2,263 research outputs found

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Effective interprocess communication (IPC) in a real-time transputer network

    Get PDF
    The thesis describes the design and implementation of an interprocess communication (IPC) mechanism within a real-time distributed operating system kernel (RT-DOS) which is designed for a transputer-based network. The requirements of real-time operating systems are examined and existing design and implementation strategies are described. Particular attention is paid to one of the object-oriented techniques although it is concluded that these techniques are not feasible for the chosen implementation platform. Studies of a number of existing operating systems are reported. The choices for various aspects of operating system design and their influence on the IPC mechanism to be used are elucidated. The actual design choices are related to the real-time requirements and the implementation that has been adopted is described. [Continues.

    Managing Network Delay for Browser Multiplayer Games

    Get PDF
    Latency is one of the key performance elements affecting the quality of experience (QoE) in computer games. Latency in the context of games can be defined as the time between the user input and the result on the screen. In order for the QoE to be satisfactory the game needs to be able to react fast enough to player input. In networked multiplayer games, latency is composed of network delay and local delays. Some major sources of network delay are queuing delay and head-of-line (HOL) blocking delay. Network delay in the Internet can be even in the order of seconds. In this thesis we discuss what feasible networking solutions exist for browser multiplayer games. We conduct a literature study to analyze the Differentiated Services architecture, some salient Active Queue Management (AQM) algorithms (RED, PIE, CoDel and FQ-CoDel), the Explicit Congestion Notification (ECN) concept and network protocols for web browser (WebSocket, QUIC and WebRTC). RED, PIE and CoDel as single-queue implementations would be sub-optimal for providing low latency to game traffic. FQ-CoDel is a multi-queue AQM and provides flow separation that is able to prevent queue-building bulk transfers from notably hampering latency-sensitive flows. WebRTC Data-Channel seems promising for games since it can be used for sending arbitrary application data and it can avoid HOL blocking. None of the network protocols, however, provide completely satisfactory support for the transport needs of multiplayer games: WebRTC is not designed for client-server connections, QUIC is not designed for traffic patterns typical for multiplayer games and WebSocket would require parallel connections to mitigate the effects of HOL blocking

    RESTful PUBLISH/SUBSCRIBE FRAMEWORK FOR MOBILE DEVICES

    Get PDF
    The growing popularity of mobile platforms is changing the Internet user’s computing experience. Current studies suggest that the traditional ubiquitous computing landscape is shifting towards more enhanced and broader mobile computing platform consists of large number of heterogeneous devices. Smartphones and tablets begin to replace the desktop as the primary means of interacting with IT resources. While mobile devices facilitate in consuming web resources in the form of web services, the growing demand for consuming services on mobile device is introducing a complex ecosystem in the mobile environment. This research addresses the communication challenges involved in mobile distributed networks and proposes an event-driven communication approach for information dissemination. This research investigates different communication techniques such as synchronous and asynchronous polling and long-polling, server-side push as mechanisms between client-server interactions and the latest web technologies namely HTML5 standard WebSocket as communication protocol within a publish/subscribe paradigm. Finally, this research introduces and evaluates a framework that is hybrid of REST and event-based publish/subscribe for operating in the mobile environment

    Semantically reliable multicast: definition, implementation and performance evaluation

    Get PDF
    Semantic reliability is a novel correctness criterion for multicast protocols based on the concept of message obsolescence: A message becomes obsolete when its content or purpose is superseded by a subsequent message. By exploiting obsolescence, a reliable multicast protocol may drop irrelevant messages to find additional buffer space for new messages. This makes the multicast protocol more resilient to transient performance perturbations of group members, thus improving throughput stability. This paper describes our experience in developing a suite of semantically reliable protocols. It summarizes the motivation, definition, and algorithmic issues and presents performance figures obtained with a running implementation. The data obtained experimentally is compared with analytic and simulation models. This comparison allows us to confirm the validity of these models and the usefulness of the approach. Finally, the paper reports the application of our prototype to distributed multiplayer games.POSI/32869/CHS/200
    • …
    corecore