graph G it holds that NRp,(M(G)) = p(G) + 1.

Proof. Note that p(M(G)) = p(G). So the lower bound follows from Proposition 35(b). To
prove the upper bound, consider a coloring of M (G) with no rainbow P3;. Note that the

clique C' contains at most two colors. There are two cases.

First, consider that C' contains two colors. Note that for every vertex v in V(G),
there is a vertex w’ such that v’ and w’ receive different colors. It follows that v receives

one of the two colors in C. That is, the coloring uses two colors.

Second, consider that C' contains only one color, say red. Let v and w be vertices of
V(G) such that neither is red and they have different colors. Then they cannot be adjacent,
since that would make vww’ rainbow, nor can they have a common neighbor z, since x
would see three colors. It follows that if we take one vertex of each non-red color, we obtain

a packing. That is, the number of non-red colors is at most p(G), as required. O
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As a consequence it follows that computing NRp,(G) is NP-hard, since computing

the packing number is NP-hard [14].

In contrast, Bujtds et al. [10] showed that determining whether a graph G has

NRp,(G) =3 or NRp,(G) =4 is solvable in polynomial time.

4.3.3 Graph Families and Operations

4.3.3.1 Clones

In general, if v and w have the same neighbors (themselves excluded), then NRp(G) >
NRp(G —v), since one can take any coloring of G — v and give v the same color as w. But

we have equality for F' = Ps:

Observation 42 Assume vertices v and w are such that N(v) — {w} = N(w) — {v} # 0.
Then NRp,(G) = NRp,(G —v).

Proof. Consider a valid coloring of G. Let x be any common neighbor of v and w. If v
and w have different colors, then x must have the same color as one of them. If z has the
same color as v, then the coloring restricted to G — v is a valid coloring with every color
of G. If x has the same color as w, then the coloring restricted to G — w is a valid coloring

with every color of G. Note that G — w = G — v and so the conclusion follows. O

4.3.3.2 Maximal Outerplanar Graphs

We now consider avoiding rainbow P5 in maximal outerplanar graphs. The minimum
value of NR p,(G) for an outerplanar graph of order n is obtained by the fan (having value 2).

The maximum value for a maximal outerplanar graph of order n is given by the following:

Theorem 43 The mazimum value of NRp,(G) for a mazimal outerplanar graph G of order

n>3is [n/3] + 1.
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Proof. We prove the lower bound by the following construction: start with a cycle vivs . .. v,v1.
For 1 < i < |n/3], assign vs; a distinct color. Then use one additional color for all the
remaining vertices, and add edges between them until we have a maximal outerplanar

graph G. Clearly, exactly |n/3] 4+ 1 colors are used and there is no rainbow Ps.

We prove the upper bound by induction on n. It suffices to show that NRp,(G) <
n/3 + 1. It is easy to verify the result for n = 3. For larger n, the outer cycle of G has a
chord.

The first case is that there is a chord, say wv, with different colors on its ends. Let
V1 and V4 be the vertex sets of the components of G — {u,v}. Let G; be the subgraph of G
induced by the vertices V; U {u,v}. Note that G; is a maximal outerplanar graph. By the
induction hypothesis, G; has at most |G;|/3+1 colors. But G and G2 share two colors. So
the total number of colors in G is at most (|V1]|4+2)/3+1+(|V2]|+2)/3+1-2= (n+2)/3 <

n/3+ 1.

The second case is that every chord is monochromatic. Since the chords induce a
connected subgraph of GG, it follows that all the vertices with degree at least 3 in G have

the same color, say red. Let X be the set consisting of one vertex of each remaining color.

Since the vertices with degree 2 are independent, it follows that X is independent.
Further, vertices x1 and xo of X cannot have a common neighbor, since that vertex would
be red and we would have a rainbow Ps. It follows that | X| < p(C),) < |n/3], and so the

colors in G is at most [n/3] + 1. O

Note that there are maximal outerplanar graphs where NRp,(G) > p(G) + 1.

4.3.3.3 Cubic Graphs

We consider now avoiding rainbow Ps in cubic graphs. It is unclear what the mini-
mum and maximum values of NRp,(G) (for cubic graphs G of fixed order) are. Some data

generated by a computer search is shown in Table 4.1:
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order |4 6 8 10 12 14 16 18
min (2 2 2 2 3 3 4 4
2 2 3 4 4 5 6 7

max

Table 4.1: Extremal values of NRp,(G) for cubic graphs G of fixed order

Computer search shows that, for n < 18, the minimum value of the parameter is
one more than the minimum value of the packing number. However, it is unclear what the
asymptotics of the packing number are. Favaron [30] showed that p(G) > n/8 for a cubic
graph G of order n other than the Petersen graph, but it is unclear if this bound is sharp in
general. Furthermore, it is unclear under what circumstances a graph has parameter equal

to the packing number lower bound.

We consider next the maximum value of the parameter for cubic graphs of order n.

Theorem 44 For any connected cubic graph G on n > 6 vertices, NRp,(G) < 2n/5.

Proof. We extend a counting idea suggested in [9]. For a color ¢, define CN(c¢) as the number
of closed neighborhoods that ¢ is in. (Equivalently, the number of vertices dominated by
a vertex of color ¢.) Let A = ) CN(c); that is, A is the number of pairs (¢,v) where ¢
is a color that occurs in N[v]. The requirement of no rainbow P3 means that each closed
neighborhood has at most 2 colors in it, and so A < 2n. To prove the theorem, it suffices

to show that the average value of CN(c) is at least 5.

Since G is cubic, it is immediate that CN(c) > 4 for all colors c¢. Call a color ¢
sparse if CN(c) = 4. Say vertex v has color ¢. Then all other vertices with color ¢, if any,
must be neighbors u of v such that N[u] = N[v]. Since the graph is not Ky, it follows that
there are at most two vertices with color ¢. The remaining neighbors of v (which are also

the neighbors of the other vertex of color ¢, if any) must be the same color, say .

We claim that CN(c¢’) > 6. By connectivity there is a vertex w that is not in N[v]
but has a neighbor z in N[v]. Since N[w] does not contain color ¢ but vzw is a Ps, it

follows that x and w are both color ¢. Since n > 6, there must be a vertex that is not
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in N[v] U{w} and is adjacent to a vertex of color ¢’ in N[v] U{w}. So CN(¢) > 6. In

particular, CN(c) + CN(c) > 10.

Now, suppose that the same color surrounds multiple sparse colors. Say, we have
ci,..., ¢ such that ¢f = ... ¢, = d. Then we claim that CN(d) > 4b. This follows by noting
that the N[v;] are disjoint if v; has color ¢;, and all of N[v;] is dominated by a vertex of

color d. It follows that CN(d) + >, CN(¢;) > 8b > 5(b+ 1), since b > 2.

So, by partitioning the sparse colors into sets based on the surrounding color, it

follows that the average value of CN(c) is at least 5, whence the result. O

The computer data verifies that the maximum value is [2n/5] for 6 < n < 18.
However, the bound in Theorem 44 might not be sharp in general. Let H be the graph of
order 5 obtained from K4 by subdividing one edge. Let Iy be built from two copies of H by
adding an edge joining the vertices of degree 2. Computer search confirms that for n = 10
this is the unique graph that achieves the maximum value. In general, let graph I; be the
cubic graph built from two copies of H by adding j copies of K4 — e between the copies
of H. For n = 14, the graph Iy is a graph that achieves the maximum value. For n = 18,
the graph I is a graph that achieves the maximum value. But there is one other graph
that achieves the maximum value: take three copies of H and one copy of K3 and add
edges to make a connected cubic graph. See Figure 4.2. It can be checked that NRp,(I;) is

3n/8 4+ O(1). It is unclear if this is best possible.

4.4 Forbidden Triangles

We consider now colorings that forbid a rainbow copy of the other connected graph
on three vertices, a triangle. That is, we consider colorings where every triangle has a

monochromatic edge.

We saw earlier that NRg,(G) > a(G) + 1, provided G is nonempty. In particular,

we note that if every edge of the graph is in a triangle, then a subset S is a K3-bi-cover if
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Figure 4.2: The two cubic graphs of order 18 with maximum NRp,

and only if S is a vertex cover. Note that when F' is a complete graph, every color class in
an optimal no-rainbow-F" coloring of a graph must induce a connected subgraph. (Assume
to the contrary that color red induces a disconnected subgraph; then change the vertices in
one red component to a new color pink. There cannot be a red vertex and a pink vertex

together in a clique, since the pink vertex and red vertex were not adjacent.)

One can again investigate the minimum and maximum values of the parameter for
graphs of fixed order in particular classes. For example, the extremal values of NRg,(G)
for cubic graphs G of order n are straightforward. The maximum is n, achieved by a
triangle-free graph. The minimum is 2n/3, achieved by a cubic graph with n/3 disjoint

triangles.

4.4.1 Maximal Outerplanar Graphs

We show that the value of NRg,(G) for a maximal outerplanar graph G of fixed

order does not depend on the structure of G:
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Theorem 45 Let G be a maximal outerplanar graph of order n. Then it holds that

NRi,(G) = [n/2] + 1.

Proof. We prove the upper bound n/2 + 1 by induction on n. It is easy to verify the result

for n = 3. For larger n, the outer cycle of G has a chord.

The first case is that there is a chord, say uv, with different colors on its ends. Say
the removal of {u,v} from G yields components with vertex sets V; and V2. Let G; be
the subgraph of G induced by the vertices V; U {u,v}. Note that each G; is a maximal
outerplanar graph. But GG and G» share two colors. So, by the induction hypothesis, the

total number of colors in G is at most (|Vi|+2)/2+ 1+ (|[V2]|+2)/24+1—-2=n/2+1.

The second case is that every chord is monochromatic. Since the chords induce a
connected subgraph of G, it follows that all the vertices with degree at least 3 in G have
the same color, say red. Since the vertices with degree 2 are independent, it follows that

the number of colors in G is at most n/2 + 1.

We prove the lower bound by induction. It is easy to verify that the result is true
for n < 4; so assume n > 5. Note that the weak dual of G is a tree T' of order n — 2 and
maximum degree at most 3. Let b be a penultimate vertex on a longest path in T'. There

are two cases.

The first case is that b has degree 2, with leaf neighbor a. Say b lies in triangle xyz
of G and a in triangle xyu, with vertex y of degree 3. Then let G' = G — {u,y}. Note
that G’ is maximal outerplanar. Let ¢ be a valid coloring of G’. Then ¢ can be extended to
a valid coloring of GG by giving u a new color and giving y the same color as . The lower

bound follows by induction.

The second case is that b has degree 3, with leaf neighbors a and a’. (See Figure 4.3.)
Say vertex b lies in triangle zyz of G, vertex a in triangle zyu and vertex @’ in triangle yzv.

Then let G’ = G — {u,v}. Note that G’ is maximal outerplanar. Let ¢ be a valid coloring
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Figure 4.3: Part of a maximal outerplanar graph and its weak dual

of G’. We need to show how to introduce one new color. If vertex y has the same color as
either x or z, then this is immediate. So assume y has a different color to both z and z.
Since triangle xyz is not rainbow, this means that x and z have the same color. Then one
can proceed by recoloring y to be the same color as x and z, and then giving both v and v

unique colors. It follows that NRg,(G) > |n/2] + 1, as required. O

Note that the above result does not extend to 2-trees. For example, consider the
graph G obtained from the complete bipartite graph K» ,_2 by adding an edge between the
two vertices in the partite set of size 2. The graph G is 2-tree, and it is easy to verify that

NRk,(G)=n—1.

4.4.2 Rooks Graphs

Define R,,, as the rooks graph given by the cartesian product K,,0K,,. The following

is probably known:

Proposition 46 Consider a coloring of the rooks graph Ry, such that every row and column

contains at most two colors. Then the number of colors used is at most max(4,m + 1).

Proof. Suppose first that there is both a row and a column that are monochromatic, say
red. If red does not appear elsewhere, then the rest of the graph is monochromatic, while if
red does appear elsewhere, the bound follows by induction. So we may assume that every

row say contains exactly two colors; say row 7 has A; and B; for 1 <i¢ < m.
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Suppose two rows—say ¢ and j—have disjoint colors. Then every column contains
one color of {A;, B;} and one of {A;, Bj} and thus the total number of colors used is at
most 4. So we may assume that every pair of rows share a color. If we construct an auxiliary
graph H with the colors as vertices and join two vertices if they are together in some row,
then this means that every pair of edges in H share an endpoint. Thus, H is either a star
or a triangle. The former means there is one color that occurs in every row, which means

at most m + 1 colors total; and the latter means at most three colors total. O

Theorem 47

4, ifm=2,
NRKS (Rm) =

m+1, ifm>3.
Proof. For m = 2, the rooks graph has no triangle, whence the result. In general, m + 1
is a lower bound by the independence number bound. The upper bound follows from

Proposition 46. O

4.4.3 Complexity

It is straightforward to show that calculating NRg,(G) is NP-hard. For example,