8 research outputs found

    Gráfszínezések és gráfok felbontásai = Colorings and decompositions of graphs

    Get PDF
    A nem-ismétlő színezéseket a véletlen módszer alkalmazhatósága miatt kezdték el vizsgálni. Felső korlátot adtunk a színek számára, amely a maximum fok és a favastagság lineáris függvénye. Olyan színezéseket is vizsgáltunk, amelyek egy síkgráf oldalain nem-ismétlők. Sejtés volt, hogy véges sok szín elég. Ezt bizonyítottuk 24 színnel. A kromatikus számot és a metszési számot algoritmikusan nehéz meghatározni. Ezért meglepő Albertson egy friss sejtése, amely kapcsolatot állít fel közöttük: ha egy gráf kromatikus száma r, akkor metszési száma legalább annyi, mint a teljes r csúcsú gráfé. Bizonyítottuk a sejtést, ha r<3.57n, valamint ha 12<r<17. Ez utóbbi azért érdekes, mert a teljes r csúcsú gráf metszési száma csak r<13 esetén ismert. A témakör legfontosabb nyitott kérdése a Hadwiger-sejtés, mely szerint minden r-kromatikus gráf tartalmazza a teljes r csúcsú gráfot minorként. Ennek általánosításaként fogalmazták meg a lista színezési Hadwiger sejtést: ha egy gráf nem tartalmaz teljes r csúcsú gráfot minorként, akkor az r-lista színezhető. Megmutattuk, hogy ez a sejtés hamis. Legalább cr színre szükségünk van bizonyos gráfokra, ahol c=4/3. Thomassennel vetettük fel azt a kérdést, hogy milyen feltétel garantálja, hogy G élei felbonthatók egy adott T fa példányaira. Legyen Y az a fa, melynek fokszámsorozata (1,1,1,2,3). Megmutattuk, hogy minden 287-szeresen élösszefüggő fa felbomlik Y-okra, ha az élszám osztható 4-gyel. | Nonrepetitive colorings often use the probabilistic method. We gave an upper bound as a linear function of the maximum degree and the tree-width. We also investigated colorings, which are nonrepetitive on faces of plane graphs. As conjectured, a finite number of colors suffice. We proved it by 24 colors. The chromatic and crossing numbers are both difficult to compute. The recent Albertson's conjecture is a surprising relation between the two: if the chromatic number is r, then the crossing number is at least the crossing number of the complete graph on r vertices. We proved this claim, if r<3.57n, or 12<r<17. The latter is remarkable, since the crossing number of the complete graph is only known for r<13. The most important open question of the field is Hadwiger's conjecture: every r-chromatic graph contains as a minor the complete graph on r vertices. As a generalisation, the following is the list coloring Hadwiger conjecture: if a graph does not contain as a minor the complete graph on r vertices , then the graph is r-list colorable. We proved the falsity of this claim. In our examples, at least cr colors are necessary, where c=4/3. Decomposition of graphs is well-studied. Thomassen and I posed the question of a sufficient connectivity condition, which guaranties a T-decomposition. Let Y be the tree with degree sequence (1,1,1,2,3). We proved every 287-edge connected graph has a Y-decomposition, if the size is divisible by four

    Avoidance Games Are PSPACE-Complete

    Get PDF
    Avoidance games are games in which two players claim vertices of a hypergraph and try to avoid some structures. These games are studied since the introduction of the game of SIM in 1968, but only few complexity results are known on them. In 2001, Slany proved some partial results on Avoider-Avoider games complexity, and in 2017 Bonnet et al. proved that short Avoider-Enforcer games are Co-W[1]-hard. More recently, in 2022, Miltzow and Stojakovi\'c proved that these games are NP-hard. As these games corresponds to the mis\`ere version of the well-known Maker-Breaker games, introduced in 1963 and proven PSPACE-complete in 1978, one could expect these games to be PSPACE-complete too, but the question remained open since then. We prove here that both Avoider-Avoider and Avoider-Enforcer conventions are PSPACE-complete, and as a consequence of it that some particular Avoider-Enforcer games also are

    Pozicione igre na grafovima

    Get PDF
    \section*{Abstract} We study Maker-Breaker games played on the edges of the complete graph on nn vertices, KnK_n, whose family of winning sets \cF consists of all edge sets of subgraphs GKnG\subseteq K_n which possess a predetermined monotone increasing property. Two players, Maker and Breaker, take turns in claiming aa, respectively bb, unclaimed edges per move. We are interested in finding the threshold bias b_{\cF}(a) for all values of aa, so that for every bb, b\leq b_{\cF}(a), Maker wins the game and for all values of bb, such that b>b_{\cF}(a), Breaker wins the game. We are particularly interested in cases where both aa and bb can be greater than 11. We focus on the \textit{Connectivity game}, where the winning sets are the edge sets of all spanning trees of KnK_n and on the  \textit{Hamiltonicity game}, where the winning sets are the edge sets of all Hamilton cycles on KnK_n. Next, we consider biased (1:b)(1:b) Avoider-Enforcer games, also played on the edges of KnK_n. For every constant k3k\geq 3 we analyse the kk-star game, where Avoider tries to avoid claiming kk edges incident to the same vertex. We analyse both versions of Avoider-Enforcer games, the strict and the monotone, and for each provide explicit winning strategies for both players. Consequentially, we establish bounds on the threshold biases f^{mon}_\cF, f^-_\cF and f^+_\cF, where \cF is the hypergraph of the game (the family of target sets). We also study the monotone version of K2,2K_{2,2}-game, where Avoider wants to avoid claiming all the edges of some graph isomorphic to K2,2K_{2,2} in KnK_n.   Finally, we search for the fast winning strategies for Maker in Perfect matching game and Hamiltonicity game, again played on the edge set of KnK_n. Here, we look at the biased (1:b)(1:b) games, where Maker's bias is 1, and Breaker's bias is b,b1b, b\ge 1.\section*{Izvod} Prou\v{c}avamo takozvane Mejker-Brejker (Maker-Breaker) igre koje se igraju na granama kompletnog grafa sa nn \v{c}vorova, KnK_n, \v{c}ija familija pobedni\v{c}kih skupova \cF obuhvata sve skupove grana grafa GKnG\subseteq K_n koji imaju neku monotono rastu\'{c}u osobinu. Dva igra\v{c}a, \textit{Mejker} (\textit{Pravi\v{s}a}) i \textit{Brejker} (\textit{Kva\-ri\-\v{s}a}) se smenjuju u odabiru aa, odnosno bb, slobodnih grana po potezu. Interesuje nas da prona\dj emo grani\v{c}ni bias b_{\cF}(a) za sve vrednosti pa\-ra\-me\-tra aa, tako da za svako bb, b\le b_{\cF}(a), Mejker pobe\dj uje u igri, a za svako bb, takvo da je b>b_{\cF}(a), Brejker pobe\dj uje. Posebno nas interesuju slu\v{c}ajevi u kojima oba parametra aa i bb mogu imati vrednost ve\'cu od 1. Na\v{s}a pa\v{z}nja je posve\'{c}ena igri povezanosti, gde su pobedni\v{c}ki skupovi  grane svih pokrivaju\'cih stabala grafa KnK_n, kao i igri Hamiltonove konture, gde su pobedni\v{c}ki skupovi grane svih Hamiltonovih kontura grafa KnK_n. Zatim posmatramo igre tipa Avojder-Enforser (Avoider-Enforcer), sa biasom (1:b)(1:b), koje se tako\dj e igraju na granama kompletnog grafa sa nn \v{c}vorova, KnK_n. Za svaku konstantu kk, k3k\ge 3 analiziramo igru kk-zvezde (zvezde sa kk krakova), u kojoj \textit{Avojder} poku\v{s}va da izbegne da ima kk svojih grana incidentnih sa istim \v{c}vorom. Posmatramo obe verzije ove igre, striktnu i monotonu, i za svaku dajemo eksplicitnu pobedni\v{c}ku strategiju za oba igra\v{c}a. Kao rezultat, dobijamo gornje i donje ograni\v{c}enje za grani\v{c}ne biase f^{mon}_\cF, f^-_\cF i f^+_\cF, gde \cF predstavlja hipergraf igre (familija ciljnih skupova). %fmonf^{mon}, ff^- and f+f^+. Tako\dj e, posmatramo i monotonu verziju K2,2K_{2,2}-igre, gde Avojder \v{z}eli da izbegne da graf koji \v{c}ine njegove grane sadr\v{z}i graf izomorfan sa K2,2K_{2,2}. Kona\v{c}no, \v{z}elimo da prona\dj emo strategije za brzu pobedu Mejkera u igrama savr\v{s}enog me\v{c}inga i Hamiltonove konture, koje se tako\dj e igraju na granama kompletnog grafa KnK_n. Ovde posmatramo asimetri\v{c}ne igre gde je bias Mejkera 1, a bias Brejkera bb, b1b\ge 1

    Jake pozicione igre

    Get PDF
    In this thesis, we study 2-player combinatorial games on graphs. We devote a lot of attention to strong positional games, where both players have the same goal. First, we consider the so-called fixed graph strong Avoider-Avoider game in which two players called Red and Blue alternately claim edges of the complete graph Kn, and the player who first completes a copy of a fixed graph F loses the game. If neither of the players claimed a copy of F in his graph and all the elements of the board are claimed, the game is declared a draw. Even though these games have been studied for decades, there are very few known results. We make a step forward by proving that Blue has a winning strategy it two different games of this kind. Furthermore, we introduce strong CAvoiderCAvoider F games where the claimed edges of each player must form a connected graph throughout the game. This is a natural extension of the strong Avoider-Avoider games, with a connectedness constraint. We prove that Blue can win in three standard CAvoider-CAvoider F games. Next, we study strong Maker-Maker F games, where now, the player who first occupies a copy of F is the winner. It is well-known that the outcome of these games when both players play optimally can be either the first player's win or a draw. We are interested in finding the achievement number a(F) of a strong Maker-Maker F game, that is, the smallest n for which Red has a winning strategy. We can find the exact value a(F) for several graphs F, including paths, cycles, perfect matchings, and a subclass of trees on n vertices. We also give the upper and lower bounds for the achievement number of stars and trees. Finally, we introduce generalized saturation games as a natural extension of two different types of combinatorial games, saturation games and Constructor-Blocker games. In the generalized saturation game, two graphs H and F are given in advance. Two players called Max and Mini alternately claim unclaimed edges of the complete graph Kn and together gradually building the game graph G, the graph that consists of all edges claimed by both players. The graph G must never contain a copy of F, and the game ends when there are no more moves, i.e. when G is a saturated F-free graph. We are interested in the score of this game, that is, the number of copies of the graph H in G at the end of the game. Max wants to maximize this score, whereas Mini tries to minimize it. The game is played under the assumption that both players play optimally. We study several generalized saturation games for natural choices of F and H, in an effort to locate the score of the game as precisely as possible.У овој тези проучавамо комбинаторне игре на графовима које играју 2 играча. Посебну пажњу посвећујемо јаким позиционим играма, у којима оба играча имају исти циљ. Прво, посматрамо такозвану јаку Авојдер-Авојдер игру са задатим фиксним графом у којој два играча, Црвени и Плави наизменично селектују гране комплетног графа Kn, а играч који први селектује копију фиксног графа F губи игру. Ако ниједан од играча не садржи копију од F у свом графу и сви елементи табле су селектовани, игра се проглашава нерешеном. Иако су ове игре проучаване деценијама, врло је мало познатих резултата. Ми смо направили корак напред доказавши да Плави има победничку стратегију у две различите игре ове врсте. Такође, уводимо јаке ЦАвојдер-ЦАвојдер F игре у којима граф сваког играча мора остати повезан током игре. Ово је природно проширење јаких Авојдер-Авојдер игара, са ограничењем повезаности. Доказујемо да Плави може да победи у три стандардне ЦАвојдер-ЦАвојдер F игре. Затим проучавамо јаке Мејкер-Мејкер F игре, у којима је играч који први селектује копију од F победник. Познато је да исход ових игара уколико оба играча играју оптимално може бити или победа првог играча или нерешено. Циљ нам је да пронађемо ачивмент број а(F) јаке Мејкер-Мејкер F игре, односно најмање n за које Црвени има победничку стратегију. Дајемо тачну вредност a(F) за неколико графова F, укључујући путеве, циклусе, савршене мечинге и поткласу стабала са n чворова. Такође, дајемо горње и доње ограничење ачивмент броја за звезде и стабла. Коначно, уводимо уопштене игре сатурације као природно проширење две различите врсте комбинаторних игара, игара сатурације и Конструктор-Блокер игара. У уопштеној игри сатурације унапред су дата два графа H и F. Два играча по имену Макс и Мини наизменично селектују слободне гране комплетног графа Kn и заједно постепено граде граф игре G, који се састоји од свих грана које су селектовала оба играча. Граф G не сме да садржи копију од F, а игра се завршава када више нема потеза, односно када је G сатуриран граф који не садржи F. Занима нас резултат ове игре, односно, број копија графа H у G на крају игре. Макс жели да максимизира овај резултат, док Мини покушава да га минимизира. Игра се под претпоставком да оба играча играју оптимално. Проучавамо неколико уопштених игара сатурације за природне изборе F и H, у настојању да што прецизније одредимо резултат игре.U ovoj tezi proučavamo kombinatorne igre na grafovima koje igraju 2 igrača. Posebnu pažnju posvećujemo jakim pozicionim igrama, u kojima oba igrača imaju isti cilj. Prvo, posmatramo takozvanu jaku Avojder-Avojder igru sa zadatim fiksnim grafom u kojoj dva igrača, Crveni i Plavi naizmenično selektuju grane kompletnog grafa Kn, a igrač koji prvi selektuje kopiju fiksnog grafa F gubi igru. Ako nijedan od igrača ne sadrži kopiju od F u svom grafu i svi elementi table su selektovani, igra se proglašava nerešenom. Iako su ove igre proučavane decenijama, vrlo je malo poznatih rezultata. Mi smo napravili korak napred dokazavši da Plavi ima pobedničku strategiju u dve različite igre ove vrste. Takođe, uvodimo jake CAvojder-CAvojder F igre u kojima graf svakog igrača mora ostati povezan tokom igre. Ovo je prirodno proširenje jakih Avojder-Avojder igara, sa ograničenjem povezanosti. Dokazujemo da Plavi može da pobedi u tri standardne CAvojder-CAvojder F igre. Zatim proučavamo jake Mejker-Mejker F igre, u kojima je igrač koji prvi selektuje kopiju od F pobednik. Poznato je da ishod ovih igara ukoliko oba igrača igraju optimalno može biti ili pobeda prvog igrača ili nerešeno. Cilj nam je da pronađemo ačivment broj a(F) jake Mejker-Mejker F igre, odnosno najmanje n za koje Crveni ima pobedničku strategiju. Dajemo tačnu vrednost a(F) za nekoliko grafova F, uključujući puteve, cikluse, savršene mečinge i potklasu stabala sa n čvorova. Takođe, dajemo gornje i donje ograničenje ačivment broja za zvezde i stabla. Konačno, uvodimo uopštene igre saturacije kao prirodno proširenje dve različite vrste kombinatornih igara, igara saturacije i Konstruktor-Bloker igara. U uopštenoj igri saturacije unapred su data dva grafa H i F. Dva igrača po imenu Maks i Mini naizmenično selektuju slobodne grane kompletnog grafa Kn i zajedno postepeno grade graf igre G, koji se sastoji od svih grana koje su selektovala oba igrača. Graf G ne sme da sadrži kopiju od F, a igra se završava kada više nema poteza, odnosno kada je G saturiran graf koji ne sadrži F. Zanima nas rezultat ove igre, odnosno, broj kopija grafa H u G na kraju igre. Maks želi da maksimizira ovaj rezultat, dok Mini pokušava da ga minimizira. Igra se pod pretpostavkom da oba igrača igraju optimalno. Proučavamo nekoliko uopštenih igara saturacije za prirodne izbore F i H, u nastojanju da što preciznije odredimo rezultat igre

    Jake pozicione igre

    Get PDF
    In this thesis, we study 2-player combinatorial games on graphs. We devote a lot of attention to strong positional games, where both players have the same goal. First, we consider the so-called fixed graph strong Avoider-Avoider game in which two players called Red and Blue alternately claim edges of the complete graph Kn, and the player who first completes a copy of a fixed graph F loses the game. If neither of the players claimed a copy of F in his graph and all the elements of the board are claimed, the game is declared a draw. Even though these games have been studied for decades, there are very few known results. We make a step forward by proving that Blue has a winning strategy it two different games of this kind. Furthermore, we introduce strong CAvoiderCAvoider F games where the claimed edges of each player must form a connected graph throughout the game. This is a natural extension of the strong Avoider-Avoider games, with a connectedness constraint. We prove that Blue can win in three standard CAvoider-CAvoider F games. Next, we study strong Maker-Maker F games, where now, the player who first occupies a copy of F is the winner. It is well-known that the outcome of these games when both players play optimally can be either the first player's win or a draw. We are interested in finding the achievement number a(F) of a strong Maker-Maker F game, that is, the smallest n for which Red has a winning strategy. We can find the exact value a(F) for several graphs F, including paths, cycles, perfect matchings, and a subclass of trees on n vertices. We also give the upper and lower bounds for the achievement number of stars and trees. Finally, we introduce generalized saturation games as a natural extension of two different types of combinatorial games, saturation games and Constructor-Blocker games. In the generalized saturation game, two graphs H and F are given in advance. Two players called Max and Mini alternately claim unclaimed edges of the complete graph Kn and together gradually building the game graph G, the graph that consists of all edges claimed by both players. The graph G must never contain a copy of F, and the game ends when there are no more moves, i.e. when G is a saturated F-free graph. We are interested in the score of this game, that is, the number of copies of the graph H in G at the end of the game. Max wants to maximize this score, whereas Mini tries to minimize it. The game is played under the assumption that both players play optimally. We study several generalized saturation games for natural choices of F and H, in an effort to locate the score of the game as precisely as possible.У овој тези проучавамо комбинаторне игре на графовима које играју 2 играча. Посебну пажњу посвећујемо јаким позиционим играма, у којима оба играча имају исти циљ. Прво, посматрамо такозвану јаку Авојдер-Авојдер игру са задатим фиксним графом у којој два играча, Црвени и Плави наизменично селектују гране комплетног графа Kn, а играч који први селектује копију фиксног графа F губи игру. Ако ниједан од играча не садржи копију од F у свом графу и сви елементи табле су селектовани, игра се проглашава нерешеном. Иако су ове игре проучаване деценијама, врло је мало познатих резултата. Ми смо направили корак напред доказавши да Плави има победничку стратегију у две различите игре ове врсте. Такође, уводимо јаке ЦАвојдер-ЦАвојдер F игре у којима граф сваког играча мора остати повезан током игре. Ово је природно проширење јаких Авојдер-Авојдер игара, са ограничењем повезаности. Доказујемо да Плави може да победи у три стандардне ЦАвојдер-ЦАвојдер F игре. Затим проучавамо јаке Мејкер-Мејкер F игре, у којима је играч који први селектује копију од F победник. Познато је да исход ових игара уколико оба играча играју оптимално може бити или победа првог играча или нерешено. Циљ нам је да пронађемо ачивмент број а(F) јаке Мејкер-Мејкер F игре, односно најмање n за које Црвени има победничку стратегију. Дајемо тачну вредност a(F) за неколико графова F, укључујући путеве, циклусе, савршене мечинге и поткласу стабала са n чворова. Такође, дајемо горње и доње ограничење ачивмент броја за звезде и стабла. Коначно, уводимо уопштене игре сатурације као природно проширење две различите врсте комбинаторних игара, игара сатурације и Конструктор-Блокер игара. У уопштеној игри сатурације унапред су дата два графа H и F. Два играча по имену Макс и Мини наизменично селектују слободне гране комплетног графа Kn и заједно постепено граде граф игре G, који се састоји од свих грана које су селектовала оба играча. Граф G не сме да садржи копију од F, а игра се завршава када више нема потеза, односно када је G сатуриран граф који не садржи F. Занима нас резултат ове игре, односно, број копија графа H у G на крају игре. Макс жели да максимизира овај резултат, док Мини покушава да га минимизира. Игра се под претпоставком да оба играча играју оптимално. Проучавамо неколико уопштених игара сатурације за природне изборе F и H, у настојању да што прецизније одредимо резултат игре.U ovoj tezi proučavamo kombinatorne igre na grafovima koje igraju 2 igrača. Posebnu pažnju posvećujemo jakim pozicionim igrama, u kojima oba igrača imaju isti cilj. Prvo, posmatramo takozvanu jaku Avojder-Avojder igru sa zadatim fiksnim grafom u kojoj dva igrača, Crveni i Plavi naizmenično selektuju grane kompletnog grafa Kn, a igrač koji prvi selektuje kopiju fiksnog grafa F gubi igru. Ako nijedan od igrača ne sadrži kopiju od F u svom grafu i svi elementi table su selektovani, igra se proglašava nerešenom. Iako su ove igre proučavane decenijama, vrlo je malo poznatih rezultata. Mi smo napravili korak napred dokazavši da Plavi ima pobedničku strategiju u dve različite igre ove vrste. Takođe, uvodimo jake CAvojder-CAvojder F igre u kojima graf svakog igrača mora ostati povezan tokom igre. Ovo je prirodno proširenje jakih Avojder-Avojder igara, sa ograničenjem povezanosti. Dokazujemo da Plavi može da pobedi u tri standardne CAvojder-CAvojder F igre. Zatim proučavamo jake Mejker-Mejker F igre, u kojima je igrač koji prvi selektuje kopiju od F pobednik. Poznato je da ishod ovih igara ukoliko oba igrača igraju optimalno može biti ili pobeda prvog igrača ili nerešeno. Cilj nam je da pronađemo ačivment broj a(F) jake Mejker-Mejker F igre, odnosno najmanje n za koje Crveni ima pobedničku strategiju. Dajemo tačnu vrednost a(F) za nekoliko grafova F, uključujući puteve, cikluse, savršene mečinge i potklasu stabala sa n čvorova. Takođe, dajemo gornje i donje ograničenje ačivment broja za zvezde i stabla. Konačno, uvodimo uopštene igre saturacije kao prirodno proširenje dve različite vrste kombinatornih igara, igara saturacije i Konstruktor-Bloker igara. U uopštenoj igri saturacije unapred su data dva grafa H i F. Dva igrača po imenu Maks i Mini naizmenično selektuju slobodne grane kompletnog grafa Kn i zajedno postepeno grade graf igre G, koji se sastoji od svih grana koje su selektovala oba igrača. Graf G ne sme da sadrži kopiju od F, a igra se završava kada više nema poteza, odnosno kada je G saturiran graf koji ne sadrži F. Zanima nas rezultat ove igre, odnosno, broj kopija grafa H u G na kraju igre. Maks želi da maksimizira ovaj rezultat, dok Mini pokušava da ga minimizira. Igra se pod pretpostavkom da oba igrača igraju optimalno. Proučavamo nekoliko uopštenih igara saturacije za prirodne izbore F i H, u nastojanju da što preciznije odredimo rezultat igre
    corecore