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Abstract: Inverse problems represent a broad class of problems of reconstruct-
ing unknown quantities from measured data. A common characteristic of these
problems is high sensitivity of the solution to perturbations in the data. The
aim of numerical methods is to approximate the solution in a computationally
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Autor: Marie Kub́ınová
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Notation

R set of real numbers
Rn set of real vectors of length n
Rm×n set of real matrices of size m× n
(·, ·) Euclidean inner product
∥ · ∥2, ∥ · ∥ Euclidean norm
∥ · ∥F Frobenius norm
span{· · · } subspace spanned by vectors

A coefficient matrix
AT transpose of A
A−1 inverse of A
A† Moore-Penrose pseudoinverse of A
I, In, identity matrix
Im,n m× n matrix with ones on its diagonal and zeros elsewhere
ei i-th column of identity matrix
diag(b), square matrix with entries of b on its diagonal and zeros elsewhere
triu(A) upper triangular part of matrix A

ϵmach machine precision
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1. Introduction

Many fields of application require numerical solution of linear inverse problems.
These are often represented by the system of linear algebraic equations of the
form

b = Axtrue + η , (1.1)

where A ∈ Rm×n represents the discrete forward model and b ∈ Rm represents the
measured data. The vector η denotes unknown perturbations in the data, usually
referred to as noise, which includes rounding errors, errors of measurement etc.
Given A and b, the aim is to compute a numerical approximation of the exact
solution xtrue. If the system

Ax ≈ b (1.2)

is incompatible and the perturbations are Gaussian, independent and identically
distributed random variables with zero mean, further referred to as white noise,
the problem (1.2) is typically formulated as the problem of least squares and the
associated solution

xLS = argmin
x

∥b− Ax∥ (1.3)

is called the least-squares solution. Inverse problems of the form (1.1) arise for
example in signal and image processing, geophysics, seismology, etc. For the
mentioned applications, the inverse problems are typically ill-posed.1 The ill-
posed nature of the problem is revealed by the singular values of A, which decay
gradually to zero without a noticeable gap. Thus A is ill-conditioned and the naive
least-squares solution xLS is due to severe amplification of noise meaningless. To
compute a meaningful approximation of xtrue some regularization is necessary.
Regularization can take many forms, but the target of all of them is to preserve
sufficient information about the exact solution, while suppressing the influence of
noise.

Most commonly known regularization approaches are based on Tikhonov’s reg-
ularization (Tikhonov [1963]) or on closely related spectral filtering, such as the
truncated SVD, see, e.g., Hansen [1987]. Since these methods involve computa-
tion of the (partial) SVD of A, or are in other ways computationally demanding,
they are usually confined to smaller problems. A common alternative to the
spectral filtering methods is iterative regularization. For matrices allowing fast
matrix-vector multiplication, iterative regularization is often based on Krylov sub-
space methods, see, e.g., Liesen and Strakoš [2013], and regularization is achieved
via projection onto a Krylov subspace of small dimension. Hybrid methods com-
bine both types of regularization. First, the original problem is projected onto a
Krylov subspace, and subsequently the projected problem is further regularized
using spectral filtering.

Regularization effect of the particular method is typically controlled by a regu-
larization parameter, and its choice is crucial for the performance of the method.

1According to the definition of Hadamard, ill-posed problems are those for which the solution
does not exist, is not unique, or is not a continuous function of the data.
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Strategies for choosing regularization parameters can be divided into two groups:
methods based on some a priori knowledge about noise, such as the discrepancy
principle (Morozov [1966]), and methods that work without this a priori infor-
mation, such as the L-curve (Hansen [1992]) or the generalized cross validation
(Golub et al. [1979]). The presented thesis contributes to several aspects of nu-
merical solution of discrete inverse problems. It comprises four chapters and the
core of each chapter is represented by a peer-reviewed publication, which is for
completeness accompanied by additional comments and numerical experiments
included in the sections at the end.

Chapter 2 deals with iterative regularization methods based on the Golub-Kahan
iterative bidiagonalization (Golub and Kahan [1965]). We investigate, for the
three most common methods LSQR, LSMR, and CRAIG, the resemblance of
the obtained residuals rk = b − Axk to the noise vector η. This is not done by
constructing the residuals and comparing them to the properties of η, which are
rarely known in practice, but rather by tracking the transformation of the noise
vector inside the bidiagonalization process. Due to specific smoothing proper-
ties of the matrices coming from discrete inverse problems, see also Hnětynková
et al. [2009], the transformation has a specific form and allows us to describe
the representation of noise in the particular residuals as well as to consider the
optimal stopping iteration for some of the methods. Obtained results were pub-
lished in the article Hnětynková et al. [2017], which is included in the chapter.
Part of the analysis in this article relies on the exact-arithmetic behavior of the
bidiagonalization, therefore we show how this behavior can be simulated using
finite-precision computations.

The Golub-Kahan bidiagonalization also provides an efficient way to estimate the
noise level ∥η∥/∥Ax∥ in the data, which is the focus of Chapter 3. The estimated
noise level may then constitute an input parameter for various other methods. For
some simple problems polluted with white noise, the noise estimation using the
Golub-Kahan bidiagonalization has been used already in Hnětynková et al. [2009].
In the proceedings contribution Hnětynková et al. [2016], which we include in this
chapter, we present an analogous technique applied to image deblurring problems
corrupted by noise with various characteristics, and we assess its reliability. We
also comment on the limitations of the method when applied to problems with
only a few measurements.

All iterative regularization methods based on Krylov subspaces rely on the con-
struction of well-conditioned (ideally orthonormal) bases of these subspaces. The
Golub-Kahan bidiagonalization, investigated in Chapters 2–3, as well as the Lanc-
zos tridiagonalization (Lanczos [1950]) are techniques for generating orthonormal
basis using short recurrences avoiding explicit reorthogonalization against the
preceeding vectors. Short recurrences represent a great reduction in the compu-
tational effort. However, in finite-precision computations, the orthogonality of the
computed vectors is often quickly lost due to rounding errors. This surprisingly
does not lead to a complete failure of the methods based on these iterative pro-
cesses, see, e.g., Meurant and Strakoš [2006]. On the other hand, we often observe
a significant delay of convergence in comparison with the exact error-free version.
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Due to this delay, it may be reasonable to associate the exact-arithmetic enti-
ties with their finite-precision counterparts in later iterations. This is technically
straightforward only for entities whose size decay monotonically. For other enti-
ties, such as the residuals in the Galerkin methods, for example CG (Hestenes and
Stiefel [1952]) or CRAIG (Craig [1955]), the link to their exact-arithmetic coun-
terparts is due to possible oscillations more complicated. In Chapter 4, we include
proceedings contribution Gergelits et al. [2018] investigating how non-monotonic
quantities from finite-precision arithmetic computations can be associated with
their exact arithmetic counterparts.

In specific applications, some a priori information about the statistical distribu-
tion of noise in (1.1) may be available. The least squares formulation (1.3) of
(1.1) is appropriate only for white noise, for which it represents the maximum
likelihood estimate, see, e.g., Vogel [2002]. For problems with other types of
noise, the objective functional has to take a different form. In image process-
ing applications, the data often contains a combination of Poisson and additive
Gaussian noise. For problems with mixed noise, we have to rely on some ap-
proximation of the likelihood functional. Staglianò et al. [2011] showed that one
of the possible approximations leads to a weighted least-squares problem with
solution-dependent weights. Problems for which part of the data is further in-
fluenced by severe corruptions, often referred to as outliers, in addition to noise,
was to our knowledge not studied in the literature. In Chapter 5 we include
article Kub́ınová and Nagy [in press], in which we deal with those problems and
propose an objective functional combining the least squares representation with
a robust loss function taking care of the outliers. We also propose two possible
optimization schemes.

Chapter 6 summarizes the main ideas of the thesis and formulates open questions.
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J. Liesen and Z. Strakoš. Krylov subspace methods. Numerical Mathematics and
Scientific Computation. Oxford University Press, Oxford, 2013.
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2. Noise representation in
residuals of bidiagonalization-
based regularization

Many stopping criteria in regularization methods for solving discrete inverse prob-
lems are based on the resemblance between the residual b − Axreg and the (un-
known) noise vector. For example, if noise is believed to be white noise, we may
expect the residual corresponding to a good regularized solution to have the spec-
tral properties of white noise. We explain in the article included in Section 2.1
that the opposite procedure is also possible for methods based on the Golub–
Kahan iterative bidiagonalization. More precisely, we show that independently
of the noise characteristic, based solely on propagation of noise through the pro-
cess, we may describe the representation of noise in each of the residuals and
predict which iteration will result in a residual resembling the noise vector. In
Section 2.2 we comment on how the exact-arithmetic Golub–Kahan bidiagonal-
ization can be simulated on a computer. We acknowledge the contribution of
Miroslav Rozložńık to Section 2.2.

2.1 Article published in Linear Algebra and its

Applications

This section contains the article Hnětynková et al. [2017]. Reprinted by permis-
sion from Elsevier: Linear Algebra and its Applications, Hnětynková, I., Kub́ınová,
M. & Plešinger, M.: Noise representation in residuals of LSQR, LSMR, and
CRAIG regularization, copyright (2017), (doi: 10.1016/j.laa.2017.07.031).
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2.2 Simulating exact iterative bidiagonalization

in finite-precision arithmetic

In some of the numerical experiments presented in Hnětynková et al. [2017] in-
cluded in Section 2.1, we assumed exact arithmetic. Therefore we need to be able
to simulate the exact Golub–Kahan iterative bidiagonalization on a computer.
Recall that the matrix representation of the Golub–Kahan bidiagonalization has
the form

ATSk = WkL
T
k , AWk = Sk+1Lk+1,k, (2.1)

where the columns s1, . . . , sk of the matrix Sk, and the columns w1, . . . , wk of
the matrix Wk, form orthonormal bases of the Krylov subspaces Kk(AA

T , b) and
Kk(A

TA,AT b), respectively, see also [Hnětynková et al., 2017, sec. 2.1]. In finite-
precision arithmetic, due to rounding errors, the global orthogonality among the
computed vectors might be quickly lost similarly to the Lanczos method or CG.
To achieve (a good level of) orthogonality among the computed vectors, reorthog-
onalization must be performed. Besides the orthogonality of the vectors, we also
require that the two-term recurrences (2.1) hold within small perturbation, i.e.,
that the reorthogonalization terms can be absorbed into an error matrix small in
norm. In the remainder of the section, to avoid excess notation, we omit higher
order terms in the machine precision ϵmach. The relationship between the behav-
ior of Krylov subspace methods in exact arithmetic and those applied to the same
problem in finite-precision arithmetic is discussed also in Chapter 4 of the thesis.

The question of the size of reorthogonalization coefficients is certainly not new in
the literature. For the Lanczos method, the concept of full reorthogonalization,
which is reorthogonalization with respect to all previously computed Lanczos
vectors, was introduced already by Lanczos [1950]. Paige [1970] claims that for
the implementation there1, under reasonable assumptions, the equation

BV̂k = V̂k+1T̂k+1,k + F̂k,

representing the matrix formulation of Lanczos process with reorthogonalization,
holds with

∥F̂k∥ ≤ O(n3/2k1/2)ϵmach∥B∥,

with a possible reduction in the big-O term for matrices that are very sparse
or those with ∥|B|∥ ≪ n1/2∥B∥; see also Paige [1976] or [Wilkinson, 1988, pp.
391-392]. Parlett and Scott [1979]; Parlett [1980]; Simon [1984a,b] investigat-
ed so-called semiorthogonalization, i.e., process when the loss of orthogonality is
kept at the level of

√
ϵmach. In bidiagonalization, there are two sets of vectors that

lose orthogonality, which we want to preserve. The idea of two-sided reorthogo-
nalization, i.e., reorthogonalization of both sets of the bidiagonalization vectors,
has been appearing in literature for a long time, see, e.g., [O’Leary and Simmons,

1Note that Paige [1970] assumes rather nonstandard version of Lanczos with reorthogonal-
ization, where the projections on the two preceding Lanczos vectors are computed explicitly
(not using the normalization term from the previous step), and then the obtained vector is
reorthogonalized against all preceding vectors. Therefore the resulting tridiagonal matrix is in
this case not symmetric.
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1981, p. 478–479],[Larsen, 1998, sec. 5.2],[Baglama and Reichel, 2005, p.22], and
[Björck, 2014, p.289], and many others. Simon and Zha [2000] introduced the
concept of one-sided reorthogonalization, i.e., reorthogonalization of only one set
of vectors. Barlow [2013] investigated the backward error bound of this one-sided
and one-sided selective reorthogonalization.

In the cited literature, the small size of the reorthogonalization coefficients is
either given without proof or relies heavily on some previous work, with possibly
different implementation of the algorithm, which makes the proofs somewhat
difficult to follow. In this section we present the reorthogonalization strategy
that was used in Hnětynková et al. [2017] to simulate exact-arithmetic iterative
bidiagonalization including the discussion of the level of the loss of orthogonality
and the validity of the obtained two-term recurrences. Note that for this purpose,
we are not concerned with the computational efficiency of the proposed method.

2.2.1 Connection to Lanczos tridiagonalization

Instead of investigating the bidiagonalization itself, it is more convenient to look
at the related Lanczos process. In exact arithmetic, we may relate the k-th step
of the Golub–Kahan iterative bidiagonalization to:

• the k-th and (k − 1)-st step of the two independent Lanczos processes as

(AAT )Sk = Sk+1(Lk+1,kL
T
k ) and (ATA)Wk−1 = Wk(L

T
kLk,k−1); (2.2)

• the 2k-th step of the Lanczos process with an extended matrix as

B  [
0 A
AT 0

] V2k  [[
s1
0

]
,

[
0
w1

]
,

[
s2
0

]
, · · · ,

[
0
wk

]]
=

=

[[
s1
0

]
,

[
0
w1

]
,

[
s2
0

]
, · · · ,

[
sk+1

0

]]
  

V2k+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α1

α1
. . . β2

β2
. . . α2

α2
. . .

. . .
. . .

. . . αk

αk 0
βk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
  

T2k+1,2k

; (2.3)

see also [Larsen, 1998, sec. 3.3.2]. Since in the standard Golub-Kahan bidi-
agonalization, the two sets of bidiagonalization vectors are computed simulta-
neously, representation (2.2) is of little use for the round-off error analysis in
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finite-precision computation. Therefore we further use the representation (2.3).
To simplify the notation, we define

N ≡ max(m,n).

2.2.2 Reorthogonalization

Reorthogonalization procedures, to prevent severe loss of orthogonality, further
orthogonalize the new vector computed by the short recurrence explicitly against
(some of) the preceding vectors. Instead of the two-term recurrences, one obtains
(overloading the notation from the exact arithmetic)

w̃k = AT sk − βkwk−1 − f ′
wk
,

αkwk = w̃k −
k−1∑
j=1

ξwk,j
wj − f ′′

wk
,

s̃k+1 = Awk − αksk − f ′
sk+1

,

βk+1sk+1 = s̃k+1 −
k∑

j=1

ξsk+1,j
sj − f ′′

sk+1
, (2.4)

where ξs are the reorthogonalization coefficients that depend on the particular
reorthogonalization technique, and fs represent local rounding errors. In matrix
form, equations (2.4) become

B  [
0 A
AT 0

] V2k  [[
s1
0

]
,

[
0
w1

]
,

[
s2
0

]
, · · · ,

[
0
wk

]]
=

=

[[
s1
0

]
,

[
0
w1

]
,

[
s2
0

]
, · · · ,

[
sk+1

0

]]
  

V2k+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α1 + ξs2,1 0 ξs3,1 0 · · ·

α1 0 β2 + ξw2,1 0
. . .

. . .

β2 0 α2 + ξs3,2
. . .

. . .

α2

. . .
. . .

. . .

. . .
. . . αk + ξsk+1,k

αk 0
βk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
  

H2k+1,2k=T2k+1,2k+R2k+1,2k

+

+

[[
0

fw1

]
,

[
fs2
0

]
,

[
0

fw2

]
, · · · ,

[
fsk+1

0

]]
  

F2k

, (2.5)

where
fwj

= f ′
wj

+ f ′′
wj

, fsj = f ′
sj
+ f ′′

sj
.

Matrix H2k,2k+1 is upper Hessenberg and is a sum of the tridiagonal T2k,2k+1 and
the strictly upper triangular R2k,2k+1 containing the reorthogonalization coeffi-
cients, i.e.,

R2k+1,2k =
k∑

i=1

i∑
j=1

(ξwi,j
e2je

T
2i+1 + ξsi+1,j

e2j−1e
T
2i).
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We expect the error matrix F2k to be bounded as

∥F2k∥ ≤ O(k3/2N + k1/2N3/2)ϵmach∥A∥; (2.6)

see [Rozložńık, 1997, chap. 3]. Note that the Golub–Kahan iterative bidiagonal-
ization with any reorthogonalization technique can be represented by equation
(2.5). Moreover it is both theoretically and computationally equivalent to the
Lanczos tridiagonalization with the matrix B and the starting vector v1, under
the assumption that the same reorthogonalization scheme is used.2

Assume that the reorthogonalization coefficients ξ are chosen such that the loss
of orthogonality is kept at the level of machine precision. This can be achieved
for example by two-sided full reorthogonalization using iterated classical Gram-
Schmidt (ICGS2), where we get

∥V T
l+1Vl+1 − I∥ ≤ O(l3/2N)ϵmach; (2.7)

see [Giraud et al., 2005, Theorem 2] for more details.3 The pseudocode for itera-
tive bidiagonalization using reorthogonalization by ICGS2 in Algorithm 1.

Algorithm 1 Bidiagonalization with two-sided full reorthogonalization by ICGS2

s1 ≡ b/β1, β1 ≡ ∥b∥, w0 ≡ 0
for k = 1, 2, . . . do

w̃k = AT sk − βkwk−1

for i = 1, 2 do ◃ full double reorthogonalization
ξ
(i)
wk = W T

k−1w̃k

w̃k = w̃k −Wk−1ξ
(i)
wk

end for
ξwk

= ξ
(1)
wk + ξ

(2)
wk ◃ store the reorthogonalization coefficients

αk = ∥w̃k∥
wk = w̃k/αk

s̃k+1 = Awk − αksk
for i = 1, 2 do ◃ full double reorthogonalization

ξ
(i)
sk+1 = ST

k s̃k+1

s̃k+1 = s̃k+1 − Skξ
(i)
sk+1

end for
ξsk+1

= ξ
(1)
sk+1 + ξ

(2)
sk+1 ◃ store the reorthogonalization coefficients

βk+1 = ∥s̃k∥
sk+1 = s̃k+1/βk+1

end for

From (2.7) we immediately have that

∥V T
l+1Vl+1∥ ≤ 1 +O(l3/2N)ϵmach and ∥(V T

l+1Vl+1)
−1∥ ≤ 1 +O(l3/2N)ϵmach,

2This is true under the most reasonable assumption that multiplication by zero is performed
exactly.

3This holds if κ([[bT , 0]T , BVl − Vltriu(Tl)]) · ϵmach ≪ 1, i.e., before ∥wk∥ or ∥sk+1∥ becomes
negligible.
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and the norm of the Hessenberg matrix becomes bounded by

∥Hl+1,l∥ ≤ ∥(V T
l+1Vl+1)

−1∥∥V T
l+1∥ (∥B∥∥Vl∥+ ∥Fl∥)

≤ (1 +O(l3/2N + l1/2N3/2))ϵmach∥A∥. (2.8)

We now show that the reorthogonalization terms stored in Rl+1,l are negligible and
the term Vl+1Rl+1,l = VlRl can be included in the error matrix Fl. The intuition
is that since B is symmetric and Vl+1 is almost orthogonal, Hl also needs to be
almost symmetric. We do this by combining a couple of matrix inequalities. By
multiplying (2.5) from the left by V T

l and using Hl+1,l = Tl+1,l+Rl+1,l, we obtain

V T
l BVl = V T

l Vl+1Hl+1,l + V T
l Fl

= Tl +Rl + (V T
l Vl+1 − Il,l+1)Hl+1,l + V T

l Fl. (2.9)

Note that both B and Tl are symmetric matrices, therefore after subtracting from
(2.9) its transpose, we obtain

Rl −RT
l = HT

l+1,l(V
T
l Vl+1 − Il,l+1)

T − (V T
l Vl+1 − Il,l+1)Hl+1,l+

+ F T
l Vl − V T

l Fl.

Taking norm on the both sides and using (2.6), (2.7), and (2.8), the size of the
left-hand side becomes bounded as

∥Rl −RT
l ∥ ≤ 2

(
∥V T

l Vl+1 − Il,l+1∥∥Hl+1,l∥+ ∥Vl∥∥Fl∥
)

≤ O(l3/2N + l1/2N3/2)ϵmach∥A∥.

We now need to estimate ∥Rl∥ using ∥Rl −RT
l ∥. This is possible using the norm

of the Hadamard triangular truncation operator TH , see Angelos et al. [1992], as

∥Rl∥ = ∥TH(Rl −RT
l )∥ ≤ ∥TH∥∥(Rl −RT

l )∥ ≤ logN + π + 1

π
∥Rl −RT

l ∥.

Since logN is negligible compared to any power of N , we will not include it into
the big-O term and have

∥Rl∥ ≤ O(l3/2N + l1/2N3/2)ϵmach∥A∥,

and finally

∥BVl − Vl+1Tl+1,l∥ ≤ ∥Vl∥∥Rl∥+ ∥Fl∥ ≤ O(l3/2N + l1/2N3/2)ϵmach∥A∥.

Besides being small in norm, the matrix VlRl has the same nonzero structure
as the matrix Fl allowing us to rearrange (2.5) to the form of bidiagonalization
process for which we have

∥AWk − Sk+1Lk+1,k∥ ≤ O(k3/2N + k1/2N3/2)ϵmach∥A∥ ,
∥ATSk −WkL

T
k ∥ ≤ O(k3/2N + k1/2N3/2)ϵmach∥A∥ .

This shows that after the two-sided full double reorthogonalization, the equations
describing matrix formulation of the bidiagonalization process (2.1) indeed hold
within a perturbation of the level of ϵmach∥A∥. Note also that the bound (2.6) is

– 37 –



derived for a general case, where the orthogonalization coefficients ξ are propor-
tional to the size of the vector that is orthogonalized. Since we showed that the
reorthogonalization coefficient ξ must be of order of ϵmach we may expect the size
of the error matrix to be reduced to

∥F2k∥ ≤ O(k1/2N3/2)ϵmach∥A∥.

In the subsequent analysis, we however still remain limited by the level of the
loss of orthogonality (2.7).
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3. Estimating noise level through
Golub-Kahan bidiagonalization

Since many numerical algorithms for solving discrete inverse problems rely on
some a priori knowledge about the size of noise present in the data, estimation
of the noise level remains a very active field of research. As investigated in
Hnětynková et al. [2009], the Golub–Kahan bidiagonalization may provide a very
cheap way of estimating the noise level for some discrete inverse problems. This
observation was supported by experiments on small one-dimensional severely ill-
posed problems with a square matrix and data polluted with white noise. In
this chapter, we investigate the performance of the estimator on large 2D image
deblurring problems with data polluted with noise of various characteristics. In
Section 3.2, we further study changes in the performance of the estimator when
moving from square to rectangular matrices.

3.1 Contribution in Proceedings of Algoritmy

conference

This section contains the contribution Hnětynková et al. [2016] published in peer-
reviewed Proceedings of the conference Algoritmy.
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3.2 Influence of the matrix shape

In Hnětynková et al. [2009], the noise-level estimator was considered for square
nonsingular matrices only. In image deblurring applications considered in the
previous part, the matrices A representing the discretization of the blurring op-
erator are naturally square, as long as the original sharp image and its blurred
counterpart have the same size. There are however many discrete inverse prob-
lems, such as those arising in computerized tomography, see, e.g., Natterer [1986]
or seismic tomography, see, e.g., Sheriff and Geldart [1995], whose system matrix
is rectangular, with either fewer or more columns than rows. In the following
we show how the performance of the noise-level estimator derived in Hnětynková
et al. [2009] is influenced by the shape of the matrix. In order to do that, it is
crucial to understand how the matrix shape affects the underlying distribution
function.

Let A ∈ Rm×n and let
A = UΣV T

be its singular value decomposition, with U−1 = UT and V −1 = V T , and
Σ ∈ Rm×n being a diagonal matrix with the singular values σ1 ≥ σ2 ≥ . . . ≥
σmin(m,n) > 0 on its diagonal. The quality of the considered estimator is deter-
mined by the behavior of the underlying distribution function ω with the nodes
defined by the m eigenvalues of AAT , i.e., the diagonal entries of ΣΣT , and the
corresponding weights |uT

1 b|2/∥b∥2, . . . , |uT
mb|2/∥b∥2. Since the right-hand side b

is a sum of the noise-free data Ax and noise η, i.e.,

b = Ax+ η,

depending on the noise level, the weights become eventually dominated by the
noise vector η, see [Hnětynková et al., 2009, sec. 4.2]. Recall that

δ2noise ≡
∥η∥2

∥Ax∥2
=

m∑
i=1

|uT
i η|2

∥Ax∥2

and

ω(t) =
m∑
i=k

|uT
i b|2

∥b∥2
=

m∑
i=k

|uT
i Ax+ uT

i η|2

∥Ax+ η∥2
, for t ∈ [σ2

k, σ
2
k−1).

We now show how the shape of the distribution function is influenced by the
dimension of the matrix A.

Let us fix the true solution x ∈ Rn. If the matrix A has more rows than columns,
i.e., m > n, then the multiple node 0 (corresponding to the smallest m − n
eigenvalues of AAT ) has the weight

∑m
i=n+1(u

T
i η)

2/∥b∥2, i.e.,

ω(t) =
m∑

i=n+1

|uT
i η|2

∥Ax+ η∥2
, for t ∈ [0, σ2

n),

resulting in a flatter distribution function in the subintervals dominated by noise
and therefore more distinct stagnation around the squared noise level δ2noise. If on
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the other side A has more columns than rows, i.e., m < n, then the distribution
function ω only has m points of increase, from which we conclude that ω is
overall steeper than for the overdetermined or square system. In many cases,
such as when solving discretized Fredholm equations, the behavior of |uT

i Ax|2,
i = 1, . . . ,min(m,n), is rather independent of the shape of the matrix. This is
because the projections of Ax to the directions ui, representing the approximation
of the left singular functions, see Hansen [1988], are not influenced by taking
more measurements since Ax tends to be very smooth. Therefore, the stage
where |uT

i Ax+uT
i η|2 is dominated by |uT

i Ax|2 remains unchanged and the steeper
increase is localized in the part where |uT

i η|2 dominates, leading to less distinct
stagnation around the squared noise level.

Since the construction of the distribution function is unfeasible in practical com-
putations, it is approximated through entities computed in the Golub-Kahan
bidiagonalization applied to matrix A and starting vector b. Let Lk be the lower-
bidiagonal matrix of the normalization coefficients generated in the Golub-Kahan
iterative bidiagonalization and

Lk = P (k)Θ(k)(Q(k))T

its singular value decomposition with the singular values θ
(k)
1 , . . . , θ

(k)
k on its di-

agonal ordered in the nonincreasing order. Then in each step k the distribution
function ω is approximated by the distribution function ω(k) with the k nodes
(θ

(k)
j )2 and the corresponding weights (eT1 p

(k)
j )2. The stagnation of (eT1 p

(k)
k )2 in-

dicates that δ2noise has been reached, allowing to estimate the noise level, see the
previous section or [Hnětynková et al., 2009, sec. 4.1].

For illustration we consider the problem shaw from Hansen [1994], representing
a discretization of Fredholm integral equation of the first kind with a square-
integrable kernel. We modified the MATLAB function to be able to handle
different dimensions of the output and input to generate rectangular matrices.
We assume n = 48, which is the number of discrete points of the continuous true
solution, and m = 24, 48, 64, corresponding to the number of measurements tak-
en. This setting leads to an under-determined, a square, and an over-determined
system of linear equations. Gaussian noise with δnoise = 10−8 is added to each
of the right-hand sides. For each of the settings we show in the left part of Fig-
ure 3.1 the corresponding distribution function ω. On the right, we plot the size
of eT1 p

(k)
k against the iteration k. In each case we only perform 24 steps of the

Golub-Kahan bidiagonalization, which is the maximum number of steps for the
under-determined case with m = 24. We perform full double reorthogonalization
to simulate exact arithmetic, see also Section 2.2. In Figure 3.1 we indeed observe

that the part corresponding to the exact data, represented by
∑m

i=k
|uT

i Ax|2
∥Ax+η∥2 plot-

ted against σ2
k, of the distribution function ω is not much affected by the number

of measurements. The part corresponding to noise, represented by
∑m

i=k
|uT

i η|2
∥Ax+η∥2

plotted against σ2
k, becomes steeper if we decrease the number of columns, making

the stagnation at the noise level less significant. Noise-level estimation from the
approximation of the distribution function ω computed from the bidiagonalization
is then, due to less significant corner in the curve, more difficult, see Figure 3.1
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Figure 3.1: Noise level estimation for the problem shaw of size m × 48, m =
24, 48, 64, with Gaussian white noise with the noise level δnoise = 10−8. Left:
distribution function ω together with the part corresponding to the exact da-

ta
∑m

i=k
|uT

i Ax|2
∥Ax+η∥2 and the part corresponding to noise

∑m
i=k

|uT
i η|2

∥Ax+η∥2 plotted both

against σ2
k. Right: Bidiagonalization-based noise-level estimator, first 24 iter-

ations. Performance of the estimator, i.e., stagnation around the noise level,
deteriorates if the number of measurements m is too small.

right. Analogous experiment for problem gravity adopted from Hansen [1994],
modified to generate rectangular matrices, is shown in Figure 3.2.

The shape of the matrix only plays important role in the cases when |eT1 p
(k)
k |

reaches the noise level relatively late with respect to the size of the problem. If
the noise level is reached in early iterations, the shape of the matrix has very
little influence on the significance of stagnation, as it has very little influence
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on the shape of the distribution function itself. This is because
∑m

i=k
|uT

i η|2
∥Ax+η∥2

plotted against σ2
k in logarithmic scale is almost constant for k ≪ min(m,n).

We demonstrate this in Figure 3.3, where we consider the same problem as in
Figure 3.1, except that we take ten times more discretization points both in the
source and the data. Note that the estimator has practical importance only for
cases when the noise level is reached early, i.e., relatively few iteration of the
iterative bidiagonalization need to be performed, in which case the shape of the
matrix plays a minor role.
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Figure 3.2: Noise level estimation for the problem gravity of size m× 48, m =
24, 48, 64, with Gaussian white noise with the noise level δnoise = 10−4. See the
description in Figure 3.1 for further details. Performance of the estimator, i.e.,
stagnation around the noise level, deteriorates if the number of measurements m
is too small.
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Figure 3.3: Noise level estimation for the larger problem shaw of size m × 480,
m = 240, 480, 640 and the other setting same as in Figure 3.1. The noise level is
reached in early iterations (∼ 15) with respect to the size of the matrix, therefore
the matrix shape has little influence.
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A. Handlovičová, editor, Proceedings of the Conference Algoritmy, pages 333–
342. Slovak University of Technology in Bratislava, Publishing House of STU,
2016.

F. Natterer. The mathematics of computerized tomography. Vieweg+Teubner
Verlag, 1986.

R. E. Sheriff and L. P. Geldart. Exploration seismology. Cambridge university
press, 1995.

– 57 –



– 58 –



4. Delay of approximation
properties of Krylov subspace
methods in finite-precision
arithmetic

Krylov subspace methods for solving systems of linear equations or discrete in-
verse problems generally rely on construction of a well-conditioned, typically or-
thonormal basis of the corresponding Krylov subspace. Methods constructing
these bases using short recurrences, i.e., without explicit orthogonalization, are
appealing both for their computational efficiency and low storage requirements.
In finite-precision computations, short recurrences however often lead to the loss
of global orthogonality or even to linear dependence of the computed vectors,
which subsequently causes the delay of convergence of the related method. This
was observed already by Lanczos [1950]. Surprisingly, the loss of orthogonality
occurring in practical computations does not lead to a complete deterioration of
the approximation properties of the methods. Over the years, many researchers
contributed to understanding of why this is the case; see, e.g., Greenbaum [1989];
Paige [1980], or Meurant and Strakoš [2006] for the overview. While the essence
of the relationship between the exact computation and the finite-precision com-
putation with the same input data is to some extent understood, its quantitative
interpretation is still missing.

Due to the loss of orthogonality and loss of the linear independence, the com-
puted vectors efficiently span subspace of smaller dimension, comparing the first
k computed vectors from finite-precision arithmetic with the first k exact basis
vectors is therefore pointless. On the other side, comparing the computed vectors
with the exact vectors from some earlier iteration l < k, where l corresponds to
the number of numerically linearly independent vectors from those computed in
the k-th iteration, might theoretically be possible. This approach was applied,
e.g., in [Liesen and Strakoš, 2013, sec. 5.9.1] and [Gergelits, 2013, chap. 3],
and the results presented there suggest that the finite-precision computation is
to some extent only a delayed version of its exact counterpart applied to the
same data, here in the context of the energy norm of the error in the conjugate
gradient method. We are interested whether and how this association through
a delay might be used to link the exact and the finite-precision Krylov subspace
computations with the same input data in a broader context, mainly in the sense
of:

• the convergence of the resulting methods;

• the ‘basis’ vectors generated sequentially in each iteration;

• the solution and residual vectors;
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• other entities, such as the Ritz values and the Ritz vectors.

In this work, we focus on entities whose size does not decay monotonically during
the computation, such as for example the residuals of Galerkin methods. Sec-
tion 4.1 includes a proceedings contribution showing that such entities do not
allow direct association between the finite-precision and exact computation, and
that a more sophisticated strategy based on aggregation over the intermediate
iterations must be employed. The contribution also contains some ideas about
how to find, for a given finite-precision iteration k, the associated iteration l in
exact arithmetic.

In section 4.2, we discuss the relationship between the computed Ritz vectors
and the exact ones and show some preliminary results in this direction. We
acknowledge the contribution of Tomáš Gergelits to Section 4.2.

4.1 Contribution in Proceedings of HPCSE con-

ference

This section contains the contribution Gergelits et al. [2018]. Reprinted by per-
mission from Springer Nature: High Performance Computing in Science and En-
gineering. HPCSE 2017. Lecture Notes in Computer Science, Gergelits, T.,
Hnětynková, I. & Kub́ınová, M.: Relating computed and exact entities in meth-
ods based on Lanczos tridiagonalization, copyright (2018), (doi:10.1007/978-3-
319-97136-0 6).
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4.2 Structure of the loss of orthogonality

In this section, we continue with the analysis of the Lanczos process described
in Section 4.1. We focus on the relationship between the exact and the finite-
precision Ritz vectors. Since both sets of vectors represent well-structured ‘basis’
of the underlying Krylov subspaces, we believe that detail understanding of their
mutual relationship is crucial. We adopt the notation introduced in the previous
section. Further, let

Tk = S(k)Θ(k)(S(k))T (4.1)

be the spectral decomposition of the symmetric tridiagonal matrix Tk, with Θ(k) =
diag(θ

(k)
1 , . . . , θ

(k)
k ). We denote by s

(k)
j the j-th column of S(k), i.e., the j-th

eigenvector of Tk, and s
(k)
ij the (i, j)-th entry of the matrix S(k). The j-th Ritz

vector at the iteration k is defined as

y
(k)
j ≡ Vks

(k)
j .

The corresponding entities in finite-precision computation are denoted analogous-
ly with a bar. By (λj, uj) we denote the j-th eigenpair of A.

4.2.1 Finite-precision Ritz vectors

First, we recall some results regarding the convergence of the Ritz values and
the Ritz vectors, and the loss of orthogonality among the Lanczos vectors in
finite-precision arithmetic. Paige [1980] proved that for any Ritz pair (θ̄

(k)
i , ȳ

(k)
i )

computed at the k-th step of the finite-precision Lanczos method it holds that

min
1≤j≤n

|λj − θ̄
(k)
i | ≤ max

{
2.5(δ̄k+1|s̄(k)ki |+

√
k∥A∥ϵ1),

[(k + 1)3 +
√
3n2]∥A∥ϵ2

}
, (4.2)

∥ȳ(k)i − (uj, ȳ
(k)
i )uj∥ ≤ δ̄k+1|s̄(k)ki |+

√
k∥A∥ϵ1

minr ̸=l |λr − θ̄
(k)
i |

, (4.3)

where both ϵ1 and ϵ2 are a small multiple of the machine precision ϵmach, see
also [Meurant and Strakoš, 2006, sec. 4.2]. The inequality (4.2) implies that

the size of δ̄k+1s̄
(k)
ki indicates the convergence of θ̄

(k)
i to an eigenvalue of A, which

we denote by λl.
1 When in addition λl is well separated from the rest, it also

indicates convergence of the Ritz vector to the corresponding eigenvector of A.
Paige [1971] also proved that there is a structure in the loss of orthogonality,
mainly that

(v̄k+1, ȳ
(k)
i ) =

ϵ
(k)
ii

δ̄k+1s̄
(k)
ki

, (4.4)

1While small δ̄k+1|s̄(k)ki | always ensures convergence of θ̄
(k)
i to an eigenvalue of A, Wülling

[2005] showed that in special cases, the opposite may not be true, i.e., closeness of θ̄
(k)
i to some

eigenvalue of A does not imply that δ̄k+1|s̄(k)kj | is small.
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where |ϵ(k)ii | ≤ kϵ2∥A∥, i.e., that the loss of orthogonality of the newly generated

Lanczos vector v̄k+1 in the direction of the Ritz vectors ȳ
(k)
i can only be significant

if δ̄k+1|s̄(k)ki | or ∥ȳ
(k)
i ∥ is small. Combining (4.4) with other results, we can conclude

that orthogonality can be lost only in the directions of converged Ritz vectors;
see [Meurant and Strakoš, 2006, sec. 4.2].

Further, Paige investigated the loss of orthogonality between the Ritz vectors
themselves, with respect to the distance of the corresponding Ritz values. In
particular, he showed that

(θ̄
(k)
i − θ̄

(k)
j )(ȳ

(k)
j , ȳ

(k)
i ) = δ̄k+1(v̄k+1, s̄

(k)
kj ȳ

(k)
i − s̄

(k)
ki ȳ

(k)
j )

+ (F̄ks̄
(k)
j , ȳ

(k)
i )− (F̄ks̄

(k)
i , ȳ

(k)
j ), (4.5)

where F̄k = AV̄k − (V̄kT̄k + δ̄k+1v̄k+1e
T
k ); see [Paige, 1971, p. 113]. Substituting

(4.4) into (4.5), we obtain

(θ̄
(k)
i − θ̄

(k)
j )(ȳ

(k)
j , ȳ

(k)
i ) = ϵ

(k)
ii s̄

(k)
kj /s̄

(k)
ki − ϵ

(k)
jj s̄

(k)
ki /s̄

(k)
kj

+ (F̄ks̄
(k)
j , ȳ

(k)
i )− (F̄ks̄

(k)
i , ȳ

(k)
j ); (4.6)

see [Paige, 1971, p. 114]. Among others, the relation (4.6) implies that if θ̄
(k)
i

and θ̄
(k)
j have not converged (i.e., s̄

(k)
ki and s̄

(k)
kj are not very small), and if they are

not too close to each other, then the corresponding Ritz vectors will be almost
orthogonal; see also [Parlett and Scott, 1979, sec. 4].

Note that convergence of a Ritz value may not necessarily lead to the loss of or-
thogonality in the direction of the corresponding Ritz vector, which is a common
misunderstanding. Despite the equality sign in (4.4), the actual size of (v̄k+1, ȳ

(k)
j )

remains unknown, since we only have an upper bound for the size of the numera-
tor ϵ

(k)
ii . We demonstrate on the following example that in special cases, ϵ

(k)
ii may

vanish for all k and i, meaning that no loss of orthogonality occurs throughout
the computation. Let Tn be the ultimate Jacobi matrix generated by the exact
Lanczos process applied to the matrix A and the starting vector b, where we
assume that the process does not terminate before the dimension of the matrix
A is reached. We generally have no control over the loss of orthogonality in the
finite-precision Lanczos process applied to A and b. However, when we apply the
Lanczos process to Tn and the starting vector e1, in all reasonable computational
environments no loss of orthogonality will occur, despite the fact that the eigen-
values of Tn are exactly those of A. This is caused by the special structure of the
matrix Tn and the starting vector e1, making the Lanczos process simply copy
the entries of the input matrix to the intermediate tridiagonal matrices generated
in the Lanczos process, effectively avoiding any rounding errors.

4.2.2 Relationship between the exact and finite-precision
Ritz vectors

While Paige investigated the finite-precision Lanczos process on its own, we are
more interested in its relationship to the exact Lanczos process. The following
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proposition uses the structure of the proof of (4.5) to investigate the loss of
orthogonality between the exact and finite-precision Ritz vectors.

Proposition 4.1. Let

AVl = VlTl + δl+1vl+1e
T
l (4.7)

AV̄k = V̄kT̄k + δ̄k+1v̄k+1e
T
k + F̄k (4.8)

represent the l-th and k-th step of the exact and the finite-precision Lanczos pro-
cess, respectively. Using the notation introduced above, it holds that

(θ̄
(k)
i − θ

(l)
j )(y

(l)
j , ȳ

(k)
i ) = δl+1s

(l)
lj (ȳ

(k)
i , vl+1)− δ̄k+1s̄

(k)
ki (y

(l)
j , v̄k+1)

− (F̄ks̄
(k)
i , y

(l)
j ). (4.9)

Proof. Multiplying (4.7) by V̄ T
k and (4.8) by V T

l from the left, we obtain

V̄ T
k AVl = V̄ T

k VlTl + δl+1V̄
T
k vl+1e

T
l ,

V T
l AV̄k = V T

l V̄kT̄k + δ̄k+1V
T
l v̄k+1e

T
k + V T

l F̄k.

Since A is symmetric, V T
l AV̄k = (V̄ T

k AVl)
T , and therefore

V T
l V̄kT̄k + δ̄k+1V

T
l v̄k+1e

T
k + V T

l F̄k = TlV
T
l V̄k + δl+1elv

T
l+1V̄k.

Using the spectral decomposition of the Jacobi matrices Tl and T̄k (omitting the
superscripts in the decomposition (4.1)) yields

V T
l V̄kS̄Θ̄S̄T + δ̄k+1V

T
l v̄k+1e

T
k + V T

l F̄k = SΘSTV T
l V̄k + δl+1elv

T
l+1V̄k.

Multiplying the equation by ST from the left and by S̄ from the right, we have

STV T
l V̄kS̄Θ̄ + δ̄k+1S

TV T
l v̄k+1e

T
k S̄ + STV T

l F̄kS̄ = ΘSTV T
l V̄kS̄ + δl+1S

T elv
T
l+1V̄kS̄,

which, using Y = VlS and Ȳ = V̄kS̄, and rearranging the equations gives

Y T Ȳ Θ̄−ΘY T Ȳ = δl+1S
T elv

T
l+1Ȳ − δ̄k+1Y

T v̄k+1e
T
k S̄ − Y T F̄kS̄.

Multiplying both sides by the corresponding canonical vectors as eTj (·)ei yields
(4.9).

Proposition 4.1 connects the loss of orthogonality between the Ritz vectors with
quantities which are interesting on their own:

• Distance of the computed and the exact Ritz values, |θ̄(k)i − θ
(l)
j |.

• Scalars δl+1s
(l)
lj and δ̄k+1s̄

(k)
ki whose size indicates convergence of the cor-

responding Ritz value in the exact and the finite-precision computation,
respectively.
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• Angles between the newly generated Lanczos vector and a given Ritz vector,
(ȳ

(k)
i , vl+1) and (y

(l)
j , v̄k+1), mixing the exact and finite-precision computa-

tions.

We would like to identify the cases for which (y
(l)
j , ȳ

(k)
i ) is small, i.e., cases when the

finite-precision Ritz vector ȳ
(k)
i (if nonvanishing) is close to orthogonal to the exact

Ritz vector y
(l)
j . Since ∥s̄(k)i ∥ = 1 and ∥y(l)j ∥ = 1, we have |(F̄ks̄

(k)
i , y

(l)
j )| ≤ ∥F̄k∥.

Therefore, when the size of the two terms on the right-hand side of (4.9) is small

while the size of θ̄
(k)
i − θ

(l)
j is not, then the size of (y

(l)
j , ȳ

(k)
i ) becomes necessarily

small as well. We investigate three possible scenarios, when this happens:

• If δl+1|s(l)lj | and δ̄k+1|s̄(k)ki | are both small whereas |θ̄(k)i − θ
(l)
j | is not, i.e., θ̄(k)i

and θ
(l)
j have converged to two well separated eigenvalues of A, then the two

Ritz vectors are essentially orthogonal (if nonvanishing). This relation is
valid independent of the relation between k and l and is consistent with (4.2)
and (4.3), because clearly two eigenvectors corresponding to two distinct
eigenvalues of A are mutually orthogonal.

• If k = kl, i.e., the iteration k in finite-precision arithmetic corresponds to
the iteration l in exact arithmetic in the sense of [Gergelits et al., 2018, sec.
4], then vl+1 is supposed to be close to orthogonal to the columns of V̄k.

Therefore any converged Ritz vector ȳ
(k)
i in the finite-precision computation

with small δ̄k+1|s̄(k)ki | will be orthogonal (if nonvanishing) to all Ritz vectors

y
(l)
j (even unconverged) corresponding to the Ritz values well separated from

that of ȳ
(k)
i . This corresponds to our intuition that if the exact computation

is ahead of the finite-precision one, then converged finite-precision Ritz
vectors have their counterparts in exact arithmetic. Orthogonality of the
exact Ritz vectors then gives the orthogonality between the exact and the
converged finite-precision Ritz vectors (again except those corresponding to
the same cluster of eigenvalues of A).

• Converse formulation, i.e., based on the orthogonality between v̄k+1 and
the columns of Vl would also be possible, however V T

l v̄k+1 ≈ 0 is somewhat
difficult to predict, except for special cases such as the one discussed at the
end of Section 4.2.1.

Proposition 4.1 in its present form gives a rather incomplete description of the
relation between the finite-precision and the exact Ritz vectors, however relations
of type (4.4) rely on the symmetry of the matrix V̄ T

k V̄k and therefore can be

directly reformulated neither for (ȳ
(k)
i , vl+1) nor for (y

(l)
j , v̄k+1). Subsequently,

extending the result to the form of (4.6) is not possible. Better understanding of
the finite-precision and the exact Ritz vectors, and also the Lanczos vectors will
be subject of our future research.
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5. Robust regression for mixed
Poisson–Gaussian model

This chapter deals with inverse problems, where noise in the data comes from
various sources – more specifically, we assume image deblurring problems with a
combination of shot noise and read-out noise. In addition, we assume that the
data is further corrupted by an unknown type of corruptions, generally referred
to as outliers. Problems with mixed noise as well as problems with outliers have
been studied extensively in the literature. However, to our knowledge, very little
has been done for problems with data containing both issues at the same time.
In the article Kub́ınová and Nagy [in press] included in Section 5.1, we derive a
model that can be used to numerically deal with such type of corruptions. The
model leads to a constrained optimization problem, which can be efficiently solved
using a modification of Newton’s method. In Section 5.2, we briefly comment on
the possibilities of relaxing Newton’s method to a version of the Gauss–Newton
method and investigate, which loss functions are admissible for this scheme.

5.1 Article published in Numerical Algorithms

This section contains the article Kub́ınová and Nagy [in press]. Reprinted by
permission from Springer Nature: Numerical Algorithms, Kub́ınová, M. & Nagy,
J.G.: Robust regression for mixed Poisson–Gaussian model, copyright (2018),
advance online publication, 19/01/2018 (doi:10.1007/s11075-017-0463-1).
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5.2 A comment on the Gauss–Newton method

To handle the mixed Poisson–Gaussian model with outliers in the data, we as-
sume a combination of a robust loss function with the weights depending on the
computed data. The solution-dependent weights, rescaling the variance of the
residual components, however constrain the choice of the loss function ρ. Assume
as in the previous section the following objective functional

J(x) ≡
m∑
i=1

ρ

(
[Ax]i − bi√
[Ax]i + σ2

)
, (5.1)

where ρ : R ↦→ R+
0 , see O’Leary [1990]; Coleman et al. [1980] or [Hansen et al.,

2013, sec. 1.5]. Note that for simplicity, we do not include the regularization term
in (5.1) as well as in the analysis in the remainder of the section. In practical
computations, some form of regularization is always necessary and the regular-
ization term can be incorporated to the functional similarly to [Kub́ınová and
Nagy, in press, sec. 3]. As analyzed in [Kub́ınová and Nagy, in press, sec. 2.1],
the Hessian of the functional (5.1) has the form HessJ(x) = ATDA, where D is
a diagonal matrix with the entries

Dii =

(
1
2
[Ax]i +

1
2
bi + σ2

)2
([Ax]i + σ2)3

ρ′′

(
[Ax]i − bi√
[Ax]i + σ2

)

−
(
1
4
[Ax]i +

3
4
bi + σ2

)
([Ax]i + σ2)5/2

ρ′

(
[Ax]i − bi√
[Ax]i + σ2

)
. (5.2)

Note that while the first addend in the right-hand side of (5.2) is always non-
negative, provided ρ′′ ≥ 0, the second addend can have either sign. The analysis
in [Kub́ınová and Nagy, in press, sec. 2.1] shows that only the loss function
Talwar guarantees the non-negativity of the diagonal entries of D and hence the
positive-semidefiniteness of the Hessian required for Newton’s method.

5.2.1 Gauss-Newton method for robust regression

Considering the standard loss function ρ(t) = t2/2, (5.1) becomes

Ĵ(x) ≡ 1

2

m∑
i=1

(
[Ax]i − bi√
[Ax]i + σ2

)2

,

see also [Kub́ınová and Nagy, in press, sec. 1.1]. Minimization of this functional
leads to a non-linear least-squares problem. For this type of problems, Gauss–
Newton method [Nocedal and Wright, 1999, sec. 10.3] is often the method of
choice.

Recall that Gauss–Newton method can be viewed as an approximation to New-
ton’s method for non-linear least-squares, with the Hessian substituted by the
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product of Jacobians. In our case,

HessĴ(x) = AT D̂A ≈ AT Ẑ2A,

where Ẑ is diagonal with the diagonal entries

Ẑii =
1
2
[Ax]i +

1
2
bi + σ2

([Ax]i + σ2)3/2
.

[Haber, 2015, sec. 6.4.2] suggests that such approximation can be applied not only
to non-linear least-squares problems, but also to functionals involving robust loss
functions ρ. Following this idea, we derive a version of the Gauss-Newton method
that approximates the Hessian as

HessJ(x) = ATDA ≈ AT D̃A, where D̃ ≡ Ẑ diag

[
ρ′′

(
[Ax]i − bi√
[Ax]i + σ2

)]
Ẑ.

Note that the matrix D̃ is diagonal and its entries coincide with the first addend
of the right-hand side in (5.2). The search direction is defined in the standard
way as a solution to (

AT D̃A
)
s = −gradJ(x). (5.3)

Direction s will be a descent direction as long as D̃ii is non-negative, i.e., as long
as ρ′′ ≥ 0. This is satisfied for loss functions Talwar, Huber, Fair, and logistic,
see also O’Leary [1990] or [Kub́ınová and Nagy, in press, Fig. 1]. For the sake
of completeness, we summarize in Table 5.1 the first and the second derivatives
for these four loss functions, needed to evaluate the diagonal matrix D̃ and the
gradient gradJ(x), together with the tuning parameters β corresponding to the
95% asymptotic efficiency, see [Kub́ınová and Nagy, in press, sec. 2.2].

Table 5.1: Four robust loss functions ρ with ρ′′ ≥ 0, their derivatives, and 95%
asymptotic efficiency tuning parameters.

Function ρ(t) ρ′(t) ρ′′(t) β95

Talwar
|t| ≤ β
|t| > β

t2/2
β2/2

t
0

1
0

2.795

Huber
|t| ≤ β
|t| > β

t2/2
β|t| − β2/2

t
β sign(t)

1
0

1.345

Fair β2(|t|/β − log(1 + |t|/β)) βt

|t|+ β

β2

(|t|+ β)2
1.400

Logistic β2 log(cosh(t/β)) β tanh(t/β) sech2(t/β) 1.205

Applying Gauss-Newton instead of Newton’s method will allow us to use three
more loss functions ρ to possibly capture better the characteristics of the outliers,
while still getting a descent direction in each step. However, substituting the Hes-
sian by its approximation here does not reduce the cost of computing the search

– 110 –



direction s in (5.3), as the structure of the matrix involved in the linear system
(5.3) remains the same as for the Newton’s method considered in Kub́ınová and
Nagy [in press]. On the other side, the identical structure of the linear problems
allows us to use the same optimization scheme including the preconditioner for
the linear solves.

5.2.2 Numerical experiments

In this section we present numerical experiments involving loss functions Huber,
Fair, and logistic. In the first experiment, we focus on the minimum attain-
able error of reconstruction and the stability of the semiconvergence curves when
increasing the percentage of outliers. We performed experiment analogous to ex-
periment described in [Kub́ınová and Nagy, in press, sec. 5.1.1] and computed
the semiconvergence curves for the standard loss function and the four robust loss
functions from Table 5.1. For functions Huber, Fair, and logistic, the solution
is computed using the Gauss-Newton method as derived above, other settings
remain the same as in [Kub́ınová and Nagy, in press, sec. 5.1.1]. Results for
single-frame case are shown in Figure 5.1.

We observe that the semiconvergence curves for all four robust functions ρ show
similar behavior, especially around the point of semiconvergence, i.e., the opti-
mal regularization parameter λ. The semiconvergence curves also show similar
stability with respect to the increased number of outliers. This remains valid also
for multi-frame case (not presented here). In conclusion, for the considered type
of problems, the change of the loss function itself does not improve the minimum
attainable error significantly, neither in the case when outliers are present, nor in
the cases with no outliers. However, we expect that there are cases in image de-
blurring, where some of the loss functions may capture the nature of the outliers
better than the other.

When moving from the projected Newton’s method to the projected Gauss–
Newton method, we may expect a slower convergence, but not necessarily here
since the search directions are computed using the truncated PCG iterations, i.e.,
inexactly. Therefore in the second experiment, we investigate the number of iter-
ations needed for the method to converge. Data are obtained in similar manner
as in Table 3 in Kub́ınová and Nagy [in press] and are shown in Table 5.2. We
see that the number of Gauss–Newton iterations is on average higher than for
Newton’s method with Talwar, which together with no reduce in cost of the com-
putation of the search direction, may outweigh the potential advantage of choice
of the loss function.
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(a) Satellite single-frame

10-6 10-4 10-2

λ

0.2

0.4

0.6

0.8

1

re
l.

er
ro
r

0% outliers

standard
Talwar
Huber
Fair
logistic

10-6 10-4 10-2

λ

0.2

0.4

0.6

0.8

1

re
l.

er
ro
r

10% outliers

standard
Talwar
Huber
Fair
logistic

(b) Carbon ash single-frame

Figure 5.1: Semiconvergence curves – dependence of the relative error of the re-
construction on the size of the regularization parameter λ for various percentages
of outliers: standard loss function t2/2 (dashed line) together with the four robust
loss functions (solid line).
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Table 5.2: Comparison of number of iterations needed for the relative size of the
projected gradient to achieve tolerance 10−4. Abbreviation “#it” stands for the
number of Newton/Gauss-Newton steps. See Table 3 in Kub́ınová and Nagy [in
press] for comparison.

# it

Newton Gauss–Newton

Problem Ta
lwa

r

Ta
lwa

r

Hu
be
r
Fa
ir

Lo
gis
tic

(a) Single-frame
Satellite 16 15 20 17 19
Satellite random corr. 10% 14 16 25 26 21
Carbon ash 11 11 10 11 9
Carbon ash random corr. 10% 14 14 11 12 12
Satellite added object 15 15 22 26 18
Satellite boundary conditions 25 25 23 17 20

(b) Multi-frame
Satellite 11 12 14 14 12
Satellite random corr. 10% 13 13 13 15 14
Carbon ash 11 12 12 13 11
Carbon ash random corr. 10% 19 20 11 11 11
Satellite added object 11 12 13 14 12
Satellite boundary conditions 14 23 16 14 15
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6. Conclusions

Numerical methods for discrete inverse problems represent a very broad field of
study. Their common goal is to extract important information from the given
(measured) data and suppress the influence of inaccuracies (noise) that are al-
ways present. Understanding the properties of noise and its behavior in various
numerical methods plays crucial role in designing efficient solution schemes. In
this thesis, we focused on iterative methods for linear inverse problems.

In iterative methods based on the Golub–Kahan bidiagonalization, it is possible
to track cheaply the propagation of noise from the data to the basis vectors of the
corresponding Krylov subspace. The residuals of the methods are linear combi-
nations of these basis vectors. We provided explicit relation between the amount
of propagated noise in a particular basis vector and the corresponding coefficient
in the linear combination for each of the three considered methods. This enabled
us also to assess the regularization properties of CRAIG and compare it to those
of LSQR and LSMR without even constructing the residual vectors. For this
analysis no a priori information about noise is needed and the results can be
extended to computations in finite-precision arithmetic (Chapter 2).

We used the Golub–Kahan bidiagonalization to estimate the noise level in im-
age deblurring problems. We numerically illustrated that the performance of
the estimator is reliable as long as the smoothing of the operator is significant
with respect to the size of (the high-frequency part of) noise, and that this is
independent of the type of noise. When very few measurements are taken, the
information about the noise level that the Golub-Kahan bidiagonalization can
extract may however be insufficient (Chapter 3).

Next, we dealt with approximation properties of the Krylov subspace methods
based on short recurrences in finite-precision arithmetic. We focused on the be-
havior of residuals of finite-precision Galerkin methods, whose size is known to be
prone to severe oscillations, even for problems for which it decays monotonically
in exact computations. We showed that, despite these oscillations, after proper
aggregation over several iterations, the computed residuals can be linked to the
residuals from the exact computation with the same input data. More substan-
tial question in the context of finite-precision Krylov subspace methods remains
however the relation between the generated Krylov subspaces and the ideal exact
ones, which we studied also via the corresponding Ritz vectors. Modifying some
of the known results we established a relation between the computed and the
exact Ritz vectors in terms of the convergence of the corresponding Ritz values.
There still remains much to be done (Chapter 4).

The last part investigated discrete inverse problems with special combination of
mixed Poisson-Gaussian noise and unknown outliers in the data. Combining ap-
proaches for the two separate problems (mixed noise and outliers), we derived
an objective function with the data-fitting function consisting of inner solution-

– 115 –



dependent weights and an outer robust loss function. We proposed an optimiza-
tion scheme based on Newton’s method and showed that the changing weights
limit the choice of the loss functions. This choice can be extended by relaxing
Newton’s method to a Gauss-Newton method. We modified some of the known
stopping criteria to work also in this setting (Chapter 5).

Since discrete inverse problems come from various applications, we will hardly be
able to understand all aspects of their solution in the near future. Below we list
some open questions directly related to the topics discussed in the thesis:

• Since any method for solving inverse problems has the noisy data as its
input, one should be interested in how and where noise propagates during
the computation. Are there other iterative methods, for which noise can be
tracked cheaply? Can this information be used to derive a stopping criteria
or to improve the method?

• To understand the relation between finite-precision and exact Krylov sub-
space methods, it is essential to understand the relation between the sub-
spaces they generate. Moreover, we need to know, how the solution is
determined in these subspaces, for example with respect to the formally
prescribed optimality condition, such as norm minimization, which is how-
ever not satisfied in finite-precision computations.

• Weighted least squares problems with regularization arising in Chapter 5
can be reformulated as saddle-point problems (p. 103). Performance of stan-
dard preconditioners, such as the constraint-style preconditioners, may be
very dependent on the ill-conditioning of the (1,1)-block. Deriving a pre-
conditioner robust with respect to this conditioning would represent an
important step in numerical solution of weighted least squares problems.
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