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problems is high sensitivity of the solution to perturbations in the data. The
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Notation

R

R™

Rmx*n
('7')

|- {2, -
|- 1le
Span{. .. }

A

set of real numbers

set of real vectors of length n
set of real matrices of size m x n
Euclidean inner product
Euclidean norm

Frobenius norm

subspace spanned by vectors

coefficient matrix

transpose of A

inverse of A

Moore-Penrose pseudoinverse of A

identity matrix

m X n matrix with ones on its diagonal and zeros elsewhere

t-th column of identity matrix

square matrix with entries of b on its diagonal and zeros elsewhere
upper triangular part of matrix A

machine precision






1. Introduction

Many fields of application require numerical solution of linear inverse problems.
These are often represented by the system of linear algebraic equations of the
form

b= Az"" +n, (1.1)

where A € R™*" represents the discrete forward model and b € R™ represents the
measured data. The vector n denotes unknown perturbations in the data, usually
referred to as noise, which includes rounding errors, errors of measurement etc.
Given A and b, the aim is to compute a numerical approximation of the exact
solution z™"°. If the system

Ar ~ b (1.2)

is incompatible and the perturbations are Gaussian, independent and identically
distributed random variables with zero mean, further referred to as white noise,
the problem (1.2) is typically formulated as the problem of least squares and the
associated solution

2" = argmin ||b — Az (1.3)

x

is called the least-squares solution. Inverse problems of the form (1.1) arise for
example in signal and image processing, geophysics, seismology, etc. For the
mentioned applications, the inverse problems are typically ill-posed.! The ill-
posed nature of the problem is revealed by the singular values of A, which decay
gradually to zero without a noticeable gap. Thus A is ill-conditioned and the naive
least-squares solution z™ is due to severe amplification of noise meaningless. To
compute a meaningful approximation of "¢ some reqularization is necessary.
Regularization can take many forms, but the target of all of them is to preserve
sufficient information about the exact solution, while suppressing the influence of
noise.

Most commonly known regularization approaches are based on Tikhonov’s reg-
ularization (Tikhonov [1963]) or on closely related spectral filtering, such as the
truncated SVD, see, e.g., Hansen [1987]. Since these methods involve computa-
tion of the (partial) SVD of A, or are in other ways computationally demanding,
they are usually confined to smaller problems. A common alternative to the
spectral filtering methods is iterative regularization. For matrices allowing fast
matrix-vector multiplication, iterative regularization is often based on Krylov sub-
space methods, see, e.g., Liesen and Strakos [2013], and regularization is achieved
via projection onto a Krylov subspace of small dimension. Hybrid methods com-
bine both types of regularization. First, the original problem is projected onto a
Krylov subspace, and subsequently the projected problem is further regularized
using spectral filtering.

Regularization effect of the particular method is typically controlled by a regu-
larization parameter, and its choice is crucial for the performance of the method.

! According to the definition of Hadamard, ill-posed problems are those for which the solution
does not exist, is not unique, or is not a continuous function of the data.
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Strategies for choosing regularization parameters can be divided into two groups:
methods based on some a priori knowledge about noise, such as the discrepancy
principle (Morozov [1966]), and methods that work without this a priori infor-
mation, such as the L-curve (Hansen [1992]) or the generalized cross validation
(Golub et al. [1979]). The presented thesis contributes to several aspects of nu-
merical solution of discrete inverse problems. It comprises four chapters and the
core of each chapter is represented by a peer-reviewed publication, which is for
completeness accompanied by additional comments and numerical experiments
included in the sections at the end.

Chapter 2 deals with iterative regularization methods based on the Golub-Kahan
iterative bidiagonalization (Golub and Kahan [1965]). We investigate, for the
three most common methods LSQR, LSMR, and CRAIG, the resemblance of
the obtained residuals r, = b — Az to the noise vector n. This is not done by
constructing the residuals and comparing them to the properties of 7, which are
rarely known in practice, but rather by tracking the transformation of the noise
vector inside the bidiagonalization process. Due to specific smoothing proper-
ties of the matrices coming from discrete inverse problems, see also Hnétynkova
et al. [2009], the transformation has a specific form and allows us to describe
the representation of noise in the particular residuals as well as to consider the
optimal stopping iteration for some of the methods. Obtained results were pub-
lished in the article Hnétynkova et al. [2017], which is included in the chapter.
Part of the analysis in this article relies on the exact-arithmetic behavior of the
bidiagonalization, therefore we show how this behavior can be simulated using
finite-precision computations.

The Golub-Kahan bidiagonalization also provides an efficient way to estimate the
noise level ||n]|/||Az|| in the data, which is the focus of Chapter 3. The estimated
noise level may then constitute an input parameter for various other methods. For
some simple problems polluted with white noise, the noise estimation using the
Golub-Kahan bidiagonalization has been used already in Hnétynkova et al. [2009].
In the proceedings contribution Hnétynkova et al. [2016], which we include in this
chapter, we present an analogous technique applied to image deblurring problems
corrupted by noise with various characteristics, and we assess its reliability. We
also comment on the limitations of the method when applied to problems with
only a few measurements.

All iterative regularization methods based on Krylov subspaces rely on the con-
struction of well-conditioned (ideally orthonormal) bases of these subspaces. The
Golub-Kahan bidiagonalization, investigated in Chapters 2-3, as well as the Lanc-
zos tridiagonalization (Lanczos [1950]) are techniques for generating orthonormal
basis using short recurrences avoiding explicit reorthogonalization against the
preceeding vectors. Short recurrences represent a great reduction in the compu-
tational effort. However, in finite-precision computations, the orthogonality of the
computed vectors is often quickly lost due to rounding errors. This surprisingly
does not lead to a complete failure of the methods based on these iterative pro-
cesses, see, e.g., Meurant and Strakos [2006]. On the other hand, we often observe
a significant delay of convergence in comparison with the exact error-free version.
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Due to this delay, it may be reasonable to associate the exact-arithmetic enti-
ties with their finite-precision counterparts in later iterations. This is technically
straightforward only for entities whose size decay monotonically. For other enti-
ties, such as the residuals in the Galerkin methods, for example CG (Hestenes and
Stiefel [1952]) or CRAIG (Craig [1955]), the link to their exact-arithmetic coun-
terparts is due to possible oscillations more complicated. In Chapter 4, we include
proceedings contribution Gergelits et al. [2018] investigating how non-monotonic
quantities from finite-precision arithmetic computations can be associated with
their exact arithmetic counterparts.

In specific applications, some a priori information about the statistical distribu-
tion of noise in (1.1) may be available. The least squares formulation (1.3) of
(1.1) is appropriate only for white noise, for which it represents the maximum
likelihood estimate, see, e.g., Vogel [2002]. For problems with other types of
noise, the objective functional has to take a different form. In image process-
ing applications, the data often contains a combination of Poisson and additive
Gaussian noise. For problems with mixed noise, we have to rely on some ap-
proximation of the likelihood functional. Stagliano et al. [2011] showed that one
of the possible approximations leads to a weighted least-squares problem with
solution-dependent weights. Problems for which part of the data is further in-
fluenced by severe corruptions, often referred to as outliers, in addition to noise,
was to our knowledge not studied in the literature. In Chapter 5 we include
article Kubinové and Nagy [in press|, in which we deal with those problems and
propose an objective functional combining the least squares representation with
a robust loss function taking care of the outliers. We also propose two possible
optimization schemes.

Chapter 6 summarizes the main ideas of the thesis and formulates open questions.
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2. Noise representation in
residuals of bidiagonalization-
based regularization

Many stopping criteria in regularization methods for solving discrete inverse prob-
lems are based on the resemblance between the residual b — Az™# and the (un-
known) noise vector. For example, if noise is believed to be white noise, we may
expect the residual corresponding to a good regularized solution to have the spec-
tral properties of white noise. We explain in the article included in Section 2.1
that the opposite procedure is also possible for methods based on the Golub—
Kahan iterative bidiagonalization. More precisely, we show that independently
of the noise characteristic, based solely on propagation of noise through the pro-
cess, we may describe the representation of noise in each of the residuals and
predict which iteration will result in a residual resembling the noise vector. In
Section 2.2 we comment on how the exact-arithmetic Golub-Kahan bidiagonal-
ization can be simulated on a computer. We acknowledge the contribution of
Miroslav Rozloznik to Section 2.2.

2.1 Article published in Linear Algebra and its
Applications

This section contains the article Hnétynkova et al. [2017]. Reprinted by permis-
sion from Elsevier: Linear Algebra and its Applications, Hnétynkova, I., Kubinova,
M. & Plesinger, M.: Noise representation in residuals of LSQR, LSMR, and
CRAIG regularization, copyright (2017), (doi: 10.1016/j.1aa.2017.07.031).
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1. Introduction

In this paper we consider ill-posed linear algebraic problems of the form
b= Az +n, A e R™*™, beR™, Il < ||Az]|, (1)

where the matrix A represents a discretized smoothing operator with the singular values
decaying gradually to zero without a noticeable gap. We assume that multiplication
of a vector v by A or AT results in smoothing which reduces the relative size of the
high-frequency components of v. The operator A and the vector b are supposed to be
known. The vector 7 represents errors, such as noise, that affect the exact data. Problems
of this kind are commonly referred to as linear discrete ill-posed problems or linear
inverse problems and arise in a variety of applications [1,2]. Since A is ill-conditioned,
the presence of noise makes the naive solution

xnaive = ATb,

where AT denotes the Moore-Penrose pseudoinverse, meaningless. Therefore, to find an
acceptable numerical approximation to z, it is necessary to use regularization methods.

Various techniques to regularize the linear inverse problem (1) have been developed.
For large-scale problems, iterative regularization is a good alternative to direct regular-
ization methods. When an iterative method is used, regularization is achieved by early
termination of the process, before noise 7 starts to dominate the approximate solution [1].
Many iterative regularization methods such as LSQR [3-6], CRAIG [7,8], LSMR [9], and
CRAIG-MR/MRNE [10,11] involve the Golub—Kahan iterative bidiagonalization [12].
Combination with an additional inner regularization (typically with a spectral filter-
ing method) gives so-called hybrid regularization; see, for example, [4,13-15]. Various
approaches for choosing the stopping criterion, playing here the role of the regulariza-
tion parameter, are based on comparing the properties of the actual residual to an a
priori known property of noise, such as the noise level in the Morozov’s discrepancy
principle [16], or the noise distribution in the cumulative residual periodogram method
[17-19]. Thus understanding how noise translates to the residuals during the iterative
process is of great interest.

The aim of this paper is, using the analysis of the propagation of noise in the left
bidiagonalization vectors provided in [20], to study the relation between residuals of
bidiagonalization-based methods and the noise vector n. Whereas in [20], white noise was
assumed, here we have no particular assumptions on the distribution of noise. We only
assume the amount of noise is large enough to make the noise propagation visible through
the smoothing by A in construction of the bidiagonalization vectors. This is often the case
in ill-posed problems, as we illustrate on one-dimensional (1D) as well as significantly
noise contaminated two-dimensional (2D) benchmarks. We prove that LSQR and LSMR
residuals are given by a linear combination of the bidiagonalization vectors with the
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coefficients related to the amount of propagated noise in the corresponding vector. For
CRAIG, the residual is only a multiple of a particular bidiagonalization vector. This
allows us to prove that an approximate solution obtained in a given iteration by CRAIG
applied to (1) coincides with an exact solution of the (compatible) modified problem

Az =b—1, (2)

where 7) is a noise vector estimate constructed from the currently computed bidiagonal-
ization vectors. These results contribute to understanding of regularization properties
of the considered methods and should be considered when devising reliable stopping
criteria.

Note that since LSQR is mathematically equivalent to CGLS and CGNR, CRAIG is
mathematically equivalent to CGNE and CGME [21], and LSMR is mathematically
equivalent to CRLS [9], then in exact arithmetic, the analysis applies also to these
methods.

The paper is organized as follows. In Section 2, after a recollection of the previous
results, we study the propagation of various types of noise and the influence of the loss
of orthogonality on this phenomenon. Section 3 investigates the residuals of selected
methods with respect to the noise contamination in the left bidiagonalization vectors
and compares their properties. Section 4 discusses validity of obtained results for larger
2D problems. Section 5 concludes the paper.

Unless specified otherwise, we assume exact arithmetic and the presented experiments
are performed with full double reorthogonalization in the bidiagonalization process.
Throughout the paper, ||v|| denotes the standard Euclidean norm of the vector v, vector
er denotes the k-th column of the identity matrix. By Py, we denote the set of polyno-
mials of degree less or equal to k. The noise level is denoted by dyneise = ||7]|/||Az||. By
Poisson noise, we understand b; ~ Pois([Ax];), i.e., the right-hand side b is a Poisson
random vector with the Poisson parameter Ax. The test problems were adopted from
the Regularization tools [22]. For simplicity of exposition, we assume the initial approx-
imation xg = 0 throughout the paper. Generalization to xy # 0 is straightforward.

2. Properties of the Golub—Kahan iterative bidiagonalization
2.1. Bastic relations

Given the initial vectors wy = 0, s1 = b/f1, where 5; = ||b||, the Golub—-Kahan
iterative bidiagonalization [12] computes, for k =1,2,.. .,

apwi = Al'sj, — Brwy_1 Jwe ]l =1,
Brt18k+1 = Awy, — agsy [sk+1ll =1, (3)
until a, = 0 or Bg+1 = 0, or until & = min(m,n). Vectors s1,..., sg, and wy, ..., wy, form

orthonormal bases of the Krylov subspaces Kr(AAT,b) and Kr(AT A, ATb), respectively.
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In the rest of the paper, we assume that the bidiagonalization process does not terminate
before the iteration k + 1, i.e., o, 8141 > 0,1 =1,... k.

Denoting Sy, = [s1,...,sk] € R™F Wy = [wy, ..., ux] € R"** and
aq
62 (0% ke k Lk
Ly = € RF>¥k, Ly =| o e R+ <k
€l Brt1
Br g

we can write the matrix version of the bidiagonalization as
ATS, =WiLf, AWy = Spy1Lpy.
The two corresponding Lanczos three-term recurrences
(AAT)S, = Skir(Les LY), (AT AWy = Wi (L Lt ),

allow us to describe the bidiagonalization vectors siy1 and wy41 in terms of the Lanczos
polynomials as

Se+1 = @i (AAT)D, w1 = V(ATA)ATD g € Py (4)
see [3,4,23-25]. From (4) we have that
skr1 = or(AAT)b = o (AAT)(Az + 1),
giving
skr1 = [pr(AAT) Az + (0r(AAT) = 0i(0))n] + @r(0)n. (5)
The first component on the right-hand side of (5) can be rewritten as
skt = [oe(AAT) Az + (pr(AAT) = i(0))n] = Age—1 (AAT) [x + ATn]

for some q;_1 € Pr_1. Since A has the smoothing property, then 31}£1 is smooth for k <«

min(m,n). Thus sk41 is a sum of a low-frequency vector and the scaled noise vector 7,

k1 = S + or(0)n. (6)

Note that this splitting corresponds to the low-frequency part and propagated (non-
smoothed) noise part only when |[si%,[|? + [l¢x(0)n|> ~ 1. For large ks, there is
a considerable cancellation between sp¥, and ¢ (0)7, the splitting (6) still holds but
it does not correspond to our intuition of an underlying smooth vector and some added
scaled noise. Thus we restrict ourselves to smaller values of k.
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It has been shown in [20] that whereas for s; (the scaled right-hand side) the noise
part in (6) is small compared to the true data, for larger k, due to the smoothing property
of the matrix A and the orthogonality between the vectors sj, the noise part becomes
more significant. The noise scaling factor determining the relative amplification of the
non-smoothed part of noise corresponds to the constant term of the Lanczos polynomial

Ead

g1 o]

a0 = 5 113 @
called the amplification factor." Its behavior for problems with white noise was studied
in [20] and the analysis concludes that its size increases with k until the noise revealing
iteration krev, where the vector sgyq is dominated by the non-smoothed part of noise.
Then the amplification factor decreases at least for one iteration. Note that there is no
analogy for the right bidiagonalization vectors, since all vectors wy, are smoothed and the
factor ¢ (0) on average grows till late iterations. A recursive relation for ¢ (0), obtained
directly from (3) has the form

1
$o(0) = By
VH0) = = (pk(0) = Bt (0). k=12 ®

2.2. Behavior of the noise amplification factor

Influence of the noise frequency characteristics. The phenomenon of noise amplification
is demonstrated on the problems from [26,22]. Figs. 1b and lc show the absolute terms
of the Lanczos polynomials ¢y and 1, for the problem shaw polluted with white noise
of various noise levels. For example, for the noise level 1073, the maximum of ¢, (0) is
achieved for £ = 6, which corresponds to the observation that the vector s; in Fig. la
is the most dominated by propagated noise. Obviously, the noise revealing iteration
increases with decreasing noise level. The amplification factors exhibit similar behavior
before the first decrease. However, the behavior of ¢ (0) can be more complicated. In
Fig. 2a for phillips, the sizes of the amplification factors oscillate as a consequence of
the oscillations in the sizes of the spectral components of b in the left singular subspaces
of A. Thus there is a partial reduction of the noise component, which influences the
subsequent iterations, even before the noise revealing iteration.

Even though [20] assumed white noise, noise amplification can be observed also for
other noise settings and the formulas (4)—(8) still hold. However, for high-frequency noise,
LF
k

there is smaller cancellation between the low-frequency component si7; and the noise

1 Note that in [20] a different notation was used. The Lanczos polynomial ¢ was scaled by ||b|| so that
noise act

Skt1 = @k(AAT)sl. The vector syy1 was split into siy1 = si’fft + s391°. In our notation, s3 " = sI,;f_l,

noise

and 5391 = ¢ (0)7.
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Fig. 1. The problem shaw(400) polluted by white noise: (a) the left bidiagonalization vectors sixy1 for the
noise level 1073, (b) the size of the absolute term of the Lanczos polynomial ¢ for various noise levels;
(c) the size of the absolute term of the Lanczos polynomial v, for various noise levels.
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(a) phillips(400) (b) shaw(400) (¢) gravity(400)

Fig. 2. Influence of the amount of noise and its frequency characteristics on the amplification factor (7): (a)
the problem phillips with various noise levels of white noise; (b) the problem shaw with noise of different
frequency characteristics; (c) the problem gravity with Poisson noise with different noise levels achieved by
scaling.

part ¢;(0)n in (6). Therefore, in the orthogonalization steps succeeding the noise reveal-
ing iteration kyev, the noise part is projected out more significantly. For low-frequency
noise, on the other side, this smoothing is less significant, which results in smaller drop
of (7) after kyey. This is illustrated in Fig. 2b on the problem shaw polluted by red (low-
frequency), white, and violet (high-frequency) noise of the same noise level. For spectral
characteristics of these types of noise see Fig. 3. Fig. 2¢c shows the amplification factor
for various levels of Poisson noise.

Influence of the loss of orthogonality. First note that the splitting (6) remains valid even
if g are not exactly orthonormal Lanczos polynomials, since the propagated noise can
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Fig. 3. Power spectral densities (or simply power spectra) for red (low-frequency dominated), white (or
Gaussian), and violet (high-frequency dominated) noise 7, ||n|| = 1. Power spectrum is given by squared
magnitudes of Fourier coefficients F'(n) of n (see, e.g., [27, chap. 2.7]), here computed by the discrete Fourier
transform. Power spectra are normalized by the length of the vector.

be still tracked using the absolute term of the corresponding (computed) polynomial.
Nevertheless, it is clear that the loss of orthogonality among the left bidiagonalization
vectors in finite precision arithmetic influences the behavior of the amplification fac-
tor g, i.e. the propagation of noise. In the following, we denote all quantities computed
without reorthogonalization by hat. Loss of orthogonality can be detected, e.g., by track-
ing the size of the smallest singular value 7., of the matrix S of the computed left
bidiagonalization vectors. In Fig. 4 (left) for the problem shaw and gravity we see that
when & ,;, drops below one detecting the loss of orthogonality among its columns, the
size of the amplification factor ¢, (0) starts to oscillate. However, except of the delay,
the larger values of |$£(0)| still match those of |¢x(0)|. If we plot |x(0)| against the
rank of Sy, instead of k, the sizes of the two amplification factors become very similar. In
our experiments, the rank of S, was computed as rank(S(:,1:k),1e-1) in MATLAB,
i.e., singular values of S}, at least ten times smaller than they would be for orthonormal
columns were considered zero. A similar shifting strategy was proposed in [28, chap. 3]
for the convergence curves of the conjugate gradient method. Note that the choice of
the tolerance can be problem dependent. Further study of this phenomenon is beyond
the scope of this paper, but we can conclude that except of the delay the noise revealing

phenomenon is in finite precision computations present.
3. Noise in the residuals of iterative methods

CRAIG [7], LSQR [3], and LSMR [9] represent three methods based on the Golub—
Kahan iterative bidiagonalization. At the k-th step, they search for the approximation
of the solution in the subspace generated by vectors w1, ..., wg, i.e.,

o = Wiyr, e € RE (9)
The corresponding residual has the form

T =b— Az = b — AWryr = Skp1(Brer — Liqyr). (10)
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Fig. 4. Illustration of the noise amplification for the problem shaw and gravity in finite precision com-
putations. Left: The sizes of the amplification factor (7) computed with full double reorthogonalization

(px(0)) and without reorthogonalization (¢4(0)). Right: |@¢(0)| plotted against rank(Sy) computed as
rank(S(:,1:k),1le-1) in MATLAB, together with |¢x(0)| plotted against rank(S%) = k.

CRAIG minimizes the distance of z} from the naive solution yielding
Ly "M = Brey. (11)

LSQR minimizes the norm of the residual rj yielding

s .
y,? QR — argmin ||Bre1 — Lity|- (12)
yERF

LSMR minimizes the norm of ATrj giving

yi>M = argmin ||frarer — Ly Lyl (13)

yERF
These methods are mathematically equivalent to Krylov subspace methods based on
the Lanczos tridiagonalization (particularly Lanczos for linear systems and MINRES)

applied to particular normal equations. The relations useful in the following derivations
are summarized in Table 1.
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Table 1

Interpretation of bidiagonalization-based methods (CRAIG, LSQR, LSMR) as tridiagonalization-based
methods (Lanczos for linear systems, MINRES) applied to the corresponding normal equations. In last
two columns, the solution z of the bidiagonalization-based methods is obtained from their tridiagonaliza-
tion counterparts as x = ATy and z = AT Az, respectively. See also [9].

Method/equation (AT Az = ATb (AAT)y =b (ATA)z= ATb
Lanczos method LSQR(A,b) CRAIG(A,b) —
MINRES LSMR(A, b) LSQR(A, b) CRAIG(A, b)

Since Lanczos method is a Galerkin (residual orthogonalization) method, we immedi-
ately see that

rERAE = (1) PRAIG g, »
LSQR LSQR

ATr SO = ()R ATr 5wy

Using the relation between the Galerkin an the residual minimization method, see [21,
sec. 6.5.7], we obtain,

SR = _
)
k
VEE 1/ reraice
1
| AT rLSMR|| —

& LSQR |15
VSE 1/ AT SR

Note that these equations hold, up to a small perturbation, also in finite precision com-

L
”7"k

(15)

putations. See [29] for more details.

In the rest of this section, we investigate the residuals of each particular method.
We focus on in which sense the residuals approximate the noise vector. We discuss
particularly the case when noise contaminates the bidiagonalization vectors fast and thus
the noise revealing iteration is well defined. More general discussion follows in Section 4.

3.1. CRAIG residuals

The following result relates approximate solution obtained by CRAIG for (1) to the
solution of the problem with the same matrix and a modified right-hand side.

Proposition 1. Consider the first k steps of the Golub—Kahan iterative bidiagonalization.
Then the approzimation x{RAC defined in (9) and (11), is an exact solution to the
consistent problem

Az =b— 0p(0) spy1. (16)
Consequently,

G = or(0)] (17)
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Proof. First note that we only need to show that r{RAIG = ¢ (0)~Lspiq, bk =1,2,....
From (14) and (4) it follows that there exist ¢, € R, such that

PCRAIG _ g = o - o (AAT)D.

Let us now determine the constant ¢j. From (10) and (4), we have that
rORAMG — I (AAT)D,  where TI, € P, and TIx(0) = 1.
Combining these two equations, we obtain
G = 04 (0)Hon(AAT D, (18)

Substituting to (18) back from (4), we immediately have (16). Since |[sg4+1] =1, (17) is
a direct consequence of (16). 0O

Although the relation (16) is valid for any problem of the form (1), it has a particularly
interesting interpretation for inverse problems with a smoothing operator A. Suppose we
neglect the low-frequency part sﬁl in (6) and estimate the unknown noise 1 from the
left bidiagonalization vector sx11 as

©r(0) spy1. (19)

n R

Subtracting 7 from b in (1), we obtain exactly the modified problem (16). Thus Propo-
sition 1 in fact states that in each iteration k, z{RAIS represents the exact solution of
the problem (2) with noise being approximated by a particular re-scaled left bidiagonal-
ization vector.

The norm of the CRAIG residual T%RAIG is inversely proportional to the amount
of noise propagated to the currently computed left bidiagonalization vector. It reaches
its minimum exactly in the noise revealing iteration k& = k., which corresponds to
the iteration with (19) being the best approximation of the unknown noise vector. The
actual noise vector n and the difference n — 7 for 7 obtained from s, . +1 are compared
in Fig. 5; see also [30]. We see that in iteration kyey, the troublesome high-frequency part
of noise is perfectly removed. The remaining perturbation only contains smoothed, i.e.,
low-frequency part of the original noise vector. The match in (17) remains valid, up to
a small perturbation, also in finite precision computations, since the noise propagation
is preserved, see Section 2.2.

Note that due to different frequency characteristic of n and sl,gil for small k, there is
a relatively small cancellation between them and

IsiZa lI” + leon (0> ~ 1.

This gives
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(a) shaw(400), (b) phillips(400), (c) shaw(400), (d) shaw(400), (e) gravity(400),
Snoise = 1072, poise = 1077, dpoise = 1072, bpoise = 1077, Suoise = 1077,
white noise white noise violet noise red noise Poisson noise

Fig. 5. Illustration of the quality of the noise vector approximation 7] obtained by (19) for k = kyev + 1 on
various test problems and various characteristics of noise. Upper: The original noise vector n. Lower: The
difference n — 7.

16— 7)) — Az|| = [low(0) " skEall = low (0 V1 = [lor(0)7]12 = V/|0x(0)[ =2 — [ln]>

supporting our expectation that the size of the remaining perturbation depends on how
closely the inverse amplification factor |¢(0)|~! approaches ||n]|.
We may also conclude that for ill-posed problems with a smoothing operator A, the

CRAIG
k

minimal error ||x — x| is reached approximately at the iteration with the maximal

noise revealing, i.e., with the minimal residual. This is confirmed by numerical experi-
ments in Fig. 6 comparing [|[z{RAS — z|| with ||rSRAIG|| for various test problems and

noise characteristics, both with and without reorthogonalization.
3.2. LSQR residuals

Whereas for CRAIG, the residual is just a scaled left bidiagonalization vector, for

LSQR it is a linear combination of all previously computed left bidiagonalization vectors.
Indeed,

rSR — AWy W = 5, (51 er — Ly ZJII;SQR) 7 (20)

see (10). The entries of the residual of the projected problem

P = Bier — Ly, (21)

see (12), represent the coefficients of the linear combination in (20). The following propo-
sition shows the relation between the coefficients and the amplification factor ¢ (0).
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Fig. 6. Comparison of the size of the residual and the size of the error in CRAIG for various test problems with
various noise characteristics. The minimal error is achieved approximately when the residual is minimized
(vertical line). In Figures (g)-(i) without reorthogonalization.

Proposition 2. Consider the first k steps of the Golub—Kahan iterative bidiagonalization.

Let ?“I,;SQR =b-— AxiSQR, where mkSQR is the approzximation defined in (9) and (12).
Then
1 k
LSQR
r M = ————> " 0(0)si41. (22)
Zl:o 901(0)2 =0
Consequently,

N
Z?:o ©1(0)?

LSQR
S|
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Proof. Since

Yo = argmin||fre; — Lit]l,
we get
L;‘;_kaQR =0.
It follows from the structure of the matrix L that the entries of kaQR satisfy
alelTpI,;SQR + ﬁlﬂealpl,;SQR =0, for l=1,...,k.

Thus

¢0(0)

PSQR _ 401‘(0) | (23)
901@‘(0)

where ¢, is a factor that changes with k. From (15) and (18) it follows that

IPESM = SR = S —. (24)
VIl ei0)?

By comparing (23) and (24), we get

- 1

- Zf:o (PI(O)Q 7

which together with (20) and (21) yields (22). O

Ck

In other words, Proposition 2 says that the coefficients of the linear combination
(20) follow the behavior of the amplification factor in the sense that representation of
a particular left bidiagonalization vector s;4; in the residual rkL SQR, k > 1, is proportional
to the amount of propagated non-smoothed part of noise # in this vector.

Relation (22) also suggests that the norm-minimizing process (LSQR) and the corre-

sponding Galerkin process (CRAIG) provide similar solutions whenever

©r(0)? ~
Zf:o ‘Pl(o)z

i.e., whenever the noise revealing in the last left bidiagonalization vector sxy; is much

Y

more significant than in all previous left bidiagonalization vectors s1,... sk, i.e., typically
before we reach the noise revealing iteration. This is confirmed numerically in Fig. 7,
comparing the semiconvergence curves of CRAIG and LSQR.
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Fig. 7. The size of the error of LSQR and CRAIG in comparison with the inverse of the amplification factor
for various test problems with various noise characteristics. The semiconvergence curves exhibit similar

behavior until the noise revealing iteration. In Figure (f) without reorthogonalization.

3.3. LSMR residuals

Before we investigate the residual of LSMR with respect to the basis Sk, we should
understand how it is related to the residual of LSQR. It follows from Table 1 that the

relation between ATrESME and ATTI,;SQR is analogous to the relation between r{RAIC
and T,I;SQR. Using Proposition 1 and 2, with ¢y substituted by v and s substituted

by wg, we obtain

and
1 k
ATpISMR — Z Vi(0) w1 .
Zz:o wl(o)z =0
Since
ATT%SMR — Wk+1LZ;+1p£SMR7

we obtain that
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¥0(0)

T _LSMR _ 1 ¥1(0)
L 1Pk = 7Zf:0 7(0)? : : (25)

¥i(0)

This equality however does not provide the desired relationship between the residuals
kSMR themselves and the left bidiagonalization vectors s1,. .., sgy1. This is given in the
following proposition.

Proposition 3. Consider the first k steps of the Golub—Kahan iterative bidiagonalization.

Let 7G%SMR =p— AxI];SMR LSMR

, where xy; is the approzimation defined in (9) and (13).
Then

k
o = 22 (0 Z +1901 (0)~"95(0) | s141-
Zl o¢l 1=0

Proof. From (25) it follows that

$o(0)
LSMR __ 1 -T $1(0)
S S TIE Rl B
Yr(0)

where L 1 is an upper triangular matrix with entries

1 U
a0 (if i = j) '
€; Lk—|—1€] = C;J ,B = M .
(-1 B B0 i< g) | @ #5-1(0)
Thus

200) | 20117\ [ ar'¢o(0)

PLSMR _ 1 trin ©1(0) ©1(0)71 oy 11 (0)
L Twi(0)? s 5 ]

0r(0) | | x(0)7! a1k (0)

where triu(-) extracts the upper triangular part of the matrix. Multiplying out, we obtain
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_ . B -
GIOPRENTIORI)
21 (0) iz v 2u(0) T (0)
pLSMR _ 1 : O
Zf:o ¢l(0)2 k L _
or-1(0) Zzzkfllaulﬁol(o) Y41 (0)
L en(0) o yer(0) 7 k(0)
Here the sizes of coefficients in pZSMR need careful discussion. From (7) and (8) it

follows that the absolute terms of the Lanczos polynomials ¢;(0) and ;(0) have the
same sign. Thus we have

o (0)1p(0) >0, VI=0,1,...

and therefore the sum
k
Y ahie(0) i (0) (26)
l=j

decreases when j increases. Furthermore, it was shown in [20, sec. 3.2] that for j < kyey
o] =~ Bl'

Thus (7) yields

k k
> aitre(0)u(0) = Y wa(0).
=5 I=j

However, since |¢;(0)| on average increases rapidly with j (see Section 2.2), the sizes

of the entries of py

SMR in (3) generally increase with [ before kc,. After j reaches the
noise revealing iteration kyev, |¢;(0)| decreases at least for one but typically for more
subsequent iterations; see Section 2.2. Multiplication by the decreasing (26) causes that
the size of the entries in (3) can be expected to decrease after ke -

From the previous we conclude that the behavior of the entries of p],;SMR resembles
the behavior of ¢;(0), i.e., the size of a particular entry is proportional to the amount of
propagated noise in the corresponding bidiagonalization vector, similarly as in the LSQR
method. Fig. 8 compares the entries of pIkJSMR with appropriately re-scaled amplification
factor ¢, (0) on the problem shaw with white noise. We see that the difference is negli-
gible an therefore the residuals for LSQR and LSMR resemble. In early iterations, the
resemblance of the residuals indicates resemblance of the solutions since the remaining
perturbation only contains low frequencies, which are not amplified by Af.

Note also that since ¥;(0) grows rapidly on average, see Fig. lc in Section 2.2, we

may expect

¥1(0)? ~
Zf:o ¢l(0)2
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Fig. 8. The components of pESQR vs. the size of the amplification factor ¢ (0) (after scaling) for several

values of k for the problem shaw with white noise, dpoise = 1073, The differences are negligible.
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Fig. 9. The size of the error of LSMR and LSQR in comparison with the inverse of the size of 1 (0) for
various test problems with various noise characteristics. Since |1k (0)| often grow on average till very late
iterations, the semiconvergence curves exhibit similar behavior. In Figure (f) without reorthogonalization.

Therefore ATT%SMR resembles ATT,I;SQR giving another explanation why LSMR and
LSQR behave similarly for inverse problems with a smoothing operator A, see Fig. 9 for
a comparison on several test problems.

Fig. 10 illustrates the match between the noise vector and residual of CRAIG, LSQR
and LSMR method. We see that while CRAIG residual resembles noise only in the noise
revealing iteration, LSQR and LSMR are less sensitive to the particular number of iter-
ations k as the residuals are combinations of bidiagonalization vectors with appropriate
coefficients. Moreover, the best match in LSQR and LSMR method overcomes the best
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Fig. 10. Difference between the noise vector and the residual of considered iterative methods for the problem
shaw with white and red noise noise, dnoise = 10 ~3. Residuals of LSQR and LSMR have similar approxima-
tion properties with respect to the noise vector.

match in CRAIG. This is caused by the fact that the remaining low-frequency part is
efficiently suppressed by the linear combination.

4. Numerical experiments for 2D problems

In this section we discuss validity of the conclusions made above for larger 2D inverse
problems, where the smoothing property of A (revealing itself in the decay of singular
values) is typically less significant. Consequently, noise propagation in the bidiagonaliza-
tion process may be more complicated; see also [36]. However, we illustrate that essential
aspects of the behavior described in previous sections are still present. Note that all ex-
periments in this section are computed without reorthogonalization. We consider the
following 2D benchmarks:
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Medical tomography problem — a simplified 2D model of X-ray medical tomography
adopted from [31], function paralleltomo(256,0:179,362). The data is represented
by a 256-by-256 discretization of the Shepp—Logan phantom projected in angles
0 =0°,1°...,179° by 362 parallel rays, resulting in a linear algebraic problem with
A € RO5160x65536 W yse Poisson-type additive noise 7 generated as follows (see [34,
chap. 2.6] and [35]) to simulate physically realistic noise:

A = paralleltomo(N,theta)/N; % forward model

t = exp(-A*x); % transmission probabilities
c = poissrnd(t*NO); % photon counts

eta = -log(c/NO); % noisy measurements

where Ny = 10° denotes the mean number of photons, resulting in the noise level
Onoise & 0.028. We refer to this test problem as paralleltomo.

Seismic tomography problem — a simplified 2D model of seismic tomography adopted
from [31], function seismictomo(100,100,200). The data is represented by a
100-by-100 discretization of a vertical domain intersecting two tectonic plates with
100 sources located on its right boundary and 200 receivers (seismographs), result-
ing in a linear algebraic problem with A € R20000x10000 " The right-hand side is
polluted with additive white noise with d,0ise = 0.01. We refer to this test problem
as seismictomo.

Image deblurring problem — an image deblurring problem with spatially variant blur
adopted from [32,33], data VariantGaussianBlurl. The data is represented by a
monochrome microscopic 316-by-316 image of a grain blurred by spatially variant
Guassian blur (with 49 different point-spread functions), resulting in a linear alge-
braic problem with A € R99856X99856 The right-hand side is polluted with additive
white noise with dp0ise = 0.01. We refer to this test problem as vargaussianblur.

Fig. 11 shows the absolute terms of the Lanczos polynomials ¢ and 3. We can
identify the two phases of the behavior of ¢;(0) — average growth and average decay.
However, the transition does not take place in one particular (noise revealing) iteration,
but rather in a few subsequent steps, which we refer to as the moise revealing phase
of the bidiagonalization process. The size of ¥;(0) grows on average till late iterations,
however, we often observe here that the speed of this growth slows down after the noise
revealing phase. In conclusion, both curves |px(0)| and |¢1(0)| can be flatter than for 1D
problem considered in previous sections. This can be further pronounced for problems
with low noise levels.

Fig. 12 shows several (appropriately reshaped) left bidiagonalization vectors sj and
their cumulative periodograms for the problem seismictomo. Even though it is hard to
make clear conclusions based on the vectors s themselves, we see that the periodogram
for k = 10 is flatter than the periodograms for smaller or larger values of k£, meaning that
510 resembles most white noise. This corresponds to Fig. 11b showing that s19 belongs
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Fig. 11. The size of the absolute term of the Lanczos polynomials pr and ¥ for selected 2D problems
contaminated by noise as described in the text. For all problems dnoise & 1072, Computed without re-
orthogonalization.

(a) left bidiagonalization vectors sp (reshaped)
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(b) cumulative periodograms of sg

Fig. 12. Left bidiagonalization vectors sy for the problem seismictomo and their cumulative periodograms.
The periodogram of the vector s1p belonging to the noise revealing phase of the bidiagonalization process
is flatter. Computed without reorthogonalization.

to the noise revealing phase of the bidiagonalization process. Note that similar flatter
periodograms can be obtained for other few vectors belonging to this phase.

The absence of one particular noise revealing vector makes the direct comparison
between s, and the exact noise vector 7 irrelevant here. However, Propositions 1-3
remain valid and the overall behavior of the terms |px(0)| and |4, (0)| is as expected,
allowing comparing the bidiagonalization-based methods. Fig. 13 gives comparisons of
CRAIG, LSQR and LSMR for all considered 2D test problems, analogous to Fig. 6, 7,
and 9. The first row of Fig. 13 shows that the CRAIG error is minimized approximately
in the noise revealing phase, i.e., when the residual is minimal, see Section 3.1. The
minimum is emphasized by the vertical line.
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Fig. 13. First row: The size of the residual and the size of the error in CRAIG. Vertical line illustrates
the minimum. Second row: The size of the error of CRAIG and LSQR, together with the rescaled inverse
of the amplification factor ¢, (0) (vertical scale on the right). Third row: The size of the error of LSQR
and CRAIG, together with the rescaled inverse of the factor ¥ (0) (vertical scale on the right). Computed
without reorthogonalization.

The second row of Fig. 13 compares the errors of CRAIG and LSQR. According to
the derivations in Section 3.2, the curves are similar before the noise revealing phase,
after which they separate with CRAIG diverging more quickly. Note that the size of the
inverted amplification factor ¢ (0) is included to illustrate the noise revealing phase and
has different scaling (specified on the right).

The third row of Fig. 13 shows the errors of LSQR and LSMR, with the underlying size
of the inverted factor ¢ (0) (scaling specified on the right). The errors behave similarly
as long as |11 (0)| =1 decays rapidly, see Section 3.3. The LSMR solution is slightly less
sensitive to the particular choice of the number of bidiagonalization iterations k, which
is a well know property [9].

5. Conclusion

We proved that approximating the solution of an inverse problem by the kth iterate of
CRAIG is mathematically equivalent to solving consistent linear algebraic problem with
the same matrix and a right-hand side, where a particular (typically high-frequency) part
of noise is removed. Using the analysis of noise propagation, we showed that the size of
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the CRAIG residual is given by the inverted noise amplification factor, which explains
why optimal regularization properties are often obtained when the minimal residual is
reached. For LSQR and LSMR, the residual is a linear combination of the left bidiago-
nalization vectors. The representation of these vectors in the residuals is determined by
the amplification factor, in particular, left bidiagonalization vectors with larger amount
of propagated noise are on average represented with a larger coefficient in both methods.
These results were used in 1D problems to compare the methods in terms of matching
between the residuals and the unknown noise vector. For large 2D (or 3D) problems the
direct comparison of the vectors may not be possible, since noise reveals itself in a few
subsequent bidiagonalization vectors (noise revealing phase of bidiagonalization) instead
of in one particular iteration. However, the conclusions on the methods themselves re-
main generally valid. Presented results contribute to understanding of the behavior of
the methods when solving noise-contaminated inverse problems.
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2.2 Simulating exact iterative bidiagonalization
in finite-precision arithmetic

In some of the numerical experiments presented in Hnétynkovd et al. [2017] in-
cluded in Section 2.1, we assumed exact arithmetic. Therefore we need to be able
to simulate the exact Golub-Kahan iterative bidiagonalization on a computer.
Recall that the matrix representation of the Golub-Kahan bidiagonalization has
the form

ATS, =W, L], AW, = Spi1Lisig, (2.1)

where the columns si,...,s; of the matrix Si, and the columns wy, ..., w; of
the matrix W}, form orthonormal bases of the Krylov subspaces Kj(AAT,b) and
Kr(AT A, ATb), respectively, see also [Hnétynkova et al., 2017, sec. 2.1]. In finite-
precision arithmetic, due to rounding errors, the global orthogonality among the
computed vectors might be quickly lost similarly to the Lanczos method or CG.
To achieve (a good level of ) orthogonality among the computed vectors, reorthog-
onalization must be performed. Besides the orthogonality of the vectors, we also
require that the two-term recurrences (2.1) hold within small perturbation, i.e.,
that the reorthogonalization terms can be absorbed into an error matrix small in
norm. In the remainder of the section, to avoid excess notation, we omit higher
order terms in the machine precision €,,,c,. The relationship between the behav-
ior of Krylov subspace methods in exact arithmetic and those applied to the same
problem in finite-precision arithmetic is discussed also in Chapter 4 of the thesis.

The question of the size of reorthogonalization coefficients is certainly not new in
the literature. For the Lanczos method, the concept of full reorthogonalization,
which is reorthogonalization with respect to all previously computed Lanczos
vectors, was introduced already by Lanczos [1950]. Paige [1970] claims that for
the implementation there!, under reasonable assumptions, the equation

BV, = Vk+1Tk+1,k + F,

representing the matrix formulation of Lanczos process with reorthogonalization,
holds with
[ Fl| < O(ng/le/Q)emachHBH>

with a possible reduction in the big-O term for matrices that are very sparse
or those with ||| B||| < n'/?||B||; see also Paige [1976] or [Wilkinson, 1988, pp.
391-392]. Parlett and Scott [1979]; Parlett [1980]; Simon [1984a,b] investigat-
ed so-called semiorthogonalization, i.e., process when the loss of orthogonality is
kept at the level of /€pacn. In bidiagonalization, there are two sets of vectors that
lose orthogonality, which we want to preserve. The idea of two-sided reorthogo-
nalization, i.e., reorthogonalization of both sets of the bidiagonalization vectors,
has been appearing in literature for a long time, see, e.g., [O'Leary and Simmons,

Note that Paige [1970] assumes rather nonstandard version of Lanczos with reorthogonal-
ization, where the projections on the two preceding Lanczos vectors are computed explicitly
(not using the normalization term from the previous step), and then the obtained vector is
reorthogonalized against all preceding vectors. Therefore the resulting tridiagonal matrix is in
this case not symmetric.
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1981, p. 478-479],[Larsen, 1998, sec. 5.2],[Baglama and Reichel, 2005, p.22], and
[Bjorck, 2014, p.289], and many others. Simon and Zha [2000] introduced the
concept of one-sided reorthogonalization, i.e., reorthogonalization of only one set
of vectors. Barlow [2013] investigated the backward error bound of this one-sided
and one-sided selective reorthogonalization.

In the cited literature, the small size of the reorthogonalization coefficients is
either given without proof or relies heavily on some previous work, with possibly
different implementation of the algorithm, which makes the proofs somewhat
difficult to follow. In this section we present the reorthogonalization strategy
that was used in Hnétynkovd et al. [2017] to simulate exact-arithmetic iterative
bidiagonalization including the discussion of the level of the loss of orthogonality
and the validity of the obtained two-term recurrences. Note that for this purpose,
we are not concerned with the computational efficiency of the proposed method.

2.2.1 Connection to Lanczos tridiagonalization

Instead of investigating the bidiagonalization itself, it is more convenient to look
at the related Lanczos process. In exact arithmetic, we may relate the k-th step
of the Golub-Kahan iterative bidiagonalization to:

e the k-th and (k — 1)-st step of the two independent Lanczos processes as

(AAT)Sk = Sk+1 (Lk+1,kL£) and (ATA)Wk_l = Wk(Lng,k—l); (22)

e the 2k-th step of the Lanczos process with an extended matrix as

[al]-

B Vaor

o) (o] [ 5]

0 a1
ar e P
N N R N o e . (2.3)
O 7w1 ) 0 ) ) 0 a2 .. .. ) .
Vaok+1 e o
(677 0
i Bre+1 ]

Tog41,2k

see also [Larsen, 1998, sec. 3.3.2]. Since in the standard Golub-Kahan bidi-
agonalization, the two sets of bidiagonalization vectors are computed simulta-
neously, representation (2.2) is of little use for the round-off error analysis in
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finite-precision computation. Therefore we further use the representation (2.3).
To simplify the notation, we define

N = max(m,n).

2.2.2 Reorthogonalization

Reorthogonalization procedures, to prevent severe loss of orthogonality, further
orthogonalize the new vector computed by the short recurrence explicitly against
(some of) the preceding vectors. Instead of the two-term recurrences, one obtains
(overloading the notation from the exact arithmetic)

wy, = Asp — Brwp—1 — f,,
k-1
Qwy = W — > Euy W5 — frns
7=1

~ !
Sk+1 = Awk — Qg Sk — f8k+17

k
Brt15k+1 = Skg1 — Zfskﬂﬂ-sg‘ - f;/,m: (2-4)

j=1

where &s are the reorthogonalization coefficients that depend on the particular
reorthogonalization technique, and fs represent local rounding errors. In matrix
form, equations (2.4) become

B Var
—
O A S1 0 So 0 _
AT 0 O’ w0}’ wg| |
ro a1 + 632,1 0 553,1 0 e b
o 0 B2 + Ewsy 1 0
1 el I I R T B s P2 0 artns +
- 0] [w] [0] Lo s
Vo - - kg +&spiy
ag
- Br+1

Hapq1,2k=Tok4t1,2k+Rok+t1,2k

i Hfﬂ ’ [féz] | {fﬂ v [foﬂ (2.5)

Fop,

where
Matrix Hoj ox+1 1s upper Hessenberg and is a sum of the tridiagonal Thy, o4+1 and

the strictly upper triangular Ry ox+1 containing the reorthogonalization coeffi-
cients, i.e.,

k i
T T
R2k+1,2k = Z Z(Swi,je2j62i+1 + £5i+1,j62j_162i>'

i=1 j=1
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We expect the error matrix Fy, to be bounded as
| For|| < OK*2N + EY2N*?)emaen] | All; (2.6)

see [Rozloznik, 1997, chap. 3|. Note that the Golub—Kahan iterative bidiagonal-
ization with any reorthogonalization technique can be represented by equation
(2.5). Moreover it is both theoretically and computationally equivalent to the
Lanczos tridiagonalization with the matrix B and the starting vector vy, under
the assumption that the same reorthogonalization scheme is used.?

Assume that the reorthogonalization coefficients ¢ are chosen such that the loss
of orthogonality is kept at the level of machine precision. This can be achieved

for example by two-sided full reorthogonalization using iterated classical Gram-
Schmidt (ICGS2), where we get

IV Vier = 11 < O N)emacn; (2.7)

see [Giraud et al., 2005, Theorem 2] for more details.®> The pseudocode for itera-
tive bidiagonalization using reorthogonalization by ICGS2 in Algorithm 1.

Algorithm 1 Bidiagonalization with two-sided full reorthogonalization by ICGS2
s1=b/P1, B1 = ||bl], wo =0
for k=1,2,... do
Wy = ATspp — Brwp—1
fori=1,2do > full double reorthogonalization
51(311 = lellwk

Wy, = Wy, — Wk—lfgz

end for
Ew, = 1(111;3 + &(1;2,3 > store the reorthogonalization coefficients
o = |||

wy, = Wi/

Sk = Awy — ausy,

fori=1,2do > full double reorthogonalization
£§Z)+1 = Sg§k+1

= _z ()
Sk+1 = Sk+1 — Sk£5k+l

end for
Espir = 5&11 + gﬁi)ﬂ > store the reorthogonalization coefficients
B+ = 1S
Skt1 = Skr1/ B
end for

From (2.7) we immediately have that

VI Vierll S 14+ O N)emaen - and - [[(ViE1 Vi) || < 1+ O N)emacn,

2This is true under the most reasonable assumption that multiplication by zero is performed
exactly.

3This holds if ([[bT, 0], BV, — Vitriu(T})]) - €mach < 1, i.e., before ||wy|| or ||sg11]| becomes
negligible.
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and the norm of the Hessenberg matrix becomes bounded by

[ Hienall < IV Vi) THHIVE T ABITVL + 1E2)
< (1+O@PN + 1V N*?)) emacn || All- (2.8)
We now show that the reorthogonalization terms stored in 17,4 are negligible and
the term Vi1 Riy1; = ViR, can be included in the error matrix F;. The intuition
is that since B is symmetric and V;,; is almost orthogonal, H; also needs to be
almost symmetric. We do this by combining a couple of matrix inequalities. By
multiplying (2.5) from the left by V;T and using Hyy1; = Tj11,+ Riv14, We obtain

VBV, = Vi"Vip Hiay + ViP R

=T+ R+ (V" Vi1 — Dyga ) Hysry + V' FLL (2.9)

Note that both B and T} are symmetric matrices, therefore after subtracting from
(2.9) its transpose, we obtain

R — R = H1T+1,1(V1TV2+1 — L))" = (Vi"Vigr — L) Hysn g+
+F'Vi-V'F.

Taking norm on the both sides and using (2.6), (2.7), and (2.8), the size of the
left-hand side becomes bounded as

IR — RNl <2 (V" Visr — L || Hisnall + (VAT
< O(BN 4+ 12N ) epaal| Al

We now need to estimate || R;| using ||, — R}||. This is possible using the norm
of the Hadamard triangular truncation operator Ty, see Angelos et al. [1992], as

log N +7m+1
1Bull = 17w (B = RO < [ Tullll(Be = BOI < ————

IR — R .

Since log N is negligible compared to any power of NV, we will not include it into
the big-O term and have

IRl < OFPN + 12 N*2)eppaen | All,
and finally
1BV = Vi Teall < VAl Bl + 1]l < OP2N + 12N eppaan | Al

Besides being small in norm, the matrix V;R; has the same nonzero structure
as the matrix F; allowing us to rearrange (2.5) to the form of bidiagonalization
process for which we have
AW, = Sk1 L ill < O(KZN + KN emaen || Al
IATS, = Wi Li || < O(K*2N + k2N e || Al -
This shows that after the two-sided full double reorthogonalization, the equations

describing matrix formulation of the bidiagonalization process (2.1) indeed hold
within a perturbation of the level of €yaen||A||. Note also that the bound (2.6) is
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derived for a general case, where the orthogonalization coefficients £ are propor-
tional to the size of the vector that is orthogonalized. Since we showed that the
reorthogonalization coefficient & must be of order of €,,.., Wwe may expect the size
of the error matrix to be reduced to

1Foi]| < OK2N*)ewmaen | Al

In the subsequent analysis, we however still remain limited by the level of the
loss of orthogonality (2.7).
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3. Estimating noise level through
Golub-Kahan bidiagonalization

Since many numerical algorithms for solving discrete inverse problems rely on
some a priori knowledge about the size of noise present in the data, estimation
of the noise level remains a very active field of research. As investigated in
Hnétynkova et al. [2009], the Golub-Kahan bidiagonalization may provide a very
cheap way of estimating the noise level for some discrete inverse problems. This
observation was supported by experiments on small one-dimensional severely ill-
posed problems with a square matrix and data polluted with white noise. In
this chapter, we investigate the performance of the estimator on large 2D image
deblurring problems with data polluted with noise of various characteristics. In
Section 3.2, we further study changes in the performance of the estimator when
moving from square to rectangular matrices.

3.1 Contribution in Proceedings of Algoritmy
conference

This section contains the contribution Hnétynkové et al. [2016] published in peer-
reviewed Proceedings of the conference Algoritmy.
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Abstract. Image deblurring represents one of important areas of image processing. When
information about the amount of noise in the given blurred image is available, it can significantly
improve the performance of image deblurring algorithms. The paper [11] introduced an iterative
method for estimating the noise level in linear algebraic ill-posed problems contaminated by white
noise. Here we study applicability of this approach to image deblurring problems with various types
of blurring operators. White as well as data-correlated noise of various sizes is considered.

Key words. image deblurring, linear ill-posed problem, noise, noise level estimate, Golub—
Kahan iterative bidiagonalization
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1. Introduction. When recording digital images, some form of blurring often
occurs, e.g., when camera lens is out of focus, light conditions are not perfect, the
object is moving etc. In such a case the information from a particular image pixel
is spread to surrounding pixels resulting in a lower-quality image. As an additional
problem, the recorded image can contain unknown errors in form of variations of
pixel density usually referred to as noise with different properties based on its origin.
Image deblurring methods aim to reconstruct the true sharp image while suppressing
the influence of noise, by using a mathematical model of the blurring process; see,
e.g., [8, Chapters 1 and 3.

Let B, X € R™™ represent the blurred noisy image and its unknown sharp
counterpart, respectively. In many applications, the blurring process is linear or can
be well approximated by a linear model, which is an assumption we will follow. In
that case we can model the blurring process as

(1.1) Az~b, AeR™™,  peR",

where A is a linearized (e.g., discretized) blurring operator, b and = are vectorized
forms of B and X (obtained by stacking the columns of the matrix into a single
vector), respectively, and n = Im. The right-hand side of the linear algebraic problem
above can be formally written as

__ 1exact noise
b = pexact 4 puoise

where b2t ig the unknown smooth noise-free right-hand side and b"°*¢ represents
unknown noise. We refer to the quantity

anoise ||

(1.2) Onoise =

‘ ‘ pexact ||

*This work has been supported by the GACR grant No. P201/13-06684S.
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as the noise level. Since noise is supposed to be small compared to noise-free data,
Onoise < 1 is a realistic assumption.

Properties of this model have been widely analyzed; see [6] for a summary, [14]
and (8] for applications in image processing, and also [11], [3], [10] for the behavior in
the context of Krylov subspace methods. In particular, it is known that the singular
values of A usually decay gradually to zero without a noticeable gap and the singular
vectors of A represent increasing frequencies. The model satisfies the discrete version
of the so-called Picard condition meaning that on average the sizes of projections of
b2t onto the left singular subspaces of A decrease faster than the singular values. On
the other hand, b"° typically does not satisfy such a condition. Consequently, linear
image deblurring models (1.1) represent a typical example of an ill-posed problem; see
[8, Chapter 5].

It is well known that information about the amount of noise can significantly
improve performance of image deblurring methods; see for example [13], [2], [1], [7],
and also [8, Chapter 6]. Such information is however rarely available. The paper
[11] introduced an inexpensive method for estimating the unknown white noise level
in linear ill-posed algebraic problems with a smoothing operator A. The estimate is
obtained by the Golub—Kahan iterative bidiagonalization [4], a short recurrence based
Krylov subspace method. It relies on the assumptions that the model (1.1) satisfies
the discrete Picard condition, A has the smoothing property, the left singular vectors
of A represent increasing frequencies, and b°*2 is smooth. Because the method needs
only evaluation of matrix-vector products, it can take advantage of a specific structure
of A often present in image deblurring problems; see [8, Chapter 4].

The paper is organized as follows. Section 2 summarizes the main ideas of the
noise level estimation presented in [11]. Section 3 studies its applicability to image
deblurring problems with various types and amount of noise. Spatially invariant as
well as spatially variant blur is considered. Section 4 concludes the paper.

2. Iterative noise level estimate. The Golub—Kahan iterative bidiagonaliza-

tion starting with the vectors wg = 0, s = b/81, where 51 = ||b|| # 0, computes for
j=12,...
w; = ATs; — Bjw;_1 (orthogonalization step)
. 1 o
aj = |Jw,||, wj = — Wj (normalization step)
J
Sjt1 = Aw;j — o s; (orthogonalization step)
- 1 .
Bit1 = ISj+1ll,  Sj41=—=—75+1 (normalization step)
Bi+1

until o; = 0 or Bj41 = 0, or the dimension n of the problem is reached. Assume
that the process does not terminate before the step k. Then the left bidiagonalization
vectors si,..., S represent an orthonormal basis of the Krylov subspace

Ki(AAT b) = span{b, AATD, ... (AAT)*"1b},

and the right bidiagonalization vectors wy, ..., w; represent an orthonormal basis of
the Krylov subspace

Kr(AT A, ATb) = span{ATb, AT AATD, ... (AT A)F~1ATD}.



ESTIMATING NOISE LEVEL IN IMAGE DEBLURRING PROBLEMS 335

Denote

aq

B2 o
(2.1) Ly = o € RFxk

Br o

the bidiagonal matrix of the normalization coefficients, representing a projection (re-
striction) of the operator A onto the above defined k-dimensional Krylov subspaces,

Ly = [s1,...,s6] Afwn, ..., wg];
see [4], [15]. Let pgk) be the left singular vector corresponding to the smallest singular
value of Lj.!

In [11] it was described how white noise from the right-hand side b propagates in
the Golub—Kahan iterative bidiagonalization, particularly in the left bidiagonalization
vectors; see also [10], [12]. While the starting vector s is smooth (since it is dominated
by the scaled b®*2<t) during the bidiagonalization process, as k increases, the left
bidiagonalization vectors s; become more and more dominated by the high-frequency
part of propagated noise b"°¢. This is caused by projecting out the low-frequency
components (arising mostly from 2 and partly also from the low-frequency part
of b7°5¢) in order to achieve orthogonality among the bidiagonalization vectors. The
iteration where the most high-frequency dominated vector is obtained is called the
noise revealing iteration and is denoted by kyoise. After this iteration, a part of noise
is projected out resulting in a smoother left bidiagonalization vector. Analysis of this
phenomenon in [11] allowed to derive two quantities estimating the noise level: The
cumulative (amplification) ratio

k

o

(2:2) or =[] 22
=1

5j+1

and the size of the first entry of pgk), ie.,

(2.3) (0, e1)],

where (-, -) denotes the standard inner product and e; = [1,0,...,0]7 € R*. It
was proved that (2.2) and (2.3) both (on average) decrease until kpoise. After this
iteration, the cumulative ratio increases while the size of the first entry of pgk) begins
to almost stagnate. This allows to detect the iteration ks in which the best noise
level approximation is obtained; see [11] and also [17]. Note that both estimators
are relatively cheap to compute. Since noise usually propagates rapidly, kyeise is very
small in comparison to n. The bidiagonalization coefficients «;, 8,41 are directly

available, computation of the singular vector pgk) for a small bidiagonal matrix Ly
can be performed efficiently.

We now use the example from [11] to illustrate the behavior of both estimators
on the problem shaw from the Regularization Toolbox [5] in MATLAB. This prob-
lem represents a one-dimensional image restoration model obtained as a quadrature

INote that we use the notation introduced in [11].
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. 2.3. Estimates obtained by cumulative amplification ratios (left), and sizes of the first

entry of pgk) (right), for the problem shaw(400) with white noise and the noise level Snoise = 1072,
Computations were performed with and without reorthogonalization.

discretization of a first kind Fredholm integral equation on the integration intervals
[~%,%]. Here, the smoothing kernel is given by

u

K(s,t) = (cos(s) + cos(t)>2 (M>2, where u = w(sin(s) + Sin(t));

see [16] for the description of the model. The linear problem with the size n = 400 is
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contaminated by white noise generated by randn (400, 1) rescaled to obtain a partic-
ular noise level dnoise. Figure 2.1 (left) shows the sizes of the projections (b, u;), where
u; are the left singular vectors of the matrix A corresponding to the singular values
ordered in the nonincreasing order. We see how the presence of noise of various noise
level results in the violation of the discrete Picard condition for the subspaces corre-
sponding to smaller singular values. Figure 2.1 (right) presents increasing frequencies
in the left singular vectors of A.

Figure 2.2 illustrates how white noise reveals in the left bidiagonalization vectors
for dnoise = 10™%. The vectors in the left part are computed with full double reorthog-
onalization in the Golub—Kahan iterative bidiagonalization in order to simulate exact
arithmetic. Clearly, the frequencies increase before they become maximal in sg, com-
puted in the iteration kneise = 7; see the algorithm above. The right part shows the
delay in noise revealing caused by reappearance of a smooth vector, as a result of the
loss of orthogonality in the bidiagonalization implemented without reorthogonaliza-
tion. However, the effect is still present and kyisc = 8. Figure 2.3 compares estimates
obtained by cumulative amplification ratios (left) and by sizes of the first entry of

pgm (right). We see that both estimators give very accurate and comparable results
for computation with as well as without reorthogonalization. It is worth noting that
oscillations in the cumulative ratio computed without reorthogonalization can cause
difficulties in automatic detection of kyoise. Thus, in the following we restrict ourselves
only to the estimate (2.3). Analysis of the methods detecting the point of stagnation
is out of the scope of this paper; see [17] for some ideas.

3. Performance for 2D image deblurring problems. Robustness of the
estimator (2.3) is studied on a sharp testing picture X of size 167 x 250 pixels, i.e.,
n = 41750; see Figure 3.1. The experiments are performed in MATLAB, with the
use of functions from the Image Processing Toolbox.

3.1. Spatially invariant blur. First we consider a standard spatially invariant
blurring model, where blurring of each individual pixel in X is characterized by a given
point-spread-function (PSF); see [8, Chapter 3]. Presented results include models for a
Gaussian blur, motion blur, and disc blur. Using the function fspecial, we construct
two PSFs with smaller and larger support for each type of blur, giving in total six
testing PSF's; see Figure 3.2. Note that since we only need to perform matrix-vector
multiplications, we do not form the corresponding blurring matrix A explicitly. The
blurred images B are computed by the 2D convolution using the function conv2 with
the parameter valid, i.e., only the part computed without the zero-padded edges is
returned. Multiplication by the matrix A in the bidiagonalization is performed by the
function conv2 with the parameter same representing zero boundary conditions. For
testing purposes, the image B is contaminated by noise using the function imnoise
with four different parameter settings. We consider two types of noise: white noise
with Gaussian distribution (parameter gaussian), and uniformly distributed data-
correlated noise (parameter speckle). Variances 02 = 1072 and 02 = 5- 1076 give
two different noise levels dy0ise for each type of noise.

Figure 3.3 provides similar information as Figure 2.1, here for the matrix A cor-
responding to the larger Gaussian PSF and white noise. Again we see the violation of
the discrete Picard condition. The so-called left singular images (reshaped left singu-
lar vectors) of the blurring matrix A tend to be dominated by higher frequencies, i.e.,
more oscillations appear in both vertical and horizontal directions, as k increases; see
[8] for details.
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Fic. 3.1. Sharp testing image X of size 167 x 250 pizels.
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Fia. 3.3. Illustration of violation of the discrete Picard condition for the 2D image deblurring
problem with larger Gaussian blur and white noise of various noise levels (left). Increasing frequen-
cies in the first siz left singular vectors of the corresponding blurring matriz A printed as 2D images

(right).

Figure 3.4 shows blurred noisy images together with the corresponding noise level
estimates obtained for models with the smaller Gaussian blur, for the four above
described noise settings. Bidiagonalization with and without reorthogonalization is
used. First, we observe that the overall behavior of the estimator does not significantly
depend on the reorthogonalization, except for the fact that for lower noise levels the
delay in noise revealing results in the increase of the computational cost, since more
iteration steps are required to obtain a reasonable estimate (note the different scaling
of the z axis in the second and fourth row). This problem is not present in experiments
with more realistic higher noise level (the first and third row), where noise propagates
quickly. This is a positive message since for larger images, reorthogonalization cannot
be performed because of its enormous computational cost and memory requirements.
Furthermore, we see that the expected stagnation in the estimator allowing to detect
the noise revealing iteration is more significant for higher noise levels. Figure 3.5 is
the counterpart of Figure 3.4 for larger Gaussian blur. We observe clear stagnation



ESTIMATING NOISE LEVEL IN IMAGE DEBLURRING PROBLEMS 339

in all curves. The behavior of the estimator for higher noise levels is generally very
similar to Figure 3.4, however we see that in Figure 3.5 the lower noise levels are
overestimated.

Summarizing, the best results are obtained for large blur and large noise levels,
shown in the first and third row of Figure 3.5 making the estimator more successful
on complicated problems. However, for noise below a certain level problems appear.
For smaller amount of blur the noise revealing iteration can not be perfectly detected,
while for larger amount of blur the noise level is overestimated. This is more significant
in experiments with data-correlated noise, which is not surprising as the estimator
is based on revealing of the high-frequency part of noise in the vectors s, thus it
does not take into account the smooth part of noise. For white noise, this does not
represent a complication. However, even though data-correlated noise is white-noise
like, its behavior partly resembles behavior of the smooth noise-free data in b.

Figure 3.6 gives noise level estimates for two variants of the motion and disc blur
(specified on the top) with four different noise settings (specified on the left). All
results were obtained by the Golub—Kahan iterative bidiagonalization implemented
without reorthogonalization. We see similar results as in experiments with the Gauss-
ian blur. Consequently, the blur type has generally minor impact on the performance
of the estimator.

3.2. Spatially variant blur. In addition to spatially invariant blur, we inves-
tigate the behavior of the estimator (2.3) for a special type of spatially variant blur:
a rotational blur recently studied in the context of image deblurring in [9]. Consider
a sharp image represented by the central part of size 167 x 167 of the image from
Figure 3.1 in order to avoid the large black areas appearing at the edges when ro-
tating the whole rectangular image. The code to construct the rotational blurring
operator has been provided by Per Christian Hansen, and it is identical to the code
used in [9]. We consider three different blurs: rotation by 10°, rotation by 20°, and
tilt by 10°. All the resulting blurred images are corrupted by additive white noise
with two different variances 02 = 1072 and 02 = 5- 1075, The noisy images together
with noise level estimates computed by the Golub-Kahan iterative bidiagonalization
without reorthogonalization for all settings are shown in Figure 3.7.

The results are very similar to results for the spatially invariant blurring. The
estimates for large noise level are accurate (left). Especially in case of strong blurring
(rotation by 20°), the curve stagnates very close to the actual noise level. For the
smaller noise level, the stagnation is not so significant.

4. Conclusions. Presented paper has studied performance of the noise level
estimator proposed in [11], which is based on the iterative Golub—Kahan bidiagonal-
ization, on image deblurring problems. Implementations with and without reorthogo-
nalization have been compared. We have demonstrated that reorthogonalization does
not improve the quality of the estimate, although for small noise levels we would need
more iterations to obtain estimate of the same accuracy as by the algorithm with
reorthogonalization. We have shown that the performance of the estimator does not
significantly depend on the particular type of blur but it is generally more successful
on problems with higher noise levels. For smaller noise levels, the expected stagnation
of the estimator has been rather slow, making the detection of the noise revealing iter-
ation (where the best estimate should be obtained) complicated. For data-correlated
noise of lower noise level, the estimator has not been reliable, as it underestimated
some noise levels while it overestimated the others. Further analysis of the observed
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behavior and related issues is out of the scope of this paper and will be presented

elsewhere.
REFERENCES
[1] P. BLOMGREN AND T. F. CHAN, Modular solvers for constrained image restoration problems
using the discrepancy principle, Numer. Linear Algebra Appl., 9 (2002), pp. 348-358.
[2] L. DEsSBAT AND D. GIRARD, The “minimum reconstruction error” choice of regularization
parameters: Some more efficient methods and their application to deconvolution problems,
SIAM J. Sci. Comput., 16 (1995), pp. 1387-1403.
[3] S. Gazzora, P. Novari, aND M. R. Russo, On Krylov projection methods and Tikhonov
regularization, ETNA, 44 (2015), pp. 83-123.
[4] G. H. GoLuB AND W. KaHAN, Calculating the singular values and pseudo-inverse of a matriz,
SIAM J. Numer. Anal., Ser. B 2 (1965), pp. 205-224.
[5] P. C. HANSEN, Regularization Tools Version 4.1 (for MATLAB Version 7.3). A MATLAB
package for analysis and solution of discrete ill-posed problems
(available at http://www.imm.dtu.dk/ pcha/Regutools).
[6] , Rank-Deficient and Discrete Ill-Posed Problems, Numerical Aspects of Linear Inver-
sion, STAM Publications, Philadelphia, PA, 1998.
[7] P. C. HaNsEN AND T. K. JENSEN, Noise propagation in regularizing iterations for image de-
blurring, ETNA, 31 (2008), pp. 204—220.
[8] P. C. HANSEN, J. G. Nacy, aND D. P. O’LEARY, Deblurring Images: Matrices, Spectra, and
Filtering, STAM Publications, Philadelphia, PA, 2006.
[9] P. C. HANSEN, J. G. NaGy, AND K. T1GKO0S, Rotational image deblurring with sparse matrices.
BIT Numerical Mathematics, 54 (2013), pp. 649-671.
[10] I. HNETYNKOVA, M. KUBINOVA, AND M. PLESINGER, On noise propagation in residuals of
Krylov subspace iterative regularization methods, submitted.
[11] I. HNETYNKOVA, M. PLESINGER, AND Z. STRAKOS, The regularizing effect of the Golub—Kahan
iterative bidiagonalization and revealing the noise level in the data, BIT Numerical Math-
ematics, 49 (2009), pp. 669-696.
[12] M. MICHENKOVA, Regularization techniques based on the least squares method, Diploma thesis,
Charles University in Prague, 2013.
[13] V. A. Morozov, On the solution of functional equations by the method of regularization, Soviet
Math. Dokl., 7 (1966), pp. 414-417.
[14] F. NATTERER, The Mathematics of Computerized Tomography, John Wiley & Sons and Teub-
ner, Stuttgart, 1986.
[15] C. C. PAIGE, Bidiagonalization of matrices and solution of linear equations, SIAM J. Numer.
Anal., 11 (1974), pp. 197-2009.
[16] C. B. SHAW, JR., Improvements of the resolution of an instrument by numerical solution of
an integral equation, J. Math. Anal. Appl., 37 (1972), pp. 83-112.
[17] K. VasiLIK, Linear algebraic modeling of problems with noisy data, Diploma thesis, Charles

University in Prague, 2011.



3.2 Influence of the matrix shape

In Hnétynkova et al. [2009], the noise-level estimator was considered for square
nonsingular matrices only. In image deblurring applications considered in the
previous part, the matrices A representing the discretization of the blurring op-
erator are naturally square, as long as the original sharp image and its blurred
counterpart have the same size. There are however many discrete inverse prob-
lems, such as those arising in computerized tomography, see, e.g., Natterer [1986]
or seismic tomography, see, e.g., Sheriff and Geldart [1995], whose system matrix
is rectangular, with either fewer or more columns than rows. In the following
we show how the performance of the noise-level estimator derived in Hnétynkova
et al. [2009] is influenced by the shape of the matrix. In order to do that, it is
crucial to understand how the matrix shape affects the underlying distribution
function.

Let A € R™*"™ and let

A=UxVT
be its singular value decomposition, with U~! = UT and V! = V7T, and
Y € R™™ being a diagonal matrix with the singular values o; > 09 > ... >

Tmin(m,n) > 0 on its diagonal. The quality of the considered estimator is deter-
mined by the behavior of the underlying distribution function w with the nodes
defined by the m eigenvalues of AAT, i.e., the diagonal entries of X7, and the
corresponding weights |uf b|?/||b]|?, ..., [ul b|?/||b||>. Since the right-hand side b
is a sum of the noise-free data Az and noise 7, i.e.,

b= Az +n,

depending on the noise level, the weights become eventually dominated by the
noise vector 7, see [Hnétynkova et al., 2009, sec. 4.2]. Recall that

52 = il :i luln|?
noise — ||Al'||2 ||AZL’||2
and
0 iluinP Z'uiTijLu’TW for € [0}, 08 ;)
. - - T 0,0 .
i—k ||b||2 - ||A:E—}-77||2 ’ ko Ok—1

We now show how the shape of the distribution function is influenced by the
dimension of the matrix A.

Let us fix the true solution x € R™. If the matrix A has more rows than columns,
i.e., m > n, then the multiple node 0 (corresponding to the smallest m — n
eigenvalues of AA”) has the weight Y°7" . (u]n)?/||b]]?, ie.,

w(t) = zmj uinl® g te[0,02),
2 Az 4P "

resulting in a flatter distribution function in the subintervals dominated by noise
and therefore more distinct stagnation around the squared noise level §2 If on

noise*
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the other side A has more columns than rows, i.e., m < n, then the distribution
function w only has m points of increase, from which we conclude that w is
overall steeper than for the overdetermined or square system. In many cases,
such as when solving discretized Fredholm equations, the behavior of |uf Ax|?,
i =1,...,min(m,n), is rather independent of the shape of the matrix. This is
because the projections of Az to the directions u;, representing the approximation
of the left singular functions, see Hansen [1988], are not influenced by taking
more measurements since Ax tends to be very smooth. Therefore, the stage
where |u] Az +u!n|* is dominated by |u] Az|* remains unchanged and the steeper
increase is localized in the part where |uln|?> dominates, leading to less distinct
stagnation around the squared noise level.

Since the construction of the distribution function is unfeasible in practical com-
putations, it is approximated through entities computed in the Golub-Kahan
bidiagonalization applied to matrix A and starting vector b. Let Lj be the lower-
bidiagonal matrix of the normalization coefficients generated in the Golub-Kahan
iterative bidiagonalization and

Ly = PWO® (QUWNT

its singular value decomposition with the singular values 9@, . ,9,(::) on its di-
agonal ordered in the nonincreasing order. Then in each step k the distribution
function w is approximated by the distribution function w® with the k nodes
(t9j(.k))2 and the corresponding weights (effp;k))? The stagnation of (¢7p\*)? in-
dicates that 62 ... has been reached, allowing to estimate the noise level, see the

noise

previous section or [Hnétynkova et al., 2009, sec. 4.1].

For illustration we consider the problem shaw from Hansen [1994], representing
a discretization of Fredholm integral equation of the first kind with a square-
integrable kernel. We modified the MATLAB function to be able to handle
different dimensions of the output and input to generate rectangular matrices.
We assume n = 48, which is the number of discrete points of the continuous true
solution, and m = 24,48, 64, corresponding to the number of measurements tak-
en. This setting leads to an under-determined, a square, and an over-determined
system of linear equations. Gaussian noise with Opese = 1078 is added to each
of the right-hand sides. For each of the settings we show in the left part of Fig-
ure 3.1 the corresponding distribution function w. On the right, we plot the size
of elTp;k) against the iteration k. In each case we only perform 24 steps of the
Golub-Kahan bidiagonalization, which is the maximum number of steps for the
under-determined case with m = 24. We perform full double reorthogonalization

to simulate exact arithmetic, see also Section 2.2. In Figure 3.1 we indeed observe
m  |ul Az|?
i=k [|Az+n|]2
ted against o7, of the distribution function w is not much affected by the number
m _|uln?

i=k [Az+n[]
plotted against o7, becomes steeper if we decrease the number of columns, making
the stagnation at the noise level less significant. Noise-level estimation from the
approximation of the distribution function w computed from the bidiagonalization

is then, due to less significant corner in the curve, more difficult, see Figure 3.1

that the part corresponding to the exact data, represented by plot-

of measurements. The part corresponding to noise, represented by >
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Figure 3.1: Noise level estimation for the problem shaw of size m x 48, m =
24, 48,64, with Gaussian white noise with the noise level fpoie = 1078, Left:
distribution function w together with the part corresponding to the exact da-

ta o, % and the part corresponding to noise » .-, HXL e plotted both

against o2. Right: Bidiagonalization-based noise-level estimator, first 24 iter-
ations. Performance of the estimator, i.e., stagnation around the noise level,
deteriorates if the number of measurements m is too small.

right. Analogous experiment for problem gravity adopted from Hansen [1994],
modified to generate rectangular matrices, is shown in Figure 3.2.

The shape of the matrix only plays important role in the cases when |61Tp§€k)|
reaches the noise level relatively late with respect to the size of the problem. If
the noise level is reached in early iterations, the shape of the matrix has very
little influence on the significance of stagnation, as it has very little influence
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on the shape of the distribution function itself. This is because »

m

[ul n|?

i=h TAztn]?

plotted against o7 in logarithmic scale is almost constant for k& < min(m,n).
We demonstrate this in Figure 3.3, where we consider the same problem as in
Figure 3.1, except that we take ten times more discretization points both in the
source and the data. Note that the estimator has practical importance only for
cases when the noise level is reached early, i.e., relatively few iteration of the
iterative bidiagonalization need to be performed, in which case the shape of the

matrix plays

a minor role.
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Figure 3.2: Noise level estimation for the problem gravity of size m x 48, m =
24,48, 64, with Gaussian white noise with the noise level dppe = 1072, See the
description in Figure 3.1 for further details. Performance of the estimator, i.e.,
stagnation around the noise level, deteriorates if the number of measurements m

is too small.
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Figure 3.3: Noise level estimation for the larger problem shaw of size m x 480,
m = 240, 480, 640 and the other setting same as in Figure 3.1. The noise level is
reached in early iterations (~ 15) with respect to the size of the matrix, therefore
the matrix shape has little influence.
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4. Delay of approximation
properties of Krylov subspace
methods in finite-precision
arithmetic

Krylov subspace methods for solving systems of linear equations or discrete in-
verse problems generally rely on construction of a well-conditioned, typically or-
thonormal basis of the corresponding Krylov subspace. Methods constructing
these bases using short recurrences, i.e., without explicit orthogonalization, are
appealing both for their computational efficiency and low storage requirements.
In finite-precision computations, short recurrences however often lead to the loss
of global orthogonality or even to linear dependence of the computed vectors,
which subsequently causes the delay of convergence of the related method. This
was observed already by Lanczos [1950]. Surprisingly, the loss of orthogonality
occurring in practical computations does not lead to a complete deterioration of
the approximation properties of the methods. Over the years, many researchers
contributed to understanding of why this is the case; see, e.g., Greenbaum [1989];
Paige [1980], or Meurant and Strakos [2006] for the overview. While the essence
of the relationship between the exact computation and the finite-precision com-
putation with the same input data is to some extent understood, its quantitative
interpretation is still missing.

Due to the loss of orthogonality and loss of the linear independence, the com-
puted vectors efficiently span subspace of smaller dimension, comparing the first
k computed vectors from finite-precision arithmetic with the first k exact basis
vectors is therefore pointless. On the other side, comparing the computed vectors
with the exact vectors from some earlier iteration [ < k, where [ corresponds to
the number of numerically linearly independent vectors from those computed in
the k-th iteration, might theoretically be possible. This approach was applied,
e.g., in [Liesen and Strakos, 2013, sec. 5.9.1] and [Gergelits, 2013, chap. 3],
and the results presented there suggest that the finite-precision computation is
to some extent only a delayed version of its exact counterpart applied to the
same data, here in the context of the energy norm of the error in the conjugate
gradient method. We are interested whether and how this association through
a delay might be used to link the exact and the finite-precision Krylov subspace
computations with the same input data in a broader context, mainly in the sense

of:
e the convergence of the resulting methods;
e the ‘basis’ vectors generated sequentially in each iteration;

e the solution and residual vectors;
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e other entities, such as the Ritz values and the Ritz vectors.

In this work, we focus on entities whose size does not decay monotonically during
the computation, such as for example the residuals of Galerkin methods. Sec-
tion 4.1 includes a proceedings contribution showing that such entities do not
allow direct association between the finite-precision and exact computation, and
that a more sophisticated strategy based on aggregation over the intermediate
iterations must be employed. The contribution also contains some ideas about
how to find, for a given finite-precision iteration k, the associated iteration [ in
exact arithmetic.

In section 4.2, we discuss the relationship between the computed Ritz vectors
and the exact ones and show some preliminary results in this direction. We
acknowledge the contribution of Tomas Gergelits to Section 4.2.

4.1 Contribution in Proceedings of HPCSE con-
ference

This section contains the contribution Gergelits et al. [2018]. Reprinted by per-
mission from Springer Nature: High Performance Computing in Science and En-
gineering. HPCSE 2017. Lecture Notes in Computer Science, Gergelits, T.,
Hnétynkova, I. & Kubinova, M.: Relating computed and exact entities in meth-
ods based on Lanczos tridiagonalization, copyright (2018), (doi:10.1007/978-3-
319-97136-0.6).
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Relating Computed and Exact Entities
in Methods Based on Lanczos
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182 07 Prague, Czech Republic

Abstract. Krylov subspace methods based on short recurrences such
as CGL or MINRES represent an attractive way of solving large and
sparse systems of linear algebraic equations. Loss of orthogonality in
the underlying Lanczos process delays significantly their convergence in
finite-precision computation, whose connection to exact computation is
still not fully understood. In this paper, we exploit the idea of simultane-
ous comparison of finite-precision and exact computations for CGL and
MINRES, by taking advantage of their relationship valid also in finite-
precision arithmetic. In particular, we show that finite-precision CGL
residuals and Lanczos vectors have to be aggregated over the interme-
diate iterations to form a counterpart to vectors from the exact com-
putation. Influence of stagnation in exact MINRES computation is also
discussed. Obtained results are supported by numerical experiments.

Keywords: Krylov subspace -+ CGL - MINRES
Finite-precision computations - Loss of orthogonality
Delay of convergence - Lanczos vectors

1 Introduction

Large and sparse linear algebraic problems of a general form
Ax = b, AeR"™™ beR"”,

can be often solved efficiently by Krylov subspace methods. Many of these rely
mathematically on computation of an orthonormal basis of the Krylov subspaces

Ki(A,ro) = span{rg, Arg,...,A* 1rg}, k=1,2,..., (1)

where rg = b — Az, with xg being the initial approximation. For a symmetric
A, such basis can be efficiently computed by short recurrences, represented by

(© Springer International Publishing AG, part of Springer Nature 2018
T. Kozubek et al. (Eds.): HPCSE 2017, LNCS 11087, pp. 73-87, 2018.
https://doi.org/10.1007/978-3-319-97136-0_6
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the Lanczos algorithm [11]. However, in finite-precision arithmetic, the global
orthogonality and subsequently also the linear independence of the computed
Lanczos vectors v; is usually quickly lost, and the subspaces spanned by v; are
not Krylov subspaces defined by the input data. As a result, the convergence of
methods such as the Conjugate gradients implemented via the Lanczos algorithm
(CGL) [9,11] or the Minimal residual method (MINRES) [17], is significantly
delayed, and the computed entities, including approximate solutions or residu-
als, can deviate substantially from their mathematical counterparts; see [6]. For
some problems, the computation may not be affected by this delay, for example
because the desired accuracy of the approximate solution is reached before the
severe loss of orthogonality emerges (e.g., when efficient preconditioning can be
used). However, short recurrences in principle cannot guarantee the linear inde-
pendence of the computed vectors when rounding errors are present. Various
techniques for preserving orthogonality, such as the full or selective reorthogo-
nalization (see, e.g., [21,22] or [13, Sect. 4.5]) have been developed, but for large
scale problems, reorthogonalization in the Lanczos algorithm is typically unaf-
fordable since it heavily increases computational time and storage requirements.

The first significant step in explaining the behavior of the Lanczos algorithm
in finite-precision arithmetic was made in [15,16]. It was proved that the loss
of orthogonality among the computed Lanczos vectors is possible only in the
directions of eigenvectors of the matrix A (more specifically, in the directions of
Ritz vectors associated with converged Ritz values). Another fundamental step
was done in [6,7] showing that the behavior in the first k& steps of the finite-
precision Lanczos computations is identical to the behavior of exact Lanczos
computations applied to a possibly larger matrix A(k), whose eigenvalues lie
within tiny intervals around the eigenvalues of A; see also [13] for an overview.
In [19] the finite-precision Lanczos process in step k is described via the exact
Lanczos process applied on augmented system containing both the matrix A and
the currently computed tridiagonal Jacobi matrix. Sensitivity of Krylov subspace
to small perturbations of the input data was studied in [1,10,20]. However, these
results assume linear independence of the computed Lanczos vectors, which is
often quickly lost.

Despite the wide attention, the properties of the methods based on the Lanc-
70s process are in finite-precision computations still not fully understood. In
particular, it is not clear how the subspaces generated by the computed Lanczos
vectors differ from the exact Krylov subspaces, or how the computed approxi-
mation or residual vectors resemble their counterparts from exact computation
with the same matriz and starting vector. The approaches in [6,7,19] do not
allow direct comparison of the solution, residual, or Lanczos vectors, since they
involve extended or augmented matrices.

However, combining [6,7] together with the analysis of the convergence of
the exact CGL in [14] gives sufficient reasoning to relate A-norm of the error
in the k-th iteration of finite-precision CGL computation with (an earlier) I-th
iteration of exact computation with the same data as

|z — zlla = [zt — 2] a.
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The gap k — | corresponds to the e
notion of the rank-deficiency of the TR ot et
computed matrix of Lanczos vectors or
to the delay of convergence, see Fig. 1. E .

Even though this idea has appearedin 5 | = \..._. -

the literature repeatedly (see, e.g., [12, & bece

Sect. 5.9], [5, Chap. 3], [8, Sect. 6.7.4]) 210""- =
determination of the corresponding ¢ "
iterations [k, [] is still an open question delay of m‘e
and can be highly problem-dependent. [ . i .
Furthermore, to the best of our knowl- 0 10 g — %

edge, the possibility of comparison of

other entjtjes7 especially those whose Fig. 1. Ilustration of the loss of OI‘thOgO—
size does not decay monotonically, has nality and delay of convergence in CGL.
not been addressed in literature.

In this paper, we consider A symmetric positive-definite! and we exploit the
idea of simultaneous comparison of finite-precision and exact computations for
two related methods — CGL and MINRES. Since they form a pair of the norm-
minimizing and the Galerkin method, we take advantage of their relationships
proved in [2] to be approximately valid also in finite-precision computations.
Because some finite-precision iterations k are a redundant consequence of reap-
pearing information due to the delay of convergence, we do not consider all k. We
rather assume we are given a subsequence {k; }]”,, m < n, where k; is the finite-
precision iteration related to the exact iteration [ in the sense that the minimized
quantities, i.e., A-norm of the error for CGL and residual norm for MINRES,
are comparable between the two computations.? We show that some of the other
entities cannot be compared directly. In particular, finite-precision CGL residu-
als (as well as their norms) and Lanczos vectors have to be aggregated over the
intermediate iterations to form a counterpart to exact entities. We discuss influ-
ence of stagnation of MINRES on this comparison. Next, we discuss approaches
to determine the subsequence {k;}. Validity of obtained results is illustrated on
numerical examples with matrices with various eigenvalue distribution.

The paper is organized as follows. Section 2 summarizes the Lanczos pro-
cess and the two methods based on it - CGL and MINRES. Section3 stud-
ies the relations between finite-precision and exact entities. Section 4 proposes
some approaches to construct the subsequence {k;}. Section 5 provides numerical
experiments. Section 6 gives the conclusions. Throughout the paper, we assume
xo = 0, i.e,, 7o = b; || - ||| - ||a denotes the Euclidean and the energy norm
respectively; e; denotes the j-th column of the identity matrix of a suitable size.
The entities computed in finite-precision arithmetic are denoted by bar.

! We only assume positive-definite matrices, so that the CGL iterations are well-
defined in each step, although MINRES is well-defined also for indefinite matrices.

2 The length of the subsequence, i.e., the index m, is typically determined by the
iteration in which the finite-precision computation reaches the maximum attainable
accuracy; see [12; Sect. 5.9.3].
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2 Methods Based on Lanczos Tridiagonalization

Let A € R™"™ be a non-singular symmetric positive-definite matrix. Starting
from a vector v; = b/d1, 01 = ||b||, and initializing vy = 0, the tridiagonalization
[11] computes, for £k = 1,2,...,

Ve = (Avk,vk-);
Vg1 = AUk — YUk — OpVk—1;
Ok+1 = ||vg+1ll, if Ogy1 =0, then stop;

Vk+1 = Uk+1/(5k+1- (2)
Vectors vy, ...,v; form an orthonormal basis of the Krylov subspace (1). For
simplicity of notation, we assume that the process (2) does not terminate before
the iteration n, i.e., §;41 >0, j = 1,...n— 1. Denoting Vj, = [v1,...,v;] € R™*k
and
[ 71 02 1
d2 72 03
& 6 T,
Tk: = 53 < c kak, Tk+1 = |: = k :| c R(kﬁ+1)><k7
’ €5 Okt 1
N
i Ok Yk |

we can write the matrix formulation of the Lanczos tridiagonalization as
AVy, = ViTy, + Sprrvkraer = VirrThwr e k=1,...,n. (3)
Based on [18], the Eq. (3) is in finite-precision replaced by
AV = Vi Ty + 1016, + Fe = Vier Ty p + Fry  k=1,2,...,

where F}, is a small round-off term.

CGL and MINRES represent two methods based on the Lanczos tridiagonal-
ization (2). At the k-th step, they search for the approximation of the solution
in the subspace generated by the vectors vy, ..., v, i.e., zp = Viy, for some
yr € R¥. The corresponding residual has the form

ey =b— Az, =b— AViyr = Vir1(d1e1 — Tht1,1Yk)-

The CGL method as a Galerkin method imposes the orthogonality of the resid-
uals yielding
Thyy = d1€1. (4)

- Ty T

MINRES minimizes the norm of the residual rj yielding

yn = argmin||drer — Tr1,4y]. (5)
yERF

— 064 —



Computed and Exact Entities in Lanczos-Based Methods 77

Table 1. An overview of the decay properties of various entities in CGL and MINRES
computations with respect to (1). For more details see [4].

Method /quantity | [|zx — z|| | |lzx — (|4 | |7« 75| o
CGL Monotone | Minimized | — -
MINRES Monotone | Monotone | Minimized | —

Decay properties of various entities in CGL and MINRES are summarized in
Table 1. The residual vectors of the two methods can be related as

i1
7
Ikt |2

where s; and ¢, are the sine and cosine of the last Givens rotation used to
eliminate the subdiagonal entry of the tridiagonal matrix T} . The residual
norms are related by the so-called peak-plateau relation

Ikl

Irkll = 7
V1= Ur/Ir3 )2

or recursively, for p =0,1,...,

r% = cir,I; + sir}f_l with si =

(6)

(7)

1 _ I, |
VEEEY I 1= (I 1)

For more details see [2].

3 Comparison of Finite-Precision and Exact Entities

In this section, we show how the vectors 'r'lL and v; can be compared to their
finite-precision counterparts based on the relations between CGL and MINRES
residuals. We assume that we have a sequence {k; }]*, satisfying

o — zl|a = || 25, — =] 4, It = 7l 9)
m{“ ~ Elgl, r}v[ ~ F}XII, (10)

i.e., the quantities minimized in exact arithmetic and the corresponding vectors
are comparable to their finite-precision counterparts, in the sense that the dis-
tance between them measured in a suitable norm is small relative to their size.
The first of the assumptions is based on the observation made in [12, Sect. 5.9],
where the question of the delay of CG convergence and the associated rank defi-
ciency of the computed subspace has been addressed. Approaches to find such
a sequence are discussed in Sect.4. We consider problems where T} is not too
badly conditioned and thus the error due to the inexact solution of (4) and (5)
is negligible, and

et = Vi (bller = ThpiaBh™") — Frgp™. (11)
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Sects. 3.1-3.2 consider the case when the exact MINRES does not stagnate,
Le, [[rI/ll7t 4]l % 1 and subsequently |[7p!||/||7 || % 1. The other case is
discussed in Sect. 3.3.

3.1 CGL Resid

First, we relate the CGL residual norms. Provided that MINRES does not stag-
nate, we obtain from (9) that
2" N 7%

(12)

V= WAL = QIR e

where the error of approximation is determined by the error of approximation
in (9). Since ||F}XZI||/ ||77},;/l[71 | % 1, applying the technique from [2, Theorem 4], we
see that (8) is approximately valid also in finite-precision computation, i.e.,

1 _ 7
VIR VIR 1= AR D2

where the error of approximation is determined by the round-off terms estab-
lished in [2] not related to (9). Combining (12) and (13) with (7), we conclude
that

(13)

1
Vo VPP

In words, the CGL residual norms cannot be compared directly, but finite-
precision norms have to be aggregated over the intermediate iterations.
Now we turn to CGL residual vectors. Combining (6) and (7), we obtain

Il ~ (14)

Il L 1 M 1 M
L) (15)
I} B [ B [IrM 112

for the exact arithmetic. Since we assume that (4) and (5) are solved with a
negligible error, the first relation in (6) becomes in finite-precision computation

CiTE =Tx — 5y + Fify - (16)
Using [6], Sk and ¢ can be expressed via the residual norms obtained from the
exact computation with the extended matrix A in the same way as in the second
equation of (6). Due to [2, Lemmas 4 and 8|, these norms are approximately
equal to those obtained by finite-precision computation. Using the relation (16)
recursively, applying the results by Cullum and Greenbaum, and omitting the
round-off terms, we obtain

ki

1 L 1 M 1 =M
2 TP S TR R e e
j=ki_ kl ki—1
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with the error of approximation determined by the round-off terms in [2]. Com-
bining (15) and (17) while taking into account assumptions (9) and (10) on
MINRES gives

Using the relation (14) we finally get

1 1
L L
= 1 Z RIE Ty (18)
j

z] ki_1+1 |7 H| j=ki—1+1

Thus the residual vectors from finite-precision computation have to be aggre-
gated over the same iterations as their norms.

3.2 Lanczos Vectors

Recall that in exact arithmetic, the residual of CGL is a multiple of the subse-
quent Lanczos vector, i.e., r* = (—=1)!||rF|jv;11. In finite-precision computation,
(11) gives

L, k|| =L
&~ (=17 (| vrt1-

This, together with (14) and (18) yields

k .
—1)! l —1)7
- (-1) S (HfL)H Bitusis (19)
\/Zg ki_1+1 ||TL||2 j=ki_1+1 J

Thus if the exact MINRES does not stagnate, assuming (9) and (10) the exact
Lanczos vectors can be approzimated by a linear combination of several consec-
utive Lanczos vectors from finite-precision computation. The derivation above
does not rely on the orthogonality among the vectors v, ,+2,..., Uk +1.

3.3 Influence of Exact MINRES Stagnation

Now consider a plateau in exact MINRES convergence curve, i.e.,||rM| /||rM, ||~1
for some [. This can be caused (among others) by presence of a tight cluster of
eigenvalues in the spectrum of A. Due to (7), we simultaneously observe a peak in
the exact CGL residual norms. In this case, (12) and (13) may not hold and some
of the CGL residual norms in exact arithmetic may not have a finite-precision
counterpart of the form (14).

If the exact MINRES does not stagnate till the last iteration, we can proceed
p; iterations forward to achieve

I, /22 I < 1. (20)
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Then, the approximations (12) and (13) become valid again for f};/llil and F%ﬂl.

Using (8), we conclude that the norms can be compared as

1 B 177, |
/Sol+peq 7)1L 2 /1 _ (1M M 1)2
2aj=1 /75 Vo M 1T =11
17 |

(21)

~ = = ~ — = ,
V=R, IR D2 /i 1)

i.e., both finite-precision and exact-arithmetic norms are aggregated over con-
secutive iterations. Other ways of comparison are also possible.

4 Construction of the Subsequence {kl}zzl

In this section, we aim at finding the subsequence of iterations {k;},",. We
discuss several possible approaches, where the first one was in a similar form
considered previously in [5,12].

Numerical Rank of the Computed Subspace. Focusing on the rank-
deficiency of the matrix Vj, of computed Lanczos vectors, the subsequence can
be determined as

k7ol = max{k[num_rank(Vy) = 1}.

The definition of numerical rank is generally a subtle issue and the resulting
subsequence is dependent on its choice. Denoting &; the singular values of Vj,
we use

num_rank(Vy,) = {#6:|6; > 7}. (22)

The choice of the truncation parameter 7 should reflect the fact that the exact
matrix V; has orthonormal columns, i.e., its singular values equal 1. We set in
our experiments 7 = 0.1. Alternatively, numerical rank could be based, e.g., on
finding the maximum gap between the singular values of V.

Explicit Fitting of the Convergence Curves. Focusing on the delay of
convergence, the subsequence can be found by explicit fitting of the quantities
minimized over the Krylov subspace. In this way we find optimal subsequence
with respect to one of the two assumptions in (9).

Fitting the CGL Convergence Curves:

ki’ = argmin ||lz}' — al| — [|Z} — 2]l ] . (23)
k

Fitting the MINRES Convergence Curves:

k' = argéninlllf?dll = 7 (24)
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Note that the applicability of the approaches depends on the entities avail-
able. While (22) requires only the matrix Vj, (24) requires 7, i.e., exact compu-
tation has to be simulated. Approach (23) requires in addition the true solution
x, which is not available in practical computations. Since CGL and MINRES are
closely related, it is natural to expect that (23) and (24) provide similar subse-
quences. Fitting other entities, such as Ritz values, would theoretically also be
possible. Note that (22) gives a strictly increasing subsequence {k;},",, which
is not necessary the case for the other approaches and which becomes impor-
tant especially for problems with stagnation in the exact convergence curves; see
Sect. 5.

5 Numerical Experiments

Now we compare the approaches to construction of {k;}, we discuss the assump-
tions (9) and (10), and illustrate the results obtained for the CGL residuals and
Lanczos vectors. Exact arithmetic is simulated by incorporating double reorthog-
onalization of the computed Lanczos vectors into the Lanczos process. It was
shown in [18] that such algorithm is backward stable, i.e., it represents an exact
Lanczos process for a nearby problem. The projected problems (4) and (5) are
solved by the MATLAB function mldivide. Computations are stopped before
the maximum attainable accuracy is reached. Experiments are performed in
MATLAB R2015b.

We consider several test matrices from the Harwell-Boeing Collection [3] and
the test matrix strakos introduced in [23], with parameters n = 100, Apin = 0.1,
Amax = 1000, and v = 0.7. The properties of the matrices are summarized in
Table 2. For all matrices we choose b= [1,...,1]%.

Fulfilling the Assumptions. In order to apply the results of Sect. 3, we first
need the subsequence {k; } fulfilling (9) and (10). Figure 2 shows the subsequences
constructed by approaches proposed in Sect. 4 together with the evolution of the
singular values of the matrix Vj, for problems strakos and bcsstk01. All three
subsequences follow the edge of nonzero singular values throughout the whole
computation. From the differences between {k"} and {k}} optimal with respect
to the two convergence curves, we conclude that there is no {k;} optimal in all
considered aspects. The plots in Fig. 3 (left) show the match between the exact

Table 2. Properties of the test matrices.

Problem |n |nnz(A)||A] k(A)
strakos |100 | 100 |1x10* |1 x10°
bcsstk01| 48 | 400 |3 x10° |1.6 x 10°
bcsstk04 | 132 | 3648 | 9.6 x 10° | 5.6 x 10°
nos7 729 | 4617 9.9 x 10°|4.1 x 10°
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{ki} and sing. values o® of Vi {ki} and sing. values al(k) of Vi

IS

w

N

50 100 150 200
k

(a) strakos (b) besstk0o1

Fig. 2. The singular values of the computed matrix Vj, together with the subsequences
{k:i} constructed using the three approaches from Sect. 4.

and finite-precision convergence curves shifted using {k;}. We see a nice overlap
of the convergence curves. In the right plots, we observe that

lzt — 25 lla < llap —zlla and  [[r" — 7Rl <[]

holds for most iterations, fulfilling sufficiently the assumption (10). From the
experiments, the subsequence {klM} obtained by optimal fitting of the MINRES
residual norms seems to provide the best results with respect to (9) and (10)
and therefore it is used in the following experiments.

CGL Residuals and Lanczos Vectors. Now we verify (14), (18), and (19)
derived in Sect. 3. Figure4 (left) gives the comparison between the exact and
finite-precision residual norms aggregated using (14) and shifted as in Fig. 3. In
both cases, we observe very good match between the exact and aggregated finite-
precision CGL convergence curve. For problem strakos, the approximation error
of (18) for the residual vectors depicted in Fig. 4a (right) is essentially determined
by the approximation error of the MINRES residual vectors, shown in Fig.3a
(right). For besstk01, the approximation is for the CGL residuals slightly worse
than for the MINRES residuals, compare Figs.3b and 4b. This is caused by
the fact that in several iterations MINRES almost stagnates. A similar plot for
the Lanczos vectors using (19) is provided in Fig.5. Due to the relation (11),
the approximation error is here similar to the approximation error of the CGL
residuals.

Stagnation in MINRES Convergence. For real problems, the exact MIN-
RES residual norm may not decrease sufficiently in each iteration, and severe
~aeillation matr anmest i1 the norm of the avaet OOT wacidiial 3 Tigiire Ll L,
UdUILLIALIVILL JJJ.d;'y appccu 111 ULIIC 11UIL111 Ul Ul CXdUL U\l 1Chlududadl. r lgulUU DIIUOWD

results for two test problems of such type. Although (9) is satisfied, (14) does

3 In such a case, approach (24) tends to construct subsequences for which k = k;_;
may hold for some .
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Fig. 3. Fulfillment of the assumptions (9) and (10) for two test problems. Left: The match
between the exact convergence curve and the finite-precision convergence curve shifted
using various subsequences {k;}. Right: The match between the vectors themselves.
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Fig. 4. Left: the exact and finite-precision CGL residual norms; ||7, ||agr denotes the
right-hand side of (14). Right: relative difference between the exact and aggregated

finite-precision residuals; Tk,
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Fig. 5. Difference between the exact and aggregated finite-precision Lanczos vectors;
vy, denotes the right-hand side of (19).
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Fig. 6. CGL residuals compared as in (14) and (21) (plotted against [+p;), respectively.
Stagnation tolerance 7 is set to 0.01 (bcsstk04) and 0.002 (nos7).

not hold, see Fig.6 (left). In order to apply the alternative formula derived in
Sect. 3.3, we need to detect iterations with stagnation. Based on [2, Theorem 4],
we suggest the criterion

L= (17124102 <, (25)

with 7 much smaller than the relative approximation error ‘ ] = (17 ] ’ /Il M.
We proceed as follows. If the stagnation criterion (25) is satisfied, we substitute
! by r}t, and continue until we get sufficient decrease (20). Both sides of (21)
are then plotted against [ + p;. We use every residual norm only once, i.e., in
the next step of comparison we start with I, < [ + p; + 1. The larger the
value 7, the more iterations are aggregated and the sparser plots we get. Results
obtained using this aggregation scheme are shown in Fig. 6 (right).

6 Conclusion

We have demonstrated that in many cases quantities minimized in exact
MINRES and CGL computation can be compared directly to their selected
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finite-precision counterparts for the same linear algebraic problem. We have pro-
posed three approaches for determination of the subsequence of relevant finite-
precision iterations — based on the numerical rank of the computed Lanczos
matrix or on optimal fitting of the convergence curves. We have shown that
entities whose size does not decay monotonically can not be compared directly.
However, we have derived formulas relating the exact CGL residuals (and their
norms) and the exact Lanczos vectors to vectors obtained in the finite-precision
aggregated over the intermediate iterations. We have explained limitations of
this approach for problems, where the exact MINRES method (nearly) stag-
nates and proposed an alternative way of comparison based on more general
aggregation scheme. The results have been supported by experiments on stan-
dard test problems.

Acknowledgment. Research supported by the Grant Agency of Charles University
(GAUK 196216) and by the Grant Agency of the Czech Republic (17-04150J).
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4.2 Structure of the loss of orthogonality

In this section, we continue with the analysis of the Lanczos process described
in Section 4.1. We focus on the relationship between the exact and the finite-
precision Ritz vectors. Since both sets of vectors represent well-structured ‘basis’
of the underlying Krylov subspaces, we believe that detail understanding of their
mutual relationship is crucial. We adopt the notation introduced in the previous
section. Further, let

T, = SPe® (ghnHT (4.1)
be the s ectral decomposition of the Symmetrlc tridiagonal matrlx T, b with ©*) =
dlag( ...,9,(!6)). We denote by s ) the j-th column of S® ie., the j-th

eigenvector of Ty, and s ) the (1,7)- th entry of the matrix S®). The j-th Ritz
vector at the iteration k 1s defined as

The corresponding entities in finite-precision computation are denoted analogous-
ly with a bar. By (A;, ;) we denote the j-th eigenpair of A.

4.2.1 Finite-precision Ritz vectors

First, we recall some results regarding the convergence of the Ritz values and
the Ritz vectors, and the loss of orthogonality among the Lanczos vectors in
finite-precision arithmetic. Paige [1980] proved that for any Ritz pair (éfk), gfk))
computed at the k-th step of the finite-precision Lanczos method it holds that

min |\, — 07| < max{2 501150 | + VE| Alley),

1<j<n
(b + 1)+ V3n2)Alle2 } (4.2)
! Ol | + VE| All
177 = (g 3y || < == T (4.3)

min, [A, — ")

where both ¢; and ey are a small multiple of the machine precision €y,,cn, see
also [Meurant and Strakos, 2006, sec. 4.2]. The inequality (4.2) implies that
the size of 5k+1§1(c]§) indicates the convergence of @Ek) to an eigenvalue of A, which
we denote by \;.! When in addition )\; is well separated from the rest, it also
indicates convergence of the Ritz vector to the corresponding eigenvector of A.
Paige [1971] also proved that there is a structure in the loss of orthogonality,
mainly that

) ) Q)

(O, 91) = =" (4.4)

5k+15m

'While small 5k+1|§,(€]:)\ always ensures convergence of égk) to an eigenvalue of A, Wiilling
[2005] showed that in special cases, the opposite may not be true, i.e., closeness of égk) to some
eigenvalue of A does not imply that 5k+1|§;(£-)\ is small.
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where ]e )| < key||Al, i.e., that the loss of orthogonality of the newly generated

—(k)

Lanczos vector vx1 in the d1rect1on of the Ritz vectors ¥,

;~ can only be significant

if 5k+1|§§£)| or ||gjz(k) || is small. Combining (4.4) with other results, we can conclude
that orthogonality can be lost only in the directions of converged Ritz vectors;
see [Meurant and Strakos, 2006, sec. 4.2].

Further, Paige investigated the loss of orthogonality between the Ritz vectors
themselves, with respect to the distance of the corresponding Ritz values. In
particular, he showed that

k o k) _— _(k
OF — 8 G, 5) = 6t (D1, 5107 — 585"
+ (B3 g7 — (Fs® g, (4.5)

where Fj, = AV}, — (ViT), + Op110k416}); see [Paige, 1971, p. 113]. Substituting
(4.4) into (4.5), we obtain

~(k k k (k) =(k) /=(k
(Qz( ) 9( ))( )m%( )) € Sk])/ 5| ) 'j)sl(ci)/sgc])
+ (B3 57 — (Fs® g, (4.6)

see [Paige, 1971, p. 114]. Among others, the relation (4.6) implies that if égk)
and @;k) have not converged (i.e., 52’:) and EI(CIE) are not very small), and if they are
not too close to each other, then the corresponding Ritz vectors will be almost

orthogonal; see also [Parlett and Scott, 1979, sec. 4].

Note that convergence of a Ritz value may not necessarily lead to the loss of or-
thogonality in the direction of the corresponding Ritz vector, which is a common
misunderstanding. Despite the equality sign in (4.4), the actual size of (Vx4 1, gﬁk))
remalns unknown, since we only have an upper bound for the size of the numera-
tor e . We demonstrate on the following example that in special cases, e(k) may
Vanlsh for all £ and 7, meaning that no loss of orthogonality occurs throughout
the computation. Let T;, be the ultimate Jacobi matrix generated by the exact
Lanczos process applied to the matrix A and the starting vector b, where we
assume that the process does not terminate before the dimension of the matrix
A is reached. We generally have no control over the loss of orthogonality in the
finite-precision Lanczos process applied to A and b. However, when we apply the
Lanczos process to T;, and the starting vector e, in all reasonable computational
environments no loss of orthogonality will occur, despite the fact that the eigen-
values of T}, are exactly those of A. This is caused by the special structure of the
matrix 7,, and the starting vector e;, making the Lanczos process simply copy
the entries of the input matrix to the intermediate tridiagonal matrices generated
in the Lanczos process, effectively avoiding any rounding errors.

4.2.2 Relationship between the exact and finite-precision
Ritz vectors

While Paige investigated the finite-precision Lanczos process on its own, we are
more interested in its relationship to the exact Lanczos process. The following

— 77 —



proposition uses the structure of the proof of (4.5) to investigate the loss of
orthogonality between the exact and finite-precision Ritz vectors.

Proposition 4.1. Let

AV =VT, + (5l+1vl+1€;f (4.7)
AV, = ViTy + Sps1Uref + By

represent the [-th and k-th step of the exact and the finite-precision Lanczos pro-
cess, respectively. Using the notation introduced above, it holds that

~(k [ ) _(k D, _(k < _(k ) _—
0 — 0y, 57y = Grasl) (B o) — Seasy (0 i)
— (F® 40y, (4.9)

i J

Proof. Multiplying (4.7) by V,I and (4.8) by V;T from the left, we obtain

VkTAW = VkTVlTl + 5l+1‘7kTUl+1€fa
VITAVk = V;Tf/ka + gk—&—l‘/lTT)k-i-lez + ‘/ZTFk

Since A is symmetric, V;T AV, = (VT AV))T, and therefore
VI'ViTy + 01 Vi Opgaer, + Vi Fy = TV Vi + Sievfs Vi

Using the spectral decomposition of the Jacobi matrices T; and T} (omitting the
superscripts in the decomposition (4.1)) yields

VIT,5057 + 5V tpsse? + VI F, = SOSTVIT, + Sisre Vi
Multiplying the equation by ST from the left and by S from the right, we have
STVIVLSO + 61115 Vi v 16l S + STVEELS = ©STVIVLS + 81118 el Vi,
which, using Y = V;S and Y = V.S, and rearranging the equations gives

YTYO —0YTY = 5,15 e Y — 81 Y T 0p1ef S — YT ELS.
Multiplying both sides by the corresponding canonical vectors as eJT(-)el- yields

(4.9). O

Proposition 4.1 connects the loss of orthogonality between the Ritz vectors with
quantities which are interesting on their own:

e Distance of the computed and the exact Ritz values, |€_§k) — 0](.”|.
e Scalars 5l+131(;) and 5k+1§§£) whose size indicates convergence of the cor-

responding Ritz value in the exact and the finite-precision computation,
respectively.
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° An les between the newly generated Lanczos vector and a given Ritz vector,
( ,Ui41) and (yj 2 Uk+1), mixing the exact and finite-precision computa-

tions.

We would like to identify the cases for which (yj(l), gjz(k)) is small, i.e., cases when the

finite- pre(:lsmn Ritz vector yz (1f nonvamshmg) is close to orthogonal to the exact
Ritz vector y . Since ||s || = 1 and Hyj || =1, we have \(stz( ,yj )] < || Fy|l-

Therefore, When the size of the two terms on the right- hand side of (4.9) is small

while the size of §§k) — 9]@ is not, then the size of (yj( ) g U ) becomes necessarily

small as well. We investigate three possible scenarios, when this happens:

o If 5l+1|s§;)| and 5k+1|§§£)] are both small whereas |9_§k) - 9](-l)| is not, i.e., égk)
and 0](-1) have converged to two well separated eigenvalues of A, then the two
Ritz vectors are essentially orthogonal (if nonvanishing). This relation is
valid independent of the relation between k and [ and is consistent with (4.2)
and (4.3), because clearly two eigenvectors corresponding to two distinct
eigenvalues of A are mutually orthogonal.

o If £ = ki, i.e., the iteration k in finite-precision arithmetic corresponds to
the iteration [ in exact arithmetic in the sense of [Gergelits et al., 2018, sec.
4], then v;41 is supposed to be close to orthogonal to the columns of V.

(k)

Therefore any converged Ritz vector 3,

. in the finite-precision computation

with small 5k+1|§,g:)| will be orthogonal (if nonvanishing) to all Ritz vectors

yj(.l) (even unconverged) corresponding to the Ritz values well separated from

that of gjgk). This corresponds to our intuition that if the exact computation
is ahead of the finite-precision one, then converged finite-precision Ritz
vectors have their counterparts in exact arithmetic. Orthogonality of the
exact Ritz vectors then gives the orthogonality between the exact and the
converged finite-precision Ritz vectors (again except those corresponding to
the same cluster of eigenvalues of A).

e Converse formulation, i.e., based on the orthogonality between 7., and
the columns of V; would also be possible, however VlT@kH ~ 0 is somewhat
difficult to predict, except for special cases such as the one discussed at the
end of Section 4.2.1.

Proposition 4.1 in its present form gives a rather incomplete description of the
relation between the finite-precision and the exact Ritz vectors, however relations
of type (4.4) rely on the symmetry of the matrix V,I'V; and therefore can be
directly reformulated neither for (gjgk),vlﬂ) nor for (y](-l),z_)k+1). Subsequently,
extending the result to the form of (4.6) is not possible. Better understanding of
the finite-precision and the exact Ritz vectors, and also the Lanczos vectors will

be subject of our future research.
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5. Robust regression for mixed
Poisson—Gaussian model

This chapter deals with inverse problems, where noise in the data comes from
various sources — more specifically, we assume image deblurring problems with a
combination of shot noise and read-out noise. In addition, we assume that the
data is further corrupted by an unknown type of corruptions, generally referred
to as outliers. Problems with mixed noise as well as problems with outliers have
been studied extensively in the literature. However, to our knowledge, very little
has been done for problems with data containing both issues at the same time.
In the article Kubinovd and Nagy [in press| included in Section 5.1, we derive a
model that can be used to numerically deal with such type of corruptions. The
model leads to a constrained optimization problem, which can be efficiently solved
using a modification of Newton’s method. In Section 5.2, we briefly comment on
the possibilities of relaxing Newton’s method to a version of the Gauss-Newton
method and investigate, which loss functions are admissible for this scheme.

5.1 Article published in Numerical Algorithms

This section contains the article Kubinova and Nagy [in press]. Reprinted by
permission from Springer Nature: Numerical Algorithms, Kubinova, M. & Nagy,
J.G.: Robust regression for mixed Poisson—Gaussian model, copyright (2018),
advance online publication, 19/01/2018 (doi:10.1007/s11075-017-0463-1).
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1 Introduction

In this paper, we consider efficient computational approaches to compute approxi-
mate solutions of a linear inverse problem,

b = AXyue + 1, A € R™, (D)

where A is a known matrix, vector b represents known acquired data, n represents
noise, and vector xye represents the unknown quantity that needs to be approxi-
mated. We are particularly interested in imaging applications where xyye > 0 and
Axige > 0. Although this basic problem has been studied extensively (see, for exam-
ple, [9, 16, 27, 34] and the references therein), the noise is typically assumed to come
from a single source (or to be represented by a single statistical distribution) and the
data to contain no outliers. In this paper, we focus on a practical situation that arises
in many imaging applications, and for which relatively little work has been done,
namely when the noise is comprised of a mixture of Poisson and Gaussian compo-
nents and when there are outliers in the measured data. While some research has been
done on the two topics separately (i.e., mixed Poisson—Gaussian noise models or out-
liers in measured data), to our knowledge, no work has been done when the measured
data contains both issues. In the following, we review some of the approaches used
to handle each of the issues.

1.1 Poisson—Gaussian noise

A Poisson—Gaussian statistical model for the measured data takes the form

bi = nopj(i) + g(0), i = 1,....,m,  nopj(i) ~ Pois([Axyueli), g(i) ~ N(0, ),

(2)
where b; is the ith component of the vector b and [Axye]; the ith component of the
true noise-free data Axyye. We assume that the two random variables nqp; (i) and g(i)
are independent. This mixed noise model arises in many important applications, such
as when using charged coupled device (CCD) arrays, x-ray detectors, and infrared
photometers [2, 13, 22, 23, 32]. The Poisson part (sometimes referred to as shot
noise) can arise from the accumulation of photons over a detector, and the Gaussian
part usually is due to read-out noise from a detector, which can be generated by
thermal fluctuations in interconnected electronics.

Since the log-likelihood function for the mixed Poisson—Gaussian model (2) has
an infinite series representation [32], we assume a simplified model, where both ran-
dom variables have the same type of distribution. There are two main approaches
one can take to generate a simplified model. The first approach is to add o2 to each
component of the vector b, and from (2), it then follows that

E; + 02) = [Axtrueli + o’ and var(b; + 02) = [Axtrueli + o

For large o, the Gaussian random variable g(i) + o is well-approximated by a
Poisson random variable with the Poisson parameter o2, and therefore, b; + o>
is also well approximated by a Poisson random variable with the Poisson parameter

@ Springer

— &3 —



— 84 —

Numer Algor

[Axiueli + o2. The data fidelity function corresponding to the negative Poisson
log-likelihood then has the form

Y ([Axwmeli +0°) — (bi +0) log([Axirueli +07); 3)

i=1
see also [32]. An alternative approach is to approximate the true negative log-likelihood by
a weighted least-squares function, where the weights correspond to the measured data, i.e.,

- 2
>3 (—[Ax]i = bi) : @
=1 2\ Vbi + a2

see [18, Sec. 1.3]. A more accurate approximation can be achieved by replacing the

measured data by the computed data (which depends on x), i.e., replace the fidelity
function (4) by

il ( [Ax];i — by ) _ 5
see [33] for more details. Additional additive Poisson noise (e.g., background emis-
sion) can be incorporated into the model in a straightforward way. We remark
that there are also approaches to handle mixed Gaussian-impulsive noise; see for
example [35, 36]. However, the focus in this paper is on the problem of mixed
Gaussian—Poisson noise models.

1.2 Outliers

For data corrupted solely with Gaussian noise, i.e.,
bi =[Ax]; +g@), i =1,....m, g@i)~N(0,0%),

employing the negative log-likelihood leads to the standard least-squares functional
m
I 2
> 5 (Ax]i —bi)?. 6)
i=1

It is well known however that a computed solution based on least squares is not
robust if outliers occur, meaning that even a small number of components with gross
errors can cause a severe deterioration of our estimate. Robustness of the least squares
fidelity function can be achieved by replacing the loss function %tz used in (6) by a
function p(¢) as

> o ([Ax)i — b)), (7)
i=1

where the function p is less stringent towards the gross errors and satisfies the
following conditions:

L p@) =0;

2. p(t)=0%1=0;

3. p(=t) = p(®);

4. p(') = p(),fort’ > 1> 0;
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see also [18, Sec. 1.5]. A list of eight most commonly used loss functions p can
be found in [6] or in MATLAB under robustfit; some of them are discussed in
Section 2.1. Each of these functions also depends on a parameter 8 (see Section 2.2)
defining the trade-off between the robustness and efficiency. Note that if we use this
robust regression approach, in order to reduce the influence of possible outliers, we
always sacrifice some efficiency at the model.

In this paper, we focus on combining these two approaches to suppress the influ-
ence of outliers for data with mixed noise (2). Our work has been motivated by
O’Leary [30], and more recent work by Calef [5]. The initial ideas of our work were
first outlined in the conference paper [21].

The paper is organized as follows. In Section 2, we introduce a data-fidelity func-
tion suitable for data corrupted both with mixed Poisson—Gaussian noise and outliers.
In Section 3, we propose a regularization parameter choice method for the regulariza-
tion of the resulting inverse problem, and in Section 4, we focus on the optimization
algorithm and the solution of the linear subproblems. Section 5 demonstrates the per-
formance of the resulting method on image deblurring problems with various types
of outliers.

Throughout the paper, D (or D with an accent) denotes a general real diagonal
matrix and e; denotes the ith column of the identity matrix of a suitable size.

2 Data-fidelity function

In Section 1, we reviewed fidelity functions (3), (4), and (5), commonly used
for problems with mixed Poisson—Gaussian noise and also robust loss functions
used to handle problems with Gaussian noise and outliers (7). Since we need to
deal with both issues simultaneously here, we propose combining both approaches.
More specifically, combining a robust loss function with the weighted least squares
problem (5), so that the data fidelity function becomes

J0=3 (u) | ®
= \VIAx]; +0?

In the remainder of this section, we investigate the properties of the proposed data-
fidelity function (8) and the choice of the robustness parameter 8, which is defined
in the next subsection.

2.1 Choice of the loss function—convexity analysis

For ordinary ieast squares, functions known under names Huber, logistic, Fair, and
Talwar, shown in Fig. 1, lead to an interval-wise convex data fidelity function (see
[30]), i.e., positive semi-definite Hessian, which is favorable for Newton-type min-
imization algorithms. This however does not always hold in our case where the
weighted least squares formulation (8) has solution-dependent weights.

@ Springer
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15 15
12/2 [t| < B
= A2 - _ 9 !
o= -ox ko) || s ={ B S0
100 FERET I B
0 - o 0 \ /
-5 0 5 -5 0 5
t t
Fair, § = 1.400 Huber, g = 1.345
15 15 t2/2 <5
p(t) = B log(cosh(t/5)) o ={ G 155
101 FERRE 12
0 0
-5 0 5 -5 0 5
t t
logistic, 8 = 1.205 Talwar, 8 = 2.795

Fig. 1 Loss functions Fair, Huber, logistic, and Talwar with the tuning parameter 8 corresponding to 95%
efficiency with respect to A/(0, 1) (solid line), together with the standard loss function 12 /2 (dashed line)

From [33], we know that the functional (8) is convex for p(r) = 2 /2 and therefore
has a positive definite Hessian. For a general function p, the gradient and the Hessian
of the functional (8) become

grad, (x) = ATz = MAx); + b+ 02, ( [Ax]; — b; ) .
= ’ = ’

([Ax]; + 02)3/2 VIAx]; + o2
(%[Ax]i + 3bi + ‘72)2 , [ [Ax]i — b;
AT T o) (m)
(314l + 30+ 02) [ (ax), — by
T ([Ax) + 02 (m ) ;

where for points in which the derivatives p’ or p” do not exist, these are substituted
by left/right derivatives, similarly to [6]. We investigate the entries D;; in order to
examine the positive semi-definiteness of the Hessian Hess (x). Recall that AT DA
is positive semi-definite, if D;; > 0. This condition is clearly satisfied for the loss

function Talwar
2
/2, |t| < B,
1) = 9
oo {ﬂz/Z, 1> B, )

Hessj(x) = ATDA, D;; =

as the entries D;; either coincide with those for p(f) = ¢2/2 or are zero.
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In the following, we show that no other function p from [6] can ensure non-
negative D;;. Since we assume [Ax];, b; > 0, Vi, it holds that D;; > 0, if

([Ax]; +3bi + 40?) ([Ax]; + 02!/ ( [Ax]i — b )< ( [Ax]i — by \,
P =P\ A 12/

(TALT. 0 L. h,-2\2 /TA+vT. 1 ~2 Avl. I ~
\LAX] T b; + 207) \V1AaX] T0% ) \V LAX]; T0% /)
(10)

We see immediately that o” has to be non-negative. Moreover, (10) is difficult to
achieve for [Ax]; > b; + o2, when

1
mp/(\/[AX]i) < 0" (VIAx)),

must hold. If p’ is not zero, this corresponds to

p'() 2t yielding p(1) 2 1%/2,

i.e., for large [Ax];, the loss function p has to grow at least quadratically. Therefore,
considering the functions from [6], the only loss function p for which the data fidelity
function (8) has positive semidefinite Hessian is the function Talwar.

2.2 Selection of the robustness parameter

Introducing robustness with respect to outliers comes at a cost since the confidence
interval for estimates involving robust loss functions p (7) is wider than for least
squares (6), for normally distributed noise. This can be quantified by the so-called
(relative) efficiency of a regression estimator, given as the ratio between its variance
and that of the least squares estimator, for a sample with normally distributed errors.
The efficiency is usually calculated in terms of asymptotic efficiency, i.e., with the
size of the sample going to infinity. For more details see, e.g., [11, Section 4] and
[31]. The asymptotic efficiency of the robust estimators is typically controlled by a
parameter, here denoted by S. Parameters 8 providing 95% asymptotic efficiency for
the standard robust loss functions can be found in [6]. For Talwar, the 95% efficiency
tuning parameter is

Bos = 2.795. (11)

Note that in our specific case, the random variable inside the function p in (8)
is already rescaled to have unit variance and therefore approximately unit normal
distribution. We may therefore apply the parameter S9s5 without any further rescal-
ing based on estimated variance, which is usually required in case of ordinary least
squares with unknown variance of noise. Function Talwar with 8 = fg5 is shown in
the lower right panel of Fig. 1.

2.3 Non-negativity constraints

In many applications, such as imaging, the reconstruction will benefit from taking
into account the prior information about the component-wise non-negativity of the
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true solution xyye. Here, however, imposing non-negativity is not just a question
of visual appeal, it also guarantees the two estimates (3) and (5) of the negative
log-likelihood will provide similar results; see [33]. Therefore, the component-wise
non-negativity constraint is an integral part of the resulting optimization prob-
lem. However, employment of the non-negativity constraint results in the need of
more sophisticated optimization tools. The use of one of the possible algorithms is
discussed in Section 4.

3 Regularization and selection of the regularization parameter

As a consequence of noise and ill-posedness of the inverse problem (1), some form of
regularization needs to be employed in order to achieve a reasonable approximation
of the true solution x,.. For computational convenience, we use Tikhonov regular-
ization with a quadratic penalization term, i.e., we minimize the functional of the
form

[Ax]; — b; A 2
Ji. () —Zp(\/w) +SILx|?, x>0, (12)

i=1

We assume that a good regularization parameter A with respect to L is used so that
the penalty term is reasonably close to the prior and the residual therefore is close to
noise. In case of robust regression, it is particularly important not to over-regularize,
since this would lead to large residuals and too many components of the data b would
be considered outliers. Methods for choosing A are discussed in this section.

3.1 Morozov’s discrepancy principle

Since the residual components are scaled, and for data without outliers, we have the
expected value

1 & (Ax)i —b)? |
E{Z;W}‘l’ =

an obvious choice would be to use Morozov’s discrepancy principle [26, 34]. How-
ever, as reported in [33], even without outliers, the discrepancy principle based
on (13) tends to provide unsatisfactory reconstructions for problems with small
signal-to-noise ratio. Therefore, we will not consider this approach further.

3.2 Generalized cross validation

Generalized cross validation [12][34, chap. 7] is a method derived from the standard
leave-one-out cross validation. To apply this method for linear Tikhonov regular-
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ization, one selects the regularization parameter A such that it minimizes the GCV
functional
nlral®

GCV )\, = )
@) (trace(] — A;))?

(14)

where r;, = Ax; — b = (A, — I)b is the residual, n is its length, and the influence
matrix A, takes the form A, = A(ATA + ALTL)~'AT. Here, due to the non-
negativity constraints and the weights, the residual and the influence matrix have a
more complicated form. An approximation of the influence matrix for problems with
mixed noise, but without outliers, has been proposed in [1]. There the numerator of
the GCV functional takes the form n| Wr;||? and the approximate influence matrix

Ay = WADDWATW?A+ALTL)D,) D, AT W, (15)

where W and D, are diagonal matrices:

1
Wi = ————=;
VIAx )i + 02
L x>0,
[Dalii = {0, otherwise,

and T denotes the Moore-Penrose pseudoinverse. Matrix D, only handles the non-
negativity constraints and, therefore, can be adopted directly. The matrix W needs a
special adjustment, due to the change of the loss function to Talwar. The aim is to
construct a matrix W satisfying

1 =~ [Ax,]; — b;
—Wrl? =) po| —m—m—m— .
20" ; (x/[AxuiMZ)

Substituting for p from the definition of the function Talwar (9), we redefine the
scaling matrix as

1 ‘ Anli=bi | - B
W;; = { VIAxli+o? VIAGi+o2 | T
[A)Ufﬁ’ Otherwise;

In order to make the evaluation of (15) feasible for large-scale problems, we

annroximate the trace of a matrix ucino the random trace estimation 10 341 ac
approxim ale the trace oI a malnx using e rangom {race estimauon (1%, 341 as

trace(M) ~ vl Mv, where the entries of v take values £1 with equal probability.
Applying the random trace estimation to (15), we obtain

(trace(l — A,\))2 ~ (vTv — vTAAv)Z.

@ Springer
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Finally, A, v is approximated by W Ay, with y obtained applying truncated conjugate
gradient iteration to

(D)(ATW?2A+ALTL)D,)y = D, AT W. (16)

4 Minimization problem

In this section, we discuss numerical methods to compute a minimum of (12). We
consider incorporating a non-negative constraint and solution of linear subproblems,
including proposing a preconditioner.

4.1 Projected Newton’s method

Various methods for constrained optimization have been developed over the years;
some related to image deblurring can be found in [2, 4, 15, 25, 29]. For our com-
putations, we chose a projected Newton’s method,! combined with projected PCG
to compute the search direction in each step; see [14, sec. 6.4]. The convenience
of this method lies in the fact that the projected PCG does not require any special
form of the preconditioner and a generic conjugate gradient preconditioner can be
employed. Besides lower bounds, upper bounds on the reconstruction can also be
enforced. For completeness, we include the projected Newton method in Algorithm 1,
and projected PCG in Algorithm 2.

Algorithm 1 Projected Newton’s method [14]

input: J;, x©
k=0
while not converged do
Active = (x® < 0)
g = grad, (x®)
H = Hess, (x®)
M = prec(H) setup preconditioner for the Hessian
s = projPCG(H, —g, Active, M) compute the search direction for inactive cells
ga = g(Active)
if max(abs(g,)) > max(abs(s)) then
8a = 8a - max(abs(s))/ max(abs(g,)) rescaling needed
end if
s (Active) = g, take gradient direction in active cells
x®*+) = 1inesearch(s, x®, J;, grad; )
k=k+1
end while
return x©

'In [14], the method was derived as the Projected Gauss—Newton method. Here, since the evaluation of
the Hessian does not represent a computational difficulty, we use it as a variant of Newton’s method.
Therefore, in the remainder of the text, the method is referred to as the Projected Newton’s Method.
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Algorithm 2 Projected PCG (proj PCG)[14]
input: A, b, Active, M

x0=20
D7 = diag(1 — Active) projection onto inactive set
ro=Dzb
20 = DZ(M~'rg)
Po = 20
k=0
while not converged do
ak — TV]Z-Z](
p' Dz Ap;

Xk+1 = Xk + O Pk
Fk41 = Xk — o DT Apy
k41 = DTI(M—lrk)
Br+1 = %
Pk+1 = Zk+1 + Br Pk
k=k+1

end while

return x;

4.2 Solution of the linear subproblems

Each step of the projected Newton method (Algorithm 1) requires solving a linear
system with the Hessian:

Hess, (x(k))s = —grad,, (x(k))
(ATDWA 4 AL L)s = — <ATz(k) + ALTLx(k)) . (17)
For the objective functional (12), the diagonal matrix D® and the vector z*) have
the form
1 52)?
% 1— (b,—i—cr ) ), [Ax]; —b; <8,
Zi = 1 ([Ax);+0?) v/ [Ax)i+02
0, otherwise.
(bi+0?)’ lAxib | < g
Dii = 1 (1Ax)i+02) | JIAxli+o2| = 7 (18)
0, otherwise.

Note that in case of constant weights, robust regression represents extra computa-

weighted least squares problems, while standard least squares problems are solved in
one step. In our setting, the weights in (5) themselves have to be updated and there-
fore employing a different loss function does not change the type of the problem we
need to solve.
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Without preconditioning, the convergence of projected PCG can be rather slow,
and it is therefore important to consider preconditioning. The idea of many pre-
conditioners, such as constraint [8, 20], constraint-type [7], or Hermitian and
skew-Hermitian [3] preconditioners is based on the fact that in many cases it is pos-
sible to efficiently solve the linear system in (17) if the diagonal matrix D® is the
identity matrix; that is, if the linear system involves the matrix

ATA+ALTL. (19)

For example, in the case of image deblurring, it is well known that linear systems
involving the matrix (19) can be solved efficiently using fast trigonometric or fast
Fourier transforms (FFT).

Although the constraint-type, and Hermitian and skew-Hermitian preconditioners
seem to perform well for problems with a random matrix D® (i.e., a random row
scaling), see [3], they performed unsatisfactorily for problems of the form (17), (18).

A preconditioner based on a similar idea of fast computations with matrices of
type (19) for imaging problems was proposed in [10]. In this case, the row scaling is
approximated by a column scaling; that is, we find D® such that

ATD®A ~ DO (AT A)DD, (20)
where
~y el (ATD® A)e;
pP = [ 1)
el. (A A)e,-

Note that for D® defined in (21), the diagonals of the matrices on the two sides of
approximation (20) are exactly equal.

Since for large-scale problems matrix A is typically not formed explicitly, exact
evaluation of the entries of D® might become too expensive. To get around this
restriction, note that

el (ATD® Aye; = ((AT) 2 diag(D®)); and el (AT A)e; = ((AT) 2 1);, (22)

where 1 is a vector of all ones, and we use MATLAB notation.? to mean component-
wise squaring. In some cases, it may be relatively easy to compute both the entries of
(AT).2 and the vector (AT).21; this is the case for image deblurring and is discussed
in more detail in Section 5.

Using (20), we define the preconditioner for the linear system (17) as

M=D® (ATA n iLTL) p®, (23)
with

A 2
A .

A/mean (diag(ﬁ(k))>

More details on the computational costs involved in constructing and applying the
preconditioner in the case of image deblurring are provided in Section 5.
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5 Numerical tests

The Poisson—Gaussian model arises naturally in image applications, so in this
section, we present numerical examples from image deblurring. Specifically, we con-
sider the inverse problem (1) with data model (2), where vector b is an observed
image that is corrupted by blur and noise, matrix A models the blurring operation,
vector xyye 1S the true image, and 7 is noise. Although an image is naturally rep-
resented as an array of pixel values, when we refer to “vector” representations, we
assume the pixel values have been reordered as vectors. For example, if we have a
p % p image of pixel values, these can be stored in a vector of length n = p? by, for
example, lexicographical ordering of the pixel values.

In many practical image deblurring applications, the blurring is spatially invariant,
and A is structured matrix defined by a point spread function (PSF). In this situation,
image deblurring can also be referred to as image decovolution, because the operation
AXirye 18 the convolution of x,e and the PSF. Although the PSF may be given as an
actual function, the more common situation is to compute estimates of it by imaging
point source objects. Thus, the PSF can be represented as an image; we typically
display the PSF as a mesh plot, which makes it easier to visualize how a point in
an image is spread to its neighbors because of the blurring operation. The precise
structure of the matrix A depends on the imposed boundary condition; see [17] for
details. In this section, we impose periodic boundary conditions, so that A and L are
both diagonalizable by FFTs.

So far, we have only described what we refer to as the single-frame situation,
where b is a single observed image. It is often the case, especially in astronomical
imaging, to have multiple observed images of the same object, but with each having a
different blurring matrix associated with it. We refer to this as the multi-frame image
deblurring problem. Here, b represents all observed images, stacked one on top of
each other, and similarly A is formed by stacking the various blurring matrices.

Before describing the test problems used in this section, we first summarize the
computational costs. From the discussion around (22), to construct the precondi-
tioner, we need to be able to efficiently square all entries of the matrix A7, or
equivalently those of A; this can easily be approximated by squaring the point-spread
function component-wise before forming the operator, i.e.,

(Aps]:).2 ~ Apgp2 .

Using this approximation, in each Newton step, we only need to perform one multi-
plication by a matrix, one component-wise multiplication, and one component-wise
square-root to obtain the entries of the diagonal matrix (21). With the assumption that
A and L are both diagonalizable by FFTs, efficient multiplication by the Hessian (17)
involves two two-dimensional forward and inverse FFTs, which we refer to as ££t2
and 1fft2, respectively. Solving systems with matrix (23) involves only one £t 2
and one 1££t2. In addition to the ££t2 requirements, muitiplication by the Hes-
sian (17) involves four pixel-wise multiplications and one addition. Solving systems
with the preconditioner (23) involves three pixel-wise multiplications (component-
wise reciprocals are assumed to be computed only once at the beginning). The total
counts for each operation are shown in Table 1.
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Table 1 Operation counts for single-frame case

Operation fft2 ifft2 Mults Adds
Hessian (17) Multiply 2 2
Preconditioner (23) Solve 1 1 3 0

The robustness and the efficiency of the proposed method is demonstrated on two
test problems adopted from [28]:

Satellite An atmospheric seeing problem with spatially invariant atmospheric blur
(moderate seeing conditions with the Fried parameter 30). We also consider a multi-
frame case, where the same object is blurred by three different PSFs. These PSFs are
generated by transposing and flipping the first PSE. The setting is shown in Figs. 2
and 4a.

Carbon ash An image deblurring problem with spatially invariant non-separable
Gaussian blur, where the PSF has the functional definition

PSE(s,1) = ——exp | —~ [s 1]C" | *
Ty P2 [
where
2 .2
T 2.2 4
C=| , , |, and yiy; —7 >0.

Ll 2
The shape of the Gaussian PSF depends on the parameters y, y2, and t; we use
y1 = 4, y» = 2; T = 2. We also consider a multi-frame case, where the same

object is blurred by three different PSFs. The other two PSFs are Gaussian blurs with
parameters y; = 4, y» =2, t =0, and y; = 4, y» = 2, T = 0. The setting is shown
in Figs. 3 and 4b.

As previously mentioned, in the multi-frame case, the vector b in (1) is con-
catenation of the vectorized blurred noisy images; the matrix A is concatenation of
the blurring operators, i.e., A € R¥*", For the test problems, all true images are
256 x 256 arrays of pixels (with intensities scaled to [0, 255]), and thus, n = 65536.

Computation was performed in MATLAB R2015b. Noise is generated artificially
using MATLAB functions poissrnd and randn. Unless specified otherwise, the

Fig. 2 Test problem Satellite: true image (left) together with three blurred noisy images (right)
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Fig. 3 Test problem Carbon ash: true image (left) together with three blurred noisy images (right)

standard deviation o is set to 5. We use the discretized Laplacian, see [17, p. 95],
as the regularization matrix L. The projected Newton method (Algorithm 1) is
terminated when the relative size of the projected gradient

P(grad;, x®)), where P(v) = v.* (1 — Active) + Active. * (v < 0),

reaches the tolerance 10~ or after 40 iterations. We use MATLAB notation .* to
mean component-wise multiplication. Projected PCG (Algorithm 2) is terminated
when the relative size of the projected residual (denoted in Algorithm 2 by r;) reaches
107!, or the number of iterations reaches 100. We use the preconditioner given in
(23) as the default preconditioner. Given a search direction s;, we apply a projected
backtracking linesearch (see, e.g., [2]), with the initial step length equal to 1 and the
step-size reduction parameter equal to 1/2, which we terminate when

B D) < 169,
5.1 Robustness with respect to various types of outliers
In this section, we consider several types of outliers, whose choice was motivated by

[5], and demonstrate the robustness of the proposed method. Note that the difference
between [5] and the proposed approach lies, among others, in the fact that while

(a) Satellite (b) Carbon ash

Fig. 4 Point-spread functions for the first frame of each test problem
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Fig. 5 Semiconvergence curves—dependence of the relative error of the reconstruction on the size of the
regularization parameter A for various percentages of outliers: Talwar (8)—(11) (solid line) and the standard
data fidelity function (5) (dashed line)

1 ~ -

s F&Y 4 . ST ST Y. |
1 [J], € approximauon oOr u

1€ solution is computed in order to update the outer
(robust) weights associated with the components of residual. Here, the weights are
represented by the loss function p and are updated implicitly in each Newton step

and therefore our approach does not involve any outer iteration.
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b

X

(a) data (b) single-frame (c) single-frame (d) multi-frame, (e) multi-frame
standard robust standard robust

Fig. 6 Random corruptions: a blurred noisy image with 10% corrupted pixels (only first frame is shown);
b-e reconstructions corresponding to A = 10~

5.1.1 Random corruptions

First we consider the most simple case of the outliers—a given percentage of pixels
is corrupted at random. These corruptions are generated artificially by adding a value
randomly chosen between 0 and max(Axye) to the given percentage of pixels. The
location of these pixels is also chosen randomly. Figure 5 shows semiconvergence
curves,” representing the dependence of the error on the regularization parameter A,
when we increase the percentage of corrupted pixels.

It is no surprise that when outliers occur, more regularization is needed in order
to obtain a reasonable approximation of the true image xe. This is however not the
case if we use loss function Talwar, for which the semiconvergence curve remains
the same even with increasing percentage of outliers, and therefore no adjustment of
the regularization parameter is needed. In Figs. 6 and 7, we show the reconstructions
corresponding to 10% outliers. The regularization parameter is chosen as a close-
to-the-optimal regularization parameter for the same problem with no outliers. Note
that Figs. 6 and 7 show only one frame for illustration. In the multi-frame case, the
corruptions look similar for all frames, except that the random locations of the out-
liers are different. For random outliers like this, robust regression is clearly superior
to standard-weighted least squares. The influence of the outliers in the multi-frame
case is less severe, due to intrinsic regularization of the overdetermined system (1).
A more comprehensive comparison of the standard and robust approach is shown in
Table 2, giving the percentage of cases in which the robust approach provides better
reconstruction. The robust approach provides better reconstruction in all cases except
for the test problem Satellite with no outliers, where the standard approach gave
sometimes slightly better reconstructions. However, even in these cases, we observed
that the difference between the errors of the reconstructions is rather negligible, about
3%.

ZFor ill-posed problems, the relative error of an iterative method generally does not decrease monoton-
ically. Instead, unless the problem is highly over-regularized, the relative errors decrease in the early
iterations, but at later iterations, the noise and other errors tend to corrupt the approximations. This behav-
ior, where the relative errors decrease to a certain level and then increase at later iterations, is referred to
as semiconvergence; for more information, we refer readers to [9, 16, 27, 34].
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(a) data (b) single-frame (c) single-frame (d) multi-frame, (e) multi-frame
standard robust standard robust

Fig. 7 Random corruptions: a blurred noisy image with 10% corrupted pixels (only first frame is shown);
b—e reconstructions corresponding to A = 1073

5.1.2 Added object with different blurring

We also consider a situation when a small object appears in the scene, but is blurred
by a different PSF than the main object (satellite). The aim is to recover the main
object, while suppressing the influence of the added one. In our case, the added object
is a small satellite in the left upper corner that is blurred by a small motion blur. In the
multi-frame case, the small satellite is added to the first frame only. The difference
between the reconstructions using standard and robust approach is shown in Fig. 8.
For the single frame problem, reconstructions obtained using the standard loss func-
tion is fully dominated by the small added object. For the multi-frame situation, the
influence of the outlier is somewhat compensated by the two frames without outliers.
In both cases, however, robust regression provides better reconstruction, comparable
to the reconstruction from the data without outliers.

5.1.3 Outliers introduced by boundary conditions
Defining the boundary conditions plays an important role in solving image deblurring
problems. As is well known, see e.g. [17], unless some strong a priori information

about the scene outside the borders is available, any choice of the boundary condi-
tions may lead to artifacts around edges in the reconstruction. Similarly as in [5], we

Table 2 Comparison of the quality of reconstruction for the standard vs. the robust approach

Better reconstruction: robust/same/standard

Problem/% outliers 0% 1% 2% 5%

Satellite single-frame 0/93/7 100/0/0 100/0/0 100/0/0
Satellite multi-frame 0/94/6 100/0/0 100/0/0 100/0/0
Carbon ash single-frame 0/100/0 100/0/0 100/0/0 100/0/0
Carbon ash multi-frame 0/100/0 100/0/0 100/0/0 100/0/0

For each test problem and each percentage of outliers, the results are averaged over 100 independent
positions and sizes of random corruptions. Regularization parameters are chosen identically as in Figs. 6
and 7. Reconstructions are considered to be of the same quality if the difference between the corresponding
relative errors is smaller than 1%
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(b) single-frame (c) single-frame (d) multi-frame, (e) multi-frame
standard robust standard robust

Fig. 8 Added object: a blurred noisy image with a small object added to the first frame (only first frame
is shown); b—e reconstructions corresponding to A = 10~*

may expect that the robust objective functional (12) can to some extent compensate
for these edge artifacts, i.e., the outliers are represented by the “incorrectly” imposed
boundary conditions. In our model, we assume periodic boundary conditions, which
is computationally very appealing, since it allows evaluating the multiplication by A
very efficiently using the fast Fourier transform. However, if any of the objects in
the scene are close to the boundary, these boundary conditions will most probably
cause artifacts. In order to demonstrate the ability of the proposed scheme to elimi-
nate influence of this type of outlier, we shifted the satellite to the right edge of the
image. Other settings remain unchanged. Reconstructions using standard and robust
approach are shown in Fig. 9. We see that, although not spectacular, robust regres-
sion can reduce the artifacts caused by incorrectly imposed boundary conditions and
therefore provide better reconstruction of the true image. Quantitative results for this
and all the previous types of outliers are shown in Table 3.

5.2 Generalized cross validation

For the remainder of this section, we will only assume the robust approach, i.e.,
functional (12) with the loss function Talwar. In Section 3.2, we described a reg-
ularization parameter selection rule based on leave-one-out cross validation. Since
GCV belongs to standard methods, we focus here mainly on the influence of the out-
liers on its reliability. To obtain various noise levels, we scale the original true scene

(a) data (b) single-frame (c) single-frame (d) multi-frame, (e) multi-frame
standard robust standard robust

Fig. 9 Incorrectly imposed periodic boundary conditions: a blurred noisy image close to the edge (only
first frame is shown); b—e reconstructions corresponding to A = 10~
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Table 3 Comparison of the standard and robust approach in terms of relative error of the reconstruction

Standard Robust

Problem #it Rel. error #it Rel. error

(a) Single-frame

Satellite 15 3.40 x 107! 16 342 x 107!
Satellite random corr. 10% 14 6.78 x 107! 14 3.57 x 107!
Carbon ash 10 3.10 x 107! 11 3.08 x 107!
Carbon ash random corr. 10% 11 3.80 x 107! 14 3.10 x 107!
Satellite added object 15 472 x 107! 15 343 x 107!
Satellite boundary conditions 15 5.48 x 107! 25 451 x 107!
(b) Multi-frame

Satellite 12 2.89 x 107! 11 2.89 x 107!
Satellite random corr. 10% 11 645 x 107! 13 3.00 x 107!
Carbon ash 12 3.07 x 107! 11 3.05 x 107!
Carbon ash random corr. 10% 9 3.70 x 107! 19 3.06 x 107!
Satellite added object 13 3.33 x 107! 11 290 x 107!
Satellite boundary conditions 14 526 x 107! 14 427 x 107!

Each row contains results for the standard and robust approach. Abbreviation “# it” stands for the number
of Newton steps performed before the relative size of the projected gradient reached the tolerance 10™%.
Corresponding reconstructions are shown in Figs. 6, 7, 8, and 9

(with maximum intensity = 255) by 10 and by 100, which results in a decrease of the
relative size of Poisson noise. The standard deviation o for the additive Gaussian
noise is scaled accordingly by +/10 and 10. We compute the resulting signal-to-noise
ratio as the reciprocal of the coefficient of variation, i.e.,

| Ax]

SNR = .
VI (Ax]; + 0?)

For our computations, we use CG to solve (16), which we terminate if the rel-
ative size of the residual reaches 10~ or if the number of iterations reaches 150.
To minimize the GCV functional, we use the MATLAB built-in function £fminbnd,
for which we set the lower bound to 0 and the upper bound to 1071, 1072, 1074,
depending on the maximum intensity of the image. The tolerance To1X was set to
1078,

For test problem Satellite, we show the semiconvergence curves including the
minimum error and the error obtained using GCV in Fig. 10. Quantitative results
(averaged over 10 realizations of outliers) for both test problems are shown in Table 4.
We observe that the proposed rule is rather stable with respect to the increasing
number of outliers and generally better for the Carbon ash than for the Satellite.
As expected, the method provides better approximation of the optimal regularization
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Satellite multi-frame, max. intensity 255 (SNR = 5).

Fig. 10 GCV for data with outliers

parameter for smaller noise levels (larger Axiwe), where the functional (5) approx-
imates better the maximum likelihood functional for the mixed Poisson—Gaussian
model. Occasionally, GCV provides slightly worse reconstruction for the highest
percentage (10%) of outliers.
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Fig. 11 Preconditoner defined in (23), constraint preconditioner (CP), and Hermitian and skew-Hermitian
splitting preconditioner (HSSP) performance for (AT DA+ALT L)s = —AT b, where A and b are adopted
from the single-frame test problem Satellite, and D is a diagonal with random entries uniformly distributed
in (0, 1)

5.3 Linear subproblems

As mentioned earlier, various types of preconditioners have been developed to speed
up convergence of iterative methods applied to systems of type (17) or its saddle-

point counterpart
D' A\ ([ -z
AT ALTL ) 7 \ALTLx )"

The Hermitian and skew-Hermitian (HSS) preconditioners, as well as the constraint
precondtioner, belong to the best known preconditioners for this type of linear sys-
tem. Both were incorporated in GMRES and tested on deblurring problems with
random diagonal scaling D in [3]. Using random D, they indeed accelerate con-
vergence also in our case, as shown in Fig. 11. However, our preconditioner (23)
provides a much better speedup. Moreover, for real computations, e.g., when the
matrix D is actually generated during the projected Newton computation, the HSS
and constraint preconditioners did not perform well and even slowed down the con-
vergence; see Fig. 12. This is fortunately not the case for our proposed preconditioner.
In this experiment, we did not assume projection on the non-negative half-plane and

CG GMRES
0 or
10 ---none 10 |
Tg o — preconditioner (23) Tg :
< 102 R < 102
< 10 < 10
Z i, Z
- -
£ 10* 2109}
= =
=< =<
[} [}
~10® ~ 106}
50 100 150 200 50 100 150 200
iteration iteration

Fig. 12 Preconditoner defined in (23), constraint preconditioner (CP), and Hermitian/skew-Hermitian
preconditioner (HSSP) performance for (AT DO A4LLT L)s = — (ATz® 4+ ALT Lx®), with D®, 70,
and x® adopted from the third iteration of Newton method for the single-frame test problem Satellite
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since in (5.3), we need to evaluate D!, if some component D;; = 0, we replaced
it by 2, /€mach; see also [24]. We also did not incorporate any outliers for these ini-
tial experiments with the preconditioners; these results are intended to show that our
proposed preconditioning for these problems often performs much better than the
well-known standard preconditioners. In fact, we see that the behavior of the con-
straint and HSS preconditioner depends heavily on the actual setting of the problem.
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Fig. 13 The effect of preconditioning by preconditioner defined in (23): number of projPCG iterations
performed in each Newton iteration to achieve the desired tolerance. 5 % outliers.
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In the remainder of this section, we will therefore focus on the preconditioner given
in (23).

In Fig. 13, we investigate the overall speedup of the convergence by plotting the
number of projected PCG steps needed in each Newton iteration to reach the desired
tolerance on the relative size of the projected gradient. Even for the most generous
tolerance 10~!, preconditioner (23) significantly reduces the number of projPCG
iterations. Note that in this experiment, the linear subproblems solved in each Newton
iteration are generally not identical, since the subproblems are not solved exactly and
therefore the approximations x®) are not the same. We set the outer tolerance to 0 in
order to perform always at least 15 Newton iterations.

The choice of projPCG tolerance is a difficult question, but from the average num-
ber of Newton iterations/projPCG iterations/fast Fourier transforms shown in Table 5,
we observe that raising the tolerance does not considerably increase the number of
Newton steps we need to perform here. Therefore, larger tolerance, here 107!, leads
to a smaller total number of projPCG iterations. This is independent of the percentage

Table 5 Average number of Newton iterations, projPCG iterations, and (inverse) 2D Fourier transforms
for projPCG with and without preconditioning, and two tolerances on the relative size of the projPCG
residual. Results are averaged over 10 independent realizations of noise and outliers

Average count: Newton/CG/£ £t 2s

% outliers

Problem Precond 0% 2% 10%

(a) projPCG tol = 10~!

Satellite single-frame No 14/290/1383 14/274/1329 14/283/1374
Yes 15/161/1280 16/172/1362 14/158/1252
Satellite multi-frame No 12/250/2398 12/216/2104 13/241/2364
Yes 12/107/1545 11/107/1535 12/103/1507
Carbon ash single-frame No 11/190/939 10/179/891 11/184/915
Yes 10/71/641 11/72/654 13/82/753
Carbon ash multi-frame No 14/221/2200 14/219/2179 16/254/2542
Yes 16/88/1510 15/85/1419 17/99/1654

(b) projPCG tol = 102

Satellite single-frame No 13/536/2359 13/539/2373 14/641/2819
Yes 14/284/2001 15/302/2117 14/296/2091
Satellite multi-frame No 11/457/4082 11/460/4130 12/499/4511
Yes 11/201/2536 11/197/2499 12/213/2747
Carbon ash single-frame No 11/393/1754 11/432/1912 13/526/2315
Yes 10/121/934 11/129/1004 13/155/1201
Carbon ash multi-frame No 13/426/3813 14/461/4127 16/498/4467
Yes 13/144/1954 14/150/2038 16/173/2359
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of outliers. For each setting, the number of projPCG iterations is significantly smaller
for the preconditioned version. This is not always the case for the total count of the
fast Fourier transforms, since we need to perform 6 ££t2/if£ft2 in each iteration
vs. 4 for the unpreconditioned iterations; see Table 1. For large scale problems, how-
ever, the computational complexity of fast Fourier transform, which is O(n logn) is
comparable to other operations performed in projPCG, such as the inner products,
whose complexity is O(n), and therefore the number of projPCG iterations seems to
be the more important indicator of efficiency of the preconditioner. Recall here that
n is the number of pixels in the image, so if we have a 256 x 256 array of pixels, then
n = 65535.

6 Conclusion

We have presented an efficient approach to compute approximate solutions of a linear
inverse problem that is contaminated with mixed Poisson—Gaussian noise, and when
there are outliers in the measured data. We investigated the convexity properties of
various robust regression functions and found that the Talwar function was the best
option. We proposed a preconditioner and illustrated that it was more effective than
other standard preconditioning approaches on the types of problems studied in this
paper. Moreover, we showed that a variant of the GCV method can perform well
in estimating regularization parameters in robust regression. A detailed discussion
of computational costs, and extensive numerical experiments illustrate the approach
proposed in this paper is effective and efficient on image deblurring problems.
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5.2 A comment on the Gauss—Newton method

To handle the mixed Poisson—Gaussian model with outliers in the data, we as-
sume a combination of a robust loss function with the weights depending on the
computed data. The solution-dependent weights, rescaling the variance of the
residual components, however constrain the choice of the loss function p. Assume
as in the previous section the following objective functional

where p : R — R, see O'Leary [1990]; Coleman et al. [1980] or [Hansen et al.,
2013, sec. 1.5]. Note that for simplicity, we do not include the regularization term
in (5.1) as well as in the analysis in the remainder of the section. In practical
computations, some form of regularization is always necessary and the regular-
ization term can be incorporated to the functional similarly to [Kubinovéd and
Nagy, in press, sec. 3]. As analyzed in [Kubinova and Nagy, in press, sec. 2.1],

the Hessian of the functional (5.1) has the form Hess;(z) = AT DA, where D is
a diagonal matrix with the entries

D.. = (%[Ax]l + %bi + 02)2 1/ ( [A:L’]l — bi )

([Az]; 4 02)3 [Az]; + 02
(;[Az]; + 2b; + 02) , [ [Ax]; — b,
_ ([Aa]; + 02)52 ( A, 1 02> . (5.2)

Note that while the first addend in the right-hand side of (5.2) is always non-
negative, provided p” > 0, the second addend can have either sign. The analysis
in [Kubinovd and Nagy, in press, sec. 2.1] shows that only the loss function
Talwar guarantees the non-negativity of the diagonal entries of D and hence the
positive-semidefiniteness of the Hessian required for Newton’s method.

5.2.1 Gauss-Newton method for robust regression

Considering the standard loss function p(t) = t*/2, (5.1) becomes
13 [ (A=t
A~ l‘ Ppr— .
J(x) == S
(z) 2221( [Al‘]i+0'2>

see also [Kubinova and Nagy, in press, sec. 1.1]. Minimization of this functional
leads to a non-linear least-squares problem. For this type of problems, Gauss—
Newton method [Nocedal and Wright, 1999, sec. 10.3] is often the method of
choice.

Recall that Gauss—Newton method can be viewed as an approximation to New-
ton’s method for non-linear least-squares, with the Hessian substituted by the
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product of Jacobians. In our case,
Hess j(z) = ATDA ~ AT Z%A,
where Z is diagonal with the diagonal entries

~ %[Ax]l—l—%bz—l—(ﬂ

i ([ALC]Z + 0.2)3/2

[Haber, 2015, sec. 6.4.2] suggests that such approximation can be applied not only
to non-linear least-squares problems, but also to functionals involving robust loss
functions p. Following this idea, we derive a version of the Gauss-Newton method
that approximates the Hessian as

~

~ 5 R Azl — b,
HeSSJ(x) = ATDA ~ ATDA’ where D = Z diag p// M
[AZL’]Z + o2

Note that the matrix D is diagonal and its entries coincide with the first addend
of the right-hand side in (5.2). The search direction is defined in the standard
way as a solution to

<ATDA) s = —grad,(z). (5.3)

Direction s will be a descent direction as long as D;; is non-negative, i.e., as long
as p” > 0. This is satisfied for loss functions Talwar, Huber, Fair, and logistic,
see also O’Leary [1990] or [Kubinova and Nagy, in press, Fig. 1]. For the sake
of completeness, we summarize in Table 5.1 the first and the second derivatives
for these four loss functions, needed to evaluate the diagonal matrix D and the
gradient grad;(z), together with the tuning parameters [ corresponding to the
95% asymptotic efficiency, see [Kubinova and Nagy, in press, sec. 2.2].

Table 5.1: Four robust loss functions p with p” > 0, their derivatives, and 95%
asymptotic efficiency tuning parameters.

Function o(0) o) S0 Pon
<8 t2/2 t 1

Talwar 1| > 8 82/2 0 0 2.795
it < B £2/2 t 1

Y Bl - 5°/2 gsg(y o P
: Bt C&

Logistic % log(cosh(t/f)) Btanh(t/B) sech®(t/B) 1.205

Applying Gauss-Newton instead of Newton’s method will allow us to use three
more loss functions p to possibly capture better the characteristics of the outliers,
while still getting a descent direction in each step. However, substituting the Hes-
sian by its approximation here does not reduce the cost of computing the search
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direction s in (5.3), as the structure of the matrix involved in the linear system
(5.3) remains the same as for the Newton’s method considered in Kubinova and
Nagy [in press]. On the other side, the identical structure of the linear problems
allows us to use the same optimization scheme including the preconditioner for
the linear solves.

5.2.2 Numerical experiments

In this section we present numerical experiments involving loss functions Huber,
Fair, and logistic. In the first experiment, we focus on the minimum attain-
able error of reconstruction and the stability of the semiconvergence curves when
increasing the percentage of outliers. We performed experiment analogous to ex-
periment described in [Kubinova and Nagy, in press, sec. 5.1.1] and computed
the semiconvergence curves for the standard loss function and the four robust loss
functions from Table 5.1. For functions Huber, Fair, and logistic, the solution
is computed using the Gauss-Newton method as derived above, other settings
remain the same as in [Kubinova and Nagy, in press, sec. 5.1.1]. Results for
single-frame case are shown in Figure 5.1.

We observe that the semiconvergence curves for all four robust functions p show
similar behavior, especially around the point of semiconvergence, i.e., the opti-
mal regularization parameter A. The semiconvergence curves also show similar
stability with respect to the increased number of outliers. This remains valid also
for multi-frame case (not presented here). In conclusion, for the considered type
of problems, the change of the loss function itself does not improve the minimum
attainable error significantly, neither in the case when outliers are present, nor in
the cases with no outliers. However, we expect that there are cases in image de-
blurring, where some of the loss functions may capture the nature of the outliers
better than the other.

When moving from the projected Newton’s method to the projected Gauss—
Newton method, we may expect a slower convergence, but not necessarily here
since the search directions are computed using the truncated PCG iterations, i.e.,
inexactly. Therefore in the second experiment, we investigate the number of iter-
ations needed for the method to converge. Data are obtained in similar manner
as in Table 3 in Kubinovd and Nagy [in press] and are shown in Table 5.2. We
see that the number of Gauss—Newton iterations is on average higher than for
Newton’s method with Talwar, which together with no reduce in cost of the com-
putation of the search direction, may outweigh the potential advantage of choice
of the loss function.

- 111 —



0% outliers

10% outliers

: 1 < :
---standard ---standard
0.8t —Talwar 0.8 —Talwar
' —Huber —Huber
5 0.6 Fair 5 0.6 T Fair
£ —logistic o _|—logistic
@ (3] —2
<041 < 0.4
— -
0.21 0.2
10 107 1072 10 107 1072
A A
(a) Satellite single-frame
0% outliers 10% outliers
1 ‘ ‘ 1 N ‘ ‘
---standard ---standard
0.8 —Talwar 0.8 1 ‘\ —Talwar
—Huber . —Huber
= Fair = N Fair
S L 3 |
b 0.6 —logistic b 0.6 —logistic
<] <]
T 047 T 047 )
— - T, T T e e e e e e e =
0.2 0.2

107 107 107 107 107 107
(b) Carbon ash single-frame

Figure 5.1: Semiconvergence curves — dependence of the relative error of the re-
construction on the size of the regularization parameter \ for various percentages
of outliers: standard loss function ¢?/2 (dashed line) together with the four robust
loss functions (solid line).
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Table 5.2: Comparison of number of iterations needed for the relative size of the
projected gradient to achieve tolerance 10~*. Abbreviation “#it” stands for the
number of Newton/Gauss-Newton steps. See Table 3 in Kubinova and Nagy [in
press| for comparison.

# it
Newton Gauss—Newton
XV

<& S o o
Problem A R R R
(a) Single-frame
Satellite 16 15 20 17 19
Satellite random corr. 10% 14 16 25 26 21
Carbon ash 11 11 10 11 9
Carbon ash random corr. 10% 14 14 11 12 12
Satellite added object 15 5 22 26 18
Satellite boundary conditions 25 25 23 17 20
(b) Multi-frame
Satellite 11 12 14 14 12
Satellite random corr. 10% 13 13 13 15 14
Carbon ash 11 12 12 13 11
Carbon ash random corr. 10% 19 20 11 11 11
Satellite added object 11 12 13 14 12
Satellite boundary conditions 14 23 16 14 15
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6. Conclusions

Numerical methods for discrete inverse problems represent a very broad field of
study. Their common goal is to extract important information from the given
(measured) data and suppress the influence of inaccuracies (noise) that are al-
ways present. Understanding the properties of noise and its behavior in various
numerical methods plays crucial role in designing efficient solution schemes. In
this thesis, we focused on iterative methods for linear inverse problems.

In iterative methods based on the Golub—Kahan bidiagonalization, it is possible
to track cheaply the propagation of noise from the data to the basis vectors of the
corresponding Krylov subspace. The residuals of the methods are linear combi-
nations of these basis vectors. We provided explicit relation between the amount
of propagated noise in a particular basis vector and the corresponding coefficient
in the linear combination for each of the three considered methods. This enabled
us also to assess the regularization properties of CRAIG and compare it to those
of LSQR and LSMR without even constructing the residual vectors. For this
analysis no a priori information about noise is needed and the results can be
extended to computations in finite-precision arithmetic (Chapter 2).

We used the Golub—Kahan bidiagonalization to estimate the noise level in im-
age deblurring problems. We numerically illustrated that the performance of
the estimator is reliable as long as the smoothing of the operator is significant
with respect to the size of (the high-frequency part of) noise, and that this is
independent of the type of noise. When very few measurements are taken, the
information about the noise level that the Golub-Kahan bidiagonalization can
extract may however be insufficient (Chapter 3).

Next, we dealt with approximation properties of the Krylov subspace methods
based on short recurrences in finite-precision arithmetic. We focused on the be-
havior of residuals of finite-precision Galerkin methods, whose size is known to be
prone to severe oscillations, even for problems for which it decays monotonically
in exact computations. We showed that, despite these oscillations, after proper
aggregation over several iterations, the computed residuals can be linked to the
residuals from the exact computation with the same input data. More substan-
tial question in the context of finite-precision Krylov subspace methods remains
however the relation between the generated Krylov subspaces and the ideal exact
ones, which we studied also via the corresponding Ritz vectors. Modifying some
of the known results we established a relation between the computed and the
exact Ritz vectors in terms of the convergence of the corresponding Ritz values.
There still remains much to be done (Chapter 4).

The last part investigated discrete inverse problems with special combination of
mixed Poisson-Gaussian noise and unknown outliers in the data. Combining ap-
proaches for the two separate problems (mixed noise and outliers), we derived
an objective function with the data-fitting function consisting of inner solution-
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dependent weights and an outer robust loss function. We proposed an optimiza-
tion scheme based on Newton’s method and showed that the changing weights
limit the choice of the loss functions. This choice can be extended by relaxing
Newton’s method to a Gauss-Newton method. We modified some of the known
stopping criteria to work also in this setting (Chapter 5).

Since discrete inverse problems come from various applications, we will hardly be
able to understand all aspects of their solution in the near future. Below we list
some open questions directly related to the topics discussed in the thesis:

e Since any method for solving inverse problems has the noisy data as its
input, one should be interested in how and where noise propagates during
the computation. Are there other iterative methods, for which noise can be
tracked cheaply? Can this information be used to derive a stopping criteria
or to improve the method?

e To understand the relation between finite-precision and exact Krylov sub-
space methods, it is essential to understand the relation between the sub-
spaces they generate. Moreover, we need to know, how the solution is
determined in these subspaces, for example with respect to the formally
prescribed optimality condition, such as norm minimization, which is how-
ever not satisfied in finite-precision computations.

o Weighted least squares problems with regularization arising in Chapter 5
can be reformulated as saddle-point problems (p. 103). Performance of stan-
dard preconditioners, such as the constraint-style preconditioners, may be
very dependent on the ill-conditioning of the (1,1)-block. Deriving a pre-
conditioner robust with respect to this conditioning would represent an
important step in numerical solution of weighted least squares problems.
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