In this survey article, we are interested on minimal triangulations of closed
pl manifolds. We present a brief survey on the works done in last 25 years on
the following: (i) Finding the minimal number of vertices required to
triangulate a given pl manifold. (ii) Given positive integers n and d,
construction of n-vertex triangulations of different d-dimensional pl
manifolds. (iii) Classifications of all the triangulations of a given pl
manifold with same number of vertices.
In Section 1, we have given all the definitions which are required for the
remaining part of this article. In Section 2, we have presented a very brief
history of triangulations of manifolds. In Section 3, we have presented
examples of several vertex-minimal triangulations. In Section 4, we have
presented some interesting results on triangulations of manifolds. In
particular, we have stated the Lower Bound Theorem and the Upper Bound Theorem.
In Section 5, we have stated several results on minimal triangulations without
proofs. Proofs are available in the references mentioned there.Comment: Survey article, 29 page