28,369 research outputs found

    Minimal Triangulations of Manifolds

    Full text link
    In this survey article, we are interested on minimal triangulations of closed pl manifolds. We present a brief survey on the works done in last 25 years on the following: (i) Finding the minimal number of vertices required to triangulate a given pl manifold. (ii) Given positive integers nn and dd, construction of nn-vertex triangulations of different dd-dimensional pl manifolds. (iii) Classifications of all the triangulations of a given pl manifold with same number of vertices. In Section 1, we have given all the definitions which are required for the remaining part of this article. In Section 2, we have presented a very brief history of triangulations of manifolds. In Section 3, we have presented examples of several vertex-minimal triangulations. In Section 4, we have presented some interesting results on triangulations of manifolds. In particular, we have stated the Lower Bound Theorem and the Upper Bound Theorem. In Section 5, we have stated several results on minimal triangulations without proofs. Proofs are available in the references mentioned there.Comment: Survey article, 29 page

    Transforming triangulations on non planar-surfaces

    Get PDF
    We consider whether any two triangulations of a polygon or a point set on a non-planar surface with a given metric can be transformed into each other by a sequence of edge flips. The answer is negative in general with some remarkable exceptions, such as polygons on the cylinder, and on the flat torus, and certain configurations of points on the cylinder.Comment: 19 pages, 17 figures. This version has been accepted in the SIAM Journal on Discrete Mathematics. Keywords: Graph of triangulations, triangulations on surfaces, triangulations of polygons, edge fli

    Simulating Four-Dimensional Simplicial Gravity using Degenerate Triangulations

    Get PDF
    We extend a model of four-dimensional simplicial quantum gravity to include degenerate triangulations in addition to combinatorial triangulations traditionally used. Relaxing the constraint that every 4-simplex is uniquely defined by a set of five distinct vertexes, we allow triangulations containing multiply connected simplexes and distinct simplexes defined by the same set of vertexes. We demonstrate numerically that including degenerated triangulations substantially reduces the finite-size effects in the model. In particular, we provide a strong numerical evidence for an exponential bound on the entropic growth of the ensemble of degenerate triangulations, and show that a discontinuous crumpling transition is already observed on triangulations of volume N_4 ~= 4000.Comment: Latex, 8 pages, 4 eps-figure

    Regular triangulations of dynamic sets of points

    Get PDF
    The Delaunay triangulations of a set of points are a class of triangulations which play an important role in a variety of different disciplines of science. Regular triangulations are a generalization of Delaunay triangulations that maintain both their relationship with convex hulls and with Voronoi diagrams. In regular triangulations, a real value, its weight, is assigned to each point. In this paper a simple data structure is presented that allows regular triangulations of sets of points to be dynamically updated, that is, new points can be incrementally inserted in the set and old points can be deleted from it. The algorithms we propose for insertion and deletion are based on a geometrical interpretation of the history data structure in one more dimension and use lifted flips as the unique topological operation. This results in rather simple and efficient algorithms. The algorithms have been implemented and experimental results are given.Postprint (published version

    Counting Triangulations and other Crossing-Free Structures Approximately

    Full text link
    We consider the problem of counting straight-edge triangulations of a given set PP of nn points in the plane. Until very recently it was not known whether the exact number of triangulations of PP can be computed asymptotically faster than by enumerating all triangulations. We now know that the number of triangulations of PP can be computed in O(2n)O^{*}(2^{n}) time, which is less than the lower bound of Ω(2.43n)\Omega(2.43^{n}) on the number of triangulations of any point set. In this paper we address the question of whether one can approximately count triangulations in sub-exponential time. We present an algorithm with sub-exponential running time and sub-exponential approximation ratio, that is, denoting by Λ\Lambda the output of our algorithm, and by cnc^{n} the exact number of triangulations of PP, for some positive constant cc, we prove that cnΛcn2o(n)c^{n}\leq\Lambda\leq c^{n}\cdot 2^{o(n)}. This is the first algorithm that in sub-exponential time computes a (1+o(1))(1+o(1))-approximation of the base of the number of triangulations, more precisely, cΛ1n(1+o(1))cc\leq\Lambda^{\frac{1}{n}}\leq(1 + o(1))c. Our algorithm can be adapted to approximately count other crossing-free structures on PP, keeping the quality of approximation and running time intact. In this paper we show how to do this for matchings and spanning trees.Comment: 19 pages, 2 figures. A preliminary version appeared at CCCG 201

    Generating families of surface triangulations. The case of punctured surfaces with inner degree at least 4

    Get PDF
    We present two versions of a method for generating all triangulations of any punctured surface in each of these two families: (1) triangulations with inner vertices of degree at least 4 and boundary vertices of degree at least 3 and (2) triangulations with all vertices of degree at least 4. The method is based on a series of reversible operations, termed reductions, which lead to a minimal set of triangulations in each family. Throughout the process the triangulations remain within the corresponding family. Moreover, for the family (1) these operations reduce to the well-known edge contractions and removals of octahedra. The main results are proved by an exhaustive analysis of all possible local configurations which admit a reduction.Comment: This work has been partially supported by PAI FQM-164; PAI FQM-189; MTM 2010-2044

    Planar maps, circle patterns and 2d gravity

    Full text link
    Via circle pattern techniques, random planar triangulations (with angle variables) are mapped onto Delaunay triangulations in the complex plane. The uniform measure on triangulations is mapped onto a conformally invariant spatial point process. We show that this measure can be expressed as: (1) a sum over 3-spanning-trees partitions of the edges of the Delaunay triangulations; (2) the volume form of a K\"ahler metric over the space of Delaunay triangulations, whose prepotential has a simple formulation in term of ideal tessellations of the 3d hyperbolic space; (3) a discretized version (involving finite difference complex derivative operators) of Polyakov's conformal Fadeev-Popov determinant in 2d gravity; (4) a combination of Chern classes, thus also establishing a link with topological 2d gravity.Comment: Misprints corrected and a couple of footnotes added. 42 pages, 17 figure

    Degree-regular triangulations of torus and Klein bottle

    Full text link
    A triangulation of a connected closed surface is called weakly regular if the action of its automorphism group on its vertices is transitive. A triangulation of a connected closed surface is called degree-regular if each of its vertices have the same degree. Clearly, a weakly regular triangulation is degree-regular. In 1999, Lutz has classified all the weakly regular triangulations on at most 15 vertices. In 2001, Datta and Nilakantan have classified all the degree-regular triangulations of closed surfaces on at most 11 vertices. In this article, we have proved that any degree-regular triangulation of the torus is weakly regular. We have shown that there exists an nn-vertex degree-regular triangulation of the Klein bottle if and only if nn is a composite number 9\geq 9. We have constructed two distinct nn-vertex weakly regular triangulations of the torus for each n12n \geq 12 and a (4m+2)(4m + 2)-vertex weakly regular triangulation of the Klein bottle for each m2m \geq 2. For 12n1512 \leq n \leq 15, we have classified all the nn-vertex degree-regular triangulations of the torus and the Klein bottle. There are exactly 19 such triangulations, 12 of which are triangulations of the torus and remaining 7 are triangulations of the Klein bottle. Among the last 7, only one is weakly regular.Comment: Revised version, 26 pages, To appear in Proceedings of Indian Academy of Sciences (Math. Sci.

    Entropy of unimodular Lattice Triangulations

    Full text link
    Triangulations are important objects of study in combinatorics, finite element simulations and quantum gravity, where its entropy is crucial for many physical properties. Due to their inherent complex topological structure even the number of possible triangulations is unknown for large systems. We present a novel algorithm for an approximate enumeration which is based on calculations of the density of states using the Wang-Landau flat histogram sampling. For triangulations on two-dimensional integer lattices we achive excellent agreement with known exact numbers of small triangulations as well as an improvement of analytical calculated asymptotics. The entropy density is C=2.196(3)C=2.196(3) consistent with rigorous upper and lower bounds. The presented numerical scheme can easily be applied to other counting and optimization problems.Comment: 6 pages, 7 figure

    Non-geometric veering triangulations

    Full text link
    Recently, Ian Agol introduced a class of "veering" ideal triangulations for mapping tori of pseudo-Anosov homeomorphisms of surfaces punctured along the singular points. These triangulations have very special combinatorial properties, and Agol asked if these are "geometric", i.e. realised in the complete hyperbolic metric with all tetrahedra positively oriented. This paper describes a computer program Veering, building on the program Trains by Toby Hall, for generating these triangulations starting from a description of the homeomorphism as a product of Dehn twists. Using this we obtain the first examples of non-geometric veering triangulations; the smallest example we have found is a triangulation with 13 tetrahedra
    corecore