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ABSTRACT 

The thesis describes the design and implementation of an intetprocess communication (IPC) 

mechanism within a real-time distributed operating system kernel (RT-DOS) which is 

designed for a Transputer based network. The requirements of real-time operating systems 

are examined and existing design and implementation strategies are described. Particular 

attention is paid to one of the object-oriented techniques although it is concluded that these 

techniques are not feasible for the chosen implementation platfonn. Studies of a number of 

existing operating systems are reported. The choices for various aspects of operating system 

design and their influence on the IPC mechanism to be used are elucidated. The actual design 

choices are related to the real-time requirements and the implementation that has been 

adopted is described. 

The IPC mechanism exploits the predefined multi-loop network topology of the RT-DOS 

effectively. It provides a circuit switching message communication service which can be used 

between any source and destination nodes regardless of their physical location on the 

network. A number of group communication protocols also are supported, such as 

broadcasting, multicasting, and domain casting which are all based on an unreliable 

datagram service. The IPC mechanism was designed with these group communication 

services in mind at the very beginning, and despite the physical shortcomings of Transputer 

hardware to supporting group communication, these services have been implemented with a 

minimum overhead using the lowest level mechanism of the IPC. The IPC provides the 

processes on the network with location transparency and predictable communication 

facilities. 

KEYWORDS : Real-time systems, distn"buted operating systems, object-oriented 

operating systems, interprocess communication (JPC), group 

communication, synchronous communication, unreliable datagram 

sen>ices, layered communication services, real-time operating system 

kernel, predictability, point-to-point connection protocol, dynamic link 

switching, message switching, circuit switching. 
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1. INTRODUCTION 

Though there have been many real-time operating systems available for dedicated 

systems in the industrial field, none of them has yet distinguished itself as a general 

solution to this class of problems. The main reason for this is the stringent set of 

requirements of real-time applications which are quite different from the business or 

scientific applications [TayliA 1987]. 

The primary characteristic of real-time operating systems is their ability to fimction 

under time constraints imposed by the physical process being monitored and controlled. 

Because of the dynamic nature of the external processes, the scheduling and dispatching 

functions of the operating system should follow a dynamic and adaptive strategy. In 

large number of cases, it is not feasible either for safety or for economical reasons, to 

stop or to shut down an entire control system in order to change, repair, maintain or 

extend parts of it. The operating system should provide the dynamic reconfiguration 

support to increase the reliability and the extendibility of the overall system. Although 

fault detection is mainly a job of the hardware, it is the role of system software to 

recover the system from failure after the fault is detected and to ensure the system's 

continuity. 

Distributed computer systems seem to provide adequate architectural characteristics and 

suitable mechanisms to satisfy the above requirements [Enslow 1978, StankovicA 

1984]. 

The specification and implementation of this class of systems is also a critical issue, 

where the designers select generally one of the two opposite approaches : the virtual 

machine abstraction or the machine tailored solution. The virtual machine approach, 

which hides machine dependent details, seems to ensure better portability but often fails 

to meet the performance criteria. On the other hand, machine dependent approach 

requires the duplication of system design and implementation effort, causing non

negligible time and money consumption. 

The new trend in this area seems to be the search for an adequate trade-off between these 

extremes. Japan's TRON project [Sakamura 1987], in which more than 50 companies, 

mainly Japanese, and academies from a number of countries have participated, has 
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provided an important step in the field. The idea is to provide a design of open system 

computer architecture, very similar to the open system interconnection model of ISO 

which defines communication protocols in the frame of protocol layers [Zimmerman 

1980], which will specify the entire computer system in terms of well defined logical 

layers. Consequently, an industry oriented real-time operating system can be specified 

and designed as a series of machine independent layers, all based on a single architecture 

dependent interface. 

The work presented in this thesis stemmed from a research effort of the specification, 

design and validation of a distributed operating system kernel which will support 

industrial applications : the RT -DOS Kernel [TayliA 1987, TayliB 1990]. The subject 

of the thesis is the design and implementation of an interprocess communication (IPC) 

mechanism for this kernel. Though the IPC mechanism is a self contained part of the 

kernel, it is interrelated to all other kernel mechanisms, such as naming and resource 

management, and hence the work that has been done which is related to these subjects is 

summarized in the thesis. 

1.1 General Background of Real-Time (RT) Distributed Systems 

Traditionally, application domains of Real-Time systems can be found in process 

control, command and control systems and embedded systems [Benmaiza 1990]. Such 

systems are generally characterized by a static view of the controlled environment. The 

behavior of these "static" systems can be therefore preplanned. Since formal proofs of 

time constrained systems are still in the early stages of research, implementation of such 

systems requires a heavy phase of simulation in order to gain necessary confidence in 

their correct time-dependent operation. This static approach results in building non

flexible systems. A single change in the system may require a complete, lengthy and 

costly simulation phase to ascertain that the system is respecting the specified time 

constraints. The necessity of using simulation techniques to verify the time correctness 

of a given system stems in fact from its unpredictable timing behavior. It is very 

difficult, for example, to know in advance how long a task will be waiting for the 

availability of a given resource. Note that simUlation-based approaches put a fonnidable 

responsibility on the designer who, somehow, has to force manually the system under 

design to be predictable by performing changes in the code of the tasks. A better 
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approach would be to put parts of the predictability verification process into the 

operating system. 

Unpredictability can come from three different sources: unpredictable resource allocation 

policies, unpredictable execution times of asynchronous events, and unpredictable 

communication delays. The objective of the thesis is to provide the upper operating 

services with a predictable interprocess communication mechanism, so that the operating 

system can establish a predictable resource allocation schema at the processes level. 

1.2 Background and Scope ofthe RT-DOS Project 

Since 1986 at King Saud University of Riyadh!Saudi Arabia, a research team has been 

investigating the design and implementation of a Real-Time Distributed Operating 

System (RT-DOS) based on Transputer networks [TayliA 1987, TayliB 1990, BorA 

1989, TayliC 1986, TayliD 1990, Aytac 1992, BorB 1990, Benmaiza 1990, TayliE 

1990]. The first phase was dedicated to the study of existing systems, identification of 

the current and future trends in Real-Time computing and the definition of clear 

objectives for the design and implementation of the projected system. The first step 

resulted in the definition of a kernel providing a unique system abstraction hiding the 

physical distributed nature of the underlying system. The kernel, replicated at each node, 

provides the following basic services [TayliB 1990] : 

Process management; 

Memory management; 

Interprocess communication (IPC); 

Time management; 

Short-term scheduling; and 

Process migration. 

The preliminary study of the kernel has clearly shown that its functions can and should 

be separated into two sublayers based on the desirable separation between mechanisms 

and policies. A first sublayer implements necessary mechanisms needed to support a 

second policy-oriented sublayer. In the design of the kernel the first mechanism-oriented 

sublayer is seen as "domain-independent" in the sense that it implements mechanisms 

common to various types of operating systems. The second sublayer is considered as 

"domain specific" and as such, implements intrinsic features of the target system, namely 

6 



real-time and distributed features. This approach enforces the view that the main 

difference between various categories of Operating Systems resides much more in the 

policy-making partS (particularly in the resource scheduling) than in the mechanisms 

necessary to implement these policies. The separation between policies and mechanisms 

is known to be important in integrating dynamic aspects of modern Real-Time systems 

[HideyukiA 1989, StankovicB 1989, StankovicC 1985]. 

The hardware equipment and software tools which have been used in the above research 

project are as the following: 

Hardware Equipment: IMS B006 Board with a T212 Transputer and RS232C 

Serial Port on it; IMS B004 PC Development Board with a T414 Chip, a C012 

PC Link, and 2MB on-chip RAM; TMB12 Board with two IMS C004 

Programmable Link Switches controlled by a T212 Transputer, one T805 

TRAM Module, and ten T425 TRAM Modules (with 1MB RAM each) on it; 

B003 Board with four T414 Transputer chips (each has 256 KB on-chip RAM). 

Software Tools: OCCAM 2 and TDS (Transputer Development System) 

Toolset for ffiM PC Environments (!MS 0700 D), IMS D7214 Transputer 

Development System with ANSI C Based Toolset. 

Though at the beginning of the project the OCCAM Language [Geraint 1987, Fountain 

1987] based TDS D700 D Toolset [InmosF 1988] had been used for about three years, 

because of the some shortcomings and limitations of OCCAM language, all the 

OCCAM programs have been converted into Parallel C language which is available with 

an ANSI C based IMS D7214 development environment [InmosG 1990]. The reason for 

such a radical change was that, though OCCAM is a simple but yet powerful concurrent 

programming language based on the Hoare's CSP definition [Hoare 1978] which lends 

itself well to application software development on Transputers [fransputer 1984] for 

embedded systems, it doesn't provide enough flexibility for operating system (especially 

low level kernel mechanisms) design and implementation. It lacks a number of features 

that are very crucial for operating system implementation, such as dynamic memory 

allocation, 1/0 handling, asynchronous communication, etc. It is hiding some hardware 

features of Transputers from programmers. OCCAM TDS D700D also has some 

restrictions regarding the dynamic configuration of OCCAM programs on Transputer 
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networks, and the generation of relocatable code for Transputers (which is necessary for 

task migration to implement dynamic load balancing and fault tolerance concepts). The 

ANSI C Tool set (IMS 07214) removes most of all these limitations and (except for the 

limitations of Transputer hardware architecture itself) provides more freedom and 

flexibility. 

1.3 Importance and Role ofthe IPC Mechanism in the RT-DOS Project 

The RT-DOS Kernel, replicated at each Transputer node of a network of Transputers, 

provides the following basic mechanisms : process management, memory management, 

time-management, short-term scheduling, and interprocess communication (IPC) 

mechanisms. The IPC mechanism is at the heart of the RT-DOS Kernel, and its correct 

design is vital to the efficient working of the systems designed on top of it. It provides 

various types of communication, starting at the lowest level datagram service, up 

through exactly once delivery, to bi-directional communication and RPC support. To 

support predictability feature at the upper levels of the RT -DOS Kernel (for example, 

task scheduling and resource allocation), the IPC mechanism should avoid unpredictable 

communication delays, and provide predictable communication services to these 

services. For any real-time distributed system, the only guarantee of the predictability of 

the other system services is the timely availability of the communication medium (i.e., 

resource availability). 

As the RT-DOS Kernel is implemented using the server model, replicating basic 

fimctions at each kernel and accessing them through the standard IPC interface 

[CheritonB 1983], implementation of other kernel modules is simplified at the expense of 

including supportive services and increasing the IPC complexity. Because of the 

granularity of the RT-DOS Kernel components, the naming issues which are closely 

related to the naming of the communication elements, are handled by the IPC naming 

schema. 

Finally, as the RT-DOS is a message-based system [TayliB 1990], all concurrency 

control and process coordination mechanisms were expected to be implemented with the 

IPC mechanisms. 
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1.4 Scope, Objectives and Limitations of the Thesis 

This thesis is devoted to the design and implementation of an IPC mechanism for the 

RT-DOS Kernel explained in Section 1.2, and Chapter 3. Given the physical topology 

of the lUlderlying Transputers network and its semi-dynamic reconfiguration ability, the 

synchronous characteristics of the OCCAM programming model were investigated. The 

objective was to find the most efficient and flexible IPC mechanism for providing the 

basic services to the upper kernel levels. 

The proposed physical model of the RT-DOS confines control messages within 

concerned application domains, shortens communication paths (with respect to the 

communication capability of Transputers) and prevents unnecessary overheads on 

shared transmission media. Moreover, point-to-point data transfer avoids the problems 

of buffer allocation, communication congestion, and extra copying. The duration of data 

transfers will be a function of message length, link transfer speed, and the cost of a 

limited number of control messages establishing the direct path. As a result, the RT

DOS IPC is expected to provide low and predictable communication overheads, much 

demanded by real-time applications [TayliB 1990]. 

Though, the main objectives of the thesis were to design primitives, message structures, 

and protocols of an IPC mechanism for the RT -DOS Kernel, a number of basic 

decisions were initially specified to delineate the kernel model. These decisions can be 

summarized as the following : 

The IPC protocols, which are planned to provide connectionless transport level 

communication; 

The IPC primitives, which will be of blocking type and the concurrency will be 

supported by the use of lightweight processes; 

Control messages (small and fixed size); 

Typeless data transfer, which will preclude automatic data conversion and control 

of system capabilities. 

Messages are lUlbuffered and higher level protocols will ensure reliability of 

communication primitives. The IPC is supposed to handle the problems of implementing 

a server model RT-DOS kernel; and enable the serialization, queuing, and/or 

multiplexing of such services. The decision, about whether the complementary 
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synchronization constructs (semaphores, monitors, etc.) are needed or not, would be 

based on the results of the design effort of the IPC model. 

1.5 A Brief Summary of the Thesis Contents 

In the thesis, after a brief introduction of the real-time distributed systems' features 

(Section 1.1), the background and the general scope of the RT-DOS project with the 

importance and relevance of the IPC mechanism in it, have been submitted in different 

sections of Chapter 1. In Chapter 2, operating system concepts and terminology in 

general, as well as real-time system requirements and distributed system characteristics 

are defined in its different sections. 

After introducing the general operating system concepts, the RT -DOS Kernel project 

and its objectives are also explained (Section 3.1), summarizing the relevance of the IPC 

mechanism with the research project, and its relative importance. Since the RT-DOS 

Kernel and its IPC mechanism are implemented on Transputer network platforms, the 

hardware architecture of Transputers and related software development tools (including 

the currently used project test-bed equipment) with their basic capabilities and 

limitations, are introduced (Section 3.2). At the end of the chapter, different design 

approaches to the RT-DOS Kernel (Section 3.4), and the survey study carried out about 

the related works which have been done in the past, are submitted (Section 3.5). 

In Chapter 4, the current RT-DOS architecture with its logical and physical models 

(Sections 4. 7 and 4.8), as well as its basic design considerations (i.e., object naming, 

resource management, concurrency control, and interprocess communication schema), 

are presented. 

The IPC implementation work which has been the main topic of the thesis, has been 

presented in Chapter 5, in detail. Iri this chapter, a brief explanation of the current 

testbed, with the elaboration of the important hardware components which are involved 

in the IPC implementation, are submitted (Sections 5.4.1, 5.4.2, and 5.4.3). A top to 

down approach is used in explaining the IPC architecture, starting from the basic 

communication components (Section 5.3); then, submitting network topology, the IPC 

layers (Section 5.4.4), the communication primitives (Section 5.4.5), datagram 

messages and message exchange protocols (Section 5.4.6); and finally, giving the basic 
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data structures used in carrying out the message exchange between communicating 

parties (Section 5.4.7). 

An elaboration of other possible design approaches to the IPC implementation is given in 

Chapter 6. In the conclusion chapter (Chapter 7), the basic lessons learned from the 

project during the research study, with a brief summary of the achievements of the 

current work which has been done, in comparison with the objectives which were set 

initially, are presented. In Chapter 8, the areas of further research which have been 

excluded from the current project context, are listed. The list of the references of articles, 

and figures which are presented in different sections, are submitted at the end of the 

thesis. 
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2. GENERAL CONSIDERATIONS AND TERMINOLOGY 

Jn this chapter, the basic operating system concepts, as well as the most important 

features of real-time and distributed systems that distinguish such systems from the 

others (such as parallel processing systems, tightly/loosely coupled systems, and network 

operating systems) are presented. Moreover, the main role of an IPC mechanism in real

time DOS kernels in general, and expected functions of the designed IPC mechanism in 

the RT-DOS Kernel in particular, are briefly summarized. 

2.1 Operating Systems (OS) and Distributed Operating Systems (DOS) 

An operating system (OS) may be viewed as an organized collection of software 

extensions of hardware, consisting of control routines for operating a computer and for 

providing an environment for the execution of programs [Milonkovic 1992]. Other 

programs usually invoke services of the operating system by means of operating-system 

calls. It acts as interface between users and the hardware of a computer system. 

Internally, an operating system is a manager of resources of the computer system, such 

as processor, memory, files, and 1/0 devices. The range and extent of services provided 

by an operating system depend on a number of factors; and, user-visible functions of it 

are determined by the needs and characteristics of the target environment that the OS is 

intending to support. 

With regard to the aspects of processor scheduling, memory management, 1/0 

management, and file management, operating systems can be categorized into batch, 

multiprogramming (or multitasking), real-time, distributed, and combination operating 

systems (such as real-time distributed operating system). As the subject of the thesis is 

directly related to the real-time distributed operating systems which is attributed to the 

objectives of the RT-DOS Kernel project, the other types of operating systems are 

excluded from the thesis. 

Distributed Systems : Distributed systems is a generic name for a number of 

decentralized computer systems architectures. Most research and many realizations have 

been reported in the literature on the issue. A number of researchers identified the 

problem in different ways [Enslow 1978, StankovicA 1984, Eckhouse 1987, StankovicD 

1985, Turek 1992, Hariri 1992]. Jn the context of this research, a distributed system will 

be defined as a decentralized architecture, consisting of a multiplicity of physically 
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dispersed processing nodes, integrated into a single and transparent system through a 

native, global decentralized operating system. A decentralized operating system manages 

the system's collective, disjoint physical and logical resources to present the users a 

tmified and transparent view of the system. 

Distributed computer systems and distributed processing concepts refer to a relatively 

new kind of computer architecture& and devices which have progressively evolved over 

the last decades, due to technological changes in micro-electronics, commtmications, and 

ever growing user needs. If we try to characterize a distributed system, as opposed to a 

centralized system, it will be seen that definition boundaries are confusing and not clear. 

Most computing systems include such basic components as hardware, system data, 

system software, user data, and user software. Any computer system can be named as a 

distributed computer system, if it has some (or all) of the above components distributed 

[fayliC 1986]. As a matter of fact, the teclmical and commercial literature are full of 

contradictory and overlapping definitions. The developments in the networking and inter· 

networking, and standardization trends made the integration of geographically 

distributed heterogeneous computer systems possible and simple. Welllmown standards 

at all levels, i.e., RS232, HDLC, X.25, SNA, DECNET, etc. [fanenbaumE 1980], offer 

a fair level of interconnection possibilities. The OSI model developed within ISO 

[Zimmerman 1980] is intended to decrease the number of existing incompatibilities in 

the future. 

The goals motivating most computer system development projects which stemmed 

generally from managerial and economical considerations, are the following: 

Increased system productivity (greater capability, shorter response time, and 

increased throughput); 

Improved reliability and availability; 

Ease of system expansion and enhancement; 

Graceful growth and degradation; and 

Improved ability to share resources. 

Each new major systems concepts or development, e.g., multiprogramming, 

multiprocessing, networking, etc., has been presented as the answer to achieve all of the 

goals, such as high speed, high capacity, reliability, modular growth, availability, and 

adaptability and many others. The following is the list of some of the benefits currently 
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claimed for distributed computer systems in the recent commercial and academic 

literature: 

High availability and reliability; 

Reduced network costs; 

High system performance; 

Fast response time; 

High throughput; 

Graceful degradation, fail-soft, error-containment, fault-tolerance; 

Ease of modular and incremental growth; 

Dynamic reconfiguration; 

Automatic load balancing and resource sharing; 

" Easily adaptable to workload chariges; 

Incremental growth in capacity and/or function (replacement and/or upgrading); 

Good response to temporary overloads and exceptional situations. 

Many multi-machine and/or multi-processor systems may present similar characteristics 

to the definition above, yet they differ in fundamental design and goal issues. For 

example, computer networks are often said to be distributed systems. The main 

difference between a computer network operating system (NOS) and a truly distributed 

operating system (DOS) is that a NOS is a collection of software layers added on top of 

connected machines' local operating systems on the network, while a DOS is a native 

operating system for all the distributed nodes which is designed with the networking 

requirements in mind from inception [Kimbleton 1978]. All of these concepts are briefly 

summarized below. A very detailed literature survey on distributed computer systems 

concepts has been carried out by the RT-DOS Kernel project team, and the results have 

been presented as a report [TayliC 1986]. 

Network Operating Systems (NOS) : In a NOS environment, each host of a computer 

network has a local operating system that is independent of the network (even when they 

are replicated!). The sum of all operating system software added to each host in order to 

communicate and share resources is called a NOS. The added software often includes 

modifications to the local operating systems. NOSs are characterized by being built on 

top of existing OSs, and they attempt to hide the differences between the underlying 

computers. The most famous of such computer networks is ARP ANET [McQuillan 

1977] and it contains several NOSs, such as RSEXEC, NSW, and XNOS. 
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Although the above mentioned NOSs provide the concept of physical and logical 

resource sharing, they distinguish themselves from distributed system family, with 

respect to the following characteristics: 

Each computer has its own OS, following a local policy, instead of nmning as part 

of a global, system wide OS; 

Each user normally works on his own machine and has to use specific remote login 

procedures to share the resources, instead of having the OS dynamically allocate 

them; 

Users are typically aware of where their files are kept and must move files between 

machines with explicit file transfer commands, instead of having this managed by 

the OS; 

Users refer to remote resources by the name of the resources rather than by the 

ruime of the service which is attached. That is against the idea of transparency and 

fault tolerance; 

The system has little or no fault tolerance; if 1 percent of the system crashes, 1 

percent of the users are stopped, instead of everyone simply being able to continue 

normal work, albeit with some percent of worse performance. 

Network operating systems are out of the context of the RT-DOS Kernel project, and are 

excluded from the thesis as well, intentionally. The objective of the work described in the 

thesis is to implement a message-based IPC mechanism on multi-computer systems 

(network of Transputers) which do not have shared main memory, separating it from the 

research area performed on multiprocessor hardware platforms in which a common 

memory is shared between the nodes [Jones 1979, Ousterhout 1980, Wulf 1981]. 

Distributed Operating Systems: A distributed operating system (DOS) is designed with 

the networking requirements in mind from its inception. It is the only native OS for all 

the distributed hosts. The main . characteristic which influences the design and 

architecture of DOSs is the lack of consistent and up-to-date information about the 

global status of the system, as opposed to a centralized OS where executive functions 

can gather almost instantaneously whatever data is available on the working context. It 

is generally not a good idea in the distributed environment to even try to collect complete 

information about any aspect of the system in one place. Some components may answer 

with noticeable delays or may not answer at all. This approximated view of the system 
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makes any of the centralized systems' algorithms impossible or impractical in the 

decentralized context. However, the Jack of a central locus of control is the major 

strength of a decentralized system where the failure of such component would be fatal 

for the overall system. 

The main issues to be considered in the specification and design of a DOS are: 

Interprocess communication (IPC) primitives which is the subject of this thesis; 

Naming and protection of system objects; 

Resource management; 

Fault tolerance and reliability; 

Basic services for real-time operations. 

Parallel Processing Systems: An important theme of system development has been 

parallel processing, in which a series of processors, general or specific purpose, are 

coupled to carry out a given task. System coupling refers to the means by which two or 

more processing units exchange information. The coupling relates to physical data 

transfer as the manner in which the recipient of the data responds to its contents. These 

two aspects of system interconnection are called physical coupling and logical coupling, 

and they are present in all multiple component systems whether the components of 

interest are complete computer systems or smaller assemblies. 

The terms tight and loose have been utilized to describe the mode of operation for each 

type of coupling. The interconnection and the interaction of two computer systems can 

then be described by specifying the nature of its logical coupling. It is important to point 

out that all four combinations of these characteristics are possible and that they all have 

been observed in implemented systems. 

Tightly-coupled systems are characterized by the use of a shared memory as the 

communication media, among multiple processing units. The processing units may be 

general purpose processors or special purpose processors, like array processors, 

arithmetic logic units, etc. All these processors may have their own local memories, but 

they all communicate through a common address space. Most of these multiprocessor 

systems also adopt a tight logical coupling policy. Consequently, the recipient of the 

message is required to perform whatever service is asked by the sender. The relation 

among them is basically that of master-slave. Although the concept of tightly-coupled 
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multiprocessor systems appears to be a viable approach for achieving almost unlimited 

improvements in perronnance (i.e., increased system throughput) with the addition of 

more processors, this has not been the result obtained with the implemented systems. 

It is the very nature of tight-coupling that results in limitations on the improvements 

achievable. Some of the ways that those limitations have manifested themselves are 

listed below: 

The direct sharing of resources (memory and I/0) often results in access conflicts 

and delays in obtaining use of the shared resources; 

Programming languages that support the effective utilization of tightly-coupled 

systems have not been developed; 

The development of optimal scheduling for the utilization of the processors is very 

difficult, except in trivial and static cases; 

Any inefficiencies present in the OS appear to be greatly exaggerated in such 

systems. 

The front-end computers, largely used in batch systems to carry out slow 110 operations, 

constitute physically loosely-coupled systems, but logically they are tightly-coupled 

systems. Later on, specialized vector and array processors, and specialized units, like 

Fourrier transformers, were connected to general purpose computing environment and 

utilized as attached support processors. In any case, the specialized nature of the 

services provided by these attached processors exclude them from consideration as 

possible approaches to provide general purpose support. 

For a more detailed elaboration of different aspects of tightly-coupled shared-memory 

systems please refer to [Woodward 1981]. 

Loosely-coupled systems are multiple computer systems in which individual processors 

both communicate physically and interact logically with the others by exchanging 

messages through communication channels at the input/output level. There is no direct 

sharing of primary memory, although there may be sharing of secondary storage devices, 

printers, etc. The unit of data transferred is whatever is pennissible on the I/0 path being 

used. In order to achieve a data transfer, the active cooperation of both processors is 

required during the communication process. 
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The most important characteristic of loosely logical coupling is that one processor does 

not have the capability or authority to force the other processor to do something. One 

processor can deliver data to another; however, even if the data is a request for a service 

to be performed, the receiving processor, theoretically, has the full and autonomous 

rights to refuse to fulfill that request. The reaction of processors to such a request for 

services is established by the operating system rules of the receiving processors, not by 

the sender. This allows the recipient of a request to take into consideration local 

conditions in making the decision as to what actions to take. 

It is important to note that a system can be physically loosely-coupled but logically 

tightly-coupled and their relation may be a master-slave relation. The RT-DOS Kernel is 

designed to run on every node of a physically loosely-coupled network of Transputers 

which interact with each other in loosely-coupled manner to accomplish required upper 

level services. 

2.2 Fundamental Concepts of Real-Time (RT) Systems 

In real-time computing the correctness of the system depends not only on the logical 

result of the computation but also on the time at which the results are produced 

[StankovicE 1988]. Examples of current real-time computing systems include the control 

of labomtory experiments, the control of automobile engines, command and control 

systems, nuclear power plants, process control plants, flight control systems, space 

shuttle and aircraft avionics, and robotics. Real-time command and control systems play 

an important role in our daily lives, and as they are the subject of the RT-DOS research 

project and the IPC mechanism is supposed to be used by the RT-DOS kernel, these 

systems will be discussed in relatively more detail below. 

Real-time systems are characterized by the fact that severe consequences will result if 

logical as well as timing correctness properties of the system are not satisfied 

[StankovicF 1988]. Typically, a real-time system consists of a controlling system and a 

controlled system. For example, in an automated factory, the controlled system is the 

factory floor with its robots, assembling stations, and the assembled parts, while the 

controlling system is the computer and hwnan interfaces that manage and coordinate the 

activities on the factory floor. Thus, the controlled system can be viewed as the 

environment with which the computer interacts. The controlling system interacts with its 

18 



environment based on the information available about the environment, say, from 

various sensors attached to it. It is imperative that the state the environment, as 

perceived by the controlling system, be consistent with the actual state of the 

environment. Otherwise, the effects of the controlling system's activities may be 

disastrous. Hence, periodic monitoring of the environment as well as timely processing 

of the sensed information is necessary. Timing correctness requirements in a real-time 

system also arise because of the physical impact of the controlling systems' activities 

upon its environment. For example, if the computer controlling a robot does not 

command it to stop or turn on time, the robot might collide with another object on the 

factory floor. 

Timing constraints for tasks can be arbitrarily complicated, but the most common timing 

constraints for tasks are either periodic or aperiodic. An aperiodic task has a deadline 

by which it must finish or start, or it may have a constraint on both start and finish 

times. In the case of a periodic task, a period might mean "once per period T" or "exactly 

T units apart". In most of real-time systems, activities that have to occur in a timely 

fashion coexist with those that are not time-critieal. A task with a timeliness 

requirement is called a real-time or time-critical task. Ideally, the computer should 

execute time-critical tasks so that each task will meet its timeliness requirement, whereas 

it should execute the non-time-critical tasks so that the average response time of these 

tasks is minimized. It is to be noted here that overall throughput of the system in real 

time systems has a secondary importance. The need to meet the requirements of 

individual time-critical tasks is one issue that makes the problem of designing a real-time 

system a hard problem. Other issues include fault tolerance and the need to operate in 

uncertain environments. Low level application tasks, such as those that process 

information obtained from sensors, or those that activate elements in the environment, 

typically have stringent timing constraints dictated by the physical characteristics of the 

environment. A majority of sensory processing is periodic in nature. An example of a 

dynamically created task is a (periodic) task that monitors a particular flight; this comes 

into existence when the aircraft enters an air traffic control region and will cease to exist 

when the aircraft leaves the region. In addition, time-related requirements may also be 

specified in indirect terms. For example, a value may be attached to the completion of 

each task where the value may increase or decrease with time; or a value may be placed 

on the quality of an answer whereby an inexact but fast answer might be considered 
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---------------------------------------------------------------------- -

more valuable than a slow but accurate answer. In other situations, missing x deadlines 

might be tolerated, but missing x+ 1 deadlines can not be tolerated. 

In a static system, the characteristics of the controlled system are assumed to be known a 

priori, and, hence, the nature of activities and the sequence in which these activities take 

place can be determined off-line before the system begins operation. Needless to say, 

such systems are quite inflexible even though they may incur lower runtime overheads. 

Real-Time Command and Control Systems: The computer systems which are used to 

control a collection of physical processes by sensing and altering their states under time 

constraints, are called real-time command and control systems which are the interest of 

the thesis. The state of these physical processes change independently as a result of 

external conditions, which are not completely under the control of the computer system. 

Any type of command and control system can be roughly divided into three levels: 

Low level synchronous sampled data loop fi.mctions (like sensor/actuator 

feedback control, signal processing, etc.) which require responses within 

microseconds for external events; 

Middle level supervisory control fi.mctions, above the sampled data loop 

fi.mctions, which require responses within milliseconds for any action ranges, 

such as opening/closing a waive or changing direction "of a robot; 

Human intelface management fi.mctions which require responses within seconds 

or sometimes minutes, such as displaying system status changes on CRT screens 

in graph forms. 

The type of control referred in the RT-DOS research is the middle level supervisory 

fi.mctions which provide basic primitives to set up the two application dependent 

surrounding layers. Examples of real-time command and control systems are found in 

plant (e.g., factory, refinery) automation, vehicle (e.g., airborne, shipboard) control and 

surveillance (e.g., air traffic control) systems. 

Conventional practice in real-time computing systems today is to provide the minimal 

fi.mctionality and to pass the time, space and intellectual complexity borders of system 

resource management on to the application programmer. These executives strive to avoid 

doing anything that would make it difficult for applications to meet their time constraints 

and try to provide service to the clients in a predictable manner. The consequence is the 
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increase in system's implementation cost and often a degradation in its performance due 

to the contradictory specifications. The RT-DOS project also focuses on the level of 

ftmctionality provided by the native system to enhance the programmer's support. 

Real-Time Operating Systems, Architecture and Hardware: The key issue related to 

real-time operating systems is predictability which requires clean operating primitives, 

some knowledge of the application, proper scheduling algorithms, and a viewpoint 

based on a team attitude between the operating system and the application. The OS must 

be able to perform integrated CPU scheduling and resource allocation so that collections 

of cooperating tasks can obtain the resources they need, at the right time, in order to 

meet timing constraints. The cooperation requirement means that there is an end-to-end 

timing requirement (i.e., a collection of activities must occur - with complicated 

precedence constraints - before some deadline). Using the current OS paradigm of 

allowing arbitrary waits for resources or events, or treating the operation of a task as a 

random process, it will probably not be feasible to solve this complicated set of 

requirements. An important realistic and complicating factor to the integrated resource 

allocation problem is the need to be predictable in the presence of faults. 

Because of the timing properties of real-time systems, specifically the execution times of 

the various tasks are very tightly related to the underlying hardware, and quite often an 

early binding of the logical functions to the physical hardware units is done. The point at 

which this binding is done, in part, detennines the adaptability and predictability 

properties of the system. Depending on the complexity of a controlled system, the static 

versus dynamic nature of the activities of the environment, the complexity of the tasks 

executed by the controlling system, and the overall goal of the system, design and 

implementation strategies adopted will vary. 

Hard real-time systems are usually special purpose. Architecture to support such 

applications tend to be special purpose too. By hard real-time tasks, it is meant that 

tasks must complete their activities by their "hard" deadline times, otherwise it will cause 

undesirable damage or fatal errors to the system, while in soft real-time systems tasks 

do not have such "hard" deadlines and it still makes sense for the system to complete the 

tasks even if they passed their "critical" (i.e., soft deadline) times [HideyukiB 1987]. 
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A number of suggested rules which are related to the real-time system development 

[TayliA 1987, TayliB 1990, Nortcutt 1987, StankovicC 1985, StankovicB 1989, 

StankovicE 1988] can be listed as the following: 

Develop special purpose configurations of off-the-shelf, general components; 

Do not change the problem to fit the hardware; 

Fault tolerance and real-time capability must be designed in at the outset; 

Growth limitations of the system are strongly influenced by the growth in 

overllead as modules are added; 

Perform functional partitioning (not very rigid), but avoid too static schedule; 

Provide on line testability; 

Private memories can be used for read-only code, and global memory can 

contain shared data only; 

Dynamically loaded local memories and caches cause many problems difficult to 

deal with under timing constraints because they may violate the principle that 

repeatability of timing is crucial. 

Communication in Real-Time Systems: There is a need in real-time systems for 

primitives such as timed semaphores, timed monitors, real-time datagrams, real-time 

virtual circuits, stream transactions, and real-time transactions, to coordinate a number 

of concurrent processes which are running independently. These primitives support the 

implementation of effective resource sharing mechanisms as well as a number of 

effective inter-process communication protocols. A real-time datagram might be defined 

as a datagram that must be successfully delivered by time t. Sets of cooperating tasks 

are the norm for distributed, hard real-time systems. The semantics of the 

communications varies as well as the interconnection structure between the 

communicating tasks and their timing requirements. Reliability, which is a prerequisite 

and the most important requirement for real-time systems, can not be achieved if any of 

the system components, such as task communication services (!PC) or scheduling policy, 

is not reliable in terms of predictability. 

In the design of distributed real-time systems, there is a need for the use of 

communication protocols that provide for deterministic behavior of the communicating 

components. In particular, this requires protocols that result in bounded message 

communication delays. A number of advances have been made with regard to protocols 

for time-constrained communication. Though some new access control protocols are 
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being developed, integration of the low-level protocols with the functioning of the OS 

kernel, I/0 modules, and application modules, as well as the inclusion of fault-tolerance 

features, are issues that remain to be solved. Fault tolerance must be designed in at the 

start, must encompass both hardware and software, and must be integrated with timing 

constraints [StankovicE 1988, Hideyuki 1989]. 

The type and constraints of real-time applications seem to impose required system 

configurations. Structuring of real-time applications in terms of parallel activities can be 

achieved in a number of ways [Hull 1989, Newman 1981, Inmosl 1988]. The first 

approach consists of decomposing the problem into a number of smaller components 

which can be executed in parallel. The second category contains applications where the 

parallelism has been obtained by distributing the data to be processed between a number 

of processors (MIMD architecture). Another group consists of applications where a 

number of processors are used to process data farmed out by a controlling processor. It 

would be noted that all these approaches are not mutually exclusive, and a given 

application can be structured using one or more of these models. Following the 

decomposition step, the application needs to be verified with respect to its functional 

specifications, and later on validated using analytical and simulation models. However, 

specification, verification, and validation of real-time applications are beyond the scope 

of the RT-DOS project. These issues are addressed in a parallel research sponsored by 

C.C.I.S. Research Center [Aytac 1992]. 

Following these off-line activities, real-time applications are installed (configured) on the 

target system, taking into account their resource and time constraints. An operating 

system has to provide the necessary tools to monitor their performance and predict 

timeliness criteria. Mapping of a network of tasks on a network of processors, forming 

the real-time applications and monitoring them are carried out by: 

Application generators; 

System configurer; 

Resource manager; 

Schedulers; and 

Application managers. 
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All these activities are carried out by high level OS services (mostly policy making 

i::omponents) which are also beyond the scope of this project. These issues are addressed 

in a parallel research project sponsored by C.C.I.S. Research Center [TayliF 1989]. 

2.3 Real-Time Distributed Operating Systems (RT-DOS) and RT-DOS 

Kernels 

Real-time distributed operating systems carry the distinctive characteristics of both real

time systems and distributed systems, such as distributed functionality of system 

services on physical dispersed nodes and predictability. 

The experiences with the design and implementation of centralized and distributed OSs 

and the state of art in surveyed literature provide us with a number of observations that 

profoundly influenced our general approach to the definition and design of the RT-DOS 

Kernel. These points can be summarized as follows [TayliB 1990]: 

Basic functions in real-time systems do not differ conceptually from those found 

in other operating system classes. The dissimilarities of real-time systems stem 

from: 

different emphasis in their scheduling policies, 

the need for better predictability of system behavior, 

stringent performance expectations, 

their ability to be physically and functionally reconfigurable, in order to 

address small, or large scale applications. 

The first two points are associated with policy making parts of an OS, while the 

other two refer to functional specifications, such as granularity, modularity of 

basic components, and implementation optimizations; 

In distributed systems, a relatively small OS kernel can implement basic 

protocol and services, providing a simple network transparent process address 

space and communication model. The rest of the system can be built at process 

level, in a machine and network independent fashion, supporting policy making 

components and services required by the intended class of application; 

High performance communication is the most critical facility for a distributed 

computer system (given the available technology). Thus, the challenge is to 
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design the protocols that Iea.d to a system with the required petfonnance, 

functionality, reliability, and some degree of security; 

Fault-tolerance is inherent to the basic architecture of a system, hence operating 

systems with such objective should provide necessary mechanisms as part of 

their basic services. 

These observations suggest that a carefully designed distributed operating system kernel 

can support different categories of system, including the real-time class, provided that 

necessary services are offered with due performance. Therefore, in the design of the RT

DOS Kernel the emphasis is put on the distributed attribute of the system, considering 

the impact of the real-time factor as either an optimization issue, or the concern of high 

level system services. 

2.4 General OS Kernel Functions and Policy/Mechanism Separation in 

OS Design 

The kernel defined here is intended to be a collection of mechanisms which support a 

range of system solutions that effectively meet the requirements of various reliable, 

distributed, real-time command and control applications. The distributed real-time 

command and control application domain calls for a set of kernel mechanisms that 

support a number of reliability concepts, such as fault containment, graceful 

degradation, high availability of services, and correctness of actions. The mechanisms 

mentioned here do not constitute a full operating system, but rather an operating system 

kernel which provide fundamental system intetfaces that are not the same as a trivial 

operating system or executive. 

The concept of policy/mechanism separation has been claimed to be valuable in the 

design of modular operating system components [Hansen 1970, Habennan 1970]. 

Briefly, a policy is defined as a specification of the manner in which a set of resources 

are managed, and a mechanism is defined as the means by which policies are 

implemented. Policy/mechanism separation is a structuring methodology that involves 

the segregation of entities that dictate resource management strategies from entities that 

implement the low-level tactics of resource management. The main idea behind the 

policy/mechanism is that if the mechanisms are pure (i.e., devoted to policy decisions) 
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and complete, then it is possible to use them in implementing a wide range of the system

and application-level facilities. 

Modularity is achieved through the separation of functions into mechanisms; 

implementation changes are restricted to individual mechanisms, and changes in system 

policy do not require changes in the functionality of mechanisms, just changes in the use 

of mechanisms. A number of functions necessary in the creation of reliable, distributed, 

real-time systems are not provided by the kernel to keep its size at a minimum. In these 

cases, the functions are supported by kernel mechanisms, but the specific policies are 

applied at higher levels in the system. For example, though the RT-DOS kernel provides 

a process migration mechanism, the function of dynamic reconfiguration is to be 

performed by system-level facilities that nianage the physical location of objects (server 

processes, etc.). 

During the initial phase of the RT-DOS Kernel design, a great deal of effort was spent to 

define a micro kernel which consists of a collection of basic mechanisms duplicated at 

each node of a physically loosely-coupled network of Transputers, with a minimum 

functionality and maximum flexibility. The rest of the kernel mechanisms, as well as 

other policy level OS servers, are relying on the interprocess communication mechanism 

(IPC) to communicate among themselves by exchanging messages. 

The RT-DOS Kernel is implemented as a collection of kernel-level mechanisms (IPC, 

memory management, process management, short-term scheduling, time management, 

and process migration) from which policy decisions were carefully excluded. Each major 

logical function in the kernel is manifest in an individual mechanism, and much effort 

was made to ensure a proper separation of concerns among these mechanisms. 

2.5 IPC Functions in an RT-DOS Kernel 

Real-time features of distributed operating systems are implemented at upper policy 

levels as server processes, and hence functionality of a DOS and RT-DOS kernel 

mechanism layer is almost similar. Therefore, existing DOS kernel implementations can 

be taken as example of both kinds. In most of the modem distributed operating systems 

the kernel essentially handles communication and some process management, and little 

else [TanenbaumA 1990]. The kernel takes care of sending messages, scheduling 
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processes, and some low level memory management. All of the remaining functions that 

are normally associated with a modem operating system environment are performed by 

servers, which are effectively ordinary user processes. That is why OS kernel is given 

names such as message passing kernel or communication kernel in these environments 

[Briat 1986]; and a message-based interprocess communication (IPC) mechanism is the 

essence of these kernels, at large. 

At one extreme, the kernel could present the data-link layer of a local area network 

(LAN), letting programs tailor their protocols to their needs. Each process would 

specify destination machines and process names. At the other extreme, processes could 

transfer messages among themselves in a network-transparent and process-name 

transparent marmer, providing a more abstract level programming interface. Accent 

[RashidA 1981], Demos/MP [Baskett 1977], and Charlotte [ArtsyA 1987], as well as 

the RT-DOS Kernel IPC, take this approach. From the communication mechanisms 

perspective, the majority of kernels in the front group would be described as "message 

passing" (MP) systems, while those in the second group would be thought of as having 

an underlying remote procedure call (RPC) model. 

In all these kernels, connection-oriented reliable communication protocols, such as 

remote procedure call (RPC), reliable multicasting and broadcasting message passing 

services, are established on top of an unreliable connectionless IPC datagram service. 

Because the major goals of the RT-DOS Kernel were flexibility and compactness, a 

great emphasis was placed on the design of mechanisms (as opposed to the specific 

policies concerning their use) in general, and on the design of the IPC mechanism in 

particular. Moreover, the topology of the RT-DOS system was designed specifically to 

provide necessary support for an efficient and high performance IPC mechanism. The 

RT-DOS Kernel IPC mechanism provides connectionless transport level communication 

protocols which were designed with group communication support such as multicasting 

[l\.1ockapetris 1983], broadcasting [Kaashoek 1990], and unicasting in mind. It provides 

blocking type communication primitives which support remote procedure calls (RPC) 

[Hutchisson 1989, Tay 1990] between physically distributed processes, as well as non

blocking type of communication which is based on aforementioned group communication 

protocols. A more detailed elaboration of these issues is presented in Chapter 5. 
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3. THE RT-DOS KERNEL DESIGN CONSIDERATIONS 

As the IPC implementation effort was a complementary part of the RT-DOS Kernel 

design project, this project history and its environment are highlighted briefly in this 

chapter. 

3.1 General Objectives and Restrictions 

The objectives of the RT-DOS project were: the specification, design and validation of a 

distributed operating system kernel which would support industrial applications [TayliA 

1987]. The emphasis was on the identification of primary system functions and on the 

methodology of developing a layered reference model. The validation of the model and 

the kernel would be carried out by setting a testbed consisting of a series of 

microcomputers (Transputers) networked through high speed data commwncation 

channels. 

The general context of the research was the area of distributed systems for real-time 

command and control applications. The aspects of these applications and the 

characteristics that set them apart from the other problem domains have been described 

in the previous chapter (Chapter 2). 

At the completion of the project, it was expected to accomplish the following results : 

A layered reference model, for the specification of real-time oriented distributed 

operating systems; 

A complete implementation of a real-time distributed operating system kernel, 

conforming to the model specified above; 

Validation of the kernel with at least one real-time application. 

It has to be noted here that the implementation of an IPC mechanism (which is the main 

subject of the thesis) for the above mentioned kernel is obviously one of the intermediate 

steps that should be taken at the initial stages of kernel implementation, as the rest of the 

other kernel components will be using it as a means of interaction between themselves. 

In the context of the research, reliability of the kernel was emphasized much, in terms of 

providing predictable services (which rely on a collection of predictable IPC services) to 

upper levels, which is a basic requirement of a real-time command and control system. 
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Reliability can be defined as a degree to which the application goals continue to be met 

in case of failures, errors, and faults. Randell, at al. [Randell 1978] have surveyed the 

issue involved in achieving high reliability from complex computing systems and 

provided their definitions to help to distinguish between the reliability and the 

availability, and among failures, errors, and faults. To support the overall reliability 

goals of a distributed real-time command and control application, the system software 

must itself meet a certain level of reliability. In addition to this, the system must provide 

mechanisms that allow reliable applications to be constructed suitably. The kernel 

should not dictate a specific kind and degree of reliability, but rather it should allow its 

clients to choose what is desired for each individual set of circumstances at an 

appropriate cost [Randell 1978]. 

The distributed real-time command and control application domain calls for a set of 

kernel mechanisms that support the following reliability concepts: 

Correctness of actions (is a function of time, sequence and completeness); 

High availability of services (inversely related to the frequency of failures); 

Graceful degradation (is the property of a system that permits the system to 

continue providing the highest level of functionality possible, as the demand for 

resources exceeds its currently available capacity); 

Fault containment (is defined as a property that inhibits the propagation of 

errors among system components). 

There are several issues which are not addressed by this research. Some of them are 

omitted in order to limit the scope of the initial effort to the aspects of this problem 

which are considered most interesting and important. Others are omitted in order to 

confine the target problem at a manageable level. The following are the specific issues 

that are currently not considered within the scope of the research : 

Heterogeneous microcomputer environment ( interfaces of all Transputers with 

outside environments and each other are uniform); 

Communication sub network other than Inmos links [IrunosA 1987]; 

Specific performance goals; 

An existing operating system compatibility; 

Concurrent languages; 

Inter-network communication protocols; 

Security. 
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3.2 Transputer Hardware Architectures 

The Transputer is a programmable VLSI device with communication links for point-to

point connection links to the other Transputers. It is a cross between a computer and a 

system building block, like a transistor, and it executes 10-30 mips [Transputer 1984, 

InmosA 1987, JnmosB 1987, JnmosC 1989, InmosD 1989, Datter 1985, JnmosE 1987]. 

The Transputerfamily of 16-bit (IMS T212, T222) and 32-bit (IMS T414, T424, T425, 

T800, T805) processors boasts execution rates 2-10 times higher than those of standard 

microprocessors, while it occupies one tenth of their silicon area. The latest version of 

the family, T9000 Transputer [T9000 1992) which has some advanced features such as 

more than 200 Mbps link communication speed and 100 Mips CPU performance. It also 

incorporates 2-4 Kbytes of static RAM, a DMA interface, a timer, and built-in 

communication support ( 4 inter-Transputer links - INMOS Links), built-in micro coded 

kernel for multi-tasking and the construction of highly concurrent systems of many 

connected Transputers (Figure 3.2(1)). Lately, Transputers are used in building 

massively parallel super computers by connecting thousands of them to each other in 

different network topologies such as star, cube, ring, and combination of all. As an 

example, Parsytec GmbH company in Germany has manufactured the GC-5/16K 

supercomputers using more than 16,000 Inmos Transputers [Lamberts 1993]. 

Transputer Communications : The Inmos Links are the most obvious feature 

distinguishing the Transputer from other microcomputer-type devices. Each link 

provides two-way point-to-point connection with other Transputers. This allows arrays 

of Transputers to be assembled into multiprocessor systems without the problem of bus 

contention (Figure 3.2(2)). 

Each Transputer link supports memory-to memory block transfer both for on- and off

chip memory. A link controller accepts a pointer and a block count when an OCCAM 

INPUT or OUTPUT statement refers to an inter-Transputer channel. 

The DMA transfer is totally asynchronous, with message transfer taking place totally 

independently of the processor. Operating simultaneously, all the links can transfer data 
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concurrently with processor execution, up to an overall throughput of 4x30 Mbits/s, · 

depending on the selected speed of the links. 

Regardless of the word length of the communicating devices, a message is transmitted as 

a sequence of bytes through the links (which are actually a pair of wires). For transfer in 

a single direction, the sending Transputer initiates traffic by transmitting a byte on one 

v.~re .. The sender then waits for acknowledgment, which is sent through the other wire 

and which signifies that the receiving link can receive another byte and that process is 

waiting to receive it. The sending link reschedules the sending process only after it has 

received an acknowledgment for the final byte of the message. 

For duplex communications on a single link, a Transputer interleaves the bytes it is 

sending with acknowledgment for the bytes it is receiving on the other link wire. An 

acknowledgment can be transmitted as soon as the reception of a data byte starts if there 

is a room to buffer another one. Transmission can therefore be continuous, without any 

delay between data bytes. 

The links make Transputer systems as easy to engineer as possible. Regardless of 

internal perfonnance, all Transputers use a 5-Mhz reference clock for approximate 

frequency information only - not for phase. This low frequency simplifies the clock 

pulse's distribution in large systems. All a system's Transputers do not have to be 

connected to the same clock, so Transputers can be connected in independently designed 

systems just as easily as TrL gates are. 

An OCCAM channel provides a communication path between two processes [Tyrrell 

1989]. Channels between processes executing on the same Transputer are implemented 

by single words in memory (internal channels); channels between processes executing on 

different Transputers are implemented by point-to-point links (external channels). For 

internal comnnmications the compiler allocates the memory location (soft channels). For 

external channels' locations the bottom of the Transputer memory is used (16'80000000-

16'800000 1 C where I 6' indicates HEX). The implementation of external 

communications uses three separate registers to support autonomous DMA, leaving the 

processor free to work on another process. These link registers hold the count of the 

number of bytes to be transferred, a pointer to the location in memory (to input or 

output) and a pointer to the workspace of the process. 
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When control is transferred to the link registers the process is descheduled. Once the 

communication has been completed, the link interface signals the processor to add the 

process to the end of the list of active process. The IN and OUT instructions are used for 

communicating data; IN transfers a block of A bytes from channel B to the address 

pointed to by C, 0 UT transfers A bytes from the address pointed to by C to the channel 

B (Figure 3.2(3)). It is to be noted that A, B and Care Transputer operand registers. 

The processes at either end of a communication must have the same value in A, 

otherwise OCCAM compiler rejects the instructions treating such situations as errors. 

Memory Interface and Process Workspaces : The provision of 2-4 Kbytes of on-chip 

memory reflects a desire to use technology in a very optimal way. As transistors shrink 

in size, they can switch faster, so chips run more quickly. An on-chip RAM ensures that 

the Transputer spends most of its time executing at its rated speed from on-chip 

memory. When the processor does need to access off-chip memory, on- and off-chip 

access are identical as far as the programmer is concerned. 

It is to be noted that some Transputers have built-in floating process units (FPU) and 

this adds extra complexity to the architecture. Figure 3.2( 4) shows the internal 

datapaths of a IMS TSOOM Transputer. 

The address space is uniform, and all addresses are one word long, for a maximum 

memory of 232 words on the 32-bit Transputers. 

The memory interface has a world-wide multiplexed data and address bus. To control 

power dissipation- and because the 32-bit Transputer will in all likelihood normally be 

used in systems with large memory configurations- the bus outputs are intended only to 

drive external buffers, not a full complement of memory chips. For dynamic RAMs, 

address multiplexing is external to the buffers for different multiplexing requirements. 

The memory interface also supports both a simple cycle for ROM and RAM without 

address, and a multiplexed cycle for RAMs with multiplexed addresses. 

Each parallel process has a workspace associated to it , that is, a block of 32-bit words 

in memory (Figure 3.2(3)). The register W points to the beginning of this block during 

the execution of the process. 
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The workspace address and its priority level, given in the process descriptor, identify 

completely a process. The priorities of processes are stored in the least significant bit of 

the workspace addresses. Small negative offsets from the workspace pointer are used for 

storing information used on the process queues and information about communications 

and timers. Thus, when the workspace requirement is calculated, at compile time, room 

in addition to local variables has to allocated. 

A real time kernel is hard-wired into the Transputer. A process is defined by its 

workspace address. Workspaces are linked to form two lists of waiting process (priority 

0 =high and 1 = low). Special registers in the processor point to the front and back of 

the active process lists (Figure 3.2(5)). 

A process is started by adding it to the end of the appropriate list. When the current 

process is descheduled it may have one of two states : (1) active or (2) in-active ((a) 

awaiting I/0, (b) time delay). In case (I) the process is placed at the back of the 

appropriate scheduling list. In case (2), the process will be added to the scheduling list 

only when the I/0 is ready, or the time delay has expired. The process at the front of the 

list is scheduled. A high priority process will always be executed in preference to a low 

priority process. A low priority process will be preempted if a high priority process 

becomes available for execution. When there are no more high priority processes the low 

priority process will continue executing. 

Seven locations near the bottom of the Transputer's memory map are used to hold the 

state of a preempted low priority process. One process, at most, can be preempted at one 

time requiring only seven 32-bit locations. The five main registers are saved with the 

status register of the preempted process and an internal register (Ereg) used in block 

moves. Workspace for parallel processes is allocated below the workspace of the parent. 

The first member of the PAR list (parallel processes of OCCAM) is allocated workspace 

immediately below the parent, the second immediately below it, etc. 

Simple Instructions-Registers : One fundamental reason for the performance and 

implementation efficiency of the Transputer is its instruction set- which resembles that of 

a reduced instruction set computer (RISC). The Transputer has a compact program 

representation and micro coded instruction set. Hence, the Transputer does share RISC's 

advantages- an extremely simple instruction decode and few instructions [InmosE 1987]. 
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These instructions are independent of the processor's word length, which can be any 

nwnber of bytes. The same instruction set is used for the 16- or 32-bit Transputers and 

could also be used for versions with other word lengths. Programs manipulating bytes, 

words, and truth values can be translated into an instruction sequence that behaves 

identically when executed by Transputers of different word lengths. 

Each instruction comprises a 4-bit function code using the most significant bits and a 4-

bit data value- for 16 functions and data values ranging from 0 to 15. Both one-address 

and zero-address instructions need to be able to use operands larger than the four data 

bits of an instruction. The two prefix instructions, one positive and one negative, extend 

the length of any instruction's operand. All instructions are executed when the four data 

bits are loaded into the four least significant bits of the operand register which is then 

used as the instruction's operand. All instructions, except for those of the prefix, 

terminate by clearing the operand register in preparation for the next instruction. 

The prefix instruction loads its four data bits into the operand register and then shifts it 

up to four places. The negative prefix instruction is similar but complements the operand 

register before shifting. Consequently, operands from -256 to +255 can be represented 

with one prefix instruction, and a sequence of such instructions can extend an operand to 

arbitrary widths- constrained only by the operand register's width. These simple prefix 

instructions have profound consequences for performance and compatibility. First, they 

are decoded and executed just like any other instruction, and that procedure simplifies 

and speeds instruction decoding. Second, they simplify language compilation by 

providing a completely uniform way of allowing any instruction to take any size of 

operand, up to word length of the processor. Finally, they allow operands to be presented 

in a form independent of the processor's word length. 

As it can be seen in Figure 3.2(3), a 32-bit workspace pointer W points anywhere in 

memory, making context switching easy and fast (0.002 ms). Three 32-bit registers A, B, 

C form an evaluation stack and should not be considered as a set of independent registers 

as on many other microprocessors. Registers are defined by the user; the compiler 

allocates room inside a process workspace. Parameters, even temporarily, are never kept 

in the evaluation stack. Instructions which do not use A, B, or C, like JUMP instructions, 

leave these registers in some unpredictable state. The usual condition code register 
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does not exist : the results of a comparison is left in register A. An error flag E and a 

'halt on error flag H exist for handling overflows. 

The processor maintains two scheduling linked lists for simulating parallel operations. 

There are four registers specifically for foiming these linked lists; two registers for high 

priority processes, one pointing to the front of the list (FPtrRegO), the other to the back 

(BPtrRegO) and two registers for the low priority process (FPtrRegl, BPtrRegl). There 

are six registers and two bits used for the local operations on the Transputer : Two clock 

registers, ClockR£gO and ClockR£gl (one for each priority level), two registers pointing 

to the first items on the two priority timer queues. TPtrLocO and TPtrLocl, and two 

registers indicating the time of the first event to occur, TNextRegO and TNextRegl 

(again one for each priority level). The two bits indicate whether there is anything on 

either of the timer queues, TEnabledO and TEnabledl. 

3.3 Transputer Software Development Tools 

In this section, major software development tools for Transputer based systems in 

general; and the ones which have been used in the RT-DOS Kernel design in particular, 

are explained briefly. As it can be appreciated from the following arguments, capabilities 

and limitations of the chosen development tools are becoming major factors in the 

success of the design and implementation strategy of the target system. 

INMOS TDS D701 Transputer Development System : The INMOS TDS 0701 

Transputer development system [InmosH 1990] consists of an mM PC add-in board 

(IMS B004) and the related software. The board enables users to evaluate and 

demonstrate the use of Transputers. Containing a 32-bit Transputer (T414) and 2 MB 

on-board RAM, the board provides a powerful upgrade to the mM PC XT or AT. 

The TDS software actually runs on the Transputer (in collaboration with a small 

program executing on the mM PC which provides access to the PC's resources) in the 2 

MBytes of RAM, offering an extremely fast and efficient compilation. 

The PC I/0 channel is interfaced to an INMOS link by on-board IMS C002 link 

adapter, and logic is provided for the Transputer's external reset control and monitoring. 

Simple external connections complete the communication and control route between the 

mM PC and the Transputer system. 
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Though the IMS B004 board is supporting a nwnber of different software development 

systems, TDS D701 is based on OCCAM language and related software, including an 

folding editor, compiler, linker, network loader and configurer, and some debugging 

utilities. OCCAM language's capabilities and limitations are explained below in detail. 

The OCCAM Language : OCCAM is a simple but yet powerful programming 

language which enables a Transputer system to be described as a collection of processes 

which operate concurrently and communicate via named channels [Geraint 1987, 

InmosF 1988, May 1986]. It is designed to support concurrent applications in which 

many parts of a system operate separately and interact. 

The novelty of OCCAM is in its treatment of concurrency. OCCAM enables the 

programmer to express a program in terms of concurrent processes which communicate 

by sending messages through communication channels [Hull 1989]. This has two 

important consequences. Firstly, it gives the program a clear and simple structure as the 

individual processes operate largely independently. Secondly, it allows the program to 

exploit the performance of many computing components, as each concurrent process 

may be executed by an individual processor. OCCAM can capture the hierarchical 

structure of a system by allowing an interconnected set of processes to be regarded from 

the outside as a single process. At any level of detail, the programmer is only concerned 

with a small and manageable set of processes. 

An OCCAM program is constructed from processes combined together using keywords 

called process constructors. The internal structure of each constructed process is 

indicated by a fixed layout with each component process appearing on a new line, 

indented from the keyword that introduced the whole construction. The primitive 

processes (which are SKIP, STOP, assignment, Input, and Output) form the level of 

processes in an OCCAM program [Geraint 1987, Fountain 1987]. 

An OCCAM program can describe several processes to be run concurrently and the 

processes may communicate by passing messages. OCCAM processes do not use shared 

variables, nor semaphores, "critical regions" or "mutual exclusion zones". OCCAM 

does not require (nor support) shared memory. Data can be exchanged between 

processes only by passing messages through the OCCAM channels. There are no 
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multiple senders or recetvers, no broadcasting, and no tu1certainty about where a 

message wme from or where it is going. Messages are tu1buffered, so sending and 

receiving a message involves momentary synchronization between the two participating 

processes. Messages are sent through static channels, as if through a circuit switched 

(rather than packed switched) network [Wexler 1989]. 

The concurrent processes that form an OCCAM program communicate via channels, 

using the primitive processes of Input and Output. The Output process 

Channel I expression 

sends the value of the expression over the Channel. Similarly, the Input process 

Channel? variable 

receives a value from the channel and stores it in the variable. The communication is 

synchronized, and only takes place when both processes are ready. 

The OCCAM Input and Output processes have an exact parallel in the Input and Output 

statements of CSP [Hoare 1978], even to the extent of using the same symbols"?" and 

"I". The parallel construct 

PAR 

Out] lx 

Out2 ly*y 

will output the value of x over channel Out/, and will output the value of y*y over 

channel Out2. The program will simply execute the first process that is ready. For a 

parallel composite process to be legal, none of its component processes may change the 

contents of any variable that is used in any other component as there is no shared 

memory in OCCAM programs. 

In the following OCCAM alternative constructor 

ALT 

1nl? x 

Out/ I x*x 
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1n2 ?y 

SKIP 

ifx is ready for input from channel 1nl beforey is ready for input from channel 1n2, then 

x*x is output on channel Outl; otherwise SKIP is executed (i.e., nothing is done). In 

OCCAM, loops are formed using the repetition constructor. 

The following constructor (loop control structure) 

WHILEx>O 

SEQ 

1nl ?x 

OutJ? X 

will execute an OCCAM sequential construct SEQ (input x from channel 1nl, and then 

output x to channel Outl) as long as x contains a positive value. A process can be made 

to execute continuously by the constructor WHILE TRUE. The basic concurrency 

requirements of communication, synchronization and process creation are built into 

OCCAM at a high level, rather than being implemented through low-level error prone 

devices such as semaphores. It is this factor which makes OCCAM so useful in 

describing concurrent systems and algorithms. 

Though Transputer assembly language code can be embedded in OCCAM programs 

(and OCCAM can be a hamesser for other languages, such as C), in that case the 

reliability and robustness of OCCAM programming model is lost. Programming under 

this model requires that the source code is specifically tailored to; and the executable 

code configured for, a fixed hardware configuration [Oakley 1989]. ~plications can not 

be configured to the resources available at run time. The model offered by the 

Transputer and OCCAM has some other disadvantages, namely deadlock and livelock, 

which are not considered to be any concern of the operating system or its built-in micro 

kernel. 

Because of these limitations current implementations of OCCAM and its development 

environment is not convenient for operating system implementation. 
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INMOS ANSI C Toolset and Other Language Compilers : The current 

implementation of OCCAM and its Configuration language extensions impose a 

relatively rigid process structure at the source code level [Oakley 1989]. Because of 

these and other limitations of the OCCAM development environment, the OCCAM 

based software development tools were replaced by the INMOS ANSI C based software 

toolset [InmosG 1990]. Parallel C offered by 3L and other C compilers (INMOS ANSI 

C) offer the ability to 'flood fill' a Transputer array with identical worker processes; and 

runtime processes establish what hardware resources are available, automatically place 

copies of the worker code on each processor, then handle message passing between the 

workers and their master process. 

the Inmos ANSI C toolset has been designed to reflect the processing model of 

communicating sequential processes (CSP). The inherent flexibility of the C language, 

the capacity to mix code from different languages, and the ability to use the concurrency 

features of the Transputer make it a powerful tool for programming concurrent systems. 

Considering OCCAM language limitations, the Inmos ANSI C has been chosen as 

implementation tool because of its flexibility for the RT-DOS kernel project. The Inmos 

ANSI C compiler and its supporting tools run under DOS (there are versions for other 

operating systems as well, such as V AXIVMS, Sun OS, and PC-DOS}, either on the 

host itself or on a Transputer board attached to the host; and can be used in conjunction 

with existing text editing software and source control systems. For this reason, no editor 

is provided with the toolset, in contrast to the OCCAM TDS Toolset which has a 

sophisticated one. 

The toolset has a ANSI C compiler (ice) with concurrency support which generates 

object code for specific Transputer targets, a configurer (icconj) to analyze the 

configuration description and produce configuration data file for code collector, a code 

collector (icollect) to collect linked units into a single file for loading on a Transputer 

network (takes as input a configuration data file or a single linked unit}, a file format 

converter (icvlink); a network debugger (idebug) to provide post-mortem and interactive 

debugging of Transputer programs, a memory dumper (idump) to debug programs that 

run on the root Transputer, a memory configuration tool (iemit) to evaluate and define 

memory configurations for later incorporation into ROM programs, an EPROM 

program formatter tool (ieprom) to format Transputer bootable code for input to ROM 

programmers, a toolset librarian (ilibr) to build libraries of compiled code in the same 
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format as the C runtime library, a tool set linker (ilink) to resolve external references and 

link separately compiled code into a single file, a binary lister (i/ist) to disassemble and 

decode object code and display information in a readable form, a makefile generator 

(imakej) to generate makefiles for input to MAKE programs, a host file server (iserver) 

to load programs onto Transputer hardware and provide nmtime access to the host, a 

T425 simulator (isim) to simulate program execution on an IMS T425 Transputer and 

provide simple debugging facilities, and finally a skip loader tool (iskip) used with 

iserver to load programs onto external networks over the root Transputer. 

The ANSI C toolset can be used to write programs targeted at IMS M212, T212, T222, 

T225, T400, T414, T425, T800, T801, and T805 Transputers. Code can also be written 

to run on a group of processor types by compiling for a Transputer class. Transputer 

assembly language code can be embedded in C programs when required. A full range of 

high level language constructs including replicative and conditional statements make it 

easy to explore different configurations before committing to hardware. 

3.4 RT-DOS Kernel Design Approaches (Object Model and Layered 

Model) 

Design methodology for distributed systems in general, and real-time distributed 

operating systems in particular, have not matured yet [StankovicD 1985, Turek 1992]. 

The RT-DOS Kernel research project [TayliB 1990] team initially faced the critical 

decision of adopting a suitable methodology for the design and implementation of the 

kernel. The object-oriented paradigm was investigated as a potential alternative to the 

hierarchical layered system model [BorA 1989, BorB 1990]. Though the object oriented 

methodology is generally used in the implementation of databases, programming 

languages, and in complex systems software analysis and design; the main point of 

interest in the RT-DOS project was exploring its usage in the design of the Real-Time 

Distributed Operating System (RT -DOS) kernel which runs on a Transputer-based 

network. 

During the preliminary design of the research project "Real-Time Distributed Operating 

System Kernel" (RT-DOS), the investigators felt the necessity to explore the object 

oriented model as an alternative design and implementation strategy to the layered 

model. The study focused especially on the application of the object oriented approach to 
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the operating system field. Other application domains like databases, programming 

platforms are voluntarily omitted to keep the investigation within the manageable limits. 

A detailed and extensive report has been presented on the issue, as a compilation of the 

surveyed literature [BorA 1989]. It presents the object oriented paradigm, its 

chronological evolution, and introduces basic abstractions and concepts of the model. 

Pros and cons of the object oriented approach are also discussed as a programming 

methodology in general, and as a design alternative for the RT-DOS kernel 

implementation in particular. A number of recent implementations that used object 

oriented approach as design methodology or provided their users with object 

programming interface have been investigated in detail. Particularly, the Alpha kernel 

[Nortcutt 1987] proved to be a convincing and impressive argument for the object 

oriented approach. Besides its implementation methodology, the Alpha kernel also 

presented innovative design features as a real-time distributed operating system kernel. 

Therefore, a substantial part of the document was devoted to the Alpha kernel and its 

implementation details. 

The following three sections are devoted to the elaboration of the issue, comparison of 

the object oriented model versus classical layered approach; and at the end, the reasons 

why the object oriented paradigm was not chosen as the implementation methodology, is 

presented. 

3.4.1 Object Model 

"There is little hope of mastering the complexities of modem graphical environments 

without the leverage that object-oriented programming provides" [Davson 1989]. 

"Object-oriented technology is on the march and will doubtless soon appear in other 

fonns" [Udell 1989]. Expressions similar to these quoted sentences figure nowadays in 

scores of articles. Though the object model became popular only in the last decade, 

accepted as a programming methodology after the implementation of the Smalltalk 

language, it has effectively been used as an extension for existing programming 

languages in complex software systems development, databases, and in operating system 

implementations since 1950s. Recently, an ever increasing number of real-time and 

distributed operating systems, practicing the object-oriented paradigm, have started to 

emerge from research laboratories. 
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It has been argued that there are two important reasons for the object model's growing 

popularity, especially with distributed operating system designers. First, there are many 

issues involved in operating systems design all closely interrelated e.g. naming, 

protection, atomicity, resource management, synchronization etc., and the object model 

seems to take account of their interdependencies, encapsulating many of the problems in 

a single abstraction. The object model is also claimed to handle networking gracefully, 

supporting the implementation of reliable mechanisms given that techniques for 

performing remote operations on objects are well understood and can be made very 

efficient. 

It is not easy to understand and use the main ideas hidden behind basic abstractions of 

the object oriented model without using a real object-oriented language, such as 

Smalltalk or C++. In addition to this, it appears that the reasons for which these 

abstractions were developed and used are embedded in the chronological progress of the 

method itself. Therefore, a rather wide range of the implementation samples was 

examined to understand the capabilities and limitations of the model and assess its 

advantages and disadvantages. 

What is an Object Oriented Model: The object-oriented model has been introduced by 

a number of authors [Dyke 1989, BYTE 1986, Danfort 1988] as: 

A vision, or a way of organizing a system description. The central intuition in 

the object-oriented vision is that systems can be built by describing sets of 

related objects and that objects have attributes and behavior; 

A set of programming teclmiques that specifically include facilities to 

manipulate objects, attributes, and behaviors; 

A large complex system that enables and encourages using object-oriented 

programming teclmiques. 

In the programming languages context, the term "object-based" is used for languages 

supporting only objects; and "object-oriented" for languages which are supporting 

objects, classes, and inheritance. 

This section covers the object model in its generality, and discusses the requirements for 

a software system to be classified as object-oriented or object-based. 
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Historical Background of the OOP: Part of the object oriented terminology such as 

objects, messages, classes come from ALGOL and SIMULA languages, but object

oriented programming can trace its roots to the earliest uses of the computer, yet it is 

thought of by many as a new programming methodology. The object model has been 

implemented as a programming language (Smalltalk [Goldberg 1984], Strand88), and its 

ideas and constructs have been added to existing languages (Pascal, C++, Ada, Modula). 

Object-oriented programming is a methodology that employs data abstractions (a data 

abstraction is a way of defining data considering the way it may be used, rather than 

what it is), called objects, as the basic structure of programs [Dyke 1989]. 

In the USA, the Minuteman missile project was designed in 1957, using primitive object

oriented structuring teclmiques. The design was divided into a handful of related discrete 

components, every component dealt with one aspect of the design and was created by a 

specialist who had a unique expertise, for no single individual had the breadth of 

knowledge to create the whole program. Each of the program components was 

encapsulated, that is, it had its private data and was virtually a separate program with its 

own methods and procedures that would apply to those data. By sending data and 

commands between the components and by using key design parameters supplied by the 

operator, the computer program was designed and simulated the flight of experimental 

missiles in the computer. Similarly, in object-oriented programming, the objects are 

made up of private data and methods, and they communicate with each other through the 

use of messages which may contain data arguments. In this way, object-oriented 

programming is like having a group of specialists working together to solve a problem. 

A system, whose ftmctions are formalized and generalized so as to apply to many 

different kinds of objects, keeps track of the status of each of the objects and determines 

which information to send and where [Dyke 1989]. 

In 1960s, SIMULA67, an Algol-based language introduced the concept of class, which 

is the implementation of a data abstraction through encapsulation, and the concept of a 

class hierarchy to permit the inheritance of methods. Using SIMULA67 as a spring 

board, the language Smalltalk was developed at the Xerox corporation's Palo Alto 

Research Center. Smalltalk has further formalized the notion of objects and message 

passing among objects. Since then, Smalltalk has been considered to truly be a real 

object-oriented language and the first example of this type that has all the important 
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features of the object-model. Smalltalk offers the generality and conceptual wholeness of 

a pure object-oriented language, in which everything is either an object or a message 

[Udell 1989]. 

The C++ [Stroustrup 1986], EIFFEL, CIT, Mentat [Grimshaw 1993], and Objective-C 

languages are object-oriented extensions of the C language. FLAVORS is an object

oriented extension to LISP, and LOOPS and KEE are programming environments that 

use object-oriented programming as ftmctional building block. Strand88 is a truly object 

oriented language designed for the development of parallel programs, running on a wide 

range of hardware including Transputers. CHAOS [Bihari 1992], an object-based 

language and programming/execution paradigm, has been designed for dynamic real· 

time applications which require complex embedded systems. 

It is also possible to consider object-oriented programming as a style, rather than a 

language; and, the object-oriented programming can be built using existing procedural or 

fi.mctionallanguages. 

Object-oriented programming concepts have also been used as the organizing principle 

for application development, and to supplement existing languages for application 

development and debugging (for example Turbo Pascal 6). 

Object-oriented programming concepts may be implemented in varying degrees of 

completeness. Numerous implementation examples (mostly on different aspects of 

operating systems design) which use object-orientation as a programming paradigm, are 

briefly presented below. 

Though the object oriented model became popular as a programming language concept, 

it has been used in the design of database software, because it lends itself to the 

implementation of an atomic transaction concept, a desired feature for implementing 

such issues as atomicity to provide data consistency and reliability, especially in 

distributed database environments. To restrict the main domain of interest to a 

manageable size, the object-oriented database systems implementation examples were 

excluded from the survey. Implementation of atomic transactions, which are supporting 

reliability and fault-containment, is discussed in relation to the Alpha kernel [Nortcutt 

1987] in detail, as this issue is one of the reasons for the adoption of the object-model. 
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Basic Abstractions and Mechanisms of the OOP Model: Recently, a number of 

researchers discussed the requirements of an analysis process for object-oriented 

software as an alternative methodology to the standard structured analysis approach 

[Balin 1989]. Before trying to give a solid picture of the object model, it is useful to 

summarize these discussions comparing the object model approach against the 

traditional methods of system analysis and design. Parties involved in these discussions 

claim that object oriented programming methodologies are mainly based on decomposing 

processes into objects (active and passive) and allocating them functions until : 

Every known functional requirement is met by one of the objects; 

The internal state of the system is adequately represented by the states of all 

objects. 

Structured analysis is a method of articulating functional requirements. Any system must 

accept certain inputs and deliver certain outputs. Processes are introduced to represent 

transformation of inputs to outputs. The main principle of aggregation in this method is 

that functions are grouped together in a process if they are constituent steps in the 

execution of a higher level function. The constituent steps may operate on entirely 

different data abstractions. 

In object-oriented design the main principle of aggregation refers, to the underlying data. 

Functions are grouped together if they operate on the same data abstraction. Namely, 

functions executed in sequence can reside in different objects which include relevant 

data. In concurrent execution environments performance suffers mostly because of 

common data access rather than functions. Some authors also claim that grouping 

functions using common data in one object will reduce the cost of data/control flow and 

increase the concurrency in the overall system [Nortcutt 1987]. 

Principles of data encapsulation and information hiding are the main requirements for a 

method to be object-oriented. Information hiding and data abstraction can be 

summarized as "give only as much information as it needs to know in order to carry 

out its function correctly, and hide as much information as possible away from the 

module". In this way, information passing between modules and the complexity will be 

reduced. For a language, encapsulation means that the language provides a way to 

combine data and the code that operates on that data into reusable structures. 
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In the object-oriented method the emphasis is not on the transformation of inputs to 

outputs but on the underlying content of the entity. Entity content can be considered as: 

Data structures that define the entity; 

Underlying state of a process as it evolves in time (data stack); 

Aspect of a process that is persistent across repeated execution cycles 

(invariants). 

An object-oriented system can be thought of consisting of an upper hierarchy of entities, 

decomposing at lower levels into fimctions. To complement the notion of entity a 

fimction is purely a transformation of inputs to outputs. It has no underlying state that it 

remembers across successive invocations. Every fimction must occur in the context of an 

entity, it must be performed by or act on the entity. An active entity is one that operates 

on inputs to produce outputs. A passive entity is one that is acted upon. Passive entities 

may consist of more than just data; they may provide a set of primitive ftmctions for 

accessing the data. Abstract data types such as lists and stacks are the best-known 

examples. 

Though the terms about the basic abstractions of object programming are not commonly 

accepted, the kinds and basic ftmctions of these abstractions are almost the same in all 

implementations. First abstraction is passive entity (object in Srnalltalk, module in 

Module-2, package in Ada, or entity) which includes encapsulated data, and access and 

synchronization routines to this data (ftmctions, methods, operations in Alpha, etc.). 

Second abstraction is active entity which carries control and status information, and 

represents the computation in the system (thread in Alpha, process, procedure, etc.). The 

last abstraction is a communication mechanism (message passing system) between the 

active and passive entities (operation invocation in Alpha, method calling, ftmction 

calling, message passing, etc.). 

As an introduction to the object model, a comparative look at the Process abstraction in 

the conventional process model versus the Thread/Object abstraction of Alpha, is 

presented below (please note that the term "object" as in object-oriented, will be defined 

later on). Figure 3.4.1(1) depicts corresponding parts of a process and its Alpha 

counterpart. In Alpha, the design of threads and objects closely mirrors the kernel's 

programming abstractions by splitting typical processes into two independent 
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components : a passive object part and an active thread part. Objects are quite similar to 

the code and data portions of traditional processes, that is, process without a stack 

segment or process control block. Objects consist of regions of data that the object 

serves to encapsulate, regions of code that are used to perform the operations defined on 

the object, and the various control structures used by the kernel to manage the object. 

The data portion of objects consists of three subparts : 

Statically allocated, uninitialized data; 

Statically allocated, initialized data; and 

Dynamically allocated, uninitialized data (i.e., heap storage). 

The data part of an object represents only the global data associated with the object; all 

local data (e.g., automatic variables of subroutines) are provided on a per-thread basis 

and are not associated with the object proper. The code for standard operations is part of 

the kernel and is shared by all objects. Objects are passive entities and there is no 

activity in an object until an operation has been invoked on it. 

In this model, threads provide the components of a typical process other than those 

provided by objects, such as code and persistent data. This consists primarily of 

execution stacks and system control information. The major component of any thread is 

the portion that contains the client's stack. Threads provide each operation invocation 

with a separate stack (to support object migration) that may be used to store any 

automatic variables declared within the scope of an operation. This stack space is 

reclaimed when the invoked operation completes. Each stack is protected so that a thread 

can only access the variables associated with the particular operation execution under 

way at any point in time. A thread has another part that contains the thread's kernel 

stack, and a part that contains the thread's invocation parameter pages. 

Objects: An object is an entity with a private memory and a public interface. Messages 

are used to instruct an object to report on or alter its private memory. Messages are 

implemented by procedures (i.e., methods, functions, operations) that have special 

privileges in accessing the object's private memory. An object consists of both private 

data and the methods that can act on that data. 
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Each object is a triple: Unique-name, Type, Representation [Polymorphism 1985]. The 

unique-name distinguishes an object from all other objects. The type of an object defines 

the properties of the object (e.g., program, stack, process, etc.). The representation of an 

object is hidden from the users view within a type manager which implements the 

operations of the type definition [Goldberg 1984]. Figure 3.4.1 (2) illustrates an object 

structure consisting of data, code (standard operations that can be applied on object), 

and entry points. 

There are two schools of thought and practice [Balin 1989] concerning the definition of 

complex objects : 

Abstract data type based definition; and 

Inheritance-based definition (simple inheritance in Smalltalk, multiple 

inheritance in KEE, etc.). 

Abstract Data Type-Based Object-Structuring : An object-oriented software system is 

an assembly of objects. Each object will satisfy the Parnas module criteria. That is, a 

module (e.g. the type manager of an object) implements an abstract data type and 

performs all of the required actions on its data, and specifies the necessary pre-and post

conditions for acceptance of the results of those actions. The functions of a module are 

made available to other modules as procedure calls, and these procedure calls constitute 

the only access to the functions of the module. In particular, the data manipulated by the 

module is only made available to other modules by procedure invocations; other modules 

have no direct access to the location or the representation of any data used by the 

module. Modules detect conditions which violate their specifications and prevent 

application of functions upon the module's data when the necessary conditions are not 

met [Stroustrup 1986]. 

Inheritance-Based Object-oriented Structuring : In an inheritance-based object-oriented 

system, structures and types are defined as extensions of existing types [Mayer 1988]. A 

type definition begins with functions inherited from parent types. Complex types are 

defined through multiple inheritance. Inheritance is to receive properties or 

characteristics of another, normally as a result of some special relationship between the 

giver and the receiver. Frequently this is referred to as a class hierarchy. 
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When using inheritance in this way, an object is specified as what is new about the new 

object in reference to a class or subclass object definition. In Srnalltalk, a subclass 

inherits and may extend both the state representation and the operations of the superclass 

[Stroustrup 1986]. 

A protocol (method in Modula, fimction in C++, operation in Alpha, etc.) is provided as 

part of every class definition. Any method associated with a super class is inherited by a 

sub class. For example, numbers respond to a variety of arithmetic messages inherited 

from class NUMBER. In Figure 3.4.1(3) the inheritance feature of objects in Smalltalk 

is shown. 

Abstract Data-Type, Inheritance and Vertical Partitioning : Inheritance is not 

compatible with vertical partitioning for several reasons. It tends to inhibit definition of 

type specific semantics for state management fimctions and blur the concept of strong 

atomicity at manager boundaries as required by vertical partitioning. Abstract data type 

definitions of objects, on the other hand, provide a natural framework for implementation 

of both of these requirements for vertical partitioning. 

In an object-oriented database, programs (methods I operations) are viewed as objects 

and thus can be moved around the distributed database just like any other object. When 

performing a computation, the system can move data to the program or vice versa. 

Objects may be active as in the Actors paradigm, or passive as in CLU, or somewhere in 

between as in Simula or Smalltalk in terms of initiating actions [Wiederhold 1986]. 

Compound objects can be thought of as lightweight tasks that share the same address 

space. 

In this thesis, it is assumed that an object is any passive element of a computation whose 

state can only be modified by members of a well-defined set of operations or fimctions. 

The behavior of an object is completely determined by its set of permissible operations. 

The example of an elevator can be given as an abstract object on which only three 

operations are defined : install, which initializes its state, plus up and down, used by 

passengers to change floors. In a programming methodology, objects with the same set 

of defined operations are said to constitute a type. 
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The appropriate granularity of objects is related to the cost of inter-object 

communication. The cost of inter-processor communication in a distributed computer 

system suggests the use of medium-to-large-scale objects. In Alpha, an object is 100 to 

10,000 lines of code in C. The object model of programming suggests that large amounts 

of data should not be passed as parameters to invocations of operations on objects. It is 

to be noted that, message passing between objects in Alpha and other systems is the 

same as procedure call in Pascal [Shipman 1987]. 

In the operating system context, named objects are generally associated"with memory 

segments, and access is controlled by means of a capability. Objects are referenced by 

unique system-wide names. Encapsulation provided by the object abstraction appears to 

be a promising approach to the design of fault-tolerant and protected operating systems 

[Kohler 1981], to support the features such as fault-containment, atomicity, gracefully 

degradation, availability of services, and consistent behavior of actions. 

Operation Invocation on Objects: In the object model all computation is performed by 

invoking functions on objects. A form of abstraction, called aggregation in the database 

literature, provides a natural means of building high-level abstract objects and functions 

from lower level primitives. lbis relates to the layered system approach advocated by 

operating system designers, where every layer interface can be represented by a 

collection of abstract objects and possible operations on them. Information on the 

internal structure of the objects and operations is inaccessible to their users [Kohl er 

1981]. 

An object consists of data that are tightly coupled with all of the operations that can· act 

against it. Those operations are often referred to as methods (operatio~·~:Ul. Alpha), and 

the communication between objects requesting that some action take place is often 

referred to as sending a message (operation invocation, object invocation, or applying 

methods). 
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Object Types • Oasses and Inheritance: Inheritance is the ability to derive a 

specialized structure from a more general one (objects inherit data and methods, add new 

ones, override old ones if necessary). All objects belong to a class (i.e., a type) that 

defines the messages that the object can understand and respond to. A class inherits all 

the messages from its superclass(es). 

A class is a template from which objects are created (as a result of object instantiation, 

replication, and activation). Inheritance is a property of classes that allows them to share 

resources. Classes may be arranged in a hierarchy from most general to most specific. 

Classes lower in the hierarchy may inherit methods and attributes from classes above. 

In object-oriented progranuning, a piece of data should not have its type or meaning 

determined by its location in a list. This principle distinguishes objects from data 

(encapsulation). At some future time, a progranuner may change the internal 

representation of data in a class. If, as a result, any attribute of this class became the 

second or fourth item, requesting the third to get that information would yield an 

incorrect result. Users of data would then become responsible for understanding changes 

that take place in internal data format. All methods using the message to obtain any 

attribute based on its position would have to be identified and changed, leading to a 

potentially expensive and tim~consuming maintenance burden. 

Single versus multiple inheritance : Single inheritance derives from the classic tree 

hierarchy of classes, wherein each class has at most a single parent class. Multiple 

inheritance derives from the frame concept and argues that the tree structure is too 

limiting. Some objects can belong to more than one hierarchical structure. 

Storage Management in Object-Oriented Systems: In a language having static 

binding, the system manages the storage. Languages using dynamic binding control the 

policies for its own use of storage. Smalltalk has methods for reclaiming space released 

by objects that no longer have references to them. In C++ and Objective-C 

implementations, storage management is left to the responsibility of the system or the 

application programmer. For large software systems, overlaying was a common 

technique but has not been used for sometime because memories are larger now and 

must realize hardware paging. 
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Pros and Cons of the Object-Oriented Approach: In this section, the main advantages 

and disadvantages of the object-oriented model as a programming methodology are 

briefly discussed. 

Advantages: It has long been believed that object oriented system structuring offers 

advantages for design and implementation of computer software systems with respect to 

comprehensibility, verifiability, maintainability, etc. The major obstacle to widespread 

use of object-oriented systems has been its excessive execution overhead. Some authors 

argue that much of the execution overhead of object-oriented systems has been due to the 

implementation structure; that is, the objects are built upon a conventional layered 

software structure [Stroustrup 1986]. 

A wide range of benefits are claimed for the object model of programming, including 

increased modularity, separation of specification from implementation, and increased 

reusability of software components [Cox 1986]. The use of objects permits the 

programmer to manipulate data at a higher level of abstraction. Especially the display 

capability associated with objects is an attractive function for tracing and debugging in 

general. Object concepts can be implemented using non specialized languages, as in Lisp 

or Prolog [Wiederhold 1986]. 

Objects provide a useful abstraction in programming languages; views provide a similar 

abstraction in databases. Since databases provide for persistent and shared data storage, 

view concepts will avoid problems occurring when persistent objects are to be shared 

[Wiederhold 1986]. Object-oriented databases add characteristics such as persistence, 

concurrency control, resiliency, consistency, and the ability to query the database to 

facilitate access. Object capability has already been added to database management 

systems to provide for some of the benefits of encapsulation. Because, now, the user of 

the data is not protected from changes in representation and must know how to use the 

data [Dyke 1989]. The data can be temporarily converted into an object fonn while 

processing. Some authors claim that because of the ability to model very complex data 

and evolve the database without affecting the current application base, object-oriented 

database management systems will replace the relational data model implementations 

which emerged in the early 1980s [Davson 1989]. 
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The concept of service can fit nicely into an object-oriented-framework. Object-oriented 

principles imply the concept of services. As a black box with a well-defined interface, an 

object is essentially a service access point. 

Encapsulation provides the basis for building a system from modules that can be 

accessed through a well-defined interface. The abstract data-type approach defines the 

interface by a set of strongly typed operation (or method) signatures. hrtemal 

representation of the data types (by recording the methods only) can be changed without 

disturbing the rest of the system (interface with the object will remain the same). 

Encapsulation is a term that describes the scope of unrestricted reference to the 

attributes of an object. It may be desirable to restrict the freedom of other objects to 

retrieve or replace its attribute values. T ~ provide access to attribute values, ~ object 

can provide access functions to allow other objects to inquire about its attribute values 

or to change them. Access functions control access to preserve privacy and integrity of 

attribute values by allowing them to be read and replaced only when appropriate. They 

can also provide traps to respond gracefully to ill-timed or ill-formed requests 

(semaphores). 

Using the inheritance feature, type definitions can be related to each other through a type 

lattice. Type definitions can be incrementally modified by adding subtype definitions that 

change the original type. The combination of the supertype and the subtype produces a 

completely defined new generic type (dynamic type definition). The object-oriented data 

model has the ability to make references through an object's identity which is invariant 

across all possible modifications of the state of the object itself. This gives very much 

flexibility to change and modify the complex systems at very low maintenance cost 

[Davson 1989]. 

Persistence is an object's ability to outlive the process that created it. A persistent object 

exists in a memory space that is not dependent on any single computational entity, and a 

large number of objects (more than will fit into the virtual memory of a process) can be 

stored in this persistent memory space (i.e., the database) [Davson 1989]. 

Object-oriented programming languages help to manage related data having a complex 

structure by combining them into objects. An object instance is a collection of data 

elements and operation that is considered an entity. Objects are typed, and the format 
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and operations of an object instance are inherited from the object prototype (class). The 

prototype description for the object type is predefined and the object instances are 

instantiated as needed for the particular problem. The object prototype then provides a 

meta description, similar to a schema provided for a database. That description is fully 

accessible to the programmer internally, an object can have an arbitrary structure, and 

no user-visible join operations are required to bring data elements of one object instance 

together [Wiederhold 1986]. 

Dynamic binding allows storage to be defined at run time and is not unique to object

oriented programming. It allows location independent object invocation, and 

modification of internal implementation of objects without affecting the rest of the 

system. 

Large programming projects are not infinitely divisible. One cannot reduce the elapsed 

time to completion by putting more people on the project. Object-oriented programming 

allows for a finer degree of subdivision, which is akin to the specialization of the 

workforce brought about by interchangeable parts. The concept of interchangeable parts 

had a profound effect on the ability to manufacture complex mechanisms [Dyke 1989]. 

To create self-contained component parts of a programming system and treat them 

independently is a goal similar to that of interchangeable parts. In object-oriented 

progranuning, each component is defined by its interface; and a complete description of 

the interface is to be all that is needed for using a component successfully. 1bis provides 

a strong organizational reason for using object-oriented programming. 

An object library can help to reuse the existing code. In doing so, new functions can 

borrow heavily on those that have preceded tl,1em, without the necessity of writing wholly 

new code. The hierarchical structure and inheritance capability allows for the creation of 

generic components that can be reused in many parts of the system. 

Uniform interface between all objects, to system devices and resources can be provided 

by a common and uniform operation invocation mechanism. The designer of each 

component has the freedom to make internal changes that do not affect the interfaces, 

such as the internal representation of data (flexibility). Improvements that can be made 

within a class do not have to affect the users of that class. New classes and methods can 
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be added without affecting those already there, thus allowing for incremental 

modification (resulting in improved programming productivity). 

Reliability of a physical system is unlikely to be proved formally, and a perfectly reliable 

system can not be achieved. Therefore, a designer must to be content with developing 

hardware and software techniques for improving reliability [Kohler 1981]. The 

embedded nature of most real-time command and control computer systems restricts (but 

not eliminates) opportunities for mounting determined attacks on the system. It is 

reasonable to provide a degree of assurance (at a moderate cost) that programming 

errors will not lead to serious system failures, by way of system-provided and enforced 

protection domains. In Alpha, for example, the kernel places each object in a separate 

domain, enforces this separation, and controls all interaction among objects and 

domains. Each object can invoke operations on only those objects for which it has 

explicit permission. By enforcing the separation of object protection domains, the 

general system objective of fault containment is advanced. In real-time system design, 

one should attempt to allocate resources judiciously to make certain that any critical 

timing constraint can be met with the available resources, assuming that the 

hardware/software functions correctly and the external environment does not stress the 

system beyond what it is designed to handle. 

In distributed systems object replication can be used to enhance the degree of fault

tolerance and increase the availability of system services, and thereby support the 

predictability of the system performance much required in real-time applications. 

Object-oriented programming is emerging as one way of using the continually improving 

capabilities of computer technology to provide improvements in programmer 

productivity and user function. Object-oriented programming is being used for a wide 

range of applications, particularly for knowledge-base systems involVing close human 

interaction and judgment. It may also be used as a tool for specifying and building large, 

integrated data processing systems. As a vision and a set of programming techniques, 

object-oriented programming has great value in programming to build large systems that 

have long life cycles [Dyke 1989]. 

The aspect of operating system design that is most involved in meeting the needs of real

time applications is the manner in which contention for system resources is resolved, but 
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not in the inclusion or exclusion of specific functionality. Real-time operating systems 

should take into account timeliness constraints when resolving contention for resources. 

In Alpha, for example, all resource management decisions are based on the time 

constraints of the entity (thread/object) making the requests and when contention occurs, 

resources are allocated in a manner dictated by system's overload handling policies in 

order to maximize usefulness to the application (time-driven system resource 

management). The kernel's programming abstractions aid in the overall objective of 

global, dynamic, time-driven resolution of contention for system resources. The thread 

abstraction (as in the Alpha kernel) embodies a distinct run-time manifestation of logical 

computations which is more appropriate for distributed systems than the conventional 

process abstraction. Tills provides a direct means for associating the timeliness 

requirements that clients specify for their computations with specific location

transparent run-time entities that the kernel manages (a required feature to support 

graceful degradation in real-time systems). In this manner, global importance and 

urgency characteristics are propagated throughout the system along with threads, for use 

in resolving contention for system resources, such as processor cycles, communication 

bandwidth, memory space, or secondary storage, according to a client-defined policy. A 

more detailed elaboration of these issues can be found in the reference [Nortcutt 1987]. 

The object-oriented programming model used in Alpha is claimed to be especially well 

suited for the support of decentralized, high-concurrency implementations of the major 

reliability techniques for distributed systems (i.e. atomic transactions and replication), as 

well as modularity, information-hiding, and maintainability, normally associated with an 

object oriented programming paradigm. 

Disadvantages: Object-oriented programming has however some drawbacks. It has been 

claimed to spend more processing resource handling message passing than would be 

required to perform function calls [Dyke 1989]. Moreover, it is acknowledged that the 

difference becomes minimal as the methods being performed become more complex (i.e., 

the granularity increases). For simple methods that must be performed repeatedly, it is 

possible to program a "fast path" around the message passing delays. Special hardware 
• 

support for context switching of objects and message passing between objects can 

increase the general performance of object-oriented systems. 
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Object-oriented systems traditionaily result in a workload that contains a great deal of 

context switching and data movement, thereby reducing performance. 1bis increased 

workload arises because of the smaller granularity of system structures resulting from 

object-oriented design. Much data movement is among related object data structures. 

Some authors argue that, vertical partitioning lowers the flow of data across domain 

boundaries (intra-domain context switches are typicaily less expensive than inter-domain 

switches). Also, traditional object-oriented designs have not taken fui1 advantage of 

semantic information available about the object's fi.mctions and storage. System structure 

affects the performance cost of satisfying inter-data and inter-ftmctional dependencies 

and controiiing the execution of a computation. The initial object-oriented systems 

(Smaiitalk and Eden etc.) which have been embedded in conventional software 

environments (i.e., UNIX) have typicaily incurred increased execution costs (related to 

the control and recovery dependent performance overhead). A highly modular object

oriented program structure in the traditional implementation wiii incur an execution cost, 

which increases rapidly with degree of modularity because the separation of object 

defining and state management ftmctions requires a large number of expensive context 

switches to execute state management and control ftmctions. 

It is claimed that the lack of efficiency of object-oriented systems is due to building 

objects on top of a traditional layered structure. Vertical progranuning within the objects 

encourage the use of the semantics by the type manager of each object. The keys to the 

performance improvement are type managers designed around data structures, compile 

time binding of fi.mctions to data, and the ability of type managers to use the object's 

semantic properties to optimize data processing, execution control, fault location, and 

recovery. Vertically partitioned object-oriented structures integrate implementation of 

type ftmctionality and state management in a single execution context in order to reduce 

total cost. Vertical partitioning also encourages the exploitation of an object's individual 

semantic properties to minimize the execution of both the fi.mctions on data and system 

overhead ftmctions, such as consistency management and recovery [Stroustrup 1986]. 

Whereas it is relatively easy to learn the basic concepts of object-oriented programming, 

it takes much longer for an individual to learn a large class library (this, of course, in the 

hands of the skilled user, might be a powerful programming resource) [Dyke 1989]. 
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Static versus dynamic binding; Advocates of compile-time static binding say that it 

helps to discover errors at that time, and the program ultimately nms faster. Others say 

that rw1-time dynamic binding frees the developer from the constraints of having to make 

such fixed decision that may ultimately lead to more complex programs. A compromise 

position says that dynamic binding is best in the early development phases of a project, 

but that static binding is better later on, when the product is going to be installed for 

general use. 

Despite the fact that dynamic generic types provide flexibility in development phase, it 

decreases the performance of overall system during execution (similar to that of dynamic 

binding VS. static binding). 

Initial cost of developing an object model from scratch (if no object-oriented language 

initially exist) for use in lower system software levels is relatively pretty high, especially 

if the developed software system is not complex enough and its life cycle is not very long 

(in which case no need for much modularity, reusability, and maintainability). 

3.4.2 Layered Model 

Jn this section, a short evaluation of the layered model (which is chosen as the 

implementation methodology for the RT-DOS Kernel design) is presented, in comparison 

with the object model (with the reasons for which object model has been found 

unfeasible for the RT-DOS implementation). The main pros and cons of both 

approaches in comparison with each other are also given. 

Jn a layered model, the operating system is organized as a hierarchy of layers, each one 

constructed upon the one below it [TanenbaumB 1987]. The first system formally 

constructed in this way was the THE system built by E.W.Dijkstra and his students 

[Dijkstra 1968], in 1968. A further generalization of the layering concept was present in 

the MULTICS system. But the layered model became popular especially after ISO OSI 

Reference Model for open systems interconnection was published by the International 

Standards Organization (ISO), as a set of protocols and communication services 

provided by the layers at each communication node speci:fYing the network architecture. 

The term "open systems" refers to systems that can be interconnected to communicate 

with each other by conforming to common implementation standards. Here, the objective 
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is to guarantee the interoperability of products selected from different suppliers by virtue 

of the fact that they conform to a common suite of standards. 

For building software architecture in general, the layered model is used to obtain 

modularity for reducing complexity and maintenance cost. In operating system kernel 

design, the layered model is used to separate basic kernel mechanisms (which are usually 

replicated on each system node) from optional upper level system services (which reside 

on nodes that need the related services). The driving principle used by the layered model 

is to keep the number of layers to a number that would make the task of describing and 

integrating the layers manageable. Layers can be partitioned into further sublayers as 

required. Though the ISO OSI is exactly a seven-layer model, a layered model used to 

build an operating system kernel might consist of a few basic layers to separate the 

functionality of the system into manageable and maintainable components; for example, 

TRON [Sakamura 1987). 

Separating hardware-dependent parts of an operating system from other kernel 

components will provide portability, as well as hardware-independence which reduces 

software modification needs for each minor hardware change, such as adding a new 

hardware device or changing physical characteristics of an existing one. Most operating 

systems are designed as a collection of functional layers; for example, firmware layer, 

device drivers, kernel (I/0 control unit, task manager, memory manager, etc.), OS policy 

layers (long-term task scheduling, system monitoring, file management, etc.), with 

applications running on top of operating system. 

Though self-contained and independent modules of the layered model are easy to 

manage, the main drawback has been known as a performance decrease of the overall 

system in general. Vertical partitioning is claimed to be a solution which eliminates the 

performance problem, but it incurs implementation and maintenance costs due to its 

tightly-coupled functional modules. Nevertheless, the layered model is commonly 

accepted especially in communication systems area to establish very well defined· 

standards between different software parties to increase interoperability between their 

products. 

The main concern of the RT-DOS project team for choosing the layered model was to be 

able to separate minimum replicated kernel mechanisms from upper level policy services, 
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as well as to reduce the complexity of handling the project by separating it into self

contained and independently developed parts. A more detailed elaboration of the issue 

(reasons of the project team for rejecting the object model and accepting the layered) is 

presented in the following section (3.4.3) . 

3.4.3 Object Oriented Approach Versus Layered Model 

Although the RT-DOS project definition document [TayliA 1987] stated that the RT

DOS would be designed conforming to the layered reference model, it was felt to be 

necessary to explore the object oriented approach as an alternative design methodology 

early in the project. As noted above, a detailed survey [BorA 1989] has been carried out 

to investigate the relevance of the object model in the design of real-time distributed 

operating systems. The remainder of the section summarizes the conclusion which were 

reached. 

In a detailed report [Davson 1989], the object-oriented paradigm was investigated as a 

potential alternative to the hierarchical layered system model. It is commonly believed 

that the modularity of object-oriented system structures leads to 'good' software systems 

which are comprehensible and maintainable. It is also commonly believed that these 

virtues can only "e obtained on conventional computer architectures at the cost of 

performance and efficient use of resources. On the other hand, it is argued [Stroustrup 

1986] that these inefficiencies and performance problems have historically arisen largely 

because past object-oriented systems have been built upon the inappropriate foWldation 

provided by the conventional layered operating system and database system execution 

environment. 

It is claimed that, a vertically partitioned structure for design and implementation of 

object-oriented systems demonstrates better performance of the application independent 

portion of the execution overheads in object-oriented systems, against the application 

independent overheads in conventionally organized systems built upon layered 

structures. It is argued that the gain in performance would be about 30-55% more than 

the conventional approach. 

A non trivial distributed real-time case study [Stroustrup 1986] showed that vertically 

partitioned, object-oriented structured system results a 30-55 percent reduced overhead 

of context switches, CPU control flow and CPU data flow, over the functionally oriented 
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layered structured system. Evaluation of overhead was accomplished by implementing 

system control, but not implementing application functionality for both conventional 

layered and vertically partitioned versions of the application. The hypotheses that the 

case study group put forward are : 

Object-oriented systems implemented in the vertical partitioned framework are 

more efficient than a system of the same functionality implemented in the 

conventional layered system framework; 

That this system structuring technique yields a partitioning of state and 

functionality that results in effective and efficient distributed and parallel 

systems; and 

That this system structuring framework leads to verifiable robust systems with 

respect to fault tolerance. 

The basis for the first claim is that special case state management algorithms are almost 

always more efficient than general algorithms, and that partitioning by type establishes a 

basis for locality and computational operations. Both type specific functions and state 

maintenance functions can take advantage of the semantics of the typed objects. All 

mechanisms for monitoring integrity in the presence of faults are based upon 

redundancy. Semantic properties of data and data structures can be used to improve 

overall system performance. Type manager implementation of functions often allows 

compile-time binding of consistency and fault management functions to their associated 

data structures, instead of run-time interpretation of generic operating system or 

database system functions. 

Compile-time binding typically results in improved system efficiency. Decomposition of 

total processing on the basis of application-based structures cuts down the data flow and 

inter-domain context switches. Performance may also be improved due to the locality of 

functions and data within the object boundaries. 

Simplicity of recovery results from atomicity at object boundaries and from use of type

specific fault detection and recovery mechanism. Vertical partitioning limits the 

propagation offaults, localizes data, limits the interdependencies among objects for fault 

recovery and enhances overall system security. 
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In message-based systems, the importance of a computation is lost as messages are sent 

to different setvers as the computation progresses. Each step of a computation is 

performed at the priority of the server, not the priority of the computation itself. The 

priority of a message can be used to resolve conflicts for communication resources. To 

resolve contention for all types of resources, computations have to retain their priority 

across all the steps. lhis would require that server processes endorse the priority of each 

message they receive. Furthermore, setver processes must be preemptable so that when a 

message with higher priority arrives, setver suspends its current work and initiates the 

new request. Thus, the thread/object approach of object model adopted in Alpha seems 

to be a promising approach to effectively solve the contention problems introduced by 

distributed real-time tasks. 

On the other hand, requirements of real-time systems necessitate exploitation of the 

particularities of underlying hardware, considering the efficiency above all other criteria. 

Nevertheless, in theoretical studies and emulations of operating systems most of the 

interactions with the hardware are omitted and many low-level issues discarded as 

"engineering and technology dependent details". lhis simplistic approach harms the 

conceptual nature of the operating system. Such details have substantial effects on the 

final implementation, as some low-level mechanisms often conflict with the assumptions 

of the high-level design. For instance, in the Alpha implementation, a simple change in 

the version of CPUs of application processors (from M680 I 0 to M68020) resulted in a 

complete revision of all memory management and protection policies (hence changes in 

object and thread structures, and context management). The upgrade, which 

tremendously improved object context switching, has been achieved at the cost of 

modifying most of the kernel code. 

Though the object model proves to be a suitable framework for the design of real-time 

distributed systems, its adoption for the RT-DOS suffers from: 

The absence of proper hardware support; 

Unavailability of object-oriented development tools; and 

The cost of initial investment to build basic abstractions of the object model. 

The Transputer architecture does not allow a stmightforward implementation of the 

object model. Transputers support neither virtual memory nor any kind of protection 

mechanism much needed to create disjoint protected object contexts. The alternative of 
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confining one object per Transputer would restrict dynamic creation of objects, and 

cause a decrease in system efficiency (not tolerable in real-time systems). The lack of 

hardware support precludes effective implementation of fault-containment mechanisms, 

which minimizes the benefits of the object model. 

At the present, Transputer development platforms do not offer object based design 

environments. Even if such a system existed, the programming tools would probably 

incur additional overheads, decreasing the predictability of the final real-time system. 

Furthermore, the cost of the building an object-oriented development platform from 

scratch is tremendous. In the Alpha experience, building basic object abstractions and 

implementing some part of the kernel mechanisms on top of these abstractions cost about 

30.000 lines of C. This sizable number represents an amount of investment which is 

beyond the limits of the RT-DOS project. 

3.5 General Survey on Related Work Areas 

In this section, a number of DOS kernels are presented as the current approaches to 

kernel design issue. A detailed report covering the survey study on related work area, 

carried out by the RT-DOS project team members, has been published [TayliB 1990]. 

The interprocess communication mechanisms of these DOS kernels are discussed in 

detail in Chapter 5, and hence will not be covered here. 

In the preliminary design of the RT-DOS Kernel, the architecture of a large number of 

distributed and real-time systems was surveyed. Those found of particular interest to the 

RT-DOS project have been studied in detail with respect to their process model, 

interprocess communication model, and other subjects, such as process migration 

support and predictability of provided services. The main features of different 

architectures are exemplified in the following systems: 

ACCENT [RashidB 1981]; 

AMOEBA [TanenbaumC 1981]; 

CHARL01TE [ArtsyB 1989]; 

DEMOS/MP [Powell1983]; 

LOCUS [Walker 1983]; 

SPRING [StankovicB 1989]; 
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V Kernel [CheritonA 1988); 

ALPHA Kernel [Nortcutt 1987); 

ARTS [HideyukiB 1987]; 

HELlOS [Helios 1989]. 

The objective of the Alpha Kernel project was to investigate the relevance of the object 

model in the design and implementation of real-time distributed systems. As a 

comprehensive coverage of the Alpha Kernel has been provided in a detailed report 

[BorA 1989], and has been explained in different sections of the previous chapters, it is 

not discussed here any further. Problems related to the design of IPC model, process 

model, and process migration mechanisms; as well as design alternatives, solutions 

adapted in the surveyed systems, are presented in Chapter 4 and partially in Chapter 5, 

along with their rationaL Only some of these surveyed kernels are discussed below, 

briefly . 

ACCENT: It was designed to support a distributed project and development of a fault 

tolerant distributed sensor network Its philosophy is tmiform and transparent access to 

distributed resources through message interfaces for loosely coupled uni/multi processor 

systems. It implements a single, powerful abstraction of communication between 

processes, with all kernel functions accessed through messages. It provides location 

independent naming schemes, and implements process migration for fault tolerance. It 

provides rapid error detection and tools for transparent fault-recovery, debugging and 

monitoring, as well as optimizing file access and providing IPC mechanisms through 

VMsupport. 

Accent can be viewed as a loosely connected collection of host machines. Each host 

machine on the network is equipped with an OS kernel which in turn supports a 

collection of processes. FW1ctions provided by the system kernel include: 

lnterprocess communication; 

Virtual memory management; 

Process management; 

Access to devices through the IPC; 

Support of application specific micro code; 

Support for process monitoring and debugging. 
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Services, referred as a set of commands and responses, are implemented by one or more 

server processes. The number of servers providing a service is transparent to users of 

this service. All communication between a process and the kernel is done through a 

special channel. It is possible for a process A to set its kernel port to another process B. 

This mechanism forms the basis for remote debugging and monitoring systems. 

Basic primitives allow create, destroy, monitor (status), suspend and resume operations 

on a process. All objects (opened files, virtual terminals, etc.) and services (process 

creation, I/0, etc.) in Accent are accessible through the IPC. Even though the IPC 

facility of the kernel is defined solely in terms of communication between processes on 

the same machine, communication can be extended transparently over the network by 

processes called network servers. 

The basic transport abstraction of the IPC is the notion of a PORT. A port is a protected 

kernel object associated with an individual queue. Ports are created by a system call 

(AllocatePort), and initially owned by the creating process. The result of a port creation 

call is a local port name (a capability), used as an index into a correspondence table, 

maintained by the kernel for each process. Whenever a port name is passed in a message 

the system kernel must map that name from the local name space of sending process into 

the name space of the receiving process. The ability to manipulate access to ports allows 

for the redirection of communication from one process to another and the explicit 

management of communication between two processes by a third process. 

Subject to implementation restrictions on maximum port size, the process with receive 

rights is allowed to specify the maximum number of messages which may be queued for 

that port at a time. An attempt to send more messages results in one of the following 

depending on the options specified by the sender: 

Sending process is suspended until the message can be placed in the queue (per 

process-system server relationship); 

Sending process is notified of an error condition perhaps after a time out (likely 

the case of a process checking the status-awake, dormant, etc.- of a port); 

Kernel may accept one message per sending process to be queued later (case of 

a server process finishing a transaction). The server can't afford to be suspended 

waiting on a user to clear its queue. 
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Accent provides the tools for migrating processes since all relevant process state (micro 

state, port queues, memory) can be extracted and transmitted over the network. When 

migration occurs due to hardware problems, higher level mechanisms are required for 

fault tolerance. In such a case the migrated process state probably corresponds to the 

last "good", checkpointed state, and some communication may have gone on since it was 

saved. The issue of process migration for fault tolerance is not only a kernel problem but 

also one of properly structuring message communication into atomic transactions. 

AMOEBA: Amoeba is a distributed operating system running on a collection of 

Motorola, Intel, and V AXIPDP 11 based machines which are connected through a LAN. 

Its objective is to control a collection of machines based on a processor pool model. It 

implements process migration for load balancing, and the process migration mechanism 

is similar to the process creation. Task creation is done through a server process, rather 

than by kernel calls. It has UNIX-like naming mechanisms, and file structuring. 

Like Accent, the AMOEBA seMces are implemented as a set of commands and 

responses, on one or more server processes. The number of servers per service is 

transparent to users of this service. Services are of two category (the system does not 

differentiate between them): 

Public services, such as disk I/0, file access, directory, database management, 

etc. They are carried out by long life span processes; 

Private services, such as short lived processes, started up to run a specific 

program for a specific user. 

Each AMOEBA machine runs a resource manager process that controls that machine. 

This process belongs to the kernel for efficiency reasons. Key operations it supports are 

create segment, write segment, read segment, and make process. 

To create a process, the parent executes "create segment" for text, data and stack, 

getting a capability for (a pointer to) each segment. It then fills each one in with that 

segment's initial data. Finally it performs make process with these capabilities as 

parameters, getting back a capability for the new process. The parent builds a process 

descriptor consisting of: required CPU type, port from which the process code can be 

fetched, command string, argument string, environment string, umbilical port to send 
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exit status to the parent, inherited ports. Using these primitives, it is easy to build a set 

of processes that share text andlor data segments. 

Interprocess communication is based on the datagram services exchanged through 

PORTS. The datagram model is used to reduce the system's complexity and give 

processes the flexibility to define their own protocols and flow control scheme. Higher 

level protocols ensure reliability of communication primitives. Messages are unbuffered, 

and basic primitives are synchronous with the provision of an exception request which is 

propagated recursively through a hierarchy of servers. 

Ports are used like UNIX file descriptors. They can be inherited and passed around the 

same way as in UNIX. Ports are stored in directories like i-nodes, and two category of 

port exist for : public servers (known and/or publicized names), and private processes 

(secret names). 

Processes may migrate during the execution to more appropriate systems which were not 

available during the creation of the process (providing that two systems have compatible 

CPU architectures). The migration mechanism is very similar to process creation 

mechanism. When a monitor wants to move a process, it creates a port (file) from which 

the process code can be fetched, and builds a descriptor which is sent out to look for a 

new site. When some system has inherited the process, the originator may discard it. 

The basic idea behind fault tolerance in AMOEBA is that machine crashes are 

infrequent, and that most users are not willing to pay a penalty in performance in order 

to make crashes 100 percent transparent. Instead, Amoeba provides a boot service with 

which servers can register. The boot service polls each registered server at agreed 

intervals. If the server does not reply properly within a specified time, the boot service 

declares the server to be broken and requests the process server to start up a new copy of 

the server on one of the pool processors. As the Amoeba IPC is not based on virtual 

circuit or session concept, the change of the server is completely transparent for users if 

their demands can be served by any one of the similar servers. 

CHARLOTTE: is a distributed operating system which has been developed on V AX 

11nxx systems connected through a Pronet Token Ring network system. Its objective 

was to serve as a testbed to evaluate distributed algorithms; to support experimentation 
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with policies for load sharing and balancing; and to explore the design issues that 

process migration raises in a message based system. 

Its replicated kernel provides the IPC and short term scheduling. It emphasizes 

policy/mechanism separation of the kernel to support task migration. No information is 

retained at the source kernel, related to the migrant process. 

Each machine in the Charlotte system runs a kernel responsible for simple short-term 

scheduling and message-based interprocess commwlication protocol. Processes are not 

swapped to the backing store. A battery of privileged processes, called utilities, runs at 

the user level to provide additional OS services and policies. The kernel and some 

utilities are multithreaded. 

Charlotte kernels collect statistics on the machine load (number of processes, links, CPU 

and network loads), individual processes (age, state, CPU utilization, commwlication 

rate), and the most active links. The kernel periodically summarizes sample data and 

delivers it to policy making components. 

Processes commwlicate via location independent links, which are capabilities for duplex 

. commwlication channels. Charlotte IPC allows concurrent commwlication over multiple 

links, selectivity, message cancellation, and link transfer. When moving processes, the 

commwlication is suspended until the operation is completed. Outgoing messages from 

the moving processes are buffered in the process's virtual address space, and incoming 

ones are buffered in their sender's virtual address space. Since Charlotte provides 

message caching, no unreceived incoming messages from the moving processes are lost. 

Charlotte kernels are responsible for migration mechanisms (to detach, transfer and 

reattach migrant process) and for providing policy making services with time and load 

statistics. Four service calls have been added to the process-kernel interface to 

implement process migration. These are: 

Start/stop gathering statistics; 

Migrate a particular process to a particular machine; 

Accept a process from a particular machine and allocate memory to it; 

Cancel a migration in progress, if possible. 
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Transferring processes occurs in three main phases : negotiation, transfer, and 

establishment. After that, policy making components in the source and destination 

machines are infonned that the migration has been successfully completed. 

DEMOS/MP: DEMOS/MP is a distributed operating system nmning on Z8000-based 

machines connected through a LAN. Its objective is to allow users to access the multi

processor system in the same manner as a uniprocessor system. In DEMOS/MP, process 

control functions are perfonned without concern of where processes are actually located. 

Processes' state are well encapsulated, minimizing migration costs, and it implements 

process migration for load balancing and fault tolerance. 

DEMOS/MP is a message based OS. Most of the system functions are implemented in 

server processes which are accessed through the communication mechanism. A copy of 

the kernel, which implements the basic objects (processes, the IPC, links), resides on 

each processor. Although each kernel independently maintains its own resources, all 

kernels cooperate in providing a location independent and reliable IPC. 

DEMOS/MP processes consists of: 

Switchboard, which is the server that distributes links by name; 

Process manager, which handles high level scheduling decisions for processes. It 

allocates, keeps track of resource utilization and monitors processes' state 

through messages to concerned kernels. For instance, it may decide when and 

where to migrate a process; 

Memory scheduler, which offers similar functions to the process manager; 

File system (implemented with four processes); 

Command interpreter, which fonns DEMOS user interface. 

In DEMOS/MP, messages are sent using links to specify the receiver of the message. 

Links can be thought of as buffered, one way message. channels, but are essentially 

protected global process addresses accessed via a local name space. Links are created, 

duplicated, passed to other processes, or destroyed through kernel operations. Addresses 

in links are context independent; if a link is passed to a different process it still points to 

the same destination. A link may also point to the kernel which interacts with user 

processes in the same manner as ordinary processes. 
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The most important part of a link is its message process address. This is the field which 

specifies to which process messages sent over the link are delivered. It consists of a fixed 

part with a Wlique global process identifier, and a varying part which is the last known 

location of the process. 

Since DEMOS/MP guarantees message delivery, in moving a process it must be ensured 

that all pending and future messages arrive at process's new location. There are three 

cases to consider: 

Messages sent but not received before the process finished moving; 

Messages sent after migration using an old link; 

Messages sent to a new link. 

Messages in the first category are moved with process context to the new site. The third 

case is trivial. The middle case requires a follow up procedure. 

After a proces~ is moved a forwarding address is left at the source site. When a message 

is received at a "given site, if the receiver is a forwarding address, then the location 

address part of the incoming message is updated and the message is resubmitted to the 

system. The forwarding mechanism is a sufficient provision to ensure the proper and 

continuous operation of the IPC. However, performance considerations requires gradual 

restoration of correct link addresses. As link information is disseminated overall 

network, it is not feasible to try to update them all at once. Instead, as messages are 

received by the old site and forwarded, the old kernel can notify the originator's kernel of 

the address change and avoid subsequent rerouting process. The forwarding address is 

needed as long as old references still exist, or the migrated process is alive. Its removal 

can be an event based process or garbage collection activity. 

A number of DEMOS/MP design features have made the implementation of process 

migration possible. DEMOS/MP provides a complete encapsulation of a process. There 

is no uncontrolled sharing memory, all contact with the OS and other processes is made 

through the links. There is no process state hidden in various modules of the OS. The 

location transparency and context independence of links make it possible for both the 

moved process and processes commWlicating with it to be isolated from the change in 

venue. 
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LOCUS: Locus has been implemented on V AX machines connected through an Ethemet 

LAN, as a distributed operating system. Its main objectives were transparent access to 

network data, transparent remote execution, high reliability, and UNIX compatibility. 

Abstraction of physical boundaries, even across heterogeneous CPUs, was the another 

goal to be reached. In Locus, the main highlights are: 

Network wide tree structured naming hierarchy; 

High performance in accessing remote objects; 

Support of nested transaction; 

Partitioned operation of subnets and their dynamic merge; 

Replication for increased availability, performance, and fault tolerance; 

Process migration. 

Locus is a procedure based OS. Processes request system services by executing system 

calls, which trap to the kernel. The kernel runs as an extension to the process and can 

sleep on its behalf. Distributed nature of the system is hidden from higher levels. When 

the assistance of a foreign service is needed, the OS packages up a message and sends it 

to the relevant site. Typically the kernel then sleeps, waiting for response, much as it 

would after requesting a disk I/0 on behalf of a specific process. This flow of control is 

a case of remote procedure calls. 

Transparent support for remote process execution requires a facility to create a process 

on a remote machine, initialize it properly, support cross machine, interprocess functions 

with the same semantics as were available on a single machine, and reflect error 

conditions across machine boundaries. 

In Locus, as in UNIX, the name catalog also includes objects other than files; devices 

and IPC channels are the best known. An IPC model is often a controversial issue in a 

single machine OS, with many differing opinions for possible implementations. In a 

distributed environment, the need to support of error handling imposes a number of 

additional requirements that help make design decisions, potentially easing 

disagreements. In Locus, the initial IPC effort was further simplified by the desire to 

~rovide a network-wide IPC facility which is fully compatible with single machine 

functions that were already present in UNIX. Therefore, UNIX named pipes and signals 

are supported across the network. Their semantics in Locus are identical to those seen on 
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a single machine UNIX system, even when processes reside on different machines in 

Locus. 

Processes are typically created by the standard UNIX fork and exec calls. The decision 

about where the new process is to execute is specified by information associated with the 

calling process (set explicitly or implicitly). In both cases, a process body is allocated at 

the destination site, and common information (open file descriptors, parent's state 

information, etc.) are to be properly initialized. In the case of "fork", the process address 

space both code and data must be made a copy of the parents'. Ideally, if the code is 

reentrant and a copy already exists on the destination machine, it should be used. 

The major difficulty in initiating remote actions resides in the semantics of the objects 

which assume memory sharing. In Locus, a token mechanism, which marks which copy 

of a resource is valid, is used to address such issues. In the worst case, performance is 

limited by the speed at which the tokens and their associated resources can be flipped 

back and forth among processes on different machines. Such extreme behavior is 

exceedingly rare. Virtually all processes read and write substantial amounts of data per 

system call. As a result, most collections of UNIX processes designed to execute on a 

single machine run very well when distributed on Locus. 

V KERNEL: It is a distributed operating system 11l1Ulffig on SUN Workstations 

connected through an Ethemet LAN. It was designed to check the feasibility of building 

a distributed system with all network communication using the V message facility, even 

when most of the nodes have no local storage. Its philosophy was to provide a software 

backplane; that is, a relatively small OS kernel which can implement network 

transparent abstraction of address spaces, lightweight processes and the IPC. The rest of 

the system can then be built at the process level in a machine and network independent 

fashion. 

V is a message oriented kernel that provides uniform local and remote IPC. In the V 

kernel, handling shared state- shared memory can be implemented across multiple 

machines. It supports group communication (multicasting) as opposed to broadcasting. 

V kernel provides time, process, memory, communication, and device management 

services. Each of these functions is implemented by a separate kernel module and 

80 



replicated in each host. Each module is registered by the IPC and used with the same 

IPC interface as user processes. For example, a new process is created by sending a 

request to the kernel process server, and a new address space by sending a request to the 

kernel memory server. 

The kernel process server implements operations to create, destroy, query, modify and 

migrate processes. As opposed to conventional operating systems, the V kernel 

minimizes the process management mechanisms as follows: 

Process initiation is separated from address space creation and initiation; 

Process termination is simplified because there are few resources at kernel level 

to be claimed. Most resources are managed at process level. Moreover, the 

kernel makes no effort to inform servers when a process terminates. Each server 

checks periodically its clients, reclaiming the resource if the client no longer 

exists; 

Scheduling is simplified by the kernel providing only simple priority-based 

scheduling. A second level of scheduling is performed outside the kernel by 

scheduler processes; 

To avoid the full complexity of exception handling in the kernel, the process 

management module simply causes the exception-incurring process to send a 

message describing its problem to the exception handler server. The exception 

server then takes over, using the facilities of the kernel or other higher level 

servers to deal with the process (i.e., invoking an interactive debugger). 

Processes are organized into groups called teams. A team of processes share a common 

address space, and therefore must all run on the same processor. A process is identified 

by a 32-bit globally unique process identifier. The high order 16 bits serve as logical 

host identifier while the low order 16 bits are used as locally unique identifier. In 

Ethemet the top 8 bits in the logical host identifier are the physical network address of 

the workstation, making mapping of the process identifier to network address trivial. At 

· the next level, services can have symbolic names in addition to their pids. A service can 

register a symbolic name with its kernel so that clients can locate, through broadcast 

queries, the service by name. 

The kernel IPC facility was designed to provide fast transport level services. 

Communication between processes is provided in the form of short fixed length 

81 



messages, each with an associated reply message, plus a data transfer option to move 

larger amounts. The request/answer model provided a schema which can then be 

implemented according to the message model or procedure call semantics. 

The VMTP protocol [CheritonC 1986] supports datagrams, multicast, forwarding, 

streaming, security and priority. It is optimized for request-answer behavior. In 

particular, there is no explicit connection setup or tear down. The kernel is structured to 

minimize the cost of communication operations. Every process descriptor contains a 

template VMTP header, initialized at process creation. Using this header, the overhead 

of preparing a packet is reduced. In particular, there is no need to allocate a descriptor 

buffer for queuing. 

Process migration was retrofitted into V. The ability to extract context information, to 

freeze, and unfreeze processes was added to system primitives, later. Process migration 

suffered from the original definition of process id which included a physical reference. 

Th~ "logical host" subfield is then eliminated from the process id to facilitate the process 

migration. 

Since it was designed primarily for use in an interactive environment, V support for fault 

tolerance is minimal. The kernel detecting an error sends a specially formatted message 

to the exception server, which is outside the kernel. The exception server then invokes a 

debugger to take over. This schema does not require a process to make any advance 

preparation for being debugged and in principle, can allow the process to continue 

execution afterwards. 

All these past experiences of currently implemented distributed operating systems have 

been taken into consideration carefully in the design of the RT-DOS kernel architecture. 

In the following chapter {Chapter 4), the RT-DOS kernel architecture is presented with 

the influences of the aforementioned kernels on its design. 
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4. THE RT-DOS KERNEL ARCHITECTURE 

In Chapters 2 and 3, an overall view of real-time distributed operating systems' 

architectures and their basic concepts, have been presented in general. In this chapter, 

the design considerations of the RT-DOS Kernel, its basic data and control structures, as 

well as logical and physical models used for the implementation, are discussed. 

4.1 Design Considerations of The RT-DOS Kernel 

The RT-DOS Kernel, replicated at each node as a collection of self-contained 

mechanisms, provides the minimum services, including process management, memory 

management, interprocess communication (IPC), global time management, short-term 

scheduling, and process migration, to the upper layers. 

The RT -DOS Kernel was planned to be a fully distributed, message based system. It 

was designed to provide a dynamically reconfigurable work platform: 

To adapt to dynamic changes in workloads (in the prospect to meet prescribed 

execution deadlines); 

To allow system maintainability, and dynamic upgrading; 

To increase system reliability and availability (fault tolerance and graceful 

degradation are supported through redundancy of interchangeable resources and 

software-based mechanisms such as process migration or replication). 

The RT-DOS modules and services are designed to be scattered throughout processing 

components. Their location and number is intended to be dynamic and transparent to 

users. The RT-DOS Kernel hides the existence of multiple processing units and network 

interconnection from the process level, and provides a unique system abstraction. 

Design of a real-time distributed computer system, based on a network of Transputers, 

raises the following sequence of questions: 

How can real-time applications be defined, configured to run on loosely-coupled 

processing units, and how can their performance be accurately predicted ? 

What should be the basic constituents of the distributed system supporting real

time applications ? 

What should be the topology of the underlying network of Transputers ? 
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The first question relates to the definition and implementation of real-time applications, 

and this issue has been elaborated in Chapter 2. The second and third questions concern 

respectively the logical and physical models of the RT-DOS Kernel, which are among 

the subjects of this chapter. 

The preliminary study of the kernel has clearly shown .that its functions can and should 

be separated into two sublayers based on the desirable separation between mechanisms 

and policies which is introduced in Chapter 2. A first sublayer implements necessary 

mechanisms constituting a micro kernel, and basic services built on top of it. In the 

design of the kernel, the first mechanism-oriented sublayer is seen as "domain

independent" in the sense that it implements mechanisms common to various types of 

operating systems. This first sublayer is presented in the paper [TayliD 1990]. The 

second sublayer is considered as "domain specific" and as such, implements intrinsic 

features of the target systems. In the RT-DOS Kernel project, this sublayer implements 

real-time features of the system, such as predictability, flexibility (dynamic 

reconfiguration), dynamic load balancing, and fault-tolerance. This approach enforces 

the view that the main difference between various categories of operating systems resides 

much more in the policy-making parts (particularly in the resource scheduling) than in 

the mechanisms necessary to implement these policies. The separation between policies 

and mechanisms is known to be important in integrating dynamic aspects of modem real

time systems [TatliB 1990, StankovicE 1988). 

The IPC mechanism which is the subject of this thesis, is a vital part of the micro kernel 

(first sublayer), and provides a message based communication service for the rest of the 

kernel components, including the second sublayer. The rest of the chapter is devoted to 

the concepts that helps to distinguish between these kernel layers, putting emphasis on 

the mechanisms. 

4.2 Granularity of Process Objects 

Design of the process model starts with the investigation of the granularity of processes, 

naming schema, concurrency control/coordination model, and process context. The 

definition of the RT-DOS process model is based on the answers to these questions. 
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Executing entities on operating systems are conventionally modeled with two 

complementary objects : Processes (Tasks) and Lightweight Processes. The tenn 

process is used in this thesis in its usual meaning to define an operating system entity 

that has its own state, address space and context, while task will refer to the basic 

constituents modeling concurrent and/or sequential activities of real-time applications. 

Lightweight process denotes those entities that do not carry the weight of a separate 

address space, and context. That is, there can be multiple lightweight processes per 

address space, sharing the same context. The tenn thread is also used interchangeably 

with lightweight process. 

The need for lightweight processes, to build parallel execution paths besides the 

processes, is rather an optimization issue: Their usage can be justified In a number of 

ways: 

a) Most of the programming languages which offer parallel constructions suffer 

from the high overhead incurred by process creation/destruction mechanisms. In 

fact, conventional implementations use the process object to materialize both 

independent computation units (i.e., jobs of two different users) and closely 

related actions (i.e., two instructions to be nm in parallel in a given program -

like OCCAM PAR construct [Geraint 1987, Fountain 1987]). While the cost of 

creating a heavy structure including address space, resource allocation, 

accounting information may be justified in the first case, the second suffers from 

imnecessary investment of duplicating system information. As a result, many 

parallel constructs in programming languages become ineffective, hence obsolete 

due to the inappropriate granularity of the process object; 

b) Given the need for extra provisions in protection and process management 

mechanisms, not all operating systems offer multitasking facilities. Nevertheless, 

they had to provide substitute services to support some level of concurrency. 

The common approach is the implementation of a dual system interface. System 

calls, which require the suspension of process execution for some time, are 

presented in two versions: 

synchronous (blocking) calls; and 

asynchronous (non-blocking) calls. 

Users which are keen to proceed with a parallel activity, while a blocking action 

is expected, invoke an asynchronous version of system calls. They check later on 

85 



the outcome of the requested service using other primitives. Although this dual 

interface approach solves somehow the concurrency needs, it results in a number 

of major drawbacks. First, the system needs to present additional interfaces 

increasing its size and decreasing its intelligibility. Further, the consistency of 

requested system actions is left to the control of the application, since the 

operating system can't check their logic. Finally, given both facts, the reliability 

of applications built with dual systems interfaces is rather diminished. 

The addition of lightweight processes (threads) to the process model provides an 

adequate solution for the above problems. If the cost of starting a new thread of 

execution is negligible, blocking actions can be initiated as parallel flows, while the 

execution may proceed following concurrent threads. Further, all system services can be 

provided as synchronous requests. Tills reduces the overall investment, number and 

complexity of system calls, and increases system performance and reliability. 

The RT-DOS process model supports both the process and lightweight process (thread) 

objects. Processes form conventional building blocks of the operating system to which 

system resources are assigned. Applications defined as a network of tasks (or task force) 

are represented in the operating system by an equivalent network of processes, which in 

turn is mapped on a network of processors based on time and resource constraints. 

Threads represent in the RT-DOS, parallel execution units within processes. Their 

existence is revealed to the operating system only by the process scheduling queues. 

They use and share resources allocated to the encapsulating process and acquire new 

resources on behalf of it. Unlike processes, threads can access common memory areas, 

consistency of shared objects being guaranteed by programming constructs. Like 

processes, threads communicate with each other through the low cost RT-DOS 

interprocess communication (IPC) mechanisms. 

4.3 Process Naming Schema 

Naming is a problem of mapping between domains [Watson 1988]. Mapping may 

involve many levels. For example, to use some service a process might first have to map 

the service name (generic name) onto the name of a server process which may not be 

unique. As a second step, the reference of the server is to be mapped onto a specific 

processor. 
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Process identifiers follow the same semantics as other system objects such as files, 

directories, communication ports, I/0 devices etc. Therefore, similar policies can be 

applied for their generation with their pros and cons. For example, V Kernel uses a 

global (flat) naming space for identifying processes, while LOCUS applies a network 

wide tree structured hierarchy. Unique names may include location dependent references 

[CheritonA 1988], as opposed to location independent naming [CheritonA 1988]. 

Another variant is to use a level of indirection through local references as used in 

DEMOS/MP and ACCENT for communication entities. 

A global naming policy is a basic requirement of distributed systems. However, the 

location transparency is a debatable issue. The use of an explicit host field in a process 

identifier allows distributed generation of unique process identifiers, and an efficient 

mapping from process id to network address. In particular, it is very efficient to 

determine whether a process name renders the process migration impossible. 

The architecture of the RT-DOS and the granularity of its components suggest the 

adoption of a global and flat process name space. 1his issue, closely related to the 

naming of communication elements, should be handled along with the IPC naming 

schema. 

4.4 Concurrency Control, Coordination, and Monitoring 

Processors in loosely coupled distributed systems do not share primary memory, and so 

synchronization via shared memory techniques such as semaphores and monitors is not 

generally applicable. Moreover, memory sharing is considered as an artificial technique 

in loosely coupled systems if ever implemented. Despite its attraction in optimizing the 

performance of local access mechanisms, shared objects reduce system modularity, 

disseminate process dependent information through the system, increase the cost of 

process management (monitoring, migration, etc.). 

Message-based primitives constitute a natural coordination and communication model 

for fully distributed systems. They help to encapsulate the information and reduce the 

location dependency. However, the overhead of message-based primitives is generally 
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high, especially when addressing local objects. Therefore, extreme care must be taken to 

enhance the cost/generality ratio. 

A closely related issue is process monitoring. An operating system element (scheduler, 

debugger, etc.) or a user task may wish to control the computation of a given process. A 

versatile operating system kernel has to make provision for such a service. The majority 

of the systems use a static parent-child process connection to implement this mechanism. 

DEMOS/MP adopted an elegant solution in which messages forwarded to the system 

kernel are tagged with a special indicator which is intercepted by the kernel of the system 

on which the process executes. 

The RT-DOS is a message-based system, so that concurrency coirtrol and process 

coordination mechanisms are expected to be implemented with the IPC mechanisms. 

4.5 Process Migration versus Replication for Fault Tolerance and Load 

Balancing 

Both process migration and replication of services (and/or data) are used to increase 

availability of services, to improve fault tolerance, to better utilization of specific 

services, and finally to provide dynamic/static load balancing. 

Process migration is the relocation of a process, by transferring a sufficient amount of its 

context, from the processor on which it is executing to another processor. Process 

migration is normally an involuntary operation that may be initiated without the 

knowledge of the running process or any processes interacting with it. Ideally, all 

processes continue execution with no apparent changes in their computation or 

communication. 

Process migration has been proposed as a versatile solution in a number of basic 

mechanisms which implement the adaptability, transparency, fault-tolerance, increased 

performance in distributed systems. 

The overall performance of a distributed system can be increased by distributing the load 

among available components of the system. However, even a carefully planned system is 

subject to unpredictable internal or external events which may result in a bottleneck and 
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be subject to ovemeads. Besides this global optimization, often a small subset of the 

processes numing on a distributed system account for much of the load. Some effort 

spent off-loading such processes may yield a big gain in performance [Leland 1986]. 

Such resource load balancing is impossible to achieve with static assignment of 

processes to processors. If it is possible to monitor the evolution of the processing in a 

system and adapt the distribution of resources to changing needs, a system has better 

chance to increase its throughput and meet its scheduled deadlines, despite the load 

incurred by these extra activities [Livny 1982, Eager 1986]. 

In a distributed system, communication costs are often accountable for the degradation 

of the overall performance. There are instances where moving a process nearby a 

frequently used server (a database or file server to a nearby server with the same 

functionality), or just clustering communicating processes closely may yield substantial 

gains [Lo 1989]. Process migration can also be useful in taking advantage of some 

special purpose hardware device, needed during a given slot in the lifetime of a process. 

For such reasons as shut down for maintenance, reconfiguration, upgrading etc., a 

processor or subsystem has to be off-loaded and the entire execution context transferred 

elsewhere to ensure the graceful degradation of the system. If the information necessary 

to transfer a process is saved in a stable storage, it may be possible to transfer a process 

from a crashed site to a working one (fault recovery). 

The design of process migration requires answers to the following questions: 

What is the minimal context to be transferred ? 

How can process state be encapsulated ? 

How can process communication links be moved ? 

How can a hanging communication be discovered ? 

How long does communication continue in a migrating process ? 

Where and how to dissociate migration policies from mechanisms ? 

What is the impact of the process migration on the predictability of real-time 

applications ? 

The process migration can be simplified if it is assumed that: 

Kernel capabilities should be compatible throughout the system (all kernels 

providing similar services); 
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Process state should be well encapsulated (kept within process context as much 

as possible); 

Processes should interact with each other through regular interfaces, i.e., 

messages (no uncontrolled access to system resources and other process' 

environment); 

Objects in processes should be referred to with location independent identifiers 

(process itself, ports etc.). 

Replication of system services or shared data at different nodes of the network increases 

the availability of these resources to user processes, while decreasing the communication 

traffic and providing better concurrency by reducing exclusive access to resources. On 

the other hand, keeping replicated copies of shared data up-to-date is costly, and might 

increase the network traffic because of update synchronization procedures. 

A replication mechanism can be used basically to increase the availability of resources, 

while process migration is used for dynamic load balancing. Both mechanisms can be 

used to increase fault tolerance, though process migration provides more graceful 

degradation in case of failures. 

The RT-DOS Kernel is designed to provide the upper levels with the basic mechanisms 

on which fault-tolerant applications can be built. hnplementation of both process 

migration and replication techniques are either directly related to the 1PC mechanism or 

severely affect the design of it. In fact, the 1PC mechanism of the RT-DOS Kernel has 

been designed with these considerations are in mind. The multi casting feature of the 1PC 

mechanism supports data and process replication, while keeping minimum state 

information about the communication entities (links, addresses, processes) should 

eliminate problems during migration of processes between nodes dynamically. These 

issues are discussed in the next chapter (Chapter 5) in more detail. 

4.6 Resource Management (Process Allocation and Dynamic 

Reconfiguration) 

Resource management is the concern of policy making components of an operating 

system. Hence, the topic is beyond the scope of this thesis. However, some view is still 

necessary given the close relationship of this issue with those already introduced. 
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The main problem with managing resources in distributed systems is the lack of accurate 

global state infonnation. Management decisions are taken in uncertainty, feedback 

information is delayed, and often obsolete. However, as the target of the RT-DOS is 

real-time applications and the system is implemented on loosely coupled low-granularity 

modules (Transputers) the only critical resource seems to be the processing unit (along 

with the communication bandwidth of the serial links). Resource management is related 

to application configuration (static allocation of processors), monitoring of resource 

utilization, and dynamic reconfiguration of the system. 

Processor Allocation : The processor allocation problem can be summarized as the 

inapping of a network of processes on a network of processors. A conurton approach is 

the hierarchical structuring of processing units. For each group of worker processors, a 

manager is assigned to monitor the evolution of the processing. A similar schema can be 

applied to other concurrent applications. Managers can also be organized hierarchically. 

They report to a higher level authority. This hierarchy can be extended with as many 

layers as needed. However, worker-manager-president-etc., relationship is rather 

unreliable structure. If the hierarchy is broken at the top level, the system stops 

functioning. To avoid having a single, thus vulnerable decision maker at the top of the 

tree, one can decide to substitute this level with a ruling committee. The hierarchical 

allocation schema, with all its variants, does not confonn fully to the idea of distribution. 

More suitable organizations can be fonned by assigning horizontal responsibilities, i.e., 

managers communicating with each other to coordinate their activities, in addition to 

their local duties. 

Dynamic Reconfiguration : Application configuration correspond to the initial mapping 

of the processes onto the processing units. The configuration process is expected to 

secure enough resources for proper execution of the application. Yet, the dynamics of 

the execution may cause unpredictable delays in communications and change resource 

requirements of the applications. Pennanent monitoring is then a necessity with the 

prospect of dynamic reorganization in resource assignments. Increasing parallelism, 

minimizing interprocess communication costs and balancing the load are among the 

criteria leading to dynamic reconfiguration. Real-time applications often run well 

specified and carefully tuned configurations. Dynamic behavior of the application is 

expected not to exceed prescribed limits. Nevertheless, any system is still prone to 
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unpredictable errors, and is expected to react to such changes (with a revised global 

resource allocation). The RT-DOS Kernel has been designed to have necessary 

provisions to support dynamic reconfiguration. 

4.7 Logical Model of The RT-DOS Kernel 

Among various models suggested for building a distributed system, the Processor Pool 

model [Wulf 1981] seems to be a natural choice for Transputer-based systems. The 

relatively low granularity of Transputer units, their connectivity, and high performance 

interprocessor communication facilities are among major arguments favoring this model. 

The Processor Model, also referred as Processor Farm [Helios 1989], asswnes that 

whenever a service needs some computing power, one or more processing units are 

temporarily assigned to that service, then claimed back when the computation ends. The 

model supports strongly the idea of dynamic reconfiguration much demanded by 

adaptive systems. 

Basic elements of the RT-DOS architecture (Figure 4.7 (1)) are those found in systems 

applying the Processor Pool model, i.e., Cambridge Distributed Computing System 

[Needham 1982], and AMOEBA [TanenbaumC 1981]. They consist of: 

Terminal Pool; 

Service Pool; 

Processor Pool; and 

Gateway(s). 

Terminals may be plain VDUs attached to the system through special Transputer boards 

equipped with serial ports (RS232), or intelligent workstations (mono or 

multiprogrammed) equipped with Transputer link interfaces (for example, IMS B004 

Development System). 

The RT-DOS services (Figure 4.7 (2)) are distributed on various processing elements. 

Their location and number are dynamic and transparent to the RT-DOS users. Services 

are provided by: 

Terminal Servers, running user command interface(s); 

File Servers; 

Printer Servers; 
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Name Servers; 

Time Servers; 

Processors Pool Servers; 

Resource Manager( s ); 

Network Configurer; and 

Switchboard (please refer to the physical model of the RT-DOS). 

These initial services can be dynamically replicated and new services can be created by 

allocating additional processors from the pool as needed. The processor pool consists of 

16/32 bit Transputers, optionally equipped with a floating point arithmetic unit. The 

pool is controlled by the Pool Manager running as an independent server. 

The RT-DOS logical model envisions the implementation of real-time applications as 

separate clusters of processors. A given application claims the required number and type 

of processors from the pool, and forms an independent execution domain (please refer to 

Figure 4.7(2)). An Application Manager, running on a separate Transputer, is in charge 

of monitoring the domain and interfacing it with the service pool. The RT-DOS has a 

priori no limitation on the number of application domains. Their number can only be 

confined by global resource constraints, and other physical considerations. Moreover, a 

given application may consist of multiple domains, isolating for instance time-critical 

processes from non-critical and background tasks. 

Gateways a~e optional extensions, connecting the remote RT-DOS sites which are 

beyond the reach of Transputer links (in excess of a few meters). They may consist of 

specialized Transputer boards, i.e., Ethemet interfaces, or intelligent workstations 

carrying out the message switching. 

All processing elements in the RT-DOS will run the same kernel which will provide 

process, memory, time, interprocess communication, short-term scheduling, and 

statistical data exchange services. Each of these functions will be implemented by a 

separate kernel module. Kernels, replicated on each site, will cooperate to provide a 

network transparent single system abstraction. 
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4.8 Physical Model of The RT-DOS Kernel 

The topology of the network, supporting the logical model defined in the previous section 

(Section 4. 7), is a critical design issue. Transputers can be interconnected to form 

various structures ranging from pipeline, loop, array (20, 30, .. ) to the hyper cube. 

These structures vary in three important respects: 

Ability to be configured; 

Ability to be extended; and 

Performance of interprocess communication. 

All of the above configurations are theoretically realizable on Transputer-based systems. 

Yet, the architectural restrictions of Transputer impose an upper physical limit on the 

number of connections at a given node as Transputers have a maximum of four physical 

links. Nevertheless, the topology of the RT-DOS network has to be designed considering 

firstly the high performance communication criteria, and then, extendibility and 

reconfiguration issues. 

In a distributed system, flow of information among processes consists of control 

messages and data exchange. In general, control flow corresponds to short messages of 

broadcast/multi cast type, whereas data flow requires lengthy transfers of point to point 

type. The RT-DOS topology takes into account the difference between these two 

category of messages. Control messages and commands are conveyed over permanent 

connections organized in rings, while processes exchange data via point to point 

connections established on request (please refer to Figure 4.8 {1)). 

The physical model of the RT-DOS is based on several connected loops. The service 

loop forms the backbone of the RT-DOS architecture. Transputers, running operating 

system servers, are connected point to point via two of their four serial links. Application 

domains are organized as independent loops, connected to the service loop through the 

Application Managers. This multi-loop organization limits the number of messages in 

transit in a given domain and confines the length of communication paths. Control 

messages related to one domain, such as statistical and monitoring requests issued by the 

Application Manager, circulate within the domain with no effect on other parts. 
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Broadcast messages, issued for example by the Name or Time Servers, travel shorter 

paths to reach individual Transputers in respective loops, as it will be shown in the 

following sections. 

Remaining Transputer links (two) are used in data transfers. The Network Configurer 

and the Switchboard services establish point to point commw"lications on request, using 

programmable link switches. Thus, data from/to a file server for instance can be 

transferred to the concerned w"lit without disturbing other processing modules in the 

system. The model also foresees the allocation of pennanent data paths, to carry time

critical or heavy data traffic. 

The multiple loop architecture of the RT-DOS also contributes to the fault containment. 

Separate address spaces (confined in each Transputer memory), and private application 

domains enforce the protection and isolate to some extent the propagation of faults. 

4.9 The RT-DOS Kernel Implementation Model 

The RT-DOS Kernel is implemented using the server model as in the V Kernel 

[CheritonB 1983, CheritonA 1988]. Implementing kernel functions using a server model, 

replicating them in each kernel, and accessing them through the standard IPC interface 

has several advantages. These are: 

Implementation of each module is simplified, because each instance of the server 

module manages only local objects; 

A client can access the kernel servers the same way as other servers; 

The use of the IPC interface minimizes the additional kernel mechanisms for 

accessing remote kernel servers; 

The use of the IPC primitives to access these servers avoids adding some extra 

kernel traps beyond that required by the IPC interface. Besides avoiding a 

proliferation of system calls, this design simplifies the job of imposing and 

verifying the integrity and security requirements for the kernel; 

1bis design separates the IPC from other kernel services so that the IPC 

mechanism can be tuned independently of other less performance-critical 

services; 
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The invocation mechanism is general in that additional kernel server modules 

can be added, as might be required in high performance real-time control 

systems. 

The implementation model of the RT-DOS Interprocess Communication (IPC) 

mechanism is chosen to be a message-based system following the semantics of remote 

procedure calls (RPC). The IPC issue, as being the main subject of the thesis, is 

elaborated in the next chapter (Chapter 5), in detail. 
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5 DESIGN AND IMPLEMENTATION OF AN IPC MECHANISM 

FOR l'HE Rl'-DOS KERNEL 

Interprocess Communication (IPC) is potentially the dominant component of 

performance in multiprocessor computer architectures. lbis has been responsible for 

developments in routing algorithms, interconnection teclmiques, and networking 

hardware equipment [Gaughan 1993]. High-bandwidth communication channels, such as 

optical fibers, offer Gbps transmission rates· even between distant nodes located 

kilometers apart [Vetter 1993]. 

Design of an Jnterprocess Communication (IPC) model requires answers to the following 

questions: 

What is the communication entity (Port, Channel/Link, Mail box) ? 

What should be the naming scope of communication entities ? 

How IPC naming schema should be related to general naming policy ? 

Should the IPC primitives be buffered or unbuffered, and where should be the 

place of buffering ? 

Should the IPC enforce error and flow control ? 

Should the IPC primitives be synchronous or asynchronous ? 

How are connections established between a process and the operating system, 

and between application processes ? 

Should the IPC be implemented following client/server or remote procedure call 

(RPC) model ? 

Should the IPC include provisions to support fault-tolerance f(lechanisms, i.e., 

process replication or migration ? 

What is the relevance of transmission type (broadcasting, multicasting, etc.) 

with respect to real-time applications ? 

Should messages be of fixed or varying length ? 

Should messages be typed (differentiating commands and data) ? 

Will data be typed in messages ? 

Will broadcasting and multi casting be supported or not ? 

First we examine the question of the appropriateness of remote procedure call or client

server architectures, and then elaborate on the other issues in the following sections. It is 

to be noted here that the message-based communication can be implemented either 

following the semantics of remote procedure calls (RPC), or applying client/server 
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model. It is also very well !mown that asynchronous primitives impose buffering, and 

client-server systems are built mostly using asynchronous communication protocols. 

In client-server models the request is queued for processing should the addressed server 

process be busy when the request is received. This model appears to be preferable when 

serialization of request handling is required. 

The remote procedure call model is similar to procedure calls in programming 

languages. Each request can be visualized as the transfer of flow of control from the 

caller to the invoked procedure. The idea is to make the semantics of interprocess 

communication closer to well understood procedure calls. The procedure invocation is 

preferred when there are significant performance benefits to concurrent request handling. 

However, the RPC is a semantic extension of message-based communication model. It 

can be implemented on a system applying client/server communication model. 

In the following chapters, design and implementation of a predictable IPC mechanism 

will be presented. 

5.1 Design Considerations of the RT-DOS IPC Mechanism 

The backbone of any Distributed Operating System is its message passing facility 

referred to as IPC (lnterprocess Communication). For non real-time distributed 

operating systems, the IPC facility is assumed to support the correct and eventual 

delivery of messages to given destinations with no consideration of deadlines. For real

time distributed operating systems, not only correctness but also timeliness of message 

delivery are the key design issue for an IPC facility [StankovicB 1989, HideyukiB 

1987]. It is generally recognized that, in real-time environments, it is preferable not to 

deliver a message at all than to deliver it late. Timeliness of message delivery can be 

defined as the correct delivery of messages to application processes within application 

dependent prespecified delays. For static real-time applications with stable task 

populations, simulation and exhaustive testing are traditionally used to measure the 

timeliness of message delivery (and task scheduling as well); changes are made where 

needed to meet application deadlines. If predictability of message passing is defined as 

the possibility of detennining, with certainty, the arrival time of a message after it is 
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sent, then it becomes quite clear that what is needed in dynamic environments is a 

predictable message passing facility. 

The thesis work is based on an investigation of the feasibility of providing a predictable 

message passing facility for a network of Transputers with a predefined topology on 

which a predictable distributed real-time operating system (RT-DOS) kernel can be 

built. The targeted IPC mechanisms were sought to support predictability, fault 

tolerance, location independence, and yet high communication bandwidth. A micro 

kernel replicated on each node of the Transputer network will include the IPC 

mechanism as its message passing service between all upper processes. Anything else, 

except the micro kernel will be considered as a user process, including upper layer 

operating system policy services. Application domains and the system domain will be 

isolated from each other to eliminate communication bottlenecks, through domain loops. 

Between application domains and/or operating system services, communication will be 

carried out through permanent links, unreliable datagram services and temporary 

communication link channels established dynamically on demand between 

communication entities on top of the datagram service. 

Dynamic short-lived stateless circuits established on need between a dynamically 

changing task population, will support building of dynamic systems, provide fault 

tolerance, and flexibility in link allocation. Mapping of logical circuits to physical 

Transputer links will be managed by a centralized switchboard system. Logical circuits 

will be established between processes to provide high bandwidth, while the datagram 

service will be used for exchange of control messages between kernels and to support 

group communication (such as broadcasting and multicasting) between communication 

entities. 

Finally, the IPC mechanism provides unblocked and blocked RPC calls to support non

predictable communications. All reliability issues are assumed to be handled at process 

level, by end-to-end control protocols, and are implemented according to the need of each 

process type. Long term message buffers are not maintained to keep the kernel in a 

minimum size. To increase reliability and adaptability, and to reduce the reconfiguration 

and error recovery costs, no communication state information about connections or links 

is maintained long term. The address of none of the communication entities is made 

known to any of the processes to provide location transparency and topology 
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independence. Only a name server has a publicly known name (but not address), and all 

other communication entities and processes locate each other through the name server 

which finds locations using a message broadcasting protocol based on an unreliable 

datagram service. 

It is assumed that the congestion problem, system wide global timing service, and other 

system housekeeping and statistics services are handled by the upper kernel policy layers 

implemented as user processes. The IPC mechanism provides these upper layers with 

message transport service only, regardless of the end-to-end protocols which are used by 

them. 

5.2 Elaboration of the Existing IPC Design Approaches 

Though most of the existing approaches of DOS kernels to the IPC design, such as V 

(VMTP) [CheritonC 1986], Helios [Helios 1989, Grimsdale 1989], Accent [RashidA 

1981], Alpha [Nortcutt 1987], ARTS [HideyukiB 1987], StarOs [Jones 1979], Mach 

[Accetta 1986], Medusa [Ousterhout 1980, Ousterhout 1980], HYDRAIC [Wulf 1981, 

HYDRA/OS 1975], iMAX [Khan 1981], Wisdom [Murray 1988], and Charlotte 

[ArtsyA 1987], have been studied in detail, the three most relevant (VMTP, Helios, and 

Wisdom) are summarized below to give an idea about the feasibility and/or drawbacks 

of different IPC design approaches. 

fMTP is a transport-level protocol designed to support remote procedure call (RPC), 

real-time datagrams and multicast communication, for the V kernel. The VMI'P is 

basically a request-response protocol. A VMI'P session, a message transaction, is 

initiated by a client sending a request message to a server entity and terminated by the 

sending back a response message. The response acknowledges to the client receipt of the 

request message. The next request from the client, explicit acknowledgment or time-out 

acknowledges to the server receipt of the response by the client. A client can only have 

one message transaction outstanding at one time although a host may implement multiple 

VMI'P clients. Request and response may consist of multiple packets. 

A VMI'P message transaction takes place between-visible entities, client entities and 

server entities. An entity may be a process, port or procedure invocation. Each entity is 

addressed by a 64-bit entity identifier. A group of entities (a group of file servers) can be 
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identified by a single entity identifier even if they are distributed across several 

machines. 

VMTP provides facilities for the higher level modules to implement conversations 

directly. The two key aspects to VMTP conversation support are : stable addressing and 

message transactions. A stable address is one that retains the same meaning or binding 

as long as it remains valid. A message transaction is a request-response pair with 

reliable delivery on both the request and the response message. VMTP is defined in terms 

of a datagram delivery model of a network or inter-network. Conversation support in 

VMTP is preferred over directly implementing connections, as in TCP, for several 

reasons: 

Minimal redundancy; 

Minimal server state; 

Minimal client state; 

Flexible higher-level conversation. 

VMTP assumes an underlying delivery service that provides end-to-end (best-effort) 

datagram delivery, such as provided by IP and raw Ethernet. It is also designed to take 

advantage of datagram multi cast facilities such as available on the Ethemet. The packet 

layout is logically structured as 4 portions: 

Entity and transaction identification - including authentication identifier, 

domain, source, destination, forwarder and transaction identifier; 

Packet group control - including checksum, control flags, segment offset, 

function code and delivery mask; 

User message control block- system flags, user data and segment size; 

Segment data - a maximum of 16 kilobytes of segment data, possibly further 

limited by the maximum packet size. 

The basic VMTP header (without data segment) is 76 bytes. Including segment data, .a 

VMTP message can be as large as 76 bytes plus 16 kilobytes for segment data. However, 

the actual transmission size includes the IP header, network header plus the 76-byte 

header replicated in each packet. VMTP is currently being reviewed as a candidate for 

the Internet request-response protocol by the Internet End-to-end Task Force. 
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Heliosis a multiprocessor, multi-user distributed operating system. It efficiently controls 

the resources of multiprocessor architectures and provides an advanced interface to 

multiple users of such architectures [Grimsdale 1989]. The system model which Helios 

sanctions lies somewhere between the workstation and processor pool model of 

Tanenbaum. Networks may be composed of loosely COJmected Transputer workstations, 

which may contain one or more Transputers. Although the principles are applicable to 

any distributed memory architecture, the Helios implementation is the first example 

optimized for the Transputer. It provides a dynamic processor allocation strategy. It 

consists of a small message (fixed length) passing nucleus located on every processor, 

onto which are added other high-level system services. It provides a robust, but 

essentially simple, basic transport layer on top of which can be built more complicated 

protocols and applications. 

The Helios kernel consists of a number of separate parallel processes and supporting 

system procedures. There are four link guardians, one allocated to each Transputer link. 

The link guardian is responsible for processing incoming messages. It first reads the 

message header and then, depending on the destination port, it delivers the control and 

data vectors to the relevant destination, which may be a destination within the current 

processor or a physical link, in which case the message is transferred to a neighbor. The 

kernel also contains procedures for memory allocation, semaphore handling and event 

handling. 

The Helios has system libraries (both resident and shareable) which provide a general 

interface to the operating system with the following system calls: 

Open Opens a stream to a named object; 

Locate Locates a named object and generates an object structure for subsequent 

management of that object; 

Create Creates an object of a given type; 

Link Establishes a link to a named object (symbolic link); 

Delete Deletes an object; 

&ad Reads data from a stream into a buffer; 

Write Writes data from a buffer onto a stream; 

Seek Moves the file pointer. 
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Helios has a minimum of four I/0 controllers OOC) in each processor nucleus which act 

as I/0 agents for tasks in remote processors and manage in-coming search requests on 

the four links. Each nucleus contains a hierarchical name table which is used to map 

ASCII network names onto port descriptors, thereby making it possible to access the 

local port table. Every item in a Helios network, whether it be a processor, a file system, 

a disc partition, a file, a task or an application program, uses the message passing 

facilities of the nucleus and are ultimately managed by software components of the 

nucleus. The message passing system (a simple send-receive protocol) provides 

unreliable, asynchronous, blocking (explained below), point-to-point communication. 

No automatic retransmission of messages is attempted by the system if a message is lost; 

the protocol must therefore be assumed to be unreliable. Because the message may pass 

through several intermediary processors, and because there is no end-to-end 

acknowledgment, the two communicating processes· may not necessarily synchronize 

during the message transaction. Communication within Helios is essentially 

asynchronous: if the sending process makes a send request, it is blocked on a Transputer 

channel until a remote process is ready to receive on this channel; if the chalmel is a 

Transputer link, the sender will block until the kernel on a neighboring processor is 

ready to receive the message; and if the channel is local, the sender will block until the 

client is ready to receive the message. Processes are similarly blocked on receive. The 

sending process does not necessarily block until the receiver has received the message, 

but merely until the message has begun its journey to the receiver. Helios does not 

support a broadcast mode; every message must be provided with a single destination, so 

that all communication is point to point. 

Helios kernel message passing primitives are called PutMsg and GetMsg. All messages 

consist of a fixed-size header, followed by an optional variable-size control vector and 

data vector. The control vector is used to transfer control information, e.g. file pointers, 

file size and object status; the data vector contains all the message data. Ports are 

allocated dynamically to user processes as required, and are maintained in a port table, 

which expands and contracts dynamically as ports are allocated and released. Each 

kernel manages its own local port table, and this table contains entries for objects within 

the processor or within one of its immediate neighbors. The port table is essentially a 

local routing table, which together with every other kernel port table forms part of a 

large dynamic, distributed routing table. Each message header contains information 

regarding the message destination, the size of control and data vectors, and the message 
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function. As a port supports only unidirectional communication, when a bi-directional 

stream is to be established each surrogate port on the transmit path must be mirrored by 

a reply port. 

Two significant features of the Helios kernel IPC design include the omission of a 

reliable data link layer, and the provision for variable-size packets at the physical layer. 

In a Helios network the processing units are further subdivided into a number of 

subnetworks in a hierarchical manner, and wherever possible closely connected 

processors are located in the same subnetwork Requests for objects which lie outside the 

local processor result in a distributed search that extends into the network. This search is 

implemented using a flood search teclmique, whereby individual search requests are 

issued from all four Transputer links to the link IOCs on neighboring processors. 

Searches which reach the edge of the network without finding the relevant object are 

terminated and a failure acknowledge is returned. The facility exists for any program to 

register itself as a system service. This is supported by a well defined general server 

protocol based on the concepts of the client server model. Servers are designed to be 

stateless, with all unrecoverable states maintained by client processes. The capability 

mechanism is used by all system servers to authenticate incoming requests and to ensure 

that a client can not exceed its original rights of access. 

Because of the space limitations reserved for discussions of the existing IPC design 

approaches, the Wisdom [Murray 1988] is explained as the last example. Jt is a 

distributed operating system proposal for a network of Transputers implemented in a 

proposed version of OCCAM language. In Wisdom, a module is a collection, or cluster, 

of small, lightweight processes that cooperate to provide the services attributed to the 

module. The processes that make up a module are OCCAM processes, and the module is 

a single OCCAM program. When reference is made to interprocess communication, 

what is meant is inter-module communication, and not, communication between 

OCCAM processes via channels. 

In Wisdom the software that comes closest to being the kernel is the combination of the 

three modules: routing, naming, and load balancing. Of these three the router is the only 

vital component, the rest could fail or be removed and the computer could still function. 

This is a logical extension of the trend to remove from the kernel non-vital services. 
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The OCCAM channel is the base of the Wisdom's IPC, but as communication between 

modules may involve communication between many OCCAM processes, the end to end 

communication is not necessarily blocking. No replies are inherent, nor is delivery 

guaranteed: if these are required it is expected that these will be built on top of the 

system provided. From this base any other form is built by adding modules before and 

after the message enters the IPC support (the routing module). The three modules 

(Router, Naming, Load Balancing) of which the Wisdom is built provide an abstraction 

of the machine that user level software need not be aware of the hardware topology. 

The putpose of the Router (routing module) is to allow any processing node to talk to 

any other. This is the only module that must appear at every node, and it does not require 

the services of any other modules for it to operate. It is different from routers in wide 

area networks. Given that the nodes in a Transputer network are also the hosts that 

perform the work of the system, it designed to keep the overheads involved in 

communication to a minimutn. 

The naming module (Naming) provides the interface between the router and other 

processes. It generates a connection between a server and a client, using the Router as 

necessary. The Naming module is built above the router (i.e. the Router is required by 

the naming module for it to operate), and makes use of the changes to OCCAM 

proposed there. 

Load Balancing module attempts to give an optimutn performance by sharing the 

workload as evenly as possible between the processors available, aiming at supporting 

hardware topology independence. 

The Wisdom routing algorithm doesn't use a routing table because of the following 

considerations (in comparison with local or wide area networks): 

Error rates in message transmission are far lower; 

The topology is not free (in the current version the topology is fixed in structure, 

not size); 

It is unacceptable to have routing information at every node; 

Processing costs of routing must be low. · 
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The Wisdom has an efficient deadlock and starvation avoidance algorithm. When all the 

buffers in a node become full, the node doesn't accept further messages unless the 

message has a shorter distance to travel than one of the those in its buffers. In this case 

the message with the greatest distance to travel is preempted. When a message arrives at 

its destination it is conswned. This requirement can be met by placing a time-out on all 

messages arriving at their final destination. If the message is not conswned during the 

time-out period it is discarded. It is possible to give each message a priority which will 

adjust its likelihood of delivery, and so reduce or eliminate the possibility of starvation. 

5.3 Basic IPC Components 

The RT-DOS Kernel and its IPC mechanism has been based on me5sage passing 

technique, mostly because of its hardware structure and network topology. Problems 

related to the message passing systems remain the same regardless of the implementation 

specifics. Therefore, it is found useful to present below, a brief swnmary of the message 

passing systems and their features, as an introduction. 

Issues of determining the semantics of message passing are: 

Process naming; 

Message sending policy (blocking versus non blocking send); 

Message representation (formats); and 

Handling of communication failures (error recovery). 

The semantics of message-passing can be summarized as following: 

a) Identification (naming) : for the sender objects and receiver objects, such as 

process, port, channel, and mailbox. This determines the search algorithms of 

theiPC; 

b) Structure of messages size, typing (typed, untyped), segregation between 

message and data; 

c) Message distribution mechanisms sendinglreceivirig messages VIa 

intermediaries, search algorithms, the protocols between sender and receiver 

parties, and message primitives; 

d) Error handling : recovering from lost messages, handling duplicated messages 

and network failures. 
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Identification: Identification issues are handled at two different levels: symbolic 

(user/process level), and absolute (low/IPC level) identifications (names) of 

communicating objects. The sender need not be aware of the absolute identifier of the 

recipient. A mechanism for mapping from symbolic to absolute identifier may be 

implemented at the senders host node by use of name tables or name servers. 

There are three basic categories of identification: name, address, and route. Name refers 

to an objects symbolic identification; address refer to absolute name of the object, 

namely its location in the system; and finally, route provides the means of finding the 

address (location) of the object. The Route may be entered in the identifier or 

implemented as a separate strategy, as in the RT-DOS IPC implementation. 

Universality of identification schema is also an important issue. A unified global naming 

schema reduces the burden on the message handlers, while a distributed naming schema 

will place greater responsibility on the routing algorithm. 

Strocture of messages: Message size may be fixed or variable; and messages may be 

structured into headers, control, and data, or may be combination of these. The protocol 

to be followed in message exchange may either be rigidly fixed by the IPC mechanisms, 

or left to the end-user processes (end-to-end protocols, as in the RT-DOS IPC). Message 

typing may or may not be emphasized, depending on the targeted network's type being 

heterogeneous or homogenous. 

Decisions taken on these regards are based on the consideration of the IPC size and its 

size in terms of ftmctionality. The trend lately is that, the IPC mechanism should be 

minimal with a very well defined ftmctionality, and decoupled from any policy related 

services. 

Message distribution mechanisms : Message identification and message structure have 

little influence on each other, but they have a direct bearing on the message-passing 

mechanism. The message passing mechanism has two components: nodal mechanism 

(intra-nodal), and routing (inter-nodal) mechanism. 

Two most important aspects of the nodal mechanism can be identified as: mode of 

communication, and synchronicity of message passing. Mode of communication can be 
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direct (producers are themselves dealers) or indirect. Indirect mode can be implemented 

through ports, queues, and channels. Indirect communication allows greater flexibility 

and robustness of operating system services, because of the extra abstraction layer 

between communication service and the process. Naturally, this extra abstraction layer 

introduces a performance decrease in the communication services. 'This is not a surprise 

because the flexibility and performance conflicts in general. 

Synchronicity of communication can be blocking or non blocking. Synchronicity may be 

dictated at the lowest level by processor (e.g., Transputer link communication), but 

asynchronous communication can be built on top of synchronous communication, as in 

the RT-DOS IPC. Synchronous mechanisms are easy to implement and provide more 

precise predictability, but make it very costly to implement group communication, such 

as broadcasting or multi casting. 

Naming forms a very important component of the IPC mechanism, and careful routing 

increases efficiency of inter-node communication time, especially for big networks. The 

overhead of routing affects all the intermediate nodes and the processes executing on 

them, even if they are unrelated to the message. 

Routing consists of four components: 

Search algorithm (relevant to naming); 

Reliability; 

Relay versus store and forward of messages; and 

Datagram versus virtual circuit transmission. 

The search algorithm is dictated by the name/address/route schema of the naming 

service, and the topology of the computing resources. The relay approach implies that 

message forwarding begins immediately after the address fields of the message are 

received. Virtual circuit transmission is not possible unless the path is known prior to 

sending the message. However, once a message has been sent to a recipient, the path is 

known, and may be stored for later use (at least for a T-time period) to increase 

efficiency. 
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Routing strategy is strongly influenced by the object identification policy, and efficiency 

of routing is the most important issue in a distributed operating system IPC 

implementation, as it is the backbone of the whole system-wide interacting services. 

1f names of the objects provide the path between the sender and the recipient, then no 

search algorithm is needed; message routing reduces to the simple mechanics of physical 

transmission of the message between successive pairs of intermediate nodes. However, 

this might increase the message size, cost extra data transmission, and decrease the 

flexibility of migration of processes between nodes. lfthe name gives the address of the 

recipient but no path, then an additional layer of software is required to implement the 

search algorithm on each node. 1bis may cause a memory buffer problem for nodes. 

In most DOS implementations, naming at the process level is symbolic, giving neither 

address nor path (mapping from symbolic name to network-wide identification requires a 

software device, such as name table, in every resident kernel). 

Error handling : Ascertaining the reliability of message reception and correcting errors 

is often left to the end-users (upper services). They use time-out techniques to implement 

elementary control over reliability. lfthe underlying network reliability is very high, then 

implementing reliability checks in higher levels will increase the efficiency of transport 

service, by reducing the inter-node computation costs. For unreliable network medias, 

retransmission of bigger messages on upper levels is not acceptable. Message 

serialization will also affect the cost of transmission, as it will mostly depend on a 

centralized serialization service which is one of the bottlenecks of distributed operating 

systems. 

Ports seem to provide suitable abstractions to represent the IPC entities, and ACCENT 

[RashidB 1981] and AMOEBA [TanenbaumC 1981J offer good examples of this 

approach. They provide a global and uniform interface to system· objects and services. 

Process identities become transparent and services provided can be readily transferred 

from one server to other. 

UNIX based systems, such as LOCUS [Walker 1983], extended the existing IPC and 

file management primitives to support network wide communications. However, in many 
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cases this approach seems to be non-flexible and restrictive, as it inherits the limitations 

of the existing system. 

5.3.2 Naming Schema ofiPC Entities 

An IPC mechanism has to have identifiers (addresses) for all processes in order to 

perform its message deliveJY function. An address is bound to an object by routing 

context. Other conunon terms used for addresses are ports, sockets, and mail boxes. It is 

convenient for a process to have more than one communication address, allowing 

parallel communications with other services, or partitioning of services (multi putpose 

functional processes). It is also useful to associate one identifier with several processes 

so that services can be replicated or relocated. 

In case port identifiers contain location dependent information, process migration causes 

messages to be sent to obsolete addresses. As port identifiers could be disseminated all 

over the network, it is not feasible to try to update them during the migration all at once. 

One solution is that the source site continues to forward the new location (if it is still 

able to do so) after a process is moved, as in DEMOS/MP [Powell 1983]. As messages 

are forwarded, the old kernel can notify the originator's kernel of the address change and 

avoid subsequent rerouting process. The forwarding address is needed as long as old 

references still exist, or the migrated process is alive. Its removal can be an event based 

process or a garbage collection activity. An alternative to message forwarding is to 

notify the sender of the absence of an addressed process. The sending kernel can attempt 

to find the new location througlt process managers or a system wide name service. The 

main disadvantage of the approach is that more of the system is involved in message 

forwarding, and would be aware of process migration. 

Name binding, or initial connection establishment, between communication entities is 

another important issue. There are two categories of connection to be considered: 

Between a process and the operating system (kernel); and 

Between application processes. 

Communicating processes can establish a connection either througlt the operating 

system's name servers (public name services or private arrangements), or inherit them 

from parent processes. As for process to operating system kernel communication, the 
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majority of systems adopt the static binding schema which establishes connections 

(umbilical ports) at the creation of the process. 

5.3.3 Communication Primitives and Protocols 

Detennining the semantics of communication primitives is a controversial issue. 

Fundamental design decisions relate to: 

Reliable versus unreliable primitives; 

Blocking versus non-blocking primitives; and 

Buffered versus unbuffered communication. 

With unreliable communication primitives no guarantee of delivery is provided, and no 

automatic retransmission is attempted if the message transmission or replication fails. 

On the other hand, the communication subsystem may try to provide error free 

communication channels. Although the error-controlled, flow-controlled Virtual Circuit 

type communication model seems to be attractive, there are strong arguments in the 

favor of uncontrolled, connectionless datagram-like services. A major tenet in this 

direction is that, since high reliability can only be achieved by end-to-end 

acknowledgments at the highest level of protocols, the lower levels need not be 100 

percent reliable. Moreover, the experience with RIG [Ball 1976] has shown that the 

exact flow control policy is much less important to overall system performance than the 

higher level communication protocols devised to solve individual problems. 

Blocking (synchronous) communication primitives return control when the message is 

transmitted or received or an error condition is detected. Non-blocking (asynchronous) 

primitives initiate the request and return the control to the requester. An asynchronous 

mechanism signals the completion or occurrence of the event or error condition (transfer 

completed, message arrival, time-out, etc.). Although non-blocking primitives offer 

maximum flexibility and overlapped actions, the blocking version seems to be a 

reasonable choice for several reasons: 

They carry the same semantics as procedure call, therefore easier to use; 

They simplify the buffering because data is kept in client's buffer, and the 

answer can be delivered directly into this buffer; 

They simplify transport-level protocol, because both error handling and flow 

control exploit the response to acknowledge a request and authorize a new one. 
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Unbuffered communication forces primitives to be synchronous. The sender is has to 

wait until the receiver retrieves the information (rendezvous). However, unbuffered 

communication can also be implemented as asynchronous primitives with due system 

support by restricting the maximum buffer size created run time [TanenbaumD 1985]. 

Buffered communication increases the concurrency level and message throughput. 

However, the existence of buffered information is often a handicap for fault tolerance 

and process migration. It is also more complicated to implement, because of error 

recovery and other system maintenance issues (synchronization, serialization, 

congestion, buffer management, etc.). 

5.3.4 Message Structures 

In a direct network architecture (as is the case for the RT-DOS) nodes do not physically 

share memory, they must communicate by passing messages through the network [Ni 

1993]. Message size may vary, depending on the application. For efficient and fair use 

of network resources, a message is often divided into packets prior to transmission. A 

packet is the smallest unit of communication that contains routing and sequencmg 

information; this information is usually carried in the packet header. 

Naturally, there is always a fixed overhead with preparing, sending and receiving 

messages. Therefore, long messages reduce the ratio of fixed overhead, but also decrease 

the availability of communication media, much needed for control-type messages and 

interactive applications. A trade off between two extreme approaches (short size 

messages versus long ones) should be obtained considering the requirements of the 

application services which will use the communication mechanism. 

The distinction between small messages and a separate data transfer facility ties well 

with a frequently observed usage pattern. The majority of the IPC activities are related 

to the transferring of small control/information messages between distant kernels and/or 

processes, while occasionally there is bulk data transfer (e.g., program loading, process 

migration, etc.). 

It is known that small fixed size messages reduce queuing and buffering problems in the 

kernel. Ideally, only small and fixed size message buffers should be allocated in the 
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kernel and large amount of data are transferred directly between processes' address 

spaces, without extra copies (without copying the message through intermediate nodes). 

Finally, data typing is needed to pass system objects implicitly in messages and to 

provide automatic data conversion in heterogeneous systems. 

5.4 Implementation of the RT-DOS IPC Mechanism 

The RT-DOS IPC services, being message based services, are built on message 

switching and circuit switching mechanisms that consider and utilize the multi loop 

topology of the underlying network transmission media. The objective was to obtain in 

the order of millisecond level (considering performance of the current state-of-art 

Transputer hardware) connection and delivery times of messages, between physically 

distributed processes anywhere on the network, regardless of its size. 

From the very beginning, the predictability of the overall system was the prime concern 

of the design policy (as it should be expected from any real time system) for the RT-DOS 

kernel. During the implementation of some other factors, which can affect the 

predictability of communication negatively (though they increasing the flexibility of the 

upper layers and satisfy quite different system requirements), proved to be important to 

be considered at the very early stages of the design of the IPC. These are group 

communication support mechanisms, such as broadcasting, multicasting, and domain 

casting; and non-reliable message distribution mechanisms which require no replies from 

message recipients. Though at the very beginning it was accepted that predictability of 

the IPC services could be guaranteed only by setting point-to-point connections (circuit 

switches) between processes and transferring messages directly from one process space 

to another process space, later it was discovered that the number of messages exchanged 

between communicating parties to establish a direct connection was much more costly 

than sending the message itself through the network to the destination, especially for 

small messages that are less than 2KB, as it is shown in the following chapters (Chapter 

7). 

In the following sub-sections all these implementation factors are discussed in detail, and 

the basic IPC components (protocol layers, message structures, communication protocols 
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between the basic IPC entities) with the underlying data structures, required to support 

them, are presented. 

5.4.1 Communication Model 

The RT-DOS has been designed to run on Transputer systems configured as a collection 

of interconnected domains (Figure 5.4.1(1)). An RT-DOS domain is formed by 

connecting two out of four of the communication links of a Transputer to adjacent nodes. 

The resulting communication loop, referred to as the Control Loop or System Loop (or 

OS Loop), is used to convey interprocess communication traffic between kernel 

processes. 

Though system services can be located anywhere (on any node or more than one nodes) 

most of them are expected to be on the nodes of the System Loop to isolate them from the 

unnecessary traffic of application domains which are self-contained. 

Application domains are formed dynamically and attached to the System Loop as 

secondary level conununication loops. All application domains share the same system 

services located on the System Loop, while most of the communication between the 

processes of the same domain are retained in the domain loop to guarantee a certain level 

of stability in terms of fimctionality of the global system services. 

The System Loop is not used only for exchange of control messages between kernels, but 

can be used for the transmission of messages between processes which are physically 

located on different domains, especially for short length messages. Datagrams related to 

message broadcasting or multicasting, should also travel through the System Loop to 

reach their destinations. 

Each node (Transputer) on the System Loop or any Domain Loop is connected to the 

previous and the next nodes via two of its four serial links. The two remaining links of 

each node can be used to dynamically connect to another node's links for point-to-point 

data transfer between processes on different nodes (on the same or different domain), or 

can be used permanently to connect them to outside hardware devices, such as terminals, 

disks, sensors, actuators, and other Transputers (for efficiency). 
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The nodes which are both on the System Loop and any of the Domain Loops are 

dedicated to the management of the related application Domain Loop, and are gateways 

between the two intersecting loops. These nodes are called Domain Manager nodes and 

they don't have any extra link to connect them to the outside events. F\Dlctionality of the 

IPC mechanisms on these nodes are different than the others, in terms of message routing 

policy only, though the same copy of the C code which r\D1S on every node also r\D1S on 

them. 

As the full functionality of the RT-DOS Kernel is the same on all nodes (replicated 

kernel code), any node can be assigned as Domain Manager at any time dynamically, by 

the related upper level RT-DOS services. By switching a status bit (}YodeType) on or off, 

a node can function as an ordinary one or a Domain Manager. 

The RT-DOS architecture does not specify functional attributes of individual domains, 

nor does it imposes a priori limits on either the number of Transputers in a domain, or 

the number of domains in a system. 

The most important system services related to the IPC implementation, residing on the 

System Loop, are the Connection Server and the Name Server. These two are directly 

involved in the connection establislunent protocol of point-to-point process 

communication. The Name Server implements a more general purpose global system 

service and is not a direct part of the IPC mechanism. The Connection Service is used 

only to implement the circuit switching service, and is one of the major components of 

the IPC mechanism. All the other IPC connectionless communication protocols, as well 

as the connection oriented circuit switching protocol itself, are based on a simple 

datagram service. 

5.4.2 Topology of the Underlying Network 

In a direct network architecture, each node has a point-to-point, or direct, connection to 

some number of other nodes, called neighboring nodes. Direct networks have become a 

popular architecture for constructing massively parallel computers because they scale 

well; that is, as the number of nodes in the system increases, the total communication 

bandwidth, memory bandwidth, and processing capability of the system also increases 

proportionally [Ni 1993]. 
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The multiloop topology of the RT-DOS derived, to a great extent, from the concern to 

provide a scaleable architecture that supports the effective and predictable IPC services. 

As in any other direct network architecture the overall processing power, memory 

capacity, and commwncation bandwidth of the RT-DOS systems grow proportionally 

with the added elements. On the negative side, the performance of commwncation over 

the System Loop is hindered by the size of a given loop, since network latency introduced 

by this topology is proportional to the distance baween the source and destination nodes. 

However, the RT-DOS architecture limits the impact of serial propagation delays, as the 

average distance between nodes can be kept significantly low by partitioning the system 

into multiple domains. 

In messag~based systems, predictability (which is a vital requirement of real time 

systems) of communication services is negatively affected by the frequency of exchanged 

messages and the amount of transmitted data. The RT-DOS architecture aims at 

minimizing the impact of these unpredictability factors by assigning dedicated 

communication paths to control and data flows and by confining the local traffic within 

domain boundaries. 

The provision of direct communication channels over switched links allows the use of 

native Transputer I/0 primitives between processes distributed over the network, with 

immediate implications such as availability of high bandwidth communication channels 

(vital especially for bulk amount of data transfer between processes, such as file 

transfer), simplicity and efficiency of system design and total network transparency. 

Moreover, the ability to transfer data directly between source and target address spaces 

eliminates the involvement of intennediary elements, such as network routers and local 

kernel processes. Bypassed system elements are relieved from the heavy communication 

load. Also unpredictability introduced by network congestion and message switching 

overneads are avoided. 

Unfortunately this schema is not perfect. First of all, point-to-point communication 

· between all processes prohibits group communication or at best increases the group 

communication cost substantially, as a separate connection must be established with 

each of the members of the group individually. Totally synchronous communication 

baween all objects is a restriction, though asynchronous protocols can be built on top of 
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synchronous primitives with extra costs. It eliminates the benefit of confining the local 

domain communication traffic, as the cost of connection establishment even between the 

neighboring nodes on the same domain, contributes to the overall system load 

wmecessarily. All these factors can contribute negatively to the predictability of the 

system. Therefore, the IPC has been designed and implemented with group 

communication in mind for the reasons that are explained in the following sections. The 

reasons why group communication protocols might be essential in a real-time system 

environment are elaborated as well, in the following sections. 

The hardware testbed used in the initial phases of the implementation of the RT-DOS 

IPC services is shown in Figure 5.4.2(1). The four Transputer boards that are connected 

together to form a System Loop and two application Domain Loops are B004, B003, 

B006, and TMB/2. 

B004 is a standard PC board plugged into an 8 bit PC slot, it hosts a T414 Transputer 

and it has a 2MB on board memory. This board is used for system development and all 

Transputer development system software also runs on this board. One of four links of 

T414 Transputer on the board is connected to the ffiM PC system (mapped on PC RAM 

memory as a memory mapped device) and it interfaces (via CO 12 link interface 

hardware) with the PC keyboard and screen through its LinkO link (Transputer links are 

numbered physically from 0 to 3). This board also serves as master Transputer board to 

reset all the daisy chained boards through its configuration link jumper. 

Please note that, though the boards of the testbed which are involved in the research 

project did not change much through the implementation of the IPC, the numbers and 

types of Transputers that these boards hold changed according to the availability of 

Transputer modules (TRAMs) in time, as can be seen in Chapter 7. 

After compilation and linking, network programs are downloaded through one of its links 

(in our case LinkO) which is connected to the one of the next board's links. 

All other boards are installed in a separate self-powered unit which has 12 slots for 

different Transputer boards. The B006 board (which has four T425 Transputers with 

IMB of RAM installed on it) is connected to a VT220 terminal through a RS232 serial 

port which is available on this board. 
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This board has 1MB RAM for system development (it has been used with V AXIVMB 

version of OCCAM based Transputer Development System (TDS) for downloading the 

application code developed on V AX systems), and a 16 bit Transputer (T212). 

The B003 board has four T414 Transputers each with a 256KB of RAM connected 

through their Link2 and Link3 links to each other. Link] and LinkO of each Transputer 

has been taken out to special edges to be able to connect them to any link of other 

Transputers through standard Inmos link jumpers. The boards B003 and B006 are 

connected each other through these edges using Link] of a Transputer on B003 and 

LinkO of T212 using these jumpers. All other unused links of Transputers are connected 

to a programmable link switch hardware which is the physical backbone of the RT-DOS 

IPC mechanism. As the switchboard deserves special consideration, it will be explained 

in more detail in the following section. 

1MBI2 is a board with 10 Transputer TRAMs installed on it each one with a 256KB of 

RAM. One of the Transputers, so called Root Transputer, is T805 and all others are 

T425 (all 32 bit). The Root Transputer is connected to the BOOS board through its link 

LinkO, to the B003 board thorough its link Link3. All unused links of Transputers on the 

1MB12 are connected to the programmable link switches (two C004 controlled by a 

T212 Transputer) which reside on the same board, so that they can be connected to any 

other Transputer (which is connected to the switchboard) on the network on fly 

dynamically. Though the link switch hardware physically resides on the TMBI2 board, it 

is shown as an abstract unit in the figure. A T212 Transputer also is installed on the 

1MB 12 board as a configurer Transputer to control two C004 link switches, to 

dynamically connect the links of programmable switch for establishing physical circuits 

between the processes locating on different nodes. 

In Figure 5.4.2(1), dotted lines indicate the indirect physical connections between 

Transputers established via C004 link switches, while darker lines indicate direct (from 

one Transputer to another neighbor Transputer) link connections between Transputer via 

either hardwired circuitry on boards, or using Inmos jumpers length ranges between one 

inch to a few meters. 

A possible configuration (locations) of the IPC related RT-DOS system servers 

(assuming that Figure 5.4.2(1) is used as hardware topology) are shown in Figure 
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5.4.2(2). The T212 Transputer located on 8006 board is used as a node which hosts the 

Terminal Server process, while the 8004 Transputer is used as the Name Server and the 

File Server node. System initialization and downloading of the configumtion tables 

which contain infonnation about the connectivity features of each Transputer on the 

network are also carried out through this node as only it has the interface with the 

outside world for program/file loading interactively or in batch mode. In the figure, the 

System Loop is formed by the Transputers connected through a dark line, while the two 

domain loops are formed by connecting Transputers via a dark dotted line. The 

Application Domain Loops and the System Loop intersect on the Domain Manager 

Transputers. 

In our testbed, the System Loop consists of the Connection Server node, the Name 

Server node, the Terminal Server node, and the two Domain Manager nodes. One 

application Domain Loop is formed on the 8003 board and consists of four Transputers 

including a Domain Manager node. Another application Domain Loop is formed on the 

n11312 board and consists of seven Transputers including the Domain Manager node. 

A number of user processes are randomly distributed to the different nodes of domain 

loops, continuously generating messages to be sent to each other either through the 

point-to-point connections (requires physical link connection establishment between 

related Transputer links) or datagram services. Using different combination of process 

topologies, a varying range of message traffic is generated to measure the performance 

changes of the IPC mechanism under different communication load conditions. In the 

figure, the arrows indicate the direction of message traffic in the loops. 

5.4.3 C004 Dynamic Link Switches 

The Inmos communication link is a high speed system interconnect which provides full 

duplex communication between members of the INMOS Tmnsputer family, according to 

the INMOS serial link protocol. The IMS C004, a member of this family, is a 

transparent programmable link switch designed to provide a full crossbar switch between 

32 link inputs and 32 link outputs [InmosJ 1991]. The !MS C004 can switch links 

running at either 10 Mbits/sec or 20 Mbits/sec. It introduces, on average, only a 1.75 bit 

time delay on the signal. Link switches can be cascaded to any dejlth without loss of 

signal integrity and can be used to construct reconfigurable networks of arbitrary size. 

The switch is programmed via a separate serial link called the Configuration Link. 
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Products of different performance (link speed) can be interconnected directly with these 

switches. C004 link switches can also be interconnected to each other to form virtually 

unlimited switches. Figure 5.4.3(1) shows a network of 32 link switches controlled by 

one Transputer through a master switch which is, in turn, connected to all the slave 

switches. Here, all the Transputers which are connected to any of these switches can 

establish physical point-to-point communication links with any other Transputer on the 

network, through these switches. In the figure dotted lines indicate link connections set 

through the switches between Transputers. 

Another switch configuration, in which each C004link switch is controlled by a separate 

Transputer that is chained to a pipeline of control Transputers, is shown in Figure 

5.4.3(2). In this configuration, management of each physical subnetwork of links is 

separated to increase concurrency of switch hardware and to eliminate single control 

point bottleneck. But coordination of distributed link configuration software agents is a 

prime issue to be handled. 

In the RT-DOS testbed, two C004link switches are physically located on TMB/2 board 

and both are controlled by a T212 Transputer concurrently, which is connected to both 

of them via its links 3 and 0. All Transputers on the network, regardless of their physical 

board location, are connected to these two link switches (through their free links), via 

special INMOS jumpers. 

The IMS C004links implement the following subset of the configuration messages: 

[0] [input][ output] Connects input to output; 

[I] [link/ ][link2] 

[2] [output] 

Connects link! to link2 by connecting the input of link] 

to the output of link2; 

Inquires which input the output is connected to. The 

/MS C004 responds with the input. The most 

significant bit of this byte indicates whether the output 

is connected (bit set high) or disconnected (bit set low). 

126 



LlnkSwHch 

10 

5 

20 

22 

Figure 5.4.3(1) : Network of C004 Unk Switches Controlled by One Transputer 

-- Permanent (Static) Connections 
Temporarv (Dynamic) Connections 





[3] This command byte must be sent at the end of every 

configuration sequence which sets up a connection. The 

/MS C004 is then ready to accept data on the connected 

inputs; 

[ 4] Resets the switch. All outputs are disCO!Ulected and 

held low. This also happens when Reset is applied to 

the /MS C004; 

[5] [output] Output output is disconnected and held low; 

[6] [linkl J[link2 ] DisCO!Ulects the input of link] and the output of link2; 

When Reset is applied to the IMS C004 the outputs are disconnected. After power is 

applied and before any configuration message is transmitted to the /MS C004, a software 

reset byte (control byte [4]) must be sent. This has the effect of disconnecting the 

outputs. 

The /MS C004 is internally organized as a set of thirty two 32-to-1 multiplexors. Each 

multi plexor has associated with it a six bit latch, five bits of which select one input as· 

the source of data for the corresponding output. The sixth bit is used to connect and 

disconnect the output. These latches can be read and written by messages sent on the 

configuration link via Con.figLinkln and Con.figLinkOut. 

The output of each multiplexor is synchronized with an internal high speed clock and 

regenerated at the output pad. This synchronization introduces, on average, a 1.75 bit 

time delay on the signal. Since the signal is not electrically degraded in passing through 

the link switches (as it was stated before), it is possible to fonn point-to-point links 

between remote nodes through an arbitrary number of link switches with a little 

communication performance ovemead. 

Each input and output is identified by a number in the range 0 to 31. A configuration 

message consisting of one, two, or three bytes is transmitted on the configuration link. 
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The configuration messages sent to the switch through this link have been given above. 

For a full hardware description ofC004 switch please refer to [InmosJ 1991]. 

Transputers physically located on different hardware boards and other platforms can be 

connected to each other through these C004link switches to form logical loops as shown 

in Figure 5.4.3(3), and can be dynamically reconfigured to adapt to changing 

requirements of application systems which are nmning on these platforms. The RT-DOS 

kernel is one of these applications which has been built on these facts to get benefit of 

the flexibility provided by C004 switches. The RT-DOS IPC mechanism is also 

implemented on these loop topologies to exploit the given benefits. 

5.4.4 The IPC Layers 

The RT-DOS kernel interprocess communication (IPC ) subsystem is built around a 

three-layer network architecture as shown in Figure 5.4.4(1). These are: 

The Physical Layer; 

The UDL (unreliable datagram) Layer; and 

TheiPC Layer. 

A comparison between the /SO OS/ network reference model [TanenbaumE 1981] 

· protocol layers and the RT-DOS IPC layers can also be seen in the figure. The JPC 

implements the functionality of the first four OS/ layers. It is to be noted that there is no 

attempt to adopt the /SO OS/ layers either in terms of protocols or message frame 

formats. The comparison is only in terms of services that are provided to the users of the 

IPC mechanism. 

The Physical Layer is related to the transmission of stream of bits over a point-to-point 

communication channel. The issues here are largely dealing with mechanical, electrical 

and procedural interfacing of nodes to the subnet and to each other. Transputers 

implement physical level protocols at the hardware level. In fact Transputers have a 

micro coded firmware level kernel which can manage short term process scheduling, as 

well as handling the signal equalization problems of four serial links. Some part of the 

Data Link Layer of the OS/ model, which is related to transmission of data frames from 

one node to another without errors (data loss or duplication), is also implemented by this 

micro kernel that starts nmning on each Transputer after a reset operation. 
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Transputers (which have been designed to implement the CSP based OCCAM 

communication model) automatically support CSP model communication which is based 

on rendezvous semantics [Hoare 1978], at the hardware level. Data transfer between two 

Transputer links is synchronous, and both parties must be ready and waiting to 

communicate, for data transfer to occur successfully. An important asswnption of 

current Transputer implementation of the CSP model (OCCAM for instance) is that 

communicating processes are expected to be located either on the same Transputer 

(communication channels are mapped onto a memory location) or on neighboring 

Transputers (communication channels are mapped onto Transputer links). For a 

complete physical network location transparency of communicating processes, which is 

one of the design considerations of the RT-DOS kernel and its IPC mechanism (to 

support dynamic process migration for fault tolerance, and system reconfiguration), 

neighborhood of communicating processes must not be assumed a priori. 

The RT-DOS IPC extends the Transputer implementation of the CSP model [Hoare 

1978] in a number of ways. Firstly, it pushes the native transparency definition from 

physical neighborhood to total network transparency. Any process on the network can 

establish a point-to-point synchronous data transfer channel with any other process on 

the network. The Circuit Switching Sendee layer depicted in Figure 5.4.4(1) implements 

this protocol as is explained later in more detail. Secondly, the RT-DOS IPC 

mechanism introduces the N: I communication model to encompass the client-server 

paradigm. However, without group communi~tion support at the /PC Network level, 

the N:J model would be unacceptably inefficient, therefore the IPC has been designed 

with the group communication (broadcasting, multi casting, domain casting, etc.) support 

in mind from its initial stages. The Broadcasting Multicasting layer in the figure 

implements these group communication protocols. The Message Switching Service, 

sh01m in the figure, is related to the connectionless 1:1 communication protocols (i.e., 

protocols in which senders do not request any replies from the recipient processes for 

their messages). 

All IPC services except the Circuit Switching SeNice are implemented as unreliable at 

the !PC level, because of the idea that the IPC mechanism should be compact and 

minimum as it is replicated at each node on the network. 
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Though it provides a rich variety of the communication services, it asswnes that the 

semantics of the communication is detennined by the upper layer protocols built on top 

of the IPC mechanisms. The IPC provides a communication path (transport service) 

between parties, using the connection protocol (circuit switching, message switching, or 

group communication protocols) which is chosen by the policy layers of the kernel 

considering user service requirements. The fact that Transputer links are highly reliable 

at the physical level, also supports the idea of handling error checking and recovery in 

terms of overall system communication performance. lhis provides the user of the IPC 

services with the flexibility of choosing an appropriate cost/performance level. If a 

process needs to notifY a group of processes and it doesn't expect any feedback from the 

recipients, it doesn't have to set a very costly point-to-point connection with each 

recipient individually. Broadcasting a message will be the most convenient and cheapest 

option. It is even worse depending on only the point-to-point communication, if the 

sender doesn't know (obviously, doesn't need to know either) all the recipients and their 

addresses on the network. 

The Unreliable Datagram Service is the backbone of the IPC and its upper level 

protocols. Regardless of the type of communication protocols they are using, all the 

transport level services us·e the datagram service. It provides the RT-DOS Kernels, with 

a simple transport mechanism from the prespecified source node to the destination node, 

regardless of the meaning or contents of messages that it carries. The Network Layer 

functions of the OS! model are included in the unreliable datagram service, i.e. network 

routing and addressing. The circuit switching and message switching services, including 

group communication options such as broadcasting and multicasting, are built on top of 

this datagram service. Datagram packets are of fixed length for control messages used 

between kernels to establish connections, but of variable length in size if they carry real 

messages (data) between distant processes. Packet formats and their features, such as 

length, fields, valid field values together with the meaning of each one will be discussed 

later in Settioru 5.4.6 and 5.4. 7. 

Each of these service layers interface with other layers by using a nwnber of primitives 

which are provided by the lower layers, to implement the related protocol between 

service layers. Figure 5.4.4(2) summarizes the basic primitives provided by each service 

layer to the upper ones, and the primitives which are provided to them by the lower 

layers in turn. 

134 

- ----------------------



"' E 
"' -~ 
{i 
" ::. 
() 
!!, 

[13 
c;> 
~ 

Application 

Layer 
Services 

Naming 

Service 

Process 
Level 

Primttives 

Session and 

Transport 

Level 

Services 

---·--·------
Network 

Level 

Kernel 

Services 

Datagram 
Packing/ 
Unpacking 
Services 

Datagram 

Delivery 

Services 

Datagram 

Delivery 

Services 

Physical 

Level 

Services 

OPEN, CLOSE, READ, WRITE, COPY, SEND, RECENE, ••• (Appllclltlon) 

NemeServer (Convert symbolic nemeslnto glob611y unlqw ldentHIC6tlons) 

RecelveMsg(Processld,MsgLeng,MsgBuf, Tlmeout,!Jmtus) 

SendMsg(Processld,MsgLeng,MsgBuf,Deedllne,smtus) 

., 
Cl 

"' "' "' ~ 
i "' ., 

~ ., i en 
Cl ~ " I :;: 

~ _.g 
::J ~ 

BroedcestMsg(MsgLeng,MsgBuf,Deedllne,MsglmpOttence) 

MuHicestMsg(MuHicestld,MsgLeng,MsgBuf,Deedllne,Msglmport•nce) 

DomelncestMsg(Domelnld,MsgLeng,MsgBuf,Deedllne,Msglmportence) 

DomelnMuiUctJstMsg(DomelnldMu!UcesUd,MsgLeng,MsgSuf,DUdllne,Msglmportenc•) 

OpenChennei(Procossld,ChenCepebll/ty, Tlmeout, T'ypemln!Out) 

Chenln(ChenCepebll/ty,MsgLeng,MsgBuf, Tlmeout=Deedllne,smtus) 

Creete Mellboxes end Mersflelllng/Unmenhelllng Modules (Kemel) 

Pecket Auembly/Disessembly (Kemel) 

.... ········~ 

~ .. 
Estebllshlng Messege/Cin:utt Chennels (Keme~NemeServer, Locel ConnAgent) 

Dlspetchlng Deteg,.m Peckets to/from Unks/Mellboxes (Messege Dlspetcher) 

··················~······ 
Physlcel Unk Input/Outputs (T,.nsputer Flrmwere,Unk MonftOI'B) 

Figure 5.4.4(2) : Interfaces of IPC Layers With Kernel and Related Parties 



At the uppermost level, applications request their services by issuing conunands such as 

OPEN, CLOSE, READ, WRITE, COPY, SEND, and RECEIVE. At the second level, 

compilers will generate related code to perform calls to the name service routines for 

converting application level symbolic names into system wide global unique object 

identifiers, especially process, node and domain identifications. Application level 

interfaces and related issues are not covered at the IPC level, and will not be discussed in 

this thesis. At the IPC level, all symbolic object names are assumed to be converted into 

WJique identifications by a distributed naming service, as will be explained in Section 

5.4.5.2. Using parameters, applications specify their requirements: the importance of 

processes and messages (priorities); time fences for the validity period of messages; type 

of communication (whether a reply expected or not); reliability expectations; size of data 

to be exchanged; list of message senders or receivers (for group communication and 

client-server type protocols); and of preferred protocol (synchronous-circuit switching 

or asynchronous-message switching). 

Process level primitives are receive message (ReceiveMsg), send message (SendMsg), 

broadcast message (BroadcastMsg), multicast message (Multicast\fsg), domain cast 

message (DomaincastMsg), multicast message in a domain (DomainAfulticastMsg), 

open a· channel (OpenChannel), read from channel (Chanln). write to channel 

(ChanOut), and close channel (CloseChannel). 

The last four primitives (OpenChannel, Chanln, ChanOut, and CloseChannel) are 

related to establishing reliable circuit switched channels (point-to-point connections) 

between process pairs. OpenChannel opens a logical channel between two processes by 

establishing a physical connection through physical links of two non-neighboring 

Transputers on which commWJicating processes are residing. Each one of the 

corresponding processes issue this request to inform the local kerriel about their intention 

to communicate with the other parties synchronously. ChanOut and Chanln are issued 

by the sender and receiver processes respectively, to write and read data to/from the 

established channel. CloseChannel is issued by the client (initiator of the 

communication). The Circuit Switching Service will be discussed in Section 5.4.6.2 in 

more detail. 
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The rest of the process level primitives are related to unreliable comnumication services 

and are implemented as part of the datagram service. &ceiveMsg and SendJ.fsg are used 

for unicast (one-to-one) communication between two processes. One-to-one 

communication is referred to as a packet switching service and is discussed in Section 

5.4.6.3. The rest of the primitives are related to group communication. The 

BroadcastMsg is used to broadcast a message to all nodes on the network It is usually 

issued by a kernel to locate a process address through the network. The MulticastMsg is 

used to distribute a message copy to a group of processes related to the same task, such 

as time servers (for updating global time), displaying a status message or statistics on a 

group of operator terminals, or updating a group of replicated copies of files. The 

DomaincastMsg is similar to the BroadcastMsg in terms of functionality except that its 

context is a specific domain mther than whole network. The DomainMulticastMsg is 

also the same as the MulticastMsg in terms of functionality, but it addresses a group of 

processes in a specific domain. The last two group communication primitives are 

implemented for efficiency reasons only, to reduce the cost of message broadcasting by 

confining local message traffic within domain boundaries. Group communication 

primitives, their objectives and benefits are discussed in Section 5.4.6.4. 

Process level primitives are implemented at datagram level as a group of datagram 

commands. Network level routing, packet assembly/disassembly, handling of related 

data structures (look up tables, message, buffers, ports and mailboxes, etc.), and 

realization of semantics of each protocol are defined at the datagram level with the 

collaboration of the kernel. These services are summarized as network routing, datagmm 

packing/unpacking, and datagram delivery services. The Circuit Establishment Protocol 

is also implemented at this level. 

The last layer of the RT-DOS IPC mechanism is the physical level link connection 

service. Though once two Transputer links are physically connected synchronization and 

transfer of data through link pairs are handled by Transputer hardware, a policy layer 

should map channel names established to connect two distant processes, to a pair of 

physical links and connect them to each other through C004 programmable link 

switches. Data exchange between process pairs is implemented via Transputer link 1/0 

commands (Linkln, LinkOut) at this lowest level. Packet forwarding from one node to 
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the next one through the network is also implemented by this physical link I/0 

commands. 

5.4.5 The Basic IPC Entities and the Communication Primitives 

The basic RT-DOS IPC objects (communicating entities) are processes, the IPC servers, 

the RT-DOS Kernel, and the Name Server. All system servers, including the Name 

Server, are treated as ordinary processes by the RT-DOS IPC mechanism. The IPC 

provides them with a message transport service, regardless of their ftmctionality, 

importance, or the level of layer in which they reside. The semantics of communication 

between any communicating parties, error checking, recovery and communication control 

are assumed to be implemented at process level (end-to-end). 

Primitives used to implement different communication protocols are summarized in 

Figure 5.4.4(2), and they are discussed in the relevant paragraphs of Section 5.4.6. The 

IPC Connection Service consists of two agents and communication stubs created by each 

kernel on behalf of the communicating processes. The IPC Connection Manager and 

Switch Manager agents are explained in Sections 5.4.5.3 and 5.4.5.4, respectively. 

5.4.5.1 User Processes and System Servers 

All operating system servers, including the ones which form the kernel policy layers, are 

treated as ordinary processes, and all of them use the IPC services to communicate with 

each other by message exchange. For example, the Time Server implements a network 

wide global timing service, and uses the IPC message passing mechanism to update 

(synchronize) clocks on all nodes. The File Servers and the Terminal Servers are also 

treated in the same way. The IPC message passing mechanism transfers messages 

between ports of processes. For multiport servers (for example, the File Server), N: I 

semantics of communication and client-server protocols are implemented at process level. 

One of the most important system servers is the Name Server and, as naming of 

communication entities are directly related to interprocess communication, it is discussed 

below. 
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5.4.5.2 Name Server 

Name servers in general convert symbolic object names into often unique numeric 

identifications. The RT-DOS Name SeiVer also converts the RT-DOS object names 

(ports, channels, files, processes, servers) into system wide unique identifications (32 bit 

capabilities) which are generated from a partitioned name space. The RT-DOS has only 

one predefined well known name which is the Name SeiVer itself. All other names are 

converted into unique identifications dynamically by the naming service. To convert 

object identifications into addresses, the sender kernel broadcasts a "locate address" 

command and the kernel of the destination object replies with the location information. 

Each kernel maintains a local address caching mechanism to keep physical locations of 

the last referred objects, to increase the IPC performance. The penalty incurred by 

dynamic name binding is offset by the advantages of location independent addressing 

and the ability to reconfigure the system. That is, system objects can migrate 

dynamically during execution. None of the system servers except the Name SeiVer has a 

predefined address or identification. This provides the flexibility of changing locations of 

system services (as well as application processes) according to the requirements of a 

specific application. 

Processes, system nodes, and application domains have system wide unique 

identifications, created using a centralized name service. The rest of the IPC objects are 

created with locally unique identifications. For example, mailboxes are created locally 

by kernels and global uniqueness for point-to-point connections is established by 

combining them with port, node and process identifications. 

Figure 5.4.5.2(1) depicts a simple name binding table structure used by the naming 

service. Globally unique identification of each process, node, and domain are kept in this 

centralized table. Each kernel also keeps track of the physical locations of those objects 

to which local kernel accesses can be made. These address resolution tables are 

maintained dynamically. If the location of any object (process, etc.) is not found in the 

local address resolution table when it is referred to by a local process or kernel, the local 

kernel broadcasts a "locate address" datagram through the network. Then, the 

destination kernel sends a unicast datagram to the originator of the broadcast message, 

with the address of the destination object. Then the originator's message is sent to the 

destination address directly, and the local address resolution table is updated for later 

139 



Node 1 

Network 

Figure 5.4.5.2(1) : AT-DOS Name Server Dynamic Name Binding Protocol 



reference. If the destination object migrates after the local cache table is· updated, the 

former kernel of the migrated object sends an "address changed' notification to the 

originator kernel, so that it can broadcast a new locate address datagram to find the new 

address of the destination object. A message is sent to the destination with process 

identification and location address (combination of domain identification and node 

identification in domain). The mapping of process identifications into port capabilities is 

carried out by the destination kernel. 

Object identifications are created using a random number generator to enable the reuse 

of the object ids for limiting the size of object name space (and consequently, reducing 

the size of the IPC datagrams). If a new identification conflicts with an existing one, 

another number is generated until its ·uniqueness is guaranteed. Locations are only 

known and used by kernels, and are totally invisible to the rest of the system. 

Assignment of domain and Transputer numbers is performed during system 

initialization, or following dynamic reconfigurations. 

There are some positive and negative affects of generating object identifications serially 

and randomly on process migration. Nevertheless, the IPC mechanism is designed as a 

compact transport mechanism carrying messages between kernel entities irrespectable of 

how their identifications are created, and hence, a further elaboration of the maintenance 

of object identifications would be too much detail in this context. As the IPC mechanism 

assumes the uniqueness of identifications of the communicating objects, and maintains 

only address resolution tables to locate these objects when it is required, a full discussion 

of the details of the name server implementation is out of the scope of this thesis. 

5.4.5.3 Connection Service Managers 

The Connection Sen>ice (point-to-point communication service), one of the transport 

layer communication services, is built ori" top of the unreliable datagram service, arid 

establishes end-to-end reliable connections over the switched Transputer links, using a 

rendezvous based strategy. 
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The connection service consists of three service agents: the Connection Manager, the 

Switch Manager, and the Switcher. Though connection service hardware and related 

components are physically distributed all over the network, logically it is a centralized 

service for each System Loop (more than one system loops per network can be 

established by gateways) and related application domains. The number and location of 

these agents are determined by the requirements of the supported real time systems. 

The Connection Manager accepts connection requests issued by sender and receiver 

processes to establish a point-to-point connection between their address spaces through 

physical links of related nodes. It maintains a request matching table and defines the node 

pairs (Transputer pairs) to be connected matching related requests. It then conveys its 

decision to the Switch Manager, so that it can choose the available links of nodes to be 

connected. Mapping of the physical links to switchboard edges is carried out by the 

Switch Manager using a configuration table which is created during the system 

initialization process as part of the network loading. It also notifies the requesting 

processes about the connection status, and sends disconnection requests (connection 

release requests) to the Switch Manager. 

The Switch Manager accepts connection requests from the Connection Manager and 

determines the links to be connected. It maintains a configuration table which is created 

during system initialization, and keeps track of available links at each node for 

connection establishment. After each successful connection establishment, it informs the 

Connection Manager which, in turn, notifies requesting processes. The Switch Manager, 

after deciding about the links to be connected at each node, sends a requests to the 

Switcher to execute the hardware commands to set the physical connection between the 

node links, through programmable link switches. Before sending link configuration 

commands to the Switcher, the Switch Manager maps Transputer link numbers into 

switchboard link numbers using the link configuration table. 

The Switcher is a simple process waiting for link configuration commands issued by the 

Switch Manager. It accepts one of the seven C004link switch configuration commands, 

and sends them to the link switch hardware through its config link which connects the 

link switch hardware to the Transputer on which the Switcher resides. 
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Data structures used by these servers to set connections and all steps of a connection 

establishment protocol are explained in Section 5.4.6. 

5.4.5.4 Communication Agents 

The Communication Agents monitor communication operations of ports and mail boxes 

in each kernel. They keep track of the status of connections and message buffers for 

recovery and restart procedures, in coordination with the datagram delivery service. 

5.4.6 Message Exchange Protocols Used Between Communicating Entities 

The RT-DOS processes communicate with each other using two basic message passing 

protocols. One of them is direct data transfer between process address spaces using a 

reliable synchronous point-to-point physical connection. This method is discussed as the 

Circuit Switching Service in Section 5.4.6.2. This method is used only for bulk data 

transfer between processes, and for N: 1 type of client-server communications to reduce 

the connection establishment costs which are explained later on. 

Another communication method is a group of asynchronous unreliable message exchange 

protocols used for the transfer of small messages, especially between processes 

communicating in the same domain to retain local message traffic in the domain 

boundaries. These communication protocols are considered as the Packet Switching 

Service and explained in Section 5.4.6.3. 

The group communication services are integrated into the packet switching service and 

· handled at this level. These services (broadcasting, multicasting, domaincasting, and 

domain multicasting) and circuit switching service are all implemented on top of an 

unreliable datagram service. Therefore, the unreliable datagram service is discussed first 

in Section 5.4.6.1. Though group communication protocols are implemented within the 

message switching service, they are separately discussed in Section 5.4.6.4. 

5.4.6.1 Unreliable Datagram Service 

The core of all the IPC services is a simple unreliable datagram service. It carries 

control commands between kernels for connection establishment, as well as short 

messages between processes. A simple message routing algorithm forwards datagram 

packets from node to node in the Domain Loops or the System Loop. Each packet 
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carries full address infonnation of the packet source and destination (if the packet is not 

a "locate address" command). 

The packet routing algorithm behaves slightly differently at different nodes, though the 

same copy of the code is nmning on each one. A domain manager node is an intersection 

between an application Domain Loop and the System Loop, and thus it might direct a 

packet through the System Loop (if destination domain is different than the current 

domain) or to the current application domain loop (if destination and current domains 

are the same). As all four links of the Domain Manager nodes are dedicated for the loop 

connections (two for application Domain Loop and two for the System Loop), there is no 

link available for a connection establishment with another node. 

Figure 5.4.6.1(1) depicts the architecture of the datagram routing service on a Domain 

Manager node. A datagram packet can arrive at the node from one of two links 

(FromOsNode and FromDomainNode). FromOsNode link connects the node to the 

System Loop and packets coming through the System Loop enter the node from this link. 

A line driver process waiting for arriving packets from the link puts the incoming 

packets on a queue (FromOsQ). Another process (FromOsDispatch) takes the packets 

from the queue and checks with the destination node. If the destination node is not the 

current node, then the process checks with the destination domain. If the destination 

domain of the packet is different than the current one, then the packet is put on ToOsQ 

queue from which packets are sent to the next node of the System Loop by ToOsLink 

process. If the destination node is the current node, then the packet is put on the queue 

FromOsToNodeQ, to transfer to a local process bytheNodeDispatch process. 

The second data link from which datagram packets arrive is FromDomainNode link. 

The line driver process FromDomainLink accepts packets coming through this link from 

the application domain loop and puts them on the queue FromDomainQ. Another 

process (FromDomainDispatch) takes the packets from the queue and puts on the queue 

FromDomainToNode if the destination domain is different to the current one, or the 

destination node is the current node. 

Packets put in this queue are distributed to either local processes (if destination node is 

the current one), or sent to the System Loop through ToOsQ queue (if the destination 

domain is different to the current domain). 
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If the destination domain is the current one and the destination node is not the current 

node, then FromDomainDispatch process puts the packet on ToDomainQ queue from 

which packets are sent to the next domain node through the link ToDomainNode by the 

process ToDomainLink. 

The NodeDispatch process reads packets from the queues FromProcessQ (packets sent 

by local processes), FromDomainToNodeQ (packets sent by other nodes of the current 

domain to nodes on other domains), and FromOsToNodeQ (packets coming from other 

domains and targeted to the current domain or node); and then distributes them to the 

queues ToProcessQ (destination process of packet is one of the local processes), ToOsQ 

(destination domain of the packet is not the current one), or ToDomainQ (destination 

domain of the packet is the current one but the destination node is not the current node). 

Packets of local processes and remote processes are treated in the same way. From the 

implementation point of view, packets are copied twice only from input link to the kernel 

buffers and from the kernel buffers to the output links or local process buffers. All 

queues are lists of packet buffer addresses only. 

The datagram packet routing algorithm is slightly different at Os/Domain (non-domain 

manager) nodes, though the same copy of the code is executed on all nodes. As can be 

seen in Figure 5.4.6.1(2), some modules of the datagram delivery service are suppressed 

on Os!Domain nodes. Os/Domain nodes are connected only to one loop (either the 

System Loop or the Domain Loop), and datagram packets can come through a domain 

link only (FromDomainNode). Outgoing packets also can be sent through a domain link 

(ToDomainNode) only. FromOsLink, FromOsDispatch, and ToOsLink processes are 

not active; so that the NodeDispatch process accepts packets from the local processes 

and the FromDomainDispatch process, and then distributes them to the local processes 

only. 

The main difference between domain manager and Os/Domain nodes is in their 

functionality. Os!Domain nodes have two free links to be used in point-to-point data 

transfer between processes residing on different nodes. The datagram service carries 

control commands to establish a connection between these nodes only, but exchange of 

data after setting physical connection takes place independently of the datagram services. 
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A packet discarding mechanism is also implemented as part of the datagram delivery 

service. A packet deadline (last time to use) field is used to discard wmseful packets 

when they arrive at a node. A packet is discarded if its deadline time is earlier than the 

current global clock value. A discard bit is also used to eliminate packets which circulate 

a domain loop or System Loop once. No packet is allowed to visit any node twice in the 

network. 1bis schema is useful especially to eliminate extra copies of broadcasting 

messages issued to locate process addresses. Regardless of the type of a node, all nodes 

execute these message discarding procedures, except that only the originator node of the 

message can use the packet discarding field to eliminate the cycling messages. The 

domain managers also act as originator node for the messages which are sent by some 

other domain but circulate in the current domain (broadcasts, multicasts, domaincasts, 

etc.). 

A datagram packet can be fixed length (control commands used between kernels) or 

variable length (process messages). As is shown in Figure 5.4.6.1(3), a packet consists 

of a header, source and destination addresses, and the message itself. A packet can be a 

minimum 36 bytes and a maximum 2039 bytes. 

Packet Header consists of the following fields: 

a) Datagram Command : One byte. This field is used to carry commands between 

kernels to set connections or notify them of important events. For process 

messages, . it indicates if the packet is carrying data or not (99=packet carries 

data). A complete list of datagram commands are given in Figure 5.4.6.1(4). 

The first eight of commands (0 I to 08) are related to point-to-point connection 

establishment. Commands can be related to one destination (Unicast), or 

multidestination (Broadcast, Multicast, Domaincast, or Domainmulticast). 

Three of the commands are related to locating process addresses [TayliE 1990, 

Enslow 1978, StankovicA 1984]. The ultimate one is used as an 

acknowledgment, to inform processes which are waiting for a reply from the 

destination process (to establish reliable communication channels). 

In Figure 5.4.6.1(4), possible originators and recipients of datagram commands 

are also given with the related reply command, if any. 
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For example, Communication &quest command (01) is issued by sender 

process's kernel to the recipient's kernel for initiating a circuit switch between 

two processes. If the recipient process is ready for communication, its kernel 

replies with a &ady To Communicate command (02). If the datagram command 

is Data Packet (99), recipients can be a single process or a group of processes 

depending on the type of the datagram (for Unicast: one process; for Broadcast, 

Multicast, etc.: many processes); 

b) Datagram Tvpe : One byte. Datagram type is related to the number of 

destination objects, such as (U)nicast (to a single process), (B)roadcast (to all 

kernels), (D)ornaincast (to all processes in an application domain), (M)ulticast 

(to a group of processes on the whole network), and (D)omain (M)ulticast (to a 

group of processes in a domain). Datagrarn type information is used for packet 

routing, and maps process level group communication requests directly to the 

datagram level primitives; 

c) Msg Deadline : Two bytes. Message deadline is used to implement real time 

feature of the IPC. Value of this field is used to decide if message is still useful 

at any time before it arrives at its destination. If value of this field is earlier than 

the value of global system clock at any time, then packet is discarded assuming 

that it is useless for the destination process. Its value is derived from the related 

process parameter representing the user request; 

d) Msg Importance : One byte. The message importance field is related to the real 

time feature of the IPC and will be used by upper level services. Its value (0 to 

9) is an indication of the relative importance of the packet. It inherits the 

importance of the message specified by sender process which reflects the related 

parameter of the user request. For urgent messages its value is high so that the 

packet can be treated differently fron( ordinary packets. Its value can be 

increased if the deadline of a packet is very close, so that it can be treated as an 

urgent packet and arrives at its destination before meeting its deadline. 

Determination and semantics of its value are assumed to be handled at the 

process level and the IPC uses the value in routing of the packet through the 

network; 
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e) Control Flags : One byte. Each bit of the field is used for different control 

pUI]loses. Currently it is only used for packet discarding purpose. Though 

packet deadline can be used to eliminate Wlused packets on the network, a 

discarding bit field can reduce the unnecessary cost of packet routing if it 

becomes useless before its deadline is reached. For example, if a packet 

circulates once through a domain loop and did not find its destination node on 

the domain, it should be discarded as a further circulation is useless on the same 

domain. The Domain Manager sets the field the first time the packet enters the 

domain, and eliminates it when it circulates all the nodes on the domain and 

arrives at the same node again, by checking this field value. If it is set when it 

arrives at the domain manager node, it means that this is the sec:Ond entry of the 

packet to the node. If the source node identification of any packet is the same as 

the current node identification when it arrives at the node, it means that the 

packet has circulated the current loop at least once and it should be discarded. 

Packet Source and Packet Destination have the same fields and are used for packet 

routing purposes. Each packet carries source and destination address information, but in 

some exceptional situations the destination address may not be required. Though 

carrying routing information (full address) with the packet each time incurs some extra 

communication cost, it offers the flexibility of changing process locations dynamically 

and reduces error recovery costs. Some fields within the ''packet destination" segment of 

the message will be empty, if the destination object's location is not known when the 

packet is issued. The fields and their values are as follows: 

a) Subnet Id : One byte. The subnet identification is used to indicate source or 

destination network, if a number of networks are connected to each other via 

gateways. If the current network identification is different from the destination 

network identification, then the packet is directed to the destination network via 

the relevant gateway node. The current implementation doesn't assume the 

existence of a multinetwork topology. The Subnet Id is a system wide !Ulique 

number; 

b) Domain Id : Two bytes. Domain identification is used to identify source or 

destination domain of packets. If the packet destination is not known, or the 

datagram is related to a group communication protocol, such as multicasting or 
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broadcasting, then this field is invalid (null). If the destination domain of a 

packet is different from the current domain, the Domain Manager sends the 

packet to the System Loop only. If the destination domain is the same as the 

current one, the Domain Manager sends the packet to the next domain node (if 

the destination node is not the application domain node itself), instead of the 

System Loop. The "packet source" carries the domain information all the time, 

so that the receiver's reply can be sent directly to the source address. It is a 

system wide unique number, and dynamically generated by a centralized name 

server; 

c) Node Id : Four bytes. It identifies the source or destination process's node 

address. It is used for packet routing purposes. The "node identification"s are 

globally unique and randomly generated from a 32 bit wide address space by a 

centralized name server. Each packet sender includes this field as part of the 

source address. If the packet sent is a multidestination message or the sender 

doesn't know the receiver's node address, it is not included in the packet 

destination "Node Id" field; 

d) Multicast!Process Id: Four bytes. Ths field is included in the "packet source" 

as the process identification at all times. For the "packet destination", it can be 

either a multicast identification (if the packet type is multicast or domain 

multicast) or a process identification (if packet type is unicast and the 

destination process is known). The "process" and "multicast identification" are 

globally unique and randomly created by a centralized name server. Ths field is 

empty if the packet type is broodcast or domaincast; 

e) Mailbox Id: Four bytes. The mailbox identification is included in the "packet 

source" segment of the messages at all times. In the "packet destination" 

segment, this field is empty for all group conununication messages 

(broadcasting, multicasting, domaincasting, and domain multicasting). The 

mailboxes are created dynamically with node-wide unique identifications. To 

establish a connection between two processes a mailbox is created by the 

relevant kernel of each process for exchange of protocol packets. Each 

communication entity on a node has a mailbox for every connection with other 

processes over the network. A kernel has one port (but as many mailboxes as 

153 



interprocess connections) for each process on the network. A connection is 

uniquely identified globally by a combination of two corresponding mail boxes 

and process identifications. 

The "message" segment of the packet is included in the datagrarns if the "message type" 

field is "Data Packet" (99), and it is not present (ignored) for the IPC conunand packets 

which carry no user messages. It contains three fields : 

a) .Msg Type : One byte. It is reserved for usage in the implementation of the 

process level end-to-end protocols. For example, integer and real type data 

representation on 16 bit and 32 bit Transputers are different and a data 

conversion procedure is necessary on heterogeneous networks. The sender's 

kernel updates this field to notify the receiver's kernel about the type of data 

sent. The semantics of usage of this field is out of the scope of the thesis. lhis 

field is ignored if the datagram type is not • Data Packet' (99); 

b) .Msg Leng : Two bytes. The length of the message is filled by the sender's kernel 

during the packet assembly process considering the length information of the 

user message. lhis field is ignored if the "datagram type" is not "Data Packet" 

(99). A message length carried by datagram packets can be a maximum of 2000 

bytes. The reason for this limitation is the assumption that the cost of a point-to

point connection establishment between two processes is about the same as 

transferring 2000 bytes. (as it is shown later on) through network nodes from 

source to destination using datagram service. If the length of user message is 

more than 2000 bytes, establishing a physical connection between source and 

destination Transputers and transferring data through physical links is more 

convenient in terms of network communication costs. An elaboration of this 

issue is presented in Chapter 6; 

c) Message Contents : 1-2000 bytes. Processes can exchange messages either by 

establishing direct physical connections between nodes on which they reside, or 

by sending the messages through the network using the datagram services. When 

to set direct connections or when to use the datagram service is a policy matter; 

and must be the decision taken by the higher layers. An upper layer requests the 

use of the most convenient data transfer method for its needs, considering the 

semantics of the communication it chooses. If the message length is less than 
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2000 bytes or communication type is not a kind of group communication, then 

using the datagram service directly is asswned to be more advantageous than 

setting a point-to-point connection between communicating entities. 

5.4.6.2 Circuit Switchiug Service 

The Transputer hardware allows direct point-to-point connection and communication 

between neighboring Transputers using high speed serial links. Classical architectures 

for Transputer-based systems are built around arrays or hyper cube interconnection 

topologies. With these types of topologies, any communication between non-neighboring 

nodes in the network typically involves the activity of many other nodes. This becomes 

very costly because of buffer allocation and transfer of data from node to node, if 

messages are of large size and/or frequent. 

The multiloop topology of the application domain based RT-DOS architecture reduces 

the cost of communication by isolating the local traffic of each domain from the overall 

system. However, allowing the direct node-to-node connections between any two 

Transputers to support interprocess communication is a necessity in some conditions, 

especially for bulk data transfer between physically distant processes. 

With the C004 dynamic link switches, circuit switching mechanism is used to implement 

direct node-to-node connections. These circuits are established on request for the 

duration of one message exchange between a pair of processes and relinquished 

afterwards to allow another pair of processes to communicate. 

From the IPC point of view, the Datagram Layer which has been built on top of the 

Physical Layer is considered as a communication back plane on which two 

communication models (circuit switching service and message switching services) are 

built. 

The circuit switching setVice is implemented by exchanging seven datagram packets 

between communicating entities (local kernels of two communicating processes and 

connection service). As is seen in Figure 5.4.6.2(1), one of the processes (the initiator) 

initiates the communication by sending a Communication Request to the second party 

(the responder). 
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In this schema (the current implementation), the initiator acts as client while the 

responder acts as a server. The server can have connections with more than one client 

process, but it can not establish more than two (maximum) concurrent connections at any 

time, as a node has a maximum of two free links to be used for point-to-point relations. 

A client process can have only one connection with any other server processes at any 

time. 

Consider a file se/Ver whic;h is waiting for file manipulation requests coming from user 

processes. Each user process issuing a file access request (read or write) to the file 

se/Ver is acting as a client. The user process must initiate the commtmication, as the file 

server can't anticipate the intention of any other process on the network without getting a 

service request from them. 

The server process can reject the commtmication request of the client by ignoring it if 

available resources (on the server node) to be used for connection establishment are 

already exhausted (buffers, links, etc.). If a server accepts the commtmication request of 

the client, then it sends a reply to the client's kernel (a "Communication Confirmation" 

datagram command). The client processes use the time-out technique to check the status 

of connection requests. 

After accepting the commtmication request of the client, the responder's kernel sends a 

"Connection Request" command to the connection service which consists of a number of 

complementary service agents with different functionality. The initiator's kernel also 

sends a "Connection Request" datagram to the connection service after getting the 

"Communication Confirmation" conunand from the responder. Then, the connection 

service matches the connection requests of client and server processes. 

After setting the connection through available links of the related nodes, the connection 

service informs both parties by sending a "Connection Ready" notification to them. After 

transfer of data through the connected Transputer links, the client site sends a • Release 

Connection" notification to the connection service, so that the Wlused (idle) Transputer 

links can be reused. 
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Figure 5.4.6.2(2) shows the connection establishment steps in their order. In the figure, 

Process 1 acts as client site while Process2 acts as server site. The connection service is 

represented by three system server agents : the Connection Manager, the Switch 

Manager, and the Switcher. These connection service managers will be explained later 

on with their important data structures. Kemell and Keme/2 residing on the same nodes 

are Process] and Process2, respectively. 

Process] and Process2 indicate their intention of commwlicating with each other by 

issuing input/output commands (Channelln and Channe/Out with the Prml parameter). 

The Prml ,parameter consists of the destination process identification, message buffer, 

message length, time-out (deadline), and message importance. The message importance 

is normally inherited from the priority of process which issues the I/0 command, unless 

it is explicitly specified differently with a parameter. 

Message time-out is used to avoid deadlock or starvation conditions, and to eliminate the 

unwanted messages. After agreeing on the commwlication requests, the kernels of the 

client and the server processes send connection requests to the Connection Manager. The 

Connection Manager then matches connection requests by using the channel capability 

sent by both parties. The channel capability consists of the client and the server 

identifications and the message mailboxes created during the commwlication exchange 

before the connection requests. 

To avoid deadlock or starvation conditions, the Connection Manager eliminates the 

unmatched connection requests after a time-out. Established commwlication channels are 

also released automatically considering their ages if the "Connection Release" 

notification of the client doesn't reach the Connection Manager in time, for any reason. 

After matching the connection requests, the Connection Manager sends a "connection 

order" to the related queue of the Switch Manager with the Prm2 parameter. The Prm2 

parameter consists of the identifications of nodes to be connected and the channel 

capability of the connection to be established. The Switch Manager checks available 

links on the given nodes. The Prm3 parameter consists of nodes on which status of links 

are checked. If both nodes have free links, then the Switch Manager sends a "Connect 

Order" to the Switcher process which is responsible for configuring the C004 

programmable link switches. 
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The Prm4 parameter contains the identifications of both nodes and links to be connected. 

The Switcher maps the Transputer link numbers to the C004 switchboard link numbers. 

The Prm5 parameter contains the C004 link numbers to be connected. After connecting 

the Transputer links, the Switcher informs the Switch MCliUlger about the connection 

result, so that it can update the status of the links accordingly. A busy link can't be used 

for any other connection until it is released. After that, the Switch Manager updates the 

status of the links and informs the Connection Afanager with the parameter Prm6. The 

Prm6 parameter consists of the node identifications, connection capabilities, and link 

numbers. After updating the connection status, the Connection M=ger notifies both 

commwl.icating parties about the status of their connection requests. If the connection 

establishment is successful, then the commwl.icating processes start data transfer through 

the physical links which are defined in the Prm7 parameter. If the processes requesting 

the communication can't get a notification before the time-out period, they assume that 

the connection request is not successful. In such a case, the method for handling the 

situation (retry or abort) is up to the application layer (policy) protocols, rather than the 

IPC itself. After exchanging data successfully, the client process's kernel notifies the 

Connection Manager, with a "Release Connection" command, of the completion of the 

commwl.ication, so that related links are released to be used in other connections. The 

Connection MCliUlger sends Transputer numbers and link numbers with the Prm9 

parameter to the Switch M=ger, and the Switch Manager updates the connection status 

of the related C004 links by mapping Transputer link numbers to them, using the 

configuration tables. In fact the links are not physically disconnected from each other, as 

there is no need for such an overhead. Instead, the status of the links are updated in the 

configuration tables (i.e., changed from "busy" to "idle"). 

Figure 5.4.6.2(3) shows the basic components involved in a connection establishment 

protocol, and the steps followed in the process. Figure 5.4.6.2( 4) also illustrates the 

implementation of the data structures of the Connection Setvice. The Connection 

Setvice consists of two service managers (the Connection Manager and the Switch 

Manager) and a Switcher agent process. Connection service managers can be physically 

on the same Transputer (node) or different Transputers. They exchange the circuit 

switching protocol commands through the raw datagram service. 

The Connection Manager maintains a Request Matching Table to match connection 

requests of communicating parties. After matching the requests of two related processes, 
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it sends node pairs to be connected to the Switch Manager, through a queue. For any new 

connection request, the Switch MliiUlger checks the Request Matching Table, and if it 

finds a matching request in the table it queues the matching requests, so that the Switch 

Manager connects related nodes when it finds two free links on the nodes. If there is no 

matching request inserted in the table in advance, the request is inserted in the table and 

kept until the time-out period or a matching request arrives from the other party. Each 

entry of the Request Matching Table has initiator's identification and physical location 

(node and domain address), responder's identification and its physical location, and 

connection identification (combination of process identifications and mailboxes). The 

Connection MliiUlger waits until it gets a confirmation (from the Switch Manager) about 

the success of connecting two nodes through two free links. It sends a notification to the 

communicating processes after getting this confirmation. 

The Switch MliiUlger gets matched connection request from the Connection Manager 

through the Matched Connections queue (node pairs to be connected) and checks the 

nodes for available links to be connected. It maintains a Link Configuration Table which 

keeps tracks of status of all links of Transputers. Some of the links are dedicated for 

permanent connections between two nodes. The table is created Ooaded) at the beginning 

of system initialization or reconfiguration, with all available nodes, links, and their 

connectivity. :Mapping ofTransputer link numbers to the C004 switchboard links also is 

carried out at this stage. After connecting any link, the Switch Manager updates its 

status (from "idle" to "busy"); and sends a positive acknowledgment to the Connection 

Manager. 

After mapping Transputer and link numbers to the C004 switch link numbers, the Switch 

Manager orders the Switcher to configure switch links accordingly, by sending the C004 · 

configuration commands. The Switcher process is residing on a different node (a T212 

Transputer reserved for configuring the C004 switch links). T212 Transputers, dedicated 

for the C004 link configuration, has the only 2KB of on-chip RAM. The Irunos Parallel 

ANSI C compiler, which is currently used for the IPC implementation, can not generate 

code less than 4KB. Because of this specific technical reason, the Switcher process is 

coded in the OCCAM language, compiled with the TDS compiler which can generate 

code with size less than 2KB and loaded on this Transputer with a specific loader during 

initial configuration. It accepts the C004 link configuration commands and downloads 

this command to the C004 programmable link switch through its Con .fig Link. 
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For the details of C004 dynamic link switch and its configuration commands, please refer 

to Section 5.4.3. 

5.4.6.3 Packet Switching Service 

For bulk transfer of data (more than 2000 bytes) between processes, the point-to-point 

connection is advantageous; but for small messages, the cost of setting a connection 

(number of datagram packets exchanged between communicating parties), in terms of 

network traffic and number of node interrupts, is far more than sending the messages 

directly to the destination through the datagram service. In addition to this, the processes 

on the domain manager nodes can't set any point-to-point connection with any distant 

process as these nodes don't have any extra link to be used for a connection 

establishment. The message switching service is the only means of communication for 

them. Also for the group communications, the point-to-point communication service is 

very expensive comparing to the distribution of the messages through the datagram 

service, directly. 

Because of all these reasons, the message switching service is provided as an alternative 

communication model to the circuit switching technique. The message switching protocol 

is implemented at the datagram service level by mapping the data transfer request of a 

process to a single datagram command. If the datagram type is "Data Packet" (99), then 

the user message itself is forwarded from node to node with the datagram packet until it 

reaches its destination. The sender process provides the datagram service with the 

destination process identification, message length, message itself, a time-out (O=nowait 

or deadline), importance of the message (0 (unimportant) to 9 (urgent)), and a mask 

indicating whether a reply is required (for reliable communication) or not (for unreliable 

communication). All those parameters are represented within a field of the datagram 

packet format and each datagram packet carries this information to the destination. 

During the packet assembly process, the sender's kernel checks the local address cache 

buffer if the destination address (domain and node identifications) is known or not, using 

the globally unique process identification. If it is found, the message is sent directly to the 

destination after assembling the message with a datagram packet. 
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If the location address of the destination process is not lmown a priori, the sender's 

kernel broadcasts a "Locate Address" command, and receives a reply from the receiver's 

kernel with the node and the destination address of the recipient. The sender's kernel 

registers the distant process's address in the local cache and sends the message to the 

destination. If the sender expects a reply from the recipient, it waits until time-out. The 

sender's kernel notifies the sender process with a status which indicates either a failure or 

success of the last communication attempt. If the sender doesn't receive a positive 

aclmowledgment in the time-out period it assumes that the message did not reach the 

destination. How to handle this erroneous situation is up to the high level policy layers. 

The receiver process opens a rnailbox and waits for the sender's message until time-out. 

The semantics of the message is defined between the communicating processes (end-to

end protocol). 

The IPC routing service forwards the message bundled in a datagram packet, from one 

node to another node until it reaches its predefined destination. Packet discarding is 

carried out by the datagram service. If the message deadline is reached before the packet 

completes its circulation all through the network, then it is discarded automatically. The 

sender process is not notified of any network or communication failure. Only in the 

situation when the receiver's address has been changed, is the sender's kernel informed, 

by a "Process Address Changed' (I\) command, so that it can update its address cache 

accordingly. The kernel resends the message again if it is required, considering the 

semantics of the protocol defined between communicating parties. The sender should 

broadcast a "Locate Address" command to locate the new address of the receiver if it 

wishes to repeat the message transfer. The kernel of the former receiver process does not 

keep track of the new address of the receiver. 

Though this approach is inefficient and increases the network communication costs, it 

provides flexibility and location independence for process migration and reduces the error 

recovery costs. Because of the efficiency considerations, the sender process can be 

informed about the new location of the receiver process, by maintaining the new address 

in the address cache of the former kernel. 

Congestion is also handled by the datagram delivery service. If the resources of any 

kernel are insufficient to handle the last packet arrived, just because of the lack of the 
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message buffers or for any other reasons, the message is discarded (ignored) 

immediately, without notifying the message sender. The message sender waits IDltil the 

time-out and assumes that the message is lost or rejected, if the comnnmication status 

indicates a failure (if sender expects a reply for its message). Error recovery, in a 

deadlock or starvation situation, is handled by end-to-end process level protocols defined 

between communicating parties. 

5.4.6.4 Group Communication Services 

Most, if not all, of the systems are based on some form of broadcast communication 

media (e.g. ring or Ethemet hardware) and so the lower levels of the IPC can take 

advantage of this and ignore routing problems. Although this is not the case with current 

Transputer based systems, the RT-DOS multiloop topology does provide a useful 

starting point to implement an efficient infrastructure for establishing group 

communication protocols. 

There are four types of transport level group communication protocols implemented at 

the IPC level of the RT-DOS. These are Broadcasting, Multicasting, Domaincasting, 

and Domain Multicasting. Each one of them implements. a different type of N: 1 

communication (a number of clients access only one server) at different context. 

Broadcasting is used to locate address of a process on network. It is implemented at the 

IPC datagram service by mapping to a datagram command. Destination fields of the 

packet are empty, and the packet visits all nodes all over the network even if it arrives at 

the intended destination process. The packet is duplicated at each domain manager node 

by the packet routing service and sent to the each domain loop, as well as the next node 

of the System Loop on its way. Each duplicated packet is discarded either after it 

circulates the loop once, or at the destination process after it reaches there, or anywhere 

on the network if the packet deadline is reached, or at the source node if it returns back 

after circulating the related loop once. If the sender gets more than one reply for a Locate 

Address command, it accepts only the first one and ignores the rest 

If the datagram type is Broadcast and the IPC command is defined as Data Packet, then 

the message is distributed to all kernels on the network. Because of the efficient routing 

algorithm supported by the RT-DOS. multi loop topology, a broadcasting message 

circulates all network without passing through any node more than once. 
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The second group corrummication protocol is the Multicasting protocol. It is used for 

sending a message to a group of processes distributed all over the network. 

Multicasting is also implemented with a datagram command at datagram level. The 

datagram type is Multicast and the IPC command field is Data Packet. The destination 

domain, node, and mailbox identifications of the datagram packet are empty, while 

process identification is interpreted as multicast identification. Each process has a 

globally unique multicast identification (group membership identification) as well as 

unique process identification. Uniqueness of multicast identification is maintained by a 

centralized naming service, in the same way as process identifications. Semantics of 

group identification, the decision to add a member (process) to a group, canceling group 

membership of a process, etc., are out of the scope of the IPC implementation. These 

issues are handled by process level policy layers. The IPC datagram delivery service can 

deliver a packet to alJ members of a group regardless of their physical location at the 

moment of packet distribution. 

Multicasting is treated as broadcasting by the packet routing service. Each process's 

multi cast identification on each node of all application domains and system domain loop 

are checked for the similarity of destination multicast identification. If multicast 

identification of any process is the same as the destination multi cast identification of the 

packet, then the packet (message) is copied to the mailbox of the process. Duplication of 

the packet through domains, discarding of unused or aged (or repeating the same route) 

packets, and other routing problems are handled in the same way as a packet 

broadcasting. 

The IPC level support for multicasting service can be useful especially for multiple copy 

update problem. If any message (a notification or statistical information) should be 

displayed on all terminals, then a copy of the message is sent to each terminal server. 

Multicasting has been recognized as a powerful facility in distributed systems for 

implementing decentralized naming, distributed scheduling, parallel computation, 

distributed transaction management and replication [Kaashoek 1990). 

The third IPC group communication protocol is Domaincasting. Domaincasting is a 

broadcasting restricted to one application domain only. It is also implemented by a single 
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datagram command. Packet destination fields are empty except the Domain Id field, like 

in broadcasting, and the packet type is (D)omaincast. It is useful for informing all 

processes of. an application domain about an event, or distributing a message to the 

whole domain context without affecting network traffic.performance at other domains. 

The last IPC group communication protocol is Domain Multicasting which is a message 

multi casting restricted to a single domain. All multi casting group members which receive 

the message will reside in the same domain space. The datagram type is (D)omain 

(M)ulticast and packet destination fields are empty, except Domain Id and Multi cast Id 

It can be used to handle multiple copy update problem in the domain context. For 

example, if a replicated copy of a file is maintained with its original copy to increase 

fault tolerance, this IPC group communication service can be used to implement this 

protocol. It is implemented at the IPC level by a single datagram command. The 

datagram routing service treats the domain multicast packets as combination of 

domaincast and multicast. A message is copied to all group members residing in the same 

domain. 

5.4.7 The IPC Data Structures and the Message Layouts 

During initial loading and system reconfiguration each node is given a unique 

identification and some data structures are initialized to support the IPC packet routing 

and delivery services. Each node is given a network identification (MyNetwork), domain 

identification (MyDomain), and node identification (MyNode). Connectivity of each link 

(permanent Transputer-to-Transputer connections, C004-to-Transputer link connections, 

etc.) on a node are also defined in the Switch Manager's link configuration table (Links 

Con.ftg Table). 

In Figure 5.4.7{1), the basic IPC related node data structures are given. DomainlnLink 

· and DomainOutLink are physical link numbers which connect the current node 

{Transputer) to the previous and next nodes of the current domain loop. OsinLink and 

OsOutLink are physical link numbers of the current node which connect it to the 

previous and the next nodes of the System Loop, respectively. 

These links are free on nodes which are not domain managers, and used for point-to

point connection establishment. Node Type indicates if the node is an ordinary node on 

any loop (a domain or the System Loop), or it is an application domain manager node as 
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has been shown. The datagram routing algorithm, packet discarding policy, error 

recovery and some the IPC related services act differently on domain manager nodes, 

though the same copy of the IPC is running on each node. 

As an example, the domain manager nodes don't have any extra links for point-to-point 

data transfer, and any process on these nodes must use message switching service when 

communicating with any other distant processes. Broadcast and multicast messages are 

duplicated on these nodes and sent to domain loops as well as the next node on the 

current loop. 

There are two basic tables on each node regardless of the their type, in addition to 

specific tables and data structures related to servers which reside on the node. The Local 

Process List table is maintained to keep track of active processes on each node. Their 

globally unique identifications, symbolic names, multicast identifications, port 

identifications and the list of active mailboxes related to the connections with the other 

processes, are the basic important fields which are directly used by the IPC datagram 

routing service. 

The Remote Process Address Cache table is maintained for efficiency reasons. 

Addresses of the latest referred remote objects (processes, servers, etc.) are kept in this 

table to increase performance of the IPC datagram service. If the physical location of any 

process is known before it is sent a message, it is not necessary to broadcast a Locate 

Addres:; datagram command to find the address of a process. For each process 

referenced, the table has an entry which consists of process identification, network 

address of the process, domain identification, and node identification. 

For each circuit switching or message switching session, the ~erne! creates a mailbox on 

each nodes involved in a connection, to keep track of the latest status of communication 

and the exchanged messages. · 
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5.4. 7.1 Message Buffers 

Communication bandwidth, node buffer space and node processing power have been the 

critical resources for message passing systems. The advantage of using a fixed packet 

size are twofold: it enables fast packet processing at the physical layer, as buffers could 

be statically allocated, and as such it increases the overall network bandwidth; it may 

also result in a more predictable (deterministic) network response, as individual clients 

can't lock a given link with the transmission ·of extended packets. However, the 

implementation of a fixed packet size would significantly reduce the end-to-end 

bandwidth, as it necessitates an additional copy of all message data from user buffers to 

kernel (physical-layer) packets at both ends of the transfer. 

The RT -DOS IPC uses fixed size datagram packets routed from node to node using a 

store and forward teclmique, without error checking and hence datagrams may be 

corrupted or lost (reliability is assumed to be implemented by higher level layers, 

including message sequencing and error recovery). For all processes on each node, a 

message buffer is created for both sending and receiving messages. These message 

buffers are called mailboxes, and for each connection between two processes a mailbox 

is created at both sites to identify the connection uniquely system wide. Mailbox 

identifications are unique on each node and maintained by the local kernel. For any 

process on a node, there might be more than one mail box at any time, especially if the 

process is a server. For example, a file server might have a connection with each one of a 

number of clients at any time, concurrently. There is no limitation about the number of 

connections with a server and its client processes, except the availability of local 

resources such as memory. For each connection request coming from a client process, a 

message buffer (mailbox) is allocated dynamically if the request is accepted. This 

schema supports N:l mode communication. For any client process, it is assumed that 

there might be more than one active mailbox as well; assuming that the granularity of 

computing elements of the RT-DOS kernel is at the thread level (subprocesses running 

concurrently) rather than processes themselves. 

For each mailbox message length, message buffer, message status, local process 

identification and remote process mailbox identification relating to the active connection 

are maintained. A stub process to assemble and disassemble messages coming/going 

to/from a mail box is created by the kernel when the mail box itself created. 
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5.4.7.2 Communication Ports 

Commwlication entities that wish to establish a connection first create a mailbox 

identified by a capability representing the requested connection or cornmwlication 

channel. The mailbox is attached to a local communication port and initialized with the 

proper unmarshalling procedure. Subsequent connection requests refer to the mailbox. 

The triplet channel identifier, port location, and port identifier names a connection 

request wliquely lUlder any condition. The identification of sender and receiver is 

combination of domain identification, node identification, and port number. Ports are 

seen as mailboxes internal to a kernel, and allow non-ambiguous delivery of datagrams. 

Basic system servers (such as the Connech"on Se!Ver and the Name Se,er) have 

publicly known port names. Each process has a port (but a number of mail boxes) related 

to it and created by the local kernel to managing packet distribution. A packet directed to 

a process is put first to the local port of the process and then copied to the related 

mailbox. 

In the following chapter (Chapter 6), some implementation problems and the 

implications of a number of different alternative solutions for these problems on the RT

DOS performance are elaborated. Some of these claims are tested and reconfirmed after 

the real implenetation, at the end of Chapter 7. 
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6 ELABORATION OF IMPLEMENTATION ALTERNATIVES 

AND SOME IMPROVEMENT AREAS 

The biggest bottleneck of the current RT -DOS IPC implementation is availability of 

system resources for point-to-point connection establishment. These are the centralized 

connection service, network bandwidth to carry datagram commands between 

communicating parties (connection request, release, locating address of destination, etc.), 

and processing power of network nodes to handle interrupts related to datagrams 

circulating all over the network. 

One alternative to reduce the number of datagrams to be exchanged between 

communicating entities to establish a connection is to send requests directly through 

physical links dedicated for this purpose, instead of broadcasting them through the 

network. Figure 6(1) presents this approach quite clearly. In this approach, one of the 

four links of each Transpute; is dedicated for only sending connection requests and 

getting replies from connection service (Fixed Connection/Disconnection &quest 

Links). A polling process as part of the connection service can regularly poll the links by 

connecting the special link of config Transputer on which it resides to the each link of 

application Transputers in turn. If a process on any of these Transputers requests a 

connection with a remote process, it will forward its packet through the dedicated link to 

the polling service when it is polled. Another process of the connection service (the 

Matching Process) can match all collected requests as currently required and then 

forward to the Switch Manager which, in turn, will connect the matched processes using 

its link configuration table and inform the polling process. Then, the polling process can 

inform the connected parties about the readiness of the connection when the next polling 

rum comes for the processes. In this way, the System Loop and domain loops will not be 

used for the exchange of datagram packets to establish a connection, and the cost will be 

reduced considerably. The System Loop and domain loops will be used for only real data 

exchange. The IPC predictability also will be improved as the polling period of all nodes 

can be estimated in advance precisely. 

The only problem with such a schema is that the number of Transputer links are not 

enough for setting point-to-point connections between processes after dedicating one of 

the links for connection establishment. 
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The new high perfonnance (Transputer compatible) Texas Instruments' 1MS320C40 

chips [TranstechA 1993, TranstechB 1993], with 6 serial Inmos compatible links, could 

be very suitable for such a schema. With the current Transputers, for this 

implementation domain manager nodes would need to be created using at least two 

Transputers, and this will complicate the design considerably. 

The second optimization to reduce the communication cost of the RT-DOS processes is 

to group system services further into subdomains, similar to the current application 

domains. As the RT-DOS kernel and the IPC treats all system processes (including 

servers) and user processes in the same way, the grouping of the related system services 

in separate domains will isolate their message traffic from irrelevant messages, and as a 

consequence, lead to a better utilization of the system resources. 

For example, grouping all terminal servers in a separate domain will contain multicast 

messages sent for terminals to this domain only. To handle multiple copy update 

problem also this approach will be very effective, as a multicast message can be sent to 

all copies of. file servers in the same domain without affecting the network traffic on the 

other parts of the system. Please see Figure 6(2) for the suggested schema. 

The idea of exchanging data between processes by only preestablished point-to-point 

connections is based on the following assumptions: 

a) Processes don't exchange data arbitrarily. Instead, once a connection between 

two process is established they will keep exchanging data at least for a 

reasonable time period. Both of them will not need any other connection with a 

third party, as otherwise a separate connection setting per message exchange 

between processes would be necessary; 

b) Support for broadcast and multicast class of message exchange will not be 

crucial at all. Either they will not be needed at all, or only very occasionally. 

It can be shown that these assumptions are not valid by a few scenarios as below: 

1) The status of any application domain (or process) might be monitored from a 

few terminals at the same time, or the status of a few application processes 

might be monitored on the same terminal alternately; both cases need to set a 

new connection for every data exchange, because the number of Transputer 

links to be used for connections is limited (maximum 2); 
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2) In the same application domain, a process is receiving data from two remote (in 

the same domain) processes and sends data to another two processes, so that it 

needs to share its two data links for four different concurrent connections. 1bis 

situation will impose the setting of a new connection for every data exchange. It 

means that, a process can't exchange data efficiently with more than one process 

concurrently; 

3) A server process might be the destination of more than one process at the same 

time (for example a file server is supposed to handle a number of connections 

concurrently). No process can keep its connection alive for even a short period 

of time, because the server has to handle alternating requests of processes. 

Every data exchange with such a server process will cost a new connection 

setting for the server; 

4) Keeping relations between processes stable and fixed (to increase performance) 

will decrease flexibility and concurrency of the overall system; 

5) If any process wants to broadcast a message on all terminals, it will be too 

costly, if possible; 

6) The aim of g;~thering interrelated processes in to the same domain is to isolate 

the domains from rest of the system to obtain error containment and increase the 

performance of the individual domains as well as the overall system 

performance (by reducing the intra-domain and inter-domain message traffics). 

1bis means that, processes in the same domain are likely to exchange data 

between themselves rather than between inter-domain processes. A datagram- . 

like connectionless message exchange protocol might be more efficient than 

setting connections between processes (by accessing a remote switchboard 

process) for every message exchange. If some processes in the same domain 

need permanent (or near permanent) connections, permanent links can be 

established; 

7) Datagram-like message exchange mechanisms can not be protected from user 

errors (users might increase message traffic accidentally or intentionally). On 

the other hand, the same condition is valid for point-to-point type of message 

exchange protocols. If two different processes set and reset connections with a 

third process concurrently in a loop, even without any real data transfer, the 

whole network can be brought to a halt by only datagram messages sent to 

establish these alternate connections. 
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The switchboard and cormection service can be a bottleneck for point-to-point 

connection based protocols, as all connection requests should be handled by a centralized 

mechanism. All local processes in a domain must also send connection requests to the 

connection service, increasing the message traffic of the overall system unnecessarily. 

Multi casting and broadcasting will be needed in urgent situations to distribute a message 

at the same time to all parties. Point-to-point connection oriented protocols will decrease 

the efficiency (and effectiveness) of group commlUlication services and reduce the 

overall system parallelism. 

Nevertheless, the message switching protocol might not provide a predictable message 

delivery service (in the situations where group communication is a required) which is 

required by real-time systems. As a result, the following schema is suggested (and also 

adapted in the current IPC implementation): 

a) Message exchange between processes by setting point-to-point connections 

should be done for bulk data transfer. Short messages should be exchanged by 

datagram-like connectionless transport services. When any processor pair needs 

continuous message paths a permanent connection between them should be 

established. In addition to this, conversation type of connections can be 

implemented as an upper level layer on top of the datagram services to be used 

optionally when it is needed, instead of forcing all users to have only point-to

point connection transport protocol. Some processes might not need 

connectionless protocols at all; 

b) Predictability and reliability issues should be handled in upper layers to keep the 

IPC size at a minimum; 

c) Responsibility of separating bulk data transfer from small messages will be the 

responsibility of upper services in collaboration with kernel; 

d) Reliability issues should be handled by the policy layer end-to-end protocols 

established between the user processes themselves during the setting of the 

sessions. 

Some improvements can also be made to the current implementation. One of them is 

using a schema to redirect the connection request of the initiator process to the 

connection server directly by the designator, as is shown in Figure 6(3). 
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In this schema, if the destination process is ready for fonning a connection, instead of 

sending a reply to the initiator process about acceptance of the commwlication it 

matches the request and forwards it to the connection service. 1his will reduce the 

number of datagram packets to be exchanged from seven to five only. 

The rest of the connection procedure would be the same as current implementation 

steps: connecting Transputer links, informing commwlicating parties, and releasing the 

connection after data exchange. 

However, the most important disadvantage (and the only negative affect on the current 

implementation) related to this approach is the necessity of relatively longer time-out 

periods. As the IPC relies on time-out mechanism for resolving deadloek conditions, it 

should wait longer than the current implementation just to be sure that connection 

request of initiator is not lost; because, the reply of the responder will not directly come 

to the initiator. Instead, it will go to the connection service agents first, and after 

connection is set, the switch manager will send a notification to the initiator to inform 

about readiness of the physical links. If a connection request is lost, or some how did not 

get confirmed immediately, the initiator should wait for enough time to be sure that 

connection request is not under process by one of the connection service managers. 

The second improvement which can be added to the current implementation is that 

routing algorithms can be made more efficient by modifying as shown in Figure 6( 4). A 

short-cut (or shortest path) algorithm can forward packets from both directions of the 

loops (Application and/or the System Loop) instead of a fixed direction, considering the 

number of the nodes to be hopped in each direction. To do so, each kernel should 

maintain a shortest path table on each node to indicate the path length of each destination 

from the current node in both directions. At any node, the routing algorithm will check 

the routing table before forwarding a datagram packet to choose the direction through 

which the packet can reach its destination earlier, and send the packet through the 

relevant link of the chosen direction. Application manager nodes should maintain two of 

these tables, one for the related domain loop itself and one for the System Loop on which 

the domain manager node is residing. If a packet should be sent through the domain loop 

the table to be used for the shortest path direction is the one which maintains distances 

on the domain loop. 
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The most important problem related to this approach is that maintenance of these 

shortest path tables could be very costly, especially if application domains are built 

(dynamically) very frequently (this cost can be ignored if the system topology is 

reasonable static as the tables are built once during initialization only). In addition to 

this, for most of the group commtmication protocols (broadcasting an multi casting) this 

algorithm will be useless as the packet should visit all nodes on the network regardless of 

their physical location. In static topologies, as the tables do not need to be updated very 

often, they can be built during the system initialization (initial loading of configuration 

tables) and successfully used especially fortheunicast packets. 

In the following section, these issues are elaborated in more detail, as some of the 

options has been implemented for testing their performance affects on the IPC 

mechanism. 
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7 EXPERIMENTAL RESULTS AND CONCLUDING REMARKS 

In this chapter, the experimental tests which have been conducted to evaluate the real 

performance and behavior of the IPC under different circumstances, are discussed 

presenting the results with graphic charts. The possible reasons for the obtained results 

are explained and the relevance of the different communication parameters in predicting 

certain system.behaviors are elaborated. Finally, the real lessons that have been learned 

from the experiments are briefly submitted at the end of the chapter. 

The hardware configuration of the testbed which has been used for implementation of the 

RT-DOS IPC mechanism is shown in FigUI"e 7(1). As it can be seen on the figure, 21 

Transputers of different types (T425, T414, and T212) are connected each other to form 

a system loop and two application domain loops. The development system Transputer 

(Host Transputer) is excluded from the loops and used only system development and 

network loading. This node is being used as a system monitor as well, during the tests. 

7.1 Experimental Results, Performance and Behavioral Considerations 

The software configuration of the testbed (the hardware topology has been given in 

Figlll"e 7(1)) which has been used for measurements to evaluate the IPC performance 

and identify the system behavior under different communication loads is shown in 

Figure 7.l(l).The testbed consists of two application domains of 10 and 2 Transputers 

each, and a system domain of 10 Transputers. One Transputer (T414) is reserved for 

host operations, such as initial file loading, user/system interaction, tracing, etc.; and a 

process (HostP) is placed on it to perform the aforementioned ftmctions. A T212 

Transputer (I 6 bit) is dedicated for dynamic link switch operations and a process 

(Switcher) is placed on it to carry out the physical link cOnnection establishment task. 

The rest of the physical testbed can be summarized as follows: 

Speed of all links between Transputers of application and system domains were 

set to 20 Mbits/sec; 

Switched links were controlled by a single (centralized) Cormection Server 

process (ConnSrw) which is located on one of the system domain nodes, and 

consisting of a single link switch hardware controlled by a T212 Transputer. 

Titis node is used as the initial network loading point as well, as it is CO!Ulected 

to the host Transputer physically through one of its links; 
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A tracer process (Tracer) was also placed on the same node at which 

Connection Server process resides, to display the experiment results on the host 

terminal screen; 

Processes (Proc2-Proc19) were placed on all the remaining Transputers to 

generate varying conditions of message traffic; two domain managers were not 

involved in any communication interaction except for routin&'forwarding the 

comin&'going messages; 

All Transputers involved in communication are either 15 MHz T414 or 25 MHz 

T425 Transputers, except the one which is connected to a VT220 terminal (it is 

a T212); 

Tests were conducted with the version of lPC which was designed and 

implemented with the group communication protocols in mind. The shortest-path 

algorithm was not in effect during tests as it wouldn't make any sense to use 

such algorithms in group · communications since the destination process 

addresses are not exactly known in advance. 

The objectives of the experimental tests were to investigate: 

Connection times (minimum, maximum) between two processes placed on 

varying physical network locations (distance from Connection Server process) 

under different communication loads; and predictability limits of the lPC in 

terms of connection establishment times, under certain conditions; 

Minimum and maximum datagram delivery times (and node traversal times) of a 

datagram under different communication loads; and predictability limits for 

connection establishment and message delivery times; 

Effect of message size and/or lPC datagram buffer size in lPC performance and 

predictability limits; 

Performance changes in group communication protocols in terms of message 

delivery times, under different communication loads with varying number of 

destination processes; 

Communication overhead of group communication protocols and their effect on 

lPC predictability limits. 

Considering the above objectives, a number of tests are conducted. The best and/or the 

worst communication conditions, which are most ideal for each communication type for 

186 



which the test have been performed, were generated with different combination of 

processes. The facts that have been observed are presented in this chapter by a number 

of graphic charts, and each result is intetpreted briefly to elaborate on the possible 

reasons. 

The most interesting result of the tests was that communication delay of a message did 

not increase significantly with the increased number of destination processes in 

multicasting, as can be seen in Figure 7.1(2). During this test, a message with a size of 

2000 Bytes was broadcasted from Proc11 (see Figure 7.1(1) please). The internal 

Transputer times elapsed for the message to reach a number of different destination 

processes and get the reply (2000 Bytes) back to the same source node from all of these 

destination processes were also measured. Communication delay of a message 

broadcasted to 14 destinations (28200 f!Sec) was less than one third of one single 

message circulation time (21300 f!Sec) spent for the same distances. 

Physical locations of destination processes did not make any important performance 

differences during the test, as all messages should almost travel through the same 

number ofnetwork nodes to reach to the message source back. The other reason for this 

result was that the processing power of the nodes which are closer to the Tracer process 

(15 MHz T414 Transputers) were less than the power of the remote ones (25 MHz T425 

Transputers). Under the physical capacity limitations of the current system, this behavior 

of the IPC multicasting service was consistent. 

Obviously, this behavior supports a predictable message delivery service for group 

communication protocols. This can provide, in turn, a predictable multiple copy update 

facility for implementation of fault tolerance systems in distributed environments, with 

an acceptable communication overhead and minimum performance degradation. With 

point-to-point communication protocol (circuit switching) the cost would multiply almost 

linearly with the increasing number of message destinations, as a separate connection 

should be established with each destination to implement the group communication 

service. 
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To investigate the effect of IPC datagram buffer size and message length on the IPC 

performance and physical capacity limits, a number of tests were conducted. The results 

are shown in Figure 7.1(3), Figure 7.1( 4), and Figure 7.1(5). 

As it can be seen in Figure 7.1(3), the average transmit tirne of one datagram from 

Procll to Tracer process did not change considerably for 5 to 40 buffer limitations. 

Procll transmitted 2000 byte messages to Tracer process (14 nodes apart) 

continuously, and the messages were displayed on the host tenninal by HostP. Because 

of the memory restrictions of the testbed Transputers, buffer size couldn't be increased 

beyond 40. The worst performance was obtained with 2 buffers (almost 30% reduction 

comparing 5 and more buffer limits), while 20 buffers gave the best performance. 

This is, most probably, because there are 5 concurrent processes running independently 

in the IPC mechanism to handle the datagram routing at different points of the nodes. To 

reduce the buffer size to less than 5 makes these processes wait for each other and 

reduce the concurrency of the parallel IPC modules. The best performance was obtained 

with 20 datagram buffers. After that point, the manipulation of longer buffers starts 

consuming relatively more node processing time, and reduce the amount of real 

commwrication. The number of datagrams which could reach to the Tracer process 

(which in turn displays them on the host screen) in one second was (maximum) 290 with 

20 buffers under the above conditions, as can be seen in Figure 7.1(4). 

Another test was conducted to investigate the effect of message length on performance of 

the IPC datagram services. One single message of varying length was sent from Proc11 

to Proc9 and received back by Procll again (each message visits I 9 nodes). The results 

of the test can be seen in Figure 7.1(5). The total commwrication cost of a message with 

a length of 2000 bytes was only 3% more than the commwrication cost of a message of 

one byte length, for the same distances. 

A similar test was conducted by using the nearest nodes to the Tracer process as the 

source of datagrams, with a message length of 40, I 00, 200, 500, I 000 and 2000 bytes. 

The average message transmit times for these message lengths can be seen in the Figure 

7.1(6). 
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Here, the reason for the difference between the transmit times of 40 and 2000 bytes of 

messages being relatively bigger than the previous test (as shown in Figure 7.1(5)) is 

that the effect of total node processing overllead of each message is less than the 

previous test, because each message is manipulated three times in the previous test while 

it is processed only once in this test. Hence, the net effect of the message transmission 

times through links is becoming a dominant factor with more effect on the total IPC 

communication. 

This results can be attributed to the fact that the efficiency of the IPC protocol 

implemented for a network of Transputers is not determined by the transmission time of 

packets, but rather by the processing tinie spent at the nodes. This claim has· already 

been proven in a similar research study [Waring 1990]. Jn this research, the times taken 

for the return journey from the manager to a remote processor were measured for 

message lengths of 1, 16, 128 and 1024 words. For their IPC shell, these times were 1, 

2, 5 and 30 units respectively; implying that communication overhead increase is at least 

relatively 10 fold less than the increase in datagram message length for Transputer link 

communication. 

The reason of the more efficient results we got for the longer messages is that the time 

spent on node processing is considerably higher than the link transfer times in our case. 

This is because of higher node interrupt overhead for the multi-fimctional structure of 

the RT-DOS IPC, reducing the effect of the link communication delay on the total 

communication overhead. The reduction in computational capacity of the nodes does not 

reach to more than 10% of the total node computational power for W1broken streams of 

packets which are bigger than 128 bytes. For smaller packets, the initial fixed cost of 

processing and switching times is becoming the same (or more) as the time taken to 

transmit a single packet. 

That means that, the minimum packet length should be more than 128 bytes to be able to 

utilize the full communication capacity of Transputer links. The effect of through stream 

traffic becomes important only when the packet length is very short for a network of 

Transputers. 
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Another similar test, using only two different length of messages ( 40 bytes and 2000 

bytes), was also perfonned to investigate the perfonnance effect of the physical network 

locations of processes, on message delivery. 

As it can be seen in Figure 7.1(7), four processes (Procll, Procl9, Proc6 and Proc2) 

of varying distances from the same destination (Tracer) were continuously sending 

messages to the Tracer process to generate through network traffic, under the limitation 

of 40 IPC datagram buffers. Average message transmit times (in (l'licroseconds) for these 

sender processes were measured. The perfonnance difference for the two message sizes 

was consistently very close for almost all source nodes, except the nearest source 

(Proc2) being relatively more advantageous than remote nodes for 2000 byte length of 

messages. 

These observations can be interpreted as follows: 

For less than 2000 bytes of message length, perfonnance effect of message 

length on IPC message delivery service can be ignored; and below the physical 

system capacity, predictability of message passing service is consistent; 

If the first asswnption is true, then a nearly six times more efficient 

communication service (without sacrificing the predictability of IPC) can be 

obtained when message switching is used instead of point-to-point connection 

protocol for a data exchange of less than 2000 bytes, as a minimum of six 

datagrams should be introduced to the system to exchange only a message of the 

same size with the point-to-point connection establishment service; 

To utilize the full communication capacity of Transputer links, a message size 

of at least more than 100 bytes should be used. 

The above conditions imply that, for the environments in which 90% of the 

messages exchanged between processes are less than lKB (which is very likely 

for the majority of real-time systems), the message passing is a more efficient 

(cost-effective) communication mechanism which provides predictability at 

higher precision, and yet, supports group communication protocols (which, in 

turn, support the implementation of fault tolerant systems) with a minimum 

overhead. 
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Maximum and minimum connection establishment times and predictability limits of the 

system under varying communication loads were also measured. The test was performed 

with a number of combinations of processes at varying distances from each other, with a 

limitation of 40 IPC datagrams per buffer under different connection request loads. 

System capacity was reached at about 400 ·connection requests per second, and 

providing that this physical capacity limitation is preserved, a predictable connection 

establishment time was obtained regardless of network locations of process pairs. 

The minimum and maximum connection establishment times (10309 11sec and 16129 11 

sec) can be seen in Figure 7.1(8). Maximum and minimum number of connections which 

are established under different request loads were 97 connections/sec and 62 

connections/sec, respectively; as it can be seen in Figure 7.1(9). Beyond the physical 

system capacity of 400 connection requests per second, predictability of the connection 

establishment time is not guaranteed, as it increases exponentially; and the number of 

connections which can be established in one second is also decreasing rapidly. Factors 

contributing to this results are obviously network capacity and connection server 

capacity. In addition, efficiency and performance of IPC modules and their 

implementation have a very important impact on the system capacity and predictability 

limitations. 

Using the same testbed, hardware limitations and the topology, another version of the 

IPC was implemented with no group communications and/or message passing protocols 

in mind (only point-to-point communication protocol was implemented). To minimize the 

node processing overhead, most of the function calls were replaced by macro calls; to 

reduce the run time memory allocation!deallocation overhead, all datagram buffers and 

other system data structures were statically allocated during initialization time; and the 

Inmos semaphores were replaced by a more efficient version which has been 

implemented for the RT-DOS kernel. 

A shortest-path routing algorithm was also implemented to minimize the datagram 

traversal times for connection establishment. 
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The results of measurements which were performed with this optimized version of IPC 

were published in a world Transputer conference [Benmaize 1993]. The net performance 

of the optimized IPC (in terms of the communication capacity of the system) is almost 

twice as much as the version introduced in here. The minimum and maximum cormection 

establishment times were almost 4 times better, guaranteeing the IPC predictability. 

Predictability limit of the IPC was measured as 650 connection setup/second with a 

small variation in connection time. Minimum and maximum connection establishment 

times in predictability limits were 1.5 msec and 4.5 msec, respectively. 

Another test was carried out to investigate the impact of different communication traffic 

loads on performance of IPC message deli~ery service, for a length of 40, 500 and 2000 

bytes. During the test, the IPC buffer size was set to 40, and between 1 to 10 processes 

located on randomly chosen places, were sending datagrams at fixed intervals (from 10 

to 64 msec) to the Tracer process. 

The comparative performance results of the test for these three message length are 

shown in Figure 7.1(10). The maximum message transmit times under the maximum 

communication load which is generated by a total of 9 nodes (11,000 datagrams per 

second) was 1852 1-1sec for a message of 40 bytes, and 2998 1-1sec for 2000 bytes. The 

minimum message transmit times for the same length of messages were 1472 1-!Sec and 

1983 1-!Sec, respectively, under the minimum communication traffic of only one single 

producer process. 

The node distances of the producer processes to the consumer process were found to be 

immaterial, most probably because of the difference between processing power of the 

T414 and T425 Transputers which are used in the testbed. As the less powerful T414 

Transputers were more close to the Tracer process which has a physical connection with 

the host terminal, the message generation and processing times of the more distant 

processes (residing on more powerful T425 Transputers) were about the same as the 

closer ones. This observation also supports the idea of that the node processing time is a 

more important factor than the link communication time in determining the net IPC 

communication performance for network of Transputers. 
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The minimum and maximum message transmit times under the message traffic of one 

single process (minimum communication load) to 9 processes (maximum communication 

load) are given in Figure 7.1(11), Figure 7.1(12) and Figure 7.1(13), for the message 

lengths of 40, 500 and 2000 bytes, respectively. 

As can be seen from the figures, beyond the physical communication capacity of the 

system (the point at which lOth process also starts generating messages) average 

message transmit time is increasing very rapidly which leads to non-predictable system 

behavior in terms of connection establishment and message delivery times. 

Another test was conducted to investigate the behavioral changes of the system beyond 

its physical capacity. Figure 7.1(14) shows the distribution of datagrams which were 

generated under maximum communication traffic load (beyond of the physical capacity 

limitation of the system) in a fixed time period, for the processes which reside on nodes 

with different distances from the destination process (Tracer). The test was performed 

with a message length of 2000 Bytes and 40 IPC datagram buffers. All processes were 

sending messages to the Tracer process continuously to be displayed on the host screen. 

As it can be seen in the chart, P6 (Proc6), P3 (Proc3) and P2 (Proc2) were more 

successful than the others in generating and sending a regular message traffic, P2 being 

the most lucky one. lbis is because, these three processes are physically more close to 

the destination than the other ones, and the P2 is the closest one. Beyond of the physical 

system capacity, because of the network congestion, message delivery or connection 

establishment times are becoming unpredictable, leading to an unpredictable system 

behavior. 

The same test was performed under the traffic load of a combination of lesser processes 

(under the minimum communication load), with the other system parameters being the 

same ( 40 buffers, 2000 bytes of message length), except that processes were generating 

datagrams at certain internals (very small intervals such as 1 to 5 msec) to avoid over 

traffic and network congestion. 
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19 nodes under differing communication load conditions. 

10 



~ 

400.00 

350.00 

300.00 

~ 250.00 
J!! a 2oo.oo 
'a 
:. 150.00 
~ 
~ 100.00 

50.00 

o.oo .la:4=2:::z;:z::::;;:z:::<;::z::=:y;~B;L:~~__1;:b;LJ4i~'J;'Llc7 
P11 P12 P13 P14 P15 P19 P18 P17 P16 P6 P3 P2 P7 PS P9 

Datagram Generator Processes 

Figure 7.1 (14) : Distribution of datagrams originated from differing source nodes with 

varying distances to a fixed destination process (Tracer) under 

maximum communication load conditions. 



The results are shown at Figure 7.1(15) and Figure 7.1(16), for 3 and 4 processes, 

respectively. As can be seen in the figures, the distribution of datagrams to the nodes is 

almost balanced m1der nonnal communication conditions, regardless of the physical 

locations of the processes on the network. 

In Figure 7.1(16), the number of datagrams generated in the same time period is almost 

the same for Pll (Proc11 which is the farthest to the Tracer), P19 (Proc19 which is in 

the middle), and P6 (Proc6 which is one of the closest to the Tracer). In both cases (the 

test with 3 and 4 processes), P2 (Proc2) could generate relatively more datagrams than 

others, because its node is the closest to the Tracer physically. 

This can be considered as the worst case of a nonnal datagram traffic, and even in this 

extreme situation every node has an equal chance of sending messages to the destination 

regardless of its network location, guaranteeing the predictable delivery of a message in 

a maximum amoWlt of time (the time required for the delivery of the farthest node's 

datagram) for any process. 

7.2 Concluding Remarks 

The failure rate of the Inmos Transputer link is sufficiently low to make checking for 

random errors superfluous. Therefore, the only realistic way to com1ter such disruptive 

intrusions as message corruption or loss, is to provide careful message integrity checking 

at the application level. Disruptive intrusions can be more easily handled at this level as 

counter measures can be constantly updated, while the minimal (micro) kernel must 

remain m1changed. This latter aspect has been the most important criteria of the RT

DOS IPC design, and an unreliable datagram service is the core of the IPC mechanism. 

The RT-DOS IPC supports both reliable circuit switching service and unreliable 

message switching service as well as a wide range of group communication services 

namely broadcasting, domain casting, multicasting, and domain multicasting. All of 

these communication services are built on top of a simple but efficient unreliable 

datagram service which exploits the Wlderlying network topology of the multi loop RT

DOS architecture. 
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At the beginning of the IPC design it was argued that using a datagram service for direct 

message transferring between processes would reduce the predictability of the RT-DOS 

communication services. I was, therefore, agreed that the datagram service should be 

used to establish connections only and messages (user data) should be transferred 

through physical links from one process space to another process space directly. 

Nevertheless, this approach has been found to be very inefficient for group 

communication services as setting point-to-point connections between a sender process 

and all the recipients on the network for a broadcasting message would affect 

predictability of the overall system negatively, by bringing the physical limitations of the 

system down considerably, in comparison with the message passing protocol for 

exchanging the same number of messages through the network. In addition to this, 

without using the datagram service for message passing between processes it wouldn't be 

possible to exploit the advantages of the RT-DOS architecture which is based on 

multiloop topology; because messages that are restricted to only a specific application 

domain would be transferred through point-to-point connections even though the sender 

and receiver processes are physically on neighboring nodes within the domain. 

In the currently adapted schema point-to-point connections are used to transfer bulk 

amount of data (more than 2KB) on user request, as it is becoming disadvantageous to 

use the datagram service for messages of longer than 2000 bytes. The RT-DOS kernel 

can differentiate between the long and the short messages from user communication 

requests, and decide which service is more efficient to use for delivering the message if 

the user explicitly state the service to be used. The upper limit for the length of messages 

to be transmitted through the IPC datagram service can be changed dynamically, as it 

would make sense because each network configuration would impose a different limits 

depending on the performance of available hardware components (processing power of 

Transputers, speed of links, and dynamic link switch performance, etc.). Currently, none 

of the protocols are imposed on the upper layers and they are free to choose any 

communication protocol and related policy to satisfy their own specific requirements: 

group communication, point-to-point connection, reliable blocked communication, or 

unreliable unblocked no-reply type of message exchange. 
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It is shown that with a proper network topology and system architecture, it is possible to 

implement group communication protocols with Transputer hardware (despite its 

architectural shortcomings), as well as synchronous point-to-point circuit switching 

protocols. 
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8 FURTHER RESEARCH AREAS 

The targeted RT-DOS Kernel is not intended to be a marketable product, nor a released 

and supported facility for a conununity of application progranuners. Rather, it is 

intended to be a research testbed, whose primary clients will be a small number of highly 

qualified system progranuners and researchers performing experiments with operating 

system concepts and techniques for reliable decentralized real-time control systems. 

In addition to the operating system field, the following areas can be investigated using 

the testbed, the IPC mechanism which has been implemented, and the other kernel 

primitives available : 

Implementation of concurrent programming languages; 

" Study of parallel algorithms; 

Study of dynamic scheduling and load sharing on computer networks; 

Study of fast conununication protocols on reliable media; 

Various real-time conunand and control application (robotics, switching, etc.). 
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