15 research outputs found

    VLSI design of high-speed adders for digital signal processing applications.

    Get PDF

    Asynchronous design of a multi-dimensional logarithmic number system processor for digital hearing instruments.

    Get PDF
    This thesis presents an asynchronous Multi-Dimensional Logarithmic Number System (MDLNS) processor that exhibits very low power dissipation. The target application is for a hearing instrument DSP. The MDLNS is a newly developed number system that has the advantage of reducing hardware complexity compared to the classical Logarithmic Number System (LNS). A synchronous implementation of a 2-digit 2DLNS filterbank, using the MDLNS to construct a FIR filterbank, has successfully proved that this novel number representation can benefit this digital hearing instrument application in the requirement of small size and low power. In this thesis we demonstrate that the combination of using the MDLNS, along with an asynchronous design methodology, produces impressive power savings compared to the previous synchronous design. A 4-phase bundled-data full-handshaking protocol is applied to the asynchronous control design. We adopt the Differential Cascade Voltage Switch Logic (DCVSL) circuit family for the design of the computation cells in this asynchronous MDLNS processor. Besides the asynchronous design methodology, we also use finite ring calculations to reduce adder bit-width to provide improvements compared to the previous MDLNS filterbank architecture. Spectre power simulation results from simulations of this asynchronous MDLNS processor demonstrate that over 70 percent power savings have been achieved compared to the synchronous design. This full-custom asynchronous MDLNS processor has been submitted for fabrication in the TSMC 0.18mum CMOS technology. A further contribution in this thesis is the development of a novel synchronizing method of design for testability (DfT), which is offered as a possible solution for asynchronous DfT methods.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .W85. Source: Masters Abstracts International, Volume: 43-01, page: 0288. Advisers: G. A. Jullien; W. C. Miller. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    High-level asynchronous system design using the ACK framework

    Get PDF
    Journal ArticleDesigning asynchronous circuits is becoming easier as a number of design styles are making the transition from research projects to real, usable tools. However, designing asynchronous "systems" is still a difficult problem. We define asynchronous systems to be medium to large digital systems whose descriptions include both datapath and control, that may involve non-trivial interface requirements, and whose control is too large to be synthesized in one large controller. ACK is a framework for designing high performance asynchronous systems of this type. In ACK we advocate an approach that begins with procedural level descriptions of control and datapath and results in a hybrid system that mixes a variety of hardware implementation styles including burst-mode AFSMs, macromodule circuits, and programmable control. We present our views on what makes asynchronous high level system design different from lower level circuit design, motivate our ACK approach, and demonstrate using an example system design

    A Structured Design Methodology for High Performance VLSI Arrays

    Get PDF
    abstract: The geometric growth in the integrated circuit technology due to transistor scaling also with system-on-chip design strategy, the complexity of the integrated circuit has increased manifold. Short time to market with high reliability and performance is one of the most competitive challenges. Both custom and ASIC design methodologies have evolved over the time to cope with this but the high manual labor in custom and statistic design in ASIC are still causes of concern. This work proposes a new circuit design strategy that focuses mostly on arrayed structures like TLB, RF, Cache, IPCAM etc. that reduces the manual effort to a great extent and also makes the design regular, repetitive still achieving high performance. The method proposes making the complete design custom schematic but using the standard cells. This requires adding some custom cells to the already exhaustive library to optimize the design for performance. Once schematic is finalized, the designer places these standard cells in a spreadsheet, placing closely the cells in the critical paths. A Perl script then generates Cadence Encounter compatible placement file. The design is then routed in Encounter. Since designer is the best judge of the circuit architecture, placement by the designer will allow achieve most optimal design. Several designs like IPCAM, issue logic, TLB, RF and Cache designs were carried out and the performance were compared against the fully custom and ASIC flow. The TLB, RF and Cache were the part of the HEMES microprocessor.Dissertation/ThesisPh.D. Electrical Engineering 201

    Analysis of Various DCVSL Structures and Implementation of Full Adder with Them

    Get PDF
    The Differential Cascode Voltage Switch Logic (DCVSL) is a CMOS circuit technique which has potential advantages over conventional NAND/NOR logic in terms of power dissipation, circuit delay, layout density and logic flexibility. In this paper, a detailed comparison of all the DCVSL structures are provided including the implementation of Full Adder circuit with the help of those DCVSL structures, which includes Static DCVSL, Dynamic DCVSL and Modified DCVSL. The performance analysis is done in Cadence Virtuoso 90nm CMOS Technology. The working of these DCVSL structures is based on the concept of ‘Multiplexer’. A multiplexer also known as ‘mux’, which is a device where from a number of input signals, selection is done. It is basically a combinational logic circuit. The multiplexer is a unidirectional device, which is used in applications where a data must be switched from multiple sources to a destination. The analysis of all these DCVSL structures is followed by the implementation of Full Adder. Adders are the building blocks in computer systems. Digital Computer Systems widely uses Arithmetic operations. Addition is a necessary arithmetic operation, which is also the root for arithmetic operation such as multiplication. Similarly, adding another XOR gate, the basic adder cell can be modified to function as subtractor, which can be used for division. Therefore, 1-bit Full Adder cell is the ultimate and simple block of an arithmetic unit of a system. So, the basic 1-bit Full Adder cell must be improved, so that the performance of the digital circuits. In VLSI, there is always a trade-off between speed and power dissipation. One parameter is improved, the other gets degraded. Hence, the parameter power delay product is introduced. So, to achieve speeds, high drivability hybrid-DCVSL design methodologies are used to build adder cell in this work. The DCVSL gates produces both complementary and true outputs using single gate architecture. And, the multipliers in the design are based on the pass transistor logic (PTL), because these occupies less chip area per component and also are simple to construct. The parameters compared are power dissipation, propagation delay time, power delay product, transistor number and power dissipation (average). The Static DCVSL structure produces best result in terms of power dissipation, delay and power delay product. Whereas, in case of the Adder circuit, the power consumption is best for the Dynamic DCVSL Adder, along with the delay and the power delay product for the output Sum; but for the output Cout, the best option is Static DCVSL Adder, as the delay and the power delay product is least in this case

    Technology Decomposition for Low-power Synthesis

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Science Foundation / MIP-930842

    High-Performance, Energy-Efficient CMOS Arithmetic Circuits

    Get PDF
    In a modern microprocessor, datapath/arithmetic circuits have always been an important building block in delivering high-performance, energy-efficient computing, because arithmetic operations such as addition and binary number comparison are two of the most commonly used computing instructions. Besides the manufacturing CMOS process, the two most critical design considerations for arithmetic circuits are the logic style and micro-architecture. In this thesis, a constant-delay (CD) logic style is proposed targeting full-custom high-speed applications. The constant delay characteristic of this logic style (regardless of the logic type) makes it suitable for implementing complicated logic expressions such as addition. CD logic exhibits a unique characteristic where the output is pre-evaluated before the inputs from the preceding stage are ready. This feature enables a performance advantage over static and dynamic domino logic styles in a single cycle, multi-stage circuit block. Several design considerations including timing window width adjustment and clock distribution are discussed. Using a 65-nm general-purpose CMOS technology, the proposed logic style demonstrates an average speedup of 94% and 56% over static and dynamic domino logic, respectively, in five different logic gates. Simulation results of 8-bit ripple carry adders conclude that CD logic is 39% and 23% faster than the static and dynamic-based adders, respectively. CD logic also demonstrates 39% speedup and 64% (22%) energy-delay product reduction from static logic at 100% (10%) data activity in 32-bit carry lookahead adders. To confirm CD logic's potential, a 148 ps, single-cycle 64-bit adder with CD logic implemented in the critical path is fabricated in a 65-nm, 1-V CMOS process. A new 64-bit Ling adder micro-architecture, which utilizes both inversion and absorption properties to minimize the number of CD logic and the number of logic stage in the critical path, is also proposed. At 1-V supply, this adder's measured worst-case power and leakage power are 135 mW and 0.22 mW, respectively. A single-cycle 64-bit binary comparator utilizing a radix-2 tree structure is also proposed. This comparator architecture is specifically designed for static logic to achieve both low-power and high-performance operation, especially in low input data activity environments. At 65-nm technology with 25% (10%) data activity, the proposed design demonstrates 2.3x (3.5x) and 3.7x (5.8x) power and energy-delay product efficiency, respectively. This comparator is also 2.7x faster at iso-energy (80 fJ) or 3.3x more energy-efficient at iso-delay (200 ps) than existing designs. An improved comparator, where CD logic is utilized in the critical path to achieve high performance without sacrificing the overall energy efficiency, is also realized in a 65-nm 1-V CMOS process. At 1-V supply, the proposed comparator's measured delay is 167 ps, and has an average power and a leakage power of 2.34 mW and 0.06 mW, respectively. At 0.3-pJ iso-energy or 250-ps iso-delay budget, the proposed comparator with CD logic is 20% faster or 17% more energy-efficient compared to a comparator implemented with just the static logic

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2
    corecore