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Abstract

The Delaunay triangulations of a set of points are a class of triangulations
which play an important role in a variety of different disciplines of science. Reg-
ular triangulations are a generalization of Delaunay triangulations that maintain
both their relationship with convex hulls and with Voronoi diagrams. In regular
triangulations, a real value, its weight, is assigned to each point.

In this paper a simple data structure is presented that allows regular triangula-
tions of sets of points to be dynamically updated, that is, new points can be incre-
mentally inserted in the set and old points can be deleted from it. The algorithms
we propose for insertion and deletion are based on a geometrical interpretation of
the history data structure in one more dimension and use lifted flips as the unique
topological operation. This results in rather simple and efficient algorithms. The
algorithms have been implemented and experimental results are given.

Keywords: Delaunay and regular triangulations, Voronoi diagrams, convex hulls.

1 Introduction

Triangulations play a fundamental role in Computer Graphics, and the computation
of the Delaunay triangulation of a set of points and its dual, the Voronoi diagram, is
one of the classical problems of Computational Geometry. Their properties, as well as
algorithms for constructing them, are extensively covered in textbooks, such as [17],
[7] or [16], and also in survey papers [1] or [11]. Regular triangulations are a well
known extension of Delaunay triangulations of a set of points in R?, which is obtained
assigning a scalar value, its weight, to each point. The regular triangulation of a set of
points reduces to Delaunay triangulation of the set when all the weights have the same
value. Regular triangulations bridge geometric and algebraic issues, for example they
have a close relationship with Grobner bases and also with the theory of discriminants,
hypergeometric functions, etc [14]. Furthermore, there exists a close connection be-
tween regular triangulations in R¢ and convex hulls in R?*!, based on the paraboloid
mapping of the points RZ in one more dimension. The algorithms we present in this
paper make an intensive use of this map.



A number of incremental algorithms have been proposed for obtaining Delaunay
triangulations, based on local topological transformations, called flips (or swaps); his-
torically, the first author to use this approach, for a set of points in the plane, was Law-
son [13], but many improvements and generalizations have been proposed later, see for
example [12] or [2]. Edelsbrunner and Shah extended the flipping algorithm to work for
regular triangulations in d dimensions, [8, 10]. These algorithms are designed for incre-
mentally including new points in a regular (or Delaunay) triangulation, but only a few
allow deleting points (dynamically updating the related data structures). Devillers [6]
enumerates several algorithms for deleting vertices from a Delaunay triangulation, and
proposes a simple way for removing a single vertex from a two-dimensional Delaunay
triangulation. His method consists on retriangulating the interior of the star-shaped
polygon around vertex to be deleted, which is equivalent to swapping edges around the
vertex in a particular order. The algorithm can be generalized quite easily to work in d
dimensions.

In this paper we propose a simple data structure that allows regular triangulations
of sets of points to be dynamically updated, that is, new points can be inserted and old
points can be deleted. The algorithms we propose for insertion and deletion use lifted
flips as the only topological operation and are based on a geometrical interpretation of
the history data structure. Our approach can be included in the class of incremental
algorithms proposed by Clarkson, Melhorn and Seidel [4].

The rest of the paper is organized as follows: in Section 2 definitions and important
properties are given for regular triangulations. Next, in Section 3, we revise the incre-
mental algorithm for inserting a point in a d-dimensional regular triangulation, and in
Section 4 the history data structure used by this algorithm is interpreted geometrically.
Our proposal is introduced in Section 5, including the history data structure we use,
and the two basic operations on this structure, the rotation and the lifted flip. The algo-
rithm for inserting a new point in a regular triangulation is presented in Section 6, and
the algorithm for point deletion is described Section 7. We also give a counterexam-
ple which proves that unsorted flipping does not work in deletion. Finally, results are
shown and conclusions are given.

2 Regular triangulations

Given a finite set of points S = {pi,ps,... ,pn} C R?, a triangulation 7~ of S is
a decomposition of the region bounded by the convex hull of S, CH(S), into non-
overlapping d-simplices A, where the vertices of the simplices are points in S. In
addition, if two simplices intersect, their intersection is a face of both. Given a set
t ¢ RY of d + 1 affinely independent points we denote by A 4(¢) the d-dimensional
simplex with vertices in ¢.

The Delaunay triangulations DT (S) are a class of triangulations which play an im-
portant role in a variety of different disciplines of science. In Delaunay triangulations,
each simplex satisfies the empty-sphere property, that means that the circumsphere of
a simplex does not contain any point of S in its interior. The Delaunay triangulation
DT (S) is the dual of the Voronoi diagram, which is a fundamental tool expressing the
proximity of geometric objects. Another way to think on Delaunay triangulations is



Figure 1: Left, a set of weighted points in R? and its regular triangulation; right, the
\oronoi diagram of the set. Blue circles represent the spheres C,, (p).

through their relationship with convex hulls in R?*!. Using a standard transformation
that lifts the sites of S to the paraboloid of revolution Ug 1 : w441 = 23 +23+. ..+ 27
in R™1, DT (S) can be constructed computing the (lower) convex hull of the trans-
formed sites [7].

Regular triangulations are a generalization of Delaunay triangulations that main-
tain both their relationship with convex hulls and with Voronoi diagrams. In this case,
a real valued weight w,, is assigned to each point p of S C R¢. This weight can be in-
terpreted as a sphere C, (p) with center p and radius /&, Usually, as we do, positive
weights are assumed, although there is no theoretical inconvenient in taking spheres
with negative radius. Figure 1 shows an example of a regular triangulation of a set of
weighted points in the plane.

In case of regular triangulations, their relationship with convex hulls uses the weight
in the lifting step. Given a point p € S with coordinates (z,x2,... ,z4) and asso-
coiated weight w,,, we define the lifted point (with respect to regular triangulations) to
be p* = (21,22, ..., 24, 23 +23+. . .+ 33 —w,) C RITL. Alifted set of points C is
the set of lifted points in C, for example S* = {p* | p € S}. Notice that if the weight
is different from zero, the lifted point p* lies off the paraboloid in R+ . In this case,
the projection of the lower facets of C H(S™) gives the regular triangulation R7(S).
We note by LC' H(S™) the lower convex hull of the set of lifted points S*. A point p
may not be incident to any facet of LCH(S™), but interior to the hull; in this case, p
is not a vertex of R7(.S) and we say that p is a redundant point in the triangulation.

Regular triangulations can also be seen as the dual, in a graph-theoretical sense, of
Voronoi decompositions. In this case, the power distance, || -|| ., replaces the Euclidean
distance, || - || [16]. The power distance from a point ¢ € R to a weighted point p is



defined as

Pl = llpall® — wp

This distance can be interpreted geometrically as the square of the length of a segment
from ¢ to the point r in C,, (p) such that ¢r is tangent to C.,, (p). The power distance de-
fines a Voronoi diagram of a set of weighted points, which is called the power Voronoi
diagram, and its dual is the regular triangulation of the given weighted points (see Fig-
ure 1). Redundant points are the ones whose Voronoi region is empty, that is, points
p € S such that any point ¢ of R? is closer to another point p’ € S, different from p,
using the power distance.

3 Thed-dimensional algorithm

In this section we revise the incremental algorithm for adding a weighted point in a
regular triangulation R7(S) as given in [8]. Since a precondition for the algorithm to
work is that the point must belong to the convex hull of the triangulated region, an usual
implementation practice is to initialize the triangulation with an extra d-simplex that
contains the whole set of points S (see Section 5.1). The algorithm that given a regular
triangulation 7" of a set of points S in d dimensions obtains the regular triangulation of
the augmented set R7 (S U {z}) is the following:

Locate the simplex A4(t) € T that contains x
If « is not locally redundant in t then
Flip t U {z}
While there exist locally non-regular facets do
Find a locally non-regular facet A, 1 that is flippable
Fllp JAVER]
endWhile
end|f

In this algorithm, A 4(¢) is the simplex that contains the vertex «, and ¢ is the set of
d+ 1 vertices of this simplex. A facet A;_; of A4(t) is a (d— 1)-simplex with vertices
in ¢. The algorithm only has to test for non-regular facets opposite to the vertex z being
inserted.

Given a set ¢ of d 4+ 2 weighted points in R¢, there are exactly two ways to trian-
gulate ¢; one of the two triangulations is the regular one, the other is not regular. The
regular way coincides with the vertical projection of the lower facets of the (d + 1)-
simplex in R¥1. A flip is the topological operation that replaces one triangulation of
t with the other. Flips can be classified into different types, depending on the number
of d-simplices before and after the operation; we denote by z—y a flip that replaces «
d-simplices by y d-simplices. In R? there are three different types of flips, 1—3, 2—2
and 3—1; in R3 there are four (see Figure 2). A 1—(d + 1) flip is an operation that
replaces a d-simplex plus an internal vertex by d neighbor d-simplices incident to the
vertex.

The first step when a new point z is added into 7, is to locate the d-simplex that
contains it. Then, the algorithm tests whether the point is redundant in the regular
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Figure 2: The four types of flips in 3 dimensions.

triangulation (the point will be redundant in R7 (S U {z}) if and only if it is locally
redundant in ¢). In this case, it is discarded, otherwise a 1—(d + 1) flip is performed,
connecting all the vertices ¢ to x. The algorithm proceeds by flipping locally non
regular (d — 1)-simplices that are flippable until none remains. To flip a facet means
to perform the flip of the set of vertices of the two simplices incident to the facet. The
resulting triangulation is the regular triangulation of S U {z}.

We still have to define when a facet A, is flippable. Let V = vy ...vg be the d
(d — 2)-simplices of Ay_q,and A,', A, the two simplices incident to A;_;. Call v;
convex if there is an hyperplane that contains it and both A ;' and A;'’ lie on the same
side of this hyperplane; otherwise call v; reflex. According to [8], A4—1 is flippable if
and only if all reflex (d — 2)-simplices of V' have degree three, that is, each is incident
to exactly three (d — 1)-simplices.

The usual implementations of the above algorithm use a stack (or a list) of non-
regular facets to be considered for flipping, so the algorithm converges when the stack
is empty. Since a flip can imply more than one (non-regular) facet incident to z, each
time a facet is flipped all the other facets that disappear have to be removed from the
stack; or either each time is popped from the stack, it has to be checked that the facet
still belongs to the current triangulation.

The first step of the algorithm, vertex location, is a crucial one because it can deter-
mine the average complexity of the algorithm. The most common way of performing it
is searching with the help of an additional data structure, usually a historical structure
(see Section 4). In this way, the expected time for the location of the n points of set .S,



which coincides with the expected time for the whole algorithm, is O(n log n +n[%/21)
for a d-dimensional regular triangulation of n randomly placed points [8]. In a re-
cent paper, Miicke, Saias and Zhu showed that vertex location can also be performed
“marching” on the self triangulation, without the help of an additional data structure.
Locating a single vertex using this method takes expected time O(n!/(?*1)) in a De-
launay triangulation of n randomly placed points in d = 3 dimensions [15].

4 Geometric interpretation
of the history data structure

The most widely used auxiliary data structure for locating points on a triangulation is a
history structure, which stores the sequence of flips performed when adding new point
into the triangulation. Guibas, Knuth and Sharir see it as a set of layers of triangula-
tions (in the author’s words, triangulations are stored “one on top of another” [12]);
Edelsbrunner and Shah [8], and also Facello [10] store it as a history DAG; and Bois-
sonat, Teillaud and Devillers use a modified version of this data structure, called the
Delaunay tree [2, 5].

Originally these data structures were only used for vertex location, but later, since
when deleting a vertex from the triangulation the auxiliary data structure had to be up-
dated accordingly, it was seen that the self structure was useful for the vertex removal
operation. The use of a history data structure was generalized by Clarkson, Mehlhorn
and Seidel as a general scheme for randomized dynamic algorithms [4]. Specifically,
the authors showed how this history structure can be used to maintain the convex hull
of a dynamic set of points. Recently, Edelsbrunner and Waupotitsch proposed to use
the history structure for mantaining simplicial grids that vary under density require-
ments [9].

The correspondence of flips in R¢ with the vertical projection of a (d + 1)-simplex
from R4+ into one less dimension gives a well-known geometric interpretation of the
incremental flipping algorithm presented in previous section. We start with the regular
triangulation of S, i.e., the lower convex hull of S*, LCH(S™). Once the simplex
Ag4(t) that contains = is located, the test for local redundancy means to classify =+
with respect to supporting hyperplane 7 through vertices in t*. If zT lies above 7, it
is a redundant point, otherwise it lies outside LC H (S*) and has to be added into the
regular triangulation accordingly.

The first flip connects =+ to the vertices in ¢, thus a new (d + 1)-simplex is created
that joins z* to LCH(S™). The other flips also create (d + 1)-simplices incident to
2™, and must only be performed if a lower facet A ;_; surrounding 2zt is non-convex
in Rt that is to say, only if the facet is locally non-regular in R%. A point that was
on the boundary of LC H(S*) can be left in the interior of the new lower convex hull
by a (d + 1)—1 flip, and then the point becomes redundant. The process is iterated
until no flips can be performed, and the new convex hull is obtained.

This correspondence between regular triangulations and convex hulls also allows
a simple geometric interpretation of the history data structure: the sequence of flips is
nothing else than the historical triangulation of the interior of the lower convex hull



Figure 3: The history data structure interpreted as the triangulation in one more dimen-
sion. The figure shows four stages of the incremental computation of the Delaunay
triangulation of a set of points in one dimension, mapped into the parabola in R?. Each
time a point is inserted, a new triangle is created (dashed lines) and the new lower
convex hull is obtained.

mapped in one more dimension.

Figure 3 illustrates this interpretation for a set of one-dimensional weighted points
(for better comprehension), thus the history data structure is two-dimensional and the
lower convex hull is a convex polygonal with endpoints at the lifted point set. Since
the unweighted Delaunay triangulation is being computed, all the points have the same
weight, therefore they lie on the same parabola. The figure shows four stages of cre-
ation of DT (S). Initially, the triangulation contains only points 1 and 2, thus the De-
launay triangulation is composed of a segment that joins these two points (Figure 3a).
When a new point is inserted (Figures 3b—d), a 1—2 flip is needed that joins the vertex
to the old lower convex hull, obtaining the new lower convex hull. Each time a flip is
performed, a new triangle is created. The set of these triangles constitutes the history
data structure.

In Figure 4, point 10 is going to be inserted. The first step consists on locating
the simplex where it is included. This is done starting from the topmost triangle and
descending (marching downwards) through the historical triangulation until we run to
the exterior (blue lines in the figure). In the example, the algorithm for updating D7 (S)
will add the triangle with vertices 8,4, 10 to the historical triangulation (performing a
1—2 flip in one dimension). Since the Delaunay triangulation is being builded and
we are working in one dimension, in this very particular case no other triangles will
be added in the historical triangulation (no additional flips are necessary). If, instead,
the triangulation was regular, points could have different weights, thus they would not
lie on the same parabola. In this case, the vertex location step may find that the point
is interior to the hull, i.e., it is a redundant point in R7(S), so it does not need to be
added. If the point is not redundant, a series of 2—1 flips could be needed (imagine,
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Figure 4: Point 10 is being inserted in the triangulation. Locating the simplex that
contains it is equivalent to march downwards through the history triangulation until the
surface of the hull is reached.

for example, that tenth point lies below the parabola, that is, it has weight greater
than the rest of the points). Since these flips would add new triangles to the historical
triangulation, some points in the old triangulation can become redundant (i.e. interior
to the lower convex hull).

5 Algorithmsfor dynamic regular triangulations

We have described the incremental method for adding a new point into a regular trian-
gulation. There also exist several methods for removing a single point from a Delaunay
triangulation, but the problem when removing points from regular triangulations is that
redundant points can become vertices of the triangulations (interior vertices that be-
come part of the hull). In fact, algorithm proposed by Devillers in [6] for deletion in
Delaunay triangulations also works for regular triangulations provided that no redun-
dant points exist. The incremental algorithm of Section 3 does not store points if they
are redundant in the current triangulation, therefore these points cannot be easily taken
into account later when a point is removed. (However, notice that some redundant
points will be kept in the history structure, if they were non-redundant in a previous
stage.)

Our proposal uses the geometric interpretation seen on the previous section not only
for adding a new vertex in R7 (.S), but also to delete an existing one, managing a fully
dynamic triangulation. The only topological operations used by addition and deletion
algorithms are lifted flips (see below), and no auxiliary data structure is used apart
from the historical triangulation. Although, for simplicity, the algorithms we give are
described for a set of weighted points in R, they can be straightforward generalized to
any dimension.

The main difference between our proposal and previous approaches comes from the
use of a new history data structure. In our data structure, all the points, redundant or



not, are always stored in the same way. This solution allows us to unify the treatment
for inserting and deleting points, regardless of they are redundant or a vertex of the
current regular triangulation, therefore rather simple algorithms are obtained. In [4]
an alternative way is proposed, storing for each point a pointer to a (d + 1)-simplex
that contains it, and for each simplex a list of interior redundant points. However, this
solution implies modifying the pointers and splitting the lists whenever topological
changes withdraw simplices with non-empty associated lists (which happens during
the deletion of vertices).

5.1 A new history data structure

The data structure we propose is simply the historical tetrahedrization of the set of
lifted points ST. A point is a tuple containing its lifted coordinates in R?, and a label
(an integer) that will be used for deletion. The historical data structure is stored as a
tetrahedrization spanning all the points in ST. Each tetrahedron stores four pinters to
its vertices and four other pointers to the neighbor tetrahedra.

As mentioned, since the insertion algorithm requires the new point to be interior
to the convex hull of the triangulated region, we initialize the triangulation as a single
artificial tetrahedron A ;41 (SV') that contains the whole set of points S. Assuming
that all vertices in S have positive weigth, the four vertices SV = {svy, svq, svs, svy}
of this initial simplex, henceforth referred as super-vertices, can be chosen to have
coordinates and weights

svf =(0,+00) , weight(svy) =0,
sv;' =(—00,—00) , weight(svy) =0,
S’U;_ :(—{—OO, —OO) y ’U}CZght(SU{j) =0 )
S’UI :(0,0) y wezght(sw) = +4+00.

In practice, the symbol oo is replaced by a large enough number. Notice that, unlike
other algorithms for Delaunay or regular triangulations, we use a fourth super-vertex
with infinite weight, svy. This last super-vertex is the key that allows to simplify the
insertion and deletion algorithms, not having to distinguish the case when the point
being inserted is redundant from the case it is a vertex of R7(.S). The augmented set
of points is S* = St U SV, and the history data structure, i.e., the tetrahedrization
of S*, is notated H (S*).

In the history structure we propose each vertex has a label associated. This label is
an index which indicates the order that the points have to be inserted in £(S*) in such
a way that the lower convex hull of S increases. We define S, C S to be the set of
vertices with label less or equal to &,

Sk = {v € S |label(v) < k}.

Notice that this label does not reflect the real order that the points have been inserted in
practice. The history data structure stores a spanning tetrahedrization of the interior of
the convex hull of ST U {sv]", svy, sv }. We state this using the following property:



Property 1. Let 7(S*) bethe history data structure that stores the tetrahedrization of
pointsin S*. Let 7, C H(S*) be the set of simplices with verticesin S;". Then, the
lower hull of 7;, is the lower convex hull of S;", LCH(S,"), and therefore the vertical
projection of 7;, gives RT (Sk).

In fact, Property 1 is the invariant condition that ensures the correctness of the
global algorithm for a dynamic set of points. Therefore, the algorithms we are going
to develop will ensure that this condition still holds after insertions and deletions. To
achieve this, we assign label —oo to three super-vertices, and the last super-vertex, svy,
has assigned label oo (in practice, the first three supervertex can have negative labels,
and sv, can have label N + 1, being NV the maximum label of any vertex in S). In this
way, we “simulate” that vertices in .S are inserted after the three first super-vertices and
before svy.

A straightforward consequence of Property 1 is that vertices in S connected to sv,
are the vertices of R7(S), and that the opposite faces of tetrahedra incident to svy4
are the triangles of R7(S). Thus, obtaining the triangles of the regular triangulation
is immediate: triangles in R7(S) are the vertical projection of faces of 7(S*) with
endpoints in S and opposite to svs. In fact, for efficiency, the relationship between
neighbor triangles in R7(.S) can also be maintained, although it can be easily derived
from the neighbor pointers between tetrahedra incident to sv.

As it has been explained, vertex location of a point z in the tetrahedrization is
equivalent to downwards marching from the topmost tetrahedron (the only one incident
to svy, svs and sv3). Once the tetrahedron A 3 that contains x is reached, if it is incident
to svy, point = will become a vertex of R7 (SU{x}), otherwise  is a redundant point.
The only geometric test necessary for vertex location by downward marching can be
performed by vertical projection in R?, because it consists on classifying a vertical line
[ that cuts an upper face of a tetrahedron with respect to its lower faces, selecting the
one which is cut by /. The search will stop when z is found to lie above the supporting
plane of a lower facet.

5.2 Therotation operation

Notice that the label associated to each vertex depends on the position of the lifted
point and on the insertion order of the vertex into the set S. Thus, given two vertices
v, and vy41 With consecutive labels and such that v, ¢ CH(S,, — {vx}T), then
exchanging the labels of v, and v gives a different data structure of the same set of
weighted vertices S, which is also valid (i.e. it still fulfills Property 1). Although the
set of points remains the same, the attached labels are different and, thus, the historical
triangulation also has to be modified.

This allows to define an operation, called rotation of the vertices vy and vg41 in
H(S*) [9]. The rotation of v and vy changes #(S*) into H(S'*), where S’ is the
same set of weighted points of S* except that points v, and v, have permuted their
labels (see Figure 5).

A rotation only implies to rearrange part of the region comprised between LCH(S,j_l)

and LCH(S;,;). We define V(S,z,y) to be the set of faces in LCH(S™) visible
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Figure 5: Representation of a rotation of vertices vy, and vg,; in R¢+! = R2, Shaded
region is the one that needs to be modified.

from vertices = and from y. Then, the new tetrahedrization # (S’") is obtained in the
folowing way:

(i) Removing the tetrahedra incident to v~ and to a face in V (Sj—1, vk, v11); let
H;, be the set of these tetrahedra.
(ii) Removing the tetrahedra incident to v,';_l to any face of Hy,.
(iii) Inserting new tetrahedra that connect v,jﬂ to V(Sk—1,vk,vk+1); let Gri1 be
these new tetrahedra.
(iv) Inserting tetrahedra that connect v} to new faces of the lower convex hull of
Gk—‘,—l-

5.3 Lifted flips

We have yet seen that flips in R? can be interpreted as the vertical projection of a
(d+1)-simplex from R+, In this section we introduce another interpretation of a flip
in R? as a flip lifted in R4+! seen from a vertex. This notation, and the other additional
notation given here, is used in the following sections to understand how the insertion
and deletion algorithms work.

A flip in R? implies a set ¢ of d+ 2 vertices and d + 2 d-simplices with vertices in ¢.
To interpret this flip in one more dimension, we need to lift vertices in ¢ and to add an
additional vertex v+ independent from the points in ¢*. This vertex will be called the
observer vertex. Connecting the vertices of t* to v™, each d-simplex gives a (d + 1)-
simplex. Hence, flipping ¢ in R? can be seen in R?*! as an operation that replaces k
(d + 1)-simplices with d + 2 — k (d + 1)-simplices. If the (d + 1)-simplex incident
to the vertices in ¢* is also considered, this operation is topologically equivalent to a
(d + 1)-dimensional flip.

However, notice that the operation in R?*! obtained adding the observer vertex v+
to a flip in R? is not always a valid flip, because in some cases the set of simplices in
R4+ does not give a non-overlapping triangulation. We next define a lifted flip, which
is the topological operation used by our algorithms.

Definition 1 (Lifted flip). Let ¢ be a set of weighted pointsin R?. A flip of ¢ replaces

11
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Figure 6: Lifted flips in R? seen from vertex v interpreted as flips in R3. In the left
configurations, one of the tetrahedra — the topmost — is drawn transparent.

thek d-simplicesA(ry), ... , A(rg) withd-simplicesA(rg41), - - . , A(rg42). Thecor-
responding lifted flip seen from v+ isthetopological operation that replacesthe k (d+
1)-simplices A(rf U{v"}),...,A(rj U{vT ) withA(rf, U{vT}), ... A(r),,U
{v*}) plusthe additional simplex A(tT).

The definition of a lifted flip gives a condition for a facet to be flippable in R4+,
but we restrict to the case d = 2 for simplicity.

Definition 2 (L-flippability). Let ¢ be a set of four weighted pointsin R?, and let v+
be the observer vertex. A facet in R® incident to v+ andto two pointsa*, bt € tt is
I-flippable if and only if

(i) edgeab isflippable (in R?), and
(i) abisnon-regular.

Figure 6 shows the two types of flips in R? interpreted as lifted flips seen from
vertex v which are I-flippable. In the figure, blue faces are obtained lifting points
to R, and transparent tetrahedra are the additional ones created from all the original
points. Notice that the position of the observer vertex v+ is choosen in the figure so
that lifted flips are in fact flips in R? (the upper case is a 2—3 flip and the lower case is
a 3—2 flip). However, in general not all lifted flips correspond to valid flips, although
they are topologically correct operations.

12



6 Point insertion

The algorithm we give for inserting a new point in a regular triangulation follows the
scheme of the incremental approach of [8]. Nevertheless, our proposal works entirely
in RA*+1, and we use H(S*) as the only geometric data structure instead of storing
the current triangulation in R? and updating the history DAG adequately. Furthermore,
any point, redundant or not, is a vertex of the tetrahedrization (i.e., (S *) is a spanning
tetrahedrization of .S).

The point to be inserted will be called x, and the initial point set of points is S =
{viy,...,v;, }, where i is the label of v;, and i, < N. The insertion algorithm
works in the following way: if z is not redundant in S, it is added in #(S*) as the
vertex with maximum label (except for sv,); otherwise, it is added assigning to it the
highest possible label, which is the maximum label of the vertices of the tetrahedron
that contains z. We define maxlabel (A-) to be the maximum label of vertices incident
to the facet A», that is

mazxlabel(As) = max{label(v) | v € t}

being ¢ the set of vertices of the two tetrahedra incident to A». Notice that mazlabel (A2) =
J implies that v; is a vertex of at least one of the two tetrahedra incident to A».
The pseudocode algorithm that inserts a new point 2 in #(S*) is the following:

March downward to locate the tetrahedron As(t) € H(S*)
that contains =+
Let t = {va, vp, Ve, va}
Jj := max(a,b,c,d)
L := EmptyList()
Flip t+ U {z*}
Add to L the three faces of A3(t) incident to U;F
While L is not empty do
GetFirst(L, Az)
If As is I-flippable seen from vj+ then
Perform the lifted flip of A, seen from vj+
Update L with new faces A such that mazlabel(A) = j
end|f
endWhile
If j = +oc then
SetLabel(z, N + 1)
ese
Increment the label of vertices in S — S;_1
SetlLabel (x, 7)
end|f

We use a list L of faces of tetrahedra (triangles) that are pending to be flipped. All
triangles in L are incident to v;-r and are facets of tetrahedra opposite to . The call
to procedure Get First consults and removes the first element from list L, saving it as
A,. The first flip is a 1—4 flip that adds point = into the tetrahedrization, and at the
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Figure 7: Insertion of a redundant point z into a regular triangulation in R¥+! = R?
(super-vertices are not represented).

beginning the list L will contain three of four faces of A;(¢) opposite to ™. The other
flips are lifted flips seen from vertex UJ* These lifted flips change things from one of
the configurations in the left of Figure 6 to the corresponding configuration on its right,
being v the observer vertex. When L is updated, a test is made to ensure that new
faces are not included in L twice, and the faces that have been deleted by the flip are
removed from L if they were in it. This operation can be efficiently performed if each
facet stores a pointer to its position in the list.

In the case the point z is non-redundantin R7(S), the algorithms works as the one
given in Section 3 but performing flips in R?*!. Indeed, in this case the tetrahedron
A3 (t) that contains =™ is incident to sv}, thus j is assigned to +oo (the label of sv,),
since v; = svy. The three faces added in L at the beginning are the lower faces of
As(t). Now, all we have to do is to take notice that successive lifted flips performed by
the algorithm can be understood as 2—2 and 3—1 flips in R? seen from sv;. Each flip
adds a new tetrahedron to the lower convex hull of S until the new regular triangulation
is obtained. Indeed, the condition for I-flippability is a test for lower faces incident to
2T implied in the lifted flips (see Section 5.3). Finally, the algorithm assigns label
N + 1to vertex z, i.e. z will be labeled as the vertex inserted after all the vertices in S
except for svy (in practice, N can be a counter for the number of insertions).

In the other case, when z is redundant in 7£(S*), the vertex labeling is modified
so that point 2 can also be stored as a vertex of the tetrahedrization. In this case, the
algorithm performs a series of lifted flips so that the resulting tetrahedrization is the
one where z was inserted just before vertex v;. This is equivalent to considering that
z is added to RT (S;_1). First, the algorithm does a 1—4 flip that adds z inside the
tetrahedrization. Subsequent lifted flips can be interpreted as flips in R? seen from vj+
that add new tetrahedra to LC'H (S} ) until the regular triangulation of S™ | U {x}
is obtained as the lower projection of the new tetrahedrization if only tetrahedra with
vertices on this set were considered. The final part of the algorithm simply shifts labels
for vertices in .S — S;_; so that 2 can be labeled as j.

We can interpret an insertion of a new vertex into 7 (S*) as a special case of a
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rotation: inserting z is the same than locating the tetrahedron As(¢) that contains z,
performing a 1—4 flip, and rotating 2 and v;. Figure 7 represents the insertion process
for a set of one-dimensional weighted points lifted to R2. In the figure, LCH,, is
the lower convex hull of S*, and LCH,_, is the lower convex hull of S;.[l. We
call H; the set of simplices connecting vj+ to LCH(SJtl) (blue region in Figure 7).
Obviously, the simplex A 4(¢) that contains x is one of H;. The following two lemmas
characterize the simplices in #(S*) that must be removed and the ones that need to be
added in order the new tetrahedrization including =+ fulfills Property 1.

Lemmal. Atetrahedron Az in 7(S*) will not bein HS(S* U {z*}) if and only if
A3 € H; and the opposite face to vj+ isoneof V(S;_1,z,v;).

Proof. First, notice that since LCH(S;“_l) is convex and = is interior to H;, any face

of LCH(S;.Ql) visible from z* is also visible from v, hence only part of H; has to
be modified. Since in the final result z will be assigned the label just before the label
of v;, any face in V(S;_1,z,v;) will be joined to =, thus they cannot be joined to

+
vj. O

Lemma2. Tetrahedrain HS(S* U {z*}) that were notin H(S*) are:

(@) Tetrahedrajoiningz™ toafacein V(S;_1,z,v;); call G, the set of these tetra-
hedra.
(b) Tetrahedrajoining vj to thefacesof LCH (G.).

Proof. (a) The tetrahedra of G, are the ones needed for LC'H (S;-[1 U {z*}) to be
faces of HS(S* U {z*}). Recall that facets of LOH(S;Ll) visible from =" are
also visible from v ;.
(b) To complete HS(S*U{z™}), we need tetrahedra filling the gap between LCH(Sf_IU
{z}T) and LOH(S; u{«™}) that were not in 7(S*). These tetrahedra join the
vertex vj+ with the faces of tetrahedra in G, visible from v;f, that is, faces of

LCH(G,). Notice that all these lower faces are visible from v;.“.
O

We are now ready to prove that insertion algorithm updates the history data struc-
ture as required.

Theorem 1. Thealgorithmfor insertion obtains S (S* U {z™}) fulfilling Property 1.

Proof. Since the algorithm only tests for flippability of faces with maximum label j,
it will only perform lifted flips of tetrahedra incident to v}~ between LCH(S}") and
LCH(S;-Ql), that is, tetrahedra belonging to H ;. Notice that the lifted flips and flip-
pability conditions are all performed being vf the observer vertex. If edges incident
to v;f are not considered, a lifted flip of a I-flippable face is equivalent to a flip of a
flippable and locally non-regular edge when projected to R? (see Section 5.3). There-
fore, the insertion algorithm reduces to the incremental algorithm given in Section 3
if only vertices in S;_; are considered. This implies that tetrahedra of G, (those of
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Lemma 2(a)) are created, and also that tetrahedra of H; not visible from « remain un-
changed. To finish the proof it is sufficient to see that the insertion algorithm in R?
creates a valid tetrahedrization (since this implies that tetrahedra of Lemma 1 will be
deleted and tetrahedra of Lemma 2(b) will be created).

A lifted flip obtains a new topologically correct structure (see Section 5.3). Hence,
when the insertion algorithm finishes a topologically valid tetrahedrization is obtained.
Since a lifted flip seen from vf corresponds to a flip in R?, all tetrahedra created by
the insertion algorithm either belong to G, or they are incident to v;.“. Due to the way
the incremental lifted flipping works, when the algorithm finishes all tetrahedra in G,
form a correct tetrahedrization joining vj+ to LCH(S;-Ql). Besides, the topological
correctness of the process assures that at the end v;f will be connected to faces in
LCH(G,). O

7 Point deletion

The algorithm we propose for removing a point from a regular triangulation is inspired
in the algorithm for maintaining dynamic convex hulls given in [4], and uses the same
simple idea for deleting a vertex x from a regular triangulation: to reconstruct the
tetrahedrization (the history in one more dimension) so that = was never inserted.
Note also that the algorithmic scheme followed by our deletion procedure is in
some way similar to the one in [6]. However, our algorithm works in R4*+! and uses a
different sorting criterion for the flips, which makes it a comletely different approach.
The algorithm for deleting vertex = from #H(S*) in pseudocode is the following:

Q := EmptyPriorityQueue()
Add to @ all the facets incident to z+
While @ has more than 4 faces do
GetFirst(Q, Az)
Perform the lifted flip of A, seen from x+
Add to Q new facets incident to x ™
Update facets in () whose sorting index has been modified
by the flip
endWhile
Flip the four tetrahedra incident to z+

Similarly to the algorithm for insertion, the main iteration performs a series of
flips of faces (triangles), but in this case the faces are those incident to z+ (instead to
opposite to the vertex), and faces are stored in a sorted queue (instead of an unsorted
list). Notice that the queue contains all the faces incident to 2T, flippable or not. The
iteration stops when there are only four (not I-flippable) facets in the queue. At this
time, a 4—1 flip can be performed that finally removes « from the #(S*).

The sorting criterion for facets is derived from the labelling of the vertices implied
in the flip. Given A, a triangular face to be flipped, we define the index of A, to be
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the maximum label of vertices implied in the flip if A, is I-flippable, +oo otherwise,

mazlabel (As) if A, is I-flippable
index(Ay) = seen from zt |
+o00 otherwise

Facets in the priority queue are sorted by their indices, from lowest to highest, there-
fore non-flippable facets will be placed at the end of the queue. Each time a flip is
performed, new I-flippable facets incident to z* created by the flip (if any) are added
to the queue. In addition, since the indices of facets surrounding the flip will have
changed, these facets must be removed from the queue and inserted again in its right
place. Remark that some of these facets may change from not flippable to flippable.

Notice that to delete 2z from #(S*) we only need to modify tetrahedra incident to
this vertex. The algorithm, in effect, only flips facets incident to = . Let 5 be the label
of z, that is z = v;. From now on, we will refer to 2 as v;. We will see that the way the
deletion algorithm works is performing successive rotations of v; and posterior vertices
(vj 41,0542, - - -) until a minimun label k, is found such that v} lies above LC'H (),
that is to say, v; is redundantin R7 (S, ).

Lemma 3. Before entering to the main iteration, theindex of thefirst facein the queue
is greather than j.
Proof. Only facets incident to vj+ are queued, and facets A, incident to vj+ with
maxlabel(A») = j are not I-flippable seen from v7". O
Observation: This means that in practice faces with maximum label j can be directly
put at the end of the queue with index + oo, without having to test for its I-flippability.
Since we are working with a sorted queue, we can group the lifted flips correspond-
ing to a facets with the same index. We have yet seen that the index of the first element
in the queue is > j; later we will see that this index does not decrease. In fact, the
lifted flips corresponding to faces with index & perform the rotation of v;.“ and v,j (ex-
cept for the last index, which is a special case of a rotation that finally removes v;.r from
H(S*)).

Lemma 4. If the first index of the queueis greater than j + 1, then the tetrahedrain
H(S*) with verticesin Sf,, — {v]} give atetrahedrization of this set of vertices that
fulfills Property 1.

Proof. Since there is no face with index j + 1 in the queue, there are no I-flippable
facets seen from v;.r with index j + 1. This implies that the lower hull of the tetrahedra

. S | M
with vertices in 77, — {v;"} is convex. O

Lemma5. Let k be the index of the first element in the queue and suppose the algo-
rithm has not performed a flip of a facet whose index is k. Suppose also that U;F lies

below LCH (S} — {z*}). Then,

(a) The algorithmwill only add faces in the queue whose index is greater or equal
to k.
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(b) When the index of the first element in the queue is greater than &, the algorithm
will have performed the rotation of v}~ and v}’

Proof. Using Lemma 4 recursively we can guarantee that when the algorithm reaches
the hypothesis state the set S, — {v;"} fulfills Property 1, that is to say, #(S*) is yet
updated for vertices in S;_;. Notice that the algorithm in this state works equivalently
to the insertion algorithm, i.e. it performs lifted flips seen from v;', taking into account
that tetrahedra incident to v, with a face A € LCH(S;_, — {v]"}) not visible from
vj+ are not removed. Consequently, after all I-flippable facets with index & had been
flipped, v;! is joined to triangles in V (Si—1 — {V;},v;, vx), and (once again, using the
same arguments of topological correctness of lifted flips) « T is joined to visible facets
in LCH(S;} — {v;'}). Notice also that facets with index less than k are not modified.
Therefore, the rotation has been achieved.

Furthermore, since lifted flips seen from v;f only create new tetrahedra incident to
v,j, only faces can with label > & will be enqueued or reordered in the queue. O

Theorem 2. The deletion algorithm obtains H (S* — {v;r}) fulfilling Property 1.

Proof. Let ko be the label of the vertex in S* such that v;' is comprised between
LCH(S,: —{v]}) and LCH(S;. _; — {v]}). Then, since the algorithm only flips
faces around vj+, the indices of the facets in the queue are all < kq. Using Lemmas 3
and 5, with a finite number of steps we can reduce to case ko = j+1, that is vy, = vj41.
Similarly to the case of the insertion, the lifted flips of faces whose index is j + 1
can be understood as a special case of a rotation. In this case, the vertex vj is above

LCH (S]—':-l - {vj}). The flips performed of faces whose index is j +1 create tetraedra
joining vertex v;.;l with all visible faces in V(S;_1,v;,vj4+1), except for the face f
of LOH(S} ;) such that v € CH(f Uwvj,,). The last 1—4 flip finally removes v}

from #H(S*). O

7.1 A counterexamplefor unsorted flipping in deletion

The deletion algorithm presented in previous section uses a sorted queue of facets,
therefore flips are performed in a particular order. Can the algorithm be modified so
that the queue is not sorted? In other words: can the flips be done in any arbitrary order?
In this section we show that the answer to this question is negative, with the help of a
counterexample. Notice that unsorted flipping could not maintain a triangulation that
fulfills Property 1.

More precisely, the unsorted flipping version of the algorithm to delete a vertex
from a regular triangulation works for a set of weighted points in R' (i.e., for a convex
hull in R?), however in higher dimensions the algorithm may not converge. Consider
the set of seven weighted points in R? such its mapping in R? is the one given in
Figure 8, and suppose that the lowest point, point number 4, is the one to be deleted.
Depending on the order the points were inserted in R7 (S), the unsorted flipping can
fall in a situation like the one represented in the figure, where none of the facets is
flippable but the vertex is incident to more than four tetrahedra, that is, we have not
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Figure 8: Two projective views of the counterexample set which shows that unsorted
flipping edges for deletion may not work. Vertex number 4 is the one being deleted.
Left, the set of points (in red), lower convex hull (in green), tetrahedra incident to
fourth point (in orange), and the regular triangulation projected into the plane; right, a
top view of the same example.

succeeded to delete it. (In the figure, only tetrahedra incident to the fourth vertex are
represented for a better comprehension.) The configuration of this counterexample is
the so-called Shonhardt polytope in R® with an additional lower point (the observer
vertex) connected to it. Notice that the unique possible tetrahedrization of this polyhe-
dron is the one with edges connecting point number 4 to the other six points. Notice
also the ressemblance between this counterexample and the one given in [8] to prove
that arbitrarly edge flipping does not work for regular triangulations.

8 Resultsand conclusions

We have developed algorithms for managing regular triangulations of a dynamic sets
of points, in which points can be inserted and deleted arbitrarily. The two algorithms
are quite simple thanks to the fact that they only use an auxiliary data structure geomet-
rically interpretable, the historical triangulation of the paraboloid projection in R4+,
Treatment for redundant and non-redundant points on the triangulation could have been
unified using an auxiliary vertex with infinite weight, sv4. The algorithms have been
implemented, and their performance has been checked.

In order to evaluate the insertion algorithm, it has been tested on a set of 1000
points in R? uniformly distributed in a circle of radius 200, and weights between 0
and 100. The resulting regular triangulation has 188 vertices (the remaining points are
redundant) and 340 triangles. In Figure 9 the CPU time for incrementally inserting each
point is represented. Data show a logarithmic expected time behavior of the algorithm.
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Figure 9: CPU time of insertion for computing the regular triangulation of 1000 points.
Red curve is a logarithmic interpolation of data.

The total time for creating the regular triangulation of the whole set was 3.57 seconds
on a Sun/Sparc 5.7 Solaris machine.

Using the same set of 1000 points, the deletion algorithm has been evaluated. 100
different points have been deleted from the original set, and each time the number of
lifted flips has been counted. As it could be expected, the deletion cost depends on
the label assigned to the point. Figure 10 shows the number of flips depending on
the insertion order of each vertex being deleted. Remark that insertion order does not
coincide with the label of a vertex, thus the deletion algorithm performs many flips
when removing vertices that have been inserted lately but are assigned a small label
(hence the peaks in the right part of the diagram). In fact, while the mean number of
flips for deletion a vertex is 8.35, for vertices with insertion order less than 500 the
mean is 14.48, and for the rest of vertices the mean is 2.22. Furthermore, while the
mean deletion time of a single vertex is less than 1 millisecond, the maximum is 7
milliseconds.

Although the proposed algorithms have been designed for adding and removing
points in regular triangulations, it is not difficult to modify them so that dynamic con-
vex hulls in R¢ are maintained. Indeed, it suffices to assign label +oo to all the super-
vertices, so that they all were kept as the last vertices inserted in the set. Then, the
convex hull of the set ST can be obtained simply removing the simplices incident to
vertices in SV. Another way for obtaining C H(S™) from the history data structure
consists on applying the deletion algorithm to each super-vertex (except for the last)
and then removing the simplices incident to them. Remark that in this case the deletion
algorithm cannot converge to a situation where the super-vertex is surrounded by only
four tetrahedra, but since it reorders the insertion labels of vertices so that the deleted
vertex was the last being inserted, removing the simplices incident to the super-vertex
the convex hull of the remaining set is obtained. Notice also that usually regular tri-
angulations are not defined for a set of points with two (or more) points with same
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Figure 10: Number of flips performed by the deletion algorithm depending on the
vertex label.

coordinates and different weights (in this case, one of the two points must be redun-
dant). However, situations like that can be treated by the proposed algorithms without
any modification.

Besides to this modification of the algorithm for managing dynamic convex hulls,
algorithms for regular triangulations are also useful elsewhere Delaunay triangulations
are used. Our proposal is specially appropriated wherever dynamic sets of points are
required or weighting points can be of some utility. This could be the case of FEM
analysis, since mesh refinement is often required for unstructured methods, and adap-
tive methods can take advantage of the extra degree of freedom supplied by the weight.
Two recent applications are given in reference [3], where regular triangulations are
used to improve the shape of a tetrahedrization, and in reference [9], which makes an
intensive usage of the history data structure to obtain adaptive simplicial grids from
its storage in one more dimension. A specific application where the authors currently
are working in is mesh simplification for solid modeling, where weights indicate the
probability of the vertices to be removed from the mesh. Other application fields in-
clude surface approximation, creation of levels-of-detail objects, computational fluid
dynamics and robot movement planning.
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