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The whole is more than the sum of the parts.

Metaphysica
Aristotle

CHAPTER

ONE

INTRODUCTION

Motivation. Matrix equations play an important role in many applications. Two of the
important fields are the balancing based model order reduction of large linear dynam-
ical systems and the linear-quadratic optimal control of parabolic partial differential
equations. The thesis at hand picks these two applications as references to demonstrate
that efficient methods to solve continuous time algebraic matrix equations do exist even
for large scale sparse applications. We will discuss the solution of large sparse standard
continuous time algebraic Lyapunov equations

FX + XFT = −GGT, (1.1)

as well as generalized Lyapunov equations

FXET + EXFT = −GGT, (1.2)

and large sparse standard continuous time algebraic Riccati equations

CTC + ATX + XA − XBBTX = 0, (1.3)

as well as generalized Riccati equations

CTC + ATXE + ETXA − ETXBBTXE = 0. (1.4)

The notion “sparse” in this case refers to the sparsity of the quadratic matrices building
these equations, i.e., the matrices A, F, and E. Although sparsity of the matrices B, CT

and G can help to reduce the computational effort, it is not crucial for the efficiency of
the methods. The more important requirement of these matrices is that they are thin
upright matrices, i.e., consist of a lot less columns than rows. However, note that even
if the coefficient matrices are sparse, the solutions to equations (1.1)–(1.4) will in general
be dense quadratic matrices. For very large matrices A and F, these can obviously not
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2 Chapter 1. Introduction

be stored element by element, due to the quadratic memory demands. Motivated by the
observation that the solutions X often have low numerical rank, one therefore computes
thin rectangular matrices Z such that X = ZZT rather than the solution itself.

One of the classes of methods that can be written in a way such that Z is computed
rather than X, is the class of alternating directions implicit (ADI) based algorithms.
We will concentrate on this class of methods throughout this thesis. Besides this class
also some very fast Krylov subspace projection based methods for solving large sparse
Lyapunov [131] and Riccati [69] equations have been presented in the literature. Banks
and Ito [11] introduce a hybrid method combining the Chandrasekhar algorithm [39]
with the Kleinman iteration [83] to solve the Riccati equation, which is further refined
in [110]. Also the implicit low-rank Cholesky factor Newton method [18] reviewed in
Chapter 4 can be seen as a modification of [11], although it was derived in a different
context.

The projection based methods generally have the requirement that A+AT < 0, F + FT < 0,
respectively, such that stability of the projected equations can be ensured and may fail
when this is not the case. Note that this is not necessary in general for ADI based meth-
ods, such that these can stay applicable where the projection based methods fail. On
the other hand, in examples where the spectrum of A or F is dominated by eigenvalues
with large imaginary parts close to the imaginary axis, ADI normally shows very bad
convergence properties and the Krylov subspace based methods should be favorable.

All the concepts presented in the context of the ADI methods for large sparse matrices
can also be generalized to the case of data sparse matrices, i.e., matrices that allow the
treatment as hierarchical matrices [60, 59].

Chapter Outline. The thesis is structured as follows. The following chapter introduces
the basic notations and properties from the different fields of mathematical research
applied in the subsequent chapters. Chapter 3 then introduces the test examples and
model problems used to illustrate the theoretical results and ideas. Most of the models
are only sketched and more detailed descriptions are referenced. The modeling of the
optimal cooling of rail profiles and the derivation of the system matrices for this model
is treated with some more detail to give a better idea on the global process of solving
these kinds of problems.

The largest part of the thesis and the main focus of this research – besides the exten-
sive numerical testing in Chapter 8 – is taken by Chapter 4 on the efficient solution of
large scale matrix equations. Chapter 4 gives a review and short derivation of the basic
low-rank ADI method and introduces some convergence-accelerating extensions and
modifications to the existing algorithms. New shift parameter strategies are introduced
and the projection idea of the aforementioned fast Krylov subspace methods is picked
up to increase the quality of the iterates during the ADI process. Also column com-
pression techniques optimizing the memory requirements and computational effort are
discussed.
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Chapter 5 then provides another of the main contributions of this thesis. The application
of matrix pencil techniques in the ADI context avoids the decomposition of the mass
matrix that was necessary in earlier approaches to the implicit transformation of the
system to standard state space form.

The next two chapters shed some light on the fields of application of the matrix equa-
tion approaches: The linear quadratic regulator control of parabolic partial differential
equations (Chapter 6) on the one hand and balancing based model order reduction on
the other hand (Chapter 7). In the Chapter 6, on the LQR optimal control of PDEs,
extensions of the existing linear stabilization theory to tracking type control systems
and systems governed by quasilinear equations are discussed. Furthermore a new
suboptimality result for the usage of numerically computed controls in the real world
process is proven.

Chapter 7 on model reduction applications can be split into two parts. The first part
has rather summarizing character providing a commented collection of facts regarding
the application of low-rank techniques in balanced truncation of first order systems.
The second part shows the new contribution of this thesis. It extends the application of
low-rank balancing based model order reduction to second order systems in an efficient
way that is capable of optimally exploiting the sparsity and structure of the original
system matrices.

As mentioned above, Chapter 8 then collects all the numerical experiments undertaken
with the different methods introduced in the prior chapters. Appendix A contains the
results on the approximation of the abstract Cauchy problem for the steel example by
finite dimensional semi-discrete LQR Systems. Also, some implementation details on
the underlying solver for the simulation task used to generate the system matrices are
given. The appendix has rather repetitive character but gives some additional details
for the rail model in Section 3.3.

The graph in Figure 1.1 visualizes the dependencies of the single chapters in relation
to each other. Note that the dependencies on the basic concepts chapter are neglected,
since every chapter depends on Chapter 2 in one way or another.
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Science is facts; just as houses are made of stones, so is science made of
facts; but a pile of stones is not a house and a collection of facts is not
necessarily science.

Henri Poincare

CHAPTER

TWO

BASIC CONCEPTS

Contents
2.1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Finite Dimensional Systems and Control Theory Basics . . . . . . . . 7

2.2.1. LTI Systems in State Space Representation . . . . . . . . . . . . 7

2.2.2. Generalized State Space Form and Descriptor Systems . . . . . 9

2.2.3. Second Order Systems . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4. Linear-Quadratic Optimal Control in Finite Dimensions . . . . 12

2.3. LQR Optimal Control of Parabolic PDEs . . . . . . . . . . . . . . . . . 17
2.3.1. Approximation Theory . . . . . . . . . . . . . . . . . . . . . . . 21

2.4. Balanced Truncation Model Order Reduction . . . . . . . . . . . . . . 23

This chapter is intended to introduce the basic notation and present the most common
concepts and results from the fields of research touched by the subsequent chapters
of this thesis. It does not claim to be complete in any sense and proofs will only be
given where it is absolutely necessary or where they might provide deeper insight to
the interrelations of interest.

The chapter is organized as follows. In the first section the most basic notations and
symbols will be introduced. Section 2.2 then provides the required concepts and results
from systems and control theory needed to solve approximating systems in numerical
applications, or simply support the understanding of concepts in infinite (operator
based) theory by the well known finite dimensional (matrix based) analogues. In
Section 2.3 the theoretic background for the model problems in Chapter 3 is presented.
Further it contains the approximation results allowing us to apply the matrix equation
solvers introduced in Chapter 4 to the model problems listed in Chapter 3. The chapter
ends with a section introducing all the results and tools from the field of model order
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6 Chapter 2. Basic Concepts

reduction and especially balanced truncation based methods that are required as the
basis for Chapter 7.

2.1. Notation

A table of the notations and symbols used can be found in the List of Symbols in the front
matter. Although everything is listed there we will give an introduction to the notations
again here, to be able to describe the one or the other symbol a bit more elaborately –
especially when it comes to the description of function spaces and distinction between
Sobolev spaces and Hardy spaces and their symbolic representations.

Throughout this thesis we will denote by Rm×n, Cm×n, the spaces of m × n real/complex
matrices. The complex plane is denoted by C and the open left half-plane by C−. For a
matrix A, AT stands for the transpose, if A ∈ Cm×n, AH denotes the conjugate transpose.
The identity matrix of order n is denoted by In or just I if dimensions are evident. In
case of an operator A the Hilbert space adjoint is denoted by A∗. We also write A∗ for the
adjoint matrix, falling back to the transpose in the real and conjugate transpose in the
complex case. In all the above cases we write range (A) for the range, ker(A) for the null
space, and dom (A) for the domain of A.

By Hm,p(Ω) we denote the Sobolev space Hm,p(Ω) = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω), |α| ≤ m} of
m-times weakly differentiable functions in Lp(Ω) with its norm

‖u‖m,p :=

 ∑
|α|≤m

∫
Ω

|∂αu(x)|pdx


1
p

.

In general we will restrict ourself to the case of Hilbert spaces where p = 2 and the
scalar/inner product is

(u, v)m,2 :=

 ∑
|α|≤m

∫
Ω

∂αu(x)∂αv(x)dx


1
2

.

We then write Hm(Ω) := Hm,2(Ω). These spaces are appropriate to describe solutions
of the elliptic equation associated to the parabolic problem. Let [t0,T) ⊂ R be the time
interval of interest. We will then write H1([t0,T); H1(Ω)) for the H1-space defined with
respect to the Bochner-integral analogously to the one above which uses Lebesgue-
integrals, see, e.g., [146].

We denote the space of linear, bounded operators from a Banach space X to a Banach
space Y by L(X,Y) and its subspace of compact operators by K(X,Y). In case Y = X we
simply write L(X) and K(X). Following the notation in [111] we call a linear operator A
dissipative if for every x ∈ dom (A) ⊂ X there exists x∗ ∈ X∗ with < x∗, x >= ‖x‖2 = ‖x∗‖2
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and Re (< x∗,Ax >) ≤ 0, where the duality product < . , . > is defined via < x∗, x >:= x∗(x).
Note that we distinguish between the duality product < . , . > and the outer product
( . , . ) here, although we are primarily working in Hilbert space settings where they can
be identified via Riesz representation.

In contrast to the Sobolev spaces Hk we denote the important class of Hardy spaces by
Hk with a lower index allowing us to distinguish them more easily.

When modelling a technical process by a partial differential equation (PDE) and for-
mulating the corresponding control problem, we will need as much as three different
representations of the system. The first step will be the reformulation of the PDE as
an abstract Cauchy problem in an adequate Hilbert space setting. That one will be
an infinite dimensional first order operator ordinary differential equation (ODE). For
numerical considerations we then need to approximate this by abstract finite dimen-
sional operator ODEs and finally discretize these to obtain matrix representations of
the finite dimensional operators for use on the computer. Therefore we formulate the
abstract infinite dimensional setting using bold letters (Σ(A,B,C,D)), whereas the finite
dimensional approximate systems are described in regular letters with an upper index
N (Σ(AN,BN,CN,DN)) representing the approximating dimension. Finally the matrix
representations of these finite dimensional operators will be given by regular letters with
an upper index h (Σ(Ah,Bh,Ch,Dh)) reflecting the discretizations mesh width. Spaces
and sets are generally written in calligraphic or math-black-bold letters to distinguish
them from the operators easily.

2.2. Finite Dimensional Systems and Control Theory Basics

Here we only give a very brief introduction on the most important properties and results
for theory of linear time invariant (LTI) finite dimensional (i.e., ODE related) control
systems. An overview giving the required basics also for linear time varying systems
with ODE constraints can be found in [13]. A nice introduction that is easily readable
even at undergraduate level is given in [101]. [6] gives a more model reduction oriented
introduction from a linear algebraic point of view. An in depth presentation of the topic
can be found in textbooks like [70, 99, 102, 40].

2.2.1. LTI Systems in State Space Representation

A linear time invariant (LTI) system is a set of equations of the form:

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t). (2.1)

Here A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m are called the system matrices and the
system is shortly referred to as Σ(A,B,C,D). Further, A is called the state space matrix,
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B/C are called the input/output map respectively and D is the direct transmission map. The
vectors x ∈ Rn, y ∈ Rp and u ∈ Rm are called the state, output and input (or control) of
the system. The first equation is also referred to as state equation whereas the second is
called the output equation. If m = p = 1 the system is called single input single output
(SISO) otherwise it is called multiple input multiple output (MIMO).

The linear time invariant system (2.1) classically directly appears from the modelling
of an applications process, or as a linearization of a nonlinear model. In simulations
of control systems where partial differential equations are involved it also arises from
the spatial semi-discretizations. The latter is one field of application for the methods
presented in the remainder of this thesis.

A linear time varying system (LTV-system) consequently is a system where the system
matrices may depend on time as well. If the system matrices are depending on the state
x or the control u as well the system is said to be nonlinear. We will concentrate on the
LTI case here. Moreover we have D = 0 in most of our applications.

Next we will introduce the important properties stability and detectability that we will
need to guarantee the existence and uniqueness of the optimal control in Section 2.3.
We also give the stronger properties controllability and observability and present the
notion of stabilizability.

A matrix is said to be Hurwitz-stable if all its eigenvalues are located in the open left half of
the complex plain, i.e., λ ∈ Λ(A)⇒ λ ∈ C<0. An LTI system (2.1) is called asymptotically
stable if A is Hurwitz stable, i.e. all solutions for u ≡ 0 tend to 0 asymptotically as t
goes to infinity. Often a Hurwitz-stable matrix is simply referred to as Hurwitz or stable,
whereas asymptotically stable systems are abbreviately called stable. The system (2.1)
is called stabilizable, if there exists a matrix F ∈ Rm×n such that A − BF is (Hurwitz-)
stable. A more generally applicable definition of stabilizability is that of demanding for
an input function u such that the solution of (2.1) tends to 0 asymptotically as t tends
to infinity under the application of u. In the context of Section 2.3 the existence of F is
the more suitable requirement, though. We also abbreviatingly say (A,B) is stabilizable.
Stabilizability is equivalent to rank ([A − λI,B]) = n for all λ ∈ C>0. If the later condition
holds for all λ ∈ C the system is called controllable , i.e., for every state x1 we find a time
t1 > 0 and an admissible control u, such that for the corresponding solution trajectory
we have xu(t1) = x1. As above we also call the matrix pair (A,B) controllable. Note that
controllability is the stronger concept.

The system
ẋ(t) = ATx(t) + CTu(t),
y(t) = BTx(t) + DTu(t), (2.2)

is called the adjoint system for (2.1). Employing the adjoint system one can easily define
the notions of detectability and observability of a system. A system (2.1) (or the matrix
pair (C,A)) is called detectable if the adjoint system (or the pair (AT,CT)) is stabilizable.
Similarly the system (or pair (C,A)) is called observable if the adjoint system (or pair
(AT,CT) is controllable. A less compressed collection of the most important properties
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and test for these expressions can be found in [13], an in depth study and presentation
is available in many textbooks as, e.g., [133]. Note that stabilizability is equivalently
applicable in infinite dimensions as well, whereas controllability as defined here is
limited to finite dimensional systems. The same obviously holds true for the dual
properties detectability and observability.

A valuable tool in the analysis of (2.1) (preferably in the SISO case) is the transfer
function matrix. It arises when the Laplace transformation (see, e.g., [2]) is applied
to the state equation and the result is inserted into the output equation. The transfer
function matrix H(s) for (2.1) is

H(s) := D − C(A − sI)−1B. (2.3)

Note that the derivation assumes x(t0 = 0) = 0, which is no restriction in the case of
linear systems, but may require a transformation first.

Since the Laplace transform maps the system into frequency domain representation, the
transfer function matrix relates inputs to outputs via Y(s) = H(s)U(s) in the frequency
domain. Here Y(s) and U(s) are the Laplace transformations of the outputs y(t) and
inputs u(t) respectively. Applying the state space transformation x 7→ Tx for a non-
singular transformation matrix T ∈ Rn×n and computing the transfer function matrix
for the transformed system (TAT−1,TB,CT−1,D) , we immediately see that it is invariant
under state space transformations. All representations of the same system (that can be
transformed into each other) are called realizations of the system. There exist also
realizations of order ñ , n. Where those with ñ > n are generally not of interest in
contrast to those with ñ < n. The lower limit n̂ for the order of the system is called the
McMillan degree of the system and a realization of order n̂ is called a minimal realization.

2.2.2. Generalized State Space Form and Descriptor Systems

In many applications the system arises in generalized form. If, e.g., one applies the
finite element method for the spatial semi-discretization of a parabolic partial differential
equation constraint control problem, the resulting system takes the generalized state space
form:

Mẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t). (2.4)

Here M ∈ Rn×n is called the mass matrix and is in general symmetric and positive
definite, i.e., especially M is invertible. If on the other hand (2.4) appears in the process
of modelling electrical circuits in chip design, M is in general not invertible. This is often
indicated by writing E instead of M. The system is then a differential algebraic equation
and also called descriptor system.

In Chapter 5 two ways of extending the methods presented in Chapter 4 to generalized
systems are given. The case of differential algebraic equations and their derivation is
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discussed, e.g., in [87] and [64]. [106] gives an introduction to handling large scale
versions of (2.4) in a model order reduction context.

We will concentrate on the case of invertible mass matrices here. In that case all
concepts, properties and result from the previous section can be extended to the
generalized system by applying them to the equivalent standard state space system
Σ(M−1A,M−1B,C,D).

The transfer function H(s) of (2.4) is given by

H(s) = D − C(A − sM)−1B. (2.5)

Note that we only have to shift with the mass matrix M instead of the identity in the
inner inverse. Analogously properties can be expressed in terms of the matrix pencil
(A − sM) instead of the state space matrix M−1A of the equivalent standard state space
form. E.g., for the eigenvalue problem it is obvious, that we can replace (M−1A−sI)x = 0
by (A− sM)x = 0. This property will be exploited in Section 5.2 for efficient handling of
M in the large scale contexts.

2.2.3. Second Order Systems

Whenever oscillations play an important role in modelling processes, accelerations are
a non-negligible ingredient of the resulting system. This leads to an additional second
order (with respect to time derivatives) term. An example is the vibration analysis
for large constructions as buildings. See, e.g., the model BUILD I in the SLICOT1

benchmark collection [42]. This example comes from modeling vibrations of a building
at Los Angeles University Hospital. Note that there the resulting second order differential
equation is transformed into a standard LTI system. Similar models arise in chip design
where resonant circuits are involved. The general representation of a time invariant
second order system takes the form

Mẍ(t) + Gẋ + Kx = Bu(t),
y(t) = Cpx(t) + Cvẋ(t) + Du(t), (2.6)

where M, G, K ∈ Rn×n are called mass matrix , damping matrix and stiffness matrix, B ∈
Rn×m is the input map as in the first order case and Cp, Cv ∈ Rp×n are the counterpart for
the output map which here is split into the proportional output map Cp and the velocity
output map Cv.

Under the assumption that M is invertible, we can easily transform (2.6) into a system
of the form (2.4) and hence to standard state space representation (2.1). We will perform
the transformation to phase space representation as an example here. Alternative
approaches can be found, e.g., in [129, Chapter 3], or [139]. First define x̃(t) := (x(t), ẋ(t))T

1http://www.slicot.org

http://www.slicot.org
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then x̃ ∈ R2n and defining

M̃ :=
[
I 0
0 M

]
, Ã :=

[
0 I
−K −G

]
, B̃ :=

[
0
B

]
, C̃ :=

[
Cp Cv

]
(2.7)

we obtain the generalized state space system

M̃ ˙̃x(t) = Ãx̃(t) + B̃u(t)
y(t) = C̃x̃(t) + Du(t) (2.8)

Now multiplying from the left with M̃−1 produces,

Â :=
[

0 I
−M−1K −M−1G

]
, B̂ :=

[
0

M−1B

]
,

which leads to the equivalent first order standard state space system

˙̃x(t) = Âx̃(t) + B̂u(t)
y(t) = C̃x̃(t) + Du(t).

(2.9)

Obviously these system matrices should never be assembled for numerical computa-
tions in large scale contexts. On the one hand, the inversion of M will destroy the
sparsity. On the other hand, it is desirable to use sparse direct solvers, which cannot
exploit the structure very well even when applied to Σ(M̃, Ã, B̃, C̃,D). In contrast to this
the original matrices, which often arise in finite element contexts are (especially in 2d
problems) much better suited for these solvers. Note that in cases where M, G, K are
symmetric, we can preserve the symmetry in the first order representation by rewriting,
e.g, in the form[

−K 0
0 M

]
ż(t) =

[
0 −K
−K −G

]
z(t) +

[
0
B

]
u(t), y(t) =

[
Cp Cv

]
z(t). (2.10)

Here again z(t) = (x(t), ẋ(t))T, since I can be replaced by an arbitrary non-singular matrix
in (2.7). However, note that reestablishing symmetry we sacrifice definiteness of the
mass matrix here.

We also provide the transfer function matrix representation in terms of the original
system matrices here

H(s) := D +
(
Cp + sCv

) (
−|s|2M + sG + K

)−1
B. (2.11)

The exploitation of the block structure from (2.7) in sparse model reduction algorithms
is the subject of Section 7.2. Note that in many coupled structure mechanical models
the mass matrix suffers a rank deficiency introduced by the rigid body modes from the
underlying mechanical system. Then we obviously get a system in descriptor form,
since with M also M̃ in (2.7) is singular. Therfore we call second order system of this
form descriptor systems as well. As in the generalized first order case these systems
can not be treated with the methods presented in this thesis. We have investigated an
example of this kind and approaches for the reduction of such systems will soon be
available in [37, 38].
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2.2.4. Linear-Quadratic Optimal Control in Finite Dimensions

One of the goals of this thesis is to compute a closed loop controller for systems of the
form (2.1). The idea in closed loop control (as opposed to open loop control) is to create
a control, that processes the current measured state of the system (i.e., its output), or the
complete state itself to compute the control. We will thus build a system loop that feeds
the output/state back into the system as the input. In that sense the control loop is closed
in contrast to open loop control where the control is computed entirely in advance and can
not react on current unpredicted deviations of the state from the precomputed/desired
trajectory. Depending on whether the state or the output is used to determine the input
we distinguish the more precise terms state feedback and output feedback. Throughout
this thesis we will focus on the state feedback case.

In the case of linear-quadratic optimal control the open and closed loop approaches
coincide. That means, at least in theoretic considerations, they compute the same
input function. On the other hand in numerical computations, as well as technical
applications the feedback approach can compensate system perturbations due to round
off errors, modeling errors and process disturbances, which may lead to differing system
behaviour for the two approaches.

Consider the quadratic cost functional:

J(u) = J(x,u, x0) :=

T f∫
t0

(x,Qx) + (u,Ru) dt, (2.12)

with x0 := x(t0) the initial state at initial time t0 (we will without loss of generality
consider t0 = 0 here, since (2.1) is linear) and T f ∈ R>t0 ∪∞ the final time. The matrices
Q ∈ Rn×n and R ∈ Rp×p are assumed to be symmetric and Q = CTQ̂C for a symmetric
matrix Q̂ ∈ Rp×p. Further Q is considered to be positive semi-definite and R needs to
be positive definite and thus invertible. We will consider T f < ∞ in the derivation of
the required equations and concepts in the following section and concentrate on the
asymptotic case in a separate section thereafter.

Note that (2.12) can easily be generalized to abstract settings as soon as we have an inner
product available (as, e.g., in the Hilbert settings we will formulate the abstract Cauchy
problems for the PDE case, that is used in Chapter 3 and 6, and will be introduced in
Section 2.3). The short representation J(u) is validated by the fact that we will have to
assume regularity such that solution trajectory and control are uniquely dependent on
each other anyway.

LQR Problems on Finite Time Horizons

In this section we will consider the finite final time case, i.e., R 3 T f < ∞. We will need
this restriction for now since we want to formulate the LQR problem as an augmented
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boundary value problem in contrast to the given initial value problem. From the
boundary value problem we will then be able to derive a representation of the feedback
control incorporating the solution of the matrix equations in the focus of this thesis. In
Section 2.3.1 we will then see how this can help computing the feedback control for a
PDE constraint optimal control problem.

We can now formulate the linear-quadratic regulator (LQR) problem a.k.a. linear
quadratic optimal control problem as

Definition 2.1 (LQR problem):
Minimize the cost function (2.12) over all admissible controls, with respect to the
state space system (2.1). ♦

The LQR problem has been extensively discussed in the open literature. Trying to give
a complete list therefore is utopian. An undergraduate introduction to the existence
theory can be found in [101]. An introduction with a strong focus on the needs of
numerical solvers has been given in [13]. An in depth introduction, partially also
relating the open and closed loop systems, can be found in textbooks like [40, 99, 5, 133].

Note that this is only the most simple case of a quadratic cost functional. Many authors
also include a mixed term (x,Su) under the integral and have a penalty term for the
final output as additional factor. Since the mixed term has not been discussed to any
extend in the literature concerned with PDE constrained problems we will not take it
into account here to keep the presentation as simple as possible. The penalty term for
the final output on the other hand will not play a role on the infinite time horizon, since
the state has to go to zero when time tends to ∞ anyway in order to have the integral
exist. That means we can omit it for the sake of simplicity as well. A summarized
derivation incorporating the final time penalty term can be found, e.g., in [107] and
references therein.

Proposition 2.2 (existence of the co-state):
Let u∗ be the piecewise continuous optimal control for (2.1), (2.12) and x∗ the according
optimal trajectory generated by (2.1). Then there exists a co-state function µ∗ ∈ Rn

such that x∗,u∗, µ∗ solve the boundary value problem
In 0 0
0 −In 0
0 0 0



ẋ
µ̇
u̇

 =


A 0 B
Q AT 0
0 BT R



x
µ
u

 , (2.13)

x(t0) = x0, µ(T f ) = 0. (2.14)
♦

Note that if optimization is considered rather than optimal control, the co-state is nor-
mally referred to as the adjoint state, especially in PDE constrained optimization prob-
lems. The second row equation in (2.13) corresponds to the adjoint equation (2.2) arising



14 Chapter 2. Basic Concepts

from the variational inequalities in the optimization approach. Note further, that equa-
tion (2.13) does not require additional regularity of u since the time derivative u̇ of u
only appears formally because the last column of the left hand side matrix consists of
all zero entries. Since R is assumed to be regular we can use the last row equation to
eliminate u from (2.13) yielding an ordinary boundary value problem. This is also the
key feature in the derivation of the matrix equations of interest, as we will see after
stating the optimality result for the above solution triple.

Proposition 2.3 (optimality of the solution):
Let x∗,u∗, µ∗ solve (2.13), (2.14) and Q, R have the form stated above. Then

J(x∗,u∗, x0) ≤ J(x,u, x0),

for every triple (x,u, x0) solving (2.1). ♦

Propositions 2.2 and 2.3 are often formulated together as, e.g., in [40], where the proof
is available as well.

The explicit representation of u from (2.13) is

u(t) = R−1BTµ(t).

Inserting this into the state equation we get

ẋ(t) = Ax(t) + BR−1BTµ(t),

in turn of which we can rewrite (2.13) as[
ẋ(t)
µ̇(t)

]
=

[
A BR−1BT

Q −AT

] [
x(t)
µ(t)

]
,

(
x(t0) = x0,
µ(T f ) = 0.

)
(2.15)

Now making the ansatz µ(t) := −X(t)x(t), the terminal condition for the co-state yields
µ(T f ) = X(T f )x(T f ) and thus X(T f ) = 0 since x(T f ) is not specified a priory. Inserting
µ(t) and µ̇(t) = −Ẋ(t)x(t) − X(t)ẋ(t) in (2.15) we obtain

ẋ(t) = Ax(t) − BR−1BTX(t)x(t), (2.16)(
Ẋ(t) + X(t)A + ATX(t) − X(t)BR−1BTX(t) + Q

)
x(t) = 0. (2.17)

Again by variation of x(t) we end up with the differential Riccati equation (DRE)

−Ẋ(t) = X(t)A + ATX(t) − X(t)BR−1BTX(t) + Q. (2.18)

This autonomous nonlinear matrix-valued differential equation yields an initial value
problem for X(t) in reverse time together with the terminal condition X(T f ) = 0.

Remark 2.4:
• It can be shown that the solution X∗ of (2.18) is unique under the given assump-

tions [1, Thm. 4.1.6].
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• From transposition of (2.18) we immediately see, that the solution X is sym-
metric.

• In cases where the penalty term for the final output/state in the cost functional
is nonzero, that will also specify the terminal condition for X.

• Exploiting the uniqueness of X∗we can proof that the solution in Proposition 2.2
is also unique. ♦

Summarizing the above we obtain the following

Theorem 2.5 (existence and uniqueness of the optimal feedback control):
If Q ≥ 0, R > 0 are symmetric and T f < ∞, then there exists a unique solution of the
LQR problem (2.1), (2.12). The optimal control is given in feedback form by

u∗(t) = −R−1BTX∗(t)x(t).

Here X∗(t) is the unique symmetric solution satisfying the DRE

−Ẋ(t) = X(t)A + ATX(t) − X(t)BR−1BTX(t) + Q,

and the terminal condition X(T f ) = 0. Moreover, for any initial value x0 of (2.1) the
optimal cost is given by

J(u∗) =
1
2

xT
0 X∗(t0)x0. ♦

We have thus achieved the goal of creating a closed loop control on the finite time
horizon. The feedback map K∗(t) := −R−1BTX∗(t) is also called the optimal gain matrix.
The next task will be to lift this result to the infinite time horizon.

LQR Problems on the Infinite Time Horizon

In the previous section we showed how the optimal gain matrix and the optimal control
employing it for the LQR problem can be computed for finite final time. We will now
extend the results achieved there to the infinite final time case. Doing so we will see that
this is in fact the more easy case, since things simplify drastically from the viewpoint of
numerical computations for the cost of some additional work in the theoretical part.

Now let T f = ∞. We consider Q ≥ 0 and R > 0 as above. Note that the cost functional
(2.12) turns into an improper integral and thus we can only expect it to exist if the two
inner products converge to zero as time approaches infinity. Since R > 0 that means we
need

limt→∞ u(t) = 0,
limt→∞(x(t),Qx(t)) = 0.

By the terminal condition on µ we have limt→∞ µ(t) = 0 and if we would have X(t) ≡ X
independent of time t, then we would immediately have limt→∞ x(t) = 0 and thus



16 Chapter 2. Basic Concepts

limt→∞ u(t) = 0. We can easily comprehend that X(t) ≡ X must hold. Due to the
uniqueness of the solution of (2.18) the solutions on two time intervals [t0, t1] and [t0, t2]
must emerge from each other by scaling the time variable. That means X2(t) = X1(ct)
(with the index relating the solutions to the intervals) for c = t1

t2
. Obviously we then

have Ẋ2(t) = cẊ1(ct) by the chain rule. Now taking the limit for t2 →∞we realize

lim
t2→∞

Ẋ2(t̃) = lim
t2→∞

t1

t2
Ẋ1(t) = 0

independent of t̃ and t. Thus X(t) is constant and taking the limit in (2.18) we obtain the
algebraic Riccati equation (ARE)

0 = R(X∞) = Q + X∞A + ATX∞ − X∞BR−1BTX∞. (2.19)

Thus for the infinite final time case we have found an algebraic equation doing the job of
the differential equation in the finite time context. Since many solvers for the differential
equation require solving the algebraic equation in every time-step (see [107] and refer-
ences therein), this simplifies numerical considerations enormously. Unfortunately, in
contrast to the DRE the ARE does not have a unique solution. Even though the solution
should be symmetric as it is the limit of symmetric solutions, yet this does not unify it.
We need further inspection to derive conditions under which we can consider it unique.
The following theorem [89, 105, 83] shows, that we can guarantee the uniqueness under
certain, not too strong conditions on the underlying state space system. A detailed
discussion of algebraic Riccati equations can be found in many books and monographs
as [89, 105, 83, 154] to mention only a few important ones.

Theorem 2.6 (Uniqueness of the ARE solution):
If F ≥ 0, G ≥ 0, (A,G) stabilizable and (F,A) detectable, then the ARE

F + AX + XAT
− XGX = 0,

has a unique, symmetric, stabilizing solution X∗, i.e., Λ(A − GX∗) ⊂ C<0. ♦

For the proof see, e.g., [89] or many references given therein. Note that we assume rather
strict properties in the above theorem. [89] especially discusses which prerequisites can
be weakened to still obtain uniqueness of the solution. If in addition we demand for
(F,A) to be observable this will guarantee the positive definiteness of the solution.

For the LQR problem considered here we can now formulate a corollary as a direct
consequence of Theorem 2.6.

Corollary 2.7:
If Q̂ ≥ 0, R > 0, (A,B) is stabilizable and (CTQ̂C,A) is detectable, then the LQR
problem (2.1), (2.12) with T f = ∞ has a unique solution given in feedback form

u∗(t) = −R−1BTX∗x(t),

where X∗ is the unique stabilizing solution of the ARE (2.19) with Q = CTQ̂C. ♦
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2.3. Linear-Quadratic Optimal Control of Parabolic Partial
Differential Equations

We consider nonlinear parabolic convection-diffusion and diffusion-reaction systems of
the form

∂x
∂t

+ ∇ · (c(x) − k(∇x)) + q(x) = B(ξ)u(t), t ∈ [0,T f ], (2.20)

in Ω ∈ Rd, d = 1, 2, 3, with appropriate initial and boundary conditions. Here, c is the
convective part, k the diffusive part and q is an uncontrolled source term. The state
of the system depends on ξ ∈ Ω and the time t ∈ [0,T f ] and is denoted by x(ξ, t). The
control is called u(t) and is assumed to depend only on the time t ∈ [0,T f ].

A general control problem for the above PDE is defined as

Definition 2.8 (PDE constraint optimal control system):

min
u
J(x,u, x0) subject to (2.20), (2.21)

where J(x,u) is a performance index which will be specified later. ♦

We will see in the following, that in cases where (2.20) is linear and J is quadratic
(compare (2.25), (2.30)) this is exactly the extension of Definition 2.1 to the PDE case.

There are two possibilities for the appearance of the control. If the control occurs in
the boundary condition, we call this problem a boundary control problem. It is called
distributed control problem if the control acts in Ω or a sub-domain Ωu ⊂ Ω. The con-
trol problem as in (2.20) is well-suited to describe a distributed control problem while
boundary control will require the specification of the boundary conditions as, for in-
stance, given below.

The major part of this thesis deals with the linear version of (2.20),

∂x
∂t
− ∇. (a(ξ)∇x) + d(ξ)∇x + r(ξ)x = BV(ξ)u(t), ξ ∈ Ω, t > 0, (2.22)

with initial and boundary conditions

α(ξ)
∂x(ξ, t)
∂n

+ γ(ξ)x(ξ, t) = BRu(t), ξ ∈ ∂Ω,

x(ξ, 0) = x0(ξ), ξ ∈ Ω,

for sufficiently smooth parameters a, d, r, α, γ, x0. We assume that either BV = 0 (bound-
ary control system) or BR = 0 (distributed control system). In addition, we include in
our problem an output equation of the form

y = Cx, t ≥ 0,
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taking into account that in practice, often not the whole state x is available for measure-
ments. Here, C is a linear operator which often is a restriction operator.

To solve optimal control problems (2.21) with a linear system (2.22) we interpret it as
a linear quadratic regulator (LQR) problem. The theory behind the LQR ansatz has
already been studied in detail, e.g., in [90, 91, 92, 98, 34, 9], to name only a few.

Nonlinear control problems are still undergoing extensive research. We will apply
model predictive control (MPC) here, i.e., we solve linearized problems on small time
frames. This idea is similar to the one presented by Ito and Kunisch in [79]. We will
briefly sketch the main ideas of this approach and the differences to the idea in [79] in
Section 6.3. An in depth analysis of the Ito/Kunisch approach can be found in the PhD
thesis by Sabine Hein [68].

There exists a rich variety of other approaches to solve linear and nonlinear optimal
control problems for partial differential equations. We can only refer to a selection of
ideas, see e.g. [142, 33, 71, 98, 73, 74].

In the remainder of this section we will formulate the LQR problem. We assume that
X,Y,U are separable Hilbert spaces where X is called the state space, Y the observation
space and U the control space.

Furthermore the linear operators

A : dom(A) ⊂ X→ X,

B : U→ X,

C : X→ Y

are given. Such an abstract system can now be understood as a Cauchy problem for a
linear evolution equation of the form

ẋ = Ax + Bu, x(., 0) = x0 ∈ X. (2.23)

Since in many applications the state x of a system can not be observed completely we
consider the observation equation

y = Cx, (2.24)

which describes the map between the states and the outputs of the system.

The abstract LQR problem is now given as the minimization problem

min
u∈L2(0,T f ;U)

1
2

T f∫
0

〈y,Qy〉Y + 〈u,Ru〉U dt (2.25)

with self-adjoint, positive definite, linear, bounded operators Q and R on Y and U,
respectively. Recall that if (2.23) is an ordinary differential equation with X = Rn,
Y = Rp and U = Rm, equipped with the standard scalar product, then we obtain an
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LQR problem for a finite-dimensional system (see Section 2.2.4). For partial differential
equations we have to choose the function spaces X,Y,U appropriately and we get an
LQR system for an infinite-dimensional system [44, 45].

Consider the heat equation

∂tx − ∆x = f(ξ, t) on Ω := [0, 1]2,

x = 0 for ξ1 ∈ {0, 1}, or ξ2 = 1,
x(ξ, t) = v(ξ, t) for ξ2 = 0,

where as in (2.20) and (2.22)

v(ξ, t) := B(ξ)u(t) :=
(
1 +

1
2

sin
(
−
π
2

+ ξ1 2π
))
· u(t).

Then at every instant of time the corresponding elliptic equation is known to have a
solution in H2(Ω) and thus X = H2(Ω). We have a scalar input u such that U = R.
Note that then v(ξ, t) ∈ L2([0,∞),R) and B is obviously bounded. If we further consider
only the temperature at ξ = ( 1

2 ,
1
2 )T as an output, then also Y = R, which completes our

Hilbert space setting.

Many optimal control problems for instationary linear partial differential equations
can be described using the abstract LQR problem above. Additionally, many control,
stabilization and parameter identification problems can be reduced to the LQR problem,
see [10, 45, 90, 91, 92].

Semigroups and Mild Solutions

The concept of solutions to finite dimensional systems we are following in the context
of LQR problems is that of matrix exponential based representations. In the operator
case found for PDE control problems we will follow the principle of mild solutions
and operator semigroups, that is closely related to the above concept. It is the direct
extension to the operator setting in Banach and Hilbert spaces X. Clearly for a bounded
operator A ∈ L(X) and t ≥ 0 we can define the operator valued exponential

T(t) := etA :=
∞∑

k=0

tkAk

k!
.

Then as in the matrix exponential and scalar cases T for all t, s ≥ 0 has the properties

T(t + s) = T(t)T(s),
T(0) = I,

(2.26)

and
dT(t)

dt
= A T(t). (2.27)
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These properties motivate the name operator semigroup. If the above properties even
hold for all t, s ∈ R one also speaks of operator groups.

T as defined above is also called uniform or analytic semigroup. Unfortunately the
concept of uniform semigroups is much to strong to be applicable in many cases.
Therefore the weaker concept of strongly continuous semigroups or C0-semigroups is
introduced, which only demands for (2.26) to be fulfilled. The symbol etA is often kept,
even though only fully valid in the analytic case, reflecting the close relationship to the
matrix exponential.

The operator A is called the infinitesimal generator of the semigroup. In the case of
analytic semigroups the defining quality of the infinitesimal generator is obvious. For
strongly continuous semigroups it can be proven [47, Section 1 Theorem 1.4] to be a
closed, densely defined operator determining the semigroup uniquely.

The mild solution to the closed loop system

ẋ(t) = (A − BK)x(t) + f(t)
x(0) = x0

(2.28)

is then given as

x(t) := T(t)x0 +

t∫
0

T(t − s)f(s) ds for t ≥ 0, (2.29)

where the semigroup T(t) is generated by the closed loop operator A−BK for the optimal
feedback operator K. A more detail introduction to the concept of mild solutions can
be found in the PhD thesis by Sabine Hein [68, Section 8.1], or textbooks as [45, 47, 111].
All important properties of operator semigroups needed in the context of LQR systems
for parabolic PDEs have been summarized by Hermann Mena [107, Section 3.2]. An in
depth discussion of one parameter semigroups is available in [47, 111]. Note that the
concept of one parameter semigroups is only valid for linear time invariant systems. In
the context of linear time varying systems the more general concept of two parameter
semigroups needs to be applied to reflect the dependence of A on time in that case.
If a solution to (2.28) is continuously differentiable it is also called classical solution.
Tanabe [138] reflects the close relationship of the representation to the finite dimensional
systems case by calling (2.29) the fundamental solution.

The Infinite Time Case

In the infinite time case we assume that T f = ∞. Then the minimization problem subject
to (2.23) is given by

min
u∈L2(0,∞;U)

1
2

∞∫
0

〈y,Qy〉Y + 〈u,Ru〉U dt. (2.30)
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If the standard assumptions that

• A is the infinitesimal generator of a C0-semigroup T(t),

• B,C are linear bounded operators and

• for every initial value there exists an admissible control u ∈ L2(0,∞; U)

hold, then the solution of the abstract LQR problem can be obtained analogously to the
finite-dimensional case (see, e.g., [154, 44, 45, 54, 33, 34, 32, 98, 120]) discussed earlier in
this chapter. We then have to consider the algebraic operator Riccati equation

0 = R(X) = C∗QC + A∗X + XA − XBR−1B∗X, (2.31)

where the linear operator X will be the solution of (2.31) if X : dom A → dom A∗ and
〈x̂,R(X)x〉 = 0 for all x, x̂ ∈ dom(A). The optimal control is then given as the feedback
control

u∗(t) = −R−1B∗X∞x∗(t), (2.32)

which has the form of a regulator or closed-loop control. Here, X∞ is the unique
stabilizing nonnegative self-adjoint solution of (2.31), x∗(t) = S(t)x0(t), and S(t) is the
C0-semigroup generated by A − BR−1B∗X∞. Using further standard assumptions it
can be shown, see e.g. [34], that X∞ is the unique nonnegative stabilizing solution of
(2.31). Most of the required conditions, particularly the restrictive assumption that B is
bounded, can be weakened [90, 91].

The Finite Time Case

The finite time case arises if T f < ∞ in (2.25). Then the numerical solution is more com-
plicated since we have to solve the operator differential Riccati equation (analogously
to Theorem 2.5)

Ẋ(t) = −(C∗QC + A∗X(t) + X(t)A − X(t)BR−1B∗X(t)). (2.33)

The optimal control is obtained as

u∗(t) = −R−1B∗X∗(t)x∗(t),

where X∗(t) is the unique solution of (2.33) in complete analogy to the infinite time case
in (2.32). The special challenges in this case have been discussed in [107].

2.3.1. Approximation Theory

The theoretical fundament for our approach was set by Gibson [54]. The ideas and proofs
used for the boundary control problem considered here closely follow the extension of
Gibson’s method proposed by Banks and Kunisch [12] for distributed control systems
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arising from parabolic equations. Similar approaches can be found in [27, 91]. Common
to all those approaches is to formulate the control system for a parabolic system as
an abstract Cauchy problem in an appropriate Hilbert space setting. For numerical
approaches this Hilbert space X is approximated by a sequence of finite-dimensional
spaces (XN)N∈N, e.g., by spatial finite element approximations, leading to large sparse
systems of ordinary differential equations in Rn. Following the theory in [12] those
approximations do not even have to be subspaces of the Hilbert space of solutions.

Before stating the main theoretical result we will first collect some approximation pre-
requisites we will need for the theorem. We call them (BK1) and (BK2) for they were
already formulated in [12] (and called H1 and H2 there). In the following PN is the
canonical projection operator mapping from the infinite-dimensional space X to its
finite-dimensional approximation XN. The first and natural prerequisite is:

For each N and x0 ∈ XN there exists an admissible control uN
∈ L2(0,∞; U)

and any admissible control drives the states to 0 asymptotically.
(BK1)

Additionally one needs the following properties for the approximation as N → ∞.
Assume that for each N, AN is the infinitesimal generator of a C0-semigroup TN(t), then
we require:

(i) For all ϕ ∈ X we have uniform convergence TN(t)PNϕ → T(t)ϕ
on any bounded subinterval of [0,∞).

(ii) For all φ ∈ X we have uniform convergence TN(t)∗PNφ→ T(t)∗φ
on any bounded subinterval of [0,∞).

(iii) For all v ∈ U we have BNv → Bv and for all ϕ ∈ X we have
BN∗ϕ→ B∗ϕ.

(iv) For all ϕ ∈ X we have QNPNϕ→ Qϕ.

(BK2)

With these we can now formulate the main result.

Theorem 2.9 (Convergence of the finite-dimensional approximations):
Let (BK1) and (BK2) hold. Moreover, assume R > 0, Q ≥ 0 and QN

≥ 0. Further,
let PN be the solutions of the AREs for the finite-dimensional systems and let the
minimal nonnegative self-adjoint solution X of (2.31) for (2.23), (2.24) and (2.30) exist.
Moreover, let S(t) and SN(t) be the operator semigroups generated by A − BR−1B∗X
on X and AN

− BNR−1BN∗PN on XN, respectively, with ‖S(t)ϕ‖ → 0 as t → ∞ for all
ϕ ∈ X.
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If there exist positive constants M1, M2 and ω independent of N and t, such that

‖SN(t)‖XN ≤ M1e−ωt,
‖XN
‖XN ≤ M2,

(2.34)

then
XNPNϕ → Xϕ for all ϕ ∈ X,

SN(t)PNϕ → S(t)ϕ for all ϕ ∈ X,
(2.35)

converge uniformly in t on bounded subintervals of [0,∞) as N→∞ and

‖S(t)‖ ≤M1e−ωt for t ≥ 0. (2.36)
♦

Theorem 2.9 gives the theoretical justification for the numerical method used for the
linear problems described in this paper. It shows that the finite-dimensional closed-loop
system obtained from optimizing the semidiscretized control problem indeed converges
to the infinite-dimensional closed-loop system. Equivalent results for the finite time
horizon case have been proven in [86, 107]. Deriving a similar result for the nonlinear
case is an open problem.

The proof of Theorem 2.9 is given in [27]. It very closely follows that of [12, Theorem 2.2].
The only difference is the definition of the sesquilinear form on which the mechanism
of the proof is based. It has an additional term in the boundary control case discussed
here, but one can check that this term does not destroy the required properties of the
sesquilinear form. (See Appendix A as well)

2.4. Balanced Truncation Model Order Reduction

We are considering balancing based model order reduction [109] throughout this thesis.
There the main task is to solve the controllability and observability Lyapunov equations

AP + PAT = −BBT, ATQ + QA = −CTC. (2.37)

From their solutions we compute projection matrices Tl and Tr such that the ROM

˙̂x(t) = Âx̂(t) + B̂u(t), ŷ(t) = Ĉx̂(t), (2.38)

is derived as
Â := TlATr, B̂ := TlB and Ĉ := CTr. (2.39)

As A is assumed to be stable and thus P and Q are positive semi-definite, there exist
Cholesky factorizations P = STS and Q = RTR. In the so-called square-root balanced
truncation (SRBT) algorithms [141, 93] these are used to define the above projection
matrices

Tl := Σ
1
2
1 VT

1 R and Tr := STU1Σ
1
2
1 (2.40)
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determining the reduced order model. Here Σ
1
2
1 , U1 and V1 are determined via the

singular value decomposition

SRT = UΣVT =
[
U1U2

] [Σ1 0
0 Σ2

] [
VT

1
VT

2

]
, (2.41)

where Σ = diag (σ1, . . . , σn) is assumed to be ordered such that σ j ≥ σ j+1 ≥ 0 for all j and
Σ1 = diag (σ1, . . . , σr) ∈ Rr×r. If σr > σr+1 = 0 then r is the McMillan degree of the system
and the resulting ROM is a minimal realization.

For the error in the transfer function, the global bound

‖H − Ĥ‖H∞ ≤ 2
n∑

j=r+1

σ j (2.42)

can be proven [55]. The∞-norm here is the operator norm

‖H‖H∞ := sup
ω∈R

σmax(G(iω)), (2.43)

induced by the 2-norm in the frequency domain (see also [55] for details), and σmax
denotes the largest singular value.

For large scale sparse systems it is infeasible to compute either P, Q, or their Cholesky
factors, since they are generally full matrices requiring O(n2) memory for storage. In
Chapter 4 we repeat and extend the low-rank ADI framework which exploits that both
P and Q usually have very low (numerical) rank compared to n. Therefore the Cholesky
factors are replaced by low-rank Cholesky factors (LRCFs) in the above defining the low-
rank square root balanced truncation method (LR-SRBT) [118, 119]. Section 7.1 gives
more details on this method and its modification for generalized state space systems.
The low-rank factors can be computed directly by the low-rank Cholesky factor ADI
iteration (LRCF-ADI) (See Section 4.1 and [114, 116, 117, 118, 97, 18]).
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Next we introduce the different model problems and test examples used in the upcoming
chapters. Some of them are only briefly sketched. Others will be presented in more
detail. The main focus lies on the detailed introduction of the model of an optimal control
problem arising in a rolling mill during production of steel profiles. There, the main
goal is to influence the material properties by controlling the temperature distribution
on single cross-sections of the profile. Thus the process to be controlled is described by a
heat equation. The manufacturing process only allows for very few inputs to the system
and can take only a handful of measurements into account. These features make it a
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perfect model for the low-rank matrix equation solvers we are discussing throughout
this thesis.

The subsections are organized such that the problem structure is increasingly more
complicated. We start with two models in standard state space form. Afterwards we
present some systems in generalized state space representation and we end the chapter
with three second order system models used in Chapter 7.

3.1. An Academic Model Example: FDM Semi-Discretized
Heat Equation

The finite differences semi-discretized heat equation on the unit square (0, 1)× (0, 1) will
serve as the most basic test example here. The advantages of this model are obvious:

• it is fairly easy to understand,

• the discretization using the finite difference method (FDM) is easy to implement

• it allows for simple generation of test problems of almost arbitrary size.

Another important feature of the FDM is that, in contrast to the finite element method
(FEM) considered in the upcoming sections of this chapter, it does not generate a mass
matrix in front of the time derivative, i.e., it naturally leads to a large scale sparse system
in standard state space representation.

We essentially consider two variants of this problem. The sole heat equation (diffusion
only) [117, demo r1.m]

∂x
∂t
− ∆x = f(ξ)u(t) (3.1)

and a model of the heat equation with convection and reaction (see equation (8.1)
and [42, Section 2.7])

∂x
∂t
− v.∇x − ∆x − qx = f(ξ)u(t). (3.2)

The models are generated using centered finite differences, leading to the usual multi-
diagonal structure (see Figures 8.1a and 8.2a) for appropriate numbering of the un-
knowns.

Simoncini [131] proposes a 3-d variant with convection for which two discretization
levels of sizes (5832,10648) are available from the author.1

A third version of this problem that is used in the LyaPack and M.E.S.S. demonstration
scripts will also frequently be used in Chapter 8. There the qx term in (3.2) is dropped
such that it reduces to a convection-diffusion equation. The vector v in (3.2) is then
chosen as v = [10 100]T.

1The author wishes to thank V. Simoncini for providing her example matrices.
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3.2. An Artificial Test Case with Prescribed Spectrum

This is an artificial model that has been introduced in [117]. It prescribes a certain
spectrum such that the Bode plot shows “spires”. The system matrix A is constructed
as block diagonal from four 2 × 2 blocks and a diagonal with entries −1 to −400 such
that the matrix has dimension 408. The four leading block are

A1 =

[
−0.01 −200
200 0.001

]
, A2 =

[
−0.2 −300
300 −0.1

]
, (3.3)

A3 =

[
−0.02 −500
500 0

]
, A4 =

[
−0.01 −520
520 −0.01

]
, (3.4)

such that

A =



A1
A2

A3
A4

−1
. . .
−400


,

and the eigenvalues are −0.0045 ± ı 200, −0.15 ± ı 300, −0.01 ± ı 500, −0.01 ± ı 520 and
−1, . . . ,−400. The matrix B is chosen as the all ones vector in R408×1 and C = BT.

3.3. Selective Cooling of Steel Profiles: Cooling a Rail in a
Rolling Mill

In contrast to the very flexible but also very academic test examples of the previous
sections, we will now consider an application of the proposed method in modern
industrial tasks. The problem of optimal cooling of steel profiles in a rolling mill will
serve as an example here. This section is in substance a reprint of the modelling section
in [27] and has also been discussed and tested in [127, 26, 17]. The test matrices have
also been published in the Oberwolfach Model Reduction Benchmark Collection2 [28].
They are available for download3 in four problem sizes (1357, 5177, 20209, 79841),
reflecting different levels of global FEM refinement. The model was discretized using
the ALBERTA finite element toolbox. More details are available in Section A.3.

2http://www.imtek.de/simulation/benchmark/
3http://www.imtek.de/simulation/benchmark/wb/38881/

http://www.imtek.de/simulation/benchmark/
http://www.imtek.de/simulation/benchmark/wb/38881/
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Figure 3.1.: Domain Ω for Selective Cooling of Steel Profiles: initial mesh with points of
minimization and comparison (left) and partition of the boundary (right)

3.3.1. Model Background

This problem arises in a rolling mill when different steps in the production process
require different temperatures of the raw material. To achieve a high production rate,
economical interests suggest to reduce the temperature as fast as possible to the required
level before entering the next production phase.

At the same time, the cooling process, which is executed by spraying cooling fluids onto
the surface, has to be controlled so that material properties, such as durability or porosity,
achieve given quality standards. Large gradients in the temperature distributions within
the steel profile may lead to unwanted deformations, brittleness, loss of rigidity, and
other undesirable material properties. It is therefore the engineer’s goal to have a
preferably even temperature distribution.

3.3.2. Model Equation

As in [143, 48, 85, 49] the steel profile is assumed to stretch infinitely into the z-direction
which is justified by comparing the actual length of steel profiles like rails (O(10m))
to their width and height (O(10cm)). This admits the assumption of a stationary heat
distribution in z-direction, or in other words, we can restrict ourselves to a 2-dimensional
heat diffusion process. Therefore, we can consider the 2-dimensional cross-sections of
the profile Ω ⊂ R2 shown in Figure 3.1 as computational domain. Measurements for
defining the geometry of the cross-section are taken from [143]. As one can see (e.g.
Figure 3.1) the domain exploits the symmetry of the profile introducing an artificial
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boundary Γ0 on the symmetry axis. The state equation introduced in [143, 48, 85] for
the temperature x(ξ, t) at time t in point ξ can be summarized as follows:

c(x)ρ(x)∂tx(ξ, t) = ∇.(λ(x)∇x(ξ, t)) in Ω × (0,T),
−λ(x)∂νx(ξ, t) = gi(ξ, t, x,u) on Γi × (0,T),

x(ξ, 0) = x0(ξ) in Ω,
(3.5)

where gi includes temperature differences between cooling fluid and profile surface,
intensity parameters for the cooling nozzles and heat transfer coefficients modeling the
heat transfer to the cooling fluid, as well as radiation portions. Some variants of this
boundary condition will be presented in Section 3.3.3.

We will mostly use the linearized version of the above state equation given in (3.6). The
linearization is derived from (3.5) by taking means of the material parameters ρ, λ and
c. This is admissible as long as we work in temperature regimes above 700°C where
changes of ρ, λ and c are small and we do not have to deal with multiple phases and
phase transitions in the material. Furthermore we partition the boundary into 8 parts,
where one of these is the artificial boundary on the left hand side of Ω. The others are
located between two neighboring corners of the domain and are enumerated clockwise
(see Figure 3.1 for details). Another simplification taken here is the assumption that the
cooling nozzles spray constantly onto one part of the surface. This means, u is constant
with respect to the spatial variable ξ on each part Γi of the boundary. Hence U = R7 in
our case and we obtain the following model:

cρ∂tx(ξ, t) = ∇.(λ∇x(ξ, t)) in Ω × (0,T)
−λ∂νx(ξ, t) = gi(t, x,ui) on Γi where i = 0, . . . , 7

x(ξ, 0) = x0(ξ) in Ω.
(3.6)

Throughout this section we will consider the following cost functional:

J(u) :=

∞∫
0

(x,Qx)H + (u,Ru)Udt. (3.7)

in which Q and R can be chosen to weight temperature differences and the cost of
spraying the cooling fluid, i.e., (2.12) with t0 = 0, T f = ∞ and the proper inner products.

The control problem of interest can thus be summarized as

Minimize (3.7) with respect to (3.6), where Q is given as Q := C∗C or
Q := C∗Q̂C with Q̂ ≥ 0.

(R)

We will specify C and Q̂ in more detail later (Section 3.3.4).

3.3.3. Boundary Conditions and Boundary Control

We now have to describe the heat transfer across the surface of the material, i.e. the
boundary conditions. The most general way to model the heat flux across the boundary
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is a combination of heat conduction and radiation. The heat conduction is modeled
proportional to the difference between surface temperature and exterior temperature,
where the proportionality coefficient is the heat transfer coefficient κ depending on the
material and shape of the profile, the type of cooling fluid that is used, the temperature
of the fluid and also on the spraying intensity. The radiation of heat is given by the
Stefan-Boltzmann law. So we end up with

−λ∂νx(ξ) = gi(t,u) := κk(x − xext,k) + εσ(x4
− x4

ext,k), k = 1, . . . , 7, (3.8)

where σ = 5.660 · 10−8W/m2K4 is the Stefan-Boltzmann constant and ε ∈ [0, 1] the
emissivity (ε = 1 for an ideal black body, so we should expect ε < 1 here.). For
a physical derivation of this boundary condition we refer the reader to textbooks in
physics, e.g. [66].

The boundary condition (3.8) is nonlinear and thus must be linearized if we want to use
LQR design for linear systems. Therefore we will simplify it by dropping the Stefan-
Boltzmann part. This is not too much of an error because that term is much smaller
than the conduction part, at least in case of active cooling and results in

−λ∂νx(ξ) = κk(x − xext,k). (3.9)

This simplified version of the boundary condition has already been applied successfully
in [48, 49, 85, 143, 127, 27]. We now have two choices for selecting the control variables.
The most intuitive choice concerning the presented model problem is to regulate the
intensity of the spraying nozzles. This idea results in taking the heat transfer coefficient
κ as the control. As we will see later in detail this leads to a problem with the formulation
of the linear feedback control system. Instead of a linear system we have to consider
a bilinear system with this choice which results from the multiplication of the control
and the state on the right hand side of (3.9).

Another possibility is to take the external temperature as the control. In our example
this means we regulate the temperature of the cooling fluid which is sprayed onto the
steel profile. This might lead to complications with the technical realization of the
model because in this application it will possibly be difficult to achieve the reaction
times calculated by the model. On the other hand we can think of applications of the
method at hand to the modeling and control of air conditioning systems. There, reaction
times are much longer and this choice would most likely be the best one in that case.
The mathematical advantage of this choice is that the multiplication of control and state
which lead to the difficulties in the above case are bypassed here.

A third possibility would be to write (3.9) as−λ∂νx(ξ) = κ1x−κ2xext,k and replaceκ1 by an
appropriate constant, e.g., some kind of mean. We could then use κ2 as the control, but
this is equivalent to controlling by means of the exterior temperature in the formulation
above. Having κ1 fixed we can rewrite κ2 = κ1 ∗ κ̂2 and define x̂ext,k := κ̂2xext,k, i.e. we
can use x̂ext,k as the control like in (3.9).
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Boundedness of the input operator B. The boundary condition following (3.9) and
choosing uk = xext,k takes the form

−λ∂νx(ξ, t) − κkx(ξ, t) = B(ξ)|Γku(t) on Γk.

Now observing, that the rail profile Ω is a regular domain, we have that the trace operator
maps from H1(Ω) to L2(Γk) for each k continuously [146]. Thus B following (A.6) is well
defined and continuous. Linearity of B is obvious and hence it is bounded.

3.3.4. Choice of State Weighting Operator Q and Output Operator C

In (R) we already mentioned that the control weighting operator/matrix Q should be
chosen as Q := C∗C or Q := C∗Q̂C. We will now show in more detail how we choose
C and Q̂. As it was mentioned in Section 3.3.1, an even temperature distribution on
cross-sections of the profile during the cooling process is desired. We want to take this
fact into account by introducing certain temperature differences in the cost functional.
We approximate gradients by simple differences because this turns out to be sufficient
to accomplish the given task. Additionally, temperature difference calculations are
cheaper to compute and easier to implement. So concerning implementation they are
the primary choice here.

On the other hand this leads to slight complications in the theoretical part. We would
like to evaluate the state function in single nodes of the coarsest grid, to know the
temperature in a specific point. We use nodes of the coarsest grid here, because those are
present on every refinement level created by our finite element method. Unfortunately
the regularity of the solution is not sufficient to allow those evaluations. We do not
have H2-regularity of the solution, since the boundary is not smooth enough (because
of the two sharp corners at the ends of Γ6 and the non-convexity of Ω) and boundary
conditions may jump in the interconnection points between two parts of the boundary.
Therefore we do not have continuity of the solution and thus can not evaluate the state
function in single points, but we can evaluate integrals of the state over small regions
in Ω. This problem is solved by defining C according to differences between integral
means on small ε-balls around the desired grid nodes. That means if we are interested
in the temperature at the i-th grid node with coordinates ξi ∈ Ω we consider

ηi :=


1

|Bε(ξi)|

∫
Bε(ξi)

x(ξ)dξ falls ξi ∈ Ω \ Γ,

1
|Bε(ξi)∩Γ|

∫
Bε(ξi)∩Γ

tr (x(ξ)) dσ falls ξi ∈ Γ.
(3.10)
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With this notation we define

C : H → R6

x 7→ C(x) :=


3η60 − η22 − η4
2η63 − η3 − η2
η51 − η43

2η92 − η9 − η16
3η83 − η34 − η10 − η15


(3.11)

The grid nodes referred to in the above definition can be found in Figure 3.1. The lines
of C(x) in (3.11) have to be read as: take the difference of the temperature integrals (3.10)
for nodes 63 and 3 as well as the difference for nodes 63 and 2 (if we look at line 2 as an
example) and add them. Note that we placed an additional weight on the temperature
around node 60 in line 1 of C(x). This turned out to be important to get the profile’s
foot appropriately cooled down with the given cost functional, see the plots in the
results section of [26] for details. Note that the operator C defined as in equation (3.11)
is bounded since the trace operator is linear and continuous and Ω is assumed to be
bounded.

Concerning Q̂ we think of choosing Q̂ := βI for some positive real constant β. β can
then be used as a weighting factor to priorize states over controls or the contrary in
the cost functional. Alternative choices for Q̂ might be diagonal matrices where the
diagonal entries are then weighting factors for the temperature differences in relation
to each other. For example one might want to devaluate the differences on the central
bar against those in the head of the profile, because temperature differences normally
tend to be much smaller on the central bar than in the head.

Boundedness of the Output Operator C. We have seen that the resulting inputs
are in L2(Γ). Hence for fixed t the solution operator at least gives us x(., t) ∈ H1(Ω).
Therefore x(., t) ∈ L2(Ω) ↪→ L1(Ω) and the integrals in (3.10) exist for ξi ∈ Ω\Γ. By the
continuity of the trace (which we already exploited for the boundedness of B) we also
have that the integrals exist for ξi ∈ Γ. Linearity of C follows directly from the linearity
of the integrals with respect to the integrand. Thus also C is linear and continuous, i.e.,
bounded.

3.3.5. Units of Measurement and Scaling

The final paragraph of this model introduction section will now concern units of mea-
surement. We have introduced the model without too much concern about measure-
ments until here. For the implementation we want to rescale the temperature regime
from the interval [0, 1000] °C to the unit interval [0, 1] and the lengths from meters to
decimeters. We are especially interested in the effect this rescaling has on the time
scale. To answer this question we first list the parameters again with their units of
measurement:
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• specific density % in kg
m3 ,

• specific heat capacity c in m2

s2°C ,

• heat conductivity λ in kg m
s3°C ,

• heat transfer coefficient κ in kg
s3°C .

For α = λ
c% this leads to

kg m
s3 °C

m2

s2 °C
kg
m3

=
m2

s
.

So the rescaling of temperature has no effect on the other units, for it cancels out in the
above computation. The rescaling of lengths on the other hand has to be taken into
account even squared. If we do this we can take the original values of λ, c, % and κ for
the numerical tests. Dividing by −λ, (3.9) becomes ∂νx = κ

λ (xext − x). So we have to take
a closer look at the coefficient κ

λ . This has the unit of measurement

kg
s3 °C
kg m
s3 °C

=
1
m
.

Hence we do not have to take the rescaling into account, because the normal ν on the
left and the coefficient κ

λ scale with the same factor.

3.4. Chemical Reactors: Controling the Temperature of an
Inflowing Reagent

The next example is a system appearing in the optimal heating/cooling of a fluid flow
in a tube. An application could be the temperature regulation of certain reagent inflows
in chemical reactors. The model equations are:

∂x
∂t − κ∆x + v · ∇x = 0 in Ω

x = x0 on Γin
∂x
∂n = σ(u − x) on Γheat1 ∪ Γheat2
∂x
∂n = 0 on Γout.

(3.12)

Here Ω is the rectangular domain shown in Figure 3.2. The inflow Γin is at the left part
of the boundary and the outflow Γout the right one. The control is applied via the upper
and lower boundaries. We can restrict ourselves to this 2d-domain assuming rotational
symmetry, i.e., non-turbulent diffusion dominated flows. The test matrices have been
created using the COMSOL4 Multiphysics software and have dimension 1090. The

4http://www.comsol.de

http://www.comsol.de
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Figure 3.2.: Domain Ω for the Inflow Example: A 2d cross-section of the liquid flow in
a round tube

system has a single input applied at both upper and lower boundary, due to rotational
symmetry and the three outputs correspond to three values of the temperature at the
outflow. Note that in this case we have a convex domain such that we can use point
evaluations as the outputs. κ = 0.06 and the system results in the eigenvalue and shift
distributions shown in Figure 8.4 a.

Since a finite element discretization in space has been applied here, the semi-discrete
model is of the form

Mẋ = Ãx + B̃u
y = C̃x. (3.13)

This is transformed into a standard system (8.2) by decomposing M into M = MLMU
where ML = MT

U since M is symmetric. Then MU acts as a state space transformation
and only ML has to be inverted. Note, that the inversion should never be performed
explicitly. See Chapter 5 for a more detailed presentation of this transformation.

3.5. The SLICOT CD-Player

This example is only mentioned for completeness in this chapter. It is the well known
CD-Player5 example from the SLICOT collection that has been frequently used as a test
example in the literature and therefore does not need an extensive introduction. We
restrict ourselves to a SISO variant of the model by extracting only the first row of C and
second column of B as the new output and input operators. This model is considerably
tough since it is relatively small (n = 120), but the Bode plot shows many peaks and
oscillations, that are hard to catch especially with a small reduced order model.

5http://www.slicot.org/index.php?site=examples

http://www.slicot.org/index.php?site=examples
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Figure 3.3.: Basic Configuration of the Spiral Inductor

3.6. The Spiral Inductor

The spiral inductor is a model of an integrated radio frequency passive inductor. It has
been equipped with an additional plane of copper (see Figure 3.3) to make it act as a
proximity sensor, as well. The overall real world extensions of the spiral turns is less
than 2mm in square. The matrices have been assembled according to a Partial Element
Equivalent Circuit method (PEEC) modeling with 2117 filaments, resulting in an order
1434 SISO model in generalized state space form. A detailed description of the model
can be found in [96]. The system matrices are part of the Oberwolfach Model Reduction
Benchmark Collection and can be downloaded form the description page at IMTEK6.

3.7. A Scalable Oscillator Example

Single oscillator chains consisting of various coupled (by spring elements) masses with,
e.g., proportional damping are a basic example for second order oscillator models in
textbooks and lecture notes. It is an easy exercise to see that we can express them with di-
agonal mass and tridiagonal stiffness and damping matrices. Here we discuss a slightly
more complicated model, that has recently been used by Truhar and Veselic [144]. It
consists of three such chains. Each of them coupled to a fixed mounting by an addi-
tional damper on the one end and fixed rigidly to a large mass coupling the three of
them. The large mass is bound to a fixed mount by a single spring element. Each of the
chains consists of n1 equal masses and stiffnesses. Thus the model parameters are the
masses m1, m2, m3 and corresponding stiffnesses k1, k2, k3 in the three oscillator chains,

6http://www.imtek.de/simulation/benchmark/wb/38891/

http://www.imtek.de/simulation/benchmark/wb/38891/
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(a) The Butterfly Gyro (b) Schematic view to the Butterfly Gyro

Figure 3.4.: The actual device and model scheme for the Butterfly Gyro

the coupling mass m0 with its spring stiffness k0, the viscosities ν of the additional
wall-mount-dampers and the length n1 of the single oscillator chains. The resulting
system then is of order n = 3n1 + 1. The mass matrix M stays diagonal. The stiffness K
and damping E now consist of a leading block diagonal matrix (consisting of the three
stiffness matrices for the three oscillator chains) and coupling terms in the last row and
column at positions n1, 2n1, 3n1 and in the diagonal element. If it is not stated otherwise
we are using m1 = 1, m2 = 2, m3 = 3, m0 = 10, k1 = 10, k2 = 20, k3 = 1 and k0 = 50 for the
model. The viscosity ν is taken as 5 and the default problem size is 1501, i.e., n1 = 500.

3.8. The Butterfly Gyro

The Butterfly Gyro is a vibrating micro mechanical gyro for application in inertial navi-
gation. The gyroscope is a three layered silicon wafer stack of which the actual sensor
element is the middle layer. The name of the device is derived from the fact that the
sensor is set up as a pair of double wings connected to a common beam (See Figure 3.4b).
The input matrices have been obtained by an ANSYS7 model. The original model con-
sists of 17,361 degrees of freedom resulting in an order 17,361 second order original
model. Thus, the equivalent first order original model following (2.7) is of dimension
34,722. Both systems have a single input and 12 outputs and the number of nonzero
entries in the system matrices is of order 107 (see also Figure 3.6a). This model is taken
from the Oberwolfach Model Reduction Benchmark Collection8 as well.

7http://www.ansys.com
8http://www.imtek.de/simulation/benchmark/wb/35889/

http://www.ansys.com
http://www.imtek.de/simulation/benchmark/wb/35889/
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(a) Microscopic view to the Fraunhofer/Bosch acceleration sensor

(b) Base configuration of an acceleration sensor.

Figure 3.5.: Microscopic view and model scheme for the acceleration sensor

3.9. Fraunhofer/Bosch Acceleration Sensor

The basic structure of the micro mechanic acceleration sensor consists of a seismic
mass coupled to two beam configurations at both its ends (see Figure 3.5b). The beam
configurations as well as the seismic mass have been modeled by beam elements and
connected by coupling elements. The original simulations [65] have been performed
using SABER9 and ANSYS. The model has 4 inputs an 3 outputs. The order of the
second order system is 27,225 resulting in an equivalent first order system of order
54,450. Although the system is considerably larger, the number of nonzero elements is
about the same as in the gyro example case (see Figure 3.6b).

9http://www.synopsys.com/Tools/SLD/Mechatronics/Saber/Pages/default.aspx

http://www.synopsys.com/Tools/SLD/Mechatronics/Saber/Pages/default.aspx
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(a) Stiffness matrix for the Butterfly Gyro

(b) Stiffness matrix for the acceleration sensor

Figure 3.6.: Sparsity patterns for the Butterfly Gyro and Fraunhofer/Bosch acceleration
sensor
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We now get to the most integral part of this thesis. The numerical treatment of large scale
sparse algebraic matrix equations is one of the key ingredients to many linear-quadratic
optimal control problems for parabolic PDEs, as well as the balancing based model
order reduction of large linear systems. The basic idea on which all methods for such
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kinds of problems are based,is that often the numerical rank of the solution is very small
compared to its actual dimension (see, [115, 7, 59]) and therefore it allows for a good
approximation via low-rank solution factors. In this chapter we concentrate on the low-
rank solution of those matrix equations based on alternating directions implicit (ADI)
related methods. We start the discussion by an introduction of the basic ADI iteration
and its application to Lyapunov equations. After that we treat one of the crucial issues
in ADI methods – the choice and computation of good iteration parameters. Some of
the major contributions of this thesis are then discussed in the fourth section. There
we present acceleration techniques for the low-rank ADI iteration, that can drastically
reduce the number of iterations steps and the memory requirements of the LRCF-ADI.

In the fifth section we will then discuss the combination of the LRCF-ADI with New-
ton type methods for the solution of algebraic Riccati equations. We especially review
how these methods can be rewritten to solve the LQR problem for the feedback oper-
ator directly and relate the Newton-Kleinman-ADI approach to the recently proposed
quadratic ADI (QADI) method that runs an ADI-type iteration on the quadratic Riccati
equation without employing an additional Newton’s method.

In the final section of this chapter we then present a handful of stopping criteria ap-
plicable for the iterations presented in the other sections and discuss their efficient
evaluation.

4.1. The ADI Iteration

The ADI iteration was originally introduced in [112] as a method for solving elliptic
and parabolic difference equations.

Let A ∈ Rn×n be a real symmetric positive definite (spd) matrix and let s ∈ Rn be known.
We can apply the ADI iteration to solve

Au = s,

when A can be expressed as the sum of matrices H and V for which the linear systems

(H + pI)v = r,
(V + pI)w = t

admit an efficient solution. Here p is a suitably chosen parameter and r, t are known.

If H and V are spd, then there exist positive parameters p j for which the two-sweep
iteration defined by

(H + p jI)u j− 1
2

= (p jI − V)u j−1 + s,
(V + p jI)u j = (p jI −H)u j− 1

2
+ s (4.1)

for j = 1, 2, . . . converges. If the shift parameters p j are chosen appropriately, then
the convergence rate is superlinear, but convergence rates can be ensured only when
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the matrices H and V commute. In the non-commutative case the ADI iteration is
not competitive with other methods. This section and the following two section are
essentially taken from [20]. In the following section we will show why solving Lyapunov
equations is considered an ADI model problem and motivate the basic low-rank ADI
iteration.

4.2. Lyapunov Equations: An ADI Model Problem

We consider a Lyapunov equation of the form

FY + YFT = −GGT (4.2)

with stable F; (4.2) is a model ADI problem [145]. The model condition that the com-
ponent matrices commute is retained. It can be seen when one recognizes that this is
equivalent to a linear operator M : Y 7→ FTY + YF = −GGT where M is the sum of
commuting operators: ML : Y 7→ FTY and MR : Y 7→ YF. In fact, unrolling matrices
into vectors in (4.2) one observes that the corresponding Kronecker products I ⊗ FT and
FT
⊗ I commute.

Applying the ADI iteration (4.1) to (4.2) yields

(F + p jI)Y j− 1
2

= −GGT
− Y j−1(FT

− p jI),
(F + p jI)YT

j = −GGT
− YT

j− 1
2
(FT
− p jI).

(4.3)

Note that the matrix Y j− 1
2

is in general not symmetric after the first sweep of each
iteration, but the result of the double sweep is symmetric.

The Basic Idea of Low-Rank ADI. The key observation [116] towards a low-rank
version of this iteration is, that after rewriting it into a one step iteration

Y j = −2p j(F + p jI)−1GGT(F + p jI)−T + (F + p jI)−1(F − p jI)Y j−1(F − p jI)T(F + p jI)−T, (4.4)

we find that (4.4) is symmetric. Now assuming Y j = Z jZT
j and Y0 = 0 we can write the

iteration in terms of the factors Z j, as

Z1 =
√
−2p1(F + p1I)−1G,

Z j =
[√
−2p1(F + p jI)−1G, (F + p jI)−1(F − p jI)Z j−1

]
.

Hence we can write (4.3) such that it forms the factors by successively adding a fixed
number of columns in every step. In the current formulation however all columns have
to be processed in every step, which makes the iteration increasingly expensive. Now
let J ∈N be the number of shift parameters we have at hand. Then defining the matrices
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T j := (F − p jI) and inverse matrices S j := (F + p jI)−1 as in [97] we can express the J-th
iterate as

ZJ =
[
SJ

√
−2pJG, SJ(TJSJ−1)

√
−2pJ−1G, . . . , SJTJ · · · S2(T2S1)

√
−2p1G

]
.

Now observing that the S j and T j commute we can reorder these matrices such that we
note that every block of the dimension of G essentially contains its left neighbor, i.e.,
predecessor in the iteration. Thus we find that we can rewrite the factor in the form

ZJ =
[
zJ, PJ−1zJ, PJ−2(PJ−1zJ), . . . , P1(P2 · · ·PJ−1zJ)

]
, (4.5)

and only need to apply a step operator

Pi :=

√
−2 Re (pi)√
−2 Re (pi+1)

(F + piI)−1(F − pi−1I)

=

√
−2 Re (pi)√
−2 Re (pi+1)

[
I − (pi + pi−1)(F + piI)−1

] (4.6)

to compute the new columns in every step. Especially note that only the new column
need to be processed this way. In summary this gives the presentation in Algorithm 4.1.

Convergence and Shift Parameters. If the shift parameters p j in (4.3) are chosen
appropriately then lim j→∞ Y j = Y with super-linear convergence rate. The error in
iterate j is given by e j = R je j−1, where

R j := (F + p jI)−1(FT
− p jI)(FT + p jI)−1(F − p jI).

and e0 := Y0 − Y. Thus the error after J iterations satisfies

eJ = WJe0, WJ :=
J∏

j=1

R j.

Writing R j in terms of the Kronecker products I ⊗ FT and FT
⊗ I one observes that the

factors in R j commute and ||W j||2 = ρ(W j). Therefore

||eJ ||2 ≤ ρ(WJ)||e0||2, ρ(WJ) = k(p)2,

where p = {p1, p2, . . . , pJ} and

k(p) = max
λ∈Λ(F)

∣∣∣∣∣∣∣∣
J∏

j=1

(p j − λ)
(p j + λ)

∣∣∣∣∣∣∣∣ . (4.7)

Obviously, this suggests to choose the ADI parameters such that we minimize ρ(WJ)
which leads to the rational min-max problem

min
{p j∈R: j=1,...,J}

k(p) (4.8)
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Algorithm 4.1 Low-rank Cholesky factor ADI iteration (LRCF-ADI)

Input: F,G defining FX + XFT = −GGT and shift parameters {p1, . . . , pimax}

Output: Z = Zimax ∈ C
n×timax , such that ZZH

≈ X
1: V1 =

√
−2 Re (p1)(F + p1I)−1G

2: Z1 = V1
3: for i = 2, 3, . . . , imax do
4: Vi =

√
Re (pi)/Re (pi−1)(Vi−1 − (pi + pi−1)(F + piI)−1Vi−1)

5: Zi = [Zi−1 Vi]
6: end for

for the shift parameters p j, see e.g. [145]. This minimization problem is also known as
the rational Zolotarev problem since, in the real case ( i.e. Λ(F) ⊂ R) it is equivalent
to the third of four approximation problems solved by Zolotarev in the 19th century,
see [94]. For a complete historical overview see [140].

4.3. ADI Shift Parameter Selection

4.3.1. Review of Existing Parameter Selection Methods

Many procedures for constructing optimal or suboptimal shift parameters have been
proposed in the literature [76, 116, 135, 145]. Most of the approaches cover the spectrum
of F by a domain Ω ⊂ C<0 and solve (4.8) with respect to Ω instead of Λ(F). In general one
must choose among the various approaches to find effective ADI iteration parameters
for specific problems. One could even consider sophisticated algorithms like the one
proposed by Istace and Thiran [76] in which the authors use numerical techniques
for nonlinear optimization problems to determine optimal parameters. However, it is
important to take care that the time spent in computing parameters does not outweigh
the convergence improvement derived therefrom.

Wachspress et al. [145] compute the optimum parameters when the spectrum of the
matrix F is real or, in the complex case, if the spectrum of F can be embedded in an
elliptic functions region

D(p) = { p = dn(zK, k) | z = x + ıy, 0 ≤ x ≤ 1, and |y| ≤ r },

which often occurs in practice. If 1 − k � 1 then these are egg-shaped regions in the
complex plane, whose normalized logarithms are elliptic regions and symmetric with
respect to both the real and imaginary axes. For the definitions of k and K see the
corresponding paragraph on the optimal parameters below. More details and broad
discussion of elliptic functions regions of special structure can be found in [145, Chapter
IV]. The optimum parameters may be chosen real even if the spectrum is complex as
long as the imaginary parts of the eigenvalues are small compared to their real parts
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(see [100, 145] for details). The method applied by Wachspress in the complex case
is similar to the technique of embedding the spectrum into an ellipse and then using
Chebyshev polynomials. In case that the spectrum is not well represented by the elliptic
functions region a more general development by Starke [135] describes how generalized
Leja points yield asymptotically optimal iteration parameters. Finally, an inexpensive
heuristic procedure for determining ADI shift parameters, which often works well in
practice, was proposed by Penzl [116]. We will summarize these approaches here.

Leja Points. Gonchar [58] characterizes the general min-max problem and shows how
asymptotically optimal parameters can be obtained with generalized Leja or Fejér points.
Starke [136] applies this theory to the ADI min-max problem (4.8). The generalized Leja
points are defined as follows. Given E,F subsets of C containing the spectra of I ⊗ FT

and FT
⊗ I, as well as arbitrarily points ϕ j ∈ E and ψ j ∈ F, then for j = 1, 2, . . . , the new

points ϕ j+1 ∈ E and ψ j+1 ∈ F are chosen recursively in such a way that, with

r j(z) =

j∏
i=1

z − ϕ j

z − ψ j
(4.9)

the two conditions

max
x∈E
|r j(z)| = |r j(ϕ j+1)|, max

x∈F
|r j(z)| = |r j(ψ j+1)|, (4.10)

are fullfilled. Bagby [8] shows that the rational functions r j obtained by this procedure
are asymptotically minimal for the rational Zolotarev problem.

The generalized Leja points can be determined numerically for a large class of boundary
curves ∂E. When relatively few iterations are needed to attain the prescribed accuracy,
the Leja points may be poor. Moreover their computation can be quite time consuming
when the number of Leja points generated is large, since the computation gets more and
more expensive the more prior Leja points have already been calculated. A potential
theory based computation framework for the Leja point based shifts was introduced by
Sabino in [128].

Optimal Parameters. In this section we will briefly summarize the parameter selec-
tion procedure given in [145].

Define the spectral bounds a, b and a sector angle α for the matrix F as

a = min
i

(Re{λi}), b = max
i

(Re{λi}), α = tan−1 max
i

∣∣∣∣∣ Im{λi}

Re{λi}

∣∣∣∣∣, (4.11)

where λ1, . . . , λn are eigenvalues of −F. It is assumed that the spectrum of −F lies inside
the elliptic functions region determined by a, b, α, as defined in [145]. Let

cos2 β =
2

1 + 1
2

(
a
b + b

a

) , m =
2 cos2 α

cos2 β
− 1. (4.12)
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If α < β, then m ≥ 1 and the parameters are real. We define

k1 =
1

m +
√

m2 − 1
, k =

√
1 − k1

2. (4.13)

Define the elliptic integrals K and v via

F[ψ, k] =

ψ∫
0

dx√
1 − k2 sin2 x

, (4.14)

as

K = K(k) = F
[
π
2
, k

]
, v = F

[
sin−1

√
a

bk1
, k1

]
, (4.15)

where F is the incomplete elliptic integral of the first kind, k is its modulus and ψ is its
amplitude.

The number of the ADI iterations required to achieve k(p)2
≤ ε is J = d K

2vπ log 4
ε e, and

the ADI parameters are given by

p j = −

√
ab
k1

dn
[ (2 j − 1)K

2J
, k

]
, j = 1, 2, . . . , J, (4.16)

where dn(u, k) is the elliptic function (see [2]).

If m < 1, the parameters are complex. In this case we define the dual elliptic spectrum,

a′ = tan
(
π
4
−
α
2

)
, b′ =

1
a′
, α′ = β.

Substituting a′ in (4.12), we find that

β′ = α, m′ =
2 cos2 β

cos2 α
− 1.

By construction, m′ must now be greater than 1. Therefore we may compute the opti-
mum real parameters p′j for the dual problem. The corresponding complex parameters
for the actual spectrum can then be computed from:

cosα j =
2

p′j + 1
p′j

, (4.17)

and for j = 1, 2, . . . , d 1+J
2 e

p2 j−1 =
√

ab exp[ıα j], p2 j =
√

ab exp[−ıα j]. (4.18)
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Heuristic Parameters. The bounds needed to compute optimal parameters are too
expensive to be computed exactly in case of large scale systems because they need the
knowledge about the shape of the whole spectrum of F. In fact, this computation would
be more expensive than the application of the ADI method itself.

An alternative was proposed by Penzl in [116]. He presents a heuristic procedure
which determines suboptimal parameters based on the idea of replacing Λ(F) by an
approximation R of the spectrum in (4.8). Specifically, Λ(F) is approximated using the
Ritz values computed by the Arnoldi process (or any other large scale eigen-solver). Due
to the fact that the Ritz values tend to be located near the largest magnitude eigenvalues,
the inverses of the Ritz values related to F−1 are also computed to get an approximation of
the smallest magnitude eigenvalues of F yielding a better approximation of Λ(F). Note
however that for symmetric matrices F the Arnoldi method reduces to the Lanczos
method which converges to largest and smallest magnitude eigenvalues at the same
time. Thus the additional computation with F−1 is not necessary there. The suboptimal
parameters P = {p1, . . . , pk} are then chosen among the elements of the approximation
because the function

sP(t) =
|(t − p1) . . . (t − pk)|
|(t + p1) . . . (t + pk)|

,

becomes small over Λ(F) if there is one of the shifts p j in the neighborhood of each
eigenvalue. The procedure determines the parameters as follows. First, the element
p j ∈ R which minimizes the function s{p j} over R is chosen. The set P is initialized by
either {p j} or the pair of complex conjugates {p j, p̄ j}. Now P is successively enlarged
by the elements or pairs of elements of R, for which the maximum of the current sP

is attained. Doing this the elements of R giving the largest contributions to the value
of sP are successively canceled out. Therefore the resulting sP is non-zero only in the
elements of R where its value is comparably small anyway. In this sense (4.8) is solved
heuristicly.

Discussion. We are looking for alternative strategies for non-real spectra with non-
dominating imaginary parts. These are, e.g., spectra of the convection-diffusion-models
in Sections 3.1 and 3.4 where the diffusive part is dominating the reaction or convection
terms, respectively. Thus the resulting operator has a spectrum with only moderately
large imaginary components compared to the real parts. In these problems the Wachs-
press approach should always be applicable and lead to real shift parameters in many
cases. In problems, where the reactive and convective terms are absent, i.e., we are
considering a plain heat equation and therefore the spectrum is part of the real axis, the
Wachspress parameters are proven to be optimal. The heuristics proposed by Penzl is
more expensive to compute there and Starke notes in [136], that the generalized Leja
approach will not be competitive here since it is only asymptotically optimal. For the
complex spectra case common strategies to determine the generalized Leja points gen-
eralize the idea of enclosing the spectrum by a polygonal domain, where the starting
roots are placed in the corners. So one needs quite exact information about the shape of
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Algorithm 4.2 Approximate optimal ADI parameter computation
Input: F ∈ Rn×n Hurwitz stable

1: if Λ(F) ⊂ R then
2: Compute the spectral bounds and set a = min Λ(−F) and b = max Λ(−F),

3: k1 = a
b , k =

√
1 − k2

1,
4: K = F(π2 , k) , v = F(π2 , k1).
5: Compute J and the parameters according to (4.16).
6: else
7: Compute ã = min Re (Λ(−F)), b̃ = max Re (Λ(−F)) and c = ã+b̃

2 .
8: Compute l largest magnitude eigenvalues λ̂i for the shifted matrix −F + cI by an

Arnoldi process or alike.
9: Shift these Eigenvalues back, i.e. λ̃i = λ̂i + c.

10: Compute a, b and α from the λ̃i like in (4.11).
11: if m ≥ 1 in (4.12) then
12: Compute the parameters by (4.12)–(4.16).
13: else {The ADI parameters are complex in this case}
14: Compute the dual variables.
15: Compute the parameters for the dual variables by (4.12)–(4.16).
16: Use (4.17) and (4.18) to get the complex shifts.
17: end if
18: end if

the spectrum there. In practice this would require the computation of the eigenvalues
with largest imaginary parts already for a simple rectangular enclosure of the spectrum.
Since this still does not work reliably, we decided to avoid the comparison with that
approach here, although it is an option in cases where the Wachspress parameters are
no longer applicable or one knows some a-priori information on the spectrum.

4.3.2. Suboptimal Parameter Computation

In this section we discuss our new contribution to the parameter selection problem. The
idea is to avoid the problems of the methods reviewed in the previous section and on
the other hand combine their advantages.

Since the important information that we need to know for the Wachspress approach
is the outer shape of the spectrum of the matrix F, we will describe an algorithm
approximating the outer spectrum. With this approximation the input parameters a,
b and α for the Wachspress method are determined and the optimal parameters for
the approximated spectrum are computed. Obviously, these parameters have to be
considered suboptimal for the original problem, but if we can approximate the outer
spectrum at a similar cost to that of the heuristic parameter choice we end up with a
method giving nearly optimal parameters at a drastically reduced computational cost
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compared to the optimal parameters.

In the following we discuss the main computational steps in Algorithm 4.2, that com-
putes the parameters described above. The basic idea of the algorithm is to center the
spectrum around the origin via a real shift c, such that all important eigenvalues deter-
mining the outer shape of the spectrum of F tend to be largest magnitude eigenvalues
of the shifted matrix F− cI. Then the main workload for the determination of the shape
of the spectrum lies on the Arnoldi process with respect to F − cI and we avoid the
application of F−1 as far as possible. Also eigenvalues with relatively large imaginary
parts are fixed easier in this representation.

Real Spectra. In the case where the spectrum is real we can simply compute the
upper and lower bounds of the spectrum by an Arnoldi or Lanczos process and enter
the Wachspress computation with these values for a and b, and set α = 0, i.e., we
only have to compute two complete elliptic integrals by an arithmetic geometric mean
process. This is very cheap since it is a quadratically converging scalar computation
(see below).

Complex Spectra. For complex spectra we introduce an additional shifting step to
be able to apply the Arnoldi process more efficiently. Since we are dealing with stable
systems , we compute the largest magnitude and smallest magnitude eigenvalues and
use the arithmetic mean of their real parts as a horizontal shift, such that the spectrum is
centered around the origin. Now Arnoldi’s method is applied to the shifted spectrum,
to compute a number of largest magnitude eigenvalues. These will now automatically
include the smallest magnitude eigenvalues of the original system after shifting back.
So we can avoid extensive application of the Arnoldi method to the inverse of F. We
only need it to get a rough approximation of the smallest magnitude eigenvalue to
determine ã and b̃ for the shifting step.

The number of eigenvalues we compute can be seen as a tuning parameter here. The
more eigenvalues we compute, the better the approximation of the shape of the spectrum
is and the closer we get to the exact a, b and α, but obviously the computation becomes
more and more expensive. Especially the dimension of the Krylov subspaces is rising
with the number of parameters requested and with it the memory consumption in the
Arnoldi process. But in cases where the spectrum is filling a rectangle or an egg-like
shape, a few eigenvalues are sufficient (compare Section 8.1.1).

A drawback of this method can be that in case of small (compared to the real parts)
imaginary parts of the eigenvalues, one may need a large number of eigenvalue approx-
imations to find the ones with largest imaginary parts, which are crucial to determine
α accurately. On the other hand in that case the spectrum is almost real and therefore it
will be sufficient to compute the parameters for the approximate real spectrum in most
applications.
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Computation of the Elliptic Integrals. The new as well as the Wachspress parameter
algorithms require the computation of certain elliptic integrals presented in (4.14). These
are equivalent to the integral

F[ψ, k] =

ψ∫
0

dx√
(1 − k2) sin2 x + cos2 x

=

ψ∫
0

dx√
(k2

1) sin2 x + cos2 x
. (4.19)

In the case of real spectra, ψ = π
2 and F[π2 , k] is a complete elliptic integral of the form

I(a, b) =

π
2∫

0

dx√
a2 cos2 x + b2 sin2 x

and I(a, b) = π
2M(a,b) , where M(a, b) is the arithmetic geometric mean of a and b. The

proof for the quadratic convergence of the arithmetic geometric mean process is given
in many textbooks (e.g., [137]).

For incomplete elliptic integrals, i.e., the case ψ < π
2 , an additional Landen’s transfor-

mation has to be performed. Here, first the arithmetic geometric mean is computed
as above, then a descending Landen’s transformation is applied (see [2, Chapter 17]),
which comes in at the cost of a number of scalar tangent computations equal to the
number of iteration steps taken in the arithmetic geometric mean process above.

The value of the elliptic function dn from equation (4.16) is also computed by an
arithmetic geometric mean process (see [2, Chapter 16]).

To summarize the advantages of the proposed method we can say:

• We compute real shift parameters even in case of many complex spectra, where
the heuristic method would compute complex ones. This results in a significantly
cheaper ADI iteration considering memory consumption and computational ef-
fort, since complex computations are avoided.

• We have to compute less Ritz values compared to the heuristic method, reducing
the time spent in the computational overhead for the acceleration of the ADI
method.

• We compute a good approximation of the Wachspress parameters at a drastically
reduced computational cost compared to their exact computation.

Test computations utilizing the proposed methods in comparison to the legacy heuristic
method by Penzl can be found in Section 8.1.

4.3.3. Dominant Pole Based Shifts for Balancing Based MOR

All the shift parameter selection methods discussed in the above aim at minimizing the
spectral radius ρ(WJ) of the global iteration matrix in the ADI process. In balancing
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based MOR there might on the other hand be other choices that can contribute more
to the actual goal of the computation. In contrast to solely solving the Lyapunov
equation it is the generation of a reduced order model that preserves the input output
behavior of the original system as good as possible. A commonly used measure for this
approximation is the frequency response of the system. For general linear time invariant
systems, the dominant eigenvalues are the poles of the transfer function that contribute
significantly to the frequency response. The key observation for the definition of the
dominant poles is that the transfer function of a MIMO system can be expressed as the
sum of residues over the first order poles (eigenvalues) λi

H(s) =

ñ∑
i=1

Ri

s − λi
,

where the residue matrices R j are

R j = (C∗x j)(y∗jB).

Here x j and y j are the right and left eigenvectors corresponding to λ j, which are scaled
such that y∗jMx j = 1 and y∗i Mx j = 0 if j , i. Then the dominant poles are those poles
λ j corresponding to relatively large residuals ‖R j‖2/|Re (λ j)| in the above sum. Further
details on the definition of dominant poles especially for the descriptor system case
(M = E singular) can be found in [125]. There the author also presents methods to
compute these dominant poles in large scale sparse applications.

We further note that fast convergence of the ADI iteration is not always desirable in
MOR applications, since the number of iterations taken limits the rank of the Gramian
factors computed. The smaller of the ranks of the two Gramian factors entering the LR-
SRBT (Section 2.4) via the low-rank square-root method (LR-SRM, see Algorithm 7.1)
limits the order of the ROM and therefore the accuracy of the reduction. We will return
to this topic in more detail in Chapter 7.

Thus it can be desirable to decrease the convergence speed of the ADI process as long as
new subspace information enters the factors with every step taken, and with it the rank
of the factor is increased. Now returning to the idea of the dominant poles above, we
would expect that the essential information to cover all peaks of the transfer function is
to catch the dominant poles and their corresponding eigenspaces. Therefore using the
dominant poles as ADI shifts in MOR contexts suggests itself on a philosophic level.
A mathematically rigorous analysis of this interrelation is an open problem. Still the
numerical tests taken so far (see Section 8.1.4) show interesting phenomena that suggest
further study.
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4.4. Acceleration of the LRCF-ADI Method for Lyapunov
Equations

The most criticized property of the ADI iteration for solving Lyapunov equations is its
demand for a set of good shift parameters to ensure fast convergence. Although we
have investigated several parameter computation techniques above that are cheaply
computable, most of these are suboptimal in many cases and thus fast convergence can
indeed not be guaranteed. Additionally, if the convergence is slow, the LRCFs may grow
without adding essential information in subsequent iteration steps. If so the number of
columns in the factors may easily exceed the rank of the factor leading to undesirable
memory requirements.

Here we discuss several techniques trying to overcome these problems. In the next
section we will present a column compression technique minimizing the number of
columns of the LRCF and thus decreasing the “per step” computational cost. The
remaining sections will then show how we can decrease the number of steps taken in
the outer iteration.

4.4.1. Column Compression for the LRCFs

If we are in the situation that we cannot afford to compute good ADI shifts or all of the
above suboptimal techniques are leading to slow convergence in many steps, then we
will only slowly increase the dimension of the subspace spanned by the columns of the
LRCFs but we will still add a fixed number of columns every step in finite arithmetic, i.e.,
in calculations carried out on a computer. These new columns do not only fill memory
where it is not required, but also increase the computational cost of the iteration, since
residual computations required in the stopping criteria will incorporate these columns
as well. It is therefore highly desirable to keep the factors as small as possible. That
means we need a method to reduce the number of columns of the LRCFs to their current
rank. In [63] the authors propose to employ a sequential Karhunen-Loeve algorithm for
this task. Since this involves a full QR decomposition and an SVD we suggest a cheaper
method based on the rank revealing QR decomposition (RRQR) [35] here.

Consider X = ZZT where Z ∈ Rn×rc and the numerical rank rank (Z, τ) = r < rc. We
compute the RRQR of ZT = QRΠ, where

R =

[
R11 R12
0 R22

]
and R11 ∈ R

r×r. (4.20)

This enables us to set Z̃T = [R11 R12] ΠT and find that then Z̃Z̃T =: X̃ ≈ X. We especially
emphasize that we do not even have to accumulate Q during the computation and use
it in the definition of Z̃, since it would cancel out in the product Z̃Z̃T anyway, due to
its orthogonality. Note that for τ = 0 we have rank (Z) = r. Hence R22 = 0 and we find
X̃ = X.
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Algorithm 4.3 Galerkin Projection accelerated LRCF-ADI (LRCF-ADI-GP)

Input: F,G defining FX + XFT = −GGT and shift parameters {p1, . . . , pimax}

Output: Z = Zimax ∈ C
n×timax , such that ZZH

≈ X
1: V1 =

√
−2 Re (p1)(F + p1I)−1G

2: Z1 = V1
3: for i = 2, 3, . . . , imax do
4: Vi =

√
Re (pi)/Re (pi−1)(Vi−1 − (pi + pi−1)(F + piI)−1Vi−1)

5: Zi = [Zi−1 Vi]
6: Orthogonalize the columns of Zi, e.g., Ui =mgs(Zi), or [Ui,Ri,Πi] =qr(Z, 0)
7: Fi = UT

i FUi, Gi = UT
i G

8: Solve FiYi + YiFT
i = −GiGT

i exactly for Ri with Yi = RT
i Ri.

9: Zi = UiRi
10: Update Vi from the last column block of Zi.
11: end for

In practical implementations the rank decision has to be performed on the basis of
the truncation tolerance τ in the RRQR. Benner and Quitana-Ortı́ [23, equation (1.25)]
noted that a truncation tolerance of

√
u, where u is the machine precision, is sufficient

to achieve an error of the magnitude of the machine precision for the solution X =
ZZT of the corresponding Lyapunov equation. This is sufficient inside algorithms
that at least implicitly form the LRCFP, like in Algorithm 4.7 or Algorithm 4.8. Note
however that, e.g., in the LR-SRM (see, e.g., Algorithm 7.1) used for balanced truncation
MOR, the LRCF directly enters the subsequent computations and therefore a smaller
truncation tolerance (like the machine precision itself) must be employed in the column
compression.

4.4.2. Hybrid Krylov-ADI Solvers for the Lyapunov Equation

A Galerkin Projection Based Acceleration Technique

Krylov subspace methods for solving large Lyapunov equations are based on the equally
named paper [80] by Jaimoukha and Kasenally. There the basic idea is to consider the
Schur decomposition X = UΣUT of the solution X, where U ∈ Rn×n is an orthogonal
matrix and Σ = diag (σ1, . . . , σn) is diagonal, due to the symmetry of X. Further the
eigenvalues are considered to be ordered such that |σ1| ≥ |σ2| ≥ · · · ≥ |σn|. Therefore it
coincides with the SVD of X. The best rank-m Frobenius-norm approximation is thus
given by

Xm := U
[
Σm 0
0 0

]
UT = UmΣmUT

m. (4.21)

Here Σm = diag (σ1, . . . , σm) and Um ∈ Rn×m consists of the first m columns of U. The
basic idea now is to compute Xm via the solution of a projected version of the Lyapunov
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equation (4.2)

(UT
mFUm)Ym + Ym(UT

mFTUm) = −UT
mGGTUm, (4.22)

on Um, the column span of Um, and define Xm as

Xm = UmYmUT
m. (4.23)

The basic projection idea described in the above has already been considered by
Saad [126] 4 years earlier for general subspaces Um to project on. The main concern
in [80] and related Krylov subspace methods (e.g., [75, 131, 82, 81, 72]) is then to find or
compute an orthogonal basis of a good (Krylov) subspace approximating Um. The most
promising among these methods seems to be the recently proposed Krylov-plus-inverse-
Krylov (KPIK) Method by Simoncini [131], which uses a rational Krylov subspace for
the projection. A convergence analysis for the projection based solvers is carried out
in [132].

We employ the same projection idea here, but replace the critical Krylov subspace by
the column span of the current ADI iterate Zi in the i-th iteration step. Since we need to
preserve the Galerkin type approximation features, the orthogonality of the projection
is crucial. We are interested in the subspace spanned by Zi, therefore we compute a QR
decomposition

Zi =: QiRi (4.24)

and use Qi for the projection in equation (4.22)

(QT
i FQi)Yi + Yi(QT

i FTQi) = −QT
i BBTQi. (4.25)

Now computing a Cholesky factorization of Yi = R̃T
i R̃i we define the optimization Z̃i of

Zi on the current subspace via
Z̃i := QiR̃i. (4.26)

We emphasize, that Hammarling’s method [67], as well as the sign function method [22]
can directly compute the Cholesky factor R̃i. Note that dropping the original Ri com-
pletely is no problem at all, since our primary concern is the subspace information
contained in the orthogonal columns of Qi only. Note however, that in cases where Zi
does not have full rank the column space of a standard QR-decomposition does not
necessarily coincide with the column space of Zi (see [57, Section 5.4]). In those cases it
is crucial to use QR with column pivoting to ensure the equality of the column spaces.

A similar method has also been proposed for the more general Silvester equation case
in [19]. We have to keep in mind, that the Krylov projection based methods do not work
for general Lyapunov equations. They are only applicable for those equations where the
projected equation (e.g. (4.22)) remains stable, i.e., the Matrix UT

mFUm is asymptotically
stable. It can be shown using Bendixson’s theorem [103], that F + FT < 0 is sufficient
to get Re (λ) < 0 for all λ ∈ Λ(UTFU) if U ∈ Rn×r. This is clearly a restriction, but
it holds for any dissipative operator. Dissipativity of the operator is a rather basic
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assumption, that has to be made, e.g., in many control problems for parabolic PDEs
anyway. The condition F + FT < 0 however can be crucial. For the artificial test matrix
from Section 3.2 this condition is not fulfilled. It is easy to check that for this example
we have F + FT = A + AT = diag[-0.02 0.002 -0.4 -0.2 -0.04 0 -0.02 -0.02 -2:-2:-400] in
Matlab notation. Comparing LRCF-ADI and LRCF-ADI-GP shows, that the Galerkin
projection causes the ADI iteration to stagnate for this example. The integration of the
above acceleration into LRCF-ADI gives the Galerkin projection accelerated LRCF-ADI
(LRCF-ADI-GP) presented in Algorithm 4.3. Note that the last step in the loop is rather
arbitrary, since we can not tell which columns are the ones “belonging” to V1 after
computing the updated Zi. That means that we are more or less free to choose any
appropriate number of columns in Zi. Here we decided to take the last columns since
they will in general contain linear combinations of the largest number of orthogonal
columns from Ui and thus have most subspace information saved. In this sense this
should be seen as a restarted ADI iteration, since we can no longer guarantee the full
structure of the factor as in (4.5), but keep as much information as possible for the restart.

Rank Deficiency and Combination With Column Compression. We have noted
above, that in case of rank deficient Zi we need to perform column pivoting while
computing the QR decomposition in (4.24). We will now discuss how we can combine
this approach with the column compression technique discussed in Section 4.4.1. The
basic idea is to replace step 6 in Algorithm 4.3 by an orthogonalize and compress
step. The naive approach would be to apply the RRQR to compress the columns
first and then use the new factor to compute the orthogonal basis for the projection.
Obviously this would require the relatively expensive orthogonalization twice. Since
this is unacceptable especially for larger systems, we propose an alternative way, that
will not avoid the two orthogonalizations, but apply one of them to a much smaller
matrix.

Let Z ∈ Rn×rc and consider rank (Z, τ) = r < rc as in Section 4.4.1 for a given τ ∈ R. We
can now compute the “economy size” QR decomposition with column pivoting

Z =: Q1R1Π1,

where Q1 ∈ R
n×rc and R1 ∈ R

rc×rc and Π1 a permutation matrix. Note that this can
be done efficiently using level 3 BLAS [121] via xGEQP3 routines in recent LAPACK
implementations. Also Matlab uses these routines when called with second input
parameter 0 or three output parameters. Now assuming that rc � n, R1 is much smaller
than Z. The numerical rank decision can therefore be performed a lot cheaper on R1
than on ZT. Hence computing

R1 =: Q2R2Π2,

using the RRQR as in Section 4.4.1, we have a cheap way to perform the rank decision.
The final factorization then is

Z = Q1Q2R2Π2Π1.
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Defining Q as the first r columns of the product Q1Q2 we can now proceed as in (4.25)
and (4.26) resulting in a compressed and corrected new LRCF iterate Z̃. Note that
solving (4.25) now is even cheaper, since the subspace is smaller and so are the matrices.
Also the numerical stability of the computation for (4.25) will be better, since due to the
truncation the condition numbers of the projected matrices should have decreased.

Note that the numerical results for the Galerkin projection acceleration in Chapter 8
have been acquired by an experimental Matlab implementation using orth to compute
the orthogonal basis of span(Z), which uses an SVD approach for the rank decision and
truncation. This, although more reliable in terms of the rank approximation, will in
general be more time consuming than the RRQR based approach. In the present context
it is more favorable to have faster execution, thus we propose the RRQR based approach
for efficient implementations. The efficient RRQR based codes and tests are part of the
C.M.E.S.S.-implementation and corresponding timings will be given in [84].

Krylov Subspace Interpretation. From the viewpoint of the LRCF-ADI the Galerkin
projection is an acceleration technique trying to improve the quality of the iterate on
the current column space. That means it can be interpreted as some kind of subspace
optimization method applied to the ADI iteration. On the other hand in her thesis Jing-
Rebecca Li showed [95, Corollary 1] that the column span of the Lyapunov solution is
itself a special type of rational Krylov subspace. The span of its factor is then the same
Krylov subspace. Following from the structure of the space and the iteration this holds
for the previous iterates as well. Combining that knowledge with the idea of taking
rational Krylov subspaces (as in KPIK [131]) for the projection in [80], we immediately
see that Algorithm 4.3 can also be interpreted as a certain Krylov subspace projection
method. It is thus in fact a hybrid Krylov-ADI-Iteration.

Avoiding the Orthogonalization. The projection method we have just introduced
uses orthogonalization of the columns of Zi to compute the orthogonal projection to
the subspace. In general using orthogonal matrices for the projection is a good idea,
since these are well conditioned and do not amplify errors in the computations. On
the other hand in the proposed method the projection is only an accelerator for the
outer iteration. So from an implementational point of view, we may earn more if we
compute a slightly worse optimization in notably reduced time, i.e., we can afford to
risk numerical stability issues due to non-orthogonality if we can further accelerate
the computation. In the following we will therefore extend the above consideration
to the case where we implement the orthogonal projection (which we cannot avoid)
by Zi itself instead of Qi. Note however, that in practice we need to ensure that Zi is
not rank deficient, such that all the following computations are well defined and well
conditioned. The general orthogonal projection onto the column space of a matrix Z is

PZ := Z(ZTZ)−1ZT.
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In case of an orthogonal Q obviously this reduces to

PQ := QQT,

which gives rise to equations (4.22), (4.25). Starting with the projection of F and G by
PQ equation (4.2) becomes

PQFPT
QXm + XmPQFTPT

Q = −PQGGTPT
Q, (4.27)

which becomes (4.22) after multiplication by Q from the right and QT from the left and
explains (4.23).

Now replacing PQ with PZ in the above we need to take an additional step. Starting at

PZFPT
ZXm + XmPZFTPT

Z = −PZGGTPT
Z,

and inserting the definition of PZ, after multiplication with ZT and Z from let and right
as above, we get

ZTZ(ZTZ)−1ZTFZ(ZTZ)−1ZTXmZ + ZTXmZ(ZTZ)−1ZTFTZ(ZTZ)−1ZTZ

= −ZTZ(ZTZ)−1ZTGGTZ(ZTZ)−1ZTZ.

Now defining Fm := ZTFZ and Gm := ZTG we find

Fm(ZTZ)−1ZTXmZ + ZTXmZ(ZTZ)−1FT
m = −GmGT

m

Fm(ZTZ)−1ZTXmZ(ZTZ)−T(ZTZ)T + (ZTZ)T(ZTZ)−TZTXmZ(ZTZ)−1FT
m = −GmGT

m,

and finally

FmỸmET
m + EmỸmFT

m = −GmGT
m,

where Em = ZTZ. Again we see that this is a direct extension of the orthogonal case
since there Em = QTQ = Im.

Note that computing Xm from Ym works exactly as above since

Ym = (ZTZ)−TZTXmZ(ZTZ)−1

and thus

ZYmZT = PZXmPT
z .

So at the cost of solving a generalized projected Lyapunov equation instead of the
projected standard Lyapunov equation (4.25), we can avoid the orthogonalization of
the current iterate completely.
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Generalized Lyapunov Equations. The Galerkin projection technique can easily be
extended to the case of generalized Lyapunov equations of the form

FXET + EXFT = −GGT. (4.28)

Especially avoiding the orthogonalization can be generalized, where most of the above
remains unchanged. We only have to define Em := ZTEZ. Analogously we define
Em := QTEQ in the orthogonal case. More details on the algorithms developed for
solving (4.28) can be found in Chapter 5.

KPIK Starting Guesses for the LRCF-ADI

Up to now we have always considered the LRCF-ADI to use an empty or all zero matrix
as initial value for the iteration. In the first paragraph we will discuss that both the basic
low-rank ADI iteration as introduced by Penzl [116] and the Li/White extension [97]
allow for the use of a non-zero initial guess. The second paragraph then describes how
to compute those initial values efficiently in the SISO case. We show there that after
minor changes to the present behaviour we can calculate them from the data that we
need to compute anyway.

Non-Zero Starting Guesses for the LRCF-ADI. The key observation for Penzls
derivation of the low-rank ADI iteration is the following. After rewriting the two
step ADI process as a one step iteration by inserting one equation into the other and
replacing the iterate X j by its factorization X j = Z jZT

j , he ended up with:

Z0 = 0,

Z1 =
√
−2p1(F + p1I)−1G,

Z j = [
√
−2p j(F + p jI)−1G, (F + p jI)−1(F − p jI)Z j−1], j ≥ 2.

The main reasons for the Z0 = 0 here were that it is the easiest (and obvious) choice and
works flawlessly. It even simplifies the expression for Z1. If we now assume that we
have an admissible initial guess Z0 given, the above changes to read

Z j = [
√
−2p j(F + p jI)−1G, (F + p jI)−1(F − p jI)Z j−1], j ≥ 1. (4.29)

Defining Si := (F + piI)−1 and Ti := (F − piI), as in [97] we find that after J = imax ADI
steps the iterate is

ZJ =
[
SJ

√
−2pJG, SJ(TJSJ−1)

√
−2pJ−1G, . . . , SJTJ · · · S2(T2S1)

√
−2p1G,

SJTJ · · · S2T2S1T1Z0

]
. (4.30)



58 Chapter 4. Efficient Solution of Large Scale Matrix Equations

Algorithm 4.4 Low-rank Cholesky factor ADI iteration with initial guess (LRCF-ADI-S)

Input: F,G defining FX + XFT = −GGT, a starting guess Z0 and shift parameters
{p1, . . . , pimax}

Output: Z = Zimax ∈ C
n×timax , such that ZZH

≈ X
1: V1 =

√
−2 Re (p1)(F + p1I)−1G

2: V0 = (F − p1I)(F + p1I)−1Z0
3: Z̃1 = V1
4: Z1 = [Z̃1 V0]
5: for i = 2, 3, . . . , imax do
6: Vi =

√
Re (pi)/Re (pi−1)(Vi−1 − (pi + pi−1)(F + piI)−1Vi−1)

7: V0 = V0 − (pi + pi−1)(F + piI)−1V0
8: Z̃i = [Z̃i−1 Vi]
9: Zi = [Z̃i V0]

10: end for

All columns arising from G (first line in (4.30)) are exactly the same as computed for
Z0 = 0. Therefore the only difference is the column block arising from Z0 (second line
in (4.30)). That means we can apply the standard Li/White method to the first column
block as before and only need to handle the columns computed from Z0 separately. We
summarize these findings in Algorithm 4.4 and note that the acceleration techniques
discussed so far can also be applied here. They should however be applied to Z̃i
and V0, as well, since comparing the last 2 block columns in (4.30) we see that the
column space of V0 is manipulated by T1 which the part resulting from G is not. We
should therefore separate the subspace information wherever possible. In the case of
the column compression this is not problematic. In case of the Galerkin projection we
need to apply the projection using the full factor information from Zi including that
from V0. Unfortunately we will not be able to separate V0 and V1 from the resulting
corrected factor. But with the same interpretation as in the case of the LRCF-ADI-GP,
we can choose the corresponding last column blocks here as well.

Computing the KPIK Starting Guess in the LRCF-ADI Context. Let us restrict our-
selves to the SISO system case for the moment, i.e., G ∈ Rn. We have seen in Section 4.3
that in general we need to approximate the spectrum of F in order to find the shift
parameters pi for the LRCF-ADI. To do so we generally apply an Arnoldi process to F
to compute some Ritz values approximating the large eigenvalues of F. For approxima-
tion of the small eigenvalues we compute some Ritz values with respect to F−1 and take
their reciprocals as the desired approximations. Normally we start these two Arnoldi
processes with an all ones or random vector b. The two Arnoldi processes are then
computing orthogonal bases of the two Krylov subspaces

Kkp(F, b) and Kkm(F−1, b).
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On the other hand KPIK [131] forms the augmented rational Krylov space

Km(F,G) ∪Km(F−1,G)

to perform the subspace projection (4.22) from the beginning of this section. If we now
choose kp = km = m (compare Algorithm 4.2) and b = G for the Arnoldi processes
computing the Ritz values, we can directly reuse the orthogonal bases computed there
to find the m-th KPIK approximation to the solution of (4.2). Normally this should
already be a better approximation than Z0 = 0 and we may save some ADI steps at
essentially no additional cost. Clearly the projected Lyapunov equation and its solution
need to be computed additionally, but that will generally be cheaper than the execution
of several steps of the ADI process.

4.4.3. Software Engineering Aspects

In this section we will especially consider implementation details. The idea is to find
the fastest way to implement ADI in different software environments. Especially we
emphasize, that the straight forward way is not always the best way to implement
things in the different environments.

The part of ADI that allows for the largest gain in computation time is at the same time
the part we can loose most time. It is the cyclical usage of the shift parameters. When
applying direct solvers, we compute the LU or Cholesky factorization of the shifted
matrices and do triangular forward-backward-solves to get the solution computed.
This is especially helpful in the MIMO systems case. There we would have to rerun
iterative methods for every column in G. Alternatively we would need to find and apply
some sort of reuse strategy capable of computing the Krylov-basis for next column in
G from the one for the current one (see, e.g. [95, Section 8.8]). In case of direct solvers
we can apply the triangular solves to all columns in G at the same time. Also, if we
are running a cyclic ADI and we have enough memory available, we would want to
save the decomposition of the shifted matrix and reuse the factors the next time the
same shift is applied, i.e., in the next cycle. Doing so obviously avoids repetition of
the same decomposition every time the shift is used and thus reduces the cost of the
solve to the cheaper forward-backward-substitutions. Unfortunately in current Matlab

implementations the computation and storage of the factors (via lu or chol) shows to
be much more expensive than doing multiple solver (\) operations for matrices of larger
dimensions. Thus the full solve applying \ is much cheaper in CPU time. Opposing
what simple operation counts would tell us, avoiding the pre-computation of the factors
and thus repeating the decompositions in every cycle is what should currently be done
in Matlab. See Section 8.4 Table 8.18 for details.

Thinking of a C-implementation on the other hand we can perfectly exploit the existence
of factors from previous cycles. Additionally, we can compute these decompositions
in parallel on modern multi-processor or multi-core computers. We can further exploit
multiple processors and cores especially on shared memory machines when doing the
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forward backward solves for MIMO systems, since we can again work on the columns of
G in parallel. Note however, that even on shared memory multi-core machines we will
not observe a speedup equal to the number of cores. The problem here is that depending
on the platform the different processor cores are bound to the memory via the same
cache hierarchy or the main memory is partitioned such that there are parts associated
to the different cores and accessing the memory of a different core is much slower than
accessing the own memory. Such that, although no inter-processor-communications are
needed, one observes very similar delay effects reducing the efficiency of the parallel
computations, as on distributed memory systems. Some fortifying tests can also be
found in Section 8.4 (Tables 8.13, 8.14 and 8.15).

A crucial point in memory usage also is the precomputation of the sparse LU decompo-
sitions. Here we can massively save memory when using what we call a single-pattern–
multi-value LU. The basic idea is to apply the same pivoting strategy to F and all shifted
matrices F + piI. Since then all of these matrices will have the same sparsity pattern,
one can store all of them in the same structure reusing the pattern vector. Thus one
can almost save half the memory for all but one of the decompositions, since in all but
one cases only the values need to be stored. Additionally the decompositions can be
computed faster since the pattern is already known in advance. Details and numerical
tests regarding this effect can be found in 8.4.

4.5. Algebraic Riccati Equations

We consider the algebraic Riccati equation

0 = CTC + ATX + XA − XBR−1BTX =: R(X). (4.31)

Here A ∈ Rn×n is supposed to be sparse, B,C may be dense, but B should have very few
columns and C only few rows compared to n.

4.5.1. Newtons Method for Algebraic Riccati Equations

The classical approach for solving the algebraic Riccati equation is to tackle its nonlin-
earity with a Newton type method. The basic Newton step then is

R′|X(N`) = −R(X`), X`+1 = X` + N`. (4.32)

Taking a closer look at the Frechét derivative of the Riccati operator R at X we observe,
that this is the Lyapunov operator

R′|X : N 7→ (A − BR−1BTX)TN + N(A − BR−1BTX). (4.33)

This observation gives rise to Algorithm 4.5. In principle we would thus be able to use
the theory from Sections 4.1- 4.4 and ensure low-rank solvability of the Riccati equation.
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Algorithm 4.5 Newtons Method for Algebraic Riccati Equations – Basic Iteration

Input: A,B,Q = CTQ̂C,R as in (2.19) and an initial guess X(0) for the iterate.
Output: X∞ solving (2.19) (or an approximation when stopped before convergence).

1: for k = 1, 2, . . . do
2: K(k−1) = X(k−1)BR−1.
3: Determine the solution N(k) of
4: (AT

− K(k−1)BT)N(k) + N(k)(A − BK(k−1)T
) = −R(X(k−1)).

5: X(k) = X(k−1) + N(k).
6: end for

Algorithm 4.6 Newtons Method for Algebraic Riccati Equations – Kleinman Iteration

Input: A,B,Q = CTQ̂C,R as in (2.19) and an initial guess K(0) for the feedback.
Output: X∞ solving (2.19) and the optimal state feedback K∞ (or approximations when

stopped before convergence).
1: for k = 1, 2, . . . do
2: Determine the solution X(k) of
3: (AT

− K(k−1)BT)X(k) + X(k)(A − BK(k−1)T
) = −Q − K(k−1)RK(k−1)T

.
4: K(k) = X(k)BR−1.
5: end for

Unfortunately the residual of the previous iterate on the right hand side is in general an
indefinite, full rank matrix. Therefore we cannot guarantee the low-rank structure of the
right hand side, which was crucial in the derivation of the LRCF-ADI. The representation
of Newtons method proposed by Kleinman [83] on the other hand is mathematically
equivalent to the basic Newton iteration and does not have this disadvantage. In [18] a
detailed discussion of the advantages of Kleinmans formulation (given in Algorithm 4.6)
in the present case can be found. The following theorem provides conditions ensuring
the convergence of both methods.

Theorem 4.1 (Convergence to Unique Stabilizing Solution):

If the system (A,B) is stabilizable, then choosing X(0) = X(0)T
∈ Rn×n in Algorithm 4.5

or K(0)
∈ Rn×m in Algorithm 4.6 such that A−BK(0)T is stable, the iterates X(k) and K(k)

satisfy the following assertions:

a) For all k ≥ 0, the matrix A − BK(k)T
is stable and the Lyapunov equations in

Algorithms 4.5 and 4.6 admit unique solutions which are positive semidefinite.

b)
{
X(k)

}∞
k=1

is a non-increasing sequence satisfying X(k)
≥ X(k+1)

≥ 0 for all k ≥ 1.
Moreover, X∞ = limk→∞X(k) exists and is the unique stabilizing solution of the
CARE (2.19).
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c) There exists a constant γ > 0 such that

‖X(k+1)
− X∞‖ ≤ γ‖X(k)

− X∞‖2, k ≥ 1,

i.e., the X(k) converge globally quadratic to X∞ from any stabilizing initial
guess. ♦

A complete proof for the above result can be found, e.g., in [89]. The task of computing
the stabilizing initial guesses X(0) and feedbacks K(0) is a numerically challenging task
itself. For dense problems (partial) stabilization methods based on pole placement or
solving certain Lyapunov equations have been existing for years now. Their extension
to the sparse / low-rank case is considered in [4, 52, 122, 11].

In the following we will sketch how the special structure of the closed loop operators
in the Lyapunov equations for every Newton step fit into the LRCF-ADI framework
of the previous sections. We can then use the low-rank framework for the inner ADI
iteration to derive the low rank Cholesky factor Newton method (LRCF-NM) for the
ARE summarized in Algorithm 4.7.

Definition 4.2 (splr):
A matrix F ∈ Rn×n is called sparse plus low-rank or simply splr if we can find matrices
A ∈ Rn×n and U,V ∈ Rn×p such that

F = A + UVT. ♦

Let F = A − BK(k−1)T
be the current closed loop operator in both the Newton and

Kleinman-Newton iteration. Obviously F is splr. Now recalling which operations are
needed in the LRCF-ADI we see that these can be computed in low-rank fashion. For
the shift parameter computation we need to multiply and solve with F and in the ADI-
step we need to solve a shifted system with F. First we note, that with F also F + pI
for a scalar p is splr, since we can simply replace A with Ã = A + pI to match the
definition. For solving the linear systems with the splr matrices we can now apply the
Sherman-Morrison-Woodburry formula1 (e.g. [57])

(A + UVT)−1 = A−1
− A−1U(I + VTA−1U)−1VTA−1. (4.34)

Convergence to the Stabilizing Solution. In general the ARE (2.19) has a wide
range of solutions besides the stabilizing one we are searching for. As has already been
discussed in [18], we cannot naturally expect that the LRCF-NM will always compute
the stabilizing solution, since we do no longer solve the Lyapunov equations in each
Newton step exactly, but approximate the solution by low-rank factors generated by an
iterative process. [18] also explains that by an additional iteration step we can easily

1This formula is often referred to as matrix inversion lemma in the engineering literature, as well.
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Algorithm 4.7 Low-Rank Cholesky Factor Newton Method (LRCF-NM)

Input: A, B, C, Q̂, R, K(0) for which A − BK(0)T is stable (e.g., K(0) = 0 if A is stable)
Output: Z = Z(kmax), such that ZZH approximates the solution X of the CARE (2.19)

where Q = CTQ̂C.
1: for k = 1, 2, . . . , kmax do
2: Determine (sub)optimal ADI shift parameters p(k)

1 , p
(k)
2 , . . . with respect to the ma-

trix F(k) = AT
− K(k−1)BT (e.g., [116, Algorithm 1], Algorithm 4.2).

3: G(k) =
[

CTQ̃ K(k−1)R̃
]

4: Compute matrix Z(k) by Algorithm 4.1 or 4.3, such that the LRCFP Z(k)Z(k)H

approximates the solution of F(k)X(k) + X(k)F(k)T
= −G(k)G(k)T

.
5: K(k) = Z(k)(Z(k)HBR−1)
6: end for

check admissibility of the final iterate. Recently [50] applied inexact Newton approaches
to the ARE. There operator inequalities for the residuals of the Lyapunov solutions in
Algorithm 4.7 have been derived ensuring the convergence of the outer iteration in a
sequence of stabilizing iterates.

4.5.2. Efficient Computation of Feedback Gain Matrices

The LRCFs in the inner loop for solving will grow in the progress of the iteration.
Therefore the iteration is becoming more and more expensive and the computation cost
of the feedback calculation from the final LRCF in each (outer) Newton step is growing
as well. If we are solving the Riccati equation in an LQR context to compute the feedback
gain matrix, it is very desirable to iterate on the fixed size feedback itself, since doing so
we can overcome the above problems. It was noted in [11] and [117] that this can easily
be achieved by rewriting the Newton-Kleinman step.

In the LRCF-NM (Algorithm 4.7) we are updating the feedback iterate regarding

Kk = R−1BTXk, (4.35)

where Xk is the solution N to the Lyapunov equation

(A − BR−1BTX)TN + N(A − BR−1BTX) = −CTQ̂C − KT
k−1R−1Kk−1, (4.36)

as in Algorithm 4.6. Note that the Algorithm 4.7 is formulated for KT rather than K.
The basic idea in [11] now is to rewrite the Newton iteration such that it works on the
difference Yk = Xk−1 − Xk. Defining Lk := Kk − Kk−1 then Yk can be determined as the
solution N of

(A − BR−1BTX)TN + N(A − BR−1BTX) = −LT
k Lk.
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Algorithm 4.8 Implicit Low-Rank Cholesky Factor Newton Method (LRCF-NM-I)

Input: A, B, C, Q̂, R, K(0) for which A − BK(0)T is stable (e.g., K(0) = 0 if A is stable)
Output: K(kmax) approximating K = ZZHBR−1 the transpose of the optimal feedback as,

e.g., in (2.32).
1: Compute R̃, Q̃, such that R = R̃R̃T, Q̂ = Q̃Q̃T

2: for k = 1, 2, . . . , kmax do
3: Determine (sub)optimal ADI shift parameters p(k)

1 , p
(k)
2 , . . . with respect to the ma-

trix F(k) = AT
− K(k−1)BT (e.g., [116, Algorithm 1], Algorithm 4.2).

4: G(k) =
[

CTQ̃ K(k−1)R̃
]

5: V(k)
1 =

√
−2 Re (p(k)

1 )(F(k) + p(k)
1 I)−1G(k)

6: K(k)
1 = 0

7: for i = 2, 3, . . . , i(k)
max do

8: V(k)
i =

√
Re (p(k)

i )

Re (p(k)
i−1)

(V(k)
i−1 −

(
p(k)

i + p(k)
i−1

) (
(F(k) + p(k)

i I)−1V(k)
i−1

)
9: K(k)

i = K(k)
i−1 + V(k)

i (V(k)
i

H
BR−1)

10: end for
11: K(k) = K(k)

i(k)
max

12: end for

Although providing us with a right hand side of fairly low-rank, this method is numeri-
cally not recommendable. The minor drawback is that due to the difference formulation
we need an additional iterate to start the iteration. The authors provide a way to get
that in [11]. The major drawback however is that this cheap formulation unfortunately
shows robustness problems in practice. [50] provides an explanation for this issue in
terms of an inexact Newton interpretation. There the authors observe that the residuals
of the single steps accumulate during the course of the iteration for this formulation.

We will concentrate on the implicit LRCF-NM as introduced in, e.g., [117] and presented
in Algorithm 4.8. The algorithm avoids the difference formulation. Thus it acts on (4.36)
directly. However in contrast to Algorithms 4.6 and 4.7 it does not explicitly solve the
Lyapunov equation to compute Kk from its solution. It rather exploits the special
structure of the iterates in Algorithm 4.1 to find that

Kk = limi→∞K(i)
k

and thus the inner iteration can be rewritten to implement

K(i)
k := R−1BTZ(i)

k Z(i)
k

H
= R−1BT

i∑
j=1

V( j)
k V( j)

k

H
.

Obviously we can then completely avoid forming Z(i)
k during the inner iteration. On

the other hand the stopping criteria for the inner iteration need Z(i)
k to compute relative
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change or residual norms. These criteria can easily be replaced by

‖Kk − Kk−1‖F

‖Kk‖F
< ε,

though. This criterion is very cheap in evaluation if the underlying control system has
very few inputs, i.e., K ∈ Rn×m where m� n.

4.5.3. Modified Variants of the LRCF-NM

We will now discuss a handful of modifications of the LRCF-NM that may have desirable
properties in one or the other context.

An Inexact Newton Iteration. An interesting, though at the current state not very
useful, modification has been discussed in [50]. The authors there interprete the LRCF-
NM in the context of an inexact Newton approach and derive a measure for the accuracy
that is needed for the ADI process in each Newton step such that the outer Newton’s
method still converges. The only flaw of this excellent work is, that the accuracy bound
is presented in terms of an operator/matrix inequality

Rk < CTC,

i.e., a matrix needs to be tested for positive definiteness in each iteration step and it is
currently unclear how this can be done in at most super-linear complexity.

Simplified Newton Approaches. An alternative idea would be to use a simplified
Newton iteration to accelerate the computations. The idea there is to fix the Jacobian to
that of the first step or at least not update it very frequently. The main computational
work in the application of the Lyapunov operator are the matrix decompositions. Due
to the Sherman-Morrison-Woodburry trick we apply, these decompositions are inde-
pendent of the feedback part. On the other hand that is the only part updated in the
course of the Newton iteration. Thus the main savings resulting from the simplified
Newton approach are regarding the shift parameter computation, that needs to be reap-
plied in every Newton step. Therefore a mixed variant might be more useful, that fixes
the shifts from the first Newton step for the whole iteration avoiding the expensive
approximations of the current spectrum. On the other hand the cheaper updates of the
feedback should still be performed in every Newton step. A further variant of this type
would be to use the shifts with respect to the optimal closed loop operator right from
the beginning. These can be computed via the Hamiltonian eigenvalue problem for

H =

[
A −BBT

−CTC −AT

]
(4.37)

via specialized Lanczos algorithms as in [16, 51].
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Algorithm 4.9 Quadratic Alternating Directions Implicit Iteration for the Algebraic
Riccati Equation (QADI)

Input: A, B, Q = CTQ̂C,R as in (2.19), a set of shift parameters as in Algorithm 4.1.
Output: X∞ solving (2.19) (or an approximation when stopped before convergence).

1: for j = 1, 2, . . . do
2: (AT

− XT
j−1BR−1BT + p jI)XT

j− 1
2

= −Q − XT
j−1(A − p jI)

3: (AT
− X j− 1

2
BR−1BT + p jI)X j = −Q − X j− 1

2
(A − p jI)

4: end for

Newton Galerkin Methods It is crucial to state that the LRCF-NM can be combined
with all modifications of ADI (like, e.g., column compression, subspace projection ...)
in the inner iteration. Test examples for the acceleration of the LRCF-NM via Galerkin
projection in the inner loop are discussed in Section 8.2.2. Note that the Galerkin
Projection idea can also be incorporated in the outer loop, since the ARE is symmetric
as well and allows for the same projection technique to be applied as in the Lyapunov
equation case. Here a smaller dense ARE is solved on the column space of the current
LRCF.

4.5.4. The Relationship of LRCF-NM and the QADI Iteration

Starting from a Newton-Smith approach [151], Wong and Balakrishnan in a series of
conference papers [148, 147, 149] developed a version of the ADI iteration that directly
applies to the ARE instead of using a combination of an outer Newton method and an
inner Lyapunov-solver. This section is dedicated to showing a connection between the
two methods, hopefully giving a better insight to the one or the other. A summary of
the QADI work can be found in [152, 150].

The term quadratic in the context of quadratic ADI should rather be understood as a
naming scheme reflecting the quadratic nature of the Riccati equation it is applied to,
than anything else. The authors do not claim to have a quadratically converging method
or the like. In fact they state [147] that they expect (super-)linear convergence due to
the close relationship to the ADI iteration for the Lyapunov equation.

The quadratic ADI iteration is a generalization of the ADI iteration for Lyapunov equa-
tions, as stated in (4.1). Algorithm 4.9 provides the basic QADI iteration. Note that just
as in Algorithms 4.7 and 4.8 the matrices on the left hand sides of lines 2 and 3 in Al-
gorithm 4.9 are splr and thus can be handled using the Sherman-Morrison-Woodburry
formula (4.34).

For the following discussion for any k ∈ Zwe define

Kk := R−1BTXk (4.38)

analogously to (4.35). Then using the appropriate iterates X j from Algorithm 4.9 we can
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rewrite the defining equations of the algorithm as

(AT
− KT

j−1BT + p jI)XT
j− 1

2
= −Q − XT

j−1(A − p jI),

(AT
− KT

j− 1
2
BT + p jI)X j = −Q − X j− 1

2
(A − p jI).

If we now add a zero to acquire the closed loop splr matrix on the right hand side as
well, we end up with

(AT
− KT

j−1BT + p jI)XT
j− 1

2
= −Q − KT

j−1RK j−1 − XT
j−1(A − BK j−1 − p jI),

(AT
− KT

j− 1
2
BT + p jI)X j = −Q − KT

j− 1
2
RK j− 1

2
− X j− 1

2
(A − BK j− 1

2
− p jI).

(QADI)

Now we consider these as opposed to the equations resulting from the Newton-
Kleinman-ADI iteration as it is used in Algorithm 4.7. For the Newton-Kleinman-ADI
iteration we have to distinguish the outer iteration index j of the Newton-Kleinman
iteration and the inner index k of the ADI iteration.

(AT
− KT

j−1BT + pkI)XT
k− 1

2
= −Q − KT

j−1RK j−1 − XT
k−1(A − BK j−1 − pkI),

(AT
− KT

j−1BT + pkI)Xk = −Q − KT
j−1RK j−1 − Xk− 1

2
(A − BK j−1 − pkI).

(NK-ADI)

Comparing (QADI) and (NK-ADI) we immediately find two main differences. First
(QADI) does not distinguish between inner and outer iterations at all and second the
solution to the first equation is used to update all data in the second equation immedi-
ately. In contrast to this in (NK-ADI) the closed loop matrices A−BK j−1 are only updated
at the beginning of each (outer) Newton step. In this sense we can interprete QADI as
a maximally updated Newton-Kleinman-ADI iteration. In other words; if we interpret
NK-ADI as a full step method in the sense of a Jacobi-type-iteration, then QADI follows
the Gauß-Seidel-idea to take as much updated information into account a possible.

4.5.5. Does CFQADI Allow Low-Rank Factor Computations?

Besides the two step QADI iteration Wong and Balakrishnan present a version of the
iteration that explicitly computes the j-th iterate as

X j = M11 + M12X j−1(I −M22X j−1)−1MT
12, (4.39)

where, as in [97], S j = (A + p jI)−1 and

M11 = −2p jST
j CT(I + CS jBBTST

j CT)−1CS j,

M12 = I − 2p jST
j (I + CTCS jBBTST

j )−1,

M22 = 2p jS jB(I + BTST
j CTCS jB)−1BTST

j .

(4.40)

The authors further argue that all inverses in the above exist under practical assumptions
on the Riccati equation. It is easy to see that symmetry is preserved in this iteration and
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thus starting from X0 = 0 all iterates will be symmetric as expected. Note that inverses in
M11 and M22 are small under the assumption that the underlying system has only very
few inputs and outputs. Note further that the large inverse in M12 is splr and thus can
be solved exploiting (4.34). So at least the intermediate computations can be kept cheap.
Unfortunately X will in general be full such that the algorithm needs to be reformulated
in low-rank fashion to be applicable in large scale. For this purpose a Cholesky factor
variant is proposed by Wong and Balakrishnan, e.g., in [148]. Sadly they do not give a
derivation for it and we do not see a way to assure the apparent derivation in low-rank
fashion. We will next state the factorized variant and demonstrate the concerns we find
in it. Keeping M12 and M22 as above and defining

M̃11 =
√
−2p jST

j CT(I + CS jBBTST
j CT)−

1
2 ,

the new factor is proposed to be

Z j := [M̃11 M12Z j−1(I − ZT
j−1M22Z j−1)−

1
2 ], (4.41)

assuming that we have the definiteness to ensure the existence of all matrix square roots

used. Note that in comparison to [148] we changed the misleading name M
1
2
11 used by

the original authors to M̃11, since this is not the matrix square root of M11 in the sense
of the definition. Now trying to recompute X j from Z j we find

X j = Z jZT
j

= [M̃11 M12Z j−1(I − ZT
j−1M22Z j−1)−

1
2 ][M̃11 M12Z j−1(I − ZT

j−1M22Z j−1)−
1
2 ]T

= M̃11M̃T
11 + M12Z j−1(I − ZT

j−1M22Z j−1)−
1
2 (I − ZT

j−1M22Z j−1)−
T
2 ZT

j−1MT
12

= M11 + M12Z j−1(I − ZT
j−1M22Z j−1)−1ZT

j−1MT
12.

Assume that the factors Z j are not rank deficient. Then ZT
j−1Z j−1 is invertible and we

can compute

Z j−1(I − ZT
j−1M22Z j−1)−1ZT

j−1 = Z j−1(ZT
j−1Z j−1(ZT

j−1Z j−1)−1
− ZT

j−1M22Z j−1)−1ZT
j−1

= Z j−1ZT
j−1Z j−1(ZT

j−1Z j−1 − ZT
j−1M22Z j−1ZT

j−1Z j−1)−1ZT
j−1

= X j−1Z j−1(ZT
j−1(I −M22X j−1)Z j−1)−1ZT

j−1

Now we immediately see that for full rank Cholesky factors and square root matrices
Z j−1 that allow forming of Z−1

j−1 the last line is easily rewritten in the form X j−1(I −

M22X j−1)−1 as needed in (4.39). In a low-rank setting however this is prohibitive for the
general application of this type of factorized iteration, since it is at least not obvious that
the kernel of Z j−1 is avoided.
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4.6. Stopping Criteria

All algorithms in this chapter have been formulated as if the number of iteration steps
to achieve a certain accuracy was a priori known. However, e.g., for the ADI iteration
this can only be ensured for the very special case of the Wachspress parameters and
even there it is only known for real spectra. Further, also the Wachspress parameters
are very sensitive to round off errors, such that even for real spectra the accuracy can
not be guaranteed on the computer. Instead the iterations have to be stopped ad hoc.
The crucial question then is how to determine good stopping criteria.

Relative Change Based Criteria. In [18] the authors propose the use of relative
change criteria. There the change of the current LRCF (for the ADI variants and LRCF-
NM) or the feedback operator (in case of LRCF-NM-I) is checked and the iteration is
stopped as soon as the contribution of the change in the iterate is small compared to the
norm of the current iterate, i.e., expressions like

‖Zi − Zi−1‖F

‖Zi‖F
< ε, (4.42)

or
‖Ki − Ki−1‖F

‖Ki‖F
< ε, (4.43)

need to be evaluated for a certain stopping tolerance ε. For feedbacks Ki this is clearly
cheap in evaluation, since the feedback and all its iterates are supposed to be thin
rectangular matrices containing only O(n) entries even when densely populated. For
the LCRF-ADI variants we find that it can be evaluated cheaply as well. The difference
between two consecutive factors Zi and Zi+1 following the LRCF-ADI methods is the
new column block Vi (compare, e.g., Algorithm 4.1). Thus the numerator in (4.42) is
just ‖Vi‖F . Further the Frobenius-norm of the factor can be accumulated via

‖Zi‖
2
F = ‖Zi−1‖

2
F + ‖Vi‖

2
F,

such that in every step only ‖Vi‖F needs to be computed where again Vi is a thin
rectangular matrix that has the same dimensions as B.

Residual Based Criteria. In practical computations however one observes (see, e.g.,
the tables in Section 8.2.2), that the residual of the current ADI-factor is already much
better than the estimation based on the relative change of the factor. Therefore, especially
in the inner iterations of Newton’s methods, it is desirable to evaluate the residual norm
based criteria

‖FZiZT
i + ZiZT

i FT + GGT
‖ < ε and ‖R(ZiZT

i )‖ < ε, (4.44)

for a given tolerance ε, as well and stop the iteration after as few steps as possible.
Unfortunately direct computation of the Frobenius-norm of the residual would require
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forming the residual explicitly and thus lead to unacceptable (i.e., quadratic) memory
and computation demands.

Penzl [116, equation (4.7)] provides a cheaper way of computation that avoids the
explicit forming of the residual matrix, but still the computation is fairly complex and at
a certain point more expensive than the iteration itself. Therefore we propose to estimate
the residual norm instead.

The key observation to a cheap approximation of the residual norm is that the resid-
ual matrices for the Lyapunov and Riccati equations are both symmetric due to the
symmetry of the Lyapunov and Riccati operators. Now we recall that the 2-norm of
a symmetric matrix coincides with its spectral radius (e.g. [57, Section 2.3.3]), i.e., the
absolute value of its largest magnitude eigenvalue and thus can be estimated by the
power iteration (as also done in normest in Matlab). Exploiting the structure of the
operators, which are formed from sparse, or splr matrices and low-rank factors, we can
perform the power iteration in O(n) complexity as long as the LRCF have only very few
(i.e., � n) columns. Thus here we can decrease the complexity again when applying
column compression to the LRCFs.

Note that in the case of the LRCF-NM one may be able to save many ADI steps by
adapting the inner stopping tolerance to the outer residual error following the inexact
Newton idea in [50]. Unfortunately the bound that guarantees the convergence of the
inexact Newton method is an operator inequality limiting the current residual operator
by the constant term in the ARE (here CTC) from above. It is currently an open problem
to evaluate this inequality in O(n) complexity. Thus the adaption needs to be performed
heuristically.

Stagnation Based Criteria. In addition to the smallness of the above stopping criteria
it can be important to apply some stagnation detection techniques. Those techniques
have successfully been used in LyaPack [117]. The idea in the residual based criterion is
clear. If the residual error can not be decreased we can stop the iteration. For the relative
change criteria this is not so obvious. On the one hand, we can detect periodic or almost
behavior of the finite arithmetic implementation caused by round off errors. On the
other hand this can be helpful in the case of the usage of column compression, when
we add and truncate (almost) the same information over and over again with no real
progress in the iteration. Note however that the stagnation detection should incorporate
more steps, than the current Galerkin projection frequency. We have observed that in
some cases the projection gives a suitable reduction, but the intermediate steps may
almost stagnate regarding residual error reduction. Therefore we should consider the
iteration as stagnated if even the projected step does not decrease the residual, but not
before.
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In cases where the spatial semi-discretization is executed using a finite element method
(FEM) a mass matrix arises in front of the time derivative. In this chapter we will discuss
methods to handle this type of generalized systems

Mhẋh = Nhxh + Bhu,
y = Chxh.

(5.1)

where Mh is invertible (in the FEM case Mh usually is symmetric positive definite (spd)).
Needless to say that all techniques presented in this chapter are also applicable to any
other large sparse system

Mẋ = Nx + Bu (5.2)
y = Cx (5.3)

with M invertible.

The basic idea is to rewrite the generalized system in standard state space form. That
means to get rid of the mass matrix by an appropriate transformation. The naive way
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of doing this obviously would be to multiply by the inverse of Mh from the left. From a
theoretical point of view this solves the problem completely. This was already noted in
Section 2.2.2. On the other hand in numerical computations it is infeasible to compute
M−1

h Ah since this would destroy the sparse structure of the problem and thus make
computations impossible for large scale applications.

One way to avoid the full inverse is the reordering of unknowns like in sparse direct
solver techniques followed by the application of an LU or Cholesky factorization. Then
only one of the factors needs to be inverted (i.e., triangular solves need to be performed)
and the other one is used to define a state space transformation. Additionally the
reordering reduces the fill-in in the resulting matrices. Section 5.1 shows how to avoid
the fill in by the decomposition technique. In Section 5.2 we will review a technique
that avoids the computation of M−1

h Ah by exploiting matrix pencil techniques. This idea
has also been given in [15] and exploited in [31]. Numerical tests have to be performed
to decide whether the one or the other method is more suitable in certain applications.
A comparison of different reordering strategies in the case of Section 5.1 can be found
in [30].

5.1. Avoiding the Mass Matrix by Matrix Decomposition

Let us first review how we can rewrite the system (5.1) in standard state space form by
decomposing the mass matrix following the method, proposed by Penzl in [117]. For
better readability and to reflect the general applicability of the following computations
we will neglect the discretization index h for now. Consider the generalized state space
system (5.2), (5.3) First we apply a reordering (e.g., approximate minimum degree [3])
to the unknowns in x to reduce the fill in in the resulting matrix factors, i.e., we perform
a change of basis with the unitary permutation matrix P:

P∗MPP∗ẋ = P∗NPP∗x + P∗Bu,
y = CPP∗x.

(5.4)

Figure 5.1 demonstrates AMD reordering in comparison to Reverse Cuthill-McKee
(RCM) reordering and a non-permuted decomposition. Note especially the drastic
differences in the number of non-zero elements in the resulting factors. Both AMD
and RCM can have their advantages. In the case of AMD we clearly have the smallest
memory demands. On the other hand the RCM reordered factor has banded structure
which may be exploited by specialized banded solvers and may lead to better caching
properties since one can work more locally in the data it is applied to.

Defining M̃ := P∗MP, Ñ := P∗NP, B̃ := P∗B, C̃ := CP and x̃ := P∗x we end up with

M̃ ˙̃x = Ñx̃ + B̃u,

y = C̃x̃.
(5.5)
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(a) original M (b) Cholesky factor of M

(c) M after Reverse Cuthill-McKee (RCM) re-
ordering

(d) Cholesky factor of RCM reordered M

(e) M after Aproximate Minimum Degree
(AMD) reordering

(f) Cholesky factor of AMD reordered M

Figure 5.1.: Sparsity patterns of mass matrix M and its Cholesky factors (steel profile
example)
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We can now more efficiently decompose the mass matrix into M̃ = LU (or M̃ = LL∗ in the
self-adjoint case), especially in terms of memory consumption of the factors. Although
the mass matrix arising in FEM is in general selfadjoint, we will follow the LU case here
for more general applicability. Multiplying by L−1 from the left after the decomposition
we get

U ˙̃x = L−1ÑU−1Ux̃ + L−1B̃u,

y = C̃U−1Ux̃.
(5.6)

This takes the form of a standard state space system, if we now define N̂ := L−1ÑU−1,
B̂ := L−1B̃, Ĉ := C̃U−1 and x̂ := Ux̃:

˙̂x = N̂x̂ + B̂u,

y = Ĉx̂.
(5.7)

Note that we have only changed the internal representation of the system, but not
the input and output variables. The crucial question now is whether we are able to
compute the solution we are interested in from the solution of this transformed system
with similar complexity. That question is addressed for the solution of Riccati and
Lyapunov equations in the following two section.

5.1.1. Algebraic Riccati Equations and Feedback Computations

Assuming a standard quadratic cost function (2.12) with operators Q and R, we find the
associated algebraic Riccati equation

0 =Ĉ∗QĈ + N̂∗X̂ + X̂N̂ − X̂B̂R−1B̂∗X̂

=U−∗P∗C∗QCPU−1 + U−∗P∗NPL−∗X̂ + X̂L−1P∗NPU−1

− X̂L−1P∗BR−1B∗PL−∗X̂,

(5.8)

where P is the permutation matrix in (5.4), L and U the LU-factors of M̃ as in and
above (5.6). The question now arises, how we can compute the solution X of the ARE
associated with the generalized system (5.2), (5.3) from the solution X̂ of (5.8). To see
this we rewrite (5.8) in a form that allows us direct comparison to the ARE

0 = C∗QC + N∗XM + M∗XN −M∗XBR−1B∗XM (5.9)

for (5.2), (5.3):

0 = C∗QC + N∗PL−∗X̂UP∗ + PU∗X̂L−1P∗N − PU∗X̂L−1P∗BR−1B∗PL−∗X̂UP−1

= C∗QC + N∗PL−∗X̂L−1P∗PLUP∗ + PU∗L∗P∗PL−∗X̂L−1P∗N

− PU∗L∗P∗PL−∗X̂L−1P∗BR−1B∗PL−∗PLUP∗
(5.10)

Noting that M = PLUP∗ and comparing the last line in (5.10) with (5.9) we immediately
see that

X = PL−∗X̂L−1P∗. (5.11)
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In terms of the low-rank factors X = ZZ∗, which we are actually computing following
Chapter 4, we obtain X̂ = ẐẐ∗, where

Z = PL−∗Ẑ. (5.12)

This also enables us to express the feedback operator KM for (5.2), (5.3) in terms of the
one for (5.7), since

K = −R−1B∗X = − R−1B∗PL−∗X̂L−1P∗

K̂ = −R−1B̂∗X̂ = − R−1B∗PL−∗X̂
(5.13)

and thus
K = K̂L−1P∗,

or more importantly

KM = K̂L−1PM = K̂L−1PP∗M̃P = K̂L−1LUP = K̂UP. (5.14)

That means we can easily and efficiently recover the solution and feedback operator of
the original problem with the generalized state space system from the computation for
the equivalent system in standard state space formulation. Note that implementations
should never compute the N̂ matrix explicitly. On the other hand we can safely apply
the transformations to the in general dense matrices B and C.

5.1.2. Lyapunov Equations

In analogy to the computations in equations (5.8)-(5.12) we find the transformation rules
for the LRCFs for the Lyapunov equation. We only have to distinguish the two types
of Lyapunov equations. For the second equation in (5.21) containing the C everything
works exactly as for (5.8). For the other equation however the adjoints in the linear
terms are exchanged compared to (5.8). This also changes the roles of L and U in the
subsequent computations. Thus we have to use U instead of L in the back transformation
in (5.12).

5.2. Implicit Handling of the Inverse Mass Matrix

Throughout this thesis we assume, that M ∈ Rn×n is invertible. If so, we can formally
rewrite the system into standard state space representation. Simply multiplying by M−1

from the left results in

ẋ = M−1N︸︷︷︸
=:Ñ

x + M−1B︸︷︷︸
=:B̃

u, y = Cx. (5.15)

This, being enough for theoretic considerations, as mentioned above is not adequate
in numerical applications, since Ñ = M−1N will be a full matrix even if M and N are
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sparse. So we cannot afford to form Ñ explicitly. The remainder of this section will
be concerned with avoiding it. Instead we want to apply matrix pencil techniques to
rewrite Algorithm 4.1 in a form that works with the original problem data, i.e., the
matrices M, N and preferably also B and C.

5.2.1. Algebraic Riccati Equations and Feedback Computations

Assuming a standard quadratic cost function (2.12) with operators Q and R as above
and following the presentation in (2.1), (2.19) we find the ARE associated with (5.15) as

0 = CTQC + X̃Ñ + ÑTX̃ − X̃B̃R−1B̃TX̃. (5.16)

Now inserting the definitions of Ñ and B̃ followed by multiplications with MT from the
left and M from the right, we realize that (5.16) is equivalent to a generalized ARE;

0 = M−TCTQCM−1 + M−TX̃M−1N + NTX̃M−1
−M−TX̃M−1BR−1BTM−TX̃M−1

= M−TCTQCM−1 + XN + NTX + XBR−1BTX

⇔ 0 = CTQC + MTXN + NTXM + MTXBR−1BTXM.

(5.17)

Especially we learn from (5.17) that the solutions of the ARE for (5.15) and the general-
ized ARE can be transformed into each other following

X̃ = MTXM, or Z̃ = MTZ, (5.18)

in terms of their factors. Using these we can now express the feedback operator KM for
(5.1) in terms of the feedback gain for (5.15),

K = −R−1BTX

K̃ = −R−1B̃TX̃ = −R−1BTM−TMTXM = −R−1BTXM = KM
(5.19)

Thus the feedback K̃ = KM we compute for (5.15) is exactly the feedback we are
interested in when working in the generalized systems case. That means we do not
even have to back-transform the results. Now applying Newtons method to (5.16) leads
to the Lyapunov operator (compare (4.33))

R′|X : Y 7→ (Ñ − B̃K̃T
X)TY + Y(Ñ − B̃K̃T

X), (5.20)

with K̃X defined as in (5.19) and the index corresponding to the X at which it is defined.
Lyapunov equations with this type of operator are the subject of the following section
(see (5.22)).



5.2. Implicit Handling of the Inverse Mass Matrix 77

5.2.2. Lyapunov Equations and Balancing Based Model Order Reduction

The natural controllability and observability Lyapunov equations for system (5.2), (5.3)
are the generalized Lyapunov equations

NPMT + MPNT = −BBT, NTQM + MTQN = −CTC. (5.21)

On the other hand following (2.1), (2.37) the controllability and observability Gramians
for (5.15) solve the equations

ÑP̃ + P̃ÑT = −B̃B̃T, ÑTQ̃ + Q̃Ñ = −CTC. (5.22)

Inserting the definitions of Ñ and B̃ we observe that P̃ = P, but Q̃ = MTQM. So when
rewriting Algorithm 4.1, we need to keep track of all changes carefully to examine
whether the final version is actually solving (2.37) or (5.22).

The final goal in modifying the algorithm however is to keep the increase in the per
step computations as small as possible. Note especially that transforming the solution
of (2.37) to that of (5.22) or vice versa only requires one sparse matrix multiplication
or one sparse linear system solve with M, respectively, due to the symmetry of the
factorizations we are computing. Both can be computed with O(n) complexity.

In the following we consider the Lyapunov equation

FX + XFT = −GGT

and distinguish the two cases:

1. F = Ñ = M−1N, G = B̃ = M−1B, and X = P;

2. F = ÑT = NTM−T, G = CT, and X = Q.

The first is the easy case since we already observed that the solutions of the two Lya-
punov equations containing B are equal. Let us now consider the two critical steps in
the algorithm. These are the initialization of the LRCF (line 1) and its incrementation
(line 6). Starting with the initialization we find:

V1 =
√
−2 Re (p1)(F + p1I)−1G

=
√
−2 Re (p1)(N + p1M)−1MG

=
√
−2 Re (p1)(N + p1M)−1B.
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Algorithm 5.1 Generalized Low-rank Cholesky factor ADI iteration (G-LRCF-ADI)

Input: M, N and B, or C as in (5.21) and shift parameters {p1, . . . , pimax}.
Output: Z = Zimax ∈ C

n×timax , such that ZZH
≈ P, Q in (5.21), respectively.

1: if right hand side given is C then
2: N = NT, M = MT, G = CT

3: else
4: G = B
5: end if
6: V1 =

√
−2 Re (p1)(N + p1M)−1G

7: Z1 = V1
8: for i = 2, 3, . . . , imax do
9: Vi =

√
Re (pi)/Re (pi−1)(Vi−1 − (pi + pi−1)(N + piM)−1(MVi−1))

10: Zi = [Zi−1Vi]
11: end for

Analogously for the increment we observe:

Vi =

√
Re (pi)

Re (pi−1)
(Vi−1 − (pi + pi−1)(F + piI)−1Vi−1)

=

√
Re (pi)

Re (pi−1)
(Vi−1 − (pi + pi−1)(M−1N + piI)−1Vi−1)

=

√
Re (pi)

Re (pi−1)
(Vi−1 − (pi + pi−1)(N + piM)−1MVi−1).

Thus, in both steps we can shift with the mass matrix M instead of the identity at the
cost of an additional sparse matrix vector product. The cost for the solution of the
shifted linear system here does not change considerably. Surely, it will be slightly more
expensive to compute the sparse matrix sum N + piM in order to set up the coefficient
matrix for sparse direct solvers, than just adding pi to the diagonal of N when no
mass matrix is present. On the other hand, since N and M are normally arising in the
same context (e.g., from a finite element semi-discretization), they will very often have
a sparsity pattern, such that the pattern of M is essentially contained in the pattern
of N and thus the computational and memory complexity for the actual solve does
not change. For iterative solvers the change comes at the cost of one additional sparse
matrix vector product and one vector-vector addition per iteration step. Note especially
that we do not even have to compute B̃ = M−1B. Instead we can directly initialize the
computation with the original B.

For the case where F = ÑT, we first note that

I − (pi + pi−1)(F + piI)−1 = (F + piI)−1(F − pi−1I),
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and therefore

Vi =

√
Re (pi)

Re (pi−1)

(
Vi−1 − (pi + pi−1)(F + piI)−1Vi−1

)
=

√
Re (pi)

Re (pi−1)
(F + piI)−1(F − pi−1I)Vi−1.

Inserting this in Algorithm 4.1 we get

Vi =

√
Re (pi)

Re (pi−1)
(F + piI)−1(F − pi−1I)Vi−1

=

√
Re (pi)

Re (pi−1)
((NT + piMT)M−T)−1((NT

− pi−1MT)M−T)Vi−1

=

√
Re (pi)

Re (pi−1)
MT(NT + piMT)−1(NT

− pi−1MT)M−TVi−1

= MT


√

Re (pi)
Re (pi−1)

(
I − (NT + piMT)−1MT

) M−TVi−1.

Now observing that the multiplication with MT in the i-th step is canceled by the M−T

in the (i + 1)-st step, we see that in this case the actual iteration operator changes exactly
the same way as above. For the initialization step (line 1) we also have

V1 = MT
√
−2 Re (p1)(NT + p1MT)−1CT.

That means the above also holds for i = 1. The final multiplication with MT here
determines whether we are actually computing the solution factor for Q from (5.21) or
Q̃ from (5.22).

Our result is summarized in Algorithm 5.1. Note that this is a direct extension of Al-
gorithm 4.1 to the generalized state space systems case. The acceleration techniques
described in Section 4.4.1 can be extended to this new algorithm with little to no work.
The column compression for example works exactly the same way, whereas for the
Galerkin projection acceleration one needs to project to a generalized Lyapunov equa-
tion regardless of whether the columns of Z are orthogonalized in (4.24), (4.25), or
not.

Avoiding MT completely is obviously the cheapest choice. We then compute the solution
of the generalized Lyapunov equation. In balancing based model order reduction
this is desirable, since we can directly work on the data for the generalized system
computing the same ROM as in the case of prior transformation to standard state space
representation. Avoiding the transformation also avoids having to work with the in
general dense matrix M−1N. See Chapter 7 for more details.
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There are no such things as applied sciences, only applications of science.

Louis Pasteur
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A rather large part of the results concerning linear-quadratic regulator control of
parabolic partial differential equations has been investigated in the context of the opti-
mal control of a cooling process for rail profiles in a rolling mill. The resulting model
problem is given as the second example in the model problems chapter (Chapter 3).
The main ideas that influence the modeling and control of this example problem can be
found there. A rigoros approximation result for the convergence of finite dimensional
semi-discretized versions of this system to the infinite dimensional case has been de-
rived in [127]. These results were refined in [27] and are mostly reprinted in Appendix A.
The present chapter summarizes the results that have been presented in [17], [29] and
proves a novel suboptimality measure for the application of the controls computed for
the finite dimensional approximating systems to the original ∞-dimensional one, i.e.,
the underlying real world problem.

6.1. Tracking Control

We now consider the tracking problem for a standard state space system

ẋ = Ax + Bu, y = Cx.
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In contrast to stabilization problems, where one searches for a stabilizing feedback K
(i.e. a feedback such that the closed loop operator A−BK is stable), we are searching for
a feedback which drives the state to a given reference trajectory asymptotically. Thus
the tracking problem is in fact a stabilization problem for the deviation of the current
state from the desired state. We will show in this section, that for linear operators A
and B tracking can easily be incorporated into an existing solver for the stabilization
problem with only a small computational overhead. The results are reprinted from [17,
Section 2.2].

A common trick (see, e.g., [56]) to handle inhomogeneities in system theory for ODEs
is the following. Given

ẋ = Ax + Bu + f ,

let x̂ be a solution of the uncontrolled system

ẋ = Ax + f ,

such that
f = ˙̂x − Ax̂.

Then
ẋ − ˙̂x = Ax + Bu − Ax̂,

from which we derive a homogenous linear system

ż = Az + Bu, where z = x − x̂.

We want to apply this to the abstract Cauchy problem. Assume (x̃, ũ) is a reference pair
solving

˙̃x = Ax̃ + Bũ.

We rewrite the tracking type control system as a stabilization problem for the difference
z = x − x̃

ż = Az + Bv. (6.1)

Now imposing the cost functional

J(v) :=

∞∫
0

(z,Qz)H + (v,Rv)Udt, (6.2)

where Q := C∗Q̂C with Q̂ ≥ 0 (as in (3.7)) and applying the standard derivation we get
the optimal feedback control

v = −Kz. (6.3)

Inserting this into equation (6.1) and replacing z by its definition from the variables x
and x̃ we find

ẋ = Ax − BKx + ˙̃x −Ax̃ + BKx̃. (6.4)
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So the only difference between the tracking type and stabilization problems is the known
inhomogeneity f := ˙̃x − (A − BK)x̃. Note that the operators do not change at all. That
means we have to solve the same Riccati equation (A.3) in both cases. Thus, provided
that in the cost function (3.7) y = Cx has been replaced by C (x − x̃) as in (6.2) above,
one only has to add the inhomogeneity f to the solver for the closed loop system in
the tracking type case. Note that the inhomogeneity f can be computed once and in
advance directly after the feedback operator is obtained. Especially in case of a constant
setpoint x̂ this is very convenient and makes evaluations cheap.

6.2. Suboptimality Estimation from Approximation Error
Results

We have already noted earlier that the optimal feedback controls for the approximating
finite dimensional systems can be applied directly to the infinite dimensional PDE
control system. Obviously then they have to be considered suboptimal. In this section
we investigate how this suboptimality can be measured. There are in principle three
ways of measuring the suboptimality of a control. The easiest way would be to monitor
the deviation of the applied control from the optimal control in some norm. The second
approach is very similar. Instead of the control deviation one may as well inspect the
deviation in the solution trajectories generated by the systems under the application
of the optimal and suboptimal controls, respectively. The third and probably most
adequate way of measuring the suboptimality is to look directly at the optimization
problem, i.e., compare the minima taken in the cost functional.

In the case of the LQR problem the evaluation of the cost functional is much less
complicated than in open loop approaches, since by Theorem 2.5 we have a direct
method to compute the optimal cost in terms of the solution to the appropriate Riccati
equation and the initial state, i.e.,

J(u∗) =
1
2
< x0,X∗(t0)x0 >,

and
J(uN

∗ ) =
1
2
< PNx0,XN

∗ (t0)PNx0 >=
1
2
< xN

0 ,X
N
∗ (t0)xN

0 >= JN(uN
∗ ).

The following theorem provides our new contribution to this field, the suboptimality
measure under the assumption that we have a spatial discretization scheme meeting the
requirements in Appendix A. If these requirements are fulfilled we have convergence of
both the spatial approximations and the Riccati operators by Theorem A.1. Employing
the inner product in H, the corresponding induced norm ‖.‖ := ‖.‖H :=

√
< ., . >H and

the associated operator norm ‖.‖ = ‖.‖H, we can prove:
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Theorem 6.1 (Suboptimality estimate for application of N-d controls in∞-d systems):
Let the assumptions of Theorem A.1 hold and define X̂∗ := PN∗XN

∗ PN. Then the
suboptimality applying the control computed for (RN) to (RH) can be estimated as

|J(u∗) − J(uN
∗ )| ≤ ζ

(
‖x0 − xN

0 ‖ + ‖X∗ − X̂N
∗ ‖

)
. (6.5)

Here ζ is a constant only depending on the norms of the initial value x0 and Riccati-
solution X∗. ♦

Proof. Define the bilinear forms

σX∗(x, y) :=
1
2
< X∗x, y >, σXN

∗
(x, y) :=

1
2
< XN

∗ PNx,PN y > .

Then

J(u∗) − J(uN
∗ ) = σX∗(x0, x0) − σXN

∗
(xN

0 , x
N
0 )

= σX∗(x0, x0) − σX∗(x0, xN
0 ) + σX∗(x0, xN

0 ) − σXN
∗

(xN
0 , x

N
0 )

= σX∗(x0, x0 − xN
0 ) + σX∗(x0, xN

0 ) − σXN
∗

(xN
0 , x

N
0 )

= σX∗(x0, x0 − xN
0 ) + σX∗(x0, xN

0 ) − σXN
∗

(x0, xN
0 ) + σXN

∗
(x0, xN

0 ) − σXN
∗

(xN
0 , x

N
0 )

= σX∗(x0, x0 − xN
0 ) + σX∗(x0, xN

0 ) − σXN
∗

(x0, xN
0 ) + σXN

∗
(x0 − xN

0 , x
N
0 )

≤
1
2

(
‖X∗‖ ‖x0‖ ‖x0 − xN

0 ‖ + ‖x0‖ ‖xN
0 ‖ ‖X∗ − X̂N

∗ ‖ + ‖xN
0 ‖ ‖X

N
∗ ‖ ‖x0 − xN

0 ‖
)
.

In the last step we exploit

σX∗(x0, xN
0 ) − σXN

∗
(x0, xN

0 ) =
1
2

(
< X∗x0, xN

0 > − < XN
∗ PNx0,PNxN

0 >
)

=
1
2
< (X∗ − X̂N

∗ )x0, xN
0 >

≤
1
2
‖x0‖ ‖xN

0 ‖ ‖X∗ − X̂N
∗ ‖.

Now defining

c0 := ‖X∗‖ ‖x0‖, cN
0 := ‖XN

∗ ‖ ‖x
N
0 ‖,

c1 := ‖x0‖, cN
1 := ‖xN

0 ‖,

from the convergence assumptions we know, that for n → ∞, we have cN
0 → c0 and

cN
1 → c1. Thus for sufficiently large N it holds |c0 − cN

0 | < 1 and |c1 − cN
1 | < 1, such that

for ζ := 1
2 max{2(c0 + 1), (c1 + 1)2

}we find

|J(u∗) − J(uN
∗ )| =

1
2

(
(c0 + cN

0 ) ‖x0 − xN
0 ‖ + c1cN

1 ‖X∗ − X̂N
∗ ‖

)
≤ ζ

(
‖x0 − xN

0 ‖ + ‖X∗ − X̂N
∗ ‖

)
. �
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For the infinite time horizon, i.e., the ARE case, and again N sufficiently large, Ito [77]
provides this approximation rate for bounded operators in terms of the operator ap-
proximation ‖(A∗ − AN∗PN)X∗‖ and ‖(B∗ − BN∗PN)X∗‖ as

‖X∗ − XN
∗ ‖ ≤ 2 ‖(A∗ − AN∗PN)X∗‖ + 2 c ‖B‖ ‖(B∗ − BN∗PN)X∗‖. (6.6)

In concrete examples [77] pulls these back to order h (for parabolic systems) and
√

h
(for hereditary systems) approximations in terms of the mesh width h of the underlying
discretization scheme. Kroller and Kunisch [86] find an almost squared approximation
rate h2 ln 1

h under the assumption of an h2 discretization error for the PDE. Further
approximation results can, e.g., be found in [91, 107].

In all the above references the approximation error for the Riccati operator XN
∗ is shown

to be at most as good as the underlying discretization error. In that sense the term
‖X∗−XN

∗ ‖ in (6.5) will always be the determinative bound for the suboptimality of the N-
d feedback applied to the∞-d control system. We stress this by the following Corollary
to the above theorem exploiting the Kroller/Kunisch result for the approximation.

Corollary 6.2:
Let the assumptions of Theorem A.1 hold. Let the discretization provide an h2

approximation as supposed in [86], then for the suboptimality in applying the control
computed for (RN) to (RH) we find

|J(u∗) − J(uN
∗ )| ≤ C

(
h2 + h2 log

1
h

)
= O

(
h2 log

1
h

)
♦

6.3. Adaptive Linear Quadratic Regulator Control of
Quasilinear Parabolic PDEs

Looking at the steel example of Section 3.3 we find a large interest in controlling quasilin-
ear equations, although the nature of the problem allows us to work with a linearization
in the temperature regime of interest. The problem formulation shows that the quasi-
linearity of the system directly arises from the temperature dependence of the material
parameters. We now find from material laws that these dependencies are rather smooth
and small. Therefore the idea to adapt these parameters suggests itself immediately.
From the numerical implementations point of view this corresponds to a semi-implicit
discretization scheme, which has successfully been applied in [49, 27]. On the other
hand from the theoretical point of view we loose the invariance of the state equation
with respect to time. To overcome this problem we can embed the solution process in a
model predictive control (MPC) scheme. Then, following the work of Grüne et al. [61]
the crucial ingredient to guarantee the convergence of the scheme is a control Lyapunov
function for the system. Their approach especially allows varying sizes of the horizon
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(c) linear model after 40 seconds (d) nonlinear model after 40 seconds

Figure 6.1.: Snapshots comparing the optimally controlled temperature distributions on
crossections of the steel profile after 20 and 40 seconds for the linear and
nonlinear equations

where the local control is applied. In terms of the semi-implicit discretization scheme
this allows varying time step sizes.

The control Lyapunov function in the LQR case is well known (e.g., discussed in [78])
to be determined by the solution to the Riccati equation. Thus we can guarantee the
convergence of the MPC scheme anytime we are able to compute the LQR feedback
control. The required monotonic decrease of the value function [61] can be guaranteed,
e.g., by [78, Theorem 2.4]. The next section gives some more details on the embedding
of the LQR optimal control into the nonlinear MPC scheme.

6.3.1. Relation to Model Predictive Control

The two most important ingredients of the MPC scheme are the control horizon and the
optimization horizon also called prediction horizon. The latter is the time interval on which
the future behavior of the system is predicted (e.g., by the nonlinear, or a linearized
model) and based on this prediction the optimization takes place, i.e., where the control
is computed. The control horizon on the other hand is the time interval on which this
control is actually applied ([t, t + δ] in Figure 6.2). Some authors further distinguish
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FuturePast

Optimization horizon Tc

Prediction horizon Tp

t + Tc t + Tp

Setpoint

Predicted output y

input uoutput y

input u

t t + δ

Figure 6.2.: Schematic representation of a model predictive control setting

between optimization and prediction horizons (as in Figure 6.2). Then obviously the
prediction horizon needs to be larger than the optimization horizon. The reason for
this distinction normally is that simple forward simulations are computationally a lot
cheaper and may even be performed nonlinearly, whereas the optimization is the ex-
pensive step for which the horizon is ideally as short as possible. Also, the optimization
horizon is called control horizon in some publications. Therefore one should carefully
check whether the control horizon in a given source is actually [t, t + δ] as we expect it
here, or [t, t + TC].

Two major approaches to guarantee asymptotic stability of the MPC scheme can be
found in the literature. The straight forward approach derives stability from additional
terminal constraints on the time frames. This method is widely accepted in the literature
and an overview can be found in [104] and references therein. For schemes without sta-
bilizing terminal constraints, results are fairly recent and far less detailed. A consensus
has been reached in the corresponding literature that stability can be expected under
certain controllability or detectability conditions if the optimization horizon [t, t + TC]
is chosen sufficiently large. This, being a major difficulty in application of open loop
approaches, since the optimization is the expensive computational task and thus TC is
desired to be small, makes application of the LQR control even easier, since we can
simply choose the infinite time horizon. So we can solve an ARE instead of the more
complicated DRE. Additionally we do not need to specify artificial stabilizing terminal
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constraints on the single time frames. Note that this is basically the idea of the quasi
infinite horizon nonlinear MPC scheme of Chen and Allgöwer [43] that can guarantee
stability. Moreover the authors suggest the LQR based feedback gain as the preferential
linear optimal control technique in their scheme (see [43, Remark 3.2]).

6.3.2. Identification of Nonlinear MPC Building Blocks

Following the survey in [53] nonlinear MPC consists of three main building blocks:

1. a prediction model,

2. the performance index,

3. a way to compute the control.

Obviously the performance index has to be the quadratic cost functional J(x,u, x(t)),
where the initial value at time t clearly has to be taken as x(t) rather than x0 = x(t0).
That means we take the final state on the previous application horizon, i.e., the closed
loop forward computation, as the initial state x(t) for the current horizon. In the case
of the prediction model, we have mainly two choices. We can decide whether to use
the full nonlinear simulation model for the prediction, or the linearized version, which
is in most cases used for the computation of the control anyway. In our special case
we will always use the linearization, since optimization horizon and prediction horizon
coincide and we want to compute an LQR based feedback control. Thus the way to
compute the control is already determined as the LQR approach.

In summary we linearize the model on short time frames of length δ on which we apply
the LQR based feedback control determined by the solution of the ARE, since we choose
TP = TC = ∞. In practical computations δ will be the length of a single upto a few time
steps of the simulation method applied. Figure 6.1 illustrates the feasibility of our
approach in the context of the optimal cooling of rail profiles model from Section 3.3.
More detailed results for this approach can be found in [27].

The monotonicity of the cost functional, as well as the stability of the receding horizon
linear-quadratic control of the finite dimensional approximating systems is discussed
in [88]. Note that receding horizon control and model predictive control are different
notions for similar approaches, that are hardly distinguishable in the literature. One of
the most interesting peculiarities in this context is, e.g., the title of the afore cited book:
“Receding Horizon Control: Model Predictive Control for State Models”.
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The field of model order reduction of linear first order systems is well understood in
the literature as far as dense computations are considered. During the recent decade
approaches to large scale sparse first order systems have appeared in the literature,
that can be summarized as Smith-type methods for balanced truncation of large scale sparse
systems. Under this title Gugercin and Li [62] have reviewed these types of methods
based on the classic balanced truncation MOR. The next section will be dedicated to
these methods. We will restrict ourselves to a review of the results found so far and give
some comments on the practical issues and observations we have encountered. Besides
that we will show how our contributions from Chapters 4 and 5 integrate into the field.

The second section then is dedicated to our novel method for the efficient computation
of second order reduction problems exploiting the sparsity and structure of the original
second order system matrices while rewriting the system to first order form for the
application of the legacy BT approaches.

89
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Algorithm 7.1 Low-Rank Square Root Method (LR-SRM)
Input: (A,B,C) realization of the (large) original state space system,

k the reduced system order
Output: (Â, B̂, Ĉ) the reduced system realization

1: Solve
AXB + XBAT = −BBT

for an LRCF ZB of XB.
2: Solve

ATXC + XCA = −CTC

for an LRCF ZC of XC.
3: Compute the (thin) SVD

UCΣUH
B = ZH

C ZB.

4: Define the transformation matrices SB and SC according to

SB = ZBUB(:, 1 : k)Σ(1 : k, 1 : k)−
1
2 , SC = ZCUC(:, 1 : k)Σ(1 : k, 1 : k)−

1
2 .

{Note that k can be adapted from Σ for a given error tolerance according to (2.42).}
5: Compute the reduced order realization

Â := SH
C ASB, B̂ := SH

C B, Ĉ := CSB

7.1. First Order Systems

7.1.1. Standard State Space Systems

Gugercin and Li [62] have already given an excellent summary on the low-rank solution
of Lyapunov equations and the application of the low-rank solution factors in balanced
truncation. They especially considered the numerical stability of balanced truncation
when the approximating character of the LRCFs is taken into account. Note that they
call this approach approximate balanced truncation to reflect this matter. We suggest
to rather use this term in the context of H-matrix based balanced truncation, since
the approximation is an integral part of the H-matrix approach. Therefore we would
suggest using the term low-rank balanced truncation or truncated balanced truncation
when LRCFs are applied. The main points from the survey are:

1. low-rank balanced truncation, i.e., balanced truncation based on low-rank factors
instead of triangular Cholesky factors can not guarantee the stability of the ROM,
although this has not been observed yet in practice.

2. To make the difference between the ROM generated from full rank (i.e., Cholesky)
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factors of the Gramians and the ROM computed using low-rank factors small
one has to ensure that the full rank factors and low-rank factors are “close” (See
formula (2.54) in [62] originally: [63, equation (4.17)]).

3. In [7] a certain decay bound for the eigenvalues of the Gramians is derived, which
gives rise to the following remarks regarding the LRCF-ADI:

a) If the eigenvalues of the system matrix A are clustered in C, choosing the shifts
inside the cluster(s) lowers the spectral radius of the iteration matrix (WJ in
Section 4.2) and in turn increases the convergence speed of the ADI iteration.

b) If the eigenvalues of A have mostly dominant real parts, then the decay rate of
the eigenvalues of the Gramian is again fast and so is the convergence speed
of the ADI iteration.

c) If the eigenvalues of A have mostly dominant imaginary parts, while the real
parts are relatively small, the decay rate for the eigenvalues of the Gramian is
small. Then the ADI iteration converges slowly.

Additional Remarks. We want to add some personal remarks here. Losing the guar-
antee of stability is an issue we have to face in numerical computations even for full
rank factors. Thus 1 is an issue on should keep in mind but never overrate. In terms
of the LRCF-ADI stopping criteria (Section 4.6) 2. means that we always have to solve
very accurately, i.e., with small residuals and small relative change tolerances. Note
that in practice the deviations are often first/only observed for very high frequencies
in the Bode plot. Note further that 2. especially suggests to choose small truncation
tolerances for the column compression (as proposed in Section 4.4.1) applied to the
LRCFs. Also we note that [63, equation (4.17)] does not allow for a suggestion for the
truncation tolerance, other than the machine precision itself, since none of the data on
the right hand side of this inequality is known a priori.

Concerning 3a), in finite arithmetics one has to keep in mind that the step operator at
least implicitly contains the term (A− piI). Now choosing pi very close to an eigenvalue
one easily increases the condition number of this operator, which in certain applications
has been observed to even decrease the convergence speed. For example, for the Gyro
example (Section 3.8) computing the heuristic shifts from eigenvalue approximations
via eigs in Matlab gives much slower convergence, than the same number of shift
computed from a set of Ritz values computed by only a few steps of the Arnoldi
iteration. Remark number 3b) additionally supports the strategy to choose only the
real parts of the Penzl parameters as the ADI shifts. The convergence should be rather
fast in this case anyway and every step of the iteration can be computed a lot faster
when complex arithmetics (and memory demands) are avoided. In the case of 3c), if
the number of eigenvalues with dominant imaginary parts that are located near the
imaginary axis is small, Wachspress [145, 46] suggests to separate them for special
treatment and choose the (asymptotically) optimal shifts for the remaining part of the
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spectrum.

The low-rank square root method that results from using LRCFs instead of full rank
factors is summarized in Algorithm 7.1. Modifications working with the generalized
state space representation are given in the following section. The remainder of this
section is concerned with the efficient application of this algorithm in terms of both
computation speed and accuracy.

Convergence Speed of the LRCF-ADI and MOR accuracy. An important observa-
tion that we want to state next, is that in MOR applications the convergence speed in
the LRCF-ADI is not a major issue. In fact it can even be helpful or desirable to have
slower convergence, because then more iteration steps are taken and thus the factor
grows further. This sounding counterintuitive on first glance in turn holds the possibil-
ity of adding more subspace information to the factor. Thus for a slower convergence
speed the rank of the LRCF may be larger than that of the fast converged one. Now
remembering, that the Hankel singular values are computed from the product (2.41)
where now S and R are the LRCFs ZB and ZC in Algorithm 7.1 we see that the lower
of the ranks of ZB and ZC limits the rank of the product. Thus it limits the number of
nonzero HSVs and with it the order of the ROM. Therefore from a certain point we may
be unable to increase the accuracy of the ROM due to missing subspace information in
the factors. Therefore we suggest to use the relative change criterion rather than the
residual for stopping the ADI iteration in MOR contexts, since this tends to run longer
and should catch rank increases better in most cases.

Choice of the Parameters for the Shift Computation. A crucial question when ap-
plying any shift parameter computation based on Penzls heuristic method is how many
shifts (l0) to compute and from how many Ritz (kp) and harmonic Ritz values (km) to
do so. In [116] Penzl shows, that taking a lot of shifts does not give better convergence
results. For an example corresponding to the 2d FDM heat equation model from Sec-
tion 3.1 without convection, he shows, that for an order 400 problem there are only very
small performance gains doubling the number of shifts from 8 to 16 and almost none
for further doubling to 32. Thus we can restrict ourselves to a rather small amount of
shifts. Taking around l0 = 15 shifts gives good results even in problems of dimension
O(104). In MOR applications we can thus even think about smaller l0, since taking a few
more iteration steps can enable us to find more accurate reduced order models. Besides
that when looking for smaller numbers of shifts we can also choose km and kp smaller
and thus save iteration steps in the preliminary Arnoldi methods.

Dual Lyapunov Solutions. In Algorithm 7.1 we need the solutions to both the observ-
ability and controllability Lyapunov equations. The equations are dual to each other,
i.e., when writing the LRCF-ADI for the one of them we have to apply the adjoint (in
general transpose) operator for the other one. The step operators Pk (see equation (4.6))
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Algorithm 7.2 Generalized Low-Rank Square Root Method for Standard ROMs
(GS-LR-SRM)
Input: (M,N,B,C) realization of the (large) original state space system,

k the reduced system order
Output: (Â, B̂, Ĉ) the reduced standard state space realization

1: Solve
NXBMT + MXBNT = −BBT

for an LRCF ZB of XB.
2: Solve

NTXCM + MTXCN = −CTC

for an LRCF ZC of XC.
3: ZC = MHZC {see Section 5.2}
4: Compute the (thin) SVD

UCΣUH
B = ZH

C ZB.

5: Define the transformation matrices SB and SC according to

SB = ZBUB(:, 1 : k)Σ(1 : k, 1 : k)−
1
2 , SC = ZCUC(:, 1 : k)Σ(1 : k, 1 : k)−

1
2 .

{Note that k can be adapted from Σ for a given error tolerance according to (2.42).}
6: Compute the reduced order realization

Â := SH
C M−1NSB, B̂ := SH

C M−1B, Ĉ := CSB.

{ Note that SH
C M−1 can be precomputed, saving one solve with M.}

in both iterations are therefore transposes in real arithmetic. Now having computed
the LU-decomposition of, e.g., F + pkI = LkUk we have the LU decomposition UTLT of
FT + pkI at hand. If our implementation can solve with the transposes at similar cost
as with the factors themselves, we can exploit this to save on decomposition per iter-
ation step, when solving for both Gramians simultaneously. Note that in cases where
F is self-adjoint we can always compute both Gramians simultaneously at little to no
additional cost.

7.1.2. Generalized State Space Systems

In many large scale applications, especially when FEM discretization is applied during
the model generation, the system does not arise in standard state space form, but in
generalized state space form (2.4). For theoretical considerations it is then sufficient to
know that the mass matrix is invertible, such that an equivalent standard state space
system can be formed, as described in Section 2.2.2. For small dense systems this is
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Algorithm 7.3 Generalized Low-Rank Square Root Method for Generalized ROMs
(GG-LR-SRM)
Input: (M,N,B,C) realization of the (large) original state space system,

k the reduced system order
Output: (M̂, N̂, B̂, Ĉ) the reduced generalized state space realization

1: Solve
NXBMT + MXBNT = −BBT

for an LRCF ZB of XB.
2: Solve

NTXCM + MTXCN = −CTC

for an LRCF ZC of XC.
3: Compute the (thin) SVD

UCΣUH
B = ZH

C MZB

4: Define the transformation matrices SB and SC according to

SB = ZBUB(:, 1 : k)Σ(1 : k, 1 : k)−
1
2 , SC = ZCUC(:, 1 : k)Σ(1 : k, 1 : k)−

1
2 .

{Note that k can be adapted from Σ for a given error tolerance according to (2.42).}
5: Compute the reduced order realization

M̂ := SH
C MSB, N̂ := SH

C NSB, B̂ := SH
C B, Ĉ := CSB.

still applicable and can be performed in quadratic complexity which is easily exceeded
by the complexity of the matrix equation solvers for dense systems. Therefore from a
complexity point of view these transformations are cheap and applicable there. In large
scale sparse applications this is prohibitive since then we loose the sparsity of the state
space matrix and memory limitations restrict the problem sizes drastically. In Chapter 5
we have already discussed techniques to avoid this problem. We have seen that we can
exploit the sparsity of the original system best by the G-LRCF-ADI algorithm for solving
generalized Lyapunov Equations. It has also been discussed there, how these solutions
relate to those of the equivalent standard state space representation. Algorithm 7.2 now
is the obvious reformulation of Algorithm 7.1 that exploits the matrix pencil approach
in the computation of the Gramian factors, then recomputes the Gramian factors for
the equivalent standard state space form and uses these to compute the ROM for the
standard state space representation. Thus the ROM is in standard state space form.
Note, however, that we need to implement the reduction carefully since, e.g., the matrix
Â := SH

C M−1NSB needs to be formed and it is crucial to exploit the rectangularity of SB and
SC by computing Â as (M−HSC)H(NSB) where M−HSC and NSB keep the same dimensions
as SC and SB. Alternatively we can follow Algorithm 7.3 taking M into account in the
SVD instead of forming the equivalent standard state space representation and then
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apply the transformation to the generalized state space form that we actually really
have given.

Note that Algorithms 7.2 and 7.3 produce the same ROM. First of all, due to the fact
that Algorithm 7.2 works with Z̃c = MHZC both algorithms compute the same UC, Σ,
UB. Then in Algorithm 7.2

SC = Z̃CUC(:, 1 : k)Σ(1 : k, 1 : k)
1
2 = MHZCUC(:, 1 : k)Σ(1 : k, 1 : k)

1
2 =: MHŜC,

and ŜC is exactly the SC computed in Algorithm 7.3. Further

Â = SH
C M−1NSB = ŜH

C NSB

and
B̂ = SH

C M−1B = ŜH
C B,

which obviously coincide with the ones computed in Algorithm 7.3. Finally M̂ in
Algorithm 7.3 is always Ik ∈ R

k×k by construction, since

SH
C MSB = Σ

1
2 UH

C ZH
C MZBUBΣ

1
2 = Σ−

1
2 UH

C UCΣUH
B UBΣ−

1
2 = Σ−

1
2 ΣΣ−

1
2 = I.

The dimension k × k directly follows from the truncation dimension k in the algorithm.

7.2. Second Order Systems

The task of model order reduction is to find a ROM that captures the essential dynamics
of the system and preserves its important properties. Since we are considering systems
of second order we can essentially follow two paths during the computation of the re-
duced order model. The natural choice would be to preserve the second order structure
of the system and compute a second-order reduced order model of the form

M̂ ¨̂x(t) + D̂ ˙̂x(t) + K̂x̂(t) = B̂u(t), ŷ(t) = Ĉv ˙̂x(t) + Ĉpx̂(t), (7.1)

where k � n and M̂, D̂, K̂ ∈ Rk×k, B̂ ∈ Rk×p, Ĉv, Ĉp ∈ Rm×k and x̂(t) ∈ Rk. Unfortunately,
the global balanced truncation error bound (2.42) for the reduction is lost if the structure
preserving balanced truncation is applied following [108, 41, 124]. Recently it was
shown in [153] that it can be reestablished in special cases under additional symmetry
assumptions. The basic idea is, that for systems, with input and output matrices being
transposes of each other and all matrices defining the differential equation, i.e., M, D
and K, are symmetric, one has enough structural information to reestablish the error
bound. Although these assumptions on the system may seem rather special, this is a
very common setting in simulation and design of electric circuits.

Still many simulation and controller design tools used in applications in the engineering
sciences expect the system models to be of first order. Therefore even if the original
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system is of second order there is a large demand for the computation of a first-order
ROM

M̂ ˙̂x(t) = Âx̂(t) + B̂u(t), ŷ(t) = Ĉx̂(t), (7.2)

in practice. Here again k� n and M̂, Â ∈ Rk×k, B̂ ∈ Rk×p, Ĉ ∈ Rm×k and x̂(t) ∈ Rk.

The main idea behind both approaches is to rewrite (2.6) in first order representation
and apply balanced truncation to the equivalent first-order model, as described in
Section 2.2.3. From the previous section in this chapter we know that then M̂ will in fact
be the identity Ik.

7.2.1. Efficient Computation of Reduced First Order Models

Following the technique presented in Section 2.2.3, we trace the reduction of the sec-
ond order system back to the reduction of a generalized first order system of double
dimension,

Mẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t). (7.3)

That means the main task in this section will be to map the required matrix operation to
operations with the original system matrices M, G, K of (2.6). Following the derivations
in Section 5.2 these operations are x = M−1A f , M−1Ax = f and (A + pM)−1M, as well
as x = (M−1A)T f , (M−1A)Tx = f and (AT + pMT)−1MT. In the following we will always
decompose x, f ∈ R2n as in

x =

[
x1
x2

]
and f =

[
f1
f2

]
,

where x1, x2, f1, f2 ∈ Rn to have them fit the block sizes in M and A.

For the above linear algebra operations involved in the ADI iteration for computing
the controllability and observability Gramians, we show in the following list how to
perform these operations using original data from the second-order model only:
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x = M−1A f ⇔Mx = A f ⇔ x1 = f2,
Mx2 = −K f1 − G f2

x = (M−1A)T f ⇔ x = ATM−T f ⇔MT f̃2 = f2,
x1 = −KT f̃2,
x2 = f1 − GT f̃2

M−1Ax = f ⇔ Ax = M f ⇔ x2 = f1,
Kx1 = −M f2 − G f1

(M−1A)Tx = f ⇔ ATM−Tx = f ⇔ KTx̃2 = − f1,
x1 = f2 + GTx̃2

x2 = MTx̃2

x = (A + pM)−1M f ⇔ (A + pM)x = M f ⇔ (p2M−pG+K)x1 = G f1−M( f2+p f1),

x2 = f1 − px1

x = (AT + pMT)−1MT f ⇔ (AT + pMT)x = MT f ⇔ f̃2 = MT f2,
(p2MT

− pGT + KT)x2 = p f̃2 − f1,
x1 = f̃2 + GTx2 − pMTx2

Table 7.2.: Computing the 2n × 2n first order matrix operations in terms of the original
n × n second order matrices

From the rightmost column we see that we can perform all matrix operations needed
by Algorithm 5.1 and its preceding parameter computation directly using the original
system matrices M, G, K, B, Cp, Cv. Computation of the two matrix polynomials and their
usage in sparse direct solvers is cheap with the same arguments as in Section 2.2.2. The
important message here is that exploiting the block structure of the 2n × 2n matrices in
the equivalent first order representation, we can reduce the computational and storage
cost to essentially O(n). That means all system matrices can be stored in O(n).

A word of warning has to be given regarding the shift parameters. Since linear systems

(p2MT
− pGT + KT)x2 = p f̃2 − f1,

need to be solved where M, G and K result from the same discretization and therefore in
general have similar condition numbers, large shifts need to be avoided. Otherwise the
drastic weighting difference in p2M and K will lead to severe numerical incorrectness
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corrupting the results of all subsequent computations. This is no essential restriction,
since the information from eigenvalues closer to the imaginary axis is more important
for the results in most cases anyway. Especially in the present MOR tasks, where we are
interested in covering the poles of the transfer function matrix, it is observed that these
closely relate to the imaginary parts of the eigenvalues close to the imaginary axis. That
means very large eigenvalues (which have very small or no imaginary parts for most
FEM matrices anyway) are of less importance for the reduced order system generation
and thus may be neglected in the process of shift parameter computation.

7.2.2. Regaining the Second Order Structure for the Reduced Order
Model

Second order balanced truncation has been introduced in [108]. The general idea for
reducing the second order system to a second order ROM is essentially as follows:
the system (2.6) is equivalently rewritten to first order form (2.8). Then from the first
order system the balancing matrices are obtained following Section 2.4. The required
second order Gramians in [108] are defined based on the equivalent first order system
in standard state space form

.[
x
ẋ

]
=

[
0 In

−M−1K −M−1G

] [
x
ẋ

]
+

[
0

M−1B

]
u, y =

[
Cp Cv

]
u. (7.4)

For this system the Gramians P and Q as in (2.37) are computed. These are compatibly
partitioned as

P =

Pp Po

PT
o Pv

 , Q =

Qp Qo

QT
o Qv

 . (7.5)

The second order position Gramians are then given as Pp and Qp. Analogously Pv and
Qv define the velocity Gramians (See [108, 41, 134] for details). Using pairs of these
second order Gramians we can now define the position balanced (Pp,Qp), velocity balanced
(Pv,Qv), position-velocity balanced (Pp,Qv) and velocity-position balanced (Pv,Qp) ROMs
following [124, Definition 2.2]. Now, e.g., the position balancing Gramian pair (Pp,Qp)
takes the role of (P,Q) in the computation of the projectors Tl and Tr in (2.40) and the
reduced order system (7.1) is obtained according to

M̂ = TlMTr, Ĝ = TlGTr, K̂ = TlKTr,

B̂ = TlB, Ĉv = CvTr, and Ĉp = CpTr.

In order to preserve stability and symmetry of the original system, projection can also
be performed by an orthogonal matrix T as in

M̂ = TTMT, Ĝ = TTGT, K̂ = TTKT,

B̂ = TTB, Ĉv = CvT, and Ĉp = CpT,
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where T can be obtained, e.g., from the range of Tr. In general for a non-symmetric
system we will not have TT

l = Tr and thus the balancing of the Gramian product (2.41)
is no longer ensured. Therefore also the global error bound (2.42) is lost. For systems
where M, G, K are symmetric, Cv = 0 and Cp = BT [153] reestablishes the error bound.
The key idea there is to use the equivalent first order model[

−K 0
0 M

]
ż(t) =

[
0 −K
−K −G

]
z(t) +

[
0
B

]
u(t), y(t) =

[
BT 0

]
z(t), (7.6)

and thus regain the symmetry in the first order system. Although these conditions
might seem rather academic, there is a large class of systems arising in electrical engi-
neering when developing RLCK circuits, which have exactly these properties. Velocity
balancing, position-velocity balancing and velocity-position balancing can be applied
similarly (see [124] for details). Stykel and Reis [124] in addition prove stability preser-
vation for the position-velocity balancing of symmetric second order systems, with
positive definite mass, stiffness and damping matrices. They also note that in general
none of the approaches guarantees stability of the ROM.

In the following we show that the low-rank factors of the second order Gramians Pp, Pv,
Qp, Qv in (7.5) can be formed directly from LRCFs S and R of the first order Gramians
P, and Q computed with respect to (7.4). Hence we can avoid building the full Gramian
matrices in (7.5) and therefore reduce the expenses to those of the ADI framework.

Let S be a low-rank Cholesky factor of the Gramians Q computed by the (G-)LRCF-ADI
Algorithm for either of the two first order representations, e.g., by LRCF-ADI for (7.4).
We can now compatibly partition SH = [SH

1 SH
2 ] and compute

Pp Po

PT
o Pv

 = P = SSH =

S1

S2

 [SH
1 SH

2

]
=

S1SH
1 S1SH

2

S2SH
1 S2SH

2

 .

Hence, Pp = S1SH
1 , such that the low-rank Cholesky factor of the position controllability

Gramian is directly given as the upper n rows S1 of the low-rank Cholesky factor S.
Analogously, we can compute the LRCF R1 of the second order position observability
Gramian Qp from the LRCF R of the first order observability Gramian Q. Also, the lower
n rows S2 of the first order Gramian factor form the required LRCF of the second order
velocity controllability Gramian in case we want to apply velocity based balancing.
Again, in complete analogy, the same holds true for R2 as the LRCF of Qv.

Note that the block structure in (7.6) can be exploited analogously to the procedure
presented in Section 7.2.1. Note further that when applying G-LRCF-ADI in the back-
transformation according to (5.18) we have S̃1 = S1 since the (1, 1)-block in M is In
in (2.8). For the transformation (7.6) on the other hand we need to consider −K for
transforming the LRCFs S1 and S̃1, i.e., S̃1 = −KS1, since K = KT.
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7.2.3. Adaptive Choice of Reduced Model Order

We have repeatedly regretted the loss of the global error bound for the second order
balancing approaches. Another reason why we do so is, that we can no longer use
this easy to compute adaption process to choose the reduced model order based on a
prescribed tolerance on the model reduction error. Fortunately an alternative adaption
method has shown to give good results in first order MOR. There we do not sum up the
truncated singular values, but monitor the ratio σk

σ1
assuming that the singular values

are decreasingly ordered as usual. As soon as this ratio drops below the prescribed
tolerance the truncation is performed.

This method is the way ROM orders are adapted in LyaPack and has shown to provide
very similar results to the exact error bound evaluation. Even though we loose the error
bound and in practical applications observe that largest HSVs can be smaller than any
prescribed tolerance would be chosen (see, e.g. Table 8.11), we can still apply the ratio
method to determine the reduced model order in second order balancing approaches.
Although we should keep in mind that it truncates the internal HSV decay of the ROM,
but does not guarantee any approximation error bound.
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The last chapter of the main part of this thesis is dedicated to the numerical verification
of the results from the previous chapters. We will avoid reprinting of numerical tests
concerning the LQR problem for the steel example here. The interested reader is referred
to [17, 27, 26, 127] where extensive testing for the stabilization, tracking and nonlinear
stabilization problems have been presented. This chapter is structured as follows.
First we repeat some results [20] on the parameter selection for the ADI iteration.
We replenish these results with some new observations on a fairly different choice of
parameters showing promising behavior in the application in model order reduction.
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The second section then illustrates how the acceleration techniques for the ADI and
Newton’s method presented in Sections 4.4 and 4.5 work in practice. After that we
present all model reduction related results; starting with a case study for a very large
generalized state space system and ending with the efficient computation of second
order ROMs. The final section then compares the different implementations in C and
Matlab and demonstrates some of our new ideas for the efficient memory management
and shared memory parallelization of the algorithms in Chapter 4.

8.1. Numerical Tests for the ADI Shift Parameter Selections

For the numerical tests in this section the LyaPack1 software package [117] was used. A
test program similar to demo r1 from the LyaPack examples was employed for the com-
putations, with the ADI parameter selection switching between the methods described
in Section 4.3. We have concentrated on the case where the ADI shift parameters can be
chosen real. Choosing real shifts wherever possible has two major advantages. When
choosing complex shifts, the LRCFs computed with these shifts will be complex as well.
This leads to doubling the storage requirements on the one hand and approximately
quadrupling computation effort on the other hand.

8.1.1. FDM Semi-Discretized Convection-Diffusion-Reaction Equation

Here we consider the finite difference semi-discretized partial differential equation

∂x
∂t
− ∆x −

[
20
0

]
.∇x + 180x = f(ξ)u(t), (8.1)

where x is a function of time t, vertical position ξ1 and horizontal position ξ2 on the
square with opposite corners (0, 0) and (1, 1). The example is taken from the SLICOT
collection of benchmark examples for model reduction of linear time-invariant dynam-
ical systems (see [42, Section 2.7] for details). It is given in semi-discretized state space
model representation:

ẋ = Ax + Bu, y = Cx. (8.2)

The matrices A, B, C for this system can be found on the NICONET web site2.

Figure 8.1a,b show the spectrum and sparsity pattern of the system matrix A. The
iteration history, i.e., the numbers of ADI steps in each step of Newton’s method are
plotted in Figure 8.1c. There we can see that in fact the semi-optimal parameters work
exactly like the optimal ones by the Wachspress approach. This is what we would expect
since the rectangular spectrum is an optimal case for our idea, because the parameters

1available from: http://www.netlib.org/lyapack/ or http://www.tu-chemnitz.de/sfb393/lyapack/
2http://www.icm.tu-bs.de/NICONET/benchmodred.html

http://www.netlib.org/lyapack/
http://www.tu-chemnitz.de/sfb393/lyapack/
http://www.icm.tu-bs.de/NICONET/benchmodred.html
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a, b and α (see Section 4.3) are exactly (to the accuracy of Arnoldi’s method) met here.
Note especially that for the heuristic parameters even more outer Newton iterations
than for our parameters are required.

8.1.2. FDM Semi-Discretized Heat Equation

In this example we tested the parameters for the finite difference semi-discretized heat
equation on the unit square (3.1) from Section 3.1.

The data is generated by the routines fdm 2d matrix and fdm 2d vector from the exam-
ples of the LyaPack package. Details on the generation of test problems can be found in
the documentation of these routines (comments and Matlab help). Since the differential
operator is symmetric here, the matrix A is symmetric and its spectrum is real in this
case. Hence α = 0 and for the Wachspress parameters only the largest magnitude and
smallest magnitude eigenvalues have to be found to determine a and b. That means we
only need to compute two Ritz values by the Arnoldi process (which here is in fact a
Lanczos process because of symmetry, but the software currently does not exploit that)
compared to about 30 (which seems to be an adequate number of shifts) for the heuristic
approach. We used a test example with 400 unknowns here to still be able to compute
the complete spectrum using eig for comparison.

In Figure 8.2 we plotted the sparsity pattern of A and the iteration history for the solution
of the corresponding ARE. We can see (Figure 8.2b) that iteration numbers only differ
very slightly. Hence we can choose quite independently which parameters to use. Since
for the Wachspress approach it is crucial to have an accurate approximation of the
smallest magnitude eigenvalue it can be a good idea to choose the heuristic parameters
here (even though they are much more expensive to compute) if the smallest magnitude
eigenvalue is known to be close to the origin (e.g. in case of finite element discretizations
with fine meshes).

8.1.3. FEM Semi-Discretized Convection-Diffusion Equation

Note, that the heuristic parameters do not appear in the results bar graphics for this
example (see Figure 8.4. This is due to the fact that the LyaPack software crashed while
applying the complex shift computed by the heuristics. Numerical tests where only
the real ones of the heuristic parameters where used lead to very poor convergence in
the inner loop, which is generally stopped by the maximum iteration number stopping
criterion. This resulted in breaking the convergence in the outer Newton loop. Note
that the computations were performed using LyaPack which uses the technique from
Section 5.1 to handle the mass matrix. The sparsity patterns of M before and after
reordering using Reverse Cuthill-McKee reordering and the Cholesky factor of M after
reordering are shown in Figure 8.3. It is illustrating that we have a nice banded structure
with only about three times the number of non-zero entries in the factor.
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8.1.4. Dominant Pole Shifts and LR-SRM

In Section 4.3.3 we motivated the use of dominant poles as ADI shifts in the context of
the LR-SRM. Now we want to compare the results of LR-SRM based reductions using
dominant poles with the heuristic shift parameters we presented in Section 4.3. The
computation of the dominant poles uses the Subspace Accelerated MIMO Dominant
Pole Algorithm (SAMDP) presented in [125, Chapter 4]. We test the two shift parameter
choices on the CD-Player example from the SLICOT3 benchmark collection, the spiral
inductor from the Oberwolfach Collection and the artificial model from Section 3.2.
First we tested all three models with a maximum iteration number of 50 and a residual
tolerance of 10−10 for the LRCF-ADI, as well as a truncation error tolerance of 10−5 and
a maximum reduced order of 200. All tests have been carried out without acceleration.
The corresponding results are shown in Figure 8.5. Note especially that the area around
the minimal relative error for the CD player is almost an exact mirror image of the
corresponding peaks in the Bode plot. Also note that the dominant poles give the
smallest errors for the spiral inductor (except from very high frequencies > 109).

Additionally a test with Galerkin projection acceleration in every fifth ADI step has been
performed for the artificial model (Section 3.2). Note that the Galerkin projection cannot
be supposed to accelerate the computation, since the model does not fulfill A + AT < 0.
Still we observe an interesting effect of the projection. From the perfect accordance (see
Figure 8.6) of the results for heuristic parameters and the dominant pole shifts, we have
to conclude, that the solution factors span the same subspaces onto which the projection
is performed.

3http://www.slicot.org

http://www.slicot.org
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Figure 8.5.: Comparison of dominant pole (dp) based ADI shifts and heuristic based
shifts. (heur rp shifts only take the real parts of the heur shifts into account
to avoid complex computations)
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Figure 8.6.: LR-SRM reduction of the artificial model with Galerkin projection in every
fifth step of the LRCF-ADI
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8.2. Accelerating Large Scale Matrix Equation Solvers

The tests for this section have been carried out in Matlab 2009a on an Intel®Core™ 2
Quad CPU of type Q9400 running at 2.66GHz. Matlab was running in multithreaded
mode where possible. Our test system was equipped with 4GB of main memory and
running in 64Bit mode such that these were fully available (although not necessary) in
Matlab.

8.2.1. Accelerated Solution of Large Scale Sparse Lyapunov Equations

We demonstrate the efficiency of the Galerkin projection accelerated solution of large
scale Lyapunov equations for the generalized Lyapunov equation case. The standard
state space case is implicitly covered by the following section, where the same technique
is applied to the inner iteration in the Newton-ADI method for the ARE. The two test
examples shown in Figure 8.7 are differently sized discretizations of the steel profile
model in Section 3.3. This model is especially tough for the projection approach since
the costly orthogonalization has to be applied to a relatively high number of columns.
The model is a MIMO system with six inputs and seven outputs. Thus in every step
even in an optimal implementation (which we do not yet have) one has to apply the
orthogonalization to multiple columns, amplifying the part of the step with the highest
computational complexity even further. We can learn many things from these pictures.
First it is important to note, how close the two projected lines stay to each other, which
is a rather common observation we found in many examples. Second we find that
the version where the projection is only performed in every fifth step sometime is
converging even faster. Thus collecting certain amount of new subspace information
seems to be helpful for the computations in finite arithmetics. As a third remark we
find that in all cases the less frequent projected version is the fastest in terms of runtime,
due to the lower cost compared to the one and better approximation feature compared
to the other concurrent method.

8.2.2. Accelerated Solution of Large Scale Sparse Algebraic Riccati
Equations

Here we summarize the tests carried out for the Galerkin projection accelerated LRCF-
NM as mentioned in Section 4.5.3. The results we show here are based on the FDM
examples as presented in Section 3.1. Both models are of dimension n = 10000.

The software is a straight forward implementation of Algorithm 4.7 using Algorithm 4.3
in the inner loop. Heuristic shift parameters have been used. In both cases the 15 shifts
have been chosen from 50 Ritz values with respect to the current closed loop operator
and 25 for its inverse and updated in every Newton step. The outer Newton’s method
was stopped whenever either the relative change in the factor ‖Zk−Zk−1‖

‖Zk‖
, or the current
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(a) Residual histories controllability LE
(dimension 5177)
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(b) Residual histories observability LE
(dimension 5177)
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(c) Comparison of runtimes for different
projection frequencies (dimension 5177)
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(d) Comparison of runtimes for differ-
ent projection frequencies (dimension
20209)
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(e) Residual histories observability LE
(dimension 20209)
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Figure 8.7.: Galerkin projected solution or controllability and observability Lyapunov
equations for the steel profile example in dimensions 5177 and 20209
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Figure 8.8.: FDM 2d heat equation: LRCF-NM with Galerkin projection

normalized residual ‖R(ZZH)‖
‖CTC‖ was smaller than n·eps. The inner ADI iteration is stopped

whenever the normalized Lyapunov residual ‖FZZH+ZZHFT+GGT
‖

‖GGT‖
is smaller than 10−10.

Additionally maximum iteration counts of 20 for the Newton iteration and 200 for the
ADI process were applied. Section 4.6 explains how these stopping criteria can be
evaluated inexpensively.

Galerkin Projection and FDM Semi-Discretized Heat Equation

projection final ARE residual final normalized ARE residual runtime
0 7.608924e-08 1.086989e-11 76.91 seconds
1 2.000888e-11 2.858412e-15 39.62 seconds
5 1.000444e-11 1.429206e-15 38.00 seconds

Table 8.1.: FDM 2d heat equation: Comparison of LRCF-NMs with and without Galerkin
projection

First we tested the heat equation without convection, i.e., the symmetric case, where
real spectra and real arithmetics can be guaranteed. Table 8.1 shows the comparison
of the attained residuals and especially the runtime of the different approaches. The
projection column tells us how often the projection has been applied, here 0 means never,
1 stands for every step and 5 for every fifth step. Obviously we can compute a more
accurate solution in roughly half the time using the projected methods. On the other
hand due to the higher costs per iteration step for the projected versions, we do not gain
anything when employing the projections to often. Our experience shows that applying
this type of subspace optimization in every 5-th step is perfectly enough, which is also
very well reflected in this example as we can see from the runtimes and also read off in
Tables 8.2 to 8.4
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step no. rel. change in LRCF rel. LE residual #ADI iter.
1 1 9.999998e-01 200
2 9.999998e-01 3.405729e+01 23
3 5.249867e-01 6.370599e+00 20
4 5.371225e-01 1.523978e+00 20
5 7.034425e-01 2.639902e-01 23
6 5.573919e-01 1.564753e-02 23
7 6.589515e-02 6.296456e-05 23
8 4.024924e-04 9.681828e-10 23
9 8.452248e-09 1.087860e-11 23
10 1.518166e-14 1.086989e-11 23

Table 8.2.: FDM 2d heat equation: LRCF-NM without Galerkin projection

step no. rel. change in LRCF rel. LE residual #ADI iter.
1 1 2.065203e-05 19
2 5.249864e-01 6.370682e+00 8
3 5.371212e-01 1.524009e+00 8
4 7.034422e-01 2.639984e-01 9
5 5.574055e-01 1.564843e-02 9
6 6.589897e-02 6.297180e-05 10
7 4.025390e-04 9.792769e-10 9
8 8.454352e-09 2.858412e-15 9

Table 8.3.: FDM 2d heat equation: LRCF-NM with Galerkin projection in every ADI
step

Galerkin Projection and FDM Semi-Discretized Convection-Diffusion Equation

Extending the above tests to the non-symmetric case, i.e., adding convection to the heat
equation shows very similar results as before. In Table 8.5 we see that the accuracy gain
here is negligible, but we can reduce the computation times even slightly more than by
a factor of two. Here we can also see that the time needed when projecting in every
ADI step is significantly larger, supporting our proposition of a projection frequency of
5 steps. For very large systems even more steps might be taken between subsequent
subspace optimizations, due to the fairly high cost for the orthogonalization employed
in the projection process. This fact is also nicely reflected in Tables 8.6 to 8.8 again.
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step no. rel. change in LRCF rel. LE residual #ADI iter.
1 1 3.559496e-04 20
2 5.249864e-01 6.370682e+00 10
3 5.371210e-01 1.524009e+00 6
4 7.034428e-01 2.639984e-01 10
5 5.574053e-01 1.564842e-02 10
6 6.589894e-02 6.297178e-05 10
7 4.025388e-04 9.792784e-10 10
8 8.454155e-09 1.429206e-15 10

Table 8.4.: FDM 2d heat equation: LRCF-NM with Galerkin projection in every 5-th ADI
step
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Figure 8.9.: FDM 2d convection-diffusiion equation: LRCF-NM with Galerkin projection

projection final ARE residual final normalized ARE residual runtime
0 4.263711e-09 6.091016e-13 185.91 seconds
1 4.320100e-09 6.171571e-13 83.39 seconds
5 4.295543e-09 6.136491e-13 75.13 seconds

Table 8.5.: FDM 2d convection-diffusion equation: Comparison of LRCF-NMs with
Galerkin projection
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step no. rel. change in LRCF rel. LE residual #ADI iter.
1 1 9.999999e-01 200
2 9.999999e-01 3.564285e+01 60
3 3.114304e-01 3.716254e+00 39
4 2.882760e-01 9.619409e-01 40
5 3.412568e-01 1.677661e-01 45
6 1.223042e-01 5.246287e-03 42
7 3.882804e-03 2.960483e-06 47
8 2.297297e-06 6.091016e-13 47

Table 8.6.: FDM 2d convection-diffusion equation: LRCF-NM without Galerkin projec-
tion

step no. rel. change in LRCF rel. LE residual #ADI iter.
1 1 1.293249e-05 33
2 3.114300e-01 3.716225e+00 16
3 2.882755e-01 9.619435e-01 16
4 3.412566e-01 1.677680e-01 16
5 1.223057e-01 5.246422e-03 17
6 3.882904e-03 2.960637e-06 16
7 2.297416e-06 6.171571e-13 16

Table 8.7.: FDM 2d convection-diffusion equation: LRCF-NM with Galerkin projection
in every ADI step

step no. rel. change in LRCF rel. LE residual #ADI iter.
1 1 1.781820e-02 35
2 3.114300e-01 3.716225e+00 15
3 2.882755e-01 9.619435e-01 20
4 3.412566e-01 1.677680e-01 15
5 1.223057e-01 5.246422e-03 20
6 3.882904e-03 2.960637e-06 15
7 2.297416e-06 6.136491e-13 20

Table 8.8.: FDM 2d convection-diffusion equation: LRCF-NM with Galerkin projection
in every 5-th ADI step
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A Maximum Size Example.

projection ARE residual normalized ARE residual runtime num. steps
0 8.831953e-05 1.261708e-10 70h 15
5 3.154855e-07 4.506936e-13 82h 14

Table 8.9.: FDM 2d convection-diffusion equation: Comparison of LRCF-NMs with
Galerkin projection (dimension 106)

As a benchmark for the maximum size computable we tested a Riccati equation for the
FDM 2d convection-diffusion equation choosing dimension 106. The computations have
been carried out in 64Bit Matlab on the main compute server of MRZ. The machine is
a dual CPU dual Core Xeon® 5160 equipped with 64GB RAM. The maximum memory
requirement did not exceed 8GB during the computation, though. Therefore this should
be considered the largest computable size on 8 to 16GB computers.

Unfortunately the compute server could not be used exclusively for these tests and thus
the computation times in Table 8.9 should not be taken to strictly. The main message
here is that a Riccati equation of dimension 106 could be solved within 70-82 hours
using the LRCF-NM. Also, the Galerkin projected version here again gives much better
results considering the accuracy of the results in less Newton iteration steps. Note that
the 0 and 5 in the leftmost column again represent the no “projection”and “projection
in every fifth step” cases, as in the previous examples.

8.3. Model Order Reduction

8.3.1. Reduction of First Order Systems

Although the direct contributions in this thesis to the field of MOR for first order
systems are rather limited, the new results and techniques for the Lyapunov solvers
can be employed in the context of the low-rank square root method (LR-SRM). As a
case study we chose the rail model (Section 3.3) of dimension 79841. We compared
the LR-SRM using the G-LRCF-ADI without extension with the approaches where first
column compression via RRQR is added and then additionally the Galerkin projection
acceleration is used. Both extensions are applied in every fifth ADI step. In Figure 8.10

equation G-LRCF-ADI G-LRCF-ADI + CC G-LRCF-ADI + CC + GP
AXMT + MXAT = −BBT 622.00 sec 798.11 sec 616.58 sec
ATXM + MTXA = −CTC 353.70 sec 489.59 sec 409.11 sec

Table 8.10.: Execution times for the G-LRCF-ADI with and without acceleration tech-
niques for the two Lyapunov equations
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(a) Controllability Lyapunov equa-
tion: sole G-LRCF-ADI
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(b) Observability Lyapunov equation:
sole G-LRCF-ADI
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(c) Controllability Lyapunov equa-
tion: G-LRCF-ADI + column com-
pression
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(d) Observability Lyapunov equation:
G-LRCF-ADI + column compres-
sion
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(e) Controllability Lyapunov equa-
tion: G-LRCF-ADI + column com-
pression and projection accelera-
tion
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(f) Observability Lyapunov equation:
G-LRCF-ADI + column compres-
sion and projection acceleration

Figure 8.10.: Comparison of G-LRCF-ADI iteration histories with and without acceler-
ation features for the steel profile example (dimension 79841)
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Figure 8.11.: Comparison of HSVs computed with and without acceleration features in
G-LRCF-ADI for the steel profile example
(dimension 79841)
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Figure 8.12.: Comparison of Hankel singular value qualities
(CC=column compression; GP=Galerkin projection)
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(a) ROM order 20
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(b) ROM for error tolerance 10−4

Figure 8.13.: Absolute and relative errors of ROMs for the steel profile example (dimen-
sion 79841)

the iteration histories are shown. Figure 8.11 shows a comparison of the computed
Hankel singular value decays calculated from the resulting factors. Also we see that
the deviation of the first 160 HSVs is very small (especially compare Figure 8.11b).
Figure 8.12 shows the results of a similar computation for the rail model of dimension
5177. There we additionally compared the resulting Hankel singular values with the
ones computed via the sign function iteration [22] applied for the Gramian computation.
The results found there motivate the assumption that the HSV computed via the factors
from the G-LRCF-ADI including Galerkin projection are the most accurate in 8.11 as
well. Note that we restricted the presentation to the first 180 HSVs that had been
computed by all approaches.

The computation times for the dimension 79841 model are collected in Table 8.10. What
we learn from the table is that we can save something, but have to choose the acceler-
ation carefully. Also we learn that iteration numbers are only half the bill. Comparing
the runtimes to the figures we see that although we save almost half the iteration steps
for both equations we do not save as much time due to the expensive orthogonalization
involved in both the RRQR and the Galerkin projection. Also the current implemen-
tation is still somewhat experimental and does perform the orthogonalization in both
techniques separately. Therefore especially when both are applied better runtimes can
be achieved in combining them, which should lead to additional time savings. That we
can in fact save a lot of time has already been shown in Table 8.1 where the projection
has been applied in the inner iteration of the Newton’s method. We omit the compar-
ison of the error– and Bode plot here to save some space, since they show no visible
differences anyway. Instead we just present (see Figure 8.13) representative error plots,
for a reduction to an order 20 model and a reduction to an error bound of 10−4.
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(b) Error plots

Figure 8.14.: Second order to first order reduction results for the Gyro example

8.3.2. Reduction of Second Order Systems to First Order ROMs

The Butterfly Gyro

The ROM here is of order 18 and has been computed in roughly 1 hour including pre-
and postprocessing. Here, preprocessing means assembly of the first order original
system and computation of the shift parameters. We used 20 parameters following the
heuristic parameter choice as proposed by Penzl (Section 4.3.1). Postprocessing is the
computation of the original and reduced order Bode plots, as well as the absolute and
relative approximation errors at 200 sampling points. In comparison, the computation of
an order 45 ROM on 256 nodes of the CHiC (Chemnitz Heterogenoeus Linux Cluster4)
using PLICMR5 [25, 24] (which uses a sign function based solver for the Lyapunov
equations) plus postprocessing on the same Xeon machine as above can be done in
roughly half the time, but results show slightly worse numerical properties, i.e., errors
there are slightly larger.

We used a truncation tolerance of 10−8 which is not met everywhere in Figure 8.14b.
This is due to the LRCFs computed. The order of the ROM is limited by the ranks of
those factors. In this example the computation was stopped by a maximum iteration
number bound, such that the factors had not fully converged. Therefore not all Hankel
singular values are available and the balanced truncation error is enlarged by the error
resulting from the truncation of the LRCF computation. It is a common observation,
that this additional error normally affects the higher frequencies.
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Figure 8.15.: Second order to first order results for the acceleration sensor example

method largest HSV
position 0.3580 · 10−12

velocity 0.3457 · 10−12

position-velocity 0.3556 · 10−17

velocity-position 0.3481 · 10−7

Table 8.11.: Largest Hankel singular values for the different second order balancing
approaches in [124] for the acceleration sensor example

Fraunhofer/Bosch Acceleration Sensor

The single computation steps here are the same as for the gyro example. Here we used
25 shift parameters and the computation took about 1 hour as in the gyro example.
The larger dimension is compensated by the fact that here especially the controllability
Gramian factor computation converged in only 23 steps to the required accuracy. The
ROM, for which the results can be found in Figure 8.15, is of order 25. Here we cannot
provide a comparison with the CHiC experiments, since PLICMR crashed for this model
due to memory allocation errors in the required ScaLAPACK routines.

8.3.3. Reduction of Second Order Systems to Second Order ROMs

In Section 7.2 we noted that one of the major drawbacks in handling second order
systems with balancing based MOR algorithms is that the guaranteed error bound for
the approximation error in terms of the transfer function norm is lost. An unfortunate
side-effect of this problem is that it can therefore no longer be used to choose the

4http://www.tu-chemnitz.de/chic/
5http://www.pscom.uji.es/modred/

http://www.tu-chemnitz.de/chic/
http://www.pscom.uji.es/modred/


8.3. Model Order Reduction 123

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−1

10
0

10
1

10
2

ω

σ
m

a
x
(G

(j
ω

) 
−

 G
r(j

ω
))

 

 

position

velocity

position−velocity

velocity−position

(a) Absolute errors

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−5

10
−4

10
−3

ω

σ
m

a
x
(G

(j
ω

) 
−

 G
r(j

ω
))

 

 

position

velocity

position−velocity

velocity−position

(b) Relative errors

Figure 8.16.: A comparison of the different second order to second order balancing
approaches in [124] for the acceleration sensor example with fixed ROM
order 20

reduced model order from the prescribed error tolerance automatically, as well. This
problem is not only a theoretical issue, but is observed in concrete applications. For the
acceleration sensor (Section 3.9) for example, the reduced system order resulting from
this mechanism when position-velocity balancing is applied to the low-rank factors
according to the description in Section 7.2.2 is 2 and the ROM does not even barely
match the original system behavior. Table 8.11 shows that the largest Hankel singular
values for all approaches are already smaller than any realistic error bound one would
prescribe. On the other hand prescribing an order 20 for the ROM we end up with a
relative error that is smaller than 10−4 everywhere at least for two of the approaches. In
Figure 8.16 we compare the absolute and relative MOR errors for the four approaches
from [124, Definition 2.1] for a ROM of order 20. Note that all of them can be and have
been computed from the same Gramian factors generated by Algorithm 7.3 using the
representation of the matrix operations from Section 7.2.1 Table 7.2. Since solving the
Lyapunov equations is the expensive step in the square root method, we can cheaply
compare all methods and use the best result in applications. The Bode plot can not be
distinguished visually from the one given in Figure 8.15a and is therefore omitted. Two
remarks have to be stated regarding Figure 8.16. First we see that the position-velocity
reduced model gives the second best result. Note that this is the model for which
[124] proves stability preservation in the symmetric case with positive definite system
matrices. Second we observe that the results are ordered as position, position-velocity,
velocity-position, velocity from best to worst comparing the plots. That means we see
that with rising influence of the velocity part the result is getting worse. Now recalling
that the velocity is manipulated by the mass matrix when rewriting the second order
system in first order form, we conclude, that we see the influence of the large condition
number of the mass matrix here.

As we have mentioned earlier, many software packages in controller design still expect
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Figure 8.17.: A comparison of the different second order to second order balancing
approaches in [124] for the triple chain oscillator example with fixed ROM
order 75. (ROM order 150 for the first order ROM)
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Figure 8.18.: A comparison of the different second order to second order balancing
approaches in [124] for the triple chain oscillator example with fixed ROM
order 150
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the system used for the computations to be in first order form. Therefore engineers
in practice need first order models for these applications. Now applying the second
order to second order reduction in this context will require that we rewrite the second
order ROM in first order form. Thus we need to compare the results to a double size
first order ROM in this context. Figure 8.17 shows such a comparison for the triple
chain coupled oscillator model with n1 = 500 and thus an original model order of 1501.
In the figure we compared an order 150 first order ROM computed as in the previous
section with the four second order reduced models of order 75. The same comparison
has been carried out for Figure 8.18 where all ROMs are of order 150. All computations
for the triple chain oscillator have been carried out oa an Intel® Pentium® M Laptop
processor with 2.00GHz and 1GB RAM summing up to less than 5 minutes computation
time altogether (including the Bode plot sampling at 200 sampling frequencies).

8.4. Comparison of the Matlab and C Implementations

non-zeroes avg. entries mem. usage mem. usage
Matrix Dimension Entries per row CRS (32Bit) CRS (64Bit)
DW2048 2 048 10 114 4.94 126.527 kB 174.039 kB
DW8192 8 192 41 746 5.10 521.215 kB 716.289 kB
AF23560 23 560 484 256 20.55 5.632 MB 7.568 MB
E40R5000 17 281 553 956 32.10 6.405 MB 8.585 MB
FIDAPM11 22 294 623 554 27.97 7.221 MB 9.685 MB
FIDAPM37 9 152 765 944 83.69 8.800 MB 11.757 MB
FIDAP011 16 614 1 091 362 65.69 12.553 MB 16.780 MB
SME3DB 29 067 2 081 063 71.60 23.927 MB 31.976 MB
TORSO1 116 158 8 516 500 73.32 97.907 MB 130.838 MB

Table 8.12.: Non-symmetric test matrices and their properties (CRS=Compressed Row
Storage)

In this Section we collect some benchmarks comparing Matlab and C implementations
of the algorithms from Chapter 4. Since comparing the Intel and AMD architectural
performance influences was a second task of the benchmarks, we will first introduce
the two test systems on which all benchmarks were produced. The two test systems
are romulus and remus from the compute server pool of the MRZ (Mathematisches
Rechenzentrum) at the Faculty of Mathematics of TU Chemnitz. Named after the
mythologic twin brothers, these computers are almost twins themselves. Both are
equipped with the same Hardware as far as possible. They include the same twin SATA
harddiscs and both have 16 GB RAM (PC2-5300 DDR2-667ECC). The only difference
lies in the computational core hardware. romulus is based on 2 Intel® Xeon® CPUs
of type 5160 running at 3.0 GHz. Both of these consist of two cores, such that one can
access four virtual processors from the Linux (X86-64) operating system. remus on the
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# Threads 1 2 4 8
Matrix System
DW2048 remus 0.034 (1.00) 0.036 (0.96) 0.025 (1.36) 0.046 (0.74)

romulus 0.022 (1.00) 0.031 (0.71) 0.029 (0.76) 0.048 (0.46)
DW8192 remus 0.28 (1.00) 0.15 (1.83) 0.09 (3.12) 0.13 (2.24)

romulus 0.09 (1.00) 0.087 (1.04) 0.06 (1.62) 0.07 (1.31)
AF23560 remus 2.61 (1.00) 1.93 (1.35) 2.41 (1.08) 1.68 (1.56)

romulus 2.74 (1.00) 0.78 (3.52) 1.40 (1.96) 1.90 (1.44)
E40R5000 remus 3.00 (1.00) 2.17 (1.37) 1.87 (1.60) 1.90 (1.57)

romulus 2.83 (1.00) 1.07 (2.63) 0.72 (3.93) 1.34 (2.10)
FIDAPM11 remus 3.41 (1.00) 2.50 (1.36) 2.82 (1.20) 2.14 (1.59)

romulus 3.49 (1.00) 1.50 (2.32) 1.30 (2.68) 1.79 (1.95)
FIDAPM37 remus 3.96 (1.00) 3.05 (1.29) 2.58 (1.53) 2.61 (1.51)

romulus 3.85 (1.00) 1.98 (1.94) 2.49 (1.54) 2.13 (1.80)
FIPAP011 remus 5.67 (1.00) 4.18 (1.35) 4.00 (1.41) 3.61 (1.57)

romulus 5.70 (1.00) 3.31 (1.72) 3.08 (1.85) 3.68 (1.54)
SME3DB remus 13.72 (1.00) 8.70 (1.57) 6.72 (2.04) 7.07 (1.94)

romulus 11.89 (1.00) 7.12 (1.66) 6.48 (1.83) 7.30 (1.62)
TORSO1 remus 46.53 (1.00) 34.50 (1.34) 30.65 (1.51) 28.59 (1.62)

romulus 43.60 (1.00) 27.65 (1.57) 27.82 (1.56) 26.13 (1.66)

Table 8.13.: Runtime and speedup measurements using OpenMP (Bold face entries mark
best speedups)

other hand is equipped with two Dual-Core AMD Opteron™ 2218 Processors running
at 2.6 GHZ. The main difference besides the slightly differing cpu speed is the differing
level 2 cache size of 1MB for AMD and 4MB on the Intel system. A second important
fact is that in the AMD case every physical processor is exclusively attached to half of
the RAM. On the Intel base all cores share the same cache hierarchy. Besides its own
memory each AMD processor can also access the memory of the other processor, but
this access is comparably slow since it has to pass by the other processor. The maximum
over all memory transfer rates of both systems on the other hand coincide again. This
makes those 2 machines the perfect platform for a comparison of the 2 architectures.

8.4.1. Shared Memory Parallelization

The first test considers shared memory parallel computation of matrix vector products.
The test runs compare different matrix dimensions. Starting from very small matrices
the size is successively increased until first the cache size of the Opteron™s and finally
even the cache size of the Xeon®s is exceeded. The test is performed with the easy
to implement OpenMP shared memory parallelization paradigm, as well as with the
more involved MPI standard (using the OpenMPI implementation) known from dis-
tributed memory parallelization. The test matrices for the results presented here are
all non-symmetric and most of them are available on Matrix Market6. The only excep-
tions are the TORSO1 and SME3DB matrices available from the University of Florida

6http://math.nist.gov/MatrixMarket/

http://math.nist.gov/MatrixMarket/
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#Threads 1 2 4 8
Matrix System
DW2048 remus 0.034 (1.00) 0.084 (.41) 0.12 (.27) 0.42 (.08)

romulus 0.023 (1.00) 0.053 (.43) 0.09 (.26) 0.20 (.11)
DW8192 remus 0.28 (1.00) 0.30 (.94) 0.39 (.70) 1.32 (.21)

romulus 0.09 (1.00) 0.23 (.39) 0.36 (.25) 0.82 (.11)
AF23560 remus 2.62 (1.00) 2.33 (1.12) 2.03 (1.28) 3.90 (.67)

romulus 2.74 (1.00) 1.62 (1.69) 2.44 (1.12) 4.69 (.58)
E40R5000 remus 2.98 (1.00) 2.31 (1.29) 1.80 (1.65) 3.24 (.91)

romulus 2.81 (1.00) 1.57 (1.78) 2.13 (1.32) 3.85 (.73)
FIDAPM11 remus 3.34 (1.00) 2.67 (1.25) 2.14 (1.56) 3.97 (.84)

romulus 3.51 (1.00) 2.20 (1.59) 2.80 (1.25) 5.10 (.68)
FIDAPM37 remus 3.97 (1.00) 2.61 (1.51) 1.65 (2.40) 2.72 (1.46)

romulus 3.85 (1.00) 2.15 (1.78) 2.28 (1.68) 3.25 (1.18)
FIPAP011 remus 5.68 (1.00) 3.76 (1.51) 2.50 (2.27) 4.18 (1.35)

romulus 5.72 (1.00) 3.78 (1.51) 4.16 (1.37) 5.41 (1.05)
SME3DB remus 13.74 (1.00) 8.44 (1.62) 5.23 (2.62) 7.63 (1.80)

romulus 11.80 (1.00) 7.90 (1.49) 8.08 (1.46) 10.57 (1.11)
TORSO1 remus 47.03 (1.00) 29.73 (1.58) 18.50 (2.54) 32.59 (1.44)

romulus 43.79 (1.00) 30.70 (1.42) 33.99 (1.28) 44.88 (.97)

Table 8.14.: Runtime and speedup measurements using OpenMPI (Bold face entries
mark best speedups)

Sparse Matrix Collection7 maintained by Tim Davis. Table 8.12 lists the matrices and
their properties. The runtimes and speedups given in Tables 8.13 and 8.14 have been
averaged over repeated executions (20 runs with 1000 matrix vector multiplications
each) to minimize the influence of side effects caused by the operating system. The non-
bracketed numbers represent computation times in seconds. The bracketed numbers
are the speedups compared to the single threaded case. We also tested 8 threads on
the machines with only 4 virtual CPUs to demonstrate that further increases of thread
numbers normally lead to blocking effects that increase the CPU time and decrease

7http://www.cise.ufl.edu/research/sparse/matrices/

Matrix max. speedup # threads method machine type
DW2048 1.36 4 OpenMP remus / AMD
DW8192 3.12 4 OpenMP remus / AMD
AF23560 1.96 4 OpenMP romulus / Intel
E40R5000 3.93 4 OpenMP romulus / Intel
FIDAPM11 2.68 4 OpenMP romulus / Intel
FIDAPM37 2.40 4 OpenMPI remus / AMD
FIDAP011 2.27 4 OpenMPI remus / AMD
SME3DB 2.62 4 OpenMPI remus / AMD
TORSO1 2.54 4 OpenMPI remus / AMD

Table 8.15.: Maximum speedups per matrix

http://www.cise.ufl.edu/research/sparse/matrices/
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the speedup. Table 8.15 summarizes the best results we could achieve with both ap-
proaches. It shows on which machine (i.e., architecture) they have been found and
which parallelism paradigm was used.

The tests shown here are only an excerpt of a technical report [84] scheduled for autumn
2009. The main purpose of this section is to demonstrate that exploiting the paralleliza-
tion properties does make sense in sparse computations although one should not expect
better speedups than on distributed memory machines. Note also that the test systems
are dual processor dual core computers. On a single processor machine with even
more cores sharing the same cache hierarchy, one must expect even smaller speedups.
For dense computations with higher complexity on the other hand we expect better
speedups due to less data collisions on the cache hierarchy.

dim. L+U 16 LUs spmv LU 16 Shifts savings
100 0.016 0.256 0.168 35.97%
625 0.154 2.464 1.608 34.74%

2 500 0.860 13.760 9.060 34.16%
10 000 4.800 76.800 52.025 32.26%
40 000 25.060 401.000 272.698 32.00%
90 000 67.700 1 083.200 737.884 31.88 %

160 000 130.840 2 094.440 1 427.000 31.87%
250 000 212.840 3 405.440 2 322.260 31.81 %
562 500 536.280 8 580.480 5 854.100 31.81%

1 000 000 1 030.100 16 481.600 11 251.600 31.73%

Table 8.16.: Comparison of memory consumptions using standard and single-pattern–
multi-value (spmv) LU on 32bit (all sizes in MB and using AMD reordering)

dim. L+U 16 LUs spmv LU 16 Shifts savings
100 0.022 0.352 0.170 51.70%
625 0.208 3.341 1.661 50.28%

2 500 1.162 18.592 9.354 49.69%
10 000 6.450 103.200 53.675 47.99%
40 000 33.620 537.920 281.257 47.71%
90 000 90.750 1452.000 760.910 47.60 %

160 000 175.280 2 804.500 1 471.500 47.53%
250 000 285.100 4 561.300 2 394.500 47.5 %
562 500 718.000 11 488.000 6 038.000 47.44%

1 000 000 1 379.000 22 064.000 11 604.000 47.41%

Table 8.17.: Comparison of memory consumptions using standard and single-pattern–
multi-value (spmv) LU on 64bit (all sizes in MB and using AMD reordering)



130 Chapter 8. Numerical Tests

8.4.2. Timings C.M.E.S.S. vs. M.E.S.S.

C.M.E.S.S. M.E.S.S. LyaPack
dim. 1st LU other LUs total total ratio total ratio

100 0.00 0.00 0.02 0.16 6.89 0.12 5.45
625 0.00 0.01 0.04 0.23 5.44 0.10 2.48

2 500 0.01 0.03 0.16 0.99 6.24 0.70 4.43
10 000 0.11 0.13 0.97 5.64 5.85 6.22 6.45
40 000 1.31 1.25 11.09 34.56 3.12 71.48 6.44
90 000 6.36 10.68 34.67 90.49 2.61 418.55 12.07

160 000 19.25 37.75 109.32 219.91 2.01 – –
250 000 44.60 68.05 193.67 403.76 2.08 – –
562 500 250.78 295.54 930.14 1216.69 1.31 – –

1 000 000 1130.99 753.36 2219.95 2428.64 1.09 – –

Table 8.18.: Runtime comparison C.M.E.S.S. versus M.E.S.S. versus LyaPack
(times in seconds, – : out of memory)

Here we compare the implementations of Algorithm 4.1 in the upcoming C.M.E.S.S.
with the ones existing in M.E.S.S. or LyaPack respectively. The test problem is the last
one described in Section 3.1 and exactly what is implemented in demo l1 in M.E.S.S. and
LyaPack. The C.M.E.S.S.-implementation especially incorporates the single-pattern–
multi-value LU decomposition (see Section 4.4.3). There the first decomposition (for
the sole matrix as needed for the shift parameter computations) is the expensive one
where all pivoting is performed and the dynamic memory allocation takes place. The
further decompositions then can acquire all memory needed en block, since the complete
computation is already determined a priori. The computation itself can then proceed
through the memory linearly and thus optimally exploit caching effects. Tables 8.16
and 8.17 show the memory savings we achieve using the single-pattern–multi-value
LU. The better savings on 64bit result from the fact that the long int datatype used
for the pattern vector (we can not use unsigned long int due to OpenMP limitations),
here has the same length as the double type, whereas on 32bit it is smaller.

Moreover all LU decompositions for the shifted matrices can be computed indepen-
dently, i.e., in parallel, which explains the observation in the columns “1st LU” and
“other LUs” in Table 8.18. The first LU is the expensive one determining the pivot
strategy and the sparsity pattern. The information can then be reused in the further
decompositions to allocate the right amount of main memory at once and avoid task
switches in the computations. The “total” column shows the over all runtime includ-
ing the triangular solves employed in the actual ADI iteration. The main difference in
the implementations in LyaPack and M.E.S.S. is that LyaPack performs all LU decom-
positions once, at the beginning of the ADI iteration and stores the factors for reuse
when shift parameters are cyclically applied, whereas M.E.S.S. always computes the
decompositions on demand and thus saves all the memory space otherwise blocked by
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the LU decompositions. Note that C.M.E.S.S. uses the precomputation approach in the
specialized storage format and thus saves memory in a different way.

All test have been performed on romulus using 16 heuristic shift parameters (see Sec-
tion 4.3). The “-” signs in the table correspond to cases where LyaPack could no longer
be employed due to memory requirements, i.e., the computation ran out of memory
while computing all shifted LU decompositions. One may increase the dimension of
computable problems there by reducing the number of shifts at the cost of a slower
convergence speed.

Especially note that the performance advantage of C.M.E.S.S. over M.E.S.S. reduces
with increasing dimension of the matrices. We expect that this is due to the UMFPack
solvers used in Matlab. The multi-frontal solvers employed there can speed up com-
putations for very large matrices drastically. First tests exploiting UMFPack for the LU
decompositions in C.M.E.S.S. seem to confirm this expectation, although these are in a
very early stage and it is currently not clear how the solver strategies in UMFPack can
be combined with the memory gains of the single-pattern–multi-value LU we use to
save storage.
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Human beings, who are almost unique in having the ability to learn from
the experience of others, are also remarkable for their apparent
disinclination to do so.

Last Chance to See
Douglas Adams
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9.1. Summary and Conclusions

In this thesis we have examined two important applications of large scale algebraic
matrix equations. The balancing based model order reduction on the one hand and the
linear-quadratic regulator control of partial differential equations on the other hand.
Both of which have, against common believe, been shown to be practically solvable.
The key to the efficiency of these methods is the low-rank solution of the matrix Riccati
and Lyapunov equations involved. We have reviewed the basic ideas and properties
of one important class of those algorithms – the class of low-rank alternating directions
implicit (ADI) based algorithms. Starting from the idea [145] to interpret the Lyapunov
equation as an ADI model problem, we followed the seminal ideas of Penzl [116, 114]
and Li/White [95, 97] to derive the low-rank Cholesky factor ADI (LRCF-ADI) and
low-rank Newton ADI methods (LRCF-NM) [18]. We have proposed shift parameter
strategies for the ADI algorithm that can be optimal in case the defining matrix F in the
Lyapunov equation is symmetric. In many other cases our proposed parameters stay
real where the previously used heuristics produce complex shifts. Real shifts enable us
to compute real low-rank factors of the solution instead of having to work with complex
factors that require double the memory for storage and increase the computational costs
at least by a factor of four (current C compilers easily increase the number of atomic
processor instructions by a factor of six for the complex datatype compared to double
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computations). Note that [18] also proposes a real arithmetic version of the LRCF-ADI
for complex shift parameters. Then again, that version combines two steps of the ADI
iteration for a complex conjugate pair of shifts in one step resulting in a quadratic
coefficient matrix for linear system of equations to solve per step. That system can
still be solved efficiently by iterative solvers, but will in general notably decrease the
efficiency of the direct solvers we have proposed to apply. We have also shown some
numerical experiments motivating the use of dominant poles of the system as the shift
parameters in the context of model order reduction.

In Chapter 4 we have proposed the application of column compression to reduce both
memory demands and computational cost for the storage and application of the low-
rank factors. Further, we have employed the subspace projection technique used in
Krylov projection methods to increase the quality of the of the low-rank factor on the
current ADI subspace. Both techniques help to accelerate the ADI iterations conver-
gence. In turn this fact accelerates the LRCF-NM radically since we can save a lot of
time in every Newton step. Besides that, due to the projection, the quality of the final
ADI iterate often is better, which further increases the convergence speed of the outer
Newton method. All these methods have been proven to be efficiently applicable in
the case of generalized state space systems (i.e., systems with invertible mass matrix) as
well in Chapter 5.

Linear-quadratic regulator problems for parabolic partial differential equations have
been discussed in Appendix A and Chapter 6. The appendix reviews the method we
introduced in [127, 27] based on the theory proposed by Gibson [54] and refined by
Banks and Kunisch [12]. There we basically show that the theory Banks and Kunisch
developed for distributed control, which guarantee and preserve exponential stability,
can also be extended to boundary control problems. In Chapter 6, we presented an
efficient method to solve tracking type problems based on a solver for the stabilization
problem. We found a way to rewrite the problem such that the tracking approach
appears as an uncontrolled source term in the closed loop system. Numerical results
fortifying the effectivity of this approach have been shown and discussed in [17]. The
latest contribution in that chapter is the derivation of a suboptimality estimate for the
application of a numerically computed feedback control to the real world process. The
final section then embeds the LQR system into a nonlinear MPC scheme to apply this
technique to the optimal control of nonlinear parabolic PDEs as well. Based on the work
of Ito/Kunisch [78] and Chen/Allgöwer[43], we motivate the stabilization feature of this
approach. The application to the nonlinear version of the Rail example (Section 3.3)
illustrates the practicability of this approach.

The chapter on model order reduction techniques has two major contributions. On
the one hand, we discussed the application of low-rank factors in the square root
method for balanced truncation model reduction. This gave rise to the truncated or
low-rank square root method, which is also called approximate balanced truncation by
some authors. We especially reported on the interrelations and choices of the many
ADI process parameters, e.g., numbers of shifts, parameters for the shift computation,
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truncation tolerances for the column compression. On the other hand, in the second
part of the chapter we introduced efficient ways to compute reduced order models for
sparse second order systems. These are normally computed applying the model order
reduction techniques for first order systems to an equivalent first order representation
of the second order system. We have presented a way to exploit the structure of the
equivalent first order representations such that we can work with the original sparse
second order matrices exploiting their features with the direct solvers applied. Further
we have shown that the second order Gramians required by the second order to second
order balanced truncation model order reduction can be computed directly from the
low-rank factors of the first order Gramians computed for the equivalent first order
system representation. Thus we can avoid forming the full n × n dense Gramians to
pick the correct blocks for the second order Gramians.

A wide range of numerical tests has been performed and many features of the methods
proposed in the other chapters have been presented in Chapter 8. We have especially
proven that Lyapunov and Riccati equations of dimension up to 106 can be solved on
modern computer hardware.

9.2. Future Research Perspectives

The work we have discussed in this thesis opens the path to a wide range of future
research possibilities. Some of them are rather theoretic whereas others lie more in the
range of computational scientific aspects. As we have already noted in Sections 4.3.3
and 8.1.4, the usage of dominant poles as ADI shifts shows interesting phenomena that
require a rigorous mathematical examination. Also, the usage of the eigenvalues of
the optimal closed loop operator as fixed ADI shifts in the context of the LRCF-NM (as
suggested in Section 4.5) should be discussed in more detail, although it seems to be the
obvious and natural choice especially in view of the projection acceleration. From the
remarks on the eigenvalue decay of the solution to the Lyapunov equation in [7] we learn
that it is desirable to have the eigenvalues of F in (4.2) cluster in the complex plain and
choose the shift parameters inside those clusters. This proposes the pre-conditioning of
F such that this clustering is generated. That means one should study whether such a
pre-conditioning exists and can be incorporated in the LRCF-ADI at a cost linear in the
dimension.

For the LRCF-NM it is a highly interesting question, whether one will be able to find
a way to exploit the Rk < CTC condition in [50] for the residual Rk to limit and reduce
the number of required ADI steps per Newton step and still guarantee the convergence
of the Newton iteration. Also the question arises whether we can use the knowledge
about the close relation of Newton-Kleinman-ADI and the QADI iteration to form a
new cheaper low rank QADI version from the current presentation of the LRCF-NM
rather than the complicated formulas derived in [151]–[150].

In the context of LQR control for PDEs, the nonlinear equations offer a large field
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of applications. The techniques presented will need to be related to other existing
techniques like the instantaneous control [71]. Another interesting new field was opened
by [123], where the resulting algebraic Riccati equations have structural properties that
are not covered by the methods presented in this thesis, e.g., full rank constant terms.

Coupled systems in the context of structural analysis of mechanical systems often result
in descriptor system representations. This problem arises especially in applications
where rigid bodies play an important role. Therefore the results for the second or-
der MOR need further investigation about their applicability and extensibility in this
context.

The efficient implementation of the algorithms we presented throughout this thesis has
been performed in Matlab until now. First steps in the direction of a C language library
have been made and the results have been given in Chapter 8. Many new questions
arise in the C version where one would not have any influence on their handling in
Matlab anyway. The storage of LU factors in the single-pattern–multi-value way as
discussed in Chapter 4 is only one example. Especially the efficient shared memory
parallelization and specialized solvers for computers with small main memory have to
be examined.
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I am among those who think that science has great beauty. A scientist in his
laboratory is not only a technician: he is also a child placed before natural
phenomena which impress him like a fairy tale.

Marie Curie

APPENDIX

A

SELECTIVE COOLING OF STEEL PROFILES: EXPONENTIAL
STABILIZATION AND DISCRETIZATION
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This appendix chapter is taken into the thesis for completeness reasons. Most of the
material has been part of [127, 27]. The manuscript is reprinted as it has been presented in
[27]. Some minor comments have been added. The software used in the implementation
has been unchanged though. Therefore a general recommendation is to read M.E.S.S.
wherever LyaPack is referred to when searching for the most appropriate software to
use today.

A.1. Theoretical Background

The theoretical fundament for our approach was set by Gibson [54]. The ideas and
proofs used for the boundary control problem considered here closely follow the exten-
sion of Gibson’s method proposed by Banks and Kunisch [12] for distributed control
systems arising from parabolic equations. Similar approaches can be found in [91].
Common to all those approaches is to formulate the control system for a parabolic
system as an abstract Cauchy problem in an appropriate Hilbert space setting. For
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numerical approaches this Hilbert space is approximated by a sequence of finite di-
mensional spaces, e.g. by spatial finite element approximations, leading to large sparse
systems of ordinary differential equations in Rn. Following the theory in [12] those
approximations do not even have to be subspaces of the Hilbert space of solutions, if
only they approximate it building a Galerkin scheme of approximating spaces.

A.1.1. Linear-Quadratic Regulator Problems in Hilbert Spaces

In the remainder of this chapter we will assume that the state space H, the input space
U and the output space O are Hilbert spaces. For operators A ∈ L(dom (A) ,H) and
B ∈ L(U,H) with dom (A) ⊂ H and A the infinitesimal generator of the C0-semigroup
T(t) on H, we examine the system

ẋ(t) = Ax(t) + Bu(t), for t > 0,
y(t) = Cx(t), for t > 0,
x(0) = x0.

(A.1)

Furthermore we consider the cost functional (3.7) for selfadjoint operators Q ∈ L(H)
and R ∈ L(U), with Q ≥ 0 and R > 0. This completes the LQR-problem:

Minimize (3.7) over u ∈ L2(0,∞; U) with respect to (A.1). (RH)

Let A : H → H be the infinitesimal generator of a C0-semigroup T(t), B : U → H the
above input operator. From [54] we know that the solution trajectory x∗ and control
input u∗ can be expressed by

u∗(t) = −R−1B∗X∞x∗(t)
x∗(t) = S(t)x0

(A.2)

iff there exists an admissible control for (3.7),(A.1) for every x0 ∈ H. Here X∞ is the
minimum nonnegative selfadjoint solution of the operator algebraic Riccati equation:

R(X) := Q + A∗X + XA − XBR−1B∗X = 0 (A.3)

in the sense that for all ϕ,ψ ∈ dom (A) it holds

(ϕ,Qψ)H + (Aϕ,Xψ)H + (Xϕ,Aψ)H − (B∗Xϕ,B∗Xψ)U = 0

and S(t) is the C0-semigroup generated by A − BR−1B∗X∞. If Q > 0 then S is even
uniformly exponentially stable.

A.1.2. Weak Formulation and Abstract Cauchy Problem

We will now show the relation of the abstract Cauchy problem (A.1) to the partial differ-
ential equation model problem from equation (3.6). We therefore consider a variational
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formulation of (3.6) tested with v ∈ H1(Ω). We will later choose Galerkin approxi-
mations of H1(Ω) as test spaces and thus get a finite dimensional approximation of
the resulting Cauchy problem by choosing those Galerkin approximations as certain
finite-element (fem) spaces. The weak formulation of (3.6) leads to

(∂tx,v) = ( 1
cρ∇.λ∇x,v)

=
∫
Ω

1
cρ (∇.λ∇x)vdξ = −

∫
Ω

α∇x.∇vdξ +
∫
Γ

α∂νxvdσ

(3.9)
= −

∫
Ω

α∇x.∇vdξ −
7∑

k=1

∫
Γk

κk
cρ (x − xext,k)vdσ

= −

∫
Ω

α∇x.∇vdξ −
7∑

k=1

∫
Γk

κk
cρxvdσ − κkxext,k

∫
Γk

1
cρvdσ

 .
(A.4)

Rewriting (A.4) as

(∂tx,v)L2(Ω) + α(∇x,∇v)L2(Ω) +

7∑
k=1

κk

cρ
(tr (x) , tr (v))L2(Γk) −

7∑
k=1

κk

cρ
(xext,k, tr (v))L2(Γk) = 0

(A.5)
with tr (:) H1(Ω)→ L2(∂Ω) the trace operator, and defining

A : H1(Ω) → H1(Ω)′

x 7→ α

(
(∇x,∇.)L2(Ω) −

7∑
k=1

κk
λ (tr (x) , tr (.))L2(Γk)

)
B : U → H1(Ω)′

xext 7→

7∑
k=1

κk
cρ (xext,k, tr (.))L2(Γk)

M : H1(Ω) → H1(Ω)′

x 7→ (∂tx, .)L2(Ω)′

(A.6)

we obtain the sesquilinear form

σA(ϕ,ψ) :=< Aϕ,ψ > +α(ϕ,ψ)L2(Ω) (A.7)

where as above < ϕ,ψ >:= ϕ(ψ) is the duality product for ϕ ∈ H1(Ω)′ and ψ ∈ H1(Ω).
Note, that analogous to C in equation (3.11) the operator B is bounded from the bound-
edness of the domain Ω and the trace operator.

σA is a continuous and coercive sesquilinear form on H1(Ω) because by definition it
holds

σA(ϕ,ϕ) = α

‖ϕ‖21,2 +

7∑
k=1

κk

λ
‖ tr

(
ϕ
)
‖

2
L2(Γk)


so that obviously σA(ϕ,ϕ) ≥ α‖ϕ‖21,2. The continuity of σA follows from the continuity
of the trace operator (see, e.g., [146]). Now the theorem of Lax-Milgram guarantees the
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existence of invertible linear and bounded operators Aα ∈ L(H1(Ω)) and A∗α ∈ L(H1(Ω))
such that

σA(ϕ,ψ) = (−Aαϕ,ψ)H1(Ω),

σA(ϕ,ψ) = (−A∗αψ,ϕ)H1(Ω).
(A.8)

This results in a system of the form (A.1) with H = H1(Ω), for (A.5) together with the
initial conditions of the PDE now are:

ẋ = Aαx + Bxext in Ω,
x(0, .) = x0 in Ω

(A.9)

In the definitions in (A.6) we implicitly used uext,k (k = 1, . . . , 7) as the controls. If we
choose to use the heat transfer coefficients κk as controls, we have to define A and B as
follows

A : H1(Ω) → H1(Ω)′

x 7→ α(∇x,∇.)L2(Ω)
B : U → H1(Ω)′

κk 7→

7∑
k=1

κk
cρ (tr (x) − xext,k, tr (.))L2(Γk).

(A.10)

Thus B is actually B(x) and the state equation becomes

ẋ = Aαx + B(x)κk in Ω, (A.11)

so that in this case we end up with a bilinear system and can not directly apply the
linear theory. Eppler and Tröltzsch [49] avoid the bilinear control system by replacing
the right hand side of (3.9) by a ficticious heat flux function v(t). We will later present
numerical experiments also for (A.11) when B(x) is frozen in each time step, similar
to [49] where the material parameters λ, c and % are frozen.

From (A.8) and the coercivity of σA we find that

Re (Aαϕ,ϕ) ≤ −c1‖ϕ‖21,2,

Re (A∗αϕ,ϕ) ≤ −c1‖ϕ‖21,2.
(A.12)

So Aα and A∗α are densely defined, dissipative linear operators. By [111, Corollary 4.4;
Section 1.4] we know that they are infinitesimal generators of C0-semigroups Tα(t) and
T∗α(t). We note that by construction of Tα(t) the solution semigroup of the uncontrolled
system is given by

T(t) = eαtTα(t) (A.13)

which is generated by AT = Aα + αI on the domain of Aα. Analogously we see that

T∗(t) = eαtT∗α(t) (A.14)

generated by AT∗ = A∗T = A∗α + αI. Furthermore from (A.12) we have

‖T(t)‖ ≤ e(α−c1)t for t ≥ 0. (A.15)
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A.1.3. Approximation by Finite Dimensional Systems

Next we will treat the approximation of (A.9) by finite dimensional systems. A natural
requirement for such approximations is

∀ϕ ∈ H ∃ϕN
∈ HN such that ‖ϕ − ϕN

‖ ≤ ε(N) and ε(N)→ 0 as N→∞. (C1)

This is fulfilled by any Galerkin scheme based approximations, e.g. many finite element
approximation schemes. In complete analogy to the procedure in (A.7) to (A.15) the
restriction of σA to HN

× HN leads to C0-semigroups TN(t) and TN(t)∗ generated by
operators AN

T and AN
T∗ respectively. Let PN : L2(Ω) → HN be the canonical orthogonal

projection onto HN. We define the approximations BN of B and QN of Q by

BN = PNB, QN = PNQ.

With these we define the approximating LQR-systems as

Minimize:

J(xN
0 ,u) :=

∞∫
0

(xN,QNxN)HN + (u,Ru)Udt,

with respect to
MNẋN(t) = ANxN(t) + BNu(t), for t > 0,

xN(0) = xN
0 ≡ PNx0

(RN)

Note that in (RN) we already wrote the matrix representations of the finite dimensional
operators in the fem-basis used for the spatial semi-discretization. This makes the mass
matrix MN appear on the left hand side of the state equation.

A.2. Approximation of Abstract Cauchy Problems

Before stating the main theoretical result we will first collect some approximation pre-
requisites we will need for the theorem. We call them (BK1) and (BK2) for they were
already formulated in [12] (and called H1 and H2 there). The first and natural prereq-
uisite is:

For each xN
0 ∈ HN there exists an admissible control uN

∈ L2(0,∞; U) for
(RN) and any admissible control drives the state to 0 asymptotically.

(BK1)
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Additionally one needs the following properties of the finite dimensional approxima-
tions:

(i) For all ϕ ∈ H it holds TN(t)PNϕ → T(t)ϕ uniformly on any bounded
subinterval of [0,∞).

(ii) For all φ ∈ H it holds TN(t)∗PNφ→ T(t)∗φ uniformly on any bounded
subinterval of [0,∞).

(iii) For all v ∈ U it holds BNv→ Bv and for all ϕ ∈ H it holds BN∗PNϕ→
B∗ϕ.

(iv) For all ϕ ∈ H it holds QNPNϕ→ Qϕ.

(BK2)

With these we can now formulate the main result.

Theorem A.1 (Convergence of the finite dimensional approximations):
Let (BK1) and (BK2) hold. Moreover let R > 0, Q ≥ 0 and QN

≥ 0. Also let XN be the
solutions of the AREs for the finite dimensional systems (RN) and let the minimal
nonnegative self-adjoint solution X of (R) on H exist. Further let S(t) and SN(t) be
the operator semigroups generated by A−BR−1B∗X on H and AN

−BNR−1BN∗XN on
HN, respectively, with ‖S(t)ϕ‖ → 0 as t→∞ for all ϕ ∈ H.

If there exist positive constants M1, M2 and ω independent of N and t, such that

‖SN(t)‖HN ≤ M1e−ωt,
‖XN
‖HN ≤ M2,

(A.16)

then
XNPNϕ → Xϕ for all ϕ ∈ H

SN(t)PNϕ → S(t)ϕ for all ϕ ∈ H
(A.17)

converge uniformly in t on bounded subintervals of [0,∞) and it holds

‖S(t)‖ ≤M1e−ωt for t ≥ 0. (A.18)
♦

Sketch of the Proof. This is basically [12, Theorem 2.2] which is formulated in terms of
the sesquilinear forms and operator semigroups. In (A.7) to (A.15) we verified that the
properties of the sesquilinear form and semigroups are preserved when migrating from
distributed control (which Banks and Kunisch used) to boundary control. Therefore the
proof boils down to that of [12, Theorem 2.2].

So we only have to verify the prerequisites (BK1), (BK2) and (A.16) here. Considering
the fem basis representations (i.e. matrix representation) introduced in (RN) we find
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that (BK1) follows directly from well known results for finite dimensional regulator
systems [99, 133]. The properties (iii) and (iv) of (BK2) are fulfilled by the Galerkin
scheme underlying the finite element method used for the implementation. The first
and second conditions follow from (A.13) and (A.14) together with

TN
α (t)PNϕ → Tα(t)ϕ,

TN
α (t)PN∗ϕ → Tα(t)∗ϕ, (A.19)

for all ϕ ∈ H uniformly in t on any bounded subset of [0,∞). The later is basically an
application of the Trotter-Kato Theorem. See [12, Lemma 3.2] and before for details.
(A.16) is verified as in [12, Lemma 3.3]. �

Theorem A.1 gives the theoretical justification for the numerical method used for the
linear problems described in this paper. It shows that the finite-dimensional closed-
loop system obtained from optimizing the semi-discretized control problem indeed
converges to the infinite-dimensional closed-loop system. Note especially, that the
formulation is chosen such that the controls computed for the approximating finite-
dimensional systems can directly be applied to the infinite-dimensional system. Cer-
tainly they have to be considered suboptimal then. In [91, Chapter 5.2] also convergence
rates are given for a very similar approach. From these convergence rates one may also
derive sub optimality bounds. Extending this to the given approach is work in progress
an will be published in future papers.

Deriving a similar result to the one given in Theorem A.1 for the nonlinear problems
presented in Section 3.3.1 and also treated numerically in the following sections is an
open problem.

A.3. Implementation Details

We present different strategies of solving the control system here. We can divide them
into two approaches. The first of which can be called the ODE approach, for it han-
dles things just the way one would do in classical approaches concerning control sys-
tems governed by ordinary differential equations. The second one on the other hand
closely follows the philosophy of finite element methods for parabolic partial differen-
tial equations and is therefore refered to as the PDE approach. Using the notation of
semi-discretizations of partial differential equations one would call the ODE approach
a vertical method of lines and the PDE approach a horizontal method of lines (Rothe
method).

Both approaches need to solve an ARE to compute the control. This is done by the
LyaPack1 software package [117]. For further details on the theory of solving large
sparse AREs and Lyapunov equations we refer the reader to [18, 14, 15, 97, 113, 116].

1available at http://www.tu-chemnitz.de/sfb393/lyapack

 http://www.tu-chemnitz.de/sfb393/lyapack
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The basis of the finite dimensional approximations is given by the Galerkin scheme
approximating the state space. This is achieved by a finite element semi-discretization
of the spatial domain. We used the ALBERTA-1.2 2 [130] finite element library to do this.
The macro triangulation that serves as the basis of the finite element approximation is
shown in Figure 3.1. The curved surfaces at head and web of the profile are handled
by a projection method, i.e., new boundary points are relocated to their appropriate
position on a circular arc. The computational mesh is refined by a bisection refinement
method.

We start both approaches with a short uncontrolled forward calculation. During this
calculation the profile is cooled down from constant 1000°C until the maximal temper-
ature reaches approximately 990°C to have a more realistic temperature distribution at
the control startup. This calculation is done with boundary conditions set up to model
cooling in surrounding air of 20°C. See [36, Section 4] for information on the chosen
heat transfer coefficients.

Finishing the pre-calculation we end up with an initial set of system matrices Ah, Bh, Ch

and Mh (the matrix representations of the above finite dimensional operators AN, BN,
CN and MN). These are then used to compute the feedback matrix Kh with the LyaPack
software using a Matlab mexfunction implemented for this purpose.

In the ODE approach the matrix Kh is used to establish the closed loop system

Mhẋh(t) = −(Ah + BhKh)xh(t),
xh(0) = xh

0.
(A.20)

The solution of the closed loop system can then be calculated by a standard ODE solver
like ode23 of Matlab.

The PDE approach uses K to set up the boundary conditions. Doing this we have the full
space adaption capabilities of ALBERTA at hand to refine or coarsen the mesh as needed.
On the other hand we have to pay for this freedom by frequent recalculations of K if
the mesh and with it the system matrices Mh, Ah and Bh have changed. At the moment
we solve this problem by calculating certain control parameters (i.e. the temperature of
the cooling fluid or the intensity parameters for the cooling nozzles depending on the
boundary conditions used) and freezing them for a number of timesteps preset by the
user.

Numerical calculations with updates after 2, 5 and 10 timesteps show that parameters
tend to become the same after 10-20 seconds in model time, even if we use an implicit
time integration scheme with probably large timesteps. Thus all update strategies lead
to the same asymptotic behavior. See [27, Figure 2] for a plot of the control parameters
(temperatures of the cooling fluid) over time. The term the same is to be understood as
“equal regarding model accuracy”, for temperature differences in the size of deci- or
even centi-°C for the cooling fluid should be refered to as equal concerning technical
application of the computed controls.

2available at http://www.alberta-fem.de.

 http://www.alberta-fem.de
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Even using the spraying intensities as controls which leads to a bilinear control system
with state dependent input matrix Bh(xh), can be computed by this method leading to
promising results. To do this we linearize the system by choosing Bh := Bh(xh(tn)) on the
time interval τn := [tn, tn+1]. Interpreting this method in terms of instantaneous control
or model predictive control is future work and will be presented elsewhere.
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APPENDIX

B

THESES

1. This thesis is devoted to the numerical solution of large scale sparse matrix equa-
tions of Riccati and Lyapunov type. In particular those matrix equations appearing
in the context of linear-quadratic optimal control problems for parabolic partial
differential equations and model order reduction of large linear sparse systems of
first and second order are discussed in detail.

2. Basic properties of the ADI based iterative methods for the solution of those
equations based on the theory developed by Wachspress et al. and their low-rank
versions proposed in the seminal work of Li/White and Penzl are discussed.

3. A crucial point in the application of ADI based iterative methods is the choice of
“good” shift parameters minimizing the over all spectral radius of the iteration
matrix and thus guaranteeing fast convergence of the methods. One of the main
contributions is the proposal of three new parameter choices that can be used in
appropriate contexts.

4. Sometimes good, or optimal shifts are either not known, or at least not computable
with reasonable effort. Then there is a demand for acceleration techniques, that
can speed up the convergence of the iteration. A full section of this thesis is
dedicated to the development of those techniques. Their effectivity and efficiency
is demonstrated in several numerical examples.

5. Classically all results and algorithms have been discussed for matrix equations
corresponding to systems in standard state space representation in the open lit-
erature. Often the systems arising, e.g., in PDE control are of generalized state
space form, i.e., an invertible mass matrix M comes into play. Then the system is
multiplied by the inverse to reestablish standard state space form. Alternatively
a LU or Cholesky factorization of M is used to define a state space transformation
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and eventually transform to standard state space form preserving the symmetry
of the system. Both approaches suffer severe fill in and thus explicitly forming the
transformed system has to be avoided. For the prior it is shown in this thesis that
applying matrix pencil techniques one can almost completely avoid the inversion
of M.

6. The efficiency of the methods is demonstrated in two important classes of ap-
plications: The linear-quadratic optimal control of parabolic partial differential
equations on the one hand and the model order reduction of large sparse linear
systems on the other hand.

7. The methods for the stabilization of parabolic PDEs are shown to be efficiently
applicable in tracking type control problems, as well. Further first ideas for the
treatment of non-linear PDEs are given.

8. For linear parabolic PDEs another main contribution of this thesis is the proof of
an estimation of the suboptimality of the numerically computed controls when
applied to the real world problem

|J(u∗) − J(uN
∗ )| ≤ C

(
‖x0 − xN

0 ‖ + ‖X∗ − X̂N
∗ ‖

)
.

9. Another chapter is dedicated to the review of the approximate balanced truncation
method extending classic balanced truncation to large scale sparse systems by
replacing the Cholesky factors in the square root method by the corresponding
low-rank factors computed by the low-rank ADI methods in the low-rank square
root method. There the single process parameters and their choices in relation to
the prescribed errors for the reduction are discussed.

10. The major contribution of this thesis in the model order reduction context is
the introduction of a novel method preserving the sparsity and structure of the
original system matrices for the iterations applied to second order systems, which
are normally transformed to double sized first order form prior to the application
of the balanced truncation approach. Besides that the corresponding section
of this thesis presents an efficient way to compute the low-rank factorizations
of the position and velocity Gramians applied in second-order-to-second-order-
balancing from the low-rank factors of the Gramians computed with respect to
the equivalent first order system.

11. This thesis has disproved the myth that “solving large scale matrix equations is
impossible and impractical”. Especially the common believe that LQR problems
for linear parabolic PDEs are theoretically well understood but unsolvable in
practice has been proven false. With our new codes we have been able to solve
matrix equations of dimension up to 106

× 106 with memory demands smaller
than 16GBytes.
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18, 21

[35] C. H. Bischof and G. Quintana-Ortı́, Algorithm 782: Codes for rank-revealing QR
factorizations of dense matrices., ACM Trans. Math. Softw., 24 (1998), pp. 254–257.
51
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merical Mathematics, Birkhäuser, Basel, Switzerland, 2002. 18

[74] K.-H. Hoffmann, G. Leugering, and F. Tröltzsch, eds., Optimal control of partial
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Abkühlung von Stahlprofilen, Diplomarbeit, Fachbereich 3/Mathematik und Infor-
matik, Universität Bremen, D-28334 Bremen, Sept. 2003. 27, 30, 81, 101, 134,
139

[128] J. Sabino, Solution of Large-Scale Lyapunov Equations via the Block Modified Smith
Method, PhD thesis, Rice University, Houston, Texas, June 2007. available from:
http://www.caam.rice.edu/tech_reports/2006/TR06-08.pdf. 44

[129] S. B. Salimahrami, Structure Preserving Order Reduction of Large Scale Second Order
Models, PhD thesis, TU München, 2005. available from: http://www.rt.mw.tum.
de/salimbahrami/BehnamThesis.pdf. 10

[130] A. Schmidt and K. Siebert, Design of Adaptive Finite Element Software. The Finite
Element Toolbox ALBERTA, vol. 42 of Lecture Notes in Computational Science and
Engineering, Springer-Verlag, Berlin-Heidelberg, 2005. 146

[131] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations,
SIAM J. Sci. Comput., 29 (2007), pp. 1268–1288. 2, 26, 53, 55, 59

[132] V. Simoncini and V. Druskin, Convergence analysis of projection methods for the
numerical solution of large Lyapunov equations, SIAM Journal on Numerical Analysis,

http://pos.sissa.it
http://www.caam.rice.edu/tech_reports/2006/TR06-08.pdf
http://www.rt.mw.tum.de/salimbahrami/BehnamThesis.pdf
http://www.rt.mw.tum.de/salimbahrami/BehnamThesis.pdf


Bibliography 161

47 (2009), pp. 828–843. 53

[133] E. Sontag, Mathematical Control Theory, Springer-Verlag, New York, NY, 2nd ed.,
1998. 9, 13, 145

[134] D. Sorensen and A. Antoulas, On model reduction of structured systems, in Dimen-
sion Reduction of Large-Scale Systems, P. Benner, V. Mehrmann, and D. Sorensen,
eds., vol. 45 of Lecture Notes in Computational Science and Engineering, Springer-
Verlag, Berlin/Heidelberg, Germany, 2005, pp. 117–130. 98

[135] G. Starke, Optimal alternating directions implicit parameters for nonsymmetric systems
of linear equations, SIAM J. Numer. Anal., 28 (1991), pp. 1431–1445. 43, 44

[136] , Rationale Minimierungsprobleme in der komplexen Ebene im Zusammenhang mit
der Bestimmmung optimaler ADI-Parameter, dissertation, Fakultät für Mathematik,
Universität Karlsruhe, Germany, 1993. In German. 44, 46

[137] U. Storch and H. Wiebe, Textbook of mathematics. Vol. 1: Analysis of one variable.
(Lehrbuch der Mathematik. Band 1: Analysis einer Veränderlichen.), Spektrum Akade-
mischer Verlag, Heidelberg, 3 ed., 2003. (German). 49

[138] H. Tanabe, Equations of evolution. Translated from Japanese by N. Mugibayashi and H.
Haneda., vol. 6 of Monographs and Studies in Mathematics., Pitman Publishing
Ltd , London - San Francisco - Melbourne, 1979. 20

[139] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review, 43
(2001), pp. 235–286. 10

[140] J. Todd, Applications of transformation theory: A legacy from Zolotarev (1847-1878), in
Approximation Theory and Spline Functions, S. P. S. et al., ed., no. C 136 in NATO
ASI Ser., Dordrecht-Boston-Lancaster, 1984, D. Reidel Publishing Co., pp. 207–245.
Proc. NATO Adv. Study Inst., St. John’s/Newfoundland 1983. 43

[141] M. Tombs and I. Postlethwaite, Truncated balanced realization of a stable non-minimal
state-space system, Internat. J. Control, 46 (1987), pp. 1319–1330. 23
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