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Latency is one of the key performance elements affecting the quality of experience (QoE) in
computer games. Latency in the context of games can be defined as the time between the user
input and the result on the screen. In order for the QoE to be satisfactory the game needs to be
able to react fast enough to player input. In networked multiplayer games, latency is composed
of network delay and local delays. Some major sources of network delay are queuing delay and
head-of-line (HOL) blocking delay. Network delay in the Internet can be even in the order of
seconds.

In this thesis we discuss what feasible networking solutions exist for browser multiplayer games.
We conduct a literature study to analyze the Differentiated Services architecture, some salient
Active Queue Management (AQM) algorithms (RED, PIE, CoDel and FQ-CoDel), the Explicit
Congestion Notification (ECN) concept and network protocols for web browser (WebSocket,
QUIC and WebRTC).

RED, PIE and CoDel as single-queue implementations would be sub-optimal for providing low
latency to game traffic. FQ-CoDel is a multi-queue AQM and provides flow separation that is
able to prevent queue-building bulk transfers from notably hampering latency-sensitive flows.

WebRTC Data-Channel seems promising for games since it can be used for sending arbitrary
application data and it can avoid HOL blocking. None of the network protocols, however,
provide completely satisfactory support for the transport needs of multiplayer games: WebRTC
is not designed for client-server connections, QUIC is not designed for traffic patterns typical
for multiplayer games and WebSocket would require parallel connections to mitigate the effects
of HOL blocking.
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1 Introduction

Video game industry is predicted to produce 196 billion (196 thousand million) US dollars
in revenue by the year 2022 [Web19]. The industry goes through a constant change, in
technology and in its business models. A growing share of games is released as free-to-
play (F2P) while cloud gaming is also on the rise. In 2019, already 82% ($87.1B) of the
revenue came using the F2P model [Lu20]. Majority of it was from mobile games. In
2020, the amount of people who are playing video games is estimated to be more than
2.5 billion [Wij19].

Different game genres are plenty. A blog post [Vin18] about video game genres lists a
total of 49 different ones. A web article [Jon19] ranking the most popular video game gen-
res mentions Massive Multiplayer Online (MMO) games, Sports games and First-Person
Shooter (FPS) games, to name a few.

Different games have different requirements for the system. These requirements include
the performance of the local system (for example, computer hardware) and, in case of
networked multiplayer games, also the performance of the network.

Network performance can be measured in terms of throughput, latency, jitter and packet
drop rate [Ken02, pp. 64–66], [Tec15]. Throughput is the amount of data per time unit
going through the network from the sender to the receiver, latency is the time it takes for
the data to travel from the sender to the receiver, jitter is the variation in latency and
packet drop rate is the amount of packets lost per time unit during the transfer.

The requirements vary from game to game. Some games have more strict requirements
for latency than others. Some require higher throughput than others. Some games can
handle packet drops better than others. Cloud gaming, for example, requires a lot higher
throughput than a non-cloud regular game. Cloud gaming is a technology where the game
is rendered at a remote server and a video stream is sent to the player client. In a regular
game, only game state information needs to be transferred from the server to the client
whereas in cloud gaming, where no game logic is executed at the client, everything that
is drawn onto the screen needs to be transferred from the server to the client.

Browser games are video games that use the web browser as a platform. Browser games
do not need installation but instead they can be launched immediately by simply entering
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an address into the address bar of the web browser. This lowers the threshold for gaming.
However, the web browser as a platform has some limitations regarding the use of certain
underlying technical solutions. Most prominently, these are multi-threading and network
protocols. The multi-threading and network protocol options that are commonly available
for a desktop application are not directly available for an application running in the web
browser. The limited possibilities in the web browser pose an extra challenge on the game
design and can result in solutions that unnecessarily increase the latency experienced in
the game.

Latency is one of the key performance factors affecting the quality of experience (QoE) in
games. Latency in the context of games can be defined as the time between the user input
and the result on the screen. The game needs to be able to react fast enough to player
input in order to produce outcome that feels intuitive for the player [Sav+14].

The more fast-paced the game is the more stricter latency requirements it often has
[DWW05; RSR08; CC06]. The most demanding game genre in terms of latency re-
quirements can be considered to be the FPS games [SS15]. Studies [CC06; DWW05;
Qua+04] show that in FPS games network round-trip times under 100 ms would usually
be preferred.

In networked multiplayer games, latency is composed of network delay and local delay
[RP15]. Network delay is the time it takes for a message to travel from the sender to the
receiver. Local delay is the time between a user input, such as a mouse click, and the
resulting change on the screen. Local delay does not include the possible network delay
in-between.

Local delay consists of input device latency, rendering delay, screen refresh rate and mon-
itor response time. Between the input and the rendering of the result of the input, infor-
mation may be sent to a server and back in order to receive a confirmation of the result,
such as hit to a target. Thus, the overall latency, from input to result on the screen, may
involve both the local delay and network delay.

Various sources of delay contribute to network delay [Bri+16]. Some major sources of
network delay in the context of multiplayer games are signal propagation delay, queuing
delay, packet loss recovery delay and head-of-line (HOL) blocking delay. Signal propaga-
tion delay is the time it takes for a bit to travel from a network node to another. Queuing
delay is the time a packet is at a queue inside a network node waiting for its turn to be
forwarded. Packet loss recovery delay is the delay caused by packet retransmission. HOL
blocking is a situation where packet ordering requirements prevent a packet from being
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delivered from the receiver buffer to the upper layer or the application.

Network delay in the Internet can be in the order of hundreds or even thousands of
milliseconds [GN11]. In addition to this, local delay in real-world gaming scenarios can be
around 20-240 ms [Ivk+15]. Both the network delay and local delay can thus be substantial
contributors for the overall latency. In this thesis, however, we leave out local delay and
focus solely on the network delay.

Multiplayer game network traffic usually consists of frequently sent small packets carrying
user input and game state information [CC06; SS15; CI12]. (This does not apply to cloud
gaming, which we leave outside of this thesis.) The possible strict latency expectations
of the packets pose a challenge on networking solutions. If the packets have to queue for
a long time behind competing traffic in the routers and switches on the path, they may
easily miss their deadline set by the game. Also, if the game uses a transport protocol
that suffers from HOL blocking, reordered or lost packets will cause additional delays. On
top of this, signal propagation causes delay relative to the travel distance, adding to the
overall delay.

Queuing in network devices is managed with queuing and scheduling algorithms. Also,
various policies are in use in the Internet to control how traffic is treated while in the
queues. These policies are often realized with the Differentiated Services (DiffServ) ar-
chitecture [BBC06] that provides a concept for classifying traffic and treating packets
differently based on their traffic class.

From the delay types, our main focus in this thesis will be on queuing delays and HOL
blocking delays. We consider Active Queue Management (AQM) algorithms [BF15] and
the DiffServ architecture for managing the queuing delays. Regarding HOL blocking, we
consider communication protocols that can avoid HOL blocking and are available for web
browsers. We also consider Explicit Congestion Notification (ECN) [FRB01] in reducing
packet loss recovery delays and HOL blocking.

The common transport protocols used in the Internet are Transmission Control Protocol
(TCP) [Pos81] and User Datagram Protocol (UDP) [Pos80] [Ant15, pp. 263–264]. TCP
guarantees reliable in-order delivery and, therefore, suffers from HOL blocking. UDP does
not make such guarantees and thus avoids HOL blocking. For this reason, games that
require low latency usually use UDP as their transport protocol [MR16].

Web browsers, however, do not expose raw UDP or TCP sockets. Instead, UDP and TCP
sockets are accessed via higher layer protocols or APIs. For the purposes of this thesis
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we examine three such protocols/APIs: WebSocket [MF11], QUIC [IT20] and WebRTC
[Alv17].

WebSocket is a transport protocol that uses TCP as a substrate. We include it in this
study to give perspective on the other two options. QUIC is a transport protocol that
uses UDP as a substrate. In browsers, QUIC is accessible via Hypertext Transfer Protocol
HTTP/3 [Bis20]. WebRTC utilizes multiple protocols for which it uses UDP underneath.
WebRTC is designed for peer-to-peer communications and in that context foremostly for
video calls.

For this thesis, we formulate our research question as: ”What feasible networking solutions
exist for browser multiplayer games?” We conduct a literature study to analyze some
salient AQM algorithms and differentiated packet treatment concepts, the ECNmechanism
and some network protocols and consider how they would be suitable for supporting
multiplayer game traffic.

The remainder of this thesis is organized as follows. In Chapter 2 we discuss network delay
in the context of multiplayer games. In Chapter 3 we consider the support a network can
provide for latency-sensitive traffic in the form of AQM, differentiated packet treatment
and ECN. In Chapter 4 we examine the WebSocket, QUIC and WebRTC protocols and
in Chapter 5 we conclude the thesis.



2 Network Delay in Multiplayer Games

In this chapter we will first give an overview on networked multiplayer game architectures,
their components, traffic characteristics and the specifics of using web browser as a plat-
form for games. Then we describe the various network delay types and consider the effect
they have on multiplayer games.

2.1 Multiplayer Games

A game, as defined by Salen and Zimmerman [SZ03], is “a system in which players engage
in an artificial conflict, defined by rules, that results in a quantifiable outcome”. Games
played on PC or game consoles, or on other systems comprising an input device and video
display, are called video games [Esp05].

Games can be single or multiplayer [ACB06, pp. 5–6]. Single player video games involve
only one human player playing a session of the game. The game may have some sort of an
artificial intelligence affecting the play and possibly acting as an opponent for the human
player. Multiplayer games have two or more human players usually affecting each other’s
play. They may play against each other or play cooperatively.

Multiplayer game architectures

Multiplayer video games can be played on the same or on different machines [ACB06,
pp. 5–6]. Games played on the same machine may implement a split screen where half
of the screen is the view of the first player and another half is the view of the second
player. The players may also view their avatars from the same screen if the type of the
game makes it possible. This is common, for example, in some sports video games. One
option also is to make players take turns when playing on the same machine. A player
may complete or fail a level and then the other player may try.

Multiplayer video games played on different machines are called networked multiplayer
games† [ACB06, pp. 5–6]. They require sending information between the participating

†For the rest of this thesis, the term "multiplayer game" is used in the meaning of "networked multiplayer
game".



6

machines over a network. Possible architectures for the communication include a) client-
server, b) peer-to-peer and c) peer-to-peer, client-server hybrid [ACB06, pp. 15–16].

In a client-server architecture, a typical way to structure the communication is as follows
[Sil15, p. 17]. Client listens for local player input and sends the input to the server. The
server processes the input and sends updated game state to appropriate clients. Upon
receiving the message from the server the client updates the local game state to represent
the state at the server. The clients do not send messages directly to each other but instead
the information goes through the server. The server holds an authoritative state of the
game.

In a peer-to-peer architecture there is no server to hold an authoritative state or mediate
messages between clients [ACB06, p. 15]. Instead, the player machines, the peers, connect
directly to each other. None of the peers has more control over the state of the game
than others. A peer communicates its game input or state directly to other peers and
there is no authority in between to decide the validity of the information. A peer-to-peer,
client-server hybrid on the other hand is an architecture where a server in-between can
ensure the validity of the client messages that are essential for a consistent state of the
game but other non-essential information such as voice communication between players is
sent peer-to-peer [ACB06, p. 16].

A client-server architecture creates a single point of failure where the server not being able
to keep up with the client messages may cause the quality of experience to decrease for
all the players [ACB06, p. 16]. Peer-to-peer architecture, on the other hand, may present
challenges in keeping a consistent state of the game especially if a peer is purposely sending
incorrect information, that is, cheating [RFP08, p. 588]. In commercial use, client-server
architecture is the most popular [ACB06, p. 16].

An architecture of multiple servers is also possible [ACB06, p. 17]. Servers can operate
in a peer-to-peer manner to distribute the load of one server to multiple servers. Servers
themselves can also have a client-server-like architecture where one server is authoritative
and the other servers communicate with it and distribute the load. Each server then only
deals with a subset of the actual clients which reduces the processing and network capacity
required.
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Game loop

A central component of a game program is a game loop [Mad18; Nys14]. Game loop
iterates through the functions that the game needs to perform in order to draw a new frame
to the screen. This mechanism is a notable difference in games compared to traditional
applications such as word or image processing where the program only executes functions
after user input. In games the game loop continues running regardless of user input (until
an end condition or exit). The loop needs to repeat as often as new content is drawn to
the screen [TBN06]. For example, if the frame rate is 30 frames per second the game loop
needs to repeat approximately every 33 ms.

The game loop consists of three major steps: gathering possible user input and incoming
network messages, running the game simulation and rendering the game [TBN06]. In the
first step the program gathers the input such as keystrokes or mouse events from the user.
It also gathers the messages that have arrived through the network from the game server
or from peers, depending on the architecture. Next, the program sends information of
the input to the server or peers and runs the simulation to advance the game. This part
involves all the logic required in updating the game state, such as physical simulation,
game logic, artificial intelligence, particle systems, etc. The received input and network
messages are used in calculating a proposition for the next game state. After this, the
game entity interactions and collisions are resolved and the next game state is ready for
rendering. The rendering part involves calculating lighting and texture states in order to
create renderable representations of the game entities. This phase produces data structures
that can be used outputting data to the video and sound devices.

The information the clients and the server send to each other, and the frequency of this
communication, is a game design decision. A client could send data of the player avatar’s
position and orientation, in addition to sending only information of input events. The
server could send only information considered relevant such as positions and orientations
of the objects near the current player, instead of sending the whole state of the game to
all the clients every time.

The sending of the user input does not need to happen at every game loop. For example,
if the user is repeatedly pressing a button, the program can gather the inputs and send
them grouped in a single message. Similarly, game state data incoming from the server
does not necessarily come at the same frequency as the game loops. Multiple game state
messages or none may arrive during a loop, depending on the game design and network
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conditions.

The amount of data and the frequency of sending it, is a trade-off between game state
consistency and network traffic [Fie15a]. The longer the time between sending a game
state update the more time the receiver has to deviate from that state. The shorter the
time between sending updates the more network traffic is generated.

In principle, many of the tasks in the game loop could be run in parallel [TBN06]. Input
gathering, network message gathering, running the game simulation and rendering the
game can be independent operations. Input and network message gathering produce in-
formation that the game simulation uses. Game simulation runs independently of whether
input or network messages were received or not. Input and network messages are gath-
ered regardless of what happens with game simulation or rendering. The game simulation
produces information that the rendering phase uses. Rendering can or should be done
whether the simulation phase updates or not. If the simulation did not update before
the next render, the render should use the previous information available and execute on
time. The rendering phase can utilize interpolation or extrapolation to produce the new
render when no new information from the simulation is available. All these phases can
be thus independent. For example, the game simulation can loop at a different frequency
than the rendering. While the rendering loops every 33 ms the simulation can loop ev-
ery 50 ms (assuming rendering component interpolation or extrapolation). Also some of
the sub-tasks inside the phases are independent. This allows taking advantage of parallel
computing and achieving possible performance gains.

Traffic characteristics in networked multiplayer games

Latency affects the user QoE (Quality of Experience). Different games have different
thresholds for levels of latency before the QoE perceivably starts to degrade. Games can
be divided into three categories based on the player perspective of the game world and the
interaction model in the game [CC06]: omnipresent, third-person avatar and first-person
avatar. Omnipresent games are such where the player views the game world mainly from
above and controls a set of resources. In third-person avatar games the player controls
a single character and the view follows this character. In first-person avatar games the
player controls a single character and the perspective is from the eyes of the character.

Games such as First-Person Shooters (FPS) belong to the first-person avatar category.
Massively Multiplayer Online Role-Playing Games (MMORPG) usually belong to the
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third-person avatar category but they may also use other camera perspectives [Oli18].
Real-Time Strategy (RTS) games belong to the omnipresent category [XI15, p. 1218].
Tolerable latencies are around 80-100 ms for FPS games, around 120-500 ms for MMORPG
games and around 1000 ms for RTS games [DWW05; RSR08; CC06]. In RTS games the
network latency is not as relevant for QoE as it is in FPS and MMORPG games because
the focus of the play in RTS games is more in strategy than in interaction [Cla05].

Networked multiplayer game traffic typically consists of frequently sent small packets
[CC06; SS15]. Among the genres, FPS games usually have the smallest packets and
highest sending rates. A survey [CI12, p. 242] on traffic characteristics of multiplayer
games found that the packet payload sizes in FPS games were 5-300 bytes and packet
inter-arrival times were 10-200 ms. MMORPG genre had packet payload sizes of about
1-600 bytes and packet inter-arrival times of about 0-3000 ms. RTS games had about
9-60 byte of packet payload size and 0-300 ms packet inter-arrival times. The maximum
transmission unit (MTU) in the Internet is commonly 1500 bytes [Cox20; Hor84]. Game
data packets should fit in this limit easily and not become fragmented.

Web browser as a platform

The web browser as a platform has some limitations regarding parallel computing. Java-
Script code is executed in a single thread [Sil15, p. 65]. It does provide Web Workers
that spawn parallel threads but data between a Web Worker and the main thread is
copied rather than shared which may have negative performance implications [MDN20a;
MDN20e]. However, JavaScript’s SharedArrayBuffer [MDN20d] allows sharing data be-
tween threads. Also, the Transferable interface enables transferring objects with a zero-
copy operation and can be utilized in transferring data between the main thread and a
Web Worker [MDN20e].

For the game loop, JavaScript’s window.requestAnimationFrame() method can be used
[MDN20f]. This method takes a callback and requests the browser to invoke it before
the next repaint. Within this function the program can run the game simulation with
the input and network messages received thus far and provide the content to be rendered
in the repaint. The method in the callback takes an argument which indicates a current
time and it can be used for delta timing, that is, to run the simulation at the same speed
regardless of the frame rate.

In addition to parallel computing the web browser as a platform has some limitations on
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Delays along transmission paths Signal propagation delay
Medium acquisition delays
Serialization delay
Link error recovery delays
Switching/forwarding delay
Queuing delay

Structural delays Sub-optimal routes/path
Name resolution
Content placement
Service architecture

Interaction between endpoints Transport initialization
Secure session initialization
Packet loss recovery delays
Message aggregation delays

Delays related to link capacities Insufficient capacity
Redundant information
Under-utilized capacity
Collateral damage

Intra-end-host delays Transport protocol stack buffering
Transport head-of-line (HOL) blocking
Operating system delays

Figure 2.1: Network delay types [Bri+16, p. 2151]

network protocol use. A game developer might want to use a bare UDP and build some
own custom in-game protocol on top of it in order to have more control over how the
network packets are handled at the endpoints. In non-browser games, that is, desktop
games, this is possible, but in browser games this is not possible. The browser does not
expose raw UDP or TCP sockets for the application. Hence, some higher level protocols
such as Web Socket, QUIC or WebRTC need to be used.

2.2 Network Delay Types

Multiple elements contribute to the overall delay in communication between endpoints.
To consider the reasons for delay we can use the categorization of [Bri+16, p. 2151] which
divides network delays into five main types: (I) delays along transmission paths, (II)
structural delays, (III) delays related to interaction between endpoints, (IV) delays related
to link capacities and (V) intra-end-host delays. Each type has its own sub-types, as is
illustrated in Figure 2.1. In the following we will consider these delay types from their
relevant parts.

Delays along transmission paths

Delays along transmission paths are delays that happen when a packet travels in the
network from an endpoint to another [Bri+16, p. 2164]. They are made of signal prop-
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agation delay, medium acquisition delay, serialization delay, link error recovery delays,
switching/forwarding delay and queuing delay.

Signal propagation delay depends on the distance between the sender and receiver and the
medium the signal travels on [Bri+16, p. 2164]. Light travels in a vacuum about 300 mm
in a nanosecond and in optical fiber about 200 mm in a nanosecond. Straighter routes
between sender and receiver and development of media where signal travels faster are the
means to reduce signal propagation delay.

Medium acquisition delays arise when the access to a medium needs to be shared with
multiple devices [Bri+16, pp. 2164–2165]. Many techniques exist in granting the access,
such as predefined time slots or random access. In these techniques channel throughput
is often prioritized over latency but latency optimizations are also possible.

The process of switching/forwarding consists of multiple steps: deserializing a packet,
possibly buffering it at the device input, examining its header, passing it through the
switching fabric to the output corresponding to its destination, possibly buffering the
packet and then serializing it [Bri+16, pp. 2165–2167]. Serialization delay consists of
network devices serializing or deserializing a packet frame in order to send it to the wire
or read it from the wire. Besides buffering and serialization delays, switching/forwarding
delay is affected by the access speed to the forwarding table entries and complexity of rules
while examining the header, and the time it takes for the packet to traverse the switching
fabric from input to output.

Link error recovery delays depend on the protection the link provides against errors
[Bri+16, p. 2166]. The channel coding has an effect on the serialization delay and also on
the link error recovery delays. More robust channel coding against errors can reduce the
link error recovery delays but increase the serialization delays because of possibly longer
codes. In case corrupted data is found, link-level retransmission may be performed. On
the other hand, some forwarding methods reduce the serialization delay by forwarding the
packet as soon as the header is read. This, however, prevents discovering errors until the
end of the packet. In this case, corrupted packets get forwarded.

Queuing delays are created at network devices when packets wait to be forwarded [Bri+16,
p. 2167]. Network devices buffer incoming packets in order to accommodate for bursty
traffic and to provide high link utilization. Queues build up when packets arrive faster
than they can be forwarded. Larger buffers can fit longer queues and absorb bigger bursts
of traffic but at the same time they can lead to longer delays. This has become a problem
in the Internet where middlebox vendors installing overly large buffers to prevent packet
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drops has created excessive queuing in the devices [GN11, p. 4]. This phenomenon is
known as the bufferbloat. In general, queuing delays are the biggest contributing factor
to delays along end-to-end path in the Internet [Bri+16, p. 2167].

The following seven topics deal with reducing the queuing delays: flow and circuit schedul-
ing, reducing MAC buffering, smaller network buffers, transport-based queue control, traf-
fic shaping and policing, packet scheduling, and queue management [Bri+16, p. 2167].

(1) Flow and circuit scheduling comprises techniques that seek to directly connect network
device’s input and output ports and thus avoid queuing [MR08; Bri+16].

(2) Reducing MAC buffering is a subject of considering what buffering is necessary at the
MAC layer or below and what buffering could be done at the IP layer, in order to reduce
complexity of buffering on multiple layers and achieve shorter delays [Bri+16, pp. 2167–
2168].

(3) Smaller network buffers can reduce queuing delays [Bri+16, p. 2168]. Buffer size is a
tradeoff between latency, utilization and packet loss.

(4) Transport based queue control methods try to accomplish low queuing delays with
burstiness reduction [FF96; Kob06] or by detecting congestion in its early stage [Ali+10;
HR13; Bri+16]. Some methods also try coupling the congestion control of flows that
originate from the same end-host and share a bottleneck link [IWG13; WNG11; Bri+16].
Sharing a link causes competition and coupling the congestion control can reduce the
latency of the flows.

(5) Traffic shaping limits transmission rates and traffic policing drops packets that exceed a
specified rate [Bri+16, p. 2169]. Examples of traffic shaping techniques are a leaky bucket
algorithm [Tur86] and a token bucket algorithm [TW10, p. 408]. Limiting transmission
rates is a source of delay itself but on the other hand it can reduce congestion and the delay
caused by the congestion by preventing a burst of packets being forwarded and possibly
congesting a link in the path [Bri+16, p. 2169]. Traffic shaping is used widely by ISPs
[KD11].

(6) Packet scheduling can provide fairness or prioritization to traffic [Bri+16, p. 2168].
For example, latency-sensitive flows can be prioritized over bulk transfers. A scheduler
controls which packet to send when a buffer has multiple queues.

(7) Queue management controls the queues in buffers and decides which packet to drop
when the queue becomes too long [Bri+16, p. 2169]. Passive techniques include drop tail
and drop front. Active Queue Management (AQM) techniques include algorithms such as
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RED, [FJ93] PIE [Pan+17] and CoDel [Nic+18]. AQM is an important tool in fighting
the bufferbloat problem, with the algorithms focused on preventing an excessive queue
build-up.

Structural delays

Structural delays relate to physical locations of network nodes and the paths between them.
Structural delays are created by sub-optimal routes, name resolution, content placement
and service architecture [Bri+16, pp. 2151–2157].

The path that a network packet travels from an endpoint to another is affected by Internet
Service Providers’ (ISP) agreements with each other, which are typically made on economic
grounds. The path that an ISP forwards a packet may not be the fastest one but instead
a cheapest one for the ISP. Thus, in terms of network delay, packets may often travel on
sub-optimal routes.

Name resolution is required when using a domain name to find out an IP address [Moc87].
For example, a client connecting to a web server is a typical case when name resolution
may be needed. Name resolution is done by using Domain Name Service (DNS) servers.
A local DNS server may have cached the address which would make the name resolution
relatively fast: a round-trip time (RTT) to the server [Bri+16, pp. 2153–2154]. In case of
a cache miss the resolution is slower since it requires possibly traveling up and down the
DNS hierarchy until the address can be found.

Due to speed of light and technological limitations on how fast a bit can travel on a
medium, content placement is crucial [Bri+16, pp. 2154–2156]. The closer the content
is to the user the faster it can potentially be accessed. Various kinds of caching can be
implemented to bring the content closer. However, if the content is generated real time,
caching static content is for no use. Network proxies that can hold a migrated application
state could instead be used to bring dynamic content closer to users. Also, client caching
content that a server has pushed can reduce delay, if receiving the content would otherwise
require the client making a request. On the other hand, if the application usage follows
a predictable pattern it may be possible for the client to request data beforehand. If the
data itself is predictable, such as next position for an object following the laws of physics,
the application can attempt approximating it without needing to receive it at all and thus
hiding the effects of network delay.

Choices in service architecture also affect the delay [Bri+16, pp. 2156–2157]. Cloud services
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or peer-to-peer (P2P) solutions can be utilized to bring the content closer for multiple users
in different geographical areas. Cloud services allow spawning of server instances or caches
near users, based on demand. P2P solutions can omit servers completely and host content
directly on users but it requires carefully chosen topology in order to provide latency
benefits. Some delay reductions can also be achieved by architectural choices of replacing
chains of middleboxes with a server that runs the same functions in a single memory
address space. This reduces the amounts of serialization and deserialization required.

Interaction between endpoints

Interaction between endpoints involves delays caused by transport initialization, secure
session initialization, packet loss recovery and message aggregation [Bri+16, pp. 2157–
2164].

Initializing transport and a secure session requires some protocol handshake operations.
These handshakes may take multiple RTTs. Reducing the need for the operations to be
sequential can speed up the process since the endpoint does not have to wait a full RTT
for each operation to complete before proceeding to the next one. Persistent sessions and
multiplexing data over a session also reduce the need for handshakes.

Packet loss recovery delays are created when packets are lost and they need to be retrans-
mitted [Bri+16, pp. 2162–2163]. Packets may be lost due to link errors that corrupt data
or because of congestion that requires packets to be dropped. Transport protocols that
offer reliable delivery need to detect and retransmit the lost packets. Transport protocols
that do not offer reliable delivery do not need to detect and retransmit lost packets but
instead handling the situation is left to the application or a higher layer protocol. Some
transport protocols may provide partial reliability in which case packets are retransmitted
only in certain conditions [Ram+04]. In addition to retransmission at the transport layer
the link layer may also implement its own retransmissions [Bri+16, p. 2162].

Transport protocols may use acknowledgments (ACKs) from the receiver to detect packet
loss [BPA09; Ste07; IS20]. When receiving a packet the receiver sends an ACK to the
sender. When receiving a certain amount of ACKs that fail to acknowledge an expected
packet number the packet may be deemed lost. There is thus some delay between the
actual loss of the packet and the detection of the loss. If no ACKs at all are received for a
certain period of time even though one or more packets have been sent, a retransmission
time-out (RTO) may occur. This is to detect a packet loss in the case there is only one or
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a small number of packets in flight at a time or in case multiple consecutive packets get
lost, or the loss happens at the end of the transmission. RTO incurs further delays in the
packet loss recovery process [Bri+16, p. 2162].

Another way of managing packet loss is to use redundancy [Bri+16, p. 2162]. The sender
can send one or more copies of the same packet to avoid the need for retransmission in
case any of the copies go through. Forward error correction (FEC) is a technique of coding
data redundantly into multiple packets and being able to retrieve the original data even
though some of the packets get lost. Redundancy requires more capacity but reduces
possible delays caused by retransmissions.

If the application can cope with missing data, it may not need retransmissions or redun-
dancy but instead it can try to conceal the gaps, in order to improve user experience
[Bri+16, p. 2162]. Concealing can be attempted by approximating the missing content
based on the received content.

Many transport protocols infer congestion from packet loss [BPA09; Ste07; IS20]. They
increase their transmission rate until packets start to get dropped and by this way find
out the current conditions. Another way to receive information about congestion is to use
Explicit Congestion Notification (ECN) [Bri+16; FRB01]. ECN enables detecting conges-
tion without the need for packet drop. Router sets an ECN-CE (Congestion Experienced)
flag in a packet IP header for incipient congestion, receiver echoes this to the sender and
the sender reduces its transmission rate to avoid packet drop. This way, packet losses and
associated delays may be reduced.

Some protocols try to aggregate messages in order to improve bandwidth efficiency [Bri+16,
p. 2163]. This causes message aggregation delays. When about to send a packet the trans-
port protocol may wait for a short time in anticipation of possibly receiving more data
from the application to coalesce into the same packet. An example of this is the Nagle’s
algorithm [TW10, p. 566]. Also, sending of acknowledgments may be delayed [Bri+16,
p. 2163]. The transport protocol may send an acknowledgment for every two full-sized
segments only or try to piggyback it with a data segment. If neither of these conditions
become fulfilled a timer will finally trigger the sending of an acknowledgment.

Delays related to link capacities

Delays related to link capacities are created by insufficient capacity or by the way the
capacity is used and shared among competing traffic flows [Bri+16, p. 2172]. When



16

capacity is scarce, queues and congestion can build up and flows may suffer collateral
damage, that is, flows may experience packet drops and delays due to competition on the
link. On the other hand, under-utilizing existing capacity can unnecessarily increase flow
completion times.

Capacity can be increased by upgrading the physical link interfaces to support higher
transmission rates and by implementing technologies that utilize parallel links or multiple
paths to distribute the load [Bri+16, p. 2172]. The need for capacity can be reduced
by avoiding sending of redundant information [Bri+16, pp. 2172–2173]. For example, by
using header compression or by replacing redundant unicast transmissions with a single
multicast transmission, when possible. Capacity utilization can be improved with better
optimized congestion control algorithms that can quickly adapt to varying traffic situations
[Bri+16, pp. 2173–2175].

Intra-end-host delays

Intra-end-host delays are formed based on the design and architecture of operating systems,
applications and hardware [Bri+16, pp. 2176–2177]. Central parts for delays are buffering
and how information is passed between components. Data sent over the network needs to
be buffered at the protocol stack of the host, in between the application and the network.
Depending on traffic characteristics and the protocols used, some flows may require more
buffering than others. Too small buffers can cause under-utilization. Too big buffers can
allow inefficiently long queues that can add unnecessary delay.

Regardless of queue handling techniques, ordering requirements can create extra delay
at the receiving endpoints [Bri+16, p. 2177]. If the transport protocol requires packets
to be delivered in order then packets following a lost packet can not be delivered to the
application before the lost one is retransmitted and delivered. Likewise, if a packet is not
lost but reordered in the network, the following packets have to wait at the receiver buffer
until the preceding packet arrives. These are occurences of head-of-line (HOL) blocking.
Typically, stream-based transports, such as TCP, require the socket API to deliver data
sequentially (in order) whereas datagram-based transports, such as UDP, can deliver data
unordered. Some multiplexing protocols, such as QUIC, provide ordered delivery within
a stream and unordered delivery between streams.
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2.3 Delay Effect

The fundamental effect of network delay is that a game input registered at one place
can not be registered in another place at the same instant. It takes some time for the
information to travel from A to B. Network delay can thus create some discrepancy on
the game state consistency between players. It is not possible to both (a) update the local
game state immediately based on user input and (b) maintain consistency across all hosts
all time. The design of the game has to choose between these two and make a compromise
between some level of waiting and some level of inconsistency.

For example, let us consider that at time 0 the Player A presses a key to jump. At time 1
the information of the keypress has reached the server. The server sends the information
to all clients. At time 2 the information reaches Player B. There are two prominent options
here. Should the game at Player A execute the jump at time 0 or at time 2? If the jump
is executed instantly at the keypress at time 0 then the states at Player A and Player B
will differ. If the jump is executed at the same time on both players then Player A has to
wait.

To manage the game state consistency various alternative methods can be implemented.
Some salient concepts are the lockstep method, the snapshot interpolation method and
the snapshot extrapolation method [Fie14a; Fie14b; Fie15b; ACB06].

In a lockstep method, the game waits to gather input from all players for each step and
only advances when all the input for a step is received. The game is as fast as the slowest
client, that is, the client who has the longest network delay determines the speed at which
the game can advance for all the players.

In a snapshot interpolation method, the server receives inputs from the clients, calculates
a new state based on the inputs and sends the new state (state 1) to the clients. The
clients then interpolate∗ from their old state (state 0) to this new state (state 1). After
reaching the new state, two alternative things can happen: (a) If a following new state
(state 2) is received by the time this current state (state 1) is reached, the client continues
to interpolate towards the new state (from state 1 to state 2); (b) If the new state (state
2) is not received by the time the client reaches the current state (state 1), the client stops
the game from advancing because there is nowhere to interpolate to. When the new state
(state 2) is finally received, the client once again interpolates to it from its current state.

∗In interpolation, a value is approximated based on preceding and following values.
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Conceptually, in snapshot interpolation, the client can be thought to be always behind
time of the authoritative state.

In a snapshot extrapolation method, the server receives inputs from the clients, calculates
a new state based on the inputs and sends the new state to the clients. Different from the
snapshot interpolation method, the clients do not wait for the new authoritative state to
arrive from the server but instead advance forward, by using extrapolation∗, which, in this
context, is also known as dead-reckoning. When the authoritative state update arrives
from the server the clients have already advanced past it but they use it as a basis for the
extrapolation in order to constantly correct their deviation from it. Hence, conceptually,
in snapshot extrapolation, the client can be thought to be always ahead of time of the
authoritative state.

Snapshot interpolation and extrapolation can be combined in the game’s design. When
the client receives information of the new authoritative state, the client can continue by in-
terpolating towards the new state. When the client reaches the authoritative state but has
not yet received information of the next authoritative state, for example due to network
conditions delaying the delivery of the state message, the client can continue by extrap-
olating. Once the next authoritative state is received, the client can stop extrapolating
and continue with interpolation towards the new state.

In the following, we will further examine the different network delay types in the context
of multiplayer games.

Delays along transmission paths

Speed of light sets a hard limit on how low a signal propagation delay can be. It takes about
113 ms for light to travel the distance from London to Sydney and back, for example. This
is a significant amount of time considering the preferred latency for First-Person Shooter
games is below 100 ms. With current technology the light in fiber can travel about 200
000 000 meters per second [Gri13, p. 6]. This would make about 170 ms from London to
Sydney and back if no other delays existed on the path. In practice, it takes about 300
ms [Won20]. Geographically optimized content placement and client/peer selection for a
game session is thus crucial.

Medium acquisition techniques focus largely on throughput and are thus often favorable to
bulk transmissions over delay-sensitive game flows. Serialization and switching/forwarding

∗In extrapolation, a value is approximated based on preceding values.
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delay on the other hand is usually proportional to the size of a packet [Bri+16, p. 2165],
which is a favorable property for thin game flows compared to traffic with bigger packets.
However, the smaller the packet the bigger the overhead is from packet headers.

Recovering from an error can often be done faster on the link layer than on the transport
layer [Bri+16, p. 2166]. However, the game might be using a non-reliable transport proto-
col in an attempt to minimize latency, and not implement an error recovery scheme at all
but instead handle packet loss with in-game delay-compensation methods. In this case,
when the game can handle packet loss and is trying to achieve minimal latency, even the
link-layer error recovery might be considered an unwelcome source of delay.

Queuing forms a major source of delay for flows in the Internet. At worst, bufferbloat
can cause delays on the order of multiple seconds [GN11]. Reducing buffer sizes and
thus reducing maximum queue lengths could benefit latency-sensitive traffic. However,
regardless of buffer size, the question still remains on how different flows with different
expectations, for latency and throughput, for example, are serviced together in the queuing
and scheduling schemes of the network devices.

Structural delays

Sub-optimal routes are a hindrance to any traffic that would benefit from low latency.
They add delay to all packets on the path and can reduce the quality of experience (QoE)
for any real-time application. Delay caused by name resolution, on the other hand, affects
only the resolution part and after that has no effect on the latency experienced in the
use of an application. A game client might only need to do a name resolution once when
firing up the game but otherwise use the known address for all later communication in the
game.

Content placement is an essential question for real-time applications. A game which has
dynamic content generated real-time does not particularly benefit from caching. The
server and clients or peers producing the dynamic content should ideally be located close
to each other. In some cases the client or server could predict an upcoming need for certain
static content such as map data. Using the client caching method the server could push
the data upfront into the cache of the client. Alternatively, using client prediction the
client could request the data beforehand.

Client prediction for dynamic content is a common delay compensation method in real-
time games. Client prediction methods can use previously received data and client input
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to approximate future game state. Also, as another delay compensation method, the
client can locally delay self-initiated actions in order to give time for the action to be
communicated across the network.

The chosen service architecture has some fundamental implications on the game design
and traffic patterns. Client-server architecture has the server as a central node where all
traffic travels through it forming a single point of failure whereas peer-to-peer architec-
ture distributes this load. Peer-to-peer communication has a potential for smaller delay
compared to client-server since messages can travel directly from player to player without
server in-between. Both architectures involve the question of how to choose the latency-
wise optimal group of nodes (peers/clients and server(s)) when setting up a game session.

Interaction between endpoints

Transport initialization and secure session initialization are operations that only need to
be done once in the lifetime of a connection. This event taking exceedingly long can
somewhat affect the player QoE. However, it is separate from the actual gameplay where
low latency is crucial.

Packet loss recovery, instead, can create substantial delays during the play. If this is
not taken into account in the design of the game some appreciable jerkiness can occur.
Transport protocols that guarantee reliable in-order delivery and thus suffer from HOL
blocking can create sporadic delays in the order of some hundred milliseconds, depending
on the RTT and the rate the client or server or the peers send updates. Also, an RTO
may happen, which incurs even more delay. A host sending at a low rate, such as a client
sending only player inputs, could be more susceptible for RTO than a host sending at a
high rate, due to the possible lack of continuous stream of packets to generate ACKs.

When using transport protocols that do not guarantee in-order delivery the application
needs to tolerate the packets possibly missing or arriving reordered. Games often use
timestamps in the packets to correctly construct ordering and timing of events [Gre18,
p. 1101] [Sta13, p. 197] and in-game delay-compensation methods such as extrapolation
to cover for data that are missing or arrive after deadline [Sta13, p. 190]. Forward error
correction or other redundancy might be used to mitigate losses although data can quickly
become stale and in some cases the deadline does not allow waiting for the next packet
for corrections.

Message aggregation saves capacity but is detrimental to real-time flows due to the extra
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delay incurred. Game state updates and user inputs form small independent messages and
there is usually no benefit in waiting and coalescing them.

Delays related to link capacities

Transport protocol choice can affect the use of the available link capacity. For example,
some protocols have more overhead than others due to larger headers and thus require
more capacity for transporting the same payload. Also, different protocols implement
different kinds of congestion and flow control mechanisms and their flow characteristics
and reaction to congestion can therefore differ, which, in turn, can result in differences in
the use of the available capacity.

The choice of protocols, however, may be limited. The environment, such as the web
browser, may only allow the use of certain protocols. Web browsers, for instance, do not
expose raw UDP or TCP sockets but instead the web application developer has to settle
for the available higher layer protocols, such as WebSocket, QUIC or WebRTC.

To save capacity, reducing redundant information may be attempted. Networked multi-
player games may involve sending game state updates with identical content to each of the
participants. This is often done in unicast even though multicast as a concept would be
a perfect match for this task and could save capacity. However, the support for multicast
from ISPs is limited and in practice it is not available for most applications [Dio+00].

Another way to reduce redundancy is compression of data. Sending game data in as
compact form as possible saves capacity. It can also reduce the probability of the packet
getting fragmented or dropped due to exceeded path maximum transmission unit (MTU)
size. Smaller packets usually have shorter serialization and forwarding delay as well. In ad-
dition to payload data compression, the packet headers may be compressed automatically
by the protocol, as is, for example, with QUIC.

Intra-end-host delays

Along with inefficiently large buffers and excessive queuing, HOL blocking can be a major
source for delays. Protocols that use TCP as a substrate suffer from HOL blocking,
whereas protocols that use UDP as a substrate can avoid HOL blocking. When using
UDP and requiring a reliable ordering of packets, the ordering needs to be implemented
at an upper layer or by the application since UDP does not provide any ordering. Ordering
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Figure 2.2: Head-of-line blocking

requirements, however, incur HOL blocking. If no reliable ordering is implemented when
using UDP, HOL blocking can be avoided.

To consider the effect of HOL blocking, let us assume the following. A game server sends
updates to clients 20 times per second, that is, every 50 ms. The RTT is 50 ms. A reliable
in-order transport protocol (such as, TCP) is used, and three duplicate ACK’s denote a
packet is lost. For simplicity, let us assume no delay variation, no congestion window and
no intra-end-host delays. Figure 2.2 illustrates this case.

At time zero ms (t0) the server sends a packet zero (p0). At t25 the client receives p0,
sends back an ACK (p1ACK) and the client network socket delivers p0 to the application.
At t50 the server receives p1ACK and also sends p1, but p1 gets dropped in the network.
Now the client network socket does not deliver the following received data in the packets
(that is, p2, p3, p4...) to the application until it receives p1. The server sends p2 at t100,
p3 at t150 and p4 at t200 which the client receives and sends a duplicate ACK per each.
The server receives the third duplicate ACK at t250, considers p1 lost and retransmits it
along with p5. The client receives p1 at t275 and delivers it to the application along with
p2, p3, p4 and p5. Thus, at t25 the application receives p0, and 250 ms later, at t275,
it receives the following packets p1...p5. The packets p0 and p5 are on time and packets
p1...p4 are late with p1 being late 200 ms and p2 being late 150 ms.

The same case with non-ordered transport protocol is illustrated in Figure 2.3. This would
be as follows. The server sends p0 at t0 and the client receives it at t25 and delivers it to
the application. The server sends p1 at t50 and it gets dropped in the network. The server
sends p2 at t100 and the client receives it at t125 and delivers it to the application. The
server sends p3...p5 at t150...t250 and the client receives them at t175...t275 and delivers
them to the application. Thus, all the packets arrive on time, except p1 which is lost.
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Figure 2.3: No head-of-line blocking

In the described example, the loss of one packet caused a 200 ms extra gap with the
reliable in-order transport. With the non-ordered transport, the loss of one packet caused
only a 50 ms extra gap. The sending rate affects the length of the gaps and the time
it takes to produce the three duplicate ACKs. The RTT affects the time it takes for
the third duplicate ACK and the retransmission to travel. Thus, along with the ordering
requirements, the send rate and RTT affect the eventual delay that results from the packet
loss.

2.4 In-game delay-compensation

The latencies in the interactions and possible state discrepancies are innate problems with
network delay and need to be addressed in the game’s design. Games often implement
various delay compensation (also called latency compensation or latency hiding) methods
to hide the effects of latency. Possible methods include local lag, local perception filter,
remote lag, dead-reckoning and time warp.

Local lag is a technique where the execution of the user inputs are intentionally delayed
[CCG19; PW02; Sav+14; XW13]. Some games may require that a player initiated action,
such as character jumping after player key press, is executed at the same time or nearly at
same time on all the participating hosts (players’ machines), which the local lag method
may make possible. The inputs are sent immediately to the network but their execution at
the local game is delayed. This narrows, or possibly eliminates, the gap between the time
the user action is carried out at the local machine and on the other players’ machines.

Local perception filter is a method where an action is carried out at slightly different
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speeds between clients to compensate for latency [SNH04; SRR98]. For example, a player
may initiate some action which triggers an animation on all participating player machines.
Due to network delay, it takes time to communicate this action to the participants and
the animation will start later at remote player’s machine. In order for the remote player
to catch up, the animation can be played faster at the remote player and slower on the
initiating player.

Remote lag is a technique where the playout of the state updates are intentionally delayed
[Fie15b; Sav+14; SS15]. This method can reduce the variance in the experienced latency
by utilizing playout (or jitter) buffers. A playout buffer receives state update messages
from the server (or from a peer) and releases them for execution at a steady rate. This
technique inserts additional delay to network messages and may thus reduce consistency
between players because the longer the delay the more the game states have time for
diverging from each other. However, the benefit is that the consistency level can stay
constant due to steady rate of updates. Steady consistency can make the game more
predictable to play [Sav+14, p. 1346].

Fast-paced games often use dead-reckoning to proceed to following game steps and do not
stop and wait for authoritative game state to arrive from the server [Ber01; Fie15b; SS15],
[Sav+14, pp. 1346–1347]. The local view will be an approximation of the authoritative
state. The approximation is based on the previous states of the objects, such as their
speed, acceleration and direction among other things.

When the authoritative state is received the local view has typically diverged from it.
There are a few options on how to handle this situation [SG14; Sav+14]. One option is
to let it be and not correct it if the difference is small enough. Another one is to make a
correction where the objects are instantly set to their correct state, e.g. snap object to its
correct position. Third one is to use interpolation and linearly smooth out the difference,
e.g. move an object towards its correct place at a constant speed. Fourth one is the same
as the third but with an exponential smoothing, e.g. first accelerating and then slowing
down, in an effort to make the correction less noticeable.

Savery and Graham [SG14] analyze the perceivability of corrections to moving objects after
they have diverged from their correct positions. They find that it is essential where the
locus of attention of the player is. If the correction is done where the player is focusing at,
around 50% of change relative to its normal speed may go undetected. If the correction is
done outside of the area of the attention, significantly faster correction is possible. They
also find that a gradually changing speed is better than a sudden change or warping.
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Smooth correction is found to be better than warping even if the correction time is as
short as 250 ms.

In fast-paced games such as First-Person Shooters a locally initiated action, such as the
player taking a shot, may be executed locally right away without waiting for the informa-
tion to reach the other players (or the server). In case of a client-server architecture, the
server typically provides an authoritative state of the game and decides the outcomes of
consistency affecting actions, such as if a shot hit a player or not. However, by the time
the information of the action travels from the player to the server the game has already
advanced forward and the server can not calculate the outcome of the action based on the
current state at the server. For example, a player takes a shot at time 0 ms and by the
time the information of the shot reaches the server the game at the server is already at
time 100 ms. The server needs to game to be at the time the action was performed (at
time 0 ms and not at time 100 ms) in order to decide the correct outcome. In this case, a
method called time warp can be utilized for reviewing and playing out the passed event.

With the time warp method, player inputs are saved in a buffer and the game state can
be rolled back to a certain moment and the inputs played again [MCB08; Ber01; LC18;
SS15]. When the server receives the information of the action it checks the time stamp,
rolls back the state to that point in time, executes the action and replays the game to see
what happens. This requires that the server keeps a buffer of the past states and inputs to
be able to roll the replay. After the replay the server can make an authoritative decision
of the outcome.

The decision can be made from different perspectives [Ber01; LC18; Sav+14; SS15]. It
may be the perspective of the player who performed the action, it may be the perspective
of a player who the action affects, or it may be the perspective of the game state at the
server at the time the input was received.

To consider the problematic of different perspectives, let us assume a First-Person Shooter
game where a Player A has a RTT of 100 ms to the game server and a Player B has a RTT
of 100 ms as well. For the sake of simplicity let us assume no delay variation and no intra-
end-host processing delay. At time 0 ms Player A shoots at Player B. At time 100 ms the
server receives this input and sends it to Player B. At time 200 ms the Player B receives
the input. Now let us assume that at time 200 ms the Player B had reached a cover,
run behind a wall. There are now three different perspectives with different outcomes.
Figure 2.4 illustrates this case. From Player A’s perspective the shot hits Player B. From
Player B’s perspective the shot does not hit because there is a wall blocking the shot.
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Figure 2.4: Three perspectives

The server’s perspective depends on the Player A’s position and direction and Player B’s
position in the state of the server at time 100 ms. This discrepancy needs to be addressed
in the game’s design by deciding which perspective will be the decisive one.

Lee and Chang [LC18] propose a scheme where the shooter’s perspective is used but the
target has a change to appeal the decision. This is to prevent a situation where a player
has taken cover but gets shot anyway due to latency. The server first decides if it was a
hit from the shooter’s perspective. Then, if it was a hit, the server sends this information
to the target client. The target client then responds either confirming or denying the hit.
Then the server sends the final decision to all clients. This adds a delay to the process
in the amount of the target client’s round-trip time plus the intra-end-host processing
times. When the server receives an input for a shot, it rolls the state back to the shooter’s
perspective, and when it receives an appeal, it rolls the state back to the appealing client’s
perspective. This is to make an authoritative decision and to prevent cheating.

As an essential aspect in delay compensation, Savery et al. [Sav+14] consider that it is
important that the local view is kept intuitive and that the game critical decisions produce
outcomes that can be rationalized by the players. This means that, for some parts in some
points in time, it is acceptable that the states in different machines diverge. Important is
how it appears to the players. For example, it may be acceptable that the same object
is at slightly different position on different players’ machines. This can occur as a result
of using dead-reckoning to move the object smoothly. As a trade-off, consistency between
players is reduced, but a smooth and intuitive movement of the object is achieved. It may
be thus beneficial to sacrifice some game state consistency to achieve a more intuitive local
view.

Ultimately, network delay can not be removed completely, due to speed of light setting
a hard limit on the bit propagation speed, but the various in-game delay-compensation
methods can reduce the visible effect of the network delay. The interaction between
players may not be instant but delay compensation methods can make it seem as instant.
In-game delay-compensation methods are thus an important element in the overall delay
management of multiplayer games.



3 Network Support for Managing Delay

In this chapter we will take a look at Active Queue Management (AQM) and differentiated
packet treatment as the main techniques in managing delay within the network. From the
AQM algorithms we will consider Random Early Detection (RED) [FJ93], Proportional
Integral Controller (PIE) [Pan+17], Controlled Delay (CoDel) [Nic+18] and FlowQueue
CoDel (FQ-CoDel) [Høi+18]. RED is a well known AQM algorithm originally described
in a paper from 1993. PIE, CoDel and FQ-CoDel are more recent ones that the Inter-
net standards organization IETF has shown interest in. Regarding differentiated packet
treatment we will take a look at packet scheduling in general and then in more detail the
Differentiated Services (DiffServ) architecture.

3.1 Active Queue Management (AQM)

AQM is a technique to control queues in routers and switches. AQM algorithms attempt
to provide sophisticated methods on detecting when to drop packets in order to keep
the queues small. This is in contrast to passive techniques such as drop tail. Drop tail
algorithm lets the queue fill completely and then drops arriving packets until there is again
more space in the queue. AQM algorithms instead drop packets even though there is room
in the queue in order to provide better performance such as lower latency.

RED

Random Early Detection (RED) is an AQM algorithm that drops packets probabilistically
based on average queue length [FJ93, pp. 1–6]. RED measures the amount of packets, or
optionally the amount of bytes in the buffer on average and decides upon three options:
If the average queue size is small enough, that is, below a certain minimum threshold,
no packets are dropped; If the average queue size is big enough, that is, above a certain
maximum threshold, all incoming packets are dropped; If the average queue is between
those thresholds a probabilistic dropping algorithm is applied. The closer the average
queue is to the maximum threshold the more probable it is that a packet is dropped. Also,
per each consecutive non-dropped packet the probability of the next packet to become
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dropped is increased.

RED does not separate flows from each other and therefore it drops randomly a packet
belonging to any flow [FJ93, pp. 1–6]. One host may send a lot of traffic and congest the
buffer while another host may send only a small amount of traffic. Still, a packet from the
smaller flow may end up being dropped during congestion.

However, the probability of a particular flow being selected is affected by the configuration
of RED and the traffic characteristics of different flows [FJ93, pp. 5–6]. If RED is config-
ured to measure queue by the packet amount and there is a flow that sends packets more
than the other flows, then a packet from this flow is more probable to become dropped.
If RED is configured to measure queue by the byte amount and there is a flow that sends
more bytes, then a packet from this flow is more probable to become dropped.

PIE

Proportional Integral controller Enhanced (PIE) is an AQM algorithm that drops packets
probabilistically based on average queue latency [Pan+17]. By focusing on the queue
latency instead of the queue length PIE aims to bring better solutions to the bufferbloat
problem.

The average queue latency is calculated by dividing the average queue size by the average
departure rate [Pan+17]. This is an implementation of the Little’s law [Bha15, p. 206].
It provides memory benefits since per packet timestamps are not required to calculate an
average [Pan+17].

The probability for packet drop is set by gradually adding or subtracting from the previous
probability value depending if the current average queue latency is above or below a target
value [Pan+17]. If the queue latency is above the target the drop probability needs to
go up in order to drop more packets and bring the queue latency down, and vice versa.
The further away the latency is from the target the bigger a change is applied to the drop
probability. This is the idea in the proportional integral controller.

The velocity at which the latency is changing is also taken into account in the calculation
of the drop probability [Pan+17]. For example, if the queue latency is far above the target
but it is trending down fast, then no big adjustments are necessary to the current drop
probability: with this probability we are already heading where we want to. But if instead
the latency is not already trending down then big adjustments are in place. The drop
probability is updated at a certain interval. The default interval is 15 ms.
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PIE is designed to well accommodate small bursts during a time of low link utilization
[Pan+17]. If no congestion has been experienced for a while, packet dropping will be
switched off completely for a certain period of time. By default, the period is 100 ms.
This mode kicks in when drop probability has gone down to zero and the current and the
previously measured average queue latencies are both less than half the target latency.

CoDel

CoDel is an algorithm that manages traffic by dropping packets based on minimum queue
occupancy times [Nic+18]. This is to reduce persistent queues. A persistent queue, also
known as a standing queue, exists when the buffer never empties but instead some queue
always remains in the buffer contributing to overall latency without providing any benefits.

CoDel measures how long each packet stays in the queue [Nic+18]. This is called a packet
sojourn time. If consecutive packet sojourn times are above a certain target for long
enough (for an interval) the algorithm starts dropping packets. In other words, if during
an interval one or more packet sojourn times is at the target or below, packets will not be
dropped. Thus, there are four time related quantities to consider: an individual packet
sojourn time, the interval, the target value and the time when a packet sojourn time
last was below or same as the target. The interval and the target are constants. The
recommended values are 100 ms for the interval and 5 ms for the target.

When the dropping state is entered, one packet is dropped and a time for a next packet
drop is calculated [Nic+18]. The calculation is: interval divided by a square root of the
amount of packet drops since the drop state started. This results in a dropping distance
that shortens over time. In other words, the longer the packet sojourn times are over the
target the more packets will become dropped per time unit. When a packet sojourn time
is again at the target or below, the drop state is exited. This also resets the drop distance.

The tracking of the minimum packet sojourn times seeks to tackle the bufferbloat problem
[Nic+18]. CoDel accommodates transient bursts but fights persistent, standing queues. It
allows the buffer to be filled temporarily but starts dropping if the queue does not drain.

FQ-CoDel

FQ-CoDel [Høi+18] adds a flow queuing and a Deficit Round Robin (DRR) [SV95] scheme
to CoDel. FQ-CoDel arranges packets to separate queues based on five-tuple of source IP
address and port number and destination IP address and port number and the protocol
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number stated in the IP header. The CoDel algorithm operates inside each queue and a
modified DRR algorithm based on DRR++ [MS00] schedules packets from the queues.

Each queue is given a quantum of credits [Høi+18]. These credits represent the amount
of bytes the flow can forward. The modified DRR scheduler decides from which queue
packets are forwarded and upon the dequeue process the credits of the queue are subtracted
accordingly. This flow queuing and DRR scheduling scheme enables fairness between flows.
A flow sending a lot of traffic does not get to consume most of the link capacity but the
capacity is shared evenly between all the flows, instead. The default quantum in FQ-CoDel
is set to 1514 bytes.

In addition to providing flow fairness FQ-CoDel gives precedence to new flows, by having
separate lists for new and old flows [Høi+18]. A flow is first put into the list of new flows.
When the queue of the new flow runs out of credits or the queue becomes empty the flow
is put into the list of old flows. If the queue becomes empty while in the head of the list of
old flows, it will be removed from the list and is no longer considered active. If the queue
is not empty, it is again given a quantum of credits and the flow is put back to the tail of
the list of old flows.

The list of new flows is always emptied before the old flows are processed [Høi+18]. Thus,
a flow generating traffic sparsely has a chance to be processed ahead of the bigger flows.
The maximum sending rate to still receive precedence depends on the link bit-rate and
the amount of other flows and their sending rate.

3.2 AQM and Multiplayer Games

In PIE and CoDel the size of a packet does not affect the probability on the packet
becoming dropped [AC17]. A big packet is just as likely to become dropped as a small
one. This may be unfair for game traffic which usually consists of frequent small packets.
Some flow could be sending 1500 B packets per unit time while the game flow was sending
50 B packets but this difference would not be reflected in the dropping probability. Unlike
PIE and CoDel, RED provides a dropping scheme that can be either packet or byte based
[FJ93, pp. 5–6]. In this light RED might provide better fairness for game flows against
competing traffic.

However, RED is sensitive to its parameters and finding a good setting is considered to
be difficult [May+99]. For this reason, RED has experienced lack of deployment [KRW14,



31

p. 1]. Extensions to RED with automatic parameter tuning, such as self-configuring RED
[Fen+99] or ARED [FGS01], aim to mitigate the parameter configuration problem.

Khademi et al. [KRW14] evaluate PIE, CoDel and ARED. They find ARED to provide
performance nearly similar to PIE and CoDel, except only on light congestion ARED
performed clearly worse. For CoDel, they find shortening the drop mode interval to be
beneficial. In their test, shortening the interval from 100 ms to 30 ms and to 5 ms reduced
the goodput∗ only slightly while the improvement in median queuing delay was significant
(37.5%-54.8%). For PIE, the adjustment of the drop probability update interval from
100 ms to 30 ms or to 5 ms did not show as clear benefits: during light congestion,
shortening the interval improved the queuing delay but, as an apparent trade-off, reduced
the goodput; during moderate or heavy congestion, shortening the interval did not always
improve the queuing delay and the goodput also changed only slightly. Considering latency
requirements of multiplayer game traffic, shortening CoDel’s interval from the default 100
ms would seem beneficial.

Regarding flow fairness issues, a multi-queue AQM scheme could provide a solution. FQ-
CoDel divides different flows to different queues and uses DRR to provide fairness be-
tween them while also giving precedence to new flows. Armitage & Collom [AC17] test
PIE, CoDel, FQ-CoDel and FQ-PIE with a traffic typical to a First-Person Shooter game
competing against two queue building TCP flows. In the test FQ-PIE used a flow queuing
scheme similar to that of FQ-CoDel’s. They find that on the single-queue schemes the
game traffic suffers from significant packet loss while on the multi-queue schemes the game
traffic experiences almost zero packet loss. When the game traffic loss rate was 11-17%
on a single-queue scheme, it was 0% on a multi-queue scheme.

Based on the experiments of Armitage & Collom it seems it would benefit networked
multiplayer gaming if routers and switches implemented multi-queue AQM. However, there
are some challenges that arise from combining the built-in queues of network devices to
the queues of an AQM algorithm [Cab14, p. 10]. It may result in too many queues and
too much complexity on the hardware. An AQM algorithm called CAKE [HTM18] which
is designed as a refinement of FQ-CoDel tries to alleviate the complexity by utilizing
set-associative hashing [HH07, p. 474], a method commonly used in caching. With set-
associative hashing, CAKE can have fewer queues than FQ-CoDel but still achieve the
same hash collision probability [Høi+18, p. 14]. No IETF RFC has yet been published

∗Goodput is the amount of useful application level data delivered from the sender to the receiver per
unit time
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on CAKE, however. PIE, CoDel and FQ-CoDel are implemented in Linux kernel onwards
from late 3.x series and a variant of PIE is used in devices following the DOCSIS 3.1
standard [AC17]. FQ-PIE will be implemented in Linux kernel 5.6 [Ram20].

3.3 Packet Scheduling

Network devices use scheduling to control which packets are forwarded from the buffer
[Bri+16, pp. 2168–2169]. An example of a simple form of scheduling is first-in-first-out
(FIFO) scheduling. In FIFO scheduling each packet gets the same treatment and the
delay in forwarding affects each packet similarly. However, multiple more sophisticated
methods exist. They can give differentiated treatment to packets and they can also bring
fairness to the traffic with various criteria. Some concepts for scheduling are class or
flow based, latency specific or hierarchical scheduling. The actual implementations can be
combinations of multiple concepts.

In class based scheduling packets are treated differently based on what class they belong to
[Bri+16, p. 2168]. This requires some method to classify the packets or the flows. Network
devices then implement treatment aggregates where each class belongs to some treatment
aggregate. A policy determines the buffer space and scheduling of packets within each
treatment aggregate with the intent to provide a certain quality of service.

The class based scheduling can be implemented as a router/host-based model where the
treatment is provided only in the context of a single router or host [Bri+16, p. 2168].
Alternatively, in Integrated Service (IntServ) model or in Differentiated Service (DiffServ)
model the treatment is intended to be provided across a domain [Bri+16, p. 2168]. In the
IntServ model, the RSVP protocol [Bra+97] is used to request the nodes along the path to
reserve adequate capacity beforehand, in order to provide a requested quality of service for
an incoming flow [BCS94]. In the DiffServ model, the network packets carry information
of their expected service class using Differentiated Services Code Point (DSCP) in the IP
header, and nodes on the path then separate packets to different treatment aggregates
based on the DSCP [BBC06; Bak+98].

The IntServ model may be difficult to implement in the Internet because it requires reserv-
ing capacity for the whole path [Aur+20]. In the DiffServ model, instead, the service is
provided by domains separately from each other with each having their own policies. This
can make the DiffServ model more scalable and thus easier to implement in the Internet.
However, the resulting quality of service may be more uncertain with DiffServ than with
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IntServ [GR16].

Flow based scheduling separates traffic belonging to different flows [Bri+16, pp. 2168–
2169]. The purpose is to reduce the effect that flows can have on each other. For example,
Fair Queuing aims to provide a fair share of the link capacity for competing flows. Con-
ceptually, a flow sending twice as much data per time unit than another flow would not
get to use twice as much of the capacity of the link, but instead both would use roughly
the same amount. This would benefit the smaller flows. Techniques such as Round Robin
can be used to forward data fairly from multiple queues.

Latency specific scheduling methods try to provide low or defined latency [Bri+16, p. 2169].
Last-In-First-Out (LIFO) method forwards new packets while packets that have ended up
in the queue have to wait. This minimizes delay for new packets but maximizes delay
variance. Shortest Queue First (SQF) uses class or flow based scheduling and forwards
packets from the queue that is the shortest. This benefits thin or short flows.

Hierarchical scheduling provides different hierarchy levels where some traffic is given pref-
erence over some other [Bri+16, p. 2169]. Packets can be separated into different hierarchy
levels based on which flows or classes they belong to. Preferential treatment can be realised
by using the Differentiated Services or the Integrated Services.

Differentiated Services

Differentiated Services (DiffServ or DS) is a concept where packets are given different
treatment based on their service class [BBC06; DH17]. This differentiated treatment is
realized at network nodes the packet traverse. For example, a router may forward some
packets immediately and queue some others, depending on the service they have requested.
The service class is denoted by DSCP (Differentiated Services Code Point). For the IPv4
header, the six most-significant bits of the TOS field form the DSCP, and for the IPv6
header, the six most-significant bits of the Traffic Class field form the DSCP [Bak+98].

The sending application can set the DSCP bits as it wishes and thus request a certain
service level [BBC06]. However, the network nodes forwarding the packet may, or may
not, comply with this request. The nodes can also change the bits as they wish. For
example, an AS (Autonomous System) may have its own DS bit scheme and at the ingress
node to this network it may change the bits to better suit its needs. Hence there are no
guarantees that the service class request is honored. The service class is only a request, a
wish, rather.
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The services that a network node may provide are defined as Per-Hop-Behaviors (PHB)
[BBC06]. Examples of them are Default Forwarding (DF), Assured Forwarding (AF) and
Expedited Forwarding (EF). DF is best effort, normal service. AF and EF are enhanced
versions of DF: they seek to provide better performance than the normal level, such as less
delay, less packet drops or less jitter. AF is for elastic traffic that can react to congestion.
EF is for inelastic traffic that can not react to congestion.

The guideline [BBC06] for differentiated services defines twelve service classes. Each ser-
vice class maps to a certain PHB. Two of the service classes are for network control and
the rest of them are for user traffic. Network control category consists of, for example,
communication between routers. User traffic category consists of, for example, application
client-server communications. Each service class represents a certain type of traffic and
the requirements it has. It may be for multimedia streaming, multimedia conferencing,
low-priority data or signaling traffic, to name a few.

3.4 Differentiated Services and Multiplayer Games

For real-time traffic in general there are three notable service classes: Telephony, Mul-
timedia Conferencing and Real-Time Interactive [BBC06]. These three classes have the
strictest delay expectations. The Telephony class is, as the name suggests, for voice com-
munications, such as VoIP, and for data communication that uses the voice channel, such
as fax and modem. The traffic is expected to be small fixed-size packets sent at regular
intervals. An admission control may restrict the use of this traffic class. The Multimedia
Conferencing class is meant for video calls with variable sized packets sent at regular in-
tervals. The sender is expected to reduce the size of packets if congestion is experienced.
The Real-Time Interactive class is for variable size and variable rate traffic that can not
be adjusted based on congestion. This class is recommended for video calls without rate
control, and also for interactive games.

The DSCP marking for Real-Time Interactive class is CS4 [BBC06]. The PHB recom-
mended for CS4 is EF with “relaxed” performance parameters. Whereas for Telephony the
DSCP marking is just the plain EF and thus the PHB is the normal EF. For Multimedia
Conferencing the recommended DSCP markings are AF41, AF42 and AF43. They belong
to the assured forwarding PHB group and denote different levels of service within it. The
PHB is AF instead of EF since Multimedia Conferencing streams are expected to be able
to adjust their sending rate.
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A network (intermediary) node complying to CS4 service class is expected to provide low
delay, low jitter and low packet loss for the traffic [BBC06]. This requires that the node
allocates enough bandwidth so that packet drops would not happen. It is recommended
that this traffic is allowed to bypass an AQM queue since it can not react to congestion
anyway. The network nodes need to monitor that a host does not exploit this preferential
treatment by sending CS4 traffic in excess.

If a sender uses CS4 class and tries to send in an excessively high rate, it is likely that
the packets begin to get dropped. Interactive games, however, may need to send only a
relatively small amount of data per each state update and for this reason they might be
suitable for the CS4 class and get to bypass the AQMs and see minimum delays.

However, despite the EF PHB being recommended for interactive games, the AF PHB
could also be useful. There are four main service classes within the AF and they range
from AF1x to AF4x [BJ15, p. 10]. These denote different forwarding treatments with
higher number meaning better treatment. There are three sublevels within each AF class,
such as AF11, AF12 and AF13. They denote a drop precedence: lower number is favored
over higher, that is, AF13 is dropped before AF12 [Wei+99, p. 2]. The AF4x class is the
only one of the AF classes meant for real-time interactive traffic [BBC06]. The others
have more relaxed latency constraints. The AF41, AF42 and AF43 classes could therefore
be suitable for multiplayer game traffic.

Carrig et al. [CDM06] propose a scheme where the different AF service classes could
be used for balancing latencies between players. A player who has a higher relative la-
tency would request better AF treatment and a player who has a lower relative latency
would request worse AF treatment. Similar solution is proposed by Liang et al. [LZC05]
with some differences in the internal communication scheme. A study by Howard et al.
[How+14] shows that the quality of experience of well connected players is hampered by
poorly connected players. They recommend that improving the connection of the most
lagged player should be the priority. The AF class might provide a suitable structure for
fine tuning the latencies.

Ultimately, it can not be trusted that the network provides the requested service level.
Intermediaries may bleach or modify the DSCP bits. In some cases, requesting a certain
service level may even result in packets getting dropped; the operator not supporting
the requested service level may decide to drop all such packets [CSF18, p. 87]. Therefore,
asking for better may lead to getting worse. In this sense, for some cases, using the default
service may turn out to be the best solution.
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3.5 Impact of ECN

Explicit Congestion Notification (ECN) [FRB01] is a protocol extension for providing
information of congestion without requiring a packet drop. Commonly, intermediaries
such as routers and switches manage queues by dropping packets during congestion, the
senders then infer the congestion from packet loss and react by reducing their transmission
rate. ECN provides a mechanism for the intermediaries to explicitly notify the sender that
there is congestion on the path. This removes the need to use packet drop as a means of
informing senders about congestion.

ECN communication happens both on the IP layer and on a higher layer [FRB01]. An
intermediary marks a flag in the packet IP header for incipient congestion. The receiver
(end-host) echoes the information back to the sender (end-host) and the sender notifies
the receiver that it has reacted to the information. The communication between end-hosts
happens at a higher layer such as at the transport layer.

The ECN codepoint at the IP header is the two least-significant bits in the TOS field
of IPv4 or Traffic Class field of IPv6 [FRB01]. The codepoint ’00’ (Non-ECT) denotes
non-ECN-capable transport. The codepoint ’10’ (ECT(0)) or ’01 (ECT(1)) denote ECN-
capable transport. The codepoint ’11’ (CE) denote encountered congestion. The sender
sets the codepoint ECT(0) or ECT(1) when ECN is used for the transport and an inter-
mediary modifies the bits to codepoint CE when experiencing congestion.

If the endpoints use TCP as a transport protocol the receiver echoes the IP header CE
flag to the sender by setting an ECN-Echo (ECE) flag in the TCP header of an acknowl-
edgement (ACK) message [FRB01]. The sender learns from the ECE flags in the ACK
messages that there is congestion on the path and reduces its transmission rate. The
receiver keeps on setting the ECE flag until it has received a notification from the sender
that it has reduced its transmission rate. The sender notifies the receiver that it has
reduced its transmission rate by setting the Congestion Window Reduced (CWR) flag in
the TCP header.

In order for ECN to work properly it requires support from the end-hosts and from the
intermediaries on the path [FRB01]. The sender needs to be able to set the ECT(0) or
ECT(1) codepoint. The receiver needs to be able to read the ECN bits in order to see if
the CE flag is set or not. The receiver needs to be able to communicate to the sender if
the CE flag was set, and the sender needs to be able to communicate to the receiver that
it has reduced its transmission rate. An intermediary on the path needs to be able to set



37

the CE flag when experiencing congestion and all the intermediaries on the path need to
not inadvertently modify or bleach the ECN bits.

With properly functioning ECN, packet losses and associated delays may be reduced
[FRB01; LJS17]. The intermediary experiencing incipient congestion does not need to
start dropping packets but instead it can CE flag them. This saves the transmissions
from packet loss recovery delays or loss of data. When using a reliable transport, a lost
packet (or the information in that packet) would need to be retransmitted, which would
add the time it takes to detect the loss and the time it takes to retransmit the packet
to the overall end-to-end delay. Also, HOL blocking delays might be experienced due to
packet reordering. When using a non-reliable transport, a lost packet would not need to be
retransmitted but the information in the packet would be lost (unless some redundancy is
used in the transport). In multiplayer games, packet loss can create gaps into the sequence
of update messages and have an effect similar to network delay [BF10]. With ECN, some
of the packet losses and their effects can be removed.

If ECN were to be used with UDP the communication between end-hosts would need to
be implemented at an upper layer [EFS17]. Unlike TCP, UDP does not provide built-
in support for ECN. This is understandable since UDP is designed as a connectionless
protocol where no feedback is provided from the receiver to the sender [Pos80]. With
UDP, the communication where the receiver notifies the sender of the congestion and the
sender notifies the receiver that it has reduced its transmission rate, would have to happen
at the application layer or at some other layer above UDP.

In order to use ECN both end-hosts need to support it within their operating systems
[FRB01; EFS17]. In case of using TCP, it is not necessary to expose the ECN bits to the
higher layer since TCP and IP can take care of the communication by themselves. With
UDP, the higher layer (at the receiver), such as the application layer, needs to be able to
read the IP layer ECN bits in order to be notified of possible congestion. Also, the higher
layer (at the sender) needs to be able to set the IP layer ECT(0) or ECT(1) bits to enable
the use of ECN in the first place, unless it is enabled by default by the operating system.

The use of ECN requires, in practice, an AQM algorithm [BF15]. With AQM, the queue is
not allowed to become completely full before the algorithm starts to react to the impending
congestion. This makes it possible to ECN-CE flag and keep a packet instead of dropping
it since there is still room in the queue. With a conventional queue management algorithm,
instead, the algorithm would react only when the queue already overflows. An example
of a conventional queue management algorithm is the tail drop (or drop tail) algorithm
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which drops incoming packets when the queue is full. For the packet selected to be dropped
ECN would be of no use since, at queue overflow, there is no room, the packet has to be
dropped.

Among the AQM algorithms, RED, PIE and CoDel can be configured to use ECN [FJ93;
Pan+17; Nic+18]. In FQ-CoDel, ECN is enabled by default [Høi+18]. FQ-CoDel also
offers an option to set the threshold for ECN-CE marking lower than what the threshold
for packet drop is, in order to react earlier to congestion.

When both ECN-capable and non-ECN-capable flows share a heavily congested link the
situation may be considered unfair for non-ECN-capable flows. Armitage & Collom [AC17]
observe that in a situation where all packets need to be marked for congestion the result
is logically that the ECN-capable packets become marked with the ECN-CE bit and all
others become dropped. For example, in a case where game packets use UDP and the end-
host(s) do not support ECN on UDP traffic, all the game packets would become dropped
in the aforementioned situation. At the same time, the competing ECN-capable flows
would dominate on the link. In case the game traffic end-hosts and the network nodes on
the path support ECN on UDP traffic, then, naturally, the packets may avoid becoming
dropped during congestion.

Since ECN is foremostly designed to be used with TCP, support for ECN on TCP transmis-
sions can be expected to be implemented within the network stack in operating systems.
However, for UDP transmission, the accessibility of ECN bits is more uncertain. Based
on documentations [Mic19a; Mic19b; QUI19] from Microsoft and from the IETF QUIC
Working Group, the current Linux and Apple’s operating systems allow application to
read and write the ECN bits, whereas Windows operating systems allow application only
to read ECN bits but not write them. Armitage & Collom [AC17] comment in general that
ECN has not yet seen significant deployment in the Internet. However, the deployment is
gradually increasing [Che17].



4 Protocols for Web Browser

In the following we describe WebSocket, QUIC, HTTP/3 and WebRTC. We consider their
features and the congestion control mechanics they implement. At the end of this chapter
we discuss how the protocols could be applicable as game data transports.

4.1 WebSocket

WebSocket is developed by HyBi Working Group and it is defined in RFC 6455 [MF11]. It
is an application level protocol for bidirectional communications between client and server.
Bidirectional means in this context that both the client and the server can send messages
to each other over the same connection and the messages can be sent without preceding
explicit request from the other (unlike, for instance, in HTTP/1.1). WebSocket traffic is
carried on top of TCP.

In the case that the client and the server are using HTTP/1.1, WebSocket connection is
established in the following way [MF11, pp. 6–9, 14–27]. WebSocket connection is initiated
atop TCP connection with an HTTP upgrade request to a server. WebSocket client sends
the message to a well known port on the server (port 80 or 443). The message is a request
to upgrade the HTTP connection to WebSocket connection. It includes a WebSocket
protocol version number and a challenge key. The challenge key is to confirm that the
server actually understands this version of the WebSocket protocol. The server replies
with a HTTP 101 Switching Protocols message which includes a valid answer key and
the WebSocket connection gets established on top of the TCP connection. If the upgrade
request is initiated by a script whose origin is different from the host receiving the request
then Cross-Origin Resource Sharing (CORS) rules come into play and the host needs to
opt-in for CORS or deny the request [MDN20b; Gri13, pp. 299–300]. If the host, that
is, the server, accepts the request the response also needs to include a CORS header.
After the WebSocket connection is established no HTTP traffic is required between the
endpoints.

For HTTP/2 the establishment of a WebSocket connection is a bit different from that of
HTTP/1.1’s [McM18]. HTTP/2 uses stream multiplexing and for that reason the Web-
Socket connection becomes one of the multiple streams under a single HTTP/2 connection.



40

The HTTP connection is not upgraded but remains the same. One of the streams only
becomes a WebSocket stream and other streams can remain what they are such as HTTP
streams or other WebSocket streams. For this reason a HTTP upgrade request is not sent
but a CONNECT request including a :protocol pseudo header with a value “websocket”
is sent instead by the client. If the server supports this extension of the HTTP/2 proto-
col it can proceed with the connection handshake. Challenge key that was required with
HTTP/1.1 is not used here. Instead the :protocol pseudo header replaces its function.
The WebSocket protocol number used with HTTP/1.1 is also used with HTTP/2. After
the connection is established, the WebSocket protocol operates inside the HTTP/2 stream
in the same manner as if it was set up directly atop TCP by HTTP/1.1.

Some failure situations with WebSocket can occur when the server or intermediaries do
not understand the protocol [Gri13, p. 301]. The concept of the challenge key is to handle
this situation with the server. However, intermediaries could still misinterpret WebSocket
frames and buffer or modify them unintentionally or consider them as faulty HTTP. To
prevent this, Secure WebSocket (WSS) could be used and thus the intermediaries would
not get to read the frames.

Compared to HTTP protocol, which in principle requires a client request in order for the
server to send a message (except with unsolicited server push feature), WebSocket offers
reduced delay for bi-directional communication [FR14, p. 6],[BPT15, p. 5],[MF11, p. 5].
Both parties can send a message right away, when desired, without any wait. This is,
provided that TCP congestion window and receiver window allow sending at that time
[BPA09, p. 3]. In this sense WebSocket can be thought of as a real-time communication
protocol.

Congestion Control

Transport protocols use congestion control to regulate the amount of data they send to
the network. Congestion control is necessary in providing a fair share of the bandwidth to
different users and preventing adverse conditions and situations such as congestion collapse
in the worst case.

WebSocket uses TCP which means that WebSocket traffic is controlled by TCP’s conges-
tion control algorithm [MF11; BPA09]. TCP is a transport layer protocol that provides
reliable and in-order delivery [Pos81]. The algorithm deduces network congestion from
packet loss, and packet loss is deduced from duplicate acknowledgments and timeouts.
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There are numerous extensions defined for TCP congestion control and they are widely
adopted. Here, however, we describe the basic version from its essential parts.

TCP congestion control consists of four main algorithms: slow start, congestion avoidance,
fast retransmit and fast recovery [BPA09]. Slow start is used when the network conditions
are unknown such as at the beginning of a connection or after a long idle period. It is
also used after an acknowledgment from the receiver has not come in a certain time and
a retransmission time-out occurs. In slow start, TCP increases the sending rate (roughly)
exponentially [Ste97, p. 2]. The amount of data that is allowed to be sent is controlled by
congestion window [BPA09].

At some point, slow start threshold is reached and TCPmoves from slow start to congestion
avoidance [BPA09]. This threshold is set dynamically based on previously experienced
packet losses. From here on the sending rate is increased (roughly) linearly, the increase
being approximately one packet more per round-trip time. The idea is to increase the rate
more gently now because the threshold indicates that the maximum capacity of the path
may be near.

When a packet reaches the receiver, the receiver sends an acknowledgment back to the
sender, thus acknowledging the received segment [BPA09]. The original packet or the
acknowledgment may become dropped in the network and the retransmission time-out may
be reached. In this case TCP goes back to slow start and the aforementioned threshold is
adjusted to reflect the current network conditions.

Fast retransmit and fast recovery aim to prevent the need to wait for the retransmission
time-out [BPA09]. This is done utilizing duplicate acknowledgments. If there is a gap
in the received data the receiver keeps on acknowledging the segment preceding the gap
even though it receives new data. The arrival of three duplicate acknowledgments denotes
a lost segment and the segment gets retransmitted right away. After the segment is
acknowledged the threshold is adjusted as in the retransmission time-out case and TCP
continues in congestion avoidance.

The reasoning for fast retransmit and why TCP does not enter slow start is that the
acknowledgments are being generated which means that packets are going through and
that means that it is likely that the network is not immensely congested [BPA09, p. 9].
Therefore TCP can continue sending at a higher rate than what it would if it went to slow
start.

One notable extension to take into account is TCP Selective Acknowledgment (SACK)
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[Flo+96]. By using TCP SACK the receiver will get a better understanding of what
segments the receiver has actually received. The basic TCP only tells the last segment
before the gap but the sender does not know what is received after that. TCP SACK
provides the sender extra information where it can see what is received and where the
gaps are. This way the sender can more efficiently send only the actual missing ones.

4.2 QUIC and HTTP/3

QUIC is a bidirectional byte-oriented protocol that runs on top of UDP [IT20]. QUIC
is a transport protocol specification that defines streams, packets and connections but it
also is an application layer protocol in the sense that its place is above a transport layer
protocol, UDP, in the protocol stack. It is implemented in the user space, meaning that
it does not require changes in operating systems and middleboxes. QUIC is therefore half
a transport layer protocol and half an application layer protocol. Alongside with QUIC
comes HTTP/3. HTTP/3 is the actual application layer protocol and it is designed to use
QUIC as a transport.

HTTP/3 is meant to be a successor for HTTP/2 [Bis20]. The two have many similarities
such as server push and stream multiplexing. One major improvement over HTTP/2
is, however, that HTTP/3 streams do not block each other: An individual stream may
experience head-of-line blocking but this will not affect the other streams. In HTTP/2 all
the streams would get blocked. What makes this improvement possible is the use of QUIC
and UDP. UDP does not provide in-order and reliability guarantees and QUIC makes the
use of this. We will take a look at this and other QUIC’s features and then take a closer
look at HTTP/3.

QUIC streams

QUIC provides bidirectional stream multiplexing [IT20]. Both the client and the server
can open new streams. A stream is either unidirectional or bidirectional. The maximum
number of streams for a connection is 2ˆ62. The stream identifier numbers start from zero
so the biggest stream number is 2ˆ62-1.

All streams have in-order requirements [IT20]. The data is transmitted inside frames and
if there are gaps in the sequence of frames that an endpoint has received it will block
the delivery of the data to the application until the missing frames arrive. As mentioned
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above, this only affects the stream in question and the other streams can continue. In
HTTP/2 this is not possible since the transport protocol is TCP and it will block all the
packets belonging to that connection. UDP does not have rules for delivery order so QUIC
can define its own rules on top of it. In the operating system’s protocol stack the transport
layer (UDP) then lets all the packets through to the upper layer regardless of their order.
At that upper layer is QUIC then checking the order. This way the custom rules can be
enforced at the user space and no changes are needed in the operating system or in the
network devices. QUIC comes shipped within the network browser so only an update to
the browser is required at the client machines.

Streams are opened by sending a message and giving the message a stream number that
has not been used previously in that connection [IT20]. A single message can open,
carry payload and close a stream if desired. Thus, opening a stream does not entail any
handshake operation; the stream opening is done implicitly. The receiving peer assigns
the sender a certain maximum number of streams that the sender is allowed to open. If
the sender runs out of available stream numbers it can request more from the receiver.

The two least significant bits of the stream number indicate if the stream is unidirectional
or bidirectional and if it was initiated by the client or by the server [IT20]: If the least
significant bit is zero, the stream is client initiated. If the bit is one, the stream is server
initiated. If the second least significant bit is zero, the stream is bidirectional. If the bit
is one, the stream is unidirectional. This means that the first client initiated bidirectional
stream has a stream number of 0 and the next has a stream number of 4 and the next one
has 8 and so on.

QUIC connections

QUIC provides 1 RTT and 0 RTT connection establishments [IT20]. In 1 RTT the end-
points declare connection parameters such as supported protocol version or maximum
number of streams. A shared secret is established using Transport Layer Security (TLS).
With 0 RTT the client can already send application data along with the first handshake
message. 0 RTT provides less security guarantees than 1 RTT but it reduces the delay.

QUIC uses connection IDs [IT20]. Each connection has its own ID, or multiple IDs, and
if the IP addresses and port numbers change during the connection, for example due to
NAT rebinding, the connection ID helps in associating the new address or port to the old
connection. An endpoint issues new connection IDs to its peer. This is done in the initial
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message of the connection, and after that more IDs can also be sent. During the lifetime
of the connection, IDs can be retired and new ones can be picked. If a peer runs out of IDs
it can request more from the other peer. Changing IDs reduces the chance of linkability
of the connections for an outside observer [DB20, p. 3].

When initiating the connection the client indicates the version of QUIC it wishes to use
[IT20]. If the server does not support this version it replies to the client with a list of
versions it supports. Client then chooses from these. If there is a version in the list that
the client supports it initiates a new connection using that version.

QUIC packets

QUIC carries application data in frames [IT20]. Frames are contained in packets. Multiple
frames can be coalesced into a single QUIC packet and multiple packets can be coalesced
into a single UDP datagram. There are multiple frame and packet types.

The packet types can be divided into two main groups: long header packets and short
header packets [IT20]. Long header packets are used for connection establishment and
short header packets are used after the connection is established. Long header packets
include the 0 RTT packet which can be used for sending application data. Otherwise ap-
plication data is sent in short header packets. The type of the frame that holds application
data is a STREAM frame.

QUIC is a byte-oriented protocol which means that it receives a byte stream from the send-
ing application and arranges the bytes inside the frames and at the receiver side delivers
the bytes to the application in the same order [IT20]. QUIC only sees the bytes coming
in from the application and therefore does not have a notion of a complete application
message. Thus it is a byte-oriented protocol (and not a message-oriented protocol).

HTTP/3

When a client is initiating a HTTP/1 or HTTP/2 connection the server can use HTTP
Alternative Services (Alt-Svc) to advertise that HTTP/3 protocol is supported [Bis20].
If the client supports it too the HTTP/3 connection can be established. The actual
underlying connection is a QUIC connection and then on top of it the endpoints send
HTTP/3 SETTINGS frames to each other to start the HTTP/3 session.

The basic interaction in HTTP/3 (and in HTTP/2 and HTTP/1, too) is the client sending
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a request and the server sending a response [Bis20]. For example, a client requests a HTML
file and the server responds with the HTML file. In HTTP/3 (and also in HTTP/2) the
server can push the response to the client without the client explicitly requesting it. This
can be done when the server anticipates that the client will soon make that particular
request anyway. The benefit here is reduced delay. By the time the client discovers that
it needs to make the request, the data is already available at the client. For example, the
client requests a HTML file, the server responds with the HTML file and the server knows
that the HTML file references some image files, so it pushes the image files to the client
even though the client did not yet request them.

HTTP/3 uses QUIC streams to multiplex the requests [Bis20]. Each request opens its own
bidirectional stream where that particular transaction is performed. The request and the
associated response travel on the same stream: they have the same QUIC stream ID. The
type of this stream is a request stream, although it also carries the response. Since QUIC
streams are multiplexed and do not block each other, multiple requests can be carried out
concurrently.

Server push opens its own stream [Bis20]. This stream is a server initiated unidirectional
stream, called a push stream. The request that caused the server to do the push runs on
its own separate stream, on the request stream. The server sends a PUSH_PROMISE
frame to the request stream. The PUSH_PROMISE consists of a Push ID and a request
header. The Push ID is a reference to the push stream. The request header is the same as
the request header that the client would use to request the content that was now pushed.
When the client is about to make a request it finds that the request matches with the
request header carried inside the PUSH_PROMISE frame. It reads the Push ID from the
PUSH_PROMISE and matches it with the push stream that has the same Push ID. The
pushed content in that stream is the response to the request that the client would have
made.

In addition to request and push streams HTTP/3 has control streams [Bis20]. Each of
the endpoints open a control stream at the start of the connection in order to send the
SETTINGS frame. During the connection lifetime the control stream can be used for
indicating how many pushed responses the client allows the server to send or if it wants
it to cancel a particular push. The server uses the control stream to initiate a graceful
shutdown of the connection by telling the client to not send more requests.

The requests and responses (including push responses) consist of HEADER frames and
of possible DATA frames [Bis20]. The header is mandatory. Then come optional data
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frames. Lastly comes optional trailing headers. HTTP/3 endpoint does not have to receive
a complete message before it can start reading it. The server can start sending a response
before it has read the whole request if it decides it has received enough information to form
the response. A single request and a response, or a server push, consumes the stream. For
the next request or push, a new stream is opened.

QUIC offers four types of streams: client or server initiated unidirectional or bidirectional
streams [Bis20; IT20]. However, HTTP/3 does not use the server initiated bidirectional
streams. The server only opens a control stream and the push streams, and these are
unidirectional. Also, HTTP/3 does not use out-of-order delivery. QUIC is an in-order
transport protocol. However, the design documents (QUIC draft 27, chapter 2.2.; HTTP/3
draft 27, chapter 6.) mention a possibility for out-of-order implementation. Nevertheless,
HTTP/3 implements only in-order delivery of data within streams. Between streams,
however, the data will be delivered unordered.

All HTTP/3 frames have a type, length and a payload field [Bis20]. The payload depends
on the type of the frame. HTTP/3 has a total of seven different frame types (SETTINGS,
HEADERS, DATA, PUSH_PROMISE, MAX_PUSH_ID, CANCEL_PUSH and GO-
AWAY, plus a reserved type range for undefined). A single HTTP/3 frame can span
multiple QUIC packets.

Congestion Control

QUIC implements flow control and congestion control to regulate the rate and amount
of data to be sent. Flow control is meant for preventing the sender from sending more
data than the receiver can handle [IT20, pp. 24–29]. Flow control consists of the receiver
sending messages to the sender where it tells how much the sender is allowed to send.
In this fashion the receiver regulates the maximum amount of streams the sender can
open, the maximum amount of data the sender can send in a particular stream and the
maximum amount of data the sender can send in all streams combined. The receiver
periodically sends these allowance credits and tries to balance between sending a small
amount of credit often or sending a bigger amount of credit less often. Sending more often
means more traffic and more overhead. Sending less often with more credit requires more
resources to be allocated in anticipation of larger amount of data possibly to be received
from the sender. If the sender runs out of credit it can request more from the receiver.
This, however, would be an undesirable situation since it halts the transmissions until
more credit is received, which will be at least a full round-trip time.
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QUIC frames can be divided into two categories: ack-eliciting and non-ack-eliciting frames
[IT20, pp. 88–89]. If a packet contains one or more ack-eliciting frames it will be an ack-
eliciting packet. All packets are acknowledged, but the acks of non-ack-eliciting packets
are only sent if there are acks of ack-eliciting packets to be sent: The non-ack-eliciting
packets are acknowledged along with the ack-eliciting packets.

The packets are acknowledged by packet number ranges [IT20, pp. 91–92, 128–129]. The
ACK frame contains the highest packet number to be acknowledged, followed by a range
of preceding packet numbers also to be acknowledged. This is followed by a possible gap
range denoting missing packets and that is followed again by an ack range denoting packets
to be acknowledged, and so on. By alternating gap and ack ranges, further noncontinuous
packet number sequences can be acknowledged.

The ACK frame also contains the Ack Delay (or Host Delay) and a count of ECN code-
points [IT20, pp. 92–93, 96–99, 127, 129–130]. The Ack Delay is the time the receiver
intentionally took (processing etc.) between receiving a packet and sending the acknowl-
edgment. This measurement is taken from the packet with the highest packet number.
The count of ECN codepoints denotes the sums of ECT(0), ECT(1) and CE markings in
the received packets.

When packets are lost QUIC does not resend the same packet [IS20, p. 6], [IT20, pp. 93–
96, 133–134]. Instead, it resends the information carried in the frames of the lost packet,
if it is still necessary. Thus, the new packet will not be the same as the lost packet. Also,
QUIC uses strictly increasing packet numbers: the new packet will have a new packet
number; packet numbers are never reused. Application data is ordered at the receiver
based on the byte offset field of the STREAM frame and therefore the packet number
does not need to reflect the original ordering.

QUICs congestion control is based on the basic TCP congestion control, TCP SACK and
TCP NewReno, among other many variants of TCP [IS20, pp. 12–27]. It has the slow
start, the congestion avoidance and the recovery period phase. It also has a notion of
persistent congestion.

In slow start, congestion window (cwnd) is increased by the amount of bytes acknowl-
edged [IS20, pp. 21–22]. After slow start, congestion avoidance is entered. In congestion
avoidance cwnd is increased by a maximum packet size after a cwnd amount of bytes is
acknowledged. If a packet is lost or the count of ECN-CE bits increases, the cwnd is set
to half and slow start threshold is set to cwnd, and recovery period is entered.
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In the recovery period, the lost data is retransmitted (alternatively, updated information
may be sent, or retransmission may be abandoned) and also new data may be sent [IS20,
pp. 21–22]. The cwnd is kept unchanged. When the sender receives an acknowledgment
of any of the packets that were sent after the recovery period was entered, the recovery
period becomes completed and QUIC continues with congestion avoidance.

QUIC congestion control considers a packet lost when it is behind a newly acknowledged
packet in its packet number for a certain sufficient amount. A packet is also considered
lost if it was sent a certain sufficient time before a newly acknowledged packet [IS20,
pp. 12–14]. These thresholds are implementation specific, but recommended values are
three packets or roughly two round-trip times behind.

Persistent congestion is experienced when a certain threshold is reached between the time
an oldest and newest unacknowledged packet was sent [IS20, pp. 23–24]. This requires
that a packet is acknowledged after them and no packet is acknowledged between them.
The threshold is implementation specific. If a persistent congestion is experienced cwnd
is set to minimum and slow start is entered.

Probe time-out is used for testing that packets go through and acknowledgments can be
received [IS20, pp. 14–18]. Probe time-out happens when an acknowledgment for a packet
latest sent is not received in a certain time. In this case one or two datagrams are sent
in order to get a reply from the peer. This mechanism is useful especially in reacting to
a tail loss situation where there are no packets being sent anymore after the lost one and
therefore no acknowledgments to receive to reveal the loss. Probe time-out is similar to
TCP retransmission time-out.

4.3 WebRTC

Web Real-Time Communication (WebRTC) is a technology that combines multiple stan-
dards and protocols to achieve peer-to-peer communications for browsers [Gri13, p. 309].
The main focus is on video and audio streaming, such as video calls, but it also provides
a channel for delivery of arbitrary data. The underlying transport layer protocol is UDP.

The browser API for WebRTC was first published in 2011 [Alv11]. Now, the latest version
of the API definition is from 22 September 2020 [JBB20]. The API is being developed by
“Web Real-Time Communications (WEBRTC)” W3C Working Group [W3C20], whereas
the underlying protocols are defined by “Real-Time Communication in WEB-browsers
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(RTCWEB)” IETF Working Group [W3C20; Goo19] [Gri13, p. 310]. The IETF working
group was concluded August 14, 2019 [IET20a]. The API definition is still on the W3C
recommendation track with a status “Candidate Recommendation” which means it is not
completed yet [ER20].

There are many JavaScript APIs, standards and protocols included in WebRTC [Gri13,
pp. 309, 317]. The three main JavaScript APIs are MediaStream API for acquiring and
outputting video and audio, RTCDataChannel API for transmitting arbitrary application
data and RTCPeerConnection API for handling the connections. The main protocols
and standards WebRTC utilizes are SRTP [Nor+04], SCTP [Ste07], DTLS [RM12], SDP
[PHJ06], ICE [KHR18], STUN [Mat+08] and TURN [MRM10].

The Secure Real-time Transport Protocol (SRTP) is a variant of the Real-time Transport
Protocol (RTP) with a security aspect [Nor+04, p. 3]. SRTP is used for delivering video
and audio data [Sch+03, pp. 4, 19]. Alongside SRTP there is the SRTP Control Protocol
(SRTCP). It provides statistics of the data delivery so that the sender side can make
appropriate adjustments such as adjust video encoding based on interpreted congestion.

The Stream Control Transmission Protocol (SCTP) is used in WebRTC for the Data
Channel which delivers the arbitrary application data [Gri13, p. 344]. SCTP allows in-
order and out-of-order delivery of data [Ste07, p. 89]. The basic version provides a reliable
transport. With an extension the protocol can also be made partially reliable or unreliable
[Ram+04; Tüx+15].

Datagram Transport Layer Security (DTLS) provides equivalent security as the widely
adopted Transport Layer Security (TLS) protocol but it is designed for datagram traffic
[RM12]. TLS requires reliable delivery of packets whereas DTLS can work in an unreli-
able channel. Thus, it is the choice for SCTP transmissions and also for the handshake
procedure of a SRTP connection in WebRTC [Gri13, pp. 343–344], [MR10, p. 3], [Res19,
p. 11].

Session Description Protocol (SDP) provides a standard way to describe metadata about
a session [PHJ06, p. 3]. In WebRTC SDP is used in a negotiation of a peer-to-peer
connection where it describes properties of the data the peer is about to send and other
essential information regarding the connection [Gri13, p. 323].

Interactive Connectivity Establishment (ICE) is a protocol for establishing peer-to-peer
connections behind NATs [KHR18]. This is done with the help of a protocol called Session
Traversal Utilities for NAT (STUN) which enables the discovery of endpoint’s public IP
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address and port number [Mat+08]. By using STUN servers ICE tries to find address
and port tuples that could enable a connection between the peers [KHR18, p. 6]. After
finding candidates it tests to see if connection can be made. If all the attempts to create
peer-to-peer connection fail a TURN server can be used [MRM10]. Traversal Using Relays
around NAT (TURN) is a protocol for connection that uses a relay server (TURN server)
between the peers. The peers may not be able to connect to each other directly because
of NATs but they can connect to a server in between and the server can relay their traffic.

Connection establishment

Peer-to-peer connection establishment starts by the endpoints first expressing to each
other that they wish to start a connection [Gri13, pp. 317–334]. In web client-server
communications this would happen by the client making a DNS lookup and sending a
message to the address and to a well known port of the server. In a peer-to-peer context
this does not work since the peer does not know the other’s address and port. A signalling
channel is required. The peers communicate through this signalling channel to negotiate
the parameters of the connection.

WebRTC standard does not specify any particular signalling solution and this is left for
the application to decide [Gri13, pp. 317–334]. What WebRTC does is it exposes the
RTCPeerConnection API to which the application registers the local streams (audio, video,
data) it wants to use in the session. When the streams are registered RTCPeerConnection
creates an SDP offer description about the streams. The offer may consist of information
about the bit-rate and codecs used for the video and audio, among other things. Then
it sends it via the signaling service to the other peer. The other peer then creates an
answer consisting of its own streams and it is delivered back to the originating peer. Now
both parties have information about the session and they can proceed establishing the
connection.

RTCPeerConnection starts connectivity checks already after the SDP offer is created. The
connectivity checks are done using ICE and, if required and configured, with STUN and
TURN [Gri13, pp. 317–334], [KHR18, pp. 6–13]. The ICE tries to find possible public
address and port tuples of the local peer, called candidates. When these are discovered
they can be sent in an SDP offer for the other peer. They can be sent all at once with
the first offer or they can be sent one by one when discovered. When receiving the remote
peer’s answer which contains the remote peer’s candidates ICE has all the information
needed for trying to find a working connection between the two peers. The connectivity
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checks are done with the help of STUN. Once the connectivity checks are completed ICE’s
work is done and the peers can start sending data, provided that a connection was found.
If not, TURN can be used.

During the lifetime of the connection the ICE process can be restarted [Gri13, pp. 331,
334], [KHR18, p. 13]. RTCPeerConnection may, for instance, periodically restart the ICE
process in order to find improved connections. Also if streams are added or removed from
the connection, by opening a new data channel, for example, an offer will be sent and a
new ICE process will be started.

Data delivery

Video and audio data is delivered with SRTP protocol and arbitrary application data with
SCTP [Gri13, pp. 337–344]. SRTP runs directly on top of UDP and DTLS is utilized only
at the connection handshake. DTLS provides a shared secret that the endpoints can use
as a keying material during the SRTP connection. For SCTP the DTLS is used for the
duration of the whole connection. SCTP traffic is tunneled over DTLS, that is, all the
SCTP packets are encapsulated inside DTLS packets [Gri13, p. 344], [Tüx+17, p. 3].

The local video and audio streams are acquired via the MediaStream API [Gri13, pp. 312–
313, 333–334]. The user specifies the constraints, such as video resolution, and the Medi-
aStream interface provides a stream which can then be given to RTCPeerConnection API
and eventually be sent to another peer. When the remote peer’s video stream is received
it can be outputted through the MediaStream interface to the user’s screen. Put another
way: input can be local device or remote peer; output can be, for example, local video
element or remote peer.

The transmission of video and audio is done over SRTP. The SRTCP provides feedback on
the connection. The WebRTC media engine in the browser adjusts the quality of the video
and audio based on the feedback. The engine also deals with packet loss, network jitter
and congestion control. There are several congestion control algorithms proposed for RTP
traffic (RFC: 8298, 8382, 8593, 8699, 8698) [IET20b; TES14; rje16]. The IETF Working
Group RMCAT works to develop them and the work is ongoing. Detailed assessment
of the audio and video mechanics of WebRTC is out of scope of this thesis and are not
discussed further.

To send application data the Data Channel needs to be opened. Data Channel is estab-
lished on top of a SCTP association (synonym for connection in SCTP’s vocabulary) that
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is established on top of a DTLS connection. First the DTLS handshake is completed and
then the SCTP handshake [Tüx+17, p. 5]. The DTLS handshake takes two roundtrips,
the SCTP handshake also takes two roundtrips, and the Data Channel handshake takes
one roundtrip [Gri13, p. 337], [JLT15a, pp. 3–4], [Ste07, pp. 56–57]. On SCTP, appli-
cation data can already be sent during the second roundtrip of the handshake, and on
Data Channel it can be sent right after the initial handshake message without waiting for
a reply. The Data Channel handshake and data messages can be bundled into the same
SCTP packet and therefore it takes a minimum of total three roundtrips before application
data can be sent.

The properties of the Data Channel are set in the handshake message [JLT15a, pp. 5–6].
Data Channel can have reliable or unreliable transmission, it can have in-order or out-
of-order delivery and its priority can be set. The priority scheme includes four levels to
choose from: below normal, normal, high and extra high [JLT15b, p. 10].

Data Channel is encrypted, message-oriented and bidirectional [JLT15b, pp. 10–11], [Ste07,
p. 91]. SCTP packets carry complete messages and fragmentation is only done if required
due to message oversize. The data can be binary or UTF-8 and both parties can send
messages at will. The overhead of Data Channel’s protocol stack (IP, UDP, DTLS, SCTP)
is around 100 bytes [Gri13, pp. 351, 355]. WebRTC allows opening the Data Channel with
audio and video streams disabled.

Data Channel Congestion Control

Data Channel uses SCTP and therefore it uses SCTP’s congestion control. SCTP’s con-
gestion control is based on TCP’s congestion control defined in RFC 2581 (that is since
obsoleted by RFC 5681) [PAS99, p. 1], [Ste07, pp. 94–100]. SCTP utilizes selective ac-
knowledgments to report precisely where the gaps in the received data are, which is similar
to TCP SACK. SCTP has the same four modes as TCP has: slow start, congestion avoid-
ance, fast retransmit and fast recovery.

The details of the algorithms differ slightly but in principle they intend to do the same thing
[Ste07, pp. 94–100]. In slow start the congestion window is incremented at maximum by
one path Maximum Transmission Unit (path MTU) per received acknowledgment of new
data. In congestion avoidance the congestion window is incremented roughly by one MTU
per round-trip time. Fast retransmit is entered after a data chunk is three times indicated
missing. Congestion window is halved and a maximum of one MTU’s worth of missing
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data is retransmitted. Fast recovery is entered (if not already in fast recovery). In fast
recovery the congestion window will not be changed. Upon entering the fast recovery, the
highest transmission sequence number (TSN) of any data chunk that had been sent until
that moment but was not yet acknowledged, will be the exit point for the fast recovery.
When that TSN gets acknowledged, fast recovery exits. After exiting fast recovery SCTP
continues with congestion avoidance.

One important difference between SCTP and TCP is that SCTP supports out-of-order
deliveries [Ste07, p. 95]. This, however, does not create a big difference to the congestion
control of the two. In the case of data received out-of-order, SCTP may deliver it to the
application whereas TCP will keep it in the receiver buffer. Both TCP SACK and SCTP
SACK will still report it as received in the acknowledgments, so there is no difference in
that sense. However, when the data is delivered to the application and removed from the
buffer the size of the receiver window may change, which in turn may affect the size of the
congestion window (the congestion window can not be bigger than the receiver window).

Another difference is that SCTP supports partial reliability [Ram+04]. However, this is
implemented as the sender sending a message to the receiver telling it to move forward its
cumulative TSN point. From the congestion control point of view this is, in a sense, the
same as if the receiver had received the actual data. Therefore, it does not seem to require
any modifications to the congestion control algorithm to support this functionality.

Third, SCTP supports multi-homing [Ste07, p. 87]. The same endpoint can have multiple
IP addresses within an SCTP association. However, in WebRTC, SCTP is on top of DTLS
and DTLS does not support this functionality [Tüx+17, p. 5]. Therefore, the congestion
control scheme becomes simpler and is similar to TCP in this regard.

In SCTP the whole association with multiple streams is under the same congestion control
[Ste07, p. 94]. Therefore, if multiple Data Channels are opened their traffic is controlled
as one [JLT15b, pp. 8–9]. However, the possible parallel video and audio streams of
WebRTC run under a different protocol with their own congestion control. WebRTC
might be developed to include a congestion control for the Data Channel that cooperates
more optimally with the video and audio streams.
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4.4 Applicability for Multiplayer Games

In this section we will review WebSocket, QUIC and WebRTC from the perspective of
multiplayer games and how the protocols could be suitable as real-time game data trans-
ports.

WebSocket

WebSocket is a message-oriented protocol on top of a byte-oriented protocol, TCP [Gri13,
p. 287]. WebSocket takes care of delivering distinct units of messages end-to-end. At
the sender it splits the application message to one or more frames and at the receiver it
reassembles the possibly multiple frames to form the original message [MF11, pp. 5–6,
27–38]. Each frame header introduces 2-14 bytes overhead.

Currently, based on The WebSocket API documentation at MDN Web Docs and a com-
ment [Cow16] at stackoverflow.com it seems that the JavaScript WebSocket API does not
provide a way for the application to control this message fragmentation. TCP protocol
can also divide messages into different segments without the application control. The ap-
plication thus sends and receives complete messages and is not aware of the fragmentation
underneath. For game data transfer it could be a more intuitive concept to have a single
game state message travel inside of a single network packet but this is something that can
not be guaranteed with WebSocket.

The application data can be either binary or UTF-8 [MF11, p. 38]. The binary type is
either “blob” or “arraybuffer” [MDN19]. The “arraybuffer” type is recommended to be
used as a hint for the end host to keep the data in the memory instead of writing it to
the disk [WHA20]. For a real-time application it may therefore be beneficial to consider
using the “arraybuffer” binary type.

Minshall et al. [Min+00] discuss Nagle’s algorithm in TCP. Nagle’s algorithm is to prevent
a sender from a situation where it unintentionally and continuously sends only a minimal
size payload. This is also known as “silly window syndrome”. To avoid this situation, TCP
tries to fill up a segment before sending it: TCP holds back sending less than Maximum
Segment Size of data if any previous packets are unacknowledged. However, for a real-
time application any delay can be undesired and therefore Nagle’s algorithm may not be
preferred. As commented in [lpi16], Nagle’s algorithm for TCP is disabled by default in
WebSocket.
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WebSocket using TCP and TCP being a reliable and in-order protocol means that if there
are gaps in packet sequence numbers at the receiver (due to lost or dropped packets) the
data with higher sequence numbers will not be delivered to the application until TCP has
retransmitted the missing data with lower sequence numbers and the data has reached the
receiver. This HOL blocking can produce unacceptable delays for real-time games.

Mitigating the effects of HOL blocking can be attempted by establishing multiple parallel
WebSocket connections. Many browsers allow maximum of six simultaneous connections to
the same host [Gri13, p. 196]. For example, it might be possible to use parallel connections
in the following way: A server sends updates to clients 30 times per second (about every
33 ms). The updates are spread over six connections to the same host. This makes 5
updates per second per connection. If one of the connections blocks, the five others still
carry on. Assuming no delay variation, the blocking creates gaps of about 33 ms to the
updates, at the rate of five times per second. This should be considerably easier to hide
with the in-game delay-compensation methods than a delay caused by single connection
HOL blocking that could reach to hundreds of milliseconds. The downside of this method
is the complexity it introduces.

WebSocket is relatively easy to implement, especially with a JavaScript library Socket.io
[Soc20] that uses WebSocket underneath but provides also other functionality and fallbacks
for supporting the connection and data transfer. However, the fact that WebSocket uses
TCP makes it suffer from delays that may be unacceptable for applications with stringent
latency requirements.

QUIC and HTTP/3

It may be possible to exploit QUIC’s stream multiplexing for transporting game state
data. New streams are opened implicitly by setting a new stream number into the Stream
ID header field of the frame that carries application data. In this same frame a FIN bit in
the headers can be set to 1 which denotes that this frame is the last frame of the stream.
Hence, a single game state update message could take a single QUIC packet containing a
single frame. This solution is speculated in [No 16].

However, at the moment it seems that in web browsers QUIC can only be used through
HTTP/3. This creates another layer and some overhead. Client would send its game
data as a HTTP request. The server would send its game data as a server push. Each
HTTP request creates a new client-initiated bidirectional QUIC stream and each server
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push creates a new server-initiated unidirectional QUIC stream [Bis20, p. 12]. To read a
received push message the client application has to request the particular message since
the request has to match the push. This needs to be addressed in the design of the game.

A possible scheme could be that the client makes a HTTP request for game state updates
to which the server sends a HTTP response containing a certain amount (for example,
1000) of PUSH_PROMISE frames. These frames reference the upcoming server game
state updates about to be pushed to the client. When the client receives the set of
PUSH_PROMISE frames it makes a request to all the data they refer to. The server then
sends the pushes periodically as the game advances (for example, 60 times per second) and
when they arrive the client gets to read them and update the game state. This scheme thus
enables the server to immediately send and the client to immediately read when the data
is ready. When the client is starting to run out of the push promises (for example, every
1000/60 seconds) it makes a new request for game state updates, and the loop continues.

The byte-overhead caused by HTTP headers is reduced by header compression. The header
compression solution in HTTP/3 is called QPACK [KBF20]. It is similar to HPACK in
HTTP/2 but it supports QUIC’s unordered stream multiplexing. Headers are encoded
at sender and decoded at the receiver. The encoder communicates with the decoder, and
vice versa, by unidirectional streams. The header frames in different streams can arrive in
arbitrary order and QPACK is able to decode them. However, since the ordering between
streams is not preserved, a packet may reference a header that the encoder has not yet
received and this would block that particular stream.

For a real-time game application the blocking of one stream by QPACK should not be
a major drawback since it only affects the one game state update using that particular
stream. The next update will come in another stream. However, this next update and all
of the following ones might very well reference the same missing header. Then they all
would become blocked until the header information arrives at the encoder.

Another issue that could cause delay is that QUIC may try to bundle frames before
sending: it might wait for a short while if there is not enough data to fill a packet [IT20,
pp. 87–88]. The draft says that this is an “implementation decision”. It is unclear if an
upper layer will have control over it or not. A draft regarding applicability of QUIC says
that for a low latency application “it may be valuable to indicate to QUIC that all data
should be send out immediately” but does not specify further [KT20, p. 9]. The draft for
HTTP/3 does not comment on this either.

As an opposite to bundling, it also can not be known if a single application message will
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get divided into separate network packets. QUIC is a byte-oriented protocol, it receives
a continuous stream of data from the upper layer, cuts it at some point without notion
of message boundaries and sends the bytes into the network. For a game data transport
protocol an easier concept to reason with could be one where a single network packet was
filled with a single game state message and sent immediately. However, this is not QUIC’s
intended use.

Ultimately, using QUIC and HTTP/3 as a substrate for networked multiplayer game traffic
is sort of a hack or abuse of the protocol and without real-world implementation there is
no assurance it will actually work.

Currently, QUIC and HTTP/3 are supported by default in Safari 14 browser for macOS
11 Big Sur operating system and can be user-enabled in Chrome and Firefox browsers
[Dev20a]. For communication with Google servers Chrome is already using QUIC [Seu+19].
QUIC is also available in the Chromium software project [Buj+20].

WebRTC

WebRTC operates atop UDP and the Data Channel can be set as unreliable and unordered
so it does not suffer from head-of-line blocking. Data Channel allows sending arbitrary
binary messages. Therefore, WebRTC provides a solution that could be suitable for real-
time game applications.

However, WebRTC is designed for peer-to-peer connections whereas networked multiplayer
games often require a client-server architecture, for instance, to prevent cheating. Setting
up a WebRTC connection where another peer would actually be a server may turn out to
be quite laborious, as is noted in a blog post [Ho17]. The author of the blog manages to
improvise a client-server WebRTC connection but illustratively comments that it would
have taken about 10 lines of client code and about 20 lines of server code by using Web-
Socket, but by using WebRTC it took about 100 lines of client code and about 300 lines of
server (C++) code [Ho17; Ho19]. Also, as another real-world example, the browser game
Agar.io seem to be using WebSockets instead of WebRTC because WebRTC would be too
complex [Mat16].

As mentioned in Chapter 3, the service behavior Assured Forwarding (AF) is, for example,
for multimedia conferencing streams that can adjust their sending rate. The Expedited
Forwarding (EF) is, for example, for interactive games that can not adjust their sending
rate. WebRTC draft for DSCP markings [Jon+16, p. 6] recommends mappings of the
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four Data Channel priority levels to the following DiffServ classes: below normal: CS1,
normal: DF, high: AF11 and extra high AF21. Thus, the recommendations do not perhaps
completely match the characteristics of inelastic real-time interactive game traffic.

An API is provided for manipulating the DSCP bits [Alv20] but currently it seems that
this feature is not supported in any of the browsers [MDN20c]. It is also unclear if it would
be allowed to set the DSCP to any arbitrary value or to only one of the four predefined
values.

Since the client-server scheme is not what WebRTC is intended for, there may arise un-
expected problems and the solutions may not work. This technique may therefore be
prone to failures, at least until there are more real-world examples available of successful
implementations. For peer-to-peer architectures WebRTC should be a fitting choice.

Currently, WebRTC is available on all major browsers except on Internet Explorer [Dev20b].
On the Edge browser, however, the RTCDataChannel is not supported and therefore Edge
is also an unsuitable option.

The maturing of QUIC may affect WebRTC as well. Google is currently looking into pos-
sibly replacing SCTP with QUIC for WebRTC Data Channel [Ham19; BR20]. This may
have implications on the message boundaries during transport since SCTP is a message-
oriented protocol whereas QUIC is a byte-oriented protocol [Jos+18, p. 14]. However, this
should not make a significant difference in its applicability as a game data transport.



5 Conclusions

In this thesis, we considered delay management for browser multiplayer games. As an
overview on the problem space, we first looked into multiplayer game architectures, multi-
player game traffic characteristics and the specifics of using the web browser as a platform
for multiplayer games. Then we went through the various delay sources that contribute to
the overall network delay, and considered their effect on multiplayer games. Some promi-
nent sources of network delay include signal propagation delay, queuing delay, packet loss
recovery delay and head-of-line blocking delay. From these, our main focus was on queuing
delays and head-of-line blocking delays.

As solutions for delay management in browser multiplayer games, we first briefly reviewed
some in-game delay-compensation methods. In-game delay-compensation is an important
tool in hiding the effects of network delay and for that reason was included in this thesis.
Then we proceeded to take a closer look at the support a network can provide for mul-
tiplayer games. For this, we examined AQM, differentiated packet treatment and ECN.
From the AQM algorithms, we chose RED, PIE, CoDel and FQ-CoDel to be studied in
this thesis. RED is a well-known AQM algorithm whereas PIE, CoDel and FQ-CoDel are
more recent proposals.

After considering the network support, we proceeded to take a look at some of the network
protocols available in web browsers and to consider how they could satisfy the transport
needs of delay-sensitive multiplayer games. The examined protocols were WebSocket,
QUIC andWebRTC. From all the protocols available in web browsers these three appeared
as the most reasonable options and were thus chosen for this thesis.

AQM and differentiated packet treatment were considered as the main tools for managing
queuing delays, while ECN and the network protocols were considered as the main tools
for managing head-of-line blocking delays. The findings were as follows.

In PIE and CoDel AQM algorithms the size of a packet does not affect the drop probability:
a big or small packet is just as likely to be picked as the packet to be dropped or marked
during congestion. This may not be optimal for small and frequent game state packets.
RED provides an option where the packet size will, instead, affect the probability of the
packet becoming dropped. This might suit game traffic better.
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However, RED’s parametrization regarding suitable queue size thresholds is problematic.
Extensions such as ARED have been proposed to mitigate the problem. In a performance
evaluation, however, ARED has performed slightly worse than PIE or CoDel. CoDel’s
default drop mode interval of 100 ms has been recommended to be reduced for improved
performance.

Multi-queue AQM algorithm FQ-CoDel provides good flow separation and favors thin or
short flows. This eliminates the problem in single-queue schemes where small packets
would get unfair treatment, and thus FQ-CoDel could be beneficial for multiplayer game
traffic. On the other hand, multi-queue schemes can be problematic in combination with
the lower-level queuing that exists in network devices. The CAKE algorithm seeks to
alleviate this problem by using set-associative hashing for the queues.

Regarding DiffServ, the CS4 class and the AF4x class could be considered suitable for
multiplayer game traffic. CS4 could provide the fastest forwarding since it is meant for
latency-sensitive interactive applications that can not react to congestion, and is expected
to be provided enough bandwidth from the network to avoid packet drops. The AF4x class
is meant for real-time interactive multimedia applications such as video conferencing and
could also be used for multiplayer games. However, there are no guarantees that network
operators adhere to the DiffServ recommendations for CS4 or AF4x and thus for some
cases the default best-effort class may be the best option.

The use of ECN can reduce packet losses and associated delays such as HOL blocking.
Delays occur with reliable transports where packet retransmission is necessary in the event
of packet loss. With non-reliable transport, packet loss recovery delays and HOL blocking
can be avoided but data may be lost, instead. For multiplayer games, packet losses with
non-reliable transport can create gaps in the sequence of update message and have an
effect similar to network delay. When ECN-capable and non-ECN-capable traffic share
a highly congested link all the ECN-capable packets may become ECN-CE flagged and
forwarded while all the non-ECN-capable packets may become dropped, which can be
considered as an unfair situation for the non-ECN-capable flows. Therefore, in general
and for multiplayer games, the use of ECN can be beneficial.

In order for ECN to work properly it needs support from both end-hosts and from the
intermediaries on the network path. ECN is originally designed to be used with TCP and
IP. If ECN is to be used with UDP and IP, instead, the ECN communication between
end-hosts needs to be implemented at an upper layer such as on the application layer.
However, access of IP layer ECN bits for application layer may be uncertain on some
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operating systems.

On the browser protocols, WebSocket provides a simple API and is meant for transferring
arbitrary data such as game data between a client and a server. However, it uses TCP as
a substrate and suffers from HOL blocking which may create delays unacceptable for fast
paced multiplayer games. Opening multiple parallel connections could provide latency
benefits but with added complexity on the design.

QUIC uses UDP and avoids HOL blocking between streams. However, QUIC is not
directly exposed for applications in browsers but needs to be utilized via HTTP/3. Thus,
QUIC is not intended for game traffic which makes the game scheme slightly complex,
involves overhead and ultimately provides no guarantees that it will actually work.

WebRTC uses UDP, can avoid HOL blocking, and includes a data channel that seems
suitable for game data transfer. For peer-to-peer architectures WebRTC could be a fit-
ting choice. For client-server usage WebRTC involves complexity that may hinder its
utilization.

Future studies could include experimenting with QUIC and WebRTC to receive actual
first-hand information on how they would suit as a transport for game data. QUIC is
already available on many browsers either by default or optionally, requiring user to enable
it. WebRTC is available on all major browsers except on Internet Explorer.

As a summarized answer to our research question ”what feasible networking solutions
exist for browser multiplayer games?” we conclude the following. Currently, WebRTC
and FQ-CoDel seem as promising options. WebRTC DataChannel avoids HOL blocking
delays and it can be used for sending arbitrary application data. FQ-CoDel provides flow
separation that is able to prevent queue-building bulk transfers from notably hampering
latency-sensitive flows. However, WebRTC and FQ-CoDel both involve some complexities
and open questions: how does WebRTC fit for client-server architectures and how do
network devices handle the multiple queues in FQ-CoDel? These questions are left for
future studies and experiments.
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