

RESTful PUBLISH/SUBSCRIBE FRAMEWORK

 FOR MOBILE DEVICES

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon

By

RAHNUMA KAZI

@Copyright Rahnuma Kazi, Nov, 2013. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226140284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

 PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make it

freely available for inspection. I further agree that permission for copying of this thesis in any

manner, in whole or in part, for scholarly purposes may be granted by the professor or professors

who supervised my thesis work or, in their absence, by the Head of the Department or the Dean

of the College in which my thesis work was done. It is understood that any copying or

publication or use of this thesis or parts thereof for financial gain shall not be allowed without

my written permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material in my

thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or

part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

ii

ABSTRACT

The growing popularity of mobile platforms is changing the Internet user’s computing

experience. Current studies suggest that the traditional ubiquitous computing landscape is shifting

towards more enhanced and broader mobile computing platform consists of large number of

heterogeneous devices. Smartphones and tablets begin to replace the desktop as the primary means

of interacting with IT resources. While mobile devices facilitate in consuming web resources in the

form of web services, the growing demand for consuming services on mobile device is introducing a

complex ecosystem in the mobile environment. This research addresses the communication

challenges involved in mobile distributed networks and proposes an event-driven communication

approach for information dissemination. This research investigates different communication

techniques such as synchronous and asynchronous polling and long-polling, server-side push as

mechanisms between client-server interactions and the latest web technologies namely HTML5

standard WebSocket as communication protocol within a publish/subscribe paradigm. Finally, this

research introduces and evaluates a framework that is hybrid of REST and event-based

publish/subscribe for operating in the mobile environment.

iii

ACKNOWLEDGEMENT

I would like express my sincere thanks and gratitude to my academic supervisor Professor

Ralph Deters for his guidance, inspiration and funding throughout my study for last two years. I

would also like to thank my thesis committee members Professor Julita Vessileva, Dr. Chanchal

Roy and Dr. Ramakrishna Gokaraju for their valuable feedbacks on my M.Sc. thesis.

I would like to thank our Graduate Chair Dr. Mark Eramian for his continuous supervision on

grad students. I would also like to thank our Graduate Assistant, Ms. Gwen Lanchaster for her

endless support and care throughout my studies and for bring us delicious and irresistible

handmade cakes.

I would like to thank our University ICT help desk for providing us all kinds of technical

supports, answering various questions and most importantly notifying us in advance for every

change in the university network that I should be aware of. I would also like to thank Greg Oster,

the IT staff member of Computer Science Department for his assistant in acquiring a public DNS

name for my lab machine.

I would like to convey my heartfelt thanks to all my colleagues from Multi-Agent,

Distributed, Mobile and Ubiquitous Computing (MADMUC) lab for their friendship and

valuable feedbacks to my research.

Finally, I would like to thank my dearest family members, my father Qudrat-E-Khuda, my

mother Sharifa Begum, my sister and my mentor Dr. Fahmida Farzana, my bother Shoyweeb

Faisal and my brother-in-law Dr. Moniruzzaman for their unconditional love, support and

inspiration throughout my study. And last but not least, I would like to convey my humble

gratitude to the Lord, the Almighty, for His eternal love and blessings that never ends.

iv

TABLE OF CONTENTS

 page

ABSTRACT .. ii

ACKNOWLEDGEMENT ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS .. ix

1 INTRODUCTION ..1

1.1 Background and Motivation ... 1

1.2 Problem Statement .. 3

1.3 Research Goals.. 4

2. LITERATURE REVIEW ..6

2.1 Publ/Sub System ... 6

2.1.1 Subscription Schemes ... 7

2.1.2 Messaging System ... 8

2.1.3 Pub/Sub in Mobile Environment ... 10

2.1.4 Implementing Pub/Sub System for Mobile Web Browser 12

2.2 Web-based Communication Technique .. 13

2.2.1 Polling Technology ... 13

2.2.2 Long-polling Technology ... 14

2.2.3 WebSocket Technology .. 15

2.2.4 WebSocket based Pub/Sub System ... 18

2.3 Web Services .. 19

2.3.1 XML-RPC ... 20

2.3.2 SOAP/WSDL .. 20

2.3.3 REST ... 20

2.4 Application Development Patterns ... 24

2.4.1 MVC Architecture ... 25

2.4.2 MVP Architecture ... 27

2.4.3 Event-Driven Programming .. 28

2.5 Cloud Computing .. 29

2.6 Summary ... 32

3. DESIGN AND ARCHITECTURE ..36

3.1 Proposed RESTful Pub/Sub Framework .. 36

3.2 Event Dissemination Pattern based on Richardson's Maturity Model 38

3.2.1 Pattern A: Using HTTP POST (Level 0) .. 39

3.2.2 Pattern B: Using HTTP GET or POST (Level 1) ... 40

v

3.2.3 Pattern C: Using HTTP CRUD Operation (Level 2) 40

3.2.4 Pattern D: Using Hypermedia (Level 3) ... 41

3.3 Modeling Pub/Subs operation accorsing to RMM level 3 42

3.4 Backend System Architecture ... 46

3.5 Mobile Client Framework ... 50

3.6 Update Propagation over Unreliable Wireless Network ... 52

3.7 Summary ... 55

4. IMPLEMENTATION ..56

4.1 Pub/Sub Backend Implementation .. 56

4.1.1 Middleware Implementation ... 56

4.1.2 Event Broker and Channel Implementation .. 57

4.2 Mobile Client Implementation .. 59

4.2.1 Client-side Storage .. 60

4.2.2 Client-side Communication Interface ... 61

4.3 Summary ... 62

5 EXPERIMENT ...63

5.1 List of Experiments ... 63

5.2 Experiment Setup .. 64

5.3 Experiment 1 - Update Propagation Test .. 65

5.3.1 Experiment Scenario ... 66

5.3.2 Result and discussion .. 67

5.4 Experiment 2 - Client App Performance Test ... 70

5.4.1 Experiment Scenario ... 70

5.4.2 Result and discussion .. 70

5.5 Experiment 3 - System Overhead Test (Performance Overhead) 72

5.5.1 Experiment Scenario ... 72

5.5.2 Result and discussion .. 73

5.6 Experiment 4 - Resource State Synchronization Test... 74

5.6.1 Experiment Scenario ... 75

5.6.2 Result and discussion .. 76

5.7 Experiment 5 - Bandwidth Consumption Test.. 77

5.7.1 Experiment Scenario ... 77

5.7.2 Result and discussion .. 78

5.8 Summary ... 79

6. CONCLUSION ..81

6.1 Summary ... 81

6.2 Research Contributions ... 83

6.3 Limitations and Future Studies ... 83

REFERENCES ..87

vi

LIST OF TABLES

Table page

2.1 WebSocket API ...16

2.2 HTTP Verbs ..22

2.3 Difference between SOAP and REST Web services ..24

2.4 Difference between MVC and MVP design pattern ...28

2.5 Summary of Literature Review ..34

3.1 REST representation of Pub/Sub operation ..42

5.1 List of Proposed Experiments ...63

5.2 Hardware Specifications of Mobile Device ...64

5.3 Hardware Specifications of Pub/Sub Proxy Layers ...65

5.4 Hardware Specifications of Pub/Sub Persistent Event Channels65

5.5 Experiment Parameters for Update Propagation Test ..66

5.6 Result of update propagation test ...69

5.7 Result of client application platform performance test ..71

5.8 Result of system overhead test ...74

5.9 Result of State Synchronization test ..77

5.10 Result of bandwidth consumption test ...79

vii

LIST OF FIGURES

Figure page

1.1 Distributed System Environment ..2

2.1 Topic-based Pub/Sub Design Pattern..9

2.2 Polling Communication Protocol ..14

2.3 Long-polling Communication Protocol ..15

2.4 WebSocket Handshakes ...17

2.5 WebSocket Communication Protocol ..18

2.6 Architectural Design of Model-View-Controller...25

2.7 MVP Design Pattern ..27

2.8 Event-driven programming style ...29

2.9 Layered View of Cloud Computing ...30

3.1 Publish/Subscribe System Framework ..36

3.2 Layered View of the architecture ...37

3.3 RESRful Maturity Model by Leonard Richardson ..38

3.4 Message Flow While Creating Event Channel ..43

3.5 Publish/Subscribe Backend System Components ..47

3.6 Mobile Client Architecture ..51

3.7 Update notification over intermittent wireless connection ..53

3.8 Message flow when requesting for event updates ...54

4.1 JSON data format ...57

4.2 Pseudo-code for storing data in ETS and DETS ..59

4.3 Mobile application framework ...60

5.1 Overall Scenario of the System..64

5.2 Time Delay in Resource Update Propagation ..67

viii

5.3 Propagation time (with event messages)..68

5.4 Propagation time (without event messages) ..68

5.5 RTT per request (multiple client platforms) ..71

5.6 Client poll (synchronous and asynchronous) and server push72

5.7 Response time per request over http polling and WebSocket73

5.8 Synchronizing client resource state from Connector (device layer) and from Persistent

Event Channels ..75

5.9 Response time per request from the device layer and from Persistent Channel76

5.10 Through per request over http polling and WebSocket ...78

ix

LIST OF ABBREVIATIONS

CRUD Create Read Update Delete

CSS Client Stateless Server

CCSS Client Cache Stateless Server

EC2 Elastic Compute Cloud

EB Event Broker

EDA Event Driven Architecture

GUI Graphical User Interface

MVC Model View Controller

MVP Model View Presenter

MOM Message Oriented Model

P/S Publish/Subscribe

PM Policy Model

REST Representational State Transfer)

RPC Remote Procedure Call

ROM Resource Oriented Model

SOM Service Oriented Model

SOA Service Oriented Architecture

WS Web Service

WSD Web Service Description

1

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

In recent years, the growth of mobile devices such as smartphone and tablets has led to an

extensive use of mobile applications in almost every sector of our life. The Gartner research

[Gartner Report, 2011] forecast 2011 states that the download of mobile apps worldwide had

increased by 117 percent from 2010 to 2011 and forecasts an astounding 185 billion downloads

from mobile app store by 2014 since the first launch in 2008. The capabilities of these devices

in doing more than just making calls as well as sending and receiving text messages has

increased the demand for mobile applications in the enterprise as it becomes possible for

enterprises to extend their services to the fingertips of numerous consumers. Education,

healthcare and business enterprises are some of the sectors where the use of mobile applications

is found to flourish in bringing a revolutionary change in the way that data is recorded,

accessed, processed and evaluated for use. According to [Ranck, 2010] on “The Rise of Mobile

Health Apps”, the current statistics of mobile health (mHealth) apps is over 6,000 in the App

store which shows a growing demand for mobile applications in the health domain.

Generally, these mobile applications consume data as Web services from a remote server-

based architecture, which is the backbone of most information systems. Today’s information

society is built upon collaborative platforms which gathers and shares information across

distributed networks. The backbone of these information systems consists of multiple disparate

system applications. The growing demand of consumers in accessing services is causing these

systems to expand and some of these services can be hosted in the cloud computing

environment in order to ensure availability, reliability and scalability in service consumption.

2

Cloud computing is the era where IT services are outsourced from providers over the internet

on pay-according-to-use policy [Lomotey and Deters, 2013]. This ecosystem of bringing

disparate platforms together is often referred as a “Distributed System Environment” as

illustrated in Figure 1.1.

Figure 1.1: Distributed System Environment

With the growing demand of consumer web services and the expansion of systems that

forms a gigantic distributed heterogeneous infrastructure, there is an acute need for a

framework that can reliably operate in the mobile environment. Since wireless network (e.g.

Wi-Fi, 3G/4G) are prone to intermittent connection loss and the system application components

3

can be distributed, mobile applications interacting with the backend servers often face several

challenges in providing fast and consistent data delivery. Moreover, the bandwidth fluctuation

limitation of wireless connections, which can be attributed to the mobility of users, urges for an

efficient dissemination of data.

1.2 Problem Statement

While distributing the system applications provides more flexibility and scalability, it often

results into a growing system complexity during services consumption in a mobile

environment. One of the major challenges in today’s enterprise solution is to ensure integrity

among these disparate and distributed system applications which are often connected to legacy

systems. In addition to that, mobile devices are becoming an integral part of the growing digital

ecosystem and the primary means of accessing IT services. This introduces more challenges to

the system when synchronizing the information flow between mobile clients and the distributed

system backend. The major challenges while disseminating data over a wireless connection in a

mobile environment are as follows,

i. Unreliable network connection. Despite the advances in mobile technology, these devices

still rely on wireless mediums (e.g. Wi-Fi, Bluetooth etc.) to communicate with other

distributed components; these wireless mediums can be unstable especially due to user

mobility. As a result, seamless interaction and delivery of information to the mobile devices

in a large network becomes challenging [Sutton et al., 2011].

ii. Higher degree of network latency. Communication over wireless channels encounters a

higher degree of latency that causes delayed information dissemination. As a result,

4

synchronizing resource’s state updates on mobile node becomes challenging and mobile

users often experience inconsistent view of the application data.

iii. Limited network bandwidth. Constraint bandwidth availability is one of the major

challenges in wireless communication since Wi-Fi connection is distance sensitive. A

WLAN using 802.11b supports 11 Mbps and WLAN using 802.11g supports 54 Mbps. As

wireless devices moves farther away from the access point, the performance degrades and

the available bandwidth often fluctuates. Moreover, as more wireless devices utilize the

connection, mobile users often experience a low performance.

1.3 Research Goals

In addressing the above mentioned challenges in mobile digital ecosystems, this research

looks into developing a framework for disseminating data over wireless networks and proposes

an architecture that allows system components to independently propagate data (i.e. resource

updates) and as they propagate, the eventual consistency technique is employed to synchronize

the data (i.e. resource states).

In this regard, my research looks into the Pub/Sub pattern as a mechanism for propagating

data close to real-time. Moreover, the emergence Web 2.0 has greatly embraced the RESTful

(discussed in detail in the next section) web services [Webber et al., 2010; Fielding, 2000] due

to its web compliant API and lightweight solution for resource’s state management. Therefore,

the proposed framework in this research is a hybrid of REST-based and event-based Pub/Sub

that deploys a combination of various client-server interaction modes such as polling, long-

polling and server-side pushing. The detail description of RESTful web services and the

Pub/Sub design model can be found in chapter 2. The research goals in proposing a novel

framework for mobile devices are as follows,

5

 Goal 1. To integrate REST web services within Pub/Sub domain. In that, this research

will look into different REST patterns based on Richardson’s Maturity Model (RMM)

[Fowler, 2010] in disseminating data and understand which of the REST pattern is most

suitable for an event-based Pub/Sub system.

 Goal 2. To address the above mentioned challenges in wireless network. Hence, the

research goal is to reduce network latency, bandwidth usage and also synchronizing

resource’s state in the face in intermittent connection loss.

Some of the research questions that underlies this study are as follows,

 How fast and efficiently can mobile clients communicate with backend servers?

 How can seamless interaction be facilitated between mobile clients and backend servers

in the face of faulty network?

The remainder of the thesis is organized as follows. Chapter 2 reviews some of the key

points that this study explored and the existing research works within the identified problem

domain. Chapter 3 presents the proposed framework design in addressing the research goals

and challenges. Chapter 4 describes the implementation details of the architecture followed by

the experiments in chapter 5 designed to verify the framework in accordance with the research

goals. Finally chapter 6 concludes the thesis with the contributions of this research.

6

CHAPTER 2

LITERATURE REVIEW

This section reviews the related concepts and issues in the following order. First in section

2.1, it looks into Pub/Sub design model in disseminating information. Then in section 2.2 it

looks into different Web-based communication techniques in integrating Pub/Sub in mobile

space. Section 2.3 describes Web services in integrating distributed system components and

focuses on REST Web Services in a greater detail. Section 2.4 looks into different software

development patterns. Section 2.5 discusses mobile cloud computing in hosting services in the

cloud. Finally section 2.6 summarizes the chapter with a discussion of possible solutions in

addressing the research problems.

2.1 Pub/Sub System

In the traditional client/server model, a client requesting (pulling) for update information

from a server is not efficient as servers encounter tremendous overhead and also not very

suitable approach for dynamic information dissemination when dealing with a large distributed

network. A communication model that helps in dealing with the information dissemination in a

larger scale mobile network is Pub/Sub paradigm [Liu et al., 2010]. In this Pub/Sub

architecture, information providers as publishers disseminate information in the form of events

and information consumers as subscribers register for events of their own interests. There can

be an event broker acting as a middleware which helps in dispatching events to the respective

subscribers [Huang, Y., Molina, G., 2001]. Communication in Pub/Sub is inherently

asynchronous and transparent in nature as both entities (information provider and subscriber)

operate asynchronously through a dispatcher and disseminate state changes to all interested

7

subscribers through one operation. In the basic model of a Pub/Sub system, both providers and

subscribers are connected through a set of groups or channels through which subscribers are

notified for the events of their interest. Upon receiving event notification, the publisher

dispatches the event to the respective subscribers.

2.1.1 Subscription schemes

As subscribers are not interested in all the events that are published by the providers, there

are various ways that the subscriber can specify interest for a specific event. These variations

have led to different subscription models that are currently seen in Pub/Sub system

environments. This section explains two most widely used subscription schemes.

 Topic-based Pub/Sub scheme. One of the first generation subscription schemes is the

topic-based scheme. In this scheme, subscribers register for notification based on the topic

or subject of the events corresponding to a particular group or a set of groups also known as

a logical channel [Baldoni and Virgillito, 2005]. Users subscribed to a channel(s) will

receive all published events of that channel. The topic-based scheme has been proposed as a

solution in many industrial Pub/Sub environments. One of the most mentioned systems is

CORBA notification service [Object Management Group, 2002]. Also, among others,

TIV/RV, SCRIBE and Bayeux are some of the systems that implement topic-based scheme

[Baldoni and Virgillito, 2005]. A drawback encountered in this scheme is its limited

expressiveness of the subscribers. A subscriber registers for a subset of events of a topic

receives all the published events related to that topic. However, a hierarchical organization

of topic-based system has been proposed as a solution to this problem [Eugster et al., 2003].

8

 Content-based Pub/Sub scheme. A more flexible paradigm in the Pub/Sub scheme is

content-based subscription. It provides more flexibility to the subscriber by providing more

control in subscribing an event based on the actual content of the event. It allows subscriber

to impose set of constraints in the form of condition in forming a query on an event

notification (also known as filter). Creating a notification using a filter provides subscribers

with a more sophisticated way for subscribing events. However, this higher expressive

capability in defining subscription on the other hand can be an added challenge in

implementing such a scheme since matching publisher’s events with subscriber become

more complicated and the resource consumption becomes higher [Baldoni and Virgillito,

2005; Eugster et al., 2003]. There are several examples of systems that implement content-

based subscription scheme such as Siena [Heimbigne, 2003], Jedi [Cugola, 2001], and

Rebeca [Fiege and Muhl, 2000].

2.1.2 Messaging System

A Pub/Sub system is better understood in the domain of a messaging system and also known

as Pub/Sub messaging system (Figure 2.1). A messaging system has the capability of managing

messages in a way a persistent database is managed by a database system. Messages are

coordinated and integrated among the software components as software applications changes

over time. Messages are transferred from one machine to another over the unreliable wireless

network. The inherent limitations of wireless network makes the messaging system suitable to

operate as it repeatedly tries to transmit message until it has been sent. The five steps [Hohpe

and Woolf, 2004] in sending messages include – create, send, deliver, receive and process.

The basic concepts in a messaging technology revolve around the key terms of message,

channel and routing messages.

9

Channels – Channels are the virtual pipes that connect senders (publishers) and receivers

(subscribers) over the network. Based on how an application needs to communicate, channels

are created to facilitate messaging applications in transmitting data.

Messages – Data that are transmitted are wrapped into an atomic packet to form a message. An

application must encapsulate the data into a message before in transmits to a channel. Likewise,

the message needs to be extracted in the receiver’s side in order to process the data.

Routing Messages – Routing is considered as an important concept especially in a large

enterprise that requires connecting large number of applications and their channels in

transmitting messages. The complexity in routing message depends on the message’s final

destination as it may needs to go through multiple channels.

Figure 2.1: Topic-based Pub/Sub Design Pattern

Transmitting data in sending messages back and forth has many added advantages in a

distributed application system. Some of the major advantages are –

Asynchronous communication – In asynchronous communication a sender doesn’t need to

wait for the response to come in order to send the next request. In a messaging system,

10

messages are sent in send and forget approach [Hohpe and Woolf, 2004]. Once a message is

sent to a message channel, sender does not need to wait for the receiver to receive and process

that message, which means sender does not wait for the messaging system to deliver the data.

Sender can continue performing the other works once a message is being sent.

Throttling – A problem with messaging in Remote Procedure Calls (RPC) is that the receiver

may crash due to the overhead of incoming messages. A messaging system has control on the

number of requests to be sent to the receiver to process which saves the receiver from crashing.

However, queuing the request to avoid throttling may cause additional delay for the request

senders in receiving response [Hohpe and Woolf, 2004]. This problem is solved by the

asynchronous nature request-response of a messaging system.

Reliable communication – Messaging system uses a store and forward style [Hohpe and

Woolf, 2004] in providing a reliable delivery of messages. In store and forward style,

messaging system first stores the message in the sender’s memory and then forwards and stores

it again to the receiver’s end. While storing the message at both ends can make the system more

reliable, forwarding message over wireless connection can be unreliable. However, the

repetitive nature in store and forward until the message is received at the receiving end solves

the unreliability problem.

2.1.3 Pub/Sub in Mobile Environment

There are several papers that analyze the existing Pub/Sub model mostly on the content-

based subscription and suggest more enhanced approaches. These approaches can be adapted

into a mobile environment considering mobility issues of Pub/Sub system elements. The main

purpose of these researches is to provide a suitable scheme in disseminating information in a

mobile network.

11

[Huang, Y., Molina, G., 2001] proposed a middleware approach for a Pub/Sub

implementation and its adaptation into a mobile environment. The authors explains how an

event broker as a mediator can facilitate Pub/Sub communication in both centralized and

decentralized mobile environment and proposes an algorithm for an optimized wireless

network communication. The paper addresses the challenges of mobile networks in terms of

network disconnection at any certain point and suggests the replication of users’ subscription

over multiple event brokers in order to improve the availability and reliability of the system in a

mobile environment.

A scalable decentralized peer-based subscription approach implementation of Pub/Sub

system has been proposed by [Anceaume et al., 2002]. The study presents a topic-based

deterministic information dissemination scheme that provides transparency for publisher and

subscriber. A logical orientation scheme in subscription model also ensures a space optimized

information dissemination.

Other middleware approaches in Pub/Sub system implementations are seen in the works of

[Cugola and Jacobsen, 2002], [Cilia et al., 2003] and [Fiege et al., 2003]. Two key problems

that arise in mobile applications in Pub/Sub system that have been addressed in [Cugola and

Jacobsen, 2002] are namely scalability, in supporting large number of mobile clients and

adapting to application topology as mobile components are subject to change their locations.

TOPSS and JEDI are two examples of Pub/Sub systems that address scalability issue by

implementing an efficient filtering mechanism at the event broker.

A content-based Pub/Sub middleware approach has been proposed in [Fiege et al., 2003].

The concept of mobility has been segregated into two - physical mobility and logical mobility.

Depending on logical mobility, a new approach of ‘location dependent subscription’ using

12

location-dependent filter has been introduced by author. In addition, the goal of [Caporuscio et

al., 2003] is to support mobile client applications in a decentralized Pub/Sub environment

where clients are connected to one of the interconnected access points that serve as message

routers in a distributed network. The paper implements a ‘mobility support service’ that

provides this support to a mobile client by introducing independent mobility service proxies

running at the access points of the Pub/Sub system.

2.1.4 Integrating a Pub/Sub system with mobile web browser

Although different implementations of mobile Pub/Sub systems have different prototypical

and standard approaches, the common goal in all of these implementations is achieving an

efficient data dissemination strategy. The objective of data dissemination is to transfer dynamic

information (state) changes as a consequence of publishing new data and updating existing data

from publishers to mobile consumers [Mühl, 2004].

In today’s heterogeneous networks that consists of WiFi, 3G or 4G networks, most of the

client consumers in Pub/Sub systems are smartphones and tablets, running native apps or

mobile Web apps. From the developers perspective it is a controversial issue when it comes to

developing apps for mobile devices. Native apps are developed solely for mobile devices which

are accessible via specific device platform such as Android, Blackberry and iOS with a full

access capability into the core device features. Mobile Web apps on the other hand provide the

platform for single code based solution to be deployed on mobile devices with similar and more

improved user experience as native apps. Thus the mobile web app design reduces the cost of

building and maintenance of mobile centric applications into half [Perry, 2011]. The mobile

browser pattern has become the de facto standard for mobile applications since the Web is

everywhere. One key benefit of adopting mobile web methodology is the use of the latest

13

HTML5 oriented web technology frameworks. Web frameworks such as [PhoneGap, 2012] and

[Sencha, 2012] support diverse mobile operating systems and allow mobile web developers to

leverage their web technology skills in creating appealing applications. Moreover, these

frameworks facilitate dynamic access capabilities to the device native features [Feldman,

2011]. As a result, mobile web applications nowadays are gaining much popularity among the

applications developers across several device platforms as well as in Pub/Sub system

environment in disseminating information. Two of such strategies are – pull and push. In the

pull approach, communication is initiated by information consumer whereas the push approach

relies on information producer in initiating the communication [Mühl, 2004]. Several web

technologies are found to implement pull and push strategies. Three of such strategies are

conceptually known as polling, long-polling and WebSockets.

2.2 Web-based Communication Technique

A real-time web application must receive up-to-date information. When the client browser

(consumer) sends HTTP requests to the server (publisher) over a TCP connection, server

acknowledges the request and issue a response back to the client.

2.2.1 Polling Technology

Polling is one technique introduced in delivering real time information. In this technique, the

client browser sends HTTP requests to the server at a regular time interval and every time the

server receives a request, responds back to the client as shown to Figure 2.2 [Hamalainen,

2011]. This approach is suitable in a situation when the server update interval is known to the

client so that the client can be synchronized to send request to the server based on the exact

interval of message delivery. There is also a growing need for asynchronous communication in

14

collaborative applications where multiple users interact real-time among themselves. To

response to this need, the Ajax technique has been introduced which enables web browsers to

fetch dynamic information from the server asynchronously using in-built JavaScript

functionalities such as XMLHttpRequest [Hamalainen, 2011]. However, although Ajax solves

the problem of collaborative communication, its intense communication with the server causes

significant overhead especially when using the polling technique [Gutwin at al., 2011]. As it is

difficult to predict update interval of message dissemination in real-time application, polling

data from the server with a long interval can make the communication slower whereas polling

data with a short interval can result in many unnecessary HTTP requests with empty responses

which causes lots of unnecessary HTTP responses.

Figure 2.2: Polling Communication Protocol [Hamalainen, 2011]

2.2.2 Long-polling Technology

Long-polling addresses the limitations of polling by avoiding sending request in an interval.

In long-polling, as the browser initiates a HTTP connection with a server, the server maintains

the connection persistently for a certain period of time and pushes the update message to the

15

client whenever it becomes available [Hamalainen, 2011]. If the update is not available within

the set period of time, the server sends an empty response message as it times out and the

connection is terminated. The browser then has to re-open another HTTP connection to send

the next update request. The long-polling mechanism is depicted in Figure 2.3 In the

asynchronous long-polling operation; the server can push update messages to the browser

without the client prompting. However, performing long-polling in a groupware application

where data is constantly updated will result in no improvement over the traditional polling

technique as long-polling throttles the connection with lots of intermediate requests that

consumes server resources [Lubbers, 2010]. Bayuex specification defines a Pub/Sub model

for Comet [Dionysios, 2008].

Figure 2.3: Long-Polling Communication Protocol [Hamalainen, 2011]

2.2.3 WebSocket Technology

One of the latest web technology concepts introduced in the HTML5 standards as a new

approach for the next generation web communication is WebSocket. It provides a full-duplex

bi-directional asynchronous communication channel between web browser and web server

16

applications over a single TCP socket per end point [WebSocket.org, 2012]. In addition, it has

added the socket functionality to the browser to eliminate many problems of existing

technologies. The complete WebSocket standard is the combination of the WebSocket API and

the WebSocket protocol.

 W3C WebSocket API. The WebSocket API is a draft specification standardized by W3C

[WebSocket API, 2012]. The API defines a communication interface between the web

application and the browser [Hamalainen, 2011]. The browser must expose the API to the

web application so that when initiating a WebSocket connection the application invokes the

following API to create a WebSocket object.

Using the object, application then invokes the WebSocket API functions to open and close

connection as well as send and receive messages as shown in Table 2.1. Current the browsers

that support WebSocket standard are Firefox 6, Google Chrome 16, and Internet Explorer 10

[WebSocket, 2012].

Table 2.1: WebSocket API [WebSocket API, 2012]

 WebSocket Protocol. The WebSocket protocol is proposed and standardized by IETF as

RFC6455 [WebSocket Protocol, 2011]. The protocol has been designed to improve the

var WS = new WebSocket (url, [protocol]);

17

existing HTTP connection. Two primary tasks that this protocol performs are establishing

connection through handshake and transferring data. Figure 2.4 shows the header fields of

the initial handshake between the client and the server.

Figure 2.4: The WebSocket Handshakes [WebSocket Protocol, 2011]

The initial handshake starts with a HTTP protocol. The client and server then upgrades the

HTTP protocol to the WebSocket protocol as shown in Figure 2.5. In the browser request, the

GET method indicates the end point of the connection. The WebSocket server uses values from

headers sec-WebSocket-Key to calculate a hash value and send it to the client to prove that the

handshake was received and sec-WebSocket-accept header field indicates whether or not the

server accepts the connection. Once the handshake between the client and the server is

successfully established, the connection is ready for data transfer. In the WebSocket protocol,

data is composed of sequence of frames which can be of type texts, interpreted as utf-8 text,

binary data and control frame. Control frames are texts that are intended for signaling the

connection for instance when the connection should be closed.

GET /chat HTTP/1.1
 Host: server.example.com
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Origin: http://example.com
 Sec-WebSocket-Version: 13

HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept:s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

 Handshake from server (Server Response):

Handshake from server (Server Response)

 Handshake from client (Browser request):

18

Figure 2.5: WebSocket Communication Protocol [Dionysios, 2008]

Since the WebSocket protocol uses a HTTP compatible handshake, it can also use a HTTP

port as well as an underlying TCP protocol for network communications. The URI scheme used

by WebSocket protocol is ws: for unencrypted communication that uses port 80 and wss: for

encrypted communication that uses port 443. The current protocol version is 13 [WebSocket

Protocol, 2011].

2.2.4 WebSocket based Pub/Sub System

Several web-based systems are found nowadays are using the WebSocket API and the

protocol as the key implementation tool. A web-based control application using WebSocket is

proposed by [Furukawa, 2011] that shows how a WebSocket-based application can be built

with just HTML5 without using any add-ons in the web browser. Another work by [Cassetti

and Luz, 2011] integrates the WebSocket API into an existing framework to support distributed

and agent-driven data mining in an enterprise environment. The work is similar to R-

WebSocket [HTML5 Websocket, 2011] except that it implements both the client and the server

side interface for WebSocket API. The implementation uses Grizzy framework to provide

scalability to the underlying infrastructure.

19

Young’s [Hyuk, Y., 2011] study designs a Mobile Cloud e-Gov system as the part of a pan-

government project of Korea. The study uses WebSocket API in order to provide full-duplex

real time interactive communication the mobile participants. A WebSocket-based data binding

framework known as WebSoDa is proposed in Matthias’s work [Heinrich and Gaedke, 2011].

Integrating server-side updates are quite challenging in a distributed network. Matthias’s

WebSocket standard-compliant framework simplifies this task by efficiently integrating

HTML5 declarative binding expression through the WebSocket protocol. Another in-depth

study is conducted by Qveflander [Qveflander, 2010] in his master thesis on pushing real time

data using HTML5 WebSockets. The study focuses on issues such as scalability and load

balancing in finding optimal performance of a client/server application implementing

WebSocket to provide real time data. Study results show that, a maximum of 400 clients

connecting to a single server consists of Intel core 2 Quad 2.5GHz CPU and 4GB RAM can be

handled with an average CPU power of 12.02%.

While addressing several research works, it is also noteworthy to mention the Kaazing

WebSocket Gateway [Kaazing, 2012], which is the only enterprise solution available in the

market to this date. It provides a complete feature of WebSocket protocol that addresses the key

protocol level supports including scalability, availability, security and load balancing.

2.3 Web Services

System applications of a large enterprise solution are often distributed and independent. The

continuous growing applications often need to communicate with the legacy system. Hence one

of the biggest concern and a widespread need of these enterprises is to deduce solutions for

integrating these applications so that they can work together. Among the most common

methods of providing web services, the most common are XML-RPC, SOAP and REST.

20

2.3.1 XML-RPC

RPC stands for Remote Procedure Calls is an inter-process communication mechanism that

allows an application to execute a procedure or sub-application that resides in a network

address other than its own. It’s a programming style that allows developers to program the call

of a remote procedure to design the same way as of a local call and therefore not to concern on

network details. Some of the example technologies that follows RPC pattern are namely RMI,

CORBA and DECOM. XML-RPC protocol uses XML for invoking remote procedure and

receives XML as a return. XML-RPC uses HTTP as the transport protocol. JSON-RPC is a

sibling of XML-RPC that uses JSON instead of XML.

2.3.2 SOAP/WSDL

The next standard functionality evolved from XML-RPC is SOAP. The main difference

from XML-RPC is that SOAP relies on Web Service Descriptive Language (WSDL) in

describing the service. Specification of SOAP is more complicated than XML-RPC. SOAP

messages are more structured. It includes an envelope that defines the message and set of

encoding rules that express the convention in representing the remote procedure call and their

responses. SOAP uses HTTP, SMTP or TCP as the transport protocol.

2.3.3 REST

REST is a prominent web service design model first introduced in 2000. REST stands for

Representational State Transfer. The term is coined by Roy Fielding as an architectural style

with some defined principles in consuming Web services on the Web [Fielding, 2000]. The

architectural design of REST can be seen as a virtual state-machine (set of web pages) where

21

the state transition occurs as user progresses through the application which results the

application to render the next state as user go to the next page [Sudha and Sujata, 2011].

Anything in the web that we exposed to, whether it is an image or video clip or business

process, is considered as a resource. In REST it is said that a resource must have at least one

representation and every representation indicates to only one resource.

Resource Representation: Illustrates the view of a resource’s state at any instant in time

[Webber et al., 2010]. Views are expressed in a machine readable and transferable format such

as XML, XHTML, and JSON. Representations are not the same as the resource object; it is the

information about the resource object that mediates in accessing that resource. Therefore, in

consuming resources, web components using URI exchange the representation of a resource in

either of the above mentioned format. Separating the concept of the resource object and the

resource information results into flexibility in consuming the resource since the consuming

applications and the backend components become more loosely coupled. The two common data

representation format used in REST are XML and JSON. How resources are identified,

modified or managed are controlled by web services through encapsulating the resource

information in XML or JSON based document.

REST Communication: In order to interact with the resources in the Web, REST uses http

verbs explicitly provided by HTTP methods which indicate the actions taken on the resource.

Following table (Table 2.2) shows the basic http verbs and their mapping to create, read, update

and delete (CRUD) operations.

22

Table 2.2: HTTP Verbs

REST Principles: Based on the design principles, RESTful web services can be characterized

as follows,

 Uniform interface. REST offers a uniform interface in the interaction among the network

components and distinguishes itself from other network-based style. Through exploiting

small number of verbs (GET, POST, PUT, DELETE), the term ‘uniform interface’ describes

how a precise request semantics can be well-defined in meeting the requirements of a

distributed application [Webber et al., 2010; Fielding, 2000].

 Stateless communication. A RESTful communication is said to be stateless since every

client request for a resource representation must provide all necessary information about that

resource that make the request comprehensive to the server. As a result, unlike

contemporary client-server communication, server does not need to keep any contextual

information (state) stored in its storage about the current as well as previous requests. This

approach is also known as client-stateless-server (CSS) [Fielding, 2000] style that avoids

server from being overloaded with information coming from client request.

 Scalability and performance. Since REST architecture uses HTTP as its base protocol; it

may often seem less effective for applications where latency and bandwidth are the critical

success factor. The synchronous, request-response nature of HTTP may not seem to provide

23

better performance characteristic. However, due to the specific application semantics and the

standard HTTP verbs, caching of response data is possible in REST which provides an

immense horizontal scaling with a large amount of throughput [Wang, Q., 2011].

 Cache. REST implements cache constraints where the contents can be labeled as cacheable

or not-cacheable in order to improve the network efficiency. This labeling is mentioned

implicitly or explicitly within the response to a request. A client-side cache is given the right

to reuse the data only when the server response is labeled as cacheable. This cache

constraint is also known as client-cache-stateless-server (CCSS) style [Jamal, S., 2012].

 Named Resources. Resources in a system are named using a URL or an ID that is unique.

Anything in the system named as noun is considered as a resource and must have one or

multiple representations.

 Layered components. REST architecture is composed of layers in order to further improve

the behavior for the network based system. Layered approach allows the system to

restricting its knowledge within the boundary of a single layer and each layer is allowed to

see its immediate layer only. This approach benefits the architecture in implementing shared

cache among the intermediaries and in improving the scalability by distributing the loads of

services.

The difference between the two most popular Web services to this date - SOAP and REST are

as follows.

24

Table 2.3: Difference between SOAP and REST Web services

2.4 Application Development Patterns

A good architectural pattern in developing software applications can ensure a better

performance for resource constraint mobile device. In talking about application design, we

often encounter the term ‘MVC’ which is a short form of Model-View-Controller. The concept

was first invented at Xerox in 1970s [MVC, 2011] and was first implemented and documented

by Trygve Reenskaug [Reenskaug, 1979]. The term has been muted from its origin and

obtained different form of ideas and concepts based on its existence in several implementations

and often it is recognized as an architectural pattern or architectural style in designing software.

Although it is often confused with a design pattern, Fowler [Fowler, 2006] describes MVC as

an architectural pattern where different kinds of design pattern can be used. An architectural

design that is based on MVC produce a clear abstract framework in the system development

25

process. This provides a clean separation between software components. Decoupling the

software components helps developers in designing essential interactive applications with more

flexibility and well-organization. Smalltalk-80 is an early implementation that took the concept

if separating application logic from user interface [Krasner and Pope, 1988].

MVC is widely used in application’s Graphical User Interface (GUI) development [MVC,

2011; Fowler, 2006] and is very important in designing Web application framework. Some of

those applications are namely Sencha Touch and Java application frameworks e.g. Struts,

Spring, and so on.

2.4.1 MVC Architecture

The classical MVC pattern is used in desktop application. According to the architecture,

MVC pattern breaks the code of Web application into three basic parts as shown in Figure 2.6.

Figure 2.6: Architectural design of Model-View-Controller [Gulzar, 2002]

 Model. In MVC, model represents application’s data and also the business logic in

accessing and manipulating those data [Gulzar, 2002]. It presents the current state of the

application that resides in the model object. Model usually groups the data and the

26

related operations that can be executed on those data in order to provide services.

Services of model are exposed through model’s interface methods that are generic to

support various types of client in accessing or updating data. Model is not concerned

with user interface or the controller layer that an application requires. However, as

being one of the components of MVC, model is not completely isolated. When any state

change occurs in the model, it typically notifies its associated viewer or observer of the

change.

 View. View is responsible for rendering data from the model and forward user inputs to

the controller. It manages the display of different types of information obtained from

model component i.e. view is modifiable of its own as it encapsulates the presentation

semantics and adapts with several types of client’s user interface. View also acts as a

presentation filter based on the current state of the information in model. For example –

changing an image caption in the model can be executed by ‘Edit’ view where user can

select a specific image caption in the metadata of the form [Osmani, 2012].

 Controller. Controller is the request handler that acts as an intermediary between

models and views. It is responsible for updating the model when user manipulates the

view and updating the view when there is change in the model [Osman, 2012]. It

translates user actions and updates the model accordingly. Controller need to be

designed to handle various types of user inputs.

The idea of MVC framework is having a single controller that controls the application based

on the requests or arguments. An argument may define an event, invoking a model or a usual

GET request in the web application. This concept of separating the view from model or

separating controller from the view causes more decoupled, more flexible and maintainable

27

application code. Different users can now participate and collaborate on application model

which makes the application re-usable and cost effective.

2.4.2 Model-View-Presenter (MVP)

An evolved version of MVC is MVP, stands for Model-View-Presenter that focuses on

improving the presentation logic/UI logic. The concept was originated in the early 1990s at a

company named Taligent [Osmani, 2012].

Figure 2.7: MVP Design Pattern [Osmani, 2012]

 Model. The model in MVP defines the data to be displayed or acted upon from the

domain model or by accessing data (Figure 2.7).

 View. View is responsible to display data from model and also to route them in the

presenter layer to act upon.

 Presenter. Presenter binds model to view by retrieving data from model and presents

them to view.

28

Unlike MVC, the Presenter component in MVP contains the user interface business logic of

the View. Communication between View and Presenter thus happen through a view interface.

As the UI logic of the View is dedicated to the Presenter, a direct request from Presenter to

View becomes possible. Presenter can trigger the View updates without visiting though the

View component. This is often considered as a reason in taking MVP pattern most suitable for

web-based architecture [MVCsharp.org, 2012]. The separation of concern in presentation logic

helps Presenter to ignore implementation details of the View and only concern on the method

to invoke of the View interface. This feature of MVP provides a higher level of abstraction

which made it a successor to MVC. Moreover, the design pattern facilitates the developers for

the unit testing of their programs. Differences between MVC and MVP are as follows.

Table 2.4: Difference between MVC and MVP design pattern [Emmatty, J.T., 2011]

2.4.3. Event-driven Programming

The traditional web application supports sequential flow of data where user had to fill a form

and submit before showing the html content on the page. With the advent of AJAX, the modern

UI of MVC/MVP supports event-driven style of data flow. User’s action such as a button click

29

or screen tap or screen swipe is sensed by the controller/presenter and performs some logics

before viewing the data. These events to be processed need to pass through a dispatcher and

managed by event handlers (Figure 2.8). As the stream of events arrives, the job of dispatcher

is to determine the event type and pass it to the handler that can handle events of that type.

Figure 2.8: Event-driven programming style [Stephen, F., 2006]

In a client-server interaction, dispatcher and the event handlers may reside in the server side as

shown in Figure 2.8. In that case, events from client’s requests are queued up before

transmitting them to the server to be processed. In event-driven, programs are like multiple

individual modules that can be triggered based on the event types. The program is designed as a

continuous loop that keeps listing for event and calls the event handler (also known as

callbacks) that matches the event type.

2.5 Cloud Computing

Cloud offers a new paradigm in computation and an evolution of information of information

technology where user’s resources such as memory, storage are hosted in the remote centrally

30

located datacenters instead of physically placing them at user’s location. The datacenters

consists of hardware and software that provides access to the general public for the services as

pay-as-you-go manner also known as Public Cloud. On the other hand, the internal datacenters

of a business or an organization which is not accessible by general public is referred as Private

Cloud [Armbrust et al., 2009] The concept of cloud computing was evolved in order to achieve

improvement over the existing internet computing. Ubiquitous broadband and wireless

network, reducing storage cost are some key driving forces behind cloud computing. Based on

the architectural design, cloud is mainly defined into three layers as shown in Figure 2.9.

Figure 2.9: Layered view of Cloud Computing [Hoang et al., 2011]

 Infrastructure as a Service (IaaS) is a provision model where the service vendors

outsource hardware equipment, storage, network components in a usage-based pricing

[Foster, 2008; Hoang et al., 2011]. Example of IaaS cloud services are Amazon EC2

(Elastic Compute Cloud) and Amazon S3 (Simple Storage Service).

 Platform as a Service (PaaS) is a service delivery model that allows cloud users to test

the existing applications or build, test and deploy their own applications with some

restrictions in the tools and programming language supported by the service [Foster,

2008; Hoang et al., 2011]. Google App Engine (GAE) and Microsoft Windows Azure,

and Force.com are some examples PaaS providers.

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

31

 Software as a Service (SaaS) is software distribution model that allows users to access

software applications hosted by SaaS providers in pay-as-you-go manner. Users can use

the applications remotely over the internet without installing them in their local

machine. Google Apps, Microsoft Office 365, Facebook, Twitter are some of the

pioneered examples of SaaS applications.

The foundation of cloud computing is seen as a remarkable way in consuming web services

in resource poor of mobile device by offloading resource intensive computation and data

storage outside the device into resource rich remote machines [Ashik et.al., 2012] [Kazi, R.;

Deters, R. 2013a]. The major advantages of MCC are thus seen in offloading computation and

data storage. Computing in the cloud also provides scalable hosting of IT backend services.

Several approaches have been proposed by myriads of research studies for the effectiveness of

offloading techniques. Since the wireless signal may attenuate due to device mobility, these

studies offer a notion of dynamic offloading that is said to be feasible in such network

environment. [Chun and Maniatis, 2009] offers a cloud infrastructure that seamlessly offload

execution from mobile device to a replicate copy of mobile application software running in the

virtual cloud server. This approach of migrating computation from a device to a device replica

gives mobile user an illusion of using powerful, feature rich device and also known as

CloneCloud. Similar approach is proposed by [Satyanarayanan et al., 2009]. This study

proposed to locate the cloud service software on a nearby resource-rich computer(s) called

cloudlets that is well connected to the internet as well as to the mobile users. The approach of

bringing the cloud virtual machine close to the mobile users is considered latency optimized in

terms of latency and data transfer cost. In offloading mechanism, a fine grain offloading

approach has shown in MAUI system [Cuervo, 2010] where instead of offloading on the whole

32

application software, which methods to be executed remotely are decided in the runtime and

thus saves energy and increase the battery life of mobile devices. [Cao et al., 2009] provides an

ad-hoc cloud infrastructure where mobile devices host web services and expose their

computation power to other mobile peers on the network.

Combining cloud computing and RESTful Web services provides a new paradigm of mobile

computing. [Christensen, 2010] in his research specifies REST as a suitable architectural

platform that lends itself well in consuming cloud Web services in resource constraint mobile

device.

2.6 Summary

Integration of distributed system applications has always been a challenge for enterprise

solution. Network connections are not always reliable and sometimes they suffer from

intermittent connection loss and also slow connection. Applications in these systems are

different in terms of the programming language and the environment where they operate.

Therefore a change in the system integration is inevitable that can keep pace with the internal

change of the system. Over time, developers have proposed different approach in integrating

system in a distributed environment.

From the literature review it can be concluded that the channel based Pub/Sub is an ideal

model for a distributed system where applications are disparate and dispersed over the network.

The space decoupling nature of Pub/Sub enabled mobile applications and the interacting parties

who use these applications to be anonymous and independent from each other. Publisher can

publish events at any time without blocking themselves and subscribers are notified

asynchronously through a callback. Publisher doesn’t hold any reference of subscriber which

let the publisher to publish events even when the subscriber is disconnected. This decoupling in

33

production and consumption explicitly removes dependencies among the interacting

participants and increases the scalability. The communication in Pub/Sub is asynchronous that

well adapts with the distributed environment such as mobile environment.

On the other hand, Web services have been a great solution in integrating distributed and

disparate system applications [Kazi, R.; Deters, R., 2013b]. Due to clear semantics and uniform

interface and its supportability for different message formats, REST Web Services has become

the most suitable approach in consuming services in mobile environment. REST avoids the

single access point in consuming services and thus increases the service scalability. Reviewing

the challenges in mobile distributed environment and the proposed solutions, this research

attempts to address the following open issues;

 How can we build a RESTful Pub/Sub system in mobile environment?

 How much the system needs to comply with REST and Pub/Sub features to call it

RESTful Pub/Sub?

 And because of operating in mobile environment, how can we ensure a system that is

fault-tolerant and yet efficiently disseminate information?

The summary of some of the concepts that has been reviewed in this chapter has been

categorized in Table 2.5.

34

Table 2.5: Summary of literature review

Reviewed Concepts in Literature addressing research challenges

Pub/Sub System - Model in disseminating information as event

messages [Liu et al., 2010, Baldoni and Virgillito,

2005, Cugola and Jacobsen, 2002, Huang, Y.,

Molina, G., 2001]

- Topic and content-based subscription scheme

[Baldoni and Virgillito, 2005, Cugola and Jacobsen,

2002]

- Pub/Sub in Mobile Environment [Huang, Y.,

Molina, G., 2001.], [Anceaume et al., 2002],

[Cugola and Jacobsen, 2002], [Fiege et al., 2003]

- Implementing Pub/Sub system on mobile browser

[Mühl, 2004]

Web-based Communication

technique in Information

dissemination

- Strategies – pull and push [Mühl, 2004]

- Polling Technique [Hamalainen, 2011], [Gutwin at

al., 2011]

- Long Polling [Heimbigne, 2003], [Hamalainen, 2011]

- WebSocket [WebSocket API, 2012], [WebSocket

Protocol, 2011],

- Web Socket in Pub/Sub system [Furukawa, 2011],

[Cassetti and Luz, 2011], [Hyuk Y., 2011], [Heinrich

and Gaedke, 2011], [Qveflander, 2010]

35

Web Services - WS Architecture [W3C 2004]

- WS model [Sudha and Sujata, 2011], [W3C, 2004]

- RESTful WS [Webber et al., 2010], [Fielding, 2000]

Cloud Computing - Cloud Computing [Armbrust et al., 2009], [Foster,

2008], [Hoang et al., 2011]

- Mobile Cloud Computing [Chun and Maniatis, 2009],

[Satyanarayanan et al., 2009], [Cuervo, 2010],

[Christensen, 2010]

36

CHAPTER 3

DESIGN AND ARCHITECTURE

The chapter looks into different REST patterns in event dissemination in accordance to the

challenges mentioned in problem statement (section 1.2) and then propose a framework that is

adopted for mobile clients to consume RESTful Web Services within an event-based Pub/Sub

domain. The proposed framework is designed in three main layers as shown in Figure. 3.1.

3.1 Proposed RESTful Pub/Sub Framework

Figure 3.1: RESTful Pub/Sub System Framework

The front-end of the framework represents mobile clients who are publishers and/or

subscribers of data at the Web Service (WS) channels. The backend of the framework contains

Web servers as Protocol layer and Device layer, Event Manager and the cloud hosted Web

Services channels. The Web servers and Event Manager act as a proxy layer between mobile

37

clients and WS channels. Since we adopt a Pub/Sub model, data are disseminated in the form of

events. Similarly, a mobile client that publishes events is known as the Event Producer (EP)

and subscribers of these events are labeled as the Event Consumer (EC). However, an event

consumer can be an event producer and vice versa. In this framework, topic-based persistent

event channels were adopted. In topic-based persistent event channels, event producer

publishes events to a specific channel topic and the event consumers show their interests for

events by registering to a specific channel topic.

Event channels are collections of events represented by the event topic. In the Pub/Sub

model, events are published using a single input channels that splits into multiple output

channels to multicast the events to each subscriber. In the application-level, mobile client

applications include User Interface (UI) layout, the business logic, and the model for managing

a local storage. A stub component in the client model interacts with the skeleton of the server

application. The persistent event channels are fronted with the Event Router component that

takes the responsibility of multicasting events to the mobile subscribers. The layered view of

the proposed application-level architecture is shown in the Figure 3.2.

Figure 3.2: Layered view of the architecture

38

In Figure 3.2 above, the client application includes a UI layout, the business logic and the

local storage capability. The client stub provides the functionalities of the backend server on

the local device. On the contrary, the skeleton on the backend server describes the

functionalities of the server application. The actual implementation of the skeleton is done at

the persistent event channel. Further, the Event Manager works as an intermediary between the

skeleton and the persistent event channel. All message exchanges between the client device and

the remote server takes place over the standard TCP/IP transaction layer.

3.2 Event Dissemination patterns based on Richardson’s REST maturity level

According to the Richardson’s Maturity Model (RMM) [Fowler, 2010], a RESTful

dissemination of data can take four different patterns based on REST Web Service’s maturity

level also known as the glory of REST.

Figure 3.3: RESTful maturity levels by Leonard Richardson [Fowler, 2010]

39

In the context of the proposed framework in this thesis, the patterns are hereby discussed as

follows;

3.2.1 Pattern A: Using HTTP POST (Level 0)

Event-dissemination of this pattern follows level 0 of the RMM. In this pattern, services are

exposed using one URI; and consumers can access the URI using a single HTTP POST

method. This is similar to SOAP based WS where requests are sent to one URI and XML

payloads are exchanged between the sender and receiver. According to this pattern, an event

publish request to a channel looks as follows;

POST /channelService HTTP/1.1

{

 “event_type”:”channelPublishRequest”;

 “event_date”:”20-01-1013”;

 “channel_topic”:”c1” ;

 “event_message”: “…data…”

}

The server response for a successful request will be as follows,

HTTP/1.1 200 OK

[message headers…]

{

“event_type”:”channelPublish”;

“channel_topic”: “c1”;

“event_version”:”event_v1”;

}

All these requests are sent to the single URI /channelService. Details of the requests are served

in the message body.

40

3.2.2 Pattern B: Using HTTP GET or POST (level 1)

Event dissemination of this pattern is based on level 1 of the RMM. In this pattern, a service

is exposed as many logical resources with unique URIs contrary to single resource/service of

level 0 (pattern A). A request is sent either using HTTP POST and/or HTTP GET. An event

publish request to a channel looks as follows;

POST /channel/c1 HTTP/1.1

{

 “event_type”:”channelPublishRequest”;

 “event_date”:”20-01-1013”;

 “event_message”:”…data…”

}

The server response of a successful request will be as follows,

HTTP/1.1 200 OK

[message headers….]

{

 “event_type”:”channelPublish”;

 “event_version”:”event_v1”

}

In this pattern, operations can be performed using HTTP POST. Sometimes HTTP GET is used

in addition to HTTP POST. However, HTTP verbs do not strictly follow HTTP rules or REST

constraints in this pattern. As a result, the verb “GET” can be misused in a way that can cause a

service to change its state.

3.2.3 Pattern C: Using HTTP CRUD Operations (level 2)

Services in this pattern host numerous URI-addressable resources. Unlike level 0 and 1 of

the RMM, coordinating interactions in this pattern utilizes all the HTTP verbs (GET/retrieve,

POST/create, PUT/update, DELETE/delete) in performing the CRUD operations. A response

41

message in this communication utilizes the http status code. A channel publish request in this

dissemination pattern looks as follows,

POST /channel/c1 HTTP/1.1

{

 “event_type”:”channelPublishRequest”;

 “event_date”:”20-01-1013”;

 “event_message”:”…data…”

}

The response to a successful request looks as follows,

HTTP/1.1 200 OK

[message headers….]

{

 “event_type”:”channelPublish”;

 “event_version”:”event_v1”

}

3.2.4 Pattern D: Using Hypermedia (level 3)

Pattern D is similar to pattern C in a way that it utilizes all the HTTP verbs in performing the

CRUD operations except that it also utilizes the hypermedia element of the HTTP stack of the

Web technology in the response message. A published request according to this pattern will

look as follows;

POST /channel/c1 HTTP/1.1

{

 “event_type”:”channelPublishRequest”;

 “event_date”:”20-01-1013”;

 “event_message”:”…data…”

}

The response of this request looks as follows,

HTTP/1.1 200 OK

[message headers….]

{

 “event_type”:”channelPublish”;

 “event_version”:”event_v1”;

 “link”:{

 “rel”: “/linkers/channel/channel_topic/eventMessages”;

42

 “url”: “/channel/c1/eventMessages/event_version/”;

 };

 “link”:{

 “rel”: “/linkers/channel/channel_topic/eventDelete”;

 “url”: “/channel/c1/event_version”;

 }

}

From these four patterns of event-dissemination based on the RMM it can be observed that

consuming services in pattern A and B requires service requesters to know the exact location of

the service or resources.

3.3 Modeling Pub/Sub operations in REST according to the RMM level 3

Consuming services in a Pub/Sub framework can be challenging when complying with

REST features described in chapter 2. This section describes how interactions can take place in

REST-based manner in the proposed Pub/Sub based framework. Interactions between Web

services and the service consumer are described in terms of major functionalities provided by

the Pub/Sub service.

Table 3.1 shows how operations of a Pub/Sub model can be mapped into REST services.

TABLE 3.1: REST representation of Pub/Sub operation

43

 Creating a Channel. Channel creation is accomplished by using the HTTP POST

request. An event publisher when creating a channel uses the host’s Channel service to

create the channel. Figure 3.4 shows the interaction between the event publisher and the

backend server.

Figure 3.4: Message flow while creating a channel

The following shows the network-level view of a request-response in creating a channel;

Request:

POST /channel HTTP/1.1

Host: www.example.com

Response:

HTTP/1.1 201 Created

Location: http://www.example.com/channel/channel_topic

{

 “event” :

 “link” :{

44

 “rel” : “/linkrels/channel/event_publish”

 “url” : “/channel/channel_topic/eventmessage”

 }

 “link” :{

 “rel” : “/linkrels/channel/subscription”

 “url” : “/channel/channel_topic/subscription”

 }

}

 Subscribing to a Channel. The usual procedure of subscribing to a channel in Pub/Sub

domain is creating a SUBSCRIPTION method that is invoked upon client’s subscription

event. In this REST Pub/Sub framework, channel subscription is handled by the HTTP

POST request. In order to obtain an existing channel address, an Event Consumer (EC) first

sends a GET request to the service host as follows,

Request:

GET /channel HTTP/1.1

Host: www.example.com

Response:

HTTP/1.1 200 OK

Location: http://www.example.com/channel/channel_topic

{

 “event” :{

 “link” : {

 “rel” : “/linkrels/channel/subscription”

 “url” : “/channel/channel_topic/subscribe”

 }

 “link” : {

 “rel” : “/linkrels/channel/event_publish”

 “url” : “/channel/channel_topic/eventmessage”

 }

 }

}

The URI relation in the response message tells how the resource can be manipulated. Using

the URI received from the response, the event consumer sends subscription request as

follows,

45

Request:

POST /channel/channel_topic/subscription HTTP/1.1

Host: www.example.com

{

 “subscriber_id” : “deviceid_001”

}

Response:

HTTP/1.1 200 OK

Location: http://www.example.com/channel/channel_topic/subscription

EC is subscribed to the channel using its device ID. In case of unsubscribing from the

channel, EC uses the same URL location to DELETE its subscription interest using HTTP

DELETE like,

DELETE /channel/channel_topic/subscription?subscriber_id= “deviceid_001” HTTP/1.1

 Publishing Event Messages to a Channel

Event messages can be published by both the event publisher and event publisher to the

subscribed channel using HTTP POST. A publish request when sent to the URI is received

as a response in both the CREATE and SUBSCRIBE operation. The request of a publish

operation in a network-level view looks as follows,

Request:

POST /channel/channel_topic/eventmessage

Host: www.example.com

{

 “event” :{

 “data” : {

 “...message…”

 }

 }

}

46

A PUBLISH operation is followed by a Notification message that is delivered to the

subscriber. Instead of using HTTP POST, notification is sent by invoking the NOTIFY

method when a resource is added into the channel group. According to [Thomas, et al.,

2012], using HTTP POST leaves possibility that a malicious subscriber could substitute its

own notification services with another vulnerable services notification system. A

notification message contains the name and the creation time of a resource.

3.4 Backend System Architecture

The backend server is responsible for hosting Pub/Sub Web Services. Web Services enables

clients to create event channels (event groups) and publish events to the channel, subscribe to

the channel(s) of their interests, be notified for resource updates of the channel and also

unsubscribe from the channel. The system architecture takes a centralized topic based Pub/Sub

model. The major functional components of the framework backend are shown in Figure 3.5

and discussed below.

47

Figure 3.5: Pub/Sub Backend System Components

a) Protocol and Device Layer. When an event is published in the event channel, it needs

to be propagated as an update notification among respective subscribers. A published

event is composed of event type, ℮type; published time, ℮timestamp and event

messages, ℮message (payload).

Event, ℮ = {℮type, ℮timestamp, ℮message}

A published event is received by the Listener before it is transferred to the Event

Manager (EM) process. It contains separate request handler for compatible transport

mechanism. The expected transportation mechanism is the standard HTTP connection

48

and/or WebSocket connection. Since mobile clients are using different types of device

platforms, the embedded browser of native device application may not support either of

this connection at any given time. To provide device transportation compatibility, a

Listener process manages the request handlers for both HTTP and WebSocket.

The device layer is responsible for redirecting client requests to the web services for

appropriate operation execution using the connector process. This helps mobile consumers

to maintain a presence at the proxy when they are disconnected and thus resume the

interaction with backend once the connection has been restored. The skeleton component

of device layer provides the interface layer for Pub/Sub service, describing the

functionalities that the service provides.

The Event Queue (EQ) component of the device layer buffers event update notifications

received from Event Manager. It also handles duplicate event notifications to cope with

network inconsistency. Event notifications are buffered in the queue until it has been

propagated to the client device in FIFO style. An event is persistently removed from the

queue once it is delivered to the consumer.

Notifications in the Event Queue might become obsolete when event consumer is

disconnected for relatively a long period of time. An event that is too old than the expected

event longevity, need to be discarded from the event queue. The Expiry checker in the

layer does a periodical checking in the event queue to ensure that no event notification in

the queue is obsolete. Device layer is also stores event data into the process storage based

on their notification IDs.

b) Event Manager (EM). The Event Manager is responsible to route event notifications to

all the users who are subscribing to the channel group. Once an event is published to the

49

persistent event channel, Event Manager invokes the Event Fetcher (EF) to fetch the list

of all subscribed users of that channel. Consequently, the Event Router (ER) is invoked

to actually send event notifications to the users from the subscription list. Dissemination

of event updates takes a broadcast approach in delivering data to all currently active

subscribers.

The Event Manager is also responsible to discard published events that arrives and

does not match with the existing channel groups. An unmatched event is discarded when

they are received at Event Manager. According to Huang’s paper [Huang, Y., Molina, G.,

2001], this approach is also known as event quenching. Discarding unmatched events

considered to be advantageous as it does not require Event Manager or any of its replica

(if any) to attempt transmitting irrelevant data to the persistent event channel over the

network. Moreover, accomplishing this task at Event Manager also reduces

computational workload at Event Channels.

c) Persistent Event Channel (PEC). The Persistent Event Channel handles consumer’s

request for subscribing to the channel, unsubscribing from the channel, publishing event

messages to the channel and also delivering event from the channel.

Event Channels maintain persistent data storage for event messages published by

event producer. All published event requests are sent to duplicate event handlers to check

for duplicate event messages to avoid network connection delay. This can be done by

checking the event ID that has been assigned by event producer’s application. An event

with unique event ID is stored in the channel storage persistently. Each event in the

channel is uniquely identified by its URL. And thus each event resource can be accessed

50

my consumer by sending http requests using the standard http verbs such as HEAD

(meta-data), GET (read), PUT (replace), POST (create and write).

3.5 The Mobile Client Framework

In this architectural framework, mobile clients are thin clients such as smartphone and

tablets. Applications for these devices are responsible to register themselves to a particular

channel group or group of channels based on the channel topic by consuming the Pub/Sub web

services hosted in the code. Once a device registers itself, it continues to receive event

notifications for any updates made in the persistent channel. In order to provide code flexibility

and interoperability, the client side application is designed following the Model-View-Presenter

(MVP) pattern as shown in Figure 3.6. In this design pattern, the Presenter acts a mediator

between the Model and the View components. A stub component of the backend server is

hosted in the Model. The stub is responsible for all incoming and outgoing transactions. Once

an event update arrives at the stub, the latter passes the event to the View’s logic through the

Presenter to be displayed on interface layout. Likewise, event messages produced by client

actions (e.g. button click) are passed to the stub through the Presenter which then transmits the

data to the backend server.

51

Figure 3.6: Mobile Client Architecture

The Model component of the client application is designed to contain a persistent storage for

event notifications. Moreover, it contains a queue for unpublished events; events that are

produced by the client actions but could not be delivered due to the connection loss. These

unpublished events are removed from the queue once they are delivered to the backend server.

All interactions between the Presenter and the Model take place though the stub. The major

functionalities of a stub are as follows;

a) Connection service. The stub is responsible to connect mobile application to the proxy

server. Whether the communication should take place over WebSocket connection or

should it be http polling are decides by the stub.

b) Service Manager. The stub provides the same interface of the remote cloud hosted

Pub/Sub web services. It binds client’s application to the remote web services over

Web. It also enables client applications to invoke the consecutive functionalities of the

remote web services such as subscribing to Channel, publishing data, retrieving data or

unsubscribing from channel in a way as if calling to local functions. All event messages

52

generated by these actions are encoded into JSON format before they are transmitted

between client and proxy.

c) Resource Manager. The stub is responsible to store update notifications to the local

storage when it arrives from proxy. States of the stored event notifications are used to

check for event updates at the proxy when a client application reconnects after an

intermittent connection loss. Stub also checks for the unpublished events in the queue

once after every connection establishment.

3.6 Update propagation over unreliable wireless network

The decoupling nature of event service in a Pub/Sub model does not require event producer

and event consumer to hold any reference about each other. In other words, they do not have to

actively participate to the event service at the same time since event production and

consumption does not happen in the same main flow of event service [Eugster et al., 2003].

Hence the event producer is not blocked while producing event and subscribers of the event

receive asynchronous event notifications. Data dissemination in this model is delimited while

operating over an unreliable wireless network. In a case when network between mobile clients

and backend messaging system is unavailable (as shown in Figure. 3.7), data needs to be stored

persistently in order to provide guaranteed delivery.

In this framework, the guaranteed delivery is ensured by storing events in a NoSQL database

in the cloud hosted channel where event keys are the event identifier/GUID/timestamp and

event values are data that comes with the event messages.

53

Figure 3.7: Update notification over intermittent Wireless connection

This limitation of inconsistent notification is avoided by having the consumer issue a new

request to the main Channel resource. When a consumer reconnects to the network first sends a

HTTP HEAD request to Event Manager Service to check if there is any updates available.

HEAD request therefore contains the latest update notification version viewed by consumer and

checks with the current version of the Channel resource. When notification version at the

consumer matches the Channel version indicates that there have not been any updates in the

Channel resource. If it does not match, Event Manager responds consumer with the resources

that have been published in a later time than the received version (timestamp). Figure 3.8

shows the consumer-server interaction when requesting for new updates.

Request:

HEAD /channel/channel_topic/

Host: www.example.com

If-None-Match: “12:13:2013

54

Figure 3.8: Message flow when requesting for event update

All published events are buffered in the event queue at the consumer’s Web Server proxy

channel until they are delivered. An event consumer’s proxy channel is invoked on the arrival

of an event message which is then delivered to the consumer using the consumer specific

callback application. Our proxy channel offers a durable subscription that saves event messages

for offline subscribers and helps subscribers to synchronize already received event states/event

identifiers with the event state of the proxy channel buffer when they reconnect to the system.

In case the messaging system is down, the mobile clients maintain an event queue that

buffers all unpublished events until they are delivered to the messaging system when the

system is up and running. Generally, an event is considered to be delivered when an

acknowledgement is received. Our mobile consumers are idempotent meaning that receiving of

same message multiple times does not change client’s state of the received events. When the

ACK is not received, consumer’s proxy resends the event message to the client application. In

55

that scenario, the event buffer of the client application is used to detect and eliminate duplicate

events.

3.7 Summary

In this chapter, a Pub/Sub model based architecture has been proposed in disseminating data

that models client-server messaging into REST-friendly manner. Due to unavoidable facts of

wireless network, this architecture describes possible solutions while dealing with intermittent

connection loss of mobile consumer. The key points are as follows,

 It becomes challenging to comply with REST features when maintaining consumer’s

subscription state information for future notification of resource updates. This

contradiction has been addressed by explicitly issuing subscriber’s state management

service to the Event Manager. In this way, event publishers can keep themselves free

from consumer’s state information.

 A combination of push and push based interaction fine-tuned each other in fault-

tolerant system. Since backend server pushes notification to consumer without any

knowledge of notification version consumer is currently holding, consumer polling

for event updates can be beneficial in keeping himself/herself synchronized with the

main Channel resource.

 And finally, it is very important to choose the right pattern of communication for

disseminating events knowing the factors involved such as message payload and

network strength. A right communication pattern in disseminating events can

significantly improve system’s performance in processing cost and network load.

56

CHAPTER 4

IMPLEMENTATION

This chapter describes how the proposed architecture is deployed from the design

perspective of the mobile client, the middleware, the event broker and the persistent data

storage. A client-side application is developed and integrated with the server backend. Details

of the implementation of each component of the framework are described below;

4.1 Pub/Sub Backend Implementation

The architecture proposes server backend that is based on Pub/Sub pattern. The backend

server nodes consist of a middleware server and a persistent storage server with Pub/Sub

brokering system as a front end. The mobile client establishes connection to the middleware

server and though it communicates with the persistent database in a RESTful manner.

4.1.1 Middleware Implementation

The middleware component connects mobile applications to the Pub/Sub channels. It is

implemented in Erlang/OTP [Larson, J., 2008], a high concurrency oriented functional

programming language that supports large number of concurrent actor like activities, called

Erlang processes.

The middleware is designed to support RESTful like communication. For every subscribed

channel, middleware maintains a temporary data storage that needs to be synchronized with the

Channel data storage every time an update has been made at the Channel component.

Temporary storage is built as ETS, a temporary storage that can store data in the runtime of

Erlang system. This storage is also used for caching purposes and provides a DELETE

57

operation since the messages in the temporary storage needs to be trimmed off after a certain

period time.

Communication between the proxy server and mobile application goes through Yaws 1.94

server (an Erlang based http server) that supports both http and WebSocket connection. Since

this implementation relies on WebSocket connection, all communications between mobile apps

and middleware arrives at the WebSocket listener component that resides just in front of the

middleware. All communications take a message-oriented approach where the messages are

constructed in a JSON format (Figure 4.1).

 Figure 4.1: JSON Data format

4.1.2 Event Broker and Channel Implementation

Channels are designed to be the persistent data storage for the proposed architecture.

Channels are exposed by an Event Brokering (EB) system component. Both Event Broker and

Channel are implemented in Erlang. The Channel interface is RESTful compliant and provides

three basic functionalities to the Event Broker – Create, GET and POST. Mobile client has

access to the only GET and POST method of a Channel component. Messages in Channel data

store are never deleted as they are kept for persistency. Addition to the data store, Channel

58

maintains a list of subscribers who has subscribed to the channel. Subscriber list is updated

whenever a client has joined to or unsubscribed from the channel.

Channel data storage is built as DETS table, persistent disk storage in Erlang system that

store data as objects in a file. When a POST operation is made in the channel, Event Broker is

responsible to fetch the subscriber list and the complete data from Channel’s data store and

broadcast the channel content to all connector processes of the middleware that falls within the

subscription list.

Storing data into either persistent data storage (DETS) or temporary storage (ETS) avoids

data duplication. Data structure of the stored data in both DETS and ETS table is a tuple that

takes an element as its key. When a data is being stored, a lookup is performed into the

respective table and the key of the existing tuple is matched with the key of the data to be

stored. Every tuple in the table contains a unique key. Any storing attempts made to the storage

that has same key of an existing tuple will not be stored. This is to avoid data duplicity. It is

essential to avoid duplicate data in order to synchronize data in both Channel and Proxy

component and the client side storage and to offer an eventual consistency throughout the

system components. The following pseudo code shows the steps in storing data into DETS and

ETS.

59

Figure 4.2: Pseudo-code for storing data in ETS and DETS

4.2 Mobile Client Implementation

The client side mobile application framework is designed and implemented on Android 4.0

Ice Cream Sandwich OS [Android, 2012]. The application is running on both Android Web

View (device embedded browser) with open source framework that provides supportability in

accessing device features (such as PhoneGap) and on desktop browser such as Google Chrome.

The client application is designed in MVC pattern as shown in Figure 4.3 – a UI component

that views device stored or server pushed data on the device embedded browser, a Model

component that manages device caching and a queue in storing unpublished client requests

(while disconnected) and a Controller component that intermediates’ between UI and Model.

%% handling data duplication when publishing event and

notifying event subscribers %%

When received publish(event e) from node x

If event_id matches existing match{key, value}pair

 {

 discard event

 return “duplicate key error”

 }

 Else

 {

 insert into DETS insert()

 invoke notify()

 fetch Subscriber_list()

 broadcast event to the Subscribers

}

60

UI component passes the callbacks to the controller so that controller can reply to the View

when there is an update from the backend. A stub element locates inside Model that handles

communications between mobile client and backend servers and also responsible to update

Model caching and inquiry Model queue every time client establishes a connection to the

backend. Client side components are developed using the latest web technology such as

HTML5, JavaScript and CSS. In order to improve UI layout and facilitate event mechanism,

web technology framework such as jQueryMobile (v 1.2) is used.

Figure 4.3: Mobile application framework

4.2.1 Client-side Storage

In implementing client side storage like the model queue and model caching, the browser

embedded Web SQL database (relational database) is used. Web SQL database features of

device embedded browser are obtained using PhoneGap Library [PhoneGap, 2012], an open

61

source framework that leverages the latest web technologies of HTML, CSS and JavaScript and

provides access to device embedded features.

4.2.2 Client-side Communication Interface

A mobile client sends asynchronous requests to the server and the responses from server are

pushed back to client application. Over the years, several web technologies that have been

developed to send asynchronous requests to the web browser are namely Ajax and Pushlet.

Some of the recent technologies includes WebSocket, server-side-event, XMPP and Bayeux.

The client-server interaction in this implementation exploits WebSocket connection. The client-

side API for WebSocket provides four functionalities as follows.

//creates a WebSocket instance

var myWebSocket = new WebSocket (url, [protocol]);

myWebSocket.onOpen(){

//establishes WebSocket connection with server

}

myWebSocket.onMessage(){

//receive all incoming messages from server

}

myWebSocket.onClose(){

//closes connection between client and server

}

myWebSocket.onError(){

//invokes when there is an error occurred in the

 connection

}

}

62

When client wish to send a message to the server, it simply calls send() function.

4.3 Summary

This chapter describes the technologies and the techniques used in the implementation of the

proposed system. The implementation is divided into two parts – mobile client framework

implementation and backend server implementation. Section 4.1 describes three layers of

mobile client framework with a broader emphasis on the implementation of model component

which includes stub in managing client-side caches and communication with server backend.

The backend server implementation is described in section 4.2

myWebSocket.send(){

 //deliver a message to the backend

}

63

CHAPTER 5

EXPERIMENTS

In this chapter, the proposed system is evaluated in accordance with the research challenges

stated in Chapter 1, aiming to study the system performance under different scenarios. The

experiments analysis and evaluation serve to demonstrate the framework’s feasibility in various

event dissemination patterns and also to identify the best performing scenario.

5.1 List of Experiments

Table 5.1 summarizes the proposed experiments that relate to the research challenges.

 Table 5.1: Lists of proposed experiments

Experiments Experiment Goals

Update Propagation Test To observe the perceived delay in propagating event

updates with different size of message payloads

Client App Performance

Test

To test the client application portability and performance in

the JavaScript environment on the mobile client and

desktop browser, as well as Erlang desktop client

System Overhead Test To observe system overhead in propagating events over

different communication protocols

Synchronization Test To observe perceived delay in synchronizing event updates

from backend persistent channel as well as device

layer/connector.

Bandwidth Consumption

Test

What is the throughput of sending data over different

communication protocol

64

5.2 Experiment Setup

The three major components in this experiment setup include mobile users (event producer

and consumer), Pub/Sub Proxy layers (Protocol Layer, Device Layer and Event Manager),

Pub/Sub Persistent Event Channels as shown in Figure 5.1.

Figure 5.1: Overall scenario of the system

 Mobile client: Mobile clients are running on ASUS Transformer Prime tablet. The

device specifications are shown in Table 5.2

Table 5.2: Hardware specifications of the mobile device

Hardware Specification

System Android™ 4.0 Ice Cream Sandwich OS

Processor NVDIA® Tegra® 3 Quad-core CPU

Memory 1 GB

CPU Speed 1.3 GHz

65

 Pub/Sub proxies: A Windows 7 desktop machine is used to host Pub/Sub proxy

layers. Table 5.3 summarized the hardware specifications.

Table 5.3: Hardware specifications of Pub/Sub proxy layers

 Pub/Sub Persistent Event Channels: A Windows 8 desktop machine is used to host

Pub/Sub event channels. The hardware specification is shown in Table 5.4.

Table 5.4: Hardware specifications of Pub/Sub Persistent Event Channels

5.3 Experiment 1- Update Propagation Test

This experiment calculates the time it takes in propagating a resource update message in the

form of a notification within the proposed architecture. The resource consumption time (i.e.

Hardware Specification

System 64-bit Windows 7 Professional

Processor Intel® Core ™ i5-2400 CPU

Memory 16.0 GB

CPU Speed 3.10 GHz

Hardware Specification

System 64-bit Windows 8 Enterprise

Processor Intel® Core ™ i5 CPU

Memory 4.0 GB

CPU Speed 3.20 GHz

66

accessibility) includes the time difference between an event gets published; and is received by a

mobile consumer. Since the higher level of REST (level 3 as mentioned in chapter 3) includes

Hypermedia in the response, the response message generated is larger comparing to the lower

levels of REST i.e. a large message payload needs to be propagated when the higher level of

REST (level 3) is followed. Therefore, the experimental parameters chosen for this experiment

are summarized in Table 5.5.

Table 5.5: Experiment parameters for Update Propagation test

Dissemination Pattern With and without event message

Event message payload 5kb

10 kb

50 kb

Update Notification

payload

2 kb

5.3.1 Experiment Scenario

The time spent on propagating a resource update is the Round Trip Time (RTT) calculated at

the publisher’s end upon receiving the published resource. Event notification and the event

message are sent to the subscribers based on server-side push as shown in Figure 5.2. In the

first scenario, event message of different message payloads are published to the Pub/Sub

persistent channel. Upon receiving the published events, Event Broker generates an event

notification of 2 kb and pushes an accumulation of event message and the update notification to

the mobile consumers. In second scenario, Event Broker pushes only the update notification.

67

Figure 5.2: Time Delay in Resource Update Propagation

5.3.2 Result and discussion

The experimental results are shown in Figure 5.3 and 5.4. The result in Figure 5.3 shows the

time it takes to propagate 5 kb, 10 kb and 50 kb of event messages from mobile publishers to

the Event Router and then a summation of event message and update notification from the

Event Router to the mobile consumer. The result shows an increase in the propagation time as

the message payload increases. A similar increase in message payload to time ratio is

experienced in Figure 5.4. However, the propagation time is much faster in Figure 5.4

compared to Figure 5.3 since the latter scenario does not include event message.

68

Figure 5.3: Propagation time (with event messages)

Figure 5.4: Propagation time (without event messages)

69

The result in table 5.6 shows the average, maximum and standard deviation time of

update propagation of both scenarios. From table 5.6, it can be inferred that propagation time

for 10 kb of payload is 4.06 times faster without the event messages being pushed to the

consumer than only notification is pushed. It can be inferred that in a scenario where the

published message is larger, broadcasting only the update notification can be a faster choice.

Table 5.6: Result of update propagation test

Update

propagation

pattern

Message

Payload

Time in milliseconds

Average Maximum Standard

Deviation

With Event

Message

5kb 769.1 811.2 24.81

10kb 1433.3 1799.8 143.4

50kb 6201.2 6478.4 499.9

Without Event

Message

5kb 288.5 396.80 38.2

10kb 353.4 574.6 52.4

50kb 1127.4 1509.4 185.6

Furthermore, an extrapolation on Figure 5.4 shows that initially the update propagation time

for 50 kb of message payload is much longer. After the first 30 samples, the update propagation

time was observed to maintain an average time of 1115.6 milliseconds throughout the

experiment. Since every update propagation requires an equal amount of computation starting

during the event publish and update receive at the mobile consumer’s end, experiencing a

longer propagation time can be attributed to the network instability.

70

5.4 Experiment 2 – Client App Performance Test

The purpose of this experiment is to observe the system’s performance in request/response

on different client application platforms. In this experiment, three different application

platforms that have been tested are Erlang client, JavaScript Desktop browser and device

embedded browser. Each of this platform establishes WebSocket connection to its backend

system.

5.4.1 Experiment Scenario

In this experiment, 5 kb of event messages has been published from the initial sender to the

Persistent Channel and 1 kb of event messages has been pushed to mobile clients by Event

Router. As the event message propagates from sender to the receiver, the Round-Trip-Time

(RTT) has been observed.

5.4.2 Result and discussion

Among the three client applications, the best performance is observed on the Chrome

browser running on Desktop. The result in Figure 5.5 shows that the average RTT on Android

browser is 212.8ms when it is 119.4ms on Erlang client (1.8 times faster than on Android) and

61.3ms on Chrome browser (3.5 times faster than on Android). The average, maximum and

standard deviation of RTT on chosen client platforms are shown in table (Table 5.7).

71

Figure 5.5: RTT per request (multiple client platforms)

Table 5.7: Result of client application platform performance test

One possible reason that the app on Android WebView performs slower than Chrome

browser is because WebView is linked to the Android application layer written in Java. For

every activity in WebView for example JIT (just-in-time) compilation of JavaScript, the

callback function is invoked. Moreover, the integration of an external framework in the

application such as PhoneGap might have added an additional execution time which in turn

causes performance deterioration.

72

5.5 Experiment 3 - System Overhead Test (Protocol Overhead)

This test is conducted to observe the amount of overhead the chosen dissemination

approaches introduces on the system in terms of latency in consuming a resource from the

Persistent Channel. The chosen approaches include client pull over HTTP Ajax and server push

over WebSocket. The purpose of this test is to observe the time difference and identify which

approach performs better in event dissemination.

5.5.1 Experiment Scenario

In this experiment, the event update message is stored in the persistent channel. The

experiment is conducted in two scenarios. In the first scenario, mobile consumer who are

subscribing to a channel are configured to pull for event updates from the channel every 2

seconds. In the second scenario, as event updates arrives at Persistent Channel, Event Router

pushes the update to the subscriber’s end i.e. update propagation does not require any requests

arriving from the subscribers. Both of these scenarios have been shown in the Figure 5.6.

Figure 5.6: Client pull (synchronous and asynchronous) and server push

73

5.5.2 Result and discussion

The result of client pull and server push is shown in the Figure 5.7. The graph shows the

time for individual update propagation (50 samples) obtained from an average of five iterations

where the size of each event message is 10 kb. From the graph, it can be observed that, time

consumption in first scenario where the message propagates from event publisher to the server

and having server send update to the subscriber as a response for update request takes much

longer time comparing to the time of propagating event from publisher to the server and having

server push the update to the subscriber of the channel. Time in event consumption is observed

almost 1.5 times faster in server push scenario compared to client pull.

Figure 5.7: Response time per request over http polling and WebSocket

74

The average, maximum and standard deviation time (in milliseconds) for disseminating

event messages from publisher to the consumer over two dissemination approaches have been

shown in the table (Table 5.8) below.

Table 5.8: Result of system overhead test

A possible reason that Ajax-polling takes longer time than the server push is that client

pulling interval is set to every 2 seconds. Any update that arrives right after the client pull, will

take almost 2 seconds for client to receive the updates. However if the update arrives closer to

the end of 2 seconds pulling interval then the propagation time difference between client pull

and server push are very close except the fact that message overhead is higher in Ajax pull

(around 634 bytes) compared to WebSocket header (around 6 bytes) which adds an additional

time latency in event propagation.

5.6 Experiment 4 – Resource State Synchronization Test

 A framework that is designed to run part over heterogeneous network for example in this

case, part over wireless network and part over LAN, one problem that arises in accessing

resources from a far node is the routing overhead. In the proposed framework of this research, a

client process is maintained for each individual subscriber at the device layer where the

resources are stored temporarily. If the client process is not maintained at the device layer then

75

the alternative approach in synchronizing client side resource would be sending request for

updates at the Persistent Channel which is multiple hops away from the clients. Therefore

consumer’s resource state can be synchronized from two different locations – Connector

process of the device layer and the Persistent Event Channels. Hence, the purpose of this

experiment is to observe system’s performance difference in maintaining and not maintaining a

client process at the device layer.

5.6.1 Experiment Scenario

In conducting the experiment, a resource has been published at the Persistent Channel. In

first scenario, a client process with a temporary storage is maintained, hence the published

resource has been pushed to the Connector by Event Router and client resource is synchronized

with the backend resource at the device layer as shown in Figure 5.8. In the second scenario,

published resource is made available to only Persistent Channel. Hence client application is

configures to synchronize its local resource at the Persistent Channel.

Figure 5.8: Synchronizing client resource state from Connector (device layer) and Persistent

Event Channels

76

5.6.2 Result and discussion

The results from the experiment is graphically presented in Figure 5.9. The graph shows the

synchronization time for 50 individual requests. Each synchronization time plotted on the graph

is an average time of five iterations. A resource of size 5kb has been synchronized between

client’s local storage and the backend storage based on client’s current resource id. Results

shows that the average time required to synchronize the resource from device layer is 228.5

milliseconds while it is 588 milliseconds if synchronized from the Persistent Channel Layer

which is 2.6 times (157.3 %) slower. Hence, maintaining a client process in a closer proximity

of the client device can result in a better performance in synchronizing data in a distributed

framework.

Figure 5.9: Response time per request from the device layer and from Persistent Channel

77

Table 5.9 shows the average, maximum and standard deviation time (in milliseconds) for

synchronizing event messages of 5kb payload from device layer as well as Persistent Channel

layer.

Table 5.9: Result of State Synchronization test

5.7 Experiment 5 - Bandwidth Consumption Test

This experiment analyzes the bandwidth consumption over wireless network in

disseminating resource updates to the corresponding clients. The purpose of this experiment is

to compare the throughput of update dissemination over traditional client pull approach with

the server push based data dissemination in Pub/Sub paradigm. The experiment investigates the

technique that helps in efficiently consuming available bandwidth by avoiding unnecessary

network traffic in communication network. As the updates are propagated from Pub/Sub server

to clients, bandwidth is calculated at server’s end for every incoming and outgoing interaction.

5.7.1 Experiment Scenario

In this experiment, a similar scenario of System Overhead test (Experiment 2) has been

adopted (Figure 5.6). This experiment is conducted in two phases. In first phase, client app is

configured to send resource update request at a constant rate (i.e. every 2 seconds). Upon

receiving the client request, Pub/Sub server responds with an update notification of 2kb of

message payload and the updated resource. In case there is no update available, sever

78

acknowledge the requester with a message “No update is available”. In second phase, Pub/Sub

server pushes the updated resource to the subscriber without subscriber prompting for the

update.

5.7.2 Result and discussion

Figure 5.10 shows the throughput in kilobyte/second for individual resource propagation in

client pull and server push approach of event dissemination. In this experiment, 10kb of data

has been transferred between mobile client and server. The average throughput obtained over

http polling is 5.8 kb/s when the average throughput over WebSocket is 8.6 kb/s. Bandwidth

consumption over WebSocket results in at least 1.5 times higher compared to http polling.

Figure 5.10: Throughput per request over http polling and WebSocket

Table 5.10 shows the average, maximum and standard deviation (kb/s) throughput over http

polling and WebSocket.

79

Table 5.10: Result of bandwidth consumption test

The reason server push consumes bandwidth more efficiently is because WebSocket has a

smaller overhead (around 6 bytes) compared to http-polling (around 634 bytes) and therefore

data propagation time is comparatively lesser in WebSocket push.

5.8 Summary

The proposed experimental design is conducted to evaluate system’s performance based on

the perceived network latency while consuming web services on mobile device over the

wireless network, system overhead introduced due to the adopted communication channel

protocols at the application layer and also the bandwidth consumption in terms of throughput

(kb/s) over wireless communication network.

From the results on update propagation it has been observed that as the message payload

increases, the message dissemination time also increases and in continuation to that

disseminating an increased payload of event messages delays the delivery of update notification

to the corresponding subscribers if the update notification includes the event message itself

(Figure 5.3 and 5.4). Therefore, if relying on the upper level of RESTful Web Services (level 3)

in an event-based Pub/Sub system, a suitable approach for disseminating event in mobile

80

environment would be sending only the update notifications to the mobile clients and

delivering the updated resource upon client requests.

The time for client side resource synchronization with the backend resource can be reduced

if a temporary storage of the resource is maintained for each individual client in a location that

is closer to the client. The conducted experiment on client app resource state synchronization

demonstrates 2.6 times faster synchronization time with Connector at the Device layer

compared to the Persistent Channel at far backend server (Figure 5.8). The distance of resource

location as well as the additional computation of proxy layers can add extra latency in

accessing the resource.

The system’s performance in event dissemination based server push and traditional client

pull scenario shows a dramatic performance difference in the proposed framework. In a server

push scenario, update message is sent to the server and server pushes the update to the

subscriber. In client pull server sends request to the subscriber upon receiving subscriber

request. Experimental results show a dramatic performance improvement (almost 1.5 times

faster) in WebSocket push-based event dissemination over the traditional client pull approach.

Moreover, transferring data over WebSocket channel results into higher throughput (kb/s).

Result shows 1.5 times greater throughput of data transfer on WebSocket connection compared

to Ajax http polling connection.

In conclusion, the experiments have shown the potential of the proposed framework in

successfully disseminating events and help demonstrate framework’s feasibility within mobile

environment due to its adoption of push-based event dissemination using the lightweight and

scalable RESTful Web Services.

81

CHAPTER 6

CONCLUSION

6.1 Summary

The proliferation of mobile devices is bringing a dramatic change in mobile digital

ecosystem and resulting into a distributed and heterogeneous system that includes several

platforms, computer languages and different IT technologies. As a matter of fact, integrating

system applications in overly distributed system has become challenging and a major concern

for today’s enterprise service providers of information system. Moreover, mobile devices use

wireless channel as a standard access media in receiving services which involves the challenges

of propagating data over unreliable network such as network latency, limited bandwidth and

intermittent connectivity and hinders data propagation in close to real-time and synchronizing

them across the framework. To overcome these challenges, in this research we proposed a

hybrid of REST-based and Pub/Sub event based framework to provide reliable event

dissemination in mobile environment [Kazi, R; Deters, R., 2013c].

This thesis has begun with the background information and motivation behind the research

work, problem statement and research goals that the work expects to achieve from this study.

With respect to the problem statement and research goals, this research looks into different

architecture models such as topic-based Pub/Sub model as one of the current enterprise

application integration technique and also system interaction style. Research also explores one

of the Web Service techniques namely RESTful Web Services as a promising technology to

reach interoperation in heterogeneous environment. Different types of data dissemination

techniques has also been studied in this research such as traditional client-pull approach over

Ajax http connection and the server-push approach of event dissemination over WebSocket in a

82

distributed system. Apart from the backend framework design, research also focuses client

application design and explored some of the standard design frameworks such as MVC and

MVP in making application components more loosely coupled. Based on the reviewed

literature, the research proposes an architecture model that is suitable to operate in mobile

environment. Our proposed architecture shows possible integration between RESTful Web

Service and Pub/Sub model and defines the interaction protocol. Nevertheless, proposed

architecture acknowledges intermittent connectivity issues in its framework design.

A prototype of the architecture has been implemented in this research. The backend

architecture is built in Erlang, a concurrency oriented programming language that ensures

server scalability and reliability in providing services to a large number of mobile clients. The

client-side application is developed based on MVP architecture pattern using JavaScript and

some external JavaScript libraries. The backend system components rely on a message-based

communication style and the event dissemination approach between backend server and mobile

subscribers relies on server-push approach contrary to the traditional client-pull approach.

The proposed framework design is evaluated through conducting experiments on network

latency in propagating and synchronizing events and bandwidth consumption to observe

system`s performance. Experiment results demonstrates system`s improvement in push-based

event dissemination over the traditional client-pull event dissemination.

In conclusion, this research proposed a RESTful Pub/Sub framework for integrating

distributed system components in mobile space and efficiently disseminating data over wireless

network. The proposed framework is designed to achieve faster and reliable data dissemination.

83

6.2 Research Contributions

The research contributes in the domain of Web Services based event dissemination in

Pub/Sub domain as follows;

 Analyzes different patterns of RESTful Web services within Pub/Sub domain for

disseminating consumer data, hence provide interaction protocol.

 Studies the latest Web communication technologies and different data dissemination

patterns to address the challenges of network latency in mobile environment.

 The use of Web frameworks such as jQuery, jQuery Mobile and PhoneGap enhance

the deployment of cross platform mobile application.

 Proposes a solution for traditional pull-based architecture by adopting WebScoket as

a communication protocol.

 Provides a platform for Pub/Sub communication on mobile environments.

6.3 Limitations and Future Studies

The proposed framework suffers from following limitations;

 The backend implementation of the proposed framework is Erlang platform specific

which does not support tools that are written in other programming language.

Developers are bound to write platform specific actions and requires to have an

extensive knowledge on the language platform. Hence application development is

expensive.

 The Proposed framework uses third-party API for WebSocket communication protocol.

A self-developed WebSocket connection would provide developers a greater control in

event dissemination such as configuring the buffer size of the communication channel.

84

 Moreover, the current research does not adopt large scale deployment on real devices.

The current deployment only includes two tablet devices simulating as both mobile

publisher and mobile subscriber. Hence, systems performance in terms of scalability on

a regular wireless environment with large user group is unknown. It would be great to

deploy the framework on a large scale and assess the impact on the proposed service.

This research will like to explore the following features as future studies of this research that

could be added to the existing framework to achieve greater performance improvement.

 Decentralized Pub/Sub system. The current Pub/Sub framework is based on

centralized event brokering system that relies on a single event broker. The centralized

event broker keeps record of all active subscriptions in the system. When an event is

published, event broker invokes its notification method and delivers the update

notification to the subscription user`s list that it currently holds. If the event broker is

down then the event dissemination within the framework will be compromised hence

relying on a single event broker increases the vulnerability of the entire system because

it limits the system by the capacity of a single server. Hence adopting decentralized

Pub/Sub model [Huang, Y., Molina, G., 2001] is a promising line of work. In

decentralized approach, the system consists of M number of event brokers each

responsible for a portion of N total subscription and hence responsible to deliver event

updates to its own active subscription user`s list. Besides the decentralized approach,

peer-to-peer (P2P) support [P. Triantafillou and I. Aekaterinidis, 2004] can help

building a large-scale distributed system where every connected device can act as client

and/or server and form a completely decentralized, self-organizing and scalable system.

85

 Maintaining a User Profile. The proposed framework is based on topic-based

subscription scheme where users subscribe to events of a channel based on the channel

topic or subject. However, subscription mechanism can be improved by introducing a

subscription scheme based on the actual content of an event which provides more

granularity in event subscription through offering a fine filtering mechanism on events.

In this mechanism, maintaining a user profile can be useful in defining filtering rules in

event subscription [I. Podnar et al., 2002]. Nevertheless, the proposed framework uses a

flexible queuing policy where the notifications are buffered until the subscriber

reconnects. A more complex and granular queuing policy would buffer undelivered

notifications based on the subscriber defined propertied such as priorities and expiry

dates of event channels.

 N-Screen Application Framework. Supporting N-screen application in Pub/Sub

framework is another future direction of this research that can be looked into to improve

our proposed framework. In Pub/Sub system, subscriber may use multiple devices and

subscribed to an event channel from each of his/her device. In this scenario, resources

are shared among multiple devices with separated screens [Zhang, 2012] i.e. visibility

of a subscribed event resource may have device preferences based on the user profile.

This approach of using N-screen application provides more flexibility in integrating

user`s device with Pub/Sub system. However, dealing with N-screen subscriber

application requires consistent user experiences across multiple devices irrespective of

device platforms and hence require efficient resource state synchronization technique.

 Mobile Web Service Provisioning. One of the major trends of distributed system

network and also a future direction of this research is the emergence of mobile terminals

86

as Web Service providers also known as Mobile Hosts [Srirama, S. et al., 2006]. When

lot of research focuses on provisioning Web Services from resource constraint mobile

device, some research works sees the potential of using smart and more powerful

mobile devices with sufficient speed as the service delivery node in a peer-to-peer

settings. By using light weight Web Services such as RESTful, web services can be

easily deployed on these devices [Lomotey and Deters, 2012]. This approach provides

greater integration and interoperability among mobile devices.

87

REFERENCES

ABI Research 2011. 2.1 Billion HTML5 Browsers on Mobile Devices by 2016 says ABI

Research. Oyster Bay, New York.

Available: http://www.abiresearch.com/press/21-billion-html5-browsers-on-mobile-

devices-by-2011. Retrieved January 11, 2012.

Anceaume, E., Datta, A.K., Gradinariu, M., Simon, G. 2002. Publish/subscribe scheme for

mobile networks, in: Proceedings of the ACM Workshop on Principles of Mobile

Computing 2002, pp. 74–81.

Armbrust, M. et al. 2009. Above the clouds: A Berkeley view of cloud computing, Dept.

Electrical Engineering and Computer Sciences, University of California, Berkeley, Tech.

Rep. UCB/EECS, vol.22(6), pp. 931-945.

Ashik, K., Kazi, R., Deters, D., 2012, “Supporting the Personal Cloud“, IEEE Asia Pacific

Cloud Computing Congress 2012, Shenzhen, China, November 14-17, 2012.

Android, 2012. Introducing Android 4.0. Available: http://www.android.com/about/ice-cream-

sandwich/ Retrieved on March 15th, 2012.

Baldoni, R. and Virgillito, A. 2005. Distributed event routing in publish/subscribe

communication systems: a survey. Technical Report TR-1/06. The Computer Journal,

vol.50(2), pp.444 -459.

Cugola, G., Nitto, E., Fuggetta, A. 2001. The JEDI event-based infrastructure and its

application to the development of the OPSS WFMS. IEEE Transactions on Software

Engineering, 27(9):827-850.

Cugola, G.,Jacobsen, H. 2002. Using publish/subscribe middleware for mobile systems.Mobile

Computing and Communications Review 6(4): 25-33.

Cilia, M., Fiege, L., Haul , C., Zeidler , A., Bunchmann , A. 2003. Looking into the past:

enhancing mobile publish/subscribe middleware, In Proc. of the 2nd intl. Workshop on

Distributed Event-based Systems, 2003.

Caporuscio, M., Carzaniga, A.,Wolf , A. 2003. Design and Evaluation of a Support Service for

Mobile, Wireless Publish/Subscribe Applications.IEEE Trans. Software Engineering

29(12): 1059-1071.

http://www.abiresearch.com/press/21-billion-html5-browsers-on-mobile-devices-by-2011
http://www.abiresearch.com/press/21-billion-html5-browsers-on-mobile-devices-by-2011
http://www.android.com/about/ice-cream-sandwich/
http://www.android.com/about/ice-cream-sandwich/

88

Cassetti, O., Luz, S. 2011. The WebSocket API as supporting technology for distributed and

agent-driven data mining. Available:

 http://www.scss.tcd.ie/~casseto/NGDM11-websockets.pdf. Retrieved February, 15,

2012.

Chun, B. G., Maniatis, P. 2009. Augmented Smartphone Applications Through Clone Cloud

Execution, in Proceedings of the 12th Workshop on Hot Topics in Operating Systems

(HotOS XII), May 2009.

Cuervo, E. et al. 2010. MAUI: Making Smartphones Last Longer with Code Offload, in

Proceedings of the 8th international conference on Mobile systems, applications, and

services (ACM MobiSys ’10). San Francisco, CA, USA: ACM, 2010, pp. 49–62.

Cao, Y., Jarke, M., Klamma, R., Mendoza, O., Srirama, S. 2009. Mobile Access to MPEG-7

Based Multimedia Services, in 2009 Tenth International Conference on Mobile Data

Management: Systems, Services and Middleware. Taipei, Taiwan: IEEE, 2009, pp. 102–

111.

Christensen, J.H. 2009. Using RESTful web-services and cloud computing to create next

generation mobile applications, Proceeding of the 24th conference on Object oriented

programming systems languages and applications - OOPSLA '09, New York, New York,

USA: ACM Press, p. 627-634.

Dionysios, G. 2008, HTML5 Web Sockets vs. Comet and Ajax.

 Available: http://www.infoq.com/news/2008/12/websockets-vs-comet-ajax.

 Retrieved December 17th 2011.

Emmatty, J.T. 2011. Differences between MVC and MVP for Beginners. Available:

http://www.codeproject.com/Articles/288928/Differences-between-MVC-and-MVP-for-

Beginners Retrieved on June, 01 2013.

Eugster, P., Pascal, A., Guerraoui, R., Kermarrec, A. 2003. The many faces of

publisb/subscribe, ACM Computing Surveys (CSUR), v.35 n.2, p.114-131.

Fiege, L., Muhl, G. 2000. Rebeca Event-Based Electronic Commerce Architecture, Available:

http://www.gkec.informatik.tu-darmstadt.de/rebeca. Retrieved March 20th 2013.

Fiege, L.,Gartner , F.C.,Kasten , O., Zeidler , A. 2003. Supporting Mobility in Content-Based

Publish/Subscribe Middleware, p.103-122.

Feldman, D. 2011. Adventures in HTML5: Mobile Webkit performance optimization.

http://www.scss.tcd.ie/~casseto/NGDM11-websockets.pdf
http://www.infoq.com/news/2008/12/websockets-vs-comet-ajax
http://www.codeproject.com/Articles/288928/Differences-between-MVC-and-MVP-for-Beginners
http://www.codeproject.com/Articles/288928/Differences-between-MVC-and-MVP-for-Beginners
http://www.gkec.informatik.tu-darmstadt.de/rebeca

89

 Available: http://operationproject.com/2011/adventures-in-html5-mobile-webkit-

performance-optimization/#.T4INMvtSTeF. Retrieved December 17th 2011.

Furukawa, Y. 2011.Web-based Control Application Using Websocket, ICALEPCS2011, p.673-

675.

Fowler, M. 2006. GUI Architecture. Available: http://martinfowler.com/eaaDev/uiArchs.html

Retrieved February 25th 2012.

Fielding, R. T. 2000. Architectural styles and the design of network-based software

architectures. PhD Dissertation. Dept. of Information and Computer Science, University

of California, Irvine. 2000.

Foster, I. et al. 2008. “Cloud Computing and Grid Computing 360-Degree Compared,” Grid

Computing Environments Workshop (GCE '08), 2008, p. 1-10.

Fowler, M. 2010. Richardson Maturity Model: Steps toward the glory of REST. Available:

http://martinfowler.com/articles/richardsonMaturityModel.html Retrieved October 10th,

2012.

Franklin, M., Zdonik, S. 1996. "Dissemination-based Information Systems". IEEE Data

Engineering Bulletin, Vol. 19 No. 3. P. 21-28.

Gartner, 2011. Gartner says Worldwide Mobile Application Store Revenue Forecast to Surpass

$15 Billion in 2011. Retrieved March 25th, 2012.

Gutwin, C., Lippold , M., Nicholas , T. C. 2011. Real-time groupware in the browser: testing

the performance of web-based networking. CSCW 2011, p. 167-176.

Gulzar, N. 2002. Fast Track to Strut: What it does and how. Available:

http://media.techtarget.com/tss/static/articles/content/StrutsFastTrack/StrutsFastTrack.pdf

Retrieved on February 13th, 2012.

Heimbigne, D. 2003. Extending the Siena Publish/Subscribe System, Technical Report CU-CS-

946-2003, University of Colorado at Boulder, p. 1-16.

Hohpe, G., Woolf, B. 2004. Enterprise Integration Patterns : Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley, Boston. 2004.

http://operationproject.com/2011/adventures-in-html5-mobile-webkit-performance-optimization/#.T4INMvtSTeF
http://operationproject.com/2011/adventures-in-html5-mobile-webkit-performance-optimization/#.T4INMvtSTeF
http://martinfowler.com/eaaDev/uiArchs.html
http://martinfowler.com/articles/richardsonMaturityModel.html
http://media.techtarget.com/tss/static/articles/content/StrutsFastTrack/StrutsFastTrack.pdf

90

Huang, Y., Molina, G., 2001. Publish/subscribe in a Mobile Environment. In Proceedings of

MobiDE. P. 27–34.

Hamalainen, H. 2011. HTML5: Websockets,

 http://www.mendeley.com/download/public/1174531/4717378065/1ea8b2b5a59d2aa918

b768616d647121279cfb73/dl.pdf. Retrieved on February 15th, 2012.

HTML5 Websocket implementation for the R language 2011. Available:

http://www.asymptotix.eu/news/html-5-websocket-implementation-r-language

 Retrieved on January 20th, 2012.

Hyuk, Y. 2011, Mobile Cloud e-Gov Design and Implementation Using WebSockets API, 204-

211, FutureTech. Retrieved on January 20th, 2012.

Heinrich, M., Gaedke, M. 2011. WebSoDa: A Tailored Data Binding Framework for Web

Programmers Leveraging the WebSocket Protocol and HTML5 Microdata. ICWE 2011,

p. 387-390.

Hoang, T. D., Chonho, L., Niyato, D., Wang, P. 2011. A Survey of Mobile Cloud Computing:

Architecture, Applications and Approaches, Wireless Communications and Mobile

Computing, Wiley Journals. ISSN 2229‐5518.

Jamal, S. 2012. “Combining caching with a cloud hosted proxy to support mobile consumers of

RESTful services”, M.Sc. Thesis Submitted to the College ofGraduate Studies and

Research, Department of Computer Science, University of Saskatchewan, Saskatoon,

Canada. November, pp. 1-85. 2012.

jQueryMobile. Available: http://jquerymobile.com/ Retrieved on December 20th 2011.

Kaazing 2012. Available: http://kaazing.com/products/kaazing-websocket-gateway. Retrieved

on January 20th 2012.

Krasner, G. E., Pope, S. T. 1988. A Description of the ModelView-Controller User Interface

Paradigm in the Smalltalk-80 System, Journal of Object Oriented Programming, 1(3),

Aug.–Sep. 1988, pp. 26–49.

Kazi, R.; Deters, R. 2013a, "A Cloud-hosted Hybrid Framework for Consuming Web Services

on Mobile Devices", The Third International Conference on Selected Topics in Mobile

and Wireless Networking, Montreal, Canada. August 19-21, 2013.

http://www.mendeley.com/download/public/1174531/4717378065/1ea8b2b5a59d2aa918b768616d647121279cfb73/dl.pdf
http://www.mendeley.com/download/public/1174531/4717378065/1ea8b2b5a59d2aa918b768616d647121279cfb73/dl.pdf
http://www.asymptotix.eu/news/html-5-websocket-implementation-r-language
http://jquerymobile.com/
http://kaazing.com/products/kaazing-websocket-gateway

91

Kazi, R.; and Deters, R. 2013b, “RESTful dissemination of healthcare data in mobile digital

ecosystem (DEST 2013), Menlo Park, California, July 24-26, 2013.

Kazi, R.; and Deters, R. 2013c, “A Dissemination-Based Mobile Web Application Framework

for Juvenile Ideopathic Arthritis Patients“, International Symposium on Network Enabled

Health Informatics, Biomedicine and Bioinformatics (Hi-Bi-Bi 2013), Niagara Falls,

Canada, August 25-28, 2013.

Larson, J., “Erlang for concurrent programming,” Queue, vol. 6, no. 5, pp. 18–23, 2008.

Lomotey, R.K.; Deters, R. "Reliable Consumption of Web Services in a Mobile-Cloud

Ecosystem Using REST", 2013 IEEE 7th International Symposium on Service Oriented

System Engineering (SOSE), On page(s): 13 – 24, vol., no., pp.13,24, 25-28 March 2013

Lomotey, R.K., Ralph, D., Using a Cloud-Centric Middleware to Enable Mobile Hosting of

Web Services, Procedia Computer Science, Volume 10, 2012, Pages 634-641, ISSN

1877-0509, 10.1016/j.procs.2012.06.081.

Liu, C., Liu, Y., Ma, X., Gao, J. 2010, An Application scheme of publish/subscribe system over

clustering Mobile Ad Hoc Networks. P. 1-4.

Lubbers, P., Greco, F. 2010. HTML5 Web Sockets: A Quantum leap in Scalability for the

Web. Available: http://soa.sys-con.com/node/1315473. Retrieved on January 20th 2012.

Mühl, G., Ulbrich, A., Herrmann , K., Weis, T. 2004. Disseminating Information to Mobile

Clients Using Publish-Subscribe. IEEE Internet Computing 8(3): 46-53.

MVC 2011. MVC – Model View Controller. Available:

http://molecularsciences.org/zend/mvc_model_view_controller Retrieved on June 15thth

2012.

MVCsharp.org. The Basics of MVC and MVP. Available:

http://www.mvcsharp.org/Basics_of_MVC_and_MVP/Default.aspx

 Retrieved on June 15th 2012.

Object Management Group 2002. CORBA notification service specification, version 1.0.1.

OMG Document formal/2002-08-04. 2002.

Osmani, A. 2012. Developing Backbone.js Applications. Building better JavaScript

applications. Available: http://addyosmani.github.com/backbone-fundamentals/#mvc-

mvp Retrieved on June 15th 2012.

http://soa.sys-con.com/node/1315473
http://molecularsciences.org/zend/mvc_model_view_controller
http://www.mvcsharp.org/Basics_of_MVC_and_MVP/Default.aspx
http://addyosmani.github.com/backbone-fundamentals/#mvc-mvp
http://addyosmani.github.com/backbone-fundamentals/#mvc-mvp

92

Osmani, A. 2012. Learning Javascript Design Patterns. Available:

http://addyosmani.com/resources/essentialjsdesignpatterns/book/ Retrieved on February

15th 2012.

Perry, R. 2011. Hybrid Mobile apps take off as HTML5 vs native debate continues.

 http://venturebeat.com/2011/07/08/hybrid-mobile-apps-take off-as-html5-vs-native-

debate-continues/ Retrieved on January 17th 2012.

Podnar, I., Hauswirth, M., Jazayeri, M., Mobile Push: Delivering Content to Mobile Users. In

Proceedings of the International Workshop on Distributed Event-Based Systems in

conjunction with the 22nd International Conference on Distributed Computing Systems,

2002.

PhoneGap. 2012. Available: http://phonegap.com/ Retrieved on March 20th 2012.

Qveflander, N. 2010. Pushing realtime data using html5 Web Sockets. Master’s thesis, Umea

University – Department of Computing Science. 2010.

Ranck, J. (2010). The Rise of Mobile Health Apps. October 2010. Available:

http://pro.gigaom.com/2010/10/report-the-rise-of-mobile-health-apps/. Retrieved on

October 30th 2012.

Reenskaug, T. MVC XEROX PARC 1978-79. http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-

index.html, 1979.

Sutton, P., Arkins, R., and Segall, B. 2001. Supporting Disconnectedness –Transparent

Information Delivery for Mobile and Invisible Computing. In Proceedings of the IEEE

International Symposium on Cluster Computing and the Grid (CCGrid'01), Brisbane,

Australia. p. 277-285.

Sencha 2012. Available: http://www.sencha.com/products/touch. Retrieved on March 15th

2012.

Sudha, N., Sujatha, S. 2011. Integrating Soa and Web Services. River Publishers, Aalborg,

Denmark. River Publishers, 2011.

Satyanarayanan, M., Bahl, P, Caceres, R., Davies, N. 2009. The Case for VM-Based Cloudlets

in Mobile Computing, IEEE Pervasive Computing, vol. 8(4), pp. 14–23.

Srirama, S., Jarke, M., Prinz, W.: Mobile Web Service Provisioning. In: Int. Conf. on Internet

and Web Applications and Services (ICIW06), IEEE Computer Society (2006)

http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://venturebeat.com/2011/07/08/hybrid-mobile-apps-take%20off-as-html5-vs-native-debate-continues/
http://venturebeat.com/2011/07/08/hybrid-mobile-apps-take%20off-as-html5-vs-native-debate-continues/
http://phonegap.com/
http://pro.gigaom.com/2010/10/report-the-rise-of-mobile-health-apps/
http://www.sencha.com/products/touch

93

Stephen, F. 2006. Event-Driven Programming: Introduction, Tutorial and History.

Available: http://eventdrivenpgm.sourceforge.net/ Retrieved on December 20th, 2012.

Thomas, E., Benjamin, C., Cesare, P., Raj, B. 2012. SOA with REST: Principles, Patterns &

Constraints for Building Enterprise Solutions with REST. Prentice Hall, August 10, 2012.

Triantafillou, P., Aekaterinidis, I., Content-based publish/-subscribe over structured p2p

networks. 1st International Workshop on Discrete Event-Based Systems, 2004.

Wang, C., Li, Z. 2004. A Computation Offloading Scheme on Handheld Devices. Journal of

Parallel and Distributed Computing, Vol. 64, No.6, pp. 740-746. Retrieved on March

20th, 2012.

Wang, Q. 2011. “Mobile Cloud Computing”, M.Sc. Thesis Submitted to the College of

Graduate Studies and Research, Department of Computer Science, University of

Saskatchewan, Saskatoon, Canada. November, pp. 1-80, 2011.

WebSocket.org 2012. Available: http://www.websocket.org/ Retrieved on March 15th, 2012.

WebSocket API 2012. Available: http://dev.w3.org/html5/websockets/ Retrieved on March

20th, 2012.

WebSocket 2012. Available: http://en.wikipedia.org/wiki/WebSocket Retrieved on March 20th,

2012.

WebSocket Protocol 2011. Available: http://tools.ietf.org/html/rfc6455 Retrieved on March

20th, 2012.

W3C 2004. Web Services Architecture.

Available: http://www.w3.org/TR/ws-arch/#id2260892 Retrieved on March 20th, 2012.

Webber, J., Parastatidis, S., Robinson, I. 2010. REST in Practice, O’Reilly Media. Retrieved on

March 20th, 2012.

Zhang, X. (2012). “N-Screen Application Framework”, M.Sc. Thesis Submitted to the College

of Graduate Studies and Research, Department of Computer Science, University of

Saskatchewan, Saskatoon, Canada. November, pp. 1-85.

http://eventdrivenpgm.sourceforge.net/
http://www.websocket.org/
http://dev.w3.org/html5/websockets/
http://en.wikipedia.org/wiki/WebSocket
http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/ws-arch/#id2260892

