49 research outputs found

    The Lanczos and conjugate gradient algorithms in finite precision arithmetic

    Full text link

    Numerické metody pro řešení diskrétních inverzních úloh

    Get PDF
    Název práce: Numerické metody pro řešení diskrétních inverzních úloh Autor: Marie Kubínová Katedra: Katedra numerické matematiky Vedoucí disertační práce: RNDr. Iveta Hnětynková, Ph.D., Katedra numerické matematiky Abstrakt: Inverzní úlohy představují širokou skupinu problémů rekonstrukce neznámých veličin z naměřených dat, přičemž společným rysem těchto problémů je vysoká citlivost řešení na změny v datech. Úkolem numerických metod je zkonstruovat výpočetně nenáročným způsobem aproximaci řešení a zároveň pot- lačit vliv nepřesností v datech, tzv. šumu, který je vždy přítomen. Vlastnosti šumu a jeho chování v regularizačních metodách hrají klíčovou roli při konstruk- ci a analýze těchto metod. Tato práce se zaměřuje na některé aspekty řešení diskrétních inverzních úloh, a to konkrétně: na propagaci šumu v iteračních metodách a jeho reprezentaci v příslušných residuích, včetně studia vlivu arit- metiky s konečnou přesností, na odhad hladiny šumu a na řešení problémů s daty zatíženými šumem z různých zdrojů. Klíčová slova: diskrétní inverzní úlohy, iterační metody, odhadování šumu, smíšený šum, aritmetika s konečnou přesností - v -Title: Numerical Methods in Discrete Inverse Problems Author: Marie Kubínová Department: Department of Numerical Mathematics Supervisor: RNDr. Iveta Hnětynková, Ph.D., Department of Numerical Mathe- matics Abstract: Inverse problems represent a broad class of problems of reconstruct- ing unknown quantities from measured data. A common characteristic of these problems is high sensitivity of the solution to perturbations in the data. The aim of numerical methods is to approximate the solution in a computationally efficient way while suppressing the influence of inaccuracies in the data, referred to as noise, that are always present. Properties of noise and its behavior in reg- ularization methods play crucial role in the design and analysis of the methods. The thesis focuses on several aspects of solution of discrete inverse problems, in particular: on propagation of noise in iterative methods and its representation in the corresponding residuals, including the study of influence of finite-precision computation, on estimating the noise level, and on solving problems with data polluted with noise coming from various sources. Keywords: discrete inverse problems, iterative solvers, noise estimation, mixed noise, finite-precision arithmetic - iii -Katedra numerické matematikyDepartment of Numerical MathematicsMatematicko-fyzikální fakultaFaculty of Mathematics and Physic

    A multigrid accelerated eigensolver for the Hermitian Wilson-Dirac operator in lattice QCD

    Full text link
    Eigenvalues of the Hermitian Wilson-Dirac operator are of special interest in several lattice QCD simulations, e.g., for noise reduction when evaluating all-to-all propagators. In this paper we present a Davidson-type eigensolver that utilizes the structural properties of the Hermitian Wilson-Dirac operator QQ to compute eigenpairs of this operator corresponding to small eigenvalues. The main idea is to exploit a synergy between the (outer) eigensolver and its (inner) iterative scheme which solves shifted linear systems. This is achieved by adapting the multigrid DD-α\alphaAMG algorithm to a solver for shifted systems involving the Hermitian Wilson-Dirac operator. We demonstrate that updating the coarse grid operator using eigenvector information obtained in the course of the generalized Davidson method is crucial to achieve good performance when calculating many eigenpairs, as our study of the local coherence shows. We compare our method with the commonly used software-packages PARPACK and PRIMME in numerical tests, where we are able to achieve significant improvements, with speed-ups of up to one order of magnitude and a near-linear scaling with respect to the number of eigenvalues. For illustration we compare the distribution of the small eigenvalues of QQ on a 64×32364\times 32^3 lattice with what is predicted by the Banks-Casher relation in the infinite volume limit

    A General Algorithm for Reusing Krylov Subspace Information. I. Unsteady Navier-Stokes

    Get PDF
    A general algorithm is developed that reuses available information to accelerate the iterative convergence of linear systems with multiple right-hand sides A x = b (sup i), which are commonly encountered in steady or unsteady simulations of nonlinear equations. The algorithm is based on the classical GMRES algorithm with eigenvector enrichment but also includes a Galerkin projection preprocessing step and several novel Krylov subspace reuse strategies. The new approach is applied to a set of test problems, including an unsteady turbulent airfoil, and is shown in some cases to provide significant improvement in computational efficiency relative to baseline approaches

    Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE Control and Model Order Reduction

    Get PDF
    Matrix Lyapunov and Riccati equations are an important tool in mathematical systems theory. They are the key ingredients in balancing based model order reduction techniques and linear quadratic regulator problems. For small and moderately sized problems these equations are solved by techniques with at least cubic complexity which prohibits their usage in large scale applications. Around the year 2000 solvers for large scale problems have been introduced. The basic idea there is to compute a low rank decomposition of the quadratic and dense solution matrix and in turn reduce the memory and computational complexity of the algorithms. In this thesis efficiency enhancing techniques for the low rank alternating directions implicit iteration based solution of large scale matrix equations are introduced and discussed. Also the applicability in the context of real world systems is demonstrated. The thesis is structured in seven central chapters. After the introduction chapter 2 introduces the basic concepts and notations needed as fundamental tools for the remainder of the thesis. The next chapter then introduces a collection of test examples spanning from easily scalable academic test systems to badly conditioned technical applications which are used to demonstrate the features of the solvers. Chapter four and five describe the basic solvers and the modifications taken to make them applicable to an even larger class of problems. The following two chapters treat the application of the solvers in the context of model order reduction and linear quadratic optimal control of PDEs. The final chapter then presents the extensive numerical testing undertaken with the solvers proposed in the prior chapters. Some conclusions and an appendix complete the thesis

    The computation of eigenvalues of large sparse matrices

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN028558 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore