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Étude de préconditionneurs bloc diagonaux utilisant de
l’information spectrale partielle pour résoudre des systèmes
linéaires dans les problèmes d’optimisation avec contraintes

par Charlotte Tannier
Résumé : Ce travail a pour objectif le développement et l’étude de nou-
veaux préconditionneurs bloc diagonaux pour résoudre des systèmes linéaires
indéfinis ayant une forme de point-selle. Nous considérons le précondition-
neur bloc diagonal « idéal » proposé par Murphy, Golub et Wathen (2000)
basé sur le complément de Schur exact, et nous nous concentrons sur le cas où
le bloc (1,1) admet seulement quelques très petites valeurs propres. En sup-
posant que l’information exacte sur ces valeurs propres et ces vecteurs propres
associés est disponible, nous proposons différentes approximations du précon-
ditionneur bloc diagonal de Murphy, Golub et Wathen et nous analysons les
propriétés spectrales des matrices préconditionnées. Nous généralisons les ré-
sultats théoriques aux systèmes découlant des méthodes de points intérieurs et
nous illustrons numériquement la performance des préconditionneurs proposés.
Enfin, nous analysons l’intéraction entre les blocs (1,1) et (1,2) des systèmes
de point-selle et nous étudions les situations dans lesquelles les petites valeurs
propres du bloc (1,1) peuvent avoir un impact sur la convergence des méthodes
itératives.

Study of block diagonal preconditioners using partial spectral
information to solve linear systems arising in constrained

optimization problems
by Charlotte Tannier

Abstract: This work is concerned with the development and the study of
novel block diagonal preconditioners for solving indefinite linear systems with
a saddle - point form. We consider the « ideal » block diagonal preconditioner
proposed by Murphy, Golub and Wathen (2000) based on the exact Schur com-
plement, and we focus on the case where the (1,1) block has few very small
eigenvalues. Assuming that the exact information on these eigenvalues and
their associated eigenvectors is available, we propose different approximations
of the block diagonal preconditioner of Murphy, Golub and Wathen and we
analyse the spectral properties of the preconditioned matrices. We general-
ize the theoretical results on systems arising in interior-point methods and we
illustrate the performance of the proposed preconditioners through some nu-
merical experiments. We finally analyse the interaction between the (1,1) and
(1,2) blocks of saddle-point systems and we study the circumstances in which
small eigenvalues of the (1,1) block can have an impact on the convergence of
iterative methods.

Thèse de doctorat en Sciences Mathématiques (Ph.D. thesis in Mathematics)
Date: 11/07/2016
Département de Mathématique
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Thesis organization and main
contribution

The scope of this work is the construction and the study of new efficient pre-
conditioners for indefinite linear systems arising in constrained optimization.
We consider (possibly large and sparse) saddle-point linear systems resulting
from the Karush-Kuhn-Tucker optimality conditions. We assume that the (1,1)
block, A say, is symmetric and positive definite and possibly ill-conditioned
with relatively few very small eigenvalues. We propose two variants for a block
diagonal preconditioner based on a Schur complement approximation derived
from some prior spectral information extracted from A directly, i.e., using in-
formation on the subspace associated to the smallest eigenvalues in A. We
study the spectral properties of the preconditioned matrix in both cases and il-
lustrate their numerical performance on a standard problem in fluid dynamics.
This in turn leads to the study of the interaction between blocks in saddle-
point systems and to highlight some aspects of this interaction. Through the
Schur complement approximation based on the very small eigenvalues of A
and theoretical developments, we analyze how and in which circumstances the
ill-conditioning due to these eigenvalues effectively spoils the convergence of
iterative methods like Krylov subspace methods.

Structure of the thesis

The thesis is organized as follows.
Chapter 1 introduces several linear systems that one needs to solve in un-

constrained and constrained optimization methods. We focus on the indefinite
linear systems with a block structure called saddle-point systems. More pre-
cisely, we study KKT systems, related to the Karush-Kuhn-Tucker optimality
conditions, and symmetric quasi-definite (SQD) systems. We then address the
properties associated to both kinds of system. The large range of methods
which can solve symmetric indefinite linear systems shows the importance of
this topic in the optimization community.

vii



viii Thesis organization and main contributions

Chapter 2 leads the reader in the field of iterative techniques for solving
linear systems and develops the framework of preconditioners that will serve
as the basis for our contributions. Some methods belonging to the class of
Krylov subspace methods are presented. We also discuss the block diagonal
preconditioner studied in Golub, Greif and Varah (2006). Most of the results of
Chapter 1 and Chapter 2 can be found in the literature. However, these results
are adapted and presented in a form suitable to motivate the design and allow
the forthcoming analysis of preconditioners.

Chapter 3 presents approximations of the inverse of the (1,1) block and
of the Schur complement using spectral information extracted from this (1,1)
block in KKT systems and SQD systems. We analyse in both cases the eigen-
values distribution of the preconditioned Schur complement and we illustrate
on a test example.

Chapter 4 proposes two new approximations of the "ideal" block diagonal
preconditioner given by Murphy, Golub and Wathen (2000) using the previous
approximations of the inverse of the (1,1) block and of the Schur complement.
We next study the eigenvalues distribution of preconditioned KKT and SQD
systems and we compare these two preconditioners. Finally, we focus on KKT
systems to develop in detail the formulation of the preconditioners combined
with a first level of preconditioning.

Chapter 5 analyses and compares the behaviour of the spectral precondi-
tioners introduced previously on a problem in fluid dynamics called the Stokes
problem and generated with the Matlab package ifiss.

Chapter 6 focusses on KKT systems and first analyses the interaction be-
tween blocks through the inverse of the Schur complement approximation. We
show the configurations according to which the influence of the small eigenval-
ues of A can have an effect on the convergence of iterative methods. We give
a toy example and some numerical illustrations based on the explicit construc-
tion of a (1,2) block to give some intuition of this interaction. We next refine
the bounds on the eigenvalues of a KKT matrix by theoretical developments
and finally give a new cheapest alternative to our preconditioners.

Chapter 7 presents some practical considerations. We first analyse how
to combine a first level of preconditioning with the preconditioner developed
in Giraud, Ruiz and Touhami (2006) which allows to extract partial spectral
information of the (1,1) block. A practical approach, showing a practical imple-
mentation of the approximation of the inverse of the (1,1) block, is developed
in the last part of this chapter.



ix

Contribution

If a cited result is already available in the literature, we only mention a
reference without giving a proof. The main contribution based on work with
my supervisor Annick Sartenaer and my colleague Daniel Ruiz, are summarized
as follows:

1. Theorem 2.9 (Chapter 2) analyses and motivates the choice of some pa-
rameter ω introduced in the block diagonal preconditioner developed by
Golub et al. (2006).

2. We propose in Section 3.2 for KKT matrices and in Section 3.2.2 for SQD
matrices spectral approximations of the inverse of the Schur complement
using an approximation of the inverse of the (1,1) block known as spectral
low rank update approach developed by Carpentieri, Duff and Giraud
(2003) . Theorem 3.1 and Theorem 3.4 establish lower and upper bounds
on the eigenvalues of the preconditioned Schur complement in both cases.

3. Chapter 4 introduces two spectral preconditioners based on spectral ap-
proximations of the inverse of the (1,1) block and of the Schur complement
introduced in Chapter 3 for the KKT and SQD systems. Theorems 4.1
and 4.3 for KKT matrices and Theorems 4.4 and 4.5 for SQD matrices
analyse their spectral properties. Sections 4.3 and 4.4 give a comparison
between both preconditioners. Section 4.5 combines these preconditioners
with a first level of preconditioning for the KKT systems.

4. Chapter 5 illustrates the numerical behaviour of the proposed precondi-
tioners on the Stokes problem.

5. Chapter 6 studies in detail the interaction between blocks in KKT sys-
tems with a first analysis through the Schur complement approximation in
Section 6.1 and some illustrations in Section 6.2. Section 6.3, by means of
a theoretical analysis, refines the interval in Rusten and Winther (1992),
associated to the positive eigenvalues in KKT matrices (Theorem 6.10).
Finally, section 6.4 studies the possibility of reducing the low rank up-
date in the inverse of the approximation of the Schur complement and
generalizes the block diagonal preconditioner.

6. Based on the work of Golub, Ruiz and Touhami (2007), Chapter 7 gives
new theoretical results (Theorems 7.1 and 7.2) on how to combine a first
level preconditioner with the preconditioner developed in Golub et al.
(2007) to extract desired spectral information of the (1,1) block. Sec-
tion 7.2 introduces an approximation of the spectral low rank update
approach of the (1,1) block (Theorems 7.4 and 7.5).



x Thesis organization and main contributions

A first paper related to this work and entitled "Using partial spectral infor-
mation for block diagonal preconditioning of saddle-point systems" has been
submitted to COAP(1). A second paper based on Chapter 6 is currently in
preparation.

(1)Computational Optimization and Applications.



Chapter 1
Introduction to optimization
methods leading to systems of
equations

The topic of interest of this thesis is a detailed study of large linear systems,
called saddle-point systems, of the form[

A B
BT −C

] [
u
v

]
=

[
f
g

]
, (1.1)

where the square matrix A of order n is symmetric, sparse and ill-conditioned,
and such that some spectral information on A is available. The matrix B is
rectangular of size n×m with m ≤ n, while the square matrix C is of order m
and symmetric. The matrix in (1.1),

A :=

[
A B
BT −C

]
, (1.2)

is often called a saddle-point matrix or, in the case where C = 0, a KKT ma-
trix , in reference to the Karush-Kuhn-Tucker’s first-order necessary optimality
conditions used to solve constrained optimization problems. In the case where
the matrices A and C are positive definite, the matrix A is called symmetric
quasi-definite, or SQD for short. We focus on the solution of saddle-point linear
systems of the KKT form,

AKKTx = b ≡
[
A B
BT 0

] [
u
v

]
=

[
f
g

]
, (1.3)

where A ∈ IRn×n is symmetric and B ∈ IRn×m has a full column rank (m ≤ n)
and on systems of the SQD form,

1



2 Introduction to optimization methods leading to systems of equations

ASQDx = b ≡
[
A B
BT −C

] [
u
v

]
=

[
f
g

]
, (1.4)

whereA ∈ IRn×n and C ∈ IRn×n are symmetric positive definite andB ∈ IRn×m

(m ≤ n).
The system (1.1) arises in many areas of computational science and engi-

neering, as in computational fluid dynamics (Elman, Silvester and Wathen,
2005), in electromagnetism (Perugia, Simoncini and Arioli, 1999), in opti-
mal control (Battermann and Heinkenschloss, 1997, Battermann and Sachs,
2001) and in weighted least-squares problems (Björck, 1996). This system also
emerges as subproblems in different methods for general constrained optimiza-
tion (Gill, Murray and Wright, 1981, Nocedal and Wright, 2006). In particular,
the SQD matrix appears in regularized interior-point methods (Friedlander and
Orban, 2012). Since the late 1990s, there has been a surge of interest in saddle-
point systems. Hence, numerous solution techniques have been proposed for
this type of systems. Benzi, Golub and Liesen (2005) gave a first survey in
which they presented a set of methods for solving these systems.

This work cannot reasonably cover all the different areas involving the solu-
tion of saddle-point systems. Instead, we focus on the KKT and SQD systems
and we motivate the topic of this thesis by giving the general context of some
optimization results in the unconstrained and constrained cases. Section 1.1 in-
troduces the general concepts of unconstrained optimization that will be needed
in the constrained case. Section 1.2 presents classes of constrained optimization
methods leading to the solution of KKT or SQD systems. Finally, we establish
that the KKT and SQD matrices are indefinite and we also introduce impor-
tant properties of these matrices such as their invertibility or the existence of
a factorization.

We only focus in this chapter on tools that we need afterwards and we
highlight the systems that are of interest in the remainder of this work. This
overview of unconstrained and constrained optimization methods is thus far
from complete. We refer the reader to the books of Gill et al. (1981) and
Nocedal and Wright (2006) for more details.

1.1 Unconstrained optimization
A general unconstrained optimization problem is defined as

min
x∈IRn

f(x), (1.5)

where the objective function f : IRn → IR denotes the (continuous) function to
minimize. A global minimizer of this problem is a vector x? ∈ IRn satisfying

f(x?) ≤ f(x) ∀x ∈ IRn.



1.1. Unconstrained optimization 3

Generally, it can be difficult to find a global minimizer of f while the iden-
tification of a point x? achieving the smallest value of f in a neighborhood N
of x? is easier. Such a point is called a local minimizer and this terminology
distinguishes it from a strict local minimizer, which is a point x? such that
f(x?) < f(x) for all x ∈ N with x 6= x?. When the objective function f is
convex, we have a strong property given by the following theorem.

Theorem 1.1 When f is a convex function, any local minimizer x? is a
global minimizer of f . If in addition f is differentiable, then any stationary
point x? is a global minimizer of f .

Proof. See, e.g., (Nocedal and Wright, 2006, p.16) 2

Assuming that the objective function f is at least twice continuously dif-
ferentiable (f ∈ C2), we define the gradient and the Hessian of f .

Definition 1.1 The gradient of f is the vector of first partial derivatives
whose i-th component is ∂f(x)/∂xi, and is denoted by ∇f(x).

Definition 1.2 The Hessian of f is the matrix of second partial derivatives
whose i, j-th component is ∂2f(x)/∂xi∂xj , and is denoted by ∇2f(x).

1.1.1 Optimality conditions
The following theorem states the first and the second-order necessary optimality
conditions for problem (1.5). Assuming that x? is a local minimizer, one can
deduce properties about the gradient ∇f(x?) and the Hessian ∇2f(x?).

Theorem 1.2
First-order necessary optimality conditions
If x? is a local minimizer of f and f is continuously differentiable in an
open neighborhood of x?, then ∇f(x?) = 0.
Second-order necessary optimality conditions
If x? is a local minimizer of f and ∇2f exists and is continuous in an open
neighborhood of x?, then ∇f(x?) = 0 and ∇2f(x?) is positive semidefinite.

Proof. See, e.g., (Nocedal and Wright, 2006, pp.14− 15) 2

We can guarantee that x? is a strict local minimizer of f if we have sufficient
conditions on the derivatives of f at the point x?.
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Theorem 1.3 Second-order sufficient optimality conditions
If ∇2f is continuous in an open neighborhood of x?, ∇f(x?) = 0 and
∇2f(x?) is positive definite, then x? is a strict local minimizer of f .

Proof. See, e.g., (Nocedal and Wright, 2006, p.16) 2

We now consider a well-known problem in unconstrained optimization, the
case where the objective function is quadratic. Let us suppose that

q(x) :=
1

2
xTAx− bTx, (1.6)

with A ∈ IRn×n and b ∈ IRn. By the second-order sufficient optimality condi-
tions, if x? is a local minimizer, the gradient given by ∇q(x?) = Ax? − b has
to be zero and the Hessian, ∇2q(x?) = A, has to be positive definite. In this
case, the minimizer x? of q(x) is the unique solution of a linear system of the
form

Ax = b, (1.7)

with a symmetric positive definite matrix A. Solving this kind of linear system
is an active research area and is very important in scientific computing. We
will come back to this in Chapter 2.

1.1.2 Newton’s method
In practice, at the light of the first-order necessary optimality condition, prac-
tical algorithms rely on the (approximate) solution of the nonlinear system

∇f(x) = 0

of n equations with n unknowns, to solve the optimization problem (1.5). We
consider Newton’s method which is an iterative method used to generate a
sequence of points, starting at an initial guess x0 and hopefully converging
towards a point x? at which ∇f(x?) = 0 holds. To compute the next iterate
xk+1 from the current iterate xk, the objective function is replaced by a second-
order Taylor approximation built around this current iterate xk,

f(xk + p) ≈ f(xk) +∇f(xk)T p+
1

2
pT∇2f(xk)p,

where p ∈ IRn. This quadratic approximation of f around xk has a unique
minimizer if ∇2f(xk) is positive definite. Its gradient,

∇f(xk) +∇2f(xk)p,

is then set equal to zero, which leads to a set of linear equations to solve,
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∇2f(xk)p = −∇f(xk), (1.8)

which are known as the Newton equations. If the Hessian ∇2f(xk) is positive
definite, the solution pk is thus unique and one can define the next iterate as

xk+1 = xk + pk.

Note that Newton’s method often does not converge if the initial point x0 is not
close enough to a local minimizer. The line-search and trust-region approaches
(see, e.g., Conn, Gould and Toint, 2000 and Nocedal and Wright, 2006) are two
strategies which ensure, under appropriate assumptions, global convergence,
i.e., convergence from any starting point. Note also that in many cases, the
Hessian can be indefinite or singular, or unavailable or too expensive to compute
at every iteration; then Newton’s method cannot be applied. In practice, one
uses quasi-Newton methods that do not need to directly evaluate the Hessian
but that use a suitable approximation (see, e.g., Nocedal and Wright, 2006).

Observe that (1.8) is a symmetric system. In constrained optimization,
Newton’s method is also used in some approaches but leading to symmetric
systems of equations of the KKT or SQD form. In Section 1.2, some methods
for constrained optimization problems are considered and we highlight these
systems.

1.2 Constrained optimization
We now add equality and inequality constraints to (1.5)

min
x∈IRn

f(x)

s.t.
{
ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I, (1.9)

where f : IRn → IR is the objective function and ci : IRn → IR for all
i ∈ E ∪ I are the constraint functions. The two disjoint index sets E and I
correspond to the indices of the equality and inequality constraints respectively,
and are of size nE and nI . For later use, we also introduce the functions
cE : IRn → IRnE and cI : IRn → IRnI defined as cE(x)T = [c1(x) . . . cnE (x)]
and cI(x)T = [c1(x) . . . cnI (x)], respectively.

Definition 1.3 The feasible set Ω is the set of feasible points x, i.e., those that
satisfy the constraints,

Ω := {x ∈ IRn such that ci(x) = 0, i ∈ E and ci(x) ≥ 0, i ∈ I}.
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Extending the definitions of the unconstrained case, we obtain the following
definitions for the different types of solutions of problem (1.9). A global solution
of (1.9) is a vector x? ∈ Ω satisfying

f(x?) ≤ f(x) ∀x ∈ Ω.

A vector x? ∈ Ω is called a local solution when f(x?) ≤ f(x) forall x ∈ N ∩Ω,
where N is a neighborhood of x?. Finally, we define a strict local solution as a
point x? ∈ Ω such that f(x?) < f(x) for all x ∈ N ∩ Ω with x 6= x?.

Definition 1.4 For c : IRn → IRm, the Jacobian J(x) is defined as the n × m
matrix

J(x) := [∇c1(x) ∇c2(x) . . . ∇cm(x)]T ,

where ci is the ith component of c.

We denote by JE(x)∈ IRnE×n and JI(x)∈ IRnI×n the Jacobian of the equal-
ity and inequality constraints, respectively.

1.2.1 Optimality conditions
As in the unconstrained case, there exist first and second-order optimality
conditions. In this section, we only focus on first-order necessary optimality
conditions. We first define some concepts and notation needed in the remainder
of this section.

Definition 1.5 The Lagrangian function for problem (1.9) is defined as

L(x, y, z) := f(x)− yT cE(x)− zT cI(x),

where the components of y ∈ IRnE and z ∈ IRnI are called the Lagrange
multipliers.

Definition 1.6 The active set A(x) at a given feasible point x is the set of
indices of the constraints ci satisfied as equalities at x,

A(x) := E ∪ {i ∈ I such that ci(x) = 0}.

At a feasible point x, any inequality constraint satisfied as equality at x is
called active, while any inequality constraint satisfied as strict inequality is
called inactive.

Definition 1.7 The linear independence constraint qualification (LICQ) con-
dition holds at a feasible point x for problem (1.9) if the gradients of the active
constraints at x,

{∇ci(x), i ∈ A(x)},

are linearly independent.
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The first-order necessary optimality conditions given in the following the-
orem are called the Karush-Kuhn-Tucker conditions, or KKT conditions for
short, and state first-order necessary optimality conditions for x? to be a local
solution. These conditions were derived by Karush in his master’s thesis at
the University of Chicago in 1939, but it is only in 1950, when the mathemati-
cians Kuhn and Tucker published their work, that the theory of constrained
optimization emerged (see Karush, 1939, and Kuhn and Tucker, 1950).

Theorem 1.4
First-order necessary optimality conditions
Suppose that x? is a local solution of (1.9), that the functions f and
{ci}i∈E∪I in (1.9) are continuously differentiable and that the LICQ con-
dition holds at x?. Then there are Lagrange multiplier vectors y? ∈ IRnE
and z? ∈ IRnI , with components y?i , i ∈ E , and z?i , i ∈ I, such that the
following conditions are satisfied at (x?, y?, z?)

∇xL(x?, y?, z?) = 0, (1.10)
cE(x

?) = 0, (1.11)
cI(x?) ≥ 0, (1.12)

z?i ≥ 0, for all i ∈ I, (1.13)
z?i ci(x

?) = 0, for all i ∈ I. (1.14)

Proof. See, e.g., (Nocedal and Wright, 2006, Section 12.4) 2

Condition (1.10) is known as the stationarity condition. By Definition 1.5
of the Lagrangian function, we can rewrite the stationarity condition as

∇xL(x?, y?, z?) = ∇f(x?)− JE(x?)T y? − JI(x?)T z? = 0,

with JE(x?) and JI(x?) the Jacobian of the equality and inequality constraints
at x?, respectively. The conditions (1.11) and (1.12) imply the feasibility of x?,
while conditions (1.14) imply that either the inequality constraint i is active or
the associated Lagrange multiplier is nul, or possibly both. These conditions
are known as the complementarity conditions. In addition, condition (1.13)
imposes nonnegative Lagrange multipliers for the inequality constraints.

For later use (in Chapter 6, Section 6.3.3), we also give the F. John The-
orem below (see, e.g., Hiriart-Urruty, 1996) that states first-order necessary
optimality conditions for problem (1.9) without any constraint qualification
condition.
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Theorem 1.5 Suppose that x? is a local solution of (1.9) and that
the functions f and {ci}i∈E∪I in (1.9) are continuously differentiable.
Then there is a scalar u? ∈ IR and vectors y? ∈ IRnE and z? ∈
IRnI , with components y?i , i ∈ E , and z?i , i ∈ I such that the vector
[u?, y?, z?] ∈ IR × IRnE × IRnI is nonzero and the following conditions
are satisfied at (x?, u?, y?, z?) with

u?∇f(x?)− JE(x?)T y? − JI(x?)T z? = 0,

z?i ≥ 0, for all i ∈ I,
z?i ci(x

?) = 0, for all i ∈ I.

Proof. See, e.g., (Hiriart-Urruty, 1996, Theorem 3.1) 2

In the next sections, we focus on some methods for constrained optimization
leading to the solution of KKT or SQD systems. We first consider the quadratic
programming, which often appears as subproblems in some methods for general
constrained optimization. Then we focus on some approaches to solve general
constrained optimization problems as, for instance, the sequential quadratic
programming leading to KKT systems, or the interior-point method leading to
SQD systems.

1.2.2 Quadratic programming
In this section, we consider the constrained optimization problem where the
objective function is quadratic and the constraints are all equalities and linear.
This type of problem arises in several applications but also as subproblems
in methods for general constrained optimization, such as sequential quadratic
programming, augmented Lagrangian methods and interior-point methods. Let
us consider the general form

min
x∈IRn

q(x) :=
1

2
xTAx− bTx (1.15)

s.t. BTx = c,

where A = AT ∈ IRn×n, b ∈ IRn, BT ∈ IRm×n is the Jacobian of the constraints
(m ≤ n) and c ∈ IRm. The Lagrangian function for the quadratic problem
(1.15) is given by

L(x, y) =
1

2
xTAx− bTx− yT (BTx− c),
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where y ∈ IRm is the vector of Lagrange multipliers. The KKT conditions
(1.10) - (1.11) for problem (1.15) state that there exist vectors x? ∈ IRn and
y? ∈ IRm such that the following system of equations is satisfied,{

Ax? − b−By? = 0

BTx? − c = 0

or, equivalently, [
A B
BT 0

] [
x?

−y?
]

=

[
b
c

]
. (1.16)

The KKT conditions for problem (1.15) thus amount to solve the KKT system
(1.16).

1.2.3 Sequential quadratic programming
In this section, we consider the method for constrained problems called se-
quential quadratic programming (SQP) introduced by Wilson (1963). We only
focus on the case where we have equality constraints so that the problem can
be stated as

min
x∈IRn

f(x) (1.17)

s.t. cE(x) = 0.

The idea behind this method is to solve, at a given iteration k, a quadratic
subproblem of the form (1.15), and to use its solution to construct the next it-
erate. One replaces the objective function at the current iterate xk ∈ IRn by its
local quadratic approximation defined by a second-order Taylor approximation
at xk,

f(x) ≈ f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)T∇2f(xk)(x− xk),

while the constraints are linearized around xk,

cE(x) ≈ cE(xk) + JE(xk)(x− xk),

with JE(x) denoting the Jacobian of the equality constraints. If we set
p = x − xk, we get a quadratic problem of the following form

min
p∈IRn

f(xk) +∇f(xk)T p+
1

2
pT∇2f(xk)p (1.18)

s.t. cE(xk) + JE(xk)p = 0.
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As we have seen in the previous section, we have that the KKT conditions
(1.10) - (1.11) are equivalent to solve the following system of equations for
problem (1.18), [

∇2f(xk) JE(xk)T

JE(xk) 0

] [
p?

−y?
]

= −
[
∇f(xk)
cE(xk)

]
,

where y? ∈ IRnE is the vector of Lagrange multipliers. We can see that sequen-
tial quadratic programming requires to solve systems of the KKT form at each
iteration. We refer the reader to Nocedal and Wright (2006) for more details.

1.2.4 Augmented Lagrangian method
We now consider another approach to solve general constrained optimization
problems known as the augmented Lagrangian method (see Hestenes, 1969, and
Powell, 1969). This technique consists in replacing a constrained optimization
problem by an unconstrained one which combines the objective function and
the constraint violation in some way. As in the previous section, we only fo-
cus on problems with equality constraints of the form (1.17) and we consider
the approach introduced in this context by Nocedal and Wright (2006), Sec-
tion 17.3.

Consider the Lagrangian function of problem (1.17),

L(x, y) = f(x)− yT cE(x), (1.19)

where y ∈ IRnE is the vector of Lagrange multipliers. The method considers
the Lagrangian function with a quadratic penalty term,

L(x, y;µ) = L(x, y) +
µ

2
‖cE(x)‖22

= f(x)− yT cE(x) +
µ

2
‖cE(x)‖22, (1.20)

where µ > 0 is called the penalty parameter. The first-order necessary optimal-
ity conditions given in Theorem 1.2, implies to solve the nonlinear equations
∇L(x, y;µ) = 0, or, equivalently,[

∇xL(x, y;µ)
∇yL(x, y;µ)

]
=

[
0
0

]
.

As we have seen in Section 1.1.2, to find the roots of the nonlinear system
∇L(x, y;µ) = 0, one can apply Newton’s method and solve the Newton equa-
tions

∇2L(x, y;µ)p = −∇L(x, y;µ),

or, equivalently,
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[
∇2
xxL(x, y;µ) ∇2

xyL(x, y;µ)
∇2
yxL(x, y;µ) ∇2

yyL(x, y;µ)

] [
px
py

]
= −

[
∇xL(x, y;µ)
∇yL(x, y;µ)

]
, (1.21)

with px ∈ IRn and py ∈ IRnE . The components of the gradient of the augmented
Lagrangian (1.20) are given by

∇xL(x, y;µ) = ∇f(x)− JE(x)T y + µJE(x)T cE(x)

= ∇xL(x, y) + µJE(x)T cE(x), (1.22)

and

∇yL(x, y;µ) = −cE(x), (1.23)

while the components of its Hessian are given by

∇2
xxL(x, y;µ) = ∇2

xxL(x, y) + µJE(x)TJE(x) + µ
∑
i∈E

ci(x)∇2ci(x), (1.24)

∇2
yyL(x, y;µ) = 0nE , (1.25)

and

∇2
xyL(x, y;µ) = −JE(x)T . (1.26)

Substituting in the Newton equations (1.21) yields the following KKT system

[
∇2
xxL(x, y;µ) −JE(x)T

−JE(x) 0nE

] [
px
py

]
= −

[
∇xL(x, y) + µJE(x)T cE(x)

−cE(x)

]
,

where the (1, 1) block is given by (1.24).
As we have shown in this section and the previous one, we can solve opti-

mization problems with equality constraints with two approaches: sequential
quadratic programming or augmented Lagrangian(1). In both cases, the key
point is to solve systems of KKT form. In the next section, we consider an
approach called interior-point method where we consider a constrained opti-
mization problem with equality and inequality constraints.

(1)These methods can be adapted to problems with inequalities constraints. We refer the
reader to the book of Nocedal and Wright (2006).
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1.2.5 Interior-point method
In this section, we consider a constrained optimization problem with equality
and inequality constraints,

min
x∈IRn

f(x)

s.t. cE(x) = 0 (1.27)
cI(x) ≥ 0.

We analyse a type of methods called interior-point methods suggested by
Frisch (1955) and later developed by Fiacco and McCormick (1968), that re-
quire all iterates to strictly satisfy the inequality constraints in the problem
and to respect the equality constraints. We refer the reader to the book on
interior-point methods for linear programming (see, e.g., Wright, 1997) and to
surveys on nonlinear optimization (see, e.g., Forsgren, Gill and Wright, 2002,
Gould, Orban and Toint, 2005 and Nocedal and Wright, 2006). A subclass
of interior-point methods adopting the most efficient practical approaches are
known as primal-dual methods and were introduced in the early 1990s (see,
e.g., Wright, 1997, and Nocedal and Wright, 2006).

As in Nocedal andWright (2006), the inequality constraint of problem (1.27)
can be reformulated as two constraints (one inequality and one equality) by
adding a new variable s ∈ IRnI called a slack variable. One can indeed trans-
form problem (1.27) into

min
x∈IRn

, s∈IRnI
f(x)

s.t. cE(x) = 0 (1.28)
cI(x)− s = 0

s ≥ 0.

We then replace the non-negativity constraint in problem (1.28) by a logarith-
mic term called barrier term in the objective function,

min
x∈IRn

, s∈IRnI
f(x)− ω

∑
i∈I

ln si

s.t. cE(x) = 0 (1.29)
cI(x)− s = 0,

with ω > 0 being a barrier parameter and si being a component of s. The
feasible set of problem (1.29) is the set of strictly feasible points for problem
(1.28). The minimization of the barrier term −ω

∑
i∈I ln si in (1.29) prevents

the components of s from becoming too close to zero.
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The Lagrangian function for problem (1.29) is given by

L(x, s, y, z) = f(x)− ω
∑
i∈I

ln si − yT cE(x)− zT (cI(x)− s),

where y ∈ IRnE and z ∈ IRnI are the vectors of Lagrange multipliers. We write
the KKT conditions (1.10)-(1.11) for problem (1.29) as follows,

∇xL(x, s, y, z) = 0

∇sL(x, s, y, z) = 0

cE(x) = 0

cI(x)− s = 0,

which is equivalent to ∇L(x, s, y, z) where the gradient of the Lagrangian func-
tion is given by

∇L(x, s, y, z) =


∇xL(x, s, y, z)
∇sL(x, s, y, z)
∇yL(x, s, y, z)
∇zL(x, s, y, z)

 =


∇f(x)− JE(x)T y − JI(x)T z

−ωS−1e+ z
−cE(x)
−cI(x) + s

 ,
with S being the diagonal matrix whose diagonal entries are given by the vector
s > 0 while e = [1, 1, . . . , 1]T ∈ IRnI . As we have seen in Section 1.1.2, to find
the roots of the nonlinear system ∇L(x, s, y, z) = 0, one can solve the Newton
equations. We first multiply the second equation ∇sL(x, s, y, z) = 0 by S
implying

∇sL(x, s, y, z) = −ωe+ Sz = 0.

Applying Newton’s method, we obtain

∇2L(x, s, y, z)p = −∇L(x, s, y, z)

or, equivalently, the next system to solve


∇2
xxL(x, s, y, z) 0 −JE(x)T −JI(x)T

0 Z 0 S
−JE(x) 0 0 0
−JI(x) InI 0 0



px
ps
py
pz

 = −


∇f(x)− JE(x)T y − JI(x)T z

Sz − ωe
−cE(x)
−cI(x) + s

 ,
with Z being the diagonal matrix whose diagonal entries are given by the
vector z, px ∈ IRn, ps ∈ IRnI , py ∈ IRnE and pz ∈ IRnI . Multiplying the
second equation by S−1, we can rewrite the system in the symmetric form
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∇2
xxL(x, s, y, z) 0 −JE(x)T −JI(x)T

0 Σ 0 InI
−JE(x) 0 0 0
−JI(x) InI 0 0


pxpspy
pz

 = −


∇f(x)− JE(x)T y − JI(x)T z

z − ωS−1e
−cE(x)
−cI(x) + s

 ,

(1.30)

with the diagonal matrix Σ = S−1Z ∈ IRnI×nI . Various formulations of the
Newton equations can appear in the literature. For instance, the symmetric
matrix (1.30) has a KKT form but we can consider two other formulations.
First, in the second equation of (1.30), we extract

ps = −Σ−1pz − Σ−1z + ωΣ−1S−1e,

and the system (1.30) can be reduced by eliminating ps with Z−1 = Σ−1S−1, ∇2
xxL(x, s, y, z) −JE(x)T −JI(x)T

−JE(x) 0 0
−JI(x) 0 −Σ−1

pxpy
pz

 = −

∇f(x)− JE(x)T y −−JI(x)T z
z − ωS−1e

−cI(x) + s− Σ−1z + ωZ−1e

 .
Observe that, by eliminating pz = −ΣJI(x)px − ΣcI(x) + Σs − z + ωΣZ−1e
using the last equation, we reduce the matrix again to obtain the following
KKT matrix, [

∇2
xxL(x, s, y, z) + JTI (x)ΣJI(x) −JE(x)T

−JE(x) 0

]
.

1.2.6 Regularization method
In this section, we analyse the cure of an ill-posed system. In some cases,
the (1,1) block can be positive semidefinite and (1,2) block does not have a
full column rank. This implies that the system is not invertible or that the
solution of the system may not be unique. The regularization is a method that
constructs a related problem whose solution is unique and only slightly differs
from a solution of the original system. Regularization can take many forms
and we analyse here the approach developed by Altman and Gondzio (1998)
and Friedlander and Orban (2012)(2).

The first problem that can occur is that the matrix A is not positive definite.
In this case, we can replace the original matrix denoted A by A+ γIn with the
positive parameter γ. The modification of the (1,1) block implies to add γ to
the eigenvalues of A and thus to induce the positive definiteness of the (1,1)
block for γ large enough. In the optimization context, it is similar to consider
the proximal-point method developed by Rockafellar (1976) when the function
f is convex. This method generates a sequence of iterates that are approximate
solutions by solving a sequence of subproblems of the form

(2)The authors use the regularization in the context of interior-point methods, while we
focus only on problems with equality constraints.
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min
x∈IRn

f(x) +
1

2
γk‖x− xk‖22 (1.31)

s.t. cE(x) = 0,

where {γk} is a sequence of decreasing positive parameters. The solution of
problem (1.31) yields the next iterate xk+1. A proximal-point term has been
added to the original objective function, which penalizes solutions far from the
previous iterate. The Lagrangian function of (1.31) is given by

L(x, y) = f(x) +
1

2
γk‖x− xk‖22 − yT cE(x),

where y ∈ IRnE is the vector of Lagrange multipliers. The KKT conditions
(1.10)-(1.11) are given by

∇f(x) + γk(x− xk)− JE(x)T y = 0

cE(x) = 0,

and the Newton equations give

[
∇2f(x) + γkIn JE(x)T

JE(x) 0

] [
px
−py

]
= −

[
∇f(x) + γk(x− xk)− JE(x)T y

cE(x)

]
.

(1.32)

The (1, 1) block of (1.32) is ∇2f(x)+γkIn, which is positive definite for γk large
enough, even if ∇2f(x) is positive semidefinite. It implies that the solution
xk+1 is unique when JE(x)T has full column rank. The conditions under which
the proximal-point algorithm terminates under a finite number of iterations is
given by Ferris (1991).

Afterwards, if the (1, 2) block has a deficient rank, the KKT matrix is
singular. The solution for this problem is to modify the (2, 2) block by −δz
with the positive parameter δ called the dual regularization parameter and
z ∈ IRnE . Suppose that the objective function and the equality constraints of
this problem are perturbed to yield the problem

min
x∈IRn

,z∈IRnE
f(x) +

1

2
δ‖z‖22 (1.33)

s.t. cE(x) + δz = 0.

The Jacobian of the constraints (1.33) is [JE(x) δInE ] that never has a deficient
rank. The Lagrangian function of (1.33) is given by
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L(x, z, y) = f(x) +
1

2
δ‖z‖22 − yT (cE(x) + δz),

where y ∈ IRnE is the vector of Lagrange multipliers. The KKT conditions
(1.10)-(1.11) are given by

∇f(x)− JE(x)T y = 0

δz − δy = 0

cE(x) + δz = 0,

implying the following Newton equations, ∇2
xxL(x, z, y) 0 JE(x)T

0 δInE δInE
JE(x) δInE 0

 px
pz
−py

 = −

∇f(x)− JE(x)T y
δz − δy

cE(x) + δz

 ,
with px ∈ IRn, pz ∈ IRnE and py ∈ IRnE . By eliminating pz using the second
equation, we obtain the following SQD matrix[

∇2
xxL(x, z, y) JE(x)T

JE(x) −δInE

]
.

The regularization implies to solve system of the KKT form or of the SQD
form.

1.3 Properties of Karush-Kuhn-Tucker (KKT) ma-
trices and of symmetric quasi-definite (SQD)
matrices

In the previous section of this chapter, we saw that systems of the KKT or SQD
form appear in various methods of optimization, such as sequential quadratic
programming or interior-point methods. These systems form an important
class of linear systems and it is crucial to solve them efficiently. In the next
chapter, we analyse the techniques to solve this type of systems but before, we
recall the properties of matrices of the KKT or SQD form as the invertibility
conditions. We only focus on the solution of saddle-point systems (1.1) with A
previously defined in (1.2) as

A =

[
A B
BT −C

]
, (1.34)

where A of order n is sparse, symmetric and positive definite, B of size n×m
has full column rank (m ≤ n) and C of order m is either zero or symmetric
and positive definite. The matrix A is then indefinite. More precisely, it has n
positive eigenvalues and m negative eigenvalues, thanks to the following result.
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Theorem 1.6 If A is positive definite and C is positive semidefinite, then
inertia(A)=(n,m − p, p), where 0 ≤ p ≤ m. If B has full column rank or
C is positive definite then p = 0.

Proof. (Higham and Cheng, 1998, Lemma 4.2) 2

The following result shows that the saddle-point matrix A with A and C posi-
tive semidefinite is nonsingular if the two row blocks

[
A BT

]
and

[
B −C

]
have full row rank.

Theorem 1.7 Assume that A and C are symmetric, positive semidefinite
matrices. The vectors u and v satisfy[

A B
BT −C

] [
u
−v

]
=

[
0
0

]
if and only if [

A
BT

]
u =

[
0
0

]
and

[
B
−C

]
v =

[
0
0

]
.

Proof. (Forsgren, Gill and Wong, 2015, Proposition 5) 2

We consider the solution of KKT systems in (1.3),

AKKTx = b ≡
[
A B
BT 0

] [
u
v

]
=

[
f
g

]
, (1.35)

where A ∈ IRn×n is symmetric and B ∈ IRn×m (m ≤ n). We first consider
the case where the matrix A is positive definite, for which the following result
gives a necessary and sufficient condition for the saddle-point matrix AKKT to
be nonsingular.

Theorem 1.8 Assume that A is symmetric positive definite. Then the
matrix AKKT is nonsingular if and only B has a full column rank.

Proof. See, e.g., (Benzi et al., 2005, Theorem 3.1) 2
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In the particular case where A is positive semidefinite, we have the following
result.

Theorem 1.9 Assume that A is symmetric positive semidefinite and B
has full column rank. Then the KKT matrix AKKT is nonsingular if and
only if

Ker(A) ∩Ker(BT ) = {0}.

Proof. See, e.g., (Benzi et al., 2005, Theorem 3.2) 2

The requirement that A be positive semidefinite can be somewhat relaxed by
the next theorem.

Theorem 1.10 Assume that A is positive definite on Ker(BT ) and B has
a full column rank. Then the KKT matrix AKKT is nonsingular.

Proof. See, e.g., (Nocedal and Wright, 2006, Lemma 16.1) 2

In this work, we assume that A is symmetric positive definite and B has a
full column rank for the KKT matrices. By Theorem 1.8, the matrix AKKT is
nonsingular and thus the systems (1.35) has a unique solution.

Finally, we consider a general SQD system in (1.4),

ASQDx = b ≡
[
A B
BT −C

] [
u
v

]
=

[
f
g

]
,

whereA ∈ IRn×n and C ∈ IRn×n are symmetric positive definite andB ∈ IRn×m

(m ≤ n). The SQD matrices ASQD are always nonsingular such that the inverse
of SQD matrices has a particular form.

Theorem 1.11 The inverse of a SQD matrix is SQD.

Proof. (Vanderbei, 1995, Theorem 1) 2

We recall an important result, which shows that the symmetric quasi-definite
matrices form a class of strongly factorizable matrices where a permutation
matrix is defined by permuting the rows or columns of an n×n identity matrix
according to some permutation of the numbers 1 to n.
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Theorem 1.12 The SQD matrices are strongly factorizable, i.e., there
exists a factorization PASQDPT = LDLT for any permutation P with D a
diagonal matrix and L a unit lower triangular matrix.

Proof. (Vanderbei, 1995, Theorem 2) 2
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Chapter 2
Introduction to iterative methods
for solving systems of equations

As we have seen in the first chapter, the solution of linear systems of equations
is of great interest in many numerical optimization approaches. In the first
part of this chapter, we consider a general linear system of equations

Ax = b, (2.1)

where the square matrix A of order n is symmetric. When A has a small size, di-
rect methods based on Gaussian elimination are generally used. Such methods
involve a fixed number of steps that require a finite number of operations and
at the end, provide the solution. For symmetric positive definite matrices, for
instance one can use the Cholesky factorization, which requires n3

3 operations
in exact arithmetic and transforms A into the product of a lower triangular
matrix L and its conjugate transpose. The factors L and LT are used to solve
(2.1) through the solution of two triangular systems easier to solve: Ly = b by
forward substitution, followed by the solution of Ux = y via backward substi-
tution. If the matrix coefficient is sparse, some fill-in can appear during the
factorization and, in addition, when A is large, direct methods are too costly,
which motivates the use of iterative techniques to find a good approximation
of the solution. We refer the reader to the books of Greenbaum (1997) and
Hageman and Young (1981) for more details on iterative methods for solving
linear systems.

We introduce here the Krylov subspace methods which aim to solve linear
systems (2.1), in particular, three iterative methods which belong to the class
of the Krylov methods: the Lanczos method, the conjugate gradient method
and the minimal residuals method. The last two are respectively known as the
CG method and the Minres method. The CG method is the most popular

21
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method used for symmetric positive definite systems of the form (2.1), while
the Minres method is developed for symmetric indefinite ones.

In the second part of this chapter, we present the general preconditioning
techniques for linear systems, which aim to accelerate the convergence of itera-
tive methods. Especially, we focus on the preconditioners for the KKT systems
or the SQD systems as for instance the block diagonal preconditioners or the
constraint preconditioners. We also analyse in more details the block diagonal
preconditioner proposed by Golub et al. (2006).

2.1 Krylov subspace methods
The main idea of Krylov subspace methods is to consider an initial iterate
x0 ∈ IRn with the initial residual r0 := Ax0 − b and to generate a sequence of
iterates such that the kth iterate xk satisfies

xk ∈ x0 +K(A, x0; k),

where

K(A, x; k) := span{x,Ax, . . . , Ak−1x},

is the Krylov subspace of degree k ≤ n for x. The dimension of these subspaces
increases by one at each iteration of the method. The construction of the
iterates is based on an orthonormal basis {v1, . . . , vk} of the Krylov subspace
so that the approximate solution at the kth iteration is given by

xk = x0 + Vkyk, (2.2)

where yk ∈ IRk and Vk ∈ IRn×k is the matrix with columns v1, . . . , vk. Krylov
methods can roughly be classified in four families depending on the manner in
which they compute xk. Literature on Krylov subspace methods can be found
in van der Vorst (2003) and Saad (2003). Before presenting some of them, we
recall for further use how an orthonormal basis of the Krylov subspace can be
built.

The Lanczos method introduced by Lanczos (1952), has initially been de-
veloped to compute a few dominant eigenvalues and possibly the associated
eigenvectors of a large sparse symmetric matrix A. However it also builds an
orthonormal basis of a Krylov subspace K(A, x; k) whose basis vectors can be
expressed in terms of polynomials in the matrix A applied to the initial vector
x0 (see, e.g., Meurant and Strakoš, 2006).
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Let v1 be an initial vector and let v0 = 0. Based on the Gram-Schmidt algo-
rithm, an orthonormal basis {v1, v2, . . . , vk} for K(A, v1; k) can be constructed
by the following algorithm (see, e.g., Fischer, 2011, p.135).

Algorithm 1 Lanczos method
1: Choose an initial vector v1;
2: Set γ1 = ‖v1‖2, v0 = 0;
3: for j = 1, 2, . . . do
4: vj = vj/γj ;
5: δj = vTj Avj ;
6: vj+1 = Avj − δjvj − γjvj−1;
7: γj+1 = ‖vj+1‖2;
8: end for

The basis vectors {vi}ki=1 are known as Lanczos vectors and the Lanczos
method transforms a symmetric matrix A into a symmetric tridiagonal matrix
Tk+1,k with an additional row at the bottom,

Tk+1,k =



δ1 γ2 0 · · · 0

γ2 δ2 γ3
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . γk

0 · · · 0 γk δk
0 · · · · · · 0 γk+1


∈ IR(k+1)×k.

If we define Tk to be the first k rows of Tk+1,k, then Tk is square, symmetric
and

Tk+1,k =

[
Tk

γk+1e
T
k

]
,

where ek is the kth column of the k×k identity matrix Ik. Observe that line 6
of Algorithm 1 for j = 1, . . . , k can be written in matrix form as

AVk = Vk+1Tk+1,k (2.3)
= VkTk + γk+1vk+1e

T
k .

From the orthogonality of the Lanczos vectors, we have that V Tk vk+1 = 0 and
we can deduce the following relation

V Tk AVk = Tk, (2.4)

which will be useful in the next sections. In the next sections, we introduce the
general principle of three methods belonging to the class of Krylov subspace
methods.
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2.1.1 Lanczos algorithm
When solving linear systems (2.1) with A symmetric, the approximation of the
solution is given by (2.2). To identify suitable iterates xk, we first consider
the Ritz-Galerkin approach, also used by the CG method, which imposes that
the Ritz-Galerkin condition, i.e., that the residual rk := Axk − b be orthog-
onal to the subspace K(A, rk; k) = span{rk, A rk, . . . , Ak−1rk}. Replacing the
expression (2.2) in the kth residual gives

rk = A(x0 + Vkyk)− b,

or, equivalently,

rk = r0 +AVkyk. (2.5)

Substituting the previous expression in the Ritz-Galerkin condition V Tk rk = 0
together with the relation (2.4) implies that

V Tk r0 + V Tk AVkyk = 0

and we deduce that

yk = −T−1
k (V Tk r0).

with Tk nonsingular. We set v1 = r0/β with β = ‖r0‖2 and we obtain

yk = −T−1
k (βe1), (2.6)

where e1 is the first column of the k×k identity matrix Ik. The pseudocode for
the Lanczos method to solve linear systems is given by Algorithm 2. Note that
lines 1-9 correspond to the Lanczos method (Algoritm 1) applied with v1 = r0

and line 10 corresponds to the approximation of the solution given by (2.2)
with (2.6).

Algorithm 2 Lanczos method for linear systems
1: Choose an initial vector x0;
2: Compute r0 = Ax0 − b, v1 = r0;
3: Set γ1 = ‖v1‖2, v0 = 0;
4: for j = 1, 2, . . . do
5: vj = vj/γj ;
6: δj = vTj Avj ;
7: vj+1 = Avj − δjvj − γjvj−1;
8: γj+1 = ‖vj+1‖2;
9: end for

10: Compute yk = −T−1
k (γ1e1) and set xk = x0 + Vkyk;
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2.1.2 Conjugate gradient (CG) algorithm
The CG algorithm introduced by Hestenes and Stiefel (1952), is an iterative
method to solve linear systems (2.1) where the matrix A is symmetric and
positive definite. Although the CG algorithm was first derived in a completely
different way using conjugacy and minimization of a quadratic function, it turns
out that it is mathematically equivalent to the Lanczos algorithm described in
the previous section (see, e.g., Meurant, 2006, Section 2.1). Indeed, it can be
obtained from the Lanczos algorithm by using the Cholesky factorization of Tk.

We introduce here the CG algorithm as a method which minimizes the
quadratic function q(x) := 1

2x
TAx − bTx, where A is symmetric and positive

definite. The minimizer of this function is the solution to Ax = b, as we have
seen in Section 1.1.1. We initialize for a given starting point x0 ∈ IRn, the
initial residual r0 := Ax0 − b and the descent direction p0 = −r0. The CG
method generates the sequence of iterates {xk} by setting

xk+1 = xk + αkpk,

where pk is a descent direction at iteration k and αk is the step length deter-
mined by an exact linesearch along pk (i.e., the minimizer of q(.) along pk). It
is given explicitly by

αk = − rTk pk
pTkApk

. (2.7)

The new search direction pk is generated using only the previous direction pk−1

and is defined as a linear combination of the residual rk and pk−1,

pk = −rk + βkpk−1, (2.8)

where the scalar βk is chosen to ensure that pk−1 and pk are A-conjugate, i.e.,

pTk−1Apk = 0.

We set

βk =
rTk Apk−1

pTk−1Apk−1
. (2.9)

Doing so, one can show that all the generated directions are A-conjugate,

pTi Apj = 0 for all i 6= j.

The pseudocode for the CG method is presented in Algorithm 3 (see, e.g.,
Nocedal and Wright, 2006, p.112). Line 4 and line 7 compute the step length
and the scalar βk at iteration k based on and equivalent to formula (2.7) and
(2.9), respectively.
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Algorithm 3 CG method
1: Choose an initial vector x0;
2: Set r0 = Ax0 − b, p0 = −r0, k = 0;
3: while rk 6= 0 do

4: αk =
rTk rk
pTkApk

;

5: xk+1 = xk + αkpk;
6: rk+1 = rk + αkApk;

7: βk+1 =
rTk+1rk+1

rTk rk
;

8: pk+1 = −rk+1 + βk+1pk;
9: k = k + 1;

10: end while

In exact arithmetic, the CG method converges in at most n iterations where
n is the order of the matrix A, but in finite precision, it could not be the case.
Indeed, the performance of the CG method depends on the distribution of
the eigenvalues and/or on the condition number of the matrix A defined, for
a nonsingular matrix, as κ(A) = ‖A‖‖A−1‖, where any matrix norm can be
used. In the case of the Euclidiean norm, we have for a symmetric positive
definite matrix that κ2(A) = λn

λ1
, with λ1 and λn the smallest and the largest

eigenvalues of A, respectively.
The following theorem says that the more eigenvalues are clustered, the

more convergence is rapid.

Theorem 2.1 If A has only r distinct eigenvalues, then in exact arith-
metic, the CG method will terminate at the solution in at most r iterations.

Proof. See, e.g., (Nocedal and Wright, 2006, p.115) 2

The two following theorems give a bound on the error norm of iterate with
respect to the eigenvalues or the condition number of A. The A-norm of the
vector x ∈ IRn is defined by ‖x‖A =

√
xTAx.

Theorem 2.2 If A has eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn, we have that

||xk+1 − x∗||2A ≤
(
λn−k − λ1

λn−k + λ1

)2

||x0 − x∗||2A. (2.10)
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Proof. (Luenberger, 1973, p.180) 2

The A-norm of the error of iterate can also be bounded by the following
convergence theorem.

Theorem 2.3

||xk+1 − x∗||A ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)k+1

||x0 − x∗||A. (2.11)

Proof. See, e.g., (Conn et al., 2000, p.85) 2

The convergence of the CG method is not only affected by the condition number
of A but also by the number and distribution of very small eigenvalues, as shown
by van der Sluis and van der Vorst (1986).

2.1.3 Minres algorithm
The Minres algorithm was derived by Paige and Saunders (1975) and can
be viewed as a generalization of the CG method for the solution of symmetric
indefinite linear systems. One way to derive the Minres algorithm is to exploit
the minimum norm residual approach which implies that the Euclidean norm
of the residual ‖rk‖2, is minimal over the Krylov subspace K(A, v1; k) with
v1 = r0/β and β = ‖r0‖2. Similarly to Section 2.1.1, the kth residual (2.5) is
given by

rk = r0 +AVkyk,

where the columns of Vk are the Lanczos vectors generated by the Lanczos
algorithm (Algorithm 1) and yk ∈ IRk such that

yk = arg min
y∈IRk

‖r0 +AVky‖2.

Using expression (2.3), we obtain

rk = r0 + Vk+1Tk+1,kyk

= Vk+1(βe1 + Tk+1,kyk).

with e1 is the first column of the (k + 1)× (k + 1) identity matrix Ik+1. Since
the columns of the matrix Vk+1 are orthonormal, we have
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‖rk‖2 = ‖βe1 + Tk+1,kyk‖2,

so that the approximate solution at the kth iteration is given by

xk = x0 + Vkyk, (2.12)

where yk = arg min
y∈IRk ‖βe1 + Tk+1,ky‖2, which is the solution of a least-

squares problem.
The usual technique to solve this least-squares problem is to use a QR

factorization which transforms the tridiagonal matrix Tk+1,k into the product
of an orthogonal matrix Q ∈ IR(k+1)×(k+1) and an upper bidiagonal form(1)

R ∈ IR(k+1)×k by using Givens rotations (see line 18 in Algorithm 4 below).
We define (QR)k,k to be the first k rows and columns of QR. The solution yk
is obtained by solving the upper bidiagonal system

βe1 + (QR)k,k yk = 0,

which implies that

yk = −βR−1
k,k(QT e1)1:k, (2.13)

where Rk,k is the upper k-by-k block of the tridiagonal factor R and (QT e1)1:k

are the k first entries of vector QT e1 ∈ IRk+1. Using the expression (2.13) in
the approximate solution (2.12), we obtain

xk = x0 − β (VkR
−1
k,k) (QT e1)1:k.

In practice, we set Wk := VkR
−1
k,k and the columns of Wk denoted by {wj}kj=1

are computed in Algorithm 4 by line 20 below. The pseudocode of the Minres
method is described in Algorithm 4 and we refer the reader to Saad (2003) and
Greenbaum (1997) for more details.

We have a result for the 2-norm of the residual in the Minres algorithm.
As for the CG algorithm, the bound depends on the condition number of the
matrix A.

Theorem 2.4

||Axk − b||2 ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)k
||Ax0 − b||2. (2.14)

(1)That is, the top k-by-k block is upper bidiagonal and the last row is zero.
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Algorithm 4 Minres method
1: Initialization
2: v0 = 0, w0 = 0, w1 = 0
3: Choose an initial vector x0, compute v1 = b−Ax0

4: set γ1 =
√
vT1 v1

5: Set η = γ1, s0 = s1 = 0, c0 = c1 = 1
6: for j = 1 until convergence do
7: Lanczos
8: vj = vj/γj
9: δj = vTj Avj

10: vj+1 = Avj − δjvj − γjvj−1

11: γj+1 = ‖vj+1‖2
12: QR factorization
13: α0 = cjδj − cj−1sjγj

14: α1 =
√
α2

0 + γ2
j+1

15: α2 = sjδj + cj−1cjγj
16: α3 = sj−1γj
17: Givens rotation
18: cj+1 = α0/α1; sj+1 = γj+1/α1

19: Least squares solution
20: wj+1 = (vj − α3wj−1 − α2wj)/α1

21: xj = xj−1 + cj+1ηwj+1

22: η = −sj+1η with |η| = ‖Axj − b‖
23: end for

Proof. See, e.g., (Greenbaum, 1997, p.53) 2

2.1.4 Comparison between CG and Minres
In the previous sections, we have presented two famous Krylov subspace meth-
ods, CG and Minres, which are applied on positive definite or indefinite sym-
metric systems, respectively. Indeed, the CG method can be unstable or unde-
fined on systems that are not positive definite. The natural choice for saddle-
point systems of KKT or SQD form is thus the Minres method. The bounds
(2.10) and (2.11) for CG method and (2.14) for Minres method, lead to the
observation that if a matrix A has a small condition number and/or that its
eigenvalues are clustered, then the convergence of the CG or Minres method
will be rapid.

One way to classify and compare these Krylov subspace methods is based
on the quantity to be minimized. Table 2.1 summarizes the quantity to be
minimized for each method with the error norm defined by ek := xk − x?.
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kth residual kth error
CG with A positive definite min ‖rk‖A−1 min ‖ek‖A
Minres min ‖rk‖2

Table 2.1 – Residual and error properties of CG and Minres

The efficiency of iterative techniques can be improved by using preconditioning,
which is simply a mean of transforming the original linear system into another
one having the same solution but which is likely to be more rapidly solved
with an iterative solver. The next section introduces the general technique of
preconditioning.

2.2 Preconditioning
The important feature of the CG and Minres methods is that at each itera-
tion, only one matrix times vector multiplication and a small number of vector
operations are required. For sparse or structured matrices, the matrix times
vector product may be efficiently computed. In iterative methods, the total
computational work to solve a linear system hence essentially depends on the
number of iterations it takes to have convergence with an acceptable accuracy.

Preconditioning is usually crucial to ensure that this number is kept ac-
ceptably small. A preconditioner transforms the linear system into another
equivalent one that has better spectral properties, as these impact the con-
vergence rate. Typically, large spreads and little clustering in the spectrum
of A lead to a slow convergence of the iterative methods. In practice, a good
preconditioner should be cheap to construct and to apply. It corresponds to
the application of a non singular matrix P ∈ IRn×n to the original linear sys-
tem to yield a different linear system for which the convergence of the iterative
method will be significantly faster. One can think of preconditioned iteration
as applying the original iteration to the system

P−1Ax = P−1b. (2.15)

However the application of P as in (2.15) would be a bad choice since we would
then create a non-symmetric linear system whereas A is originally symmetric.

In general, the iterative solution of non-symmetric linear systems is more
expensive and one tries to preserve symmetry. If P is symmetric and positive
definite, we can write P = LLT for some matrix L (e.g., either the Cholesky
factor or the matrix square root). The iterative method is then applied to the
symmetric system

L−1AL−T y = L−1b where LTx = y

and convergence depends on the eigenvalues of the symmetric and positive def-
inite matrix L−1AL−T . Benzi (2002) gives a nice survey on preconditioning
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techniques for large linear systems. The pseudocode of the preconditioned con-
jugate gradient method (PCG) is given by Algorithm 5 (see, e.g., Nocedal and
Wright, 2006, p.119).

Algorithm 5 Preconditioned conjugate gradient method
1: Choose an initial vector x0;
2: Choose a preconditioner symmetric positive definite P ;
3: Set r0 = Ax0 − b;
4: Solve Py0 = r0 for y0;
5: Set p0 = −y0, k = 0;
6: while rk 6= 0 do
7: αk =

rTk yk
pTkApk

;
8: xk+1 = xk + αkpk;
9: rk+1 = rk + αkApk;

10: Solve Pyk+1 = rk+1;
11: βk+1 =

rTk+1yk+1

rTk yk
;

12: pk+1 = −yk+1 + βk+1pk;
13: k = k + 1;
14: end while

For Minres, a symmetric and positive definite preconditioner P must also
be employed and the convergence will depend on the eigenvalues of the sym-
metric and indefinite matrix L−1AL−T . The pseudocode of the preconditioned
Minres method is described in Algorithm 6 (see, e.g., Elman et al., 2005, Sec-
tion 6.1). In the next sections, we introduce possible approaches to precondition
indefinite symmetric systems of KKT or SQD form.

In the context of very large saddle-point systems, preconditioning tech-
niques for Krylov subspace methods are very useful. The paper of Benzi and
Wathen (2008) gives an overview of the most useful preconditioning techniques
for Krylov subspace methods applied to saddle-point problems, including block-
diagonal preconditioners and constraint preconditioners. Before introducing
these two types of preconditioners, we recall the spectral properties of the
KKT and SQD matrices and then, for the following of the thesis, we denote
the matrices of KKT or SQD form by

AKKT :=

[
A B
BT 0

]
and ASQD :=

[
A B
BT −C

]
, (2.16)

where A of order n is symmetric and positive definite, B of size n×m has a full
column rank (m ≤ n) and C of order m is symmetric and positive definite. As
we have seen in the previous sections, the convergence of some iterative methods
mainly depends on the eigenvalues distribution of the system. The spectrum
of the KKT matrix AKKT contains both positive and negative eigenvalues as
shown by Theorem 1.6, and Rusten and Winther (1992) have established an
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Algorithm 6 Preconditioned Minres method
1: Initialization
2: v0 = 0, w0 = 0, w1 = 0
3: Choose an initial vector x0;
4: Choose a preconditioner symmetric positive definite P ;
5: Ccompute v1 = b−Ax0

6: Solve Pz1 = v1, set γ1 =
√
vT1 z1

7: Set η = γ1, s0 = s1 = 0, c0 = c1 = 1
8: for j = 1 until convergence do
9: Lanczos

10: zj = zj/γj
11: δj =< Azj , zj >
12: vj+1 = Azj − δjvj − γjvj−1

13: solve Pzj+1 = vj+1

14: γj+1 =
√
vTj+1zj+1

15: QR factorization
16: α0 = cjδj − cj−1sjγj

17: α1 =
√
α2

0 + γ2
j+1

18: α2 = sjδj + cj−1cjγj
19: α3 = sj−1γj
20: Givens rotation
21: cj+1 = α0/α1; sj+1 = γj+1/α1

22: Update
23: wj+1 = (zj − α3wj−1 − α2wj)/α1

24: xj = xj−1 + cj+1ηwj+1

25: η = −sj+1η
26: end for

important result relating the spectrum of AKKT to the eigenvalues of A and to
the singular values of B.

Theorem 2.5 Assume A is symmetric positive definite and B has a full
column rank. Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of A and
0 < σ1 ≤ σ2 ≤ . . . ≤ σm be the singular values of B. Then the eigenvalues
of AKKT are bounded within[

λ1 −
√
λ2

1 + 4σ2
m

2
,
λn −

√
λ2
n + 4σ2

1

2

]
∪

[
λ1,

λn +
√
λ2
n + 4σ2

m

2

]
.



2.2. Preconditioning 33

Proof. (Rusten and Winther, 1992, Lemma 2.1) 2

This theorem has been extended to the case of the SQD system by Silvester
and Wathen (1994).

Theorem 2.6 Assume A is symmetric positive definite, B has a full col-
umn rank and C is symmetric semi-positive definite. Let 0 < λ1 ≤ λ2 ≤
. . . ≤ λn be the eigenvalues of A, 0 < σ1 ≤ σ2 ≤ . . . ≤ σm be the singular
values of B and 0 ≤ λC1 ≤ λC2 ≤ . . . ≤ λCm be the eigenvalues of C. Then
the eigenvalues of ASQD are bounded within

[
λ1 − λCm −

√
(λ1 + λCm)2 + 4σ2

m

2
,
λn −

√
λ2
n + 4σ2

1

2

]
∪
[
λ1,

λn +
√
λ2
n + 4σ2

m

2

]
.

Proof. (Silvester and Wathen, 1994, Lemma 2.2) 2

The only difference between the bounds in Theorems 2.5 and 2.6 is in the lower
bound on the negative eigenvalues (left interval). We can see that the largest
eigenvalue of C appears twice in the numerator.

In Section 2.2.1, we analyse eigenvalues distribution of the KKT or SQD
matrices preconditioned by the block diagonal preconditioners. We recall in
Section 2.2.2, the preconditioner introduced by Golub et al. (2006) and in
Section 2.2.3, we give our contribution to this preconditioner. Finally, we
introduce constraint preconditioners in Section 2.2.4.

2.2.1 Block diagonal preconditioners
If A is nonsingular, we can decompose the saddle-point matrix A into the
following block triangular factorization,

[
A B
BT −C

]
=

[
In 0

BTA−1 Im

] [
A 0
0 −(C +BTA−1B)

] [
In A−1B
0 Im

]
, (2.17)

where C + BTA−1B is called the Schur complement (2) of the saddle-point
matrix and is denoted by S. If we assume that A and C are positive definite,
then the Schur complement C + BTA−1B is also positive definite. Since the
matrix A has a block structure, it makes sense for the preconditioner P to also
have a block structure. The approach that we propose in this thesis is based

(2)We draw attention on the fact that we use the term "Schur complement" corresponding
to the opposite of the formal definition of the Schur complement defined by −C−BTA−1B.
The goal of which is to simplify and improve the clarity of this work.
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on a well-known result of Murphy et al. (2000). The authors consider, when
C = 0, the "ideal" block diagonal preconditioner,

P :=

[
A 0
0 S

]
, (2.18)

in which the exact Schur complement S := BTA−1B is used. The following
result gives the eigenvalues distribution of the preconditioned system P−1AKKT
of the form

P−1AKKT =

[
In A−1B

S−1BT 0

]
.

Theorem 2.7 Let P be given by (2.18) with the Schur complement
S := BTA−1B. Then the preconditioned matrix P−1AKKT has exactly
three distinct eigenvalues,

1,
1 +
√

5

2
,

1−
√

5

2
. (2.19)

Proof. See Murphy et al. (2000), Proposition 1 when the preconditioned
matrix P−1AKKT is nonsingular. 2

A similar result may be obtained for C 6= 0 and positive semidefinite, given
by Gould and Simoncini (2009). In this case, the "ideal" block diagonal pre-
conditioner (2.18) in which the exact Schur complement S := BTA−1B + C
is used, yields a preconditioned matrix P−1ASQD of the form

P−1ASQD =

[
In A−1B

S−1BT −S−1C

]
.

Theorem 2.8 Let P be given by (2.18) with the Schur complement
S := BTA−1B + C. Then the eigenvalues of the preconditioned ma-
trix P−1ASQD are equal to (2.19) or

1

2θ

(
θ − 1±

√
(1− θ)2 + 4θ2

)
,

where θ denotes the eigenvalues of the generalized eigenvalue problem(
BTA−1B + C

)
u = θ Cu.
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Proof. (Gould and Simoncini, 2009, Proposition 4.2) 2

In practice, these ideal preconditioners are too expensive to compute and
to apply and we use approximations of both blocks A and S to compute an
approximation denoted by

P̃ :=

[
Ã 0

0 S̃

]
. (2.20)

In Chapter 3, we introduce a new approach to approximate the two blocks
A and S using spectral information extracted from the matrix A. For the
following of this chapter, we only consider the KKT systems. We introduce
the block diagonal preconditioner given by Golub et al. (2006) leading to our
theoretical contribution.

2.2.2 Golub-Greif-Varah (GGV) preconditioner
In Golub et al. (2006), the authors assume that A is only positive semidefi-
nite and replace the (1, 1) block A of the KKT system by A + BWBT with
W ∈ IRm×m, a symmetric positive semidefinite matrix. The system (1.1)
with the matrix coefficient AKKT in (2.16) is thus transformed into the follow-
ing system [

A+BWBT B
BT 0

] [
u
v

]
=

[
f +BWBTu
g

]
or, equivalently,[

A+BWBT B
BT 0

] [
u
v

]
=

[
f +BWg
g

]
. (2.21)

The authors consider the block diagonal preconditioner as the "ideal" precon-
ditioner defined by[

A+BWBT 0
0 BT (A+BWBT )−1B

]
(2.22)

associated to the system (2.21), where BT (A+BWBT )−1B is the Schur com-
plement. The benefit of such an approach is that the (1, 1) block of the modi-
fied linear system (2.21) may be made nonsingular, hence positive definite, and
well-conditioned. Note that, in Golub et al. (2006), the choice W = ωIm is
considered, with ω a positive scalar such that the linear system becomes[

A+ ωBBT B
BT 0

] [
u
v

]
=

[
f + ωBg
g

]
, (2.23)

and the "ideal" associated preconditioner (Golub, Greif, Varah) becomes
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PGGV =

[
A+ ωBBT 0
0 BT (A+ ωBBT )−1B

]
. (2.24)

The authors perform an algebraic study of such a preconditioning approach,
showing how the eigenvalues of the preconditioned matrix PGGV−1AKKT are
clustered in some interval whose ends are isolated from the origin and well
bounded towards infinity. They also construct approximations of the block
diagonal preconditioner (2.24) by explicitly building some approximations of
the Schur complement BT

(
A+ ωBBT

)−1
B in which A + ωBBT is replaced,

for instance, by its diagonal part or its incomplete Cholesky decomposition
(see, e.g., Greenbaum, 1997, Section 11.1). In practice, they illustrate the
convergence curves of Minres for the solution of saddle-point systems with
different approximations of the preconditioner (2.24).

As mentioned at the end of Section 3 in Golub et al. (2006), the authors set

ω =
‖A‖2
‖B‖22

, (2.25)

but without motivating this choice. In the framework of our theoretical and
empirical study on block diagonal preconditioners, we wished to motivate this
choice of ω. We provide, in the next section, a theoretical result that we have
derived about the value of ω.

2.2.3 A theoretical contribution to the GGV preconditioner
As far as we know, no theoretical result exists in the literature to justify the
choice (2.25) for the value of the parameter ω in (2.24). We establish below a
new result given one approach to show that the choice of ω can be motivated
by the minimization of the condition number of the matrix A+ ωBBT .
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Theorem 2.9 Let A+ωBBT ∈ IRn×n with A symmetric positive semidef-
inite and singular, B ∈ IRn×m has full column rank (m ≤ n) with
0 < σ1 ≤ σ2 ≤ . . . ≤ σm be the singular values of B and w ≥ 0. Let
ξ1 ∈ IRm. Then

κ2(A+ ωBBT ) ≥ h(ω), (2.26)

with h(ω) = max(f1(ω), f2(ω), f4(ω)) where

f1(ω) =
λmax(A) + ω‖ξ1‖22σ2

1

ωσ2
m

,

f2(ω) =
‖ξ1‖22σ2

1

σ2
m

,

f4(ω) =
λmax(A) + ω‖ξ1‖22σ2

1

λmax(A)
,

and we have that
ω∗ := arg min

ω∈IR+
h(ω) =

‖A‖2
‖B‖22

.

Proof. The proof is divided in three parts. The first one uses the singu-
lar value decomposition of B to imply the existence of an orthogonal matrix
P ∈ IRn×n, to transform the matrix PT

(
A+ ωBBT

)
P , which is similar to

A+ωBBT , into a matrix with block structure. In the second part of the proof,
we analyse the Rayleigh quotient of PT

(
A+ ωBBT

)
P to deduce some bounds

on the extreme eigenvalues of this matrix. Finally, the last part studies these
bounds to deduce the desired result.

The first part of the proof relies on the singular value decomposition (SVD)
of B (see Appendix A) that guarantees the existence of orthogonal matrices
P ∈ IRn×n and V ∈ IRm×m such that

PTBV = Σ = diag(σ1, . . . , σm) ∈ IRn×m (m ≤ n) (2.27)

where {σi}mi=1 are the singular values of B satisfying 0 < σ1 ≤ σ2 ≤ . . . ≤ σm.
Isolating B from (2.27) and considering the following decomposition of P ,

P =
[
PB PB̄

]
(2.28)

with the columns of the matrix PB ∈ IRn×m in Im(B) and the columns of the
matrix PB̄ ∈ IRn×(n−m) in (Im(B))⊥ = Ker(BT ), lead to the thin SVD of B
(see, e.g., Golub and Van Loan, 2013, Section 2.4.3),
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B = PΣV T ,

=
[
PB PB̄

] [ Σ1

0(n−m)×m

]
V T , (2.29)

= PBΣ1V
T ,

with Σ1 = diag(σ1, . . . , σm) ∈ IRm×m. Substituting now (2.28) for P in the
matrix PT

(
A+ ωBBT

)
P (which is similar to A+ ωBBT ) and using the fact

that the columns of PB̄ ∈ Ker(BT ), we obtain

PT
(
A+ ωBBT

)
P =

[
PTB
PT
B̄

] (
A+ ωBBT

) [
PB PB̄

]
,

=

[
PTB (A+ ωBBT )PB PTBAPB̄
PT
B̄
APB PT

B̄
APB̄

]
.

Using (2.29), we observe that BBT = (PBΣ1V
T )(PBΣ1V

T )T = PBΣ2
1P

T
B ,

implying that

[
PTB (A+ ωBBT )PB PTBAPB̄
PT
B̄
APB PT

B̄
APB̄

]
=

[
PTBAPB + ωΣ2

1 PTBAPB̄
PT
B̄
APB PT

B̄
APB̄

]
,

by orthonormality of the columns of PB .
For the second part of the proof, consider, for any non-zero vector ξ ∈ IRn

having the partition
[
ξ1
ξ2

]
with ξ1 ∈ IRm and ξ2 ∈ IR(n−m), the Rayleigh

quotient

r(ξ) =

[
ξT1 ξT2

] [ PTBAPB + ωΣ2
1 PTBAPB̄

PT
B̄
APB PT

B̄
APB̄

] [
ξ1
ξ2

]
[
ξT1 ξT2

] [ ξ1
ξ2

] . (2.30)

Without loss of generality, we consider that the vector ξ is unit (‖ξ‖2 = 1)
and we denote by λmin and λmax the smallest and the largest eigenvalues of
PT (A+ ωBBT )P (and hence of A+ ωBBT ), respectively, implying that

λmin ≤ r(ξ) ≤ λmax, (2.31)

by the Rayleigh-Ritz theorem (see, e.g., Horn and Johnson, 1985, Section 4.2).
Using (2.30), we can rewrite (2.31) as

λmin ≤
[
ξT1 ξT2

] [ PTBAPB PTBAPB̄
PT
B̄
APB PT

B̄
APB̄

] [
ξ1
ξ2

]
+ ωξT1 Σ2

1ξ1 ≤ λmax, (2.32)
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or, equivalently,

λmin ≤ ξT1 PTBAPBξ1 + ξT1 P
T
BAPB̄ξ2 + ξT2 P

T
B̄APBξ1 (2.33)

+ ξT2 P
T
B̄APB̄ξ2 + ωξT1 Σ2

1ξ1 ≤ λmax.

As (2.33) is valid for all non-zero ξ ∈ IRn, we will select four specific configu-
rations which lead to some bounds on λmin and λmax. These bounds will be
exploited in the last part to conclude the proof.

a) In the first case, we consider ξ1 ∈ IRm and ξ2 = 0. The relation (2.33)
becomes

λmin ≤ ξT1 PTBAPBξ1 + ωξT1 Σ2
1ξ1 ≤ λmax.

Since the matrix A is symmetric positive semidefinite and PB has a full
column rank, we get that PTBAPB is symmetric positive semidefinite and
we thus have

ωξT1 Σ2
1ξ1 ≤ ξT1 PTBAPBξ1 + ωξT1 Σ2

1ξ1 ≤ λmax.

Since wξT1 Σ2
1ξ1 ≥ ωσ2

1‖ξ1‖22, we obtain the following inequality

ω‖ξ1‖22σ2
1 ≤ λmax. (2.34)

b) For the second case, we consider ξ1 = 0 and ξ2 ∈ IRn−m. The relation
(2.33) becomes

λmin ≤ ξT2 PTB̄APB̄ξ2 ≤ λmax.

Since ξT2 PTB̄APB̄ξ2 ≤ λmax(PT
B̄
APB̄)‖ξ2‖22 and ‖ξ2‖2 ≤ 1 (ξ being a unit

vector), we obtain the following inequality

λmin ≤ ξT2 PTB̄APB̄ξ2 ≤ λmax(PTB̄APB̄),

and thus

λmin ≤ λmax(PTB̄APB̄),

where λmax(PT
B̄
APB̄) denotes the largest eigenvalue of PT

B̄
APB̄ . We ob-

tain the next inequality by the fact that the supremum of a function over
IRn is greater than or equal to the supremum over the set of vectors of
the form x = PB̄y, y ∈ IRn−m,
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λmax(PTB̄APB̄) := max
y∈IRn−m

yTPT
B̄
APB̄y

yT y
≤ λmax(A) := max

x∈IRn

xTAx

xTx
,

by orthonormality of the columns of PB̄ . We thus have

λmin ≤ λmax(A). (2.35)

c) Now, let us consider for the third case that
[
ξ1
ξ2

]
= PT

[
ξ̄1
ξ̄2

]
, where

ξ̄ is the unit eigenvector associated to the eigenvalue of A equal to zero.
The relation (2.32) becomes

λmin ≤ 0 + ωξT1 Σ2
1ξ1 ≤ λmax.

Since wξT1 Σ2
1ξ1 ≤ ωσ2

m‖ξ1‖2 with ‖ξ1‖2 ≤ 1 (ξ being a unit vector), we
obtain the following inequality

λmin ≤ ωσ2
m. (2.36)

d) The last case we consider, is the vector
[
ξ1
ξ2

]
= PT

[
ξ̃1
ξ̃2

]
, where ξ̃

corresponds to the unit eigenvector associated to the largest eigenvalue
of A. The inequality (2.32) then becomes

λmin ≤ λmax(A) + ωξT1 Σ2
1ξ1 ≤ λmax.

Since ωξT1 Σ2
1ξ1 ≥ ωσ2

1‖ξ1‖22, we have

λmax(A) + ω‖ξ1‖22σ2
1 ≤ λmax. (2.37)

In last part of the proof, we finally derive some lower bounds on the condi-
tion number of A+ωBBT by combining the previous inequalities (2.34), (2.35),
(2.36) and (2.37). Respectively, by (2.36) and (2.37), by (2.34) and (2.36), by
(2.34) and (2.35), and by (2.35) and (2.37), we obtain

κ2(A+ ωBBT ) ≥ max (f1(ω), f2(ω), f3(ω), f4(ω)) ,

where
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f1(ω) =
λmax(A) + ω‖ξ1‖22σ2

1

ωσ2
m

,

f2(ω) =
‖ξ1‖22σ2

1

σ2
m

,

f3(ω) =
ω‖ξ1‖22σ2

1

λmax(A)
, (2.38)

f4(ω) =
λmax(A) + ω‖ξ1‖22σ2

1

λmax(A)
.

We can notice that f3(ω) and f4(ω) are linear functions with a slope equal to
‖ξ1‖22σ2

1

λmax(A)
and f2(ω) is a constant function. The function f3(ω) is always below

the function f4(ω), implying the following bound on the condition number,

κ2(A+ ωBBT ) ≥ max (f1(ω), f2(ω), f4(ω)) . (2.39)

We now analyse the two possible configurations of functions f1(ω), f2(ω) and
f4(ω) defined in (2.38). We consider the configuration where the intersections
between f1(ω) and f4(ω) is below f2(ω) in the left-hand subplot in Figure 2.1 or
these intersection is above f2(ω) in the right-hand subplot. The functions f1(ω),
f2(ω), f3(ω) and f4(ω) are plotted in blue, green, red and black respectively
for ω ∈ [0, 1] with f1(ω) = 1/ω, f2(ω) = 3, f3(ω) = 4 ω and f4(ω) = 1 + 4 ω
for the first configuration and we change f3(ω) = 25 ω and f4(ω) = 1 + 25 ω
for the second one. The grey area in Figure 2.1 represents the set of values of
κ2(A + ωBBT ) satisfying the bounds (2.39) in both configurations. The three
intersection points denoted by I1, I2 and I3 and belonging to the grey area, are
potential candidats to the problem

min
ω∈IR+

h(w),

with h(ω) := max (f1(ω), f2(ω), f4(ω)) .
Observe that the intersection between f1(ω) and f2(ω), denoted by I1, implies
that

λmax(A) = 0. (2.40)

Hence we have that A is a null matrix, which is impossible. On the other hand,
the intersection between f2(ω) and f4(ω), denoted by I2, implies that

‖ξ1‖22σ2
1

σ2
m

=
λmax(A) + ω‖ξ1‖22σ2

1

λmax(A)
,

or equivalently,

ω =
λmax(A)‖ξ1‖22σ2

1 − σ2
mλmax(A)

σ2
1σ

2
m‖ξ1‖22

,
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Figure 2.1 – Bounds on κ2(A+ ωBBT ).

which leads to

ω =
λmax(A)

σ2
m

(
‖ξ1‖22σ2

1 − σ2
m

‖ξ1‖22σ2
1

)
. (2.41)

Since ‖ξ1‖22 ≤ 1 and σ2
1 ≤ σ2

m, we have ‖ξ1‖22σ2
1 − σ2

m ≤ 0, which is impossible
since ω ≥ 0. The last possibility is the intersection between f1(ω) and f4(ω),
denoted by I3 that implies that

λmax(A) + ω‖ξ1‖22σ2
1

ωσ2
m

=
λmax(A) + ω‖ξ1‖22σ2

1

λmax(A)
,

which by simplification yields as only positive solution

ω =
λmax(A)

σ2
m

. (2.42)

Since A is symmetric, the 2-norm of A is equal to the largest eigenvalue of A
(see, e.g., Golub and Van Loan, 2013, Section 2.3.3) and the 2-norm of B is
equal to the largest singular value of B (see, e.g., Golub and Van Loan, 2013,
Section 2.4.2), proving the result. 2

We now illustrate the effect of different values of ω on the condition number
of the saddle-point system genhs28 from the CUTEr test set Gould, Orban and
Toint (2001b), as in Golub et al. (2006). This matrix is a 18× 18 saddle-point
matrix where A is 10 × 10 and B is 10 × 8. Figure 2.2 shows the evolution of
the condition number of the matrix obtained by adding a multiple of BBT to
A. We indicate the value of ω = ‖A‖2/‖B‖22 = 0.2308 by a red star. We can
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Figure 2.2 – Condition number of A + ωBBT for the genhs28 matrix from
CUTEr.

Figure 2.3 – Convergence profiles of Minres for the genhs28 matrix from
CUTEr.

see that the condition number starts to decrease towards the condition number
associated to ω = ‖A‖2/‖B‖22 before increasing again.
Figure 2.3 shows the convergence profile of preconditioned Minres with the
preconditioner (2.24) using ω = 0.2308 and Minres without preconditioner for
the above test problem. The iterations are stopped when the scaled residuals
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in respectively 2-norm and P−1 norm, are less than 10−8 and we can observe
that the convergence with preconditioning is faster.

In the case where A has high nullity, Greif and Schötzau (2006) replace
the Schur complement in (2.22) by the symmetric positive definite matrix W
introduced in Section 2.2.2. They show that the preconditioned saddle-point
system has n eigenvalues equal to 1 and m equal to −1, which implies that the
preconditioned Minres is expected to converge within two iterations.

Finally, in Golub and Greif (2003), the authors seek for a value of ω large
enough so as to eliminate the effect of the ill-conditioning of A, while not
too large to avoid the effect of the ill-conditioning of BBT . They analyse the
condition number of the saddle-point system (2.23) and show that the condition
number gets larger when ω increases, and behaves like ω2.

2.2.4 Constraint preconditioners
In this last section, we consider another type of preconditioners for solving
linear systems of the KKT form. This is a nonsingular preconditioner, called
constraint preconditioner of the form

Pc =

[
G B
BT 0

]
, (2.43)

where G ∈ IRn×n is an approximation of the matrix A. The constraint precon-
ditioner for indefinite linear systems was studied by Keller, Gould and Wathen
(2000), or see Benzi and Wathen (2008) for a survey. We introduce it in this
work for comparison purposes with the block diagonal preconditioners that we
develop in Chapter 4.

Note that the blocks of preconditioner Pc in (2.43) are unchanged from the
original matrix AKKT in (2.16) so that the preconditioner Pc is an indefinite
matrix as is AKKT . This implies that the Minres method is not appropriate
in this case. The authors in Gould, Hribar and Toint (2001a) show how the
CG method combined only with the constraint preconditioner can still be used
on indefinite linear systems of the KKT form. This is a real advantage for this
preconditioner since the CG method is a very efficient method.

A first observation is that we need to solve only one system with the matrix
Pc in (2.43) at each iteration of the CG algorithm. For instance, Dollar and
Wathen (2004) use a new factorization for the preconditioned step of CG based
on Schilders’ factorization. In exact arithmetic, a second advantage of this
preconditioner is that the CG combined with the constraint preconditioner
ensures that all the iterates satisfy the constraints and this is not the case for
other preconditoners.

Keller et al. (2000) give the next result on the eigenvalues distribution of
the preconditioned matrix P−1

c AKKT . We include it here for completeness.
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Theorem 2.10 Let AKKT ∈ IR(n+m)×(n+m) be the symmetric and indef-
inite matrix defined in (2.16). Assume Z ∈ IRn×(n−m) is a basis for the
null-space of BT . Preconditioning AKKT by the constraint preconditioner
Pc defined in (2.43) where G 6= A, implies that the matrix P−1

c AKKT has

1. an eigenvalue at 1 with multiplicity 2m, and

2. n − m eigenvalues which are defined by the generalized eigenvalue
problem ZTAZx = λZTGZx.

Proof. (Keller et al., 2000, Theorem 2.1) 2

We have introduced in this chapter the iterative methods to linear systems.
In the case where we consider the KKT systems or the SQD systems, we have
analysed in particular, the block diagonal preconditioner built on the matrix
A and on the Schur complement. In the next chapter, we introduce the inverse
approximations of A and of the Schur complement.
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Chapter 3
Spectral preconditioners for
positive definite matrices

As we have seen in Chapter 2, preconditioning techniques are used to accelerate
Krylov subspace methods and in particular, we have introduced in Section 2.2.1
the "ideal" block diagonal preconditioner,

P :=

[
A 0
0 S

]
, (3.1)

where S = BTA−1B + C is the exact Schur complement. Following the ideas
in Murphy et al. (2000), our goal in this chapter is to introduce good approx-
imations of the inverse of the (1, 1) block A and of the Schur complement S
used in Chapter 4 to build some appropriate preconditioners of the form (3.1)
for a KKT or a SQD system with matrix, respectively,

AKKT :=

[
A B
BT 0

]
and ASQD :=

[
A B
BT −C

]
, (3.2)

where A of order n is symmetric and positive definite, B of size n ×m has a
full column rank and C of order m is symmetric and positive definite. Indeed,
the starting point of this work was actually the former work that appeared
in Giraud et al. (2006) and Golub et al. (2007), giving the ground basis for
extracting and exploiting spectral information in the context of the solution
of linear symmetric positive definite systems. We analyse thereafter how this
could be extended to KKT or SQD systems, which exhibit very particular
algebraic structures that can be exploited in a specific manner.

We assume that A is ill-conditioned and that some first level of precon-
ditioning has been applied to the systems (3.2) so that the spectrum of A
is clustered, with relatively few very small eigenvalues. This situation occurs
when considering usual preconditioning techniques on A such as, for instance,

47
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the incomplete Cholesky decomposition (see, e.g., Greenbaum, 1997, Section
11.1) or a Jacobi scaling. For simplicity, we shall use AKKT or ASQD with
matrices A, B and C as defined in (3.2) to refer to the KKT matrix or SQD
matrix with the first level of preconditioning in use.

In a first stage, we also initially assume that we know the few very small
eigenvalues and associated eigenvectors of A. Based on this knowledge, we thus
aim at performing a further level of preconditioning on the system (3.2) that
ensures, when the first level is not satisfying, a sufficiently fast convergence of
Minres. We shall derive our preconditioners from prior spectral information
extracted from A directly, more precisely from the subspace associated with
the smallest eigenvalues of A. One of the benefits of our approach is that
it allows us to work separately on A and B, recombining them through the
Schur complement approximation. This aspect will be studied in more details
in Chapter 5.

The chapter is organized as follows. In Sections 3.1 and 3.2, we introduce
the inverse approximations of A and of the Schur complement using spectral
information we will consider, and we study the spectral properties of the precon-
ditioned matrices using these approximations. These spectral approximations
will be used in Chapter 4 to build two block diagonal preconditioners for the
KKT matrix or SQD matrix.

3.1 Spectral approximation of the inverse of the
(1,1) block

Let the eigendecomposition of the matrix A in (3.2) be given by

A = UΛUT = UγΛγU
T
γ + ŨγΛ̃γŨ

T
γ , (3.3)

where the spectrum {λi}ni=1 of A is split in two parts, with Λγ∈ IRp×p the
diagonal matrix containing the p eigenvalues less than a given positive num-
ber γ ∈ [λmin(A), λmax(A)], and with Λ̃γ∈ IR(n−p)×(n−p) the diagonal matrix
containing all the other (n − p) eigenvalues. The columns of the rectangular
matrices Uγ∈ IRn×p and Ũγ∈ IRn×(n−p) are the orthonormal sets of eigenvec-
tors corresponding to Λγ and Λ̃γ respectively and form the orthogonal matrix
U = [Uγ , Ũγ ] ∈ IRn×n. We assume that Uγ and Λγ are available(1).

Let α > 0 be some known estimate of the average of the eigenvalues in
Λ̃γ ( or of λmax(A)). Consider now the approximate inverse of A given by
the spectral low rank update (SLRU) approach developed by Carpentieri et al.
(2003),

A−1
γ = UγΛ−1

γ UTγ +
1

α
In . (3.4)

(1)or that some good approximations can be computed, for instance by the approach pro-
posed by Golub et al. (2007) and described in Chapter 7.
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The eigenvalues {µi}ni=1 of the matrix A−1
γ A, with

A−1
γ A =

(
UγΛ−1

γ UTγ +
1

α
In

)(
UγΛγU

T
γ + ŨγΛ̃γŨ

T
γ

)
= UγU

T
γ +

1

α
UγΛγU

T
γ +

1

α
ŨγΛ̃γŨ

T
γ

= Uγ

(
In +

1

α
Λγ

)
UTγ + Ũγ

(
1

α
Λ̃γ

)
ŨTγ ,

are {
µi = 1 + λi

α if λi ≤ γ (p eigenvalues)
µi = λi

α if λi > γ (n− p eigenvalues)
(3.5)

and are included within the interval[
min

(
α+ λmin(A)

α
,
γ

α

)
,max

(
α+ γ

α
,
λmax(A)

α

)]
. (3.6)

Note that the condition number of A−1
γ A is explicitly controlled by the choice

of the parameters α and γ (with λmin(A) and λmax(A) fixed) and is given by

κ2(A−1
γ A) =

max
(
α+γ
α , λmax(A)

α

)
min

(
α+λmin(A)

α , γα

) .
For instance, choosing γ = λmax(A)

100 and α = λmax(A)+γ
2 yields

γ

α
=

(
λmax(A)

100

)(
2

λmax(A) + γ

)
=

2λmax(A)

100λmax(A) + λmax(A)
(3.7)

=
2

101
,

and

λmax(A)

α
=

2λmax(A)

λmax(A) + γ

=
2λmax(A)

λmax(A) + λmax(A)
100

(3.8)

=
200

101
.
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Assuming that α+λmin(A)
α = O(1) and using (3.7) and (3.8) in (3.6), we obtain

that the spectrum λ(A−1
γ A) = {µi}ni=1 of A−1

γ A satisfies,

µi ∈
[
min

(
O(1),

γ

α

)
,max

(
1 +

γ

α
,
λmax(A)

α

)]
=

[
min

(
O(1),

2

101

)
,max

(
1 +

2

101
,

200

101

)]
(3.9)

=

[
2

101
,

200

101

]
,

for i = 1, . . . , n, so that

κ2(A−1
γ A) ≤ 100.

Also observe that the matrix A−1
γ in (3.4) has similar ingredients to those

used in deflation techniques but has not the form of the projector used in these
techniques (see Giraud et al., 2006, for instance). Its effect is indeed not of a
deflation type, in the sense that no eigenvalue of the matrix A−1

γ A is shifted to
zero.

The choice of SLRU approach for the approximate inverse of A is motivated
by the simple form of the expression (3.4). The family of limited-memory pre-
conditioners (LMP) could be a good alternative allowing other information as
Ritz vectors or descent directions instead of spectral information to generalize
the approach developed in this thesis. We refer to the PhD thesis of Tshimanga
(2007) for more details on LMP preconditioners.

We illustrate the accuracy of the bounds (3.6) on a symmetric positive
definite matrix of order n = 300 randomly generated by the Matlab function
sprandsym (with a density of 0.05 and preset eigenvalues λi = 10−8×fi , where
fi is random uniformly distributed in (0, 1)). The smallest eigenvalue is 10−8,
while the largest is 9.93 10−1 implying that the condition number of A is 9.9 107.
As a first level of preconditioning, we consider the incomplete Cholesky decom-
position of this matrix with a drop tolerance of 10−4 (see, e.g., Greenbaum,
1997, Section 11.1), followed by a Jacobi scaling to set the diagonal of the pre-
conditioned matrix to 1. The spectrum of the resulting preconditioned matrix
is well clustered, with 42 eigenvalues less than γ = λmax(A)

100 ≈ 3.8 10−2, and
with extreme eigenvalues of 1.7 10−7 and 3.8. The condition number is then
2.2 107. Figure 3.1 shows (on logarithmic scale) the eigenvalues of this pre-
conditioned matrix. For simplicity, we shall denote as A this preconditioned
matrix in the following.



3.1. Spectral approximation of the inverse of the (1,1) block 51

Figure 3.1 – Spectrum of the test matrix A after incomplete Cholesky precon-
ditioning and Jacobi scaling.

With the knowledge of the eigenvalues {λi}42
i=1 (those less than γ) and the

corresponding eigenvectors, we can set up Λγ ∈ IR42×42 and Uγ ∈ IR300×42 as
well as α = 1.16 (the average of the remaining eigenvalues). Finally, the bounds
given by (3.6) ensure that the eigenvalues of A−1

γ A belong to [3.2 10−2, 3.3]
and κ2(A−1

γ A) ≤ 103.1, which is illustrated by the eigenvalue distribution in
Figure 3.2. The eigenvalue distribution of A−1

γ A shows a nice clustering around
1, which emphasizes the fact that A−1

γ is a good preconditioner for A.

Figure 3.2 – Eigenvalue distribution of A−1
γ A.
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3.2 Spectral approximation of the Schur comple-
ment

We now introduce the approximation of the Schur complement of the matrices
AKKT and ASQD as the matrices Sγ = BTA−1

γ B and Sγ = BTA−1
γ B + C,

respectively. Substituting (3.4) for A−1
γ , the approximation Sγ becomes

Sγ = BT
(
UγΛ−1

γ UTγ +
1

α
In

)
B, (3.10)

for the KKT case, and

Sγ = BTA−1
γ B + C = BT

(
UγΛ−1

γ UTγ +
1

α
In

)
B + C, (3.11)

for the SQD case. We refer the reader to the book of Zhang (2010) for a good
survey on the Schur complement and its properties. In the next section, we
develop an approximation for the inverse of Sγ in (3.10) and we show that it
is a good preconditioner for the Schur complement. Next, we generalize the
theoretical result to the SQD case using (3.11) and point out the modifica-
tions implied on the bounds on the eigenvalues of the preconditioned Schur
complement.

3.2.1 Spectral approximation of the inverse of the Schur
complement for matrices of the KKT form

We write Sγ in (3.10) using the notation

Jγ := BTUγΛ
− 1

2
γ , (3.12)

as

Sγ = (BTUγΛ
− 1

2
γ )(Λ

− 1
2

γ UTγ B) +
1

α
BTB

= JγJ
T
γ +

1

α
BTB.

Then using the Sherman-Morrison-Woodbury formula (see Appendix A or
Golub and Van Loan, 2013), we can derive the following expression for the
inverse of Sγ ,

S−1
γ =

(
1

α
BTB

)−1

−
(

1

α
BTB

)−1

Jγ

(
In + JTγ

(
1

α
BTB

)−1

Jγ

)−1

JTγ

(
1

α
BTB

)−1

,

and substituting (3.12) for Jγ yields,

S−1
γ = α(BTB)−1

−α2(BTB)−1BTUγ
(

Λγ + αUTγ B(BTB)−1BTUγ
)−1

UTγ B(BTB)−1,
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or, equivalently,

S−1
γ = α(BTB)−1/2

(
Im −Kγ

(
1

α
Λγ +KT

γ Kγ

)−1

KT
γ

)
(BTB)−1/2,

(3.13)

where Kγ ∈ IRm×p is the operator defined by

Kγ := (BTB)−1/2BTUγ . (3.14)

Observe that Kγ involves the constraint matrix B and the matrix Uγ ∈ IRn×p,
which contains the orthonormal set of the p eigenvectors associated to the eigen-
values in A below a given threshold γ. The singular values of Kγ correspond
to the cosines of the principal angles between the two subspaces Im(B) and
Im(Uγ), since B(BTB)−1/2 represents an orthonormal basis for Im(B) (see
Appendix A or Golub and Van Loan, 2013, Section 6.4.3). The expression

Kγ

(
1

α
Λγ +KT

γ Kγ

)−1

KT
γ

in (3.13) explicitly shows the interaction between A and B, with the combined
effects of both the smallest eigenvalues of A and the cosines of the principal
angles between Im(B) and Im(Uγ). This interaction between A and B will
be studied in detail in Chapter 5. Note that the matrix 1

αΛγ +KT
γ Kγ ∈ IRp×p

is a rank-p update and is of a small dimension p.
Theorem 3.1 below gives the bounds that we have derived on the eigen-

values of the preconditioned Schur complement. This proof is based on the
CS decomposition (see Appendix A or Paige and Saunders, 1981, Section 4).
However, this result, submitted to the journal COAP(2) has been refined by an
anonymous referee who gave us the proof, as shown in Theorem 3.2.

Theorem 3.1 Let A and Aγ ∈ IRn×n be given by (3.3) and (3.4) respec-
tively. Then the spectrum λ(S−1

γ S) = {νi}mi=1 of the matrix S−1
γ S ∈ IRm×m

with S = BTA−1B and Sγ = BTA−1
γ B satisfies:

νi ∈
[

α

α+ λmax(A) + γ
,
α+ γ

γ

]
, for i = 1, . . . ,m, (3.15)

with α > 0 and γ ∈ [λmin(A), λmax(A)] as defined above.

(2)Computational Optimization and Applications.
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Proof. See Appendix B for the proof. 2

Theorem 3.2 Let A and Aγ ∈ IRn×n be given by (3.3) and (3.4) respec-
tively. Then the spectrum λ(S−1

γ S) = {νi}mi=1 of the matrix S−1
γ S ∈ IRm×m

with S = BTA−1B and Sγ = BTA−1
γ B satisfies:

νi ∈
[
min

(
α

α+ γ
,

α

λmax(A)

)
,max

(
α

α+ λmin(A)
,
α

γ

)]
, (3.16)

for i = 1, . . . ,m, with α > 0 and γ ∈ [λmin(A), λmax(A)].

Proof. First note that the matrices S and Sγ are symmetric and positive
definite, hence nonsingular, by definition of A and Aγ respectively, and by the
full column rank property of B ∈ IRn×m (see, e.g., Golub and Van Loan, 2013,
Section 4.2.1). The eigenvalue problem S−1

γ Sx = λx is then equivalent to the
generalized eigenvalue problem:

Sx = λSγx, (3.17)

that is, λ(S−1
γ S) = λ(S, Sγ) = {νi}mi=1.

Consider, for a non-zero vector y ∈ IRm, the generalized Rayleigh quotient

ν(y) =
yTSy

yTSγy

=
yTBTA−1By

yTBTA−1
γ By

,

implying that the extreme eigenvalues of S−1
γ S are

νm = max
y∈IRm

ν(y) and ν1 = min
y∈IRm

ν(y).

We first obtain the following inequality by the fact that the supremum of a
function over IRn is greater than or equal to the supremum over the set of
vectors of the form x = By, y ∈ IRm,

νm ≤ max
x∈IRn

xTA−1x

xTA−1
γ x

= µmax(AγA
−1)

=
1

µmin(AA−1
γ )

.
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In the same way, we deduce that

ν1 ≥ min
x∈IRn

xTA−1x

xTA−1
γ x

= µmin(AγA
−1)

=
1

µmax(AA−1
γ )

.

By the interval (3.6) that contains the eigenvalues of A−1
γ A, we conclude that

νm ≤ 1

min
(
α+λmin(A)

α , γα

)
= max

(
α

α+ λmin(A)
,
α

γ

)
and

ν1 ≥ 1

max
(
α+γ
α , λmax(A)

α

)
= min

(
α

α+ γ
,

α

λmax(A)

)
.

2

The following theorem shows that the bounds on the eigenvalues of the
preconditioned Schur complement given by Theorem 3.2 are sharper than the
bounds given by Theorem 3.1.

Theorem 3.3 The inequalities

min

(
α

α+ γ
,

α

λmax(A)

)
≥ α

α+ λmax(A) + γ
(3.18)

and

max

(
α

α+ λmin(A)
,
α

γ

)
≤ α+ γ

γ
(3.19)

hold.
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Proof. Since λmax(A) > 0, α > 0 and γ > 0, we have

α

α+ γ
≥ α

α+ λmax(A) + γ
and

α

λmax(A)
≥ α

α+ λmax(A) + γ
,

implying the first inequality (3.18). In the same way, since

α

α+ λmin(A)
= 1− λmin(A)

α+ λmin(A)
< 1 and

α+ γ

γ
=
α

γ
+ 1 > 1,

as λmin(A) > 0, we obtain

α

α+ λmin(A)
≤ α+ γ

γ
. (3.20)

The inequality

α

γ
≤ α+ γ

γ
(3.21)

is obvious. By (3.20) and (3.21), we derive (3.19). 2

Similarly to A−1
γ A, the condition number of S−1

γ S is fully controlled by the
choice of the parameters α and γ. For instance, choosing γ = λmax(A)

100 and
α = λmax(A)+γ

2 , implies that

α+ γ =
λmax(A) + γ

2
+ γ

=
λmax(A)

2
+

3γ

2

=
103λmax(A)

200

and by (3.7) and (3.8), we have

α

γ
=

101

2
and

α

λmax(A)
=

101

200
. (3.22)

Assuming again that
α+ λmin(A)

α
= O(1), Theorem 3.2 implies that the spec-

trum λ(S−1
γ S) = {νi}mi=1 of the matrix S−1

γ S satisfies
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νi ∈
[
min

( 101
200

λmax(A)
103
200

λmax(A)
,

101

200

)
,max

(
O(1),

101

2

)]
=

[
min

(
101

103
,

101

200

)
,max

(
O(1),

101

2

)]
(3.23)

=

[
101

200
,

101

2

]
,

for i = 1, . . . ,m, so that

κ2(S−1
γ S) ≤ 100.

We illustrate the tightness of the bounds in Theorem 3.2 using the pre-
viously introduced test example for the matrix A. The constraint matrix
B ∈ IR300×150 is built by means of the Matlab function sprandn (with a den-
sity of 0.05 and a condition number of 104). The resulting Schur complement
S = BTA−1B is ill-conditioned, with a smallest eigenvalue of 2.4 10−6 and
a largest of 1.4 105. In the same way, the Schur complement approximation
Sγ = BTA−1

γ B exhibits the same ill-conditioning with extreme eigenvalues of
2.1 10−6 and 1.4 105 and Figure 3.3 shows that the eigenvalue distribution of Sγ
is very close to the eigenvalue distribution of S. Finally, the bounds given by
Theorem 3.2 ensure that the eigenvalues of S−1

γ S belong to [0.3, 30.5] implying
that κ2(S−1

γ S) ≤ 101.7, which is illustrated by the eigenvalue distribution in
Figure 3.4. With respect to these bounds, the extreme eigenvalues of S−1

γ S
are νmin ≈ 0.56 and νmax ≈ 16.28. The eigenvalue distribution of S−1

γ S also
shows a nice clustering around 1, which emphasizes the fact that S−1

γ is a good
preconditioner for S.

3.2.2 Spectral approximation of the inverse of the Schur
complement for matrices of the SQD form

In the previous section, we have introduced an approximation for the inverse
of the Schur complement of KKT matrices and we have shown using one the-
oretical result that this approximation is a good preconditioner for the exact
Schur complement. In this section, we extend the proposed approach for SQD
matrices. Writing Sγ in (3.11) using the notation (3.12), we get

Sγ = (BTUγΛ
− 1

2
γ )(Λ

− 1
2

γ UTγ B) +
1

α
BTB + C

= JγJ
T
γ +

1

α
BTB + C.

Using again the Sherman-Morrison-Woodbury formula, we can derive the fol-
lowing expression for the inverse of Sγ ,
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Figure 3.3 – Eigenvalue distribution of S and S−1
γ .

Figure 3.4 – Eigenvalue distribution of S−1
γ S.
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S−1
γ =

(
1

α
BTB + C

)−1

−
(

1

α
BTB + C

)−1

Jγ

(
In + JTγ

(
1

α
BTB + C

)−1

Jγ

)−1

JTγ

(
1

α
BTB + C

)−1

,

which yields, with the notation Bα = BTB + αC,

S−1
γ = αB−1

α − α2B−1
α BTUγ(Λγ + αUTγ BB

−1
α BTUγ)−1UTγ BB

−1
α ,

or, equivalently,

S−1
γ = α(BTB + αC)−1/2

(
Im −Kγ

(
1

α
Λγ +KT

γ Kγ

)−1

KT
γ

)
(BTB + αC)−1/2,

(3.24)

where Kγ ∈ IRm×p is the operator defined by

Kγ := (BTB + αC)−1/2BTUγ . (3.25)

We point out the similarity of the matrix S−1
γ in (3.24) with the one associated

to the KKT case (3.13). The only difference is that the term BTB is replaced
by BTB + αC. In the same way, we have the following result, which estab-
lishes the lower and upper bounds on the eigenvalues of the Schur complement
preconditioned by the matrix S−1

γ in (3.24).

Theorem 3.4 Let A and Aγ ∈ IRn×n be given by (3.3) and (3.4), respec-
tively. Then the spectrum λ(S−1

γ S) = {νi}mi=1 of the matrix S−1
γ S ∈ IRm×m

with S = BTA−1B + C and Sγ = BTA−1
γ B + C satisfies:

νi ∈
[

α

2α+ λmax(A) + γ
,
α+ 2γ

γ

]
, for i = 1, . . . ,m, (3.26)

with α > 0 and γ ∈ [λmin(A), λmax(A)].

Proof. The proof follows steps similar to the ones of Theorem 3.1 and
uses the positive definiteness of C, see Appendix B. 2

We have also generalized the proof of Theorem 3.2 given by the anonymous
referee.
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Theorem 3.5 Let A and Aγ ∈ IRn×n be given by (3.3) and (3.4), respec-
tively. Then the spectrum λ(S−1

γ S) = {νi}mi=1 of the matrix S−1
γ S ∈ IRm×m

with S = BTA−1B + C and Sγ = BTA−1
γ B + C satisfies,

νi ∈
[
min

(
α

2α+ γ
,

α

α+ λmax(A)

)
,max

(
2α+ λmin(A)

α+ λmin(A)
,
α+ γ

γ

)]
,(3.27)

for i = 1, . . . ,m, with α > 0 and γ ∈ [λmin(A), λmax(A)].

Proof. The matrices S and Sγ are symmetric and positive definite, hence
nonsingular, by definition of A, Aγ and C, and by the full column rank prop-
erty of B ∈ IRn×m (see, e.g., Golub and Van Loan, 2013, Section 4.2.1). We
now consider the eigenvalue problem S−1

γ Sx = λx, which is equivalent to the
generalized eigenvalue problem:

Sx = λSγx, (3.28)

that is, λ(S−1
γ S) = λ(S, Sγ) = {νi}mi=1.

The generalized Rayleigh quotient, for a non-zero vector y ∈ IRm, is defined
as

ν(y) =
yTSy

yTSγy
. (3.29)

Using the definitions of S and Sγ , one can thus write

ν(y) =
yT (BTA−1B + C)y

yT (BTA−1
γ B + C)y

=
yTBTA−1By

yT (BTA−1
γ B + C)y

+
yTCy

yT (BTA−1
γ B + C)y

, (3.30)

and in the same way,

1

ν(y)
=

yT (BTA−1
γ B + C)y

yT (BTA−1B + C)y

=
yTBTA−1

γ By

yT (BTA−1B + C)y
+

yTCy

yT (BTA−1B + C)y
. (3.31)

Since the matrices C, BTA−1B and BTA−1
γ B are symmetric positive definite,

we have

ν(y) ≤ yTBTA−1By

yTBTA−1
γ By

+ 1 (3.32)
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and
1

ν(y)
≤
yTBTA−1

γ By

yTBTA−1By
+ 1. (3.33)

The fact that the supremum of a function over IRn is greater than or equal
to the supremum over the set of vectors of the form x = By with y ∈ IRm,
implies, using (3.32),

νm = max
y∈IRm

ν(y) ≤ max
y∈IRm

yTBTA−1By

yTBTA−1
γ By

+ 1

≤ max
x∈IRn

xTA−1x

xTA−1
γ x

+ 1

= µmax(AγA
−1) + 1. (3.34)

=
1

µmin(AA−1
γ )

+ 1.

Similarly, we have, by (3.33),

ν1 = min
y∈IRm

ν(y) ≥ min
y∈IRm

1
yTBTA−1

γ By
yTBTA−1By

+ 1

≥ min
x∈IRn

1
xTA−1

γ x
xTA−1x

+ 1

=
1

max
x∈IRn

xTA−1
γ x

xTA−1x
+ 1

(3.35)

=
1

µmax(AA−1
γ ) + 1

.

Using (3.6), we can deduce that

νm ≤ 1

min
(
α+λmin(A)

α , γα

) + 1

= max

(
α

α+ λmin(A)
,
α

γ

)
+ 1

= max

(
2α+ λmin(A)

α+ λmin(A)
,
α+ γ

γ

)
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and

ν1 ≥ 1

max
(
α+γ
α , λmax(A)

α

)
+ 1

=
1

max
(

2α+γ
α , α+λmax(A)

α

)
= min

(
α

2α+ γ
,

α

α+ λmax(A)

)
.

2

We can again illustrate the tightness of the bounds in Theorem 3.5 on the
previously introduced test example for the matrices A and B (see Sections
3.1 and 3.2.1). The matrix C ∈ IR150×150 is built by means of the Matlab
function sprandn (with a density of 0.05 and a condition number of 104). The
bounds given by Theorem 3.5 ensure that the eigenvalues of S−1

γ S belong to
[0.2, 31.5], which is illustrated by the eigenvalue distribution in Figure 3.5. With
respect to these bounds, the extreme eigenvalues of S−1

γ S are νmin ≈ 0.62 and
νmax ≈ 9.76. The eigenvalue distribution of S−1

γ S also shows a nice clustering
around 1, which emphasizes the fact that S−1

γ is a good preconditioner for S.

Figure 3.5 – Eigenvalue distribution of S−1
γ S.



Chapter 4
Spectral preconditioners for
saddle-point matrices

In this chapter, we investigate two alternatives to get efficient approximations
of the "ideal” block diagonal preconditioner

P =

[
A 0
0 S

]
, (4.1)

with the Schur complement S = BTA−1B proposed by Murphy et al. (2000)
for the KKT matrix

AKKT =

[
A B
BT 0

]
, (4.2)

and with S = BTA−1B + C proposed by Gould and Simoncini (2009) for the
SQD matrix

ASQD =

[
A B
BT −C

]
. (4.3)

As we have seen in Chapter 2, the performance of the Minres method depends
on the distribution of the eigenvalues of the saddle-point matrix, which are
bounded within the intervals given in Theorems 2.5 and 2.6 for the KKT matrix
and the SQD matrix, respectively.

The preconditioner in (4.1) may be computationally expensive and in prac-
tice, approximations of A and of the Schur complement are necessary.

In Pestana and Wathen (2014), the authors study the bounds on the eigen-
values of saddle-point systems preconditioned by block diagonal preconditioners
when saddle-point systems require discretization as for instance, electromag-
netic problems or incompressible fluid dynamics problems. With respect to
block diagonal preconditioners of the form (4.1) combining the knowledge of
some spectral information, we refer the reader to Olshanskii and Simoncini

63
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(2010). In this work, the authors perform an analysis of the eigenvalue distribu-
tion of the preconditioned Schur complement matrix, showing how the presence
of a few outliers in this preconditioned Schur complement matrix is accurately
inherited by the global preconditioned matrix P−1AKKT . They then propose a
strategy to accelerate the convergence of Minres with a deflation technique ac-
cording to which they incorporate an approximation of those eigenvectors into
the preconditioned matrix P−1AKKT associated with the (inherited) outlying
eigenvalues closest to zero.

Following the developments in Chapter 3, we incorporate the approxima-
tions A−1

γ and S−1
γ for the inverse of A and S for the KKT systems or the SQD

systems, in Sections 4.1 and 4.2 respectively, to approximate the inverse of P.
These sections introduce each two alternatives, of the form

P1 :=

[
Aγ 0
0 Sγ

]
and P2 :=

[
A 0
0 Sγ

]
,

for the inverse of P and we give the theoretical bounds on the eigenvalues
of the preconditioned KKT matrices or SQD matrices, respectively. Next, we
compare the effectiveness of these alternative block diagonal preconditioners on
KKT systems and SQD systems in Section 4.3 and 4.4, respectively. Finally,
we focus on the KKT systems and we combine the preconditioners with a first
level of preconditioning.

4.1 Spectral preconditioners for the KKT sys-
tems

To simplify the writing, we make the short notation P1 to denote our first
alternative for P in (4.1), which we approximate with

P1 :=

[
Aγ 0
0 Sγ

]
, (4.4)

where Sγ = BTA−1
γ B with A−1

γ = UγΛ−1
γ UTγ + 1

αIn as given in (3.4). The
following theorem gives the bounds on the eigenvalues of aAKKT preconditioned
by P1.
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Theorem 4.1 Let P1 be given by (4.4) with A−1
γ = UγΛ−1

γ UTγ + 1
αIn

and Sγ = BTA−1
γ B. Then the eigenvalues of the preconditioned matrix

P−1
1 AKKT are bounded within the intervals[
µmin −

√
µ2

min + 4

2
,
µmax −

√
µ2

max + 4

2

]⋃[
µmin,

µmax +
√
µ2

max + 4

2

]

where

µmin = min

(
α+ λmin(A)

α
,
γ

α

)
and µmax = max

(
α+ γ

α
,
λmax(A)

α

)
(4.5)

denote the lower and upper bounds on the eigenvalues of A−1
γ A given by

(3.6).

Proof. Note that P−1
1 AKKT is similar to P−1/2

1 AKKTP−1/2
1 , with

P−1/2
1 AKKTP−1/2

1 =

[
A
−1/2
γ 0

0 S
−1/2
γ

] [
A B
BT 0

][
A
−1/2
γ 0

0 S
−1/2
γ

]

=

[
A
−1/2
γ AA

−1/2
γ Q1

QT1 0

]
, (4.6)

where Q1 = A
−1/2
γ BS

−1/2
γ satisfies

QT1 Q1 = S−1/2
γ BTA−1/2

γ A−1/2
γ BS−1/2

γ

= S−1/2
γ SγS

−1/2
γ (4.7)

= Im.

We then recall that the eigenvalues of A−1
γ A (which is similar to A−1/2

γ AA
−1/2
γ )

are bounded within the interval [µmin, µmax], with µmin and µmax defined by
(4.5). Observing that the singular values σi of Q1 in (4.6) are equal to 1 by
(4.7), we get the desired result from the bounds in Theorem 2.5 applied on
(4.6) with σ1 = σm = 1, λ1 = µmin and λn = µmax. 2

For instance, choosing as previously in Section 3.1 γ = λmax(A)
100 and

α = λmax(A)+γ
2 yields

µmin =
2

101
and µmax =

200

101
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as computed in (3.9) and by Theorem 4.1, the eigenvalues of P−1
1 AKKT are

included within the interval

 2
101 −

√(
2

101

)2
+ 4

2
,

200
101 −

√(
200
101

)2
+ 4

2

⋃ 2

101
,

200
101 +

√(
200
101

)2
+ 4

2

 ,
or, equivalently, [−0.99,−0.42]∪ [0.02, 2.40] , and the condition number of pre-
conditioned matrix κ2(P−1

1 AKKT ) ≤ 121.21.
Observe that, by Theorem 4.1, the left interval, associated to the negative

eigenvalues in P−1
1 AKKT , is basically well bounded and isolated away from zero,

as opposed to the right interval (the one associated to the positive eigenvalues in
P−1

1 AKKT ), which is well bounded towards infinity but not isolated away from
zero. Indeed, we can assume from (4.5), that µmax = O(1) (for reasonable
choices of α), whereas µmin = min (O(1),O(γ)) can actually tend to zero with
small values for the parameter γ, and this mostly influences only the lower
bound in the right interval.

The other alternative to approximate the "ideal” block diagonal precondi-
tioner P is to replace only the Schur complement by its approximation Sγ .
Indeed, knowing that the spectral information extracted from the (1, 1) block
A is readily available, it is also reasonable to consider that solutions with A
can be obtained in a cheap way by means of deflated Krylov techniques as in
Giraud et al. (2006). We thus consider the second preconditioner

P2 :=

[
A 0
0 Sγ

]
(4.8)

and we obtain the following result about the clustering of the eigenvalues in
the preconditioned matrix P−1

2 AKKT , which uses the result below on the eigen-
values of matrix where the (1, 1) block is the identity.

Theorem 4.2 Let 0 < σ1 ≤ σ2 ≤ . . . ≤ σm the singular values of B. Then
the eigenvalues of [

In B
BT 0

]
are 0 with multiplicity r, 1 with multiplicity n −m + r and 1±

√
1+4σ2

i

2
for i = 1, . . . ,m− r.

Proof. (Fischer, Ramage, Silvester and Wathen, 1998(1), Lemma 2.1 for η =
1). Note that, when B has a full column rank, the KKT matrix is nonsingular

(1)This reference has been given by an anonymous referee.



4.1. Spectral preconditioners for the KKT systems 67

implying that r = 0. 2

We can now state the following theorem, which gives the bounds on the eigen-
values of P−1

2 AKKT .

Theorem 4.3 Let P2 be given by (4.8) with A−1
γ = UγΛ−1

γ UTγ + 1
αIn

and Sγ = BTA−1
γ B. Then the eigenvalues of the preconditioned matrix

P−1
2 AKKT are bounded within the intervals[
1−
√

1 + 4νmax

2
,

1−
√

1 + 4νmin

2

]
∪ {1} ∪

[
1 +
√

1 + 4νmin

2
,

1 +
√

1 + 4νmax

2

]
where

νmin = min

(
α

α+ γ
,

α

λmax(A)

)
and νmax = max

(
α

α+ λmin(A)
,
α

γ

)
(4.9)

denote the lower and upper bounds on the eigenvalues of S−1
γ S given by

(3.16).

Proof. Note that P−1
2 AKKT is similar to P−1/2

2 AKKTP−1/2
2 , with

P−1/2
2 AKKTP−1/2

2 =

[
A−1/2 0

0 S
−1/2
γ

] [
A B
BT 0

] [
A−1/2 0

0 S
−1/2
γ

]
=

[
In Q2

QT2 0

]
, (4.10)

where Q2 = A−1/2BS
−1/2
γ satisfies

QT2 Q2 = S−1/2
γ BTA−1/2A−1/2BS−1/2

γ

= S−1/2
γ SS−1/2

γ .

As we have seen, the eigenvalues νi of S−1
γ S (which is similar to S−1/2

γ SS
−1/2
γ )

are bounded within the interval [νmin, νmax] , with νmin and νmax defined by
(4.9). We deduce from Theorem 4.2 applied on (4.10), that the eigenvalues of

(4.10) are 1 with multiplicity n −m and 1±
√

1+4σ2
i

2 for i = 1, . . . ,m implying
the bounds of the desired result. 2

For instance, choosing as previously in Section 3.1 γ = λmax(A)
100 and

α = λmax(A)+γ
2 yields

νmin =
101

200
and νmax =

101

2
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as computed in (3.23), so that Theorem 4.3 implies that the eigenvalues of
P−1

2 AKKT are included within the interval

 1−
√

1 + 4
(
101
2

)
2

,
1−

√
1 + 4

(
101
200

)
2

 ∪ {1} ∪
 1 +

√
1 + 4

(
101
200

)
2

,
1 +

√
1 + 4

(
101
2

)
2



or, equivalently, [−6.62,−0.37] ∪ {1} ∪ [1.37, 7.62] , and the condition number
κ2(P−1

2 AKKT ) ≤ 20.59.
Note that Theorem 4.3 allows isolating the eigenvalue 1 and tightening the

bounds on the positive part of the spectrum. This can be of interest when
deriving upper bounds for the rate of convergence in Krylov methods such as
Minres for instance. Indeed, it is possible to partly refine the convergence rate
by incorporating the specific root 1 into the polynomials used to establish this
rate, and obtain a rate that depends directly on the bounds of the two extreme
intervals (without taking the value 1 into account).

4.2 Spectral preconditioners for the SQD sys-
tems

Similarly to the previous section, we now use Theorem 2.6 to generalize the
previous results to the SQD matrix. To simplify the writing, we make again the
short notation(2) P1 to denote our first alternative for P, which we approximate
with

P1 :=

[
Aγ 0
0 Sγ

]
(4.11)

where the Schur complement Sγ = BTA−1
γ B + C with A−1

γ = UγΛ−1
γ UTγ +

1
αIn. The next result gives the bounds on the eigenvalues of a SQD matrix
preconditioned by P1.

(2)We draw attention on the fact that we use the same notation for both alternatives of the
preconditioners in the case of the KKT systems and the SQD systems.
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Theorem 4.4 Let P1 be given by (4.11) with A−1
γ = UγΛ−1

γ UTγ + 1
αIn and

Sγ = BTA−1
γ B + C. Then the eigenvalues of the preconditioned matrix

P−1
1 ASQD are bounded within the intervals[

µmin − ωmax −
√

(µmin + ωmax)2 + 4ω̄max

2
,
µmax −

√
µ2
max + 4ω̄min

2

]
⋃

[
µmin,

µmax +
√
µ2
max + 4ω̄max

2

]
where

µmin = min

(
α+ λmin(A)

α
,
γ

α

)
and µmax = max

(
α+ γ

α
,
λmax(A)

α

)
(4.12)

denote the lower and upper bounds on the eigenvalues of A−1
γ A given

by (3.6), with ω̄min and ω̄max, the smallest and the largest eigenvalues
of S−1

γ (BTA−1
γ B), respectively and with ωmax the largest eigenvalues of

S−1
γ C.

Proof. Note that P−1
1 ASQD is similar to P−1/2

1 ASQDP−1/2
1 , with

P−1/2
1 ASQDP−1/2

1 =

[
A
−1/2
γ 0

0 S
−1/2
γ

] [
A B
BT −C

][
A
−1/2
γ 0

0 S
−1/2
γ

]

=

[
A
−1/2
γ AA

−1/2
γ Q1

QT1 −S−1/2
γ CS

−1/2
γ

]
, (4.13)

where Q1 = A
−1/2
γ BS

−1/2
γ satisfies

QT1 Q1 = S−1/2
γ BTA−1/2

γ A−1/2
γ BS−1/2

γ

= S−1/2
γ BTA−1

γ BS−1/2
γ

The matrix S−1/2
γ BTA−1

γ BS
−1/2
γ is similar to S−1

γ (BTA−1
γ B) and we get the

desired result from the bounds in Theorem 2.6 applied on (4.13) with λ1 = µmin,
λn = µmax, σ2

1 = ω̄min, σ2
m = ω̄max and λCm = ωmax. 2
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We consider now the alternative preconditioner for SQD systems,

P2 :=

[
A 0
0 Sγ

]
(4.14)

for which we have the following result about the clustering of the eigenvalues
in the preconditioned matrix P−1

2 ASQD.

Theorem 4.5 Let P2 be given by (4.14) with A−1
γ = UγΛ−1

γ UTγ + 1
αIn and

Sγ = BTA−1
γ B + C. Then the eigenvalues of the preconditioned matrix

P−1
2 ASQD are bounded within the intervals[

1− ωmax −
√

(1 + ωmax)2 + 4ω̂max

2
,

1−
√

1 + 4ω̂min

2

]
⋃

[
1,

1 +
√

1 + 4ω̂max

2

]
where

νmin = min

(
α

2α+ γ
,

α

α+ λmax(A)

)
and νmax = max

(
2α+ λmin(A)

α+ λmin(A)
,
α+ γ

γ

)
(4.15)

denote the lower and upper bounds on the eigenvalues of S−1
γ S given

by (3.27), with ω̂min and ω̂max, the smallest and the largest eigenvalues
of S−1

γ (BTA−1B), respectively and with ωmax the largest eigenvalues of
S−1
γ C.

Proof. Note that P−1
2 ASQD is similar to P−1/2

2 ASQDP−1/2
2 , with

P−1/2
2 ASQDP−1/2

2 =

[
A−1/2 0

0 S
−1/2
γ

] [
A B
BT −C

] [
A−1/2 0

0 S
−1/2
γ

]
=

[
In Q2

QT2 −S−1/2
γ CS

−1/2
γ

]
, (4.16)

where Q2 = A−1/2BS
−1/2
γ satisfies
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QT2 Q2 = S−1/2
γ BTA−1/2A−1/2BS−1/2

γ

= S−1/2
γ BTA−1BS−1/2

γ

The matrix S−1/2
γ BTA−1BS

−1/2
γ is similar to S−1

γ (BTA−1B) and we deduce
from the bounds in Theorem 2.6 applied on (4.16) with σ2

1 = ω̂min, σ2
m = ω̂max

and λCm = ωmax the desired result. 2

4.3 Comparison of the spectral preconditioners
for the KKT systems

In this section, we illustrate and compare the effectiveness of the two precondi-
tioning alternatives presented in Section 4.1 on the previously introduced test
example (see Section 3.1) for the KKT systems. We provide, in Table 4.1, the
true negative and positive intervals in which the eigenvalues of P−1

1 AKKT and
P−1

2 AKKT are included, and this for varying values of the parameter γ. We
have chosen three particular cut-off values for γ, e.g.

λmax(A)

100
,

λmax(A)

1000
and

λmax(A)

10000
,

where λmax(A) ≈ 3.8, and we indicate the corresponding number p of eigen-
values in the (1, 1) block A less than γ, as well as the condition number of the
resulting preconditioned matrices. It is interesting to understand the trade off
between the size of Uγ (recalling that the columns of Uγ are the orthonormal
sets of eigenvectors corresponding to the eigenvalues less than γ), given by p,
that defines the computational weight for our preconditioners, and the tightness
of the intervals on the eigenvalues, both depending on γ. Indeed, larger values
of γ imply larger values of p and thus the rank-p update in the approximation
of the inverse of A,

A−1
γ = UγΛ−1

γ UTγ +
1

α
In ,

requires more computations, while tightening the bounds on the eigenvalues,
the most efficient combination of these two being problem dependent.

We can notice that P1 and P2 act differently on the spectrum of the matrix.
With P1, it is mostly the positive lower bound that goes to zero as γ goes to
zero, the other bounds remaining roughly stable, and this is actually predicted
by the result in Theorem 4.1. As opposed to that, with P2, the negative and
positive outer bounds grow with decreasing values of γ, while the inner bounds
stay stable. This is also included in the result given by Theorem 4.3. The main
difference, that can also be seen from these two theorems, is that in the case of
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γ p = |{λi ≤ γ}| Spec(P−1
1 AKKT ) κ2(P−1

1 AKKT )

λmax(A)
100 42 [−0.90,−0.45] ∪ [9.7 10−2, 3.28] 33.81

λmax(A)
1000 33 [−0.98,−0.43] ∪ [1.1 10−2, 3.40] 309.09

λmax(A)
10000 23 [−0.99,−0.42] ∪ [2.5 10−3, 3.52] 1408.00

γ p = |{λi ≤ γ}| Spec(P−1
2 AKKT ) κ2(P−1

2 AKKT )

λmax(A)
100 42 [−3.57,−0.40] ∪ [1, 4.57] 11.43

λmax(A)
1000 33 [−12.12,−0.39] ∪ [1, 13.12] 33.64

λmax(A)
10000 23 [−27.20,−0.38] ∪ [1, 28.20] 74.21

Table 4.1 – True eigenvalues clustering and condition number of P−1
1 AKKT and

P−1
2 AKKT for varying values of γ.

P1, the inner positive bound is in O(γ/α), whereas with P2, the outer bounds
are in O(

√
α/γ), which grows more slowly than O(

√
γ/α).

Next, the bounds on the intervals in terms of λmax(A), λmin(A), γ and α
given by Theorem 4.1 and Theorem 4.3 ensure that the eigenvalues of P−1

1 AKKT
and P−1

2 AKKT belong to

[−0.98,−0.28] ∪ [0.03, 3.56] and [−5.13,−0.19] ∪ {1} ∪ [1.19, 6.13] ,

respectively, in the case where γ = λmax(A)
100 . Figure 4.1 shows the eigenvalues

distribution of P−1
1 AKKT and P−1

2 AKKT with the theoretical bounds, which
implies that the condition number of P−1

1 AKKT is majorated by 119 and that
of P−1

2 AKKT by 32.3.
We now illustrate, in Figure 4.2, the behaviour of preconditioned Minres

on these test cases. Assuming that the eigenvalues of the preconditioned system
P−1AKKT are bounded within two intervals of the same length, [−a,−b]∪ [c, d]
with a, b, c, d > 0, we recall from Elman et al. (2005), Section 6.2.4, that the
convergence profile of the preconditioned Minres method is bounded (in exact
arithmetic) by

‖r2k‖P−1

‖r0‖P−1

≤ 2

(√
ad−

√
bc√

ad+
√
bc

)k
, (4.17)

where P denotes the preconditioning matrix for the KKT system AKKT , and
where r2k = b − AKKTx2k denotes the residual of system (1.3) after 2k it-
erations. The relation (4.17) guarantees that, for a relative residual fixed to
‖r2k‖P−1/‖r0‖P−1 = 10−q, the number of Minres iteration k is bounded by
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Figure 4.1 – The left-hand subplot shows the eigenvalues distribution of
P−1

1 AKKT and the right-hand subplot the eigenvalues distribution of P−1
2 AKKT .

k ≤ −(q + log10 2)

log10

(√
ad−
√
bc√

ad+
√
bc

) .
For comparison purposes, we indicate in Figure 4.2, in dashed lines, the conver-
gence profile corresponding to the upper bound in (4.17) for the various cases.
The iterations are stopped when the scaled residual in P−1-norm (with either
P1 or P2) ‖rk‖P−1/‖r0‖P−1 is less than 10−8. We can observe that smaller
values of γ increase the number of iterations in both cases. However P2 seems
to be less sensitive than P1 to small values of γ, which may be related to the ob-
servation above with respect to the behaviour of the bounds in the eigenvalues
intervals.

We also mention that, in this particular test case, the scaled residuals in
2-norm ‖rk‖2/‖r0‖2 of the unpreconditioned Minres iteration stagnate above
10−4 without convergence. This can be seen in Figure 4.3, where we also plot,
for sake of comparison, the convergence profile of preconditioned Minres with
the classical preconditioner (see Golub et al., 2006, example 4.2)

PIBB :=

[
In 0
0 BTB

]
, (4.18)

whose purpose is to orthogonalize the constraints. Indeed, note that P−1
IBBAKKT

is similar to P−1/2
IBB AKKTP−1/2

IBB , with

P−1/2
IBB AKKTP−1/2

IBB =

[
A B(BTB)−1/2

(BTB)−1/2BT 0

]
,



74 Spectral preconditioners for saddle-point matrices

Figure 4.2 – Convergence profiles of preconditioned Minres with precondition-
ers P1 and P2, for different values of γ.

where Q = B(BTB)−1/2 satisfies QTQ = Im.
The convergence curves for P1 and P2 in this figure have been obtained with

a value of γ = λmax(A)/100, and for a fair comparison, the scaled residuals in
this figure have been computed in the 2-norm in all cases. We can see that
the convergence behaviour of Minres for P−1

IBBAKKT is not enough to reduce
the iteration number of Minres. It is then crucial to take account spectral
information from A through A−1

γ in P−1
1 and A−1 in P−1

2 , to ensure that the
iteration number is small.

Table 4.2 provides the true negative and the positive intervals in which the
eigenvalues of AKKT , P−1

1 AKKT , P
−1
2 AKKT and P−1

IBBAKKT are included. We
can see that the ill-conditioning of P−1

IBBAKKT is caused by the lower bound on
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Figure 4.3 – Convergence profiles of Minres for γ = λmax(A)/100 (with and
without preconditioning).

the positive interval.

P Spec(P−1AKKT ) κ(P−1AKKT )

/ [−1.6,−2.4 10−6] ∪ [2.3 10−5, 3.8] 1.6 106

P1 [−0.9,−0.5] ∪ [9.7 10−2, 3.3] 33.8
P2 [−3.6,−0.4] ∪ [1.0, 4.6] 11.4
PIBB [−1.0,−0.4] ∪ [3.0 10−5, 3.8] 1.3 105

Table 4.2 – True eigenvalues clustering and condition number of AKKT ,
P−1

1 AKKT , P
−1
2 AKKT and P−1

IBBAKKT .
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4.4 Comparison of the spectral preconditioners
for the SQD systems

Now, we illustrate and compare the effectiveness of the two preconditioning
alternatives on the previously introduced test example (see Section 3.2.2) for
the SQD systems. In the same way, we provide, in Table 4.3, the true negative
and positive intervals in which the eigenvalues of P−1

1 ASQD and P−1
2 ASQD are

included, and this for varying values of the parameter γ.

γ p = |{λi ≤ γ}| Spec(P−1
1 ASQD) κ2(P−1

1 ASQD)

λmax(A)
100 42 [−1.00,−0.49] ∪ [9.3 10−2, 3.28] 35.13

λmax(A)
1000 33 [−1.00,−0.48] ∪ [1.0 10−2, 3.40] 329.87

λmax(A)
10000 23 [−0.99,−0.46] ∪ [1.4 10−3, 3.52] 2598.48

γ p = |{λi ≤ γ}| Spec(P−1
2 ASQD) κ2(P−1

2 ASQD)

λmax(A)
100 42 [−2.90,−0.45] ∪ [1, 3.69] 8.16

λmax(A)
1000 33 [−11.05,−0.44] ∪ [1, 12.00] 27.17

λmax(A)
10000 23 [−18.04,−0.43] ∪ [1, 18.90] 43.85

Table 4.3 – True eigenvalues clustering and condition number of P−1
1 ASQD and

P−1
2 ASQD for varying values of γ.

Similarly to the KKT systems, we observe that, P1 and P2 act differently
on the spectrum of the matrix. Indeed, the positive lower bound associated
with P1 goes to zero when γ goes to zero, the other bounds remaining roughly
stable, and this is actually predicted by the result in Theorem 4.4. The negative
and positive outer bounds associated with P2, grow with decreasing values of
γ, while the inner bounds stay stable. This is also included in the result given
by Theorem 4.5. We can also see that the main difference from these two
theorems, is that in the case of P1, the inner positive bound is in O(γ/α),
whereas with P2, the outer bounds are in O(

√
α/γ).

The bounds on the intervals in terms of λmax(A), λmin(A), γ and α given
by Theorem 4.4 and Theorem 4.5 ensure that the eigenvalues of P−1

1 AKKT and
P−1

2 AKKT belong to

[−1.00,−0.28] ∪ [0.03, 3.28] and
[
−3.23,−1.4 10−4

]
∪ [1, 3.62] ,

respectively, in the case where γ = λmax(A)
100 . Figure 4.4 shows (using the same

scale) the eigenvalues distribution of P−1
1 AKKT and P−1

2 AKKT with the theo-
retical bounds, which implies that the condition number of P−1

1 AKKT is majo-
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rated by 1.1 102 and this of P−1
2 AKKT by 2.6 104. In Figure 4.5, we plot the

convergence profile of Minres.

Figure 4.4 – The left-hand subplot shows the eigenvalues distribution of
P−1

1 ASQD and the right-hand subplot the eigenvalues distribution of P−1
2 ASQD.

Figure 4.5 – Convergence profiles of Minres for γ = λmax(A)/100 (with and
without preconditioning).
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4.5 First level preconditioners
In this section, we study the effect of a first level of preconditioning on the
matrix AKKT in (4.2). As mentioned in the previous sections, a first level of
preconditioning can be useful to improve the clustering of the eigenvalues of
A. Considering a block diagonal form for this first level of preconditioning, we
denote it by P0, given as

P0 :=

[
M 0
0 N

]
, (4.19)

in which the two symmetric positive definite matrices M and N are given in
a factorized form, M = RTR and N = LTL, respectively. Let us first rewrite
the preconditioned system

P−1
0 AKKTx = P−1

0 b

in a symmetrized manner as

ÂKKT x̂ = b̂ ≡
[

Â B̂

B̂T 0

] [
Ru
Lv

]
=

[
R−T f
L−T g

]
(4.20)

with Â = R−TAR−1 being the symmetric positive definite matrix correspond-
ing to A preconditioned with M , and B̂ = R−TBL−1 being the corresponding
preconditioned constraint matrix. In this case, the associated Schur comple-
ment becomes Ŝ = B̂T Â−1B̂.

In the following section, we focus on the KKT systems and we derive the
formulations of A−1

γ and S−1
γ , the approximations of the inverse of Â and of the

Schur complement associated to the system (4.20) as introduced in Sections 3.1
and 3.2, respectively.

4.5.1 Combination of a first level preconditioner with spec-
tral approximations

Similarly to the eigendecomposition of the matrix A in (3.3), we split the
spectrum of Â in two parts, with Λ̂γ ∈ IRp×p the diagonal matrix containing
the p eigenvalues less than a given positive number γ ∈ [λmin(Â), λmax(Â)].
We assume that the first level of preconditioning ensures that the number p of
these eigenvalues is small. Following the steps in Section 3.1, we approximate
the inverse of Â as in (3.4) with

Â−1
γ = ÛγΛ̂−1

γ ÛTγ +
1

α
In, (4.21)

where Ûγ denotes the set of eigenvectors of Â associated to those eigenvalues
below the given threshold γ and α > 0 is some estimate of the average of the re-
maining eigenvalues (those not in Λ̂γ), or of λmax(Â). Similarly to Section 3.2.1,
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we next derive the approximation of the inverse of the Schur complement Ŝ as
in (3.13) with

Ŝ−1
γ = α

(
B̂T B̂

)−1/2
(
Im − K̂γ

(
1

α
Λ̂γ + K̂T

γ K̂γ

)−1

K̂T
γ

)(
B̂T B̂

)−1/2

(4.22)

where K̂γ is the operator defined by (B̂T B̂)−1/2B̂T Ûγ . Note that the eigen-
value equation ÂÛγ = ÛγΛ̂γ together with Â = R−TAR−1 can be written
as

R−TAR−1Ûγ = ÛγΛ̂γ ,

which is equivalent to
AR−1Ûγ = RT ÛγΛ̂γ .

Introducing the notation Vγ = R−1Ûγ , we have the generalized eigenvalue
equation

AVγ = MVγΛ̂γ . (4.23)

We deduce that the matrix Vγ corresponds to the eigenvectors of A precondi-
tioned with M . We can rewrite (4.22) as

Ŝ−1
γ = α

((
B̂T B̂

)−1

−
(
B̂T B̂

)−1/2

K̂γ

(
1

α
Λ̂γ + K̂T

γ K̂γ

)−1

K̂T
γ

(
B̂T B̂

)−1/2
)
,

with

B̂T B̂ = L−TBTR−1R−TBL−1

= L−T
(
BTM−1B

)
L−1

= L−TSML
−1,

where we use the notation SM = BTM−1B. Using the fact that

(B̂T B̂)−1/2K̂γ = (B̂T B̂)−1B̂T Ûγ

= (B̂T B̂)−1L−TBTR−1RVγ

= LS−1
M BTVγ ,

and

K̂T
γ K̂γ = ÛTγ B̂(B̂T B̂)−1B̂T Ûγ

= V Tγ R
TR−TBL−1(B̂T B̂)−1L−TBTR−1RVγ

= V Tγ BS
−1
M BTVγ ,



80 Spectral preconditioners for saddle-point matrices

Ŝ−1
γ becomes,

Ŝ−1
γ = α

(
LS−1

M LT − LS−1
M BTVγ

(
1

α
Λ̂γ + V Tγ BS

−1
M BTVγ

)−1

V Tγ BS
−1
M LT

)
.

We can then introduce the operator Zγ given by

Zγ = S
−1/2
M BTVγ = (BTM−1B)−1/2BTVγ , (4.24)

which plays the role of Kγ with respect to the eigenvectors of A precondi-
tioned with M and to the modified inner product associated to the first level
of preconditioning M , to write

Ŝ−1
γ = αLS

−1/2
M

(
Im − Zγ

(
1

α
Λ̂γ + ZTγ Zγ

)−1

ZTγ

)
S
−1/2
M LT . (4.25)

In the next section, we use the approximations Â−1
γ and Ŝ−1

γ to construct new
approximations of block diagonal preconditioners.

4.5.2 Combination of a first level preconditioner with spec-
tral preconditioners

In this section, we show that the combination of the two levels of precondition-
ing,

P−1
i P

−1
0 Au = P−1

i P
−1
0 b, (4.26)

with i either 1 or 2, can be expressed in a simple form

P−1
iMAx = P−1

iMb,

with PiM a block diagonal preconditioner satisfying P−1
iM = P−1

i P
−1
0 . Using the

approximation of the inverse of Â and the Schur complement Ŝγ developped in
Section 4.5, we apply either

P̂−1
1 =

[
Â−1
γ

Ŝ−1
γ

]
and P̂−1

2 =

[
Â−1

Ŝ−1
γ

]
with Â−1

γ and Ŝ−1
γ defined by (4.21) and (4.25) respectively, to the symmetrized

system Âû = b̂. It is then easy to see that the matrix L cancels with its inverse
or that N = LLT can be eliminated from both sides of the system of equations,
and therefore the combined two levels of preconditioning can be condensed into
the following formulations

P−1
1MAu = P−1

1Mb and P−1
2MAu = P−1

2Mb
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where

P−1
1M =


Vγ Λ̂−1

γ V Tγ + 1
α
M−1 0

0 αS
−1/2
M

(
Im − Zγ

(
1
α

Λ̂γ + ZTγ Zγ
)−1

ZTγ

)
S
−1/2
M


and

P−1
2M =


A−1 0

0 αS
−1/2
M

(
Im − Zγ

(
1
α Λ̂γ + ZTγ Zγ

)−1

ZTγ

)
S
−1/2
M

 .
We first observe that the inverses of P1M and P2M do not depend on the first

level of preconditioning N on B, implying that the preconditioning of B is not
necessary (except perhaps for numerical issues, like scaling, etc.). Obviously,
the bad conditioning of B is taken into account in the S−1/2

M =
(
BTM−1B

)−1/2

terms that appear on both sides of the (2, 2) block in P−1
1M and P−1

2M . Finally,
we can easily get rid of the matrices square roots in this (2, 2) block and rewrite
it as

α

(
S−1
M − S

−1
M (BTUγ)

(
1

α
Λ̂γ + (BTUγ)TS−1

M (BTUγ)

)−1

(BTUγ)TS−1
M

)
, (4.27)

where the major computational part is in fact to solve linear systems with
matrix

SM = BTM−1B

in an appropriate manner.
Concerning the (1, 1) block of P−1

1M , we recall that p� n so that it resumes
in a low rank update to 1

αM
−1. We also note that either M is available in a

factorized form or the solution with M is easy in principle. A way to extract
a good approximation for the partial spectral information Λ̂γ and Vγ within
Krylov techniques is proposed in Golub et al. (2007). With respect to the (1, 1)
block of P−1

2M , this partial spectral information can be used to efficiently solve
with matrix A in preconditioned or deflated Krylov techniques (see for instance
Giraud et al., 2006).

Coming back to the solution with matrix SM = BTM−1B, a lot of attention
has been devoted to this issue with, in particular, the application of constraint
preconditioners of the form

Pc =

[
M B
BT 0

]
, (4.28)

and we refer to Benzi et al. (2005) for a nice survey. The nice feature of the
Schur complement approximation in (4.27) is that the very small low rank
update added to S−1

M incorporates the missing information whenever the first
level of preconditioning is not enough to set up Minres in good conditions
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for linear convergence. With respect to computational costs, this low rank
update can be constructed once, factorized beforehand, and reused many times
to speed up solutions with changing right-hand sides and the same coefficient
matrix. In this particular context, the extra cost to build the various spectral
components required in this approach can be very rapidly amortized. This
has already been illustrated in the case of ill-conditioned symmetric positive
definite systems (see Golub et al., 2007).



Chapter 5
Stokes problem

In this chapter, we consider a problem in fluid dynamics generated by the
Matlab package ifiss produced by Elman, Ramage and Silvester (2002) writ-
ten jointly with the book of Elman et al. (2005). The toolbox models a steady
incompressible fluid flow using partial differential equations (PDEs). It in-
cludes algorithms for discretization by finite element methods, which are used
to rewrite the problem as a linear system of equations. We use the well-know
Stokes problem to illustrate the numerical behaviour of the spectral precon-
ditioners introduced in Chapter 4. We consider a viscous fluid moving in a
domain of the two dimensional space Ω. The Stokes problem is governed by
PDEs given by

−∇2~u+∇p = ~0, (5.1)
∇ · ~u = 0, (5.2)

with boundary conditions

~u = ~w on ∂ΩD,

∂~u

∂n
− ~np = ~0 on ∂ΩN ,

where ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD and ∂ΩN are distinct. The vector valued
function ~u represents the fluid velocity and the scalar function p represents the
pressure. Equation (5.1) is the conservation of the momentum of the fluid,
while the second equation (5.2) enforces conservation of mass (also referred
to as the incompressibility constraint). This last equation characterizes the
"low-speed" flow as for instance engine oil. In the Ifiss software, a finite
element discretization is used to express the Stokes problem as a system of
linear equations with the following KKT form,

83
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[
A B
BT 0

] [
u
v

]
=

[
f
g

]
,

where A ∈ IRnu×nu is called the vector Laplacian matrix and B ∈ IRnu×np is
called the divergence matrix.

Different discretization approaches are discussed in Elman et al. (2005),
Section 5.3. In this chapter, we first consider the (Q2-Q1) Taylor-Hood method
and next the Q1-P0 method. In this last case, the element pair is unstable. In
such cases, one can use stabilization techniques leading to Stokes problem with
the following SQD form[

A B
BT −βC

] [
u
v

]
=

[
f
g

]
, (5.3)

where β > 0 is a stabilization parameter.
In Section 5.1, we analyse and compare the behaviour of preconditioned

Minres by P1 and P2 introduced in Chapter 4 for KKT systems. Section 5.2
illustrates P1 and P2 on Stokes problems with SQD form.

5.1 Preconditioned approach for KKT systems
The KKT system coming from Stokes problem is generated using the ifiss
package. We present numerical results for a simple test problem arising in
incompressible fluid flow: Flow over a backward facing step in L-shaped domain
represented in Figure 5.1. The computations were performed on a workstation
using Matlab R2015a and we have used ifiss 3.4. We consider the Stokes
problem as described above, employing the Taylor-Hood elements on a non-
uniform grid with grid stretch factor equal to 2. The size of the system is
7235 and we solve the resulting linear system with Minres. The matrix A is
symmetric positive definite of order n = 6402 and the rectangular matrix B
has size 6402× 833.

Figure 5.1 – L-shaped domain with non-uniform grid.
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As first-level of preconditioning, we consider a Jacobi scaling of A to set
the diagonal of the preconditioned matrix to 1. The spectrum of the resulting
preconditioned matrix is well clustered, with 246 eigenvalues less than γ =
λmax(A)

100 ≈ 2.7 10−2, and with extreme eigenvalues of 1.5 10−6 and 32.7. The
condition number of A is 2.2 107. Figure 5.2 shows (on logarithmic scale) the
eigenvalues of this preconditioned matrix. For simplicity, we shall denote as A
this preconditioned matrix in the following.

Figure 5.2 – Spectrum of the matrix A generated by Matlab with ifiss package
after Jacobi scaling.

We now illustrate, in Figure 5.3, the behaviour of Minres preconditioned
by P1 and P2 introduced in Chapter 4 using exact spectral information of A.
Similarly to Section 4.3, we indicate, in dashed lines, the convergence profile
corresponding to the upper bound of scaled residuals in the respective P−1-
norms (with either P1 or P2). The convergence curves for P1 and P2 have been
obtained with a value of γ = λmax(A)/100 and the iterations are stopped when
the scaled residual in P−1-norm (with either P1 or P2) is less than 10−8. We
can observe that P2 is better than P1, which may be related as we have seen
to the behaviour of the bounds on the eigenvalue intervals given by Theorem
4.1 and Theorem 4.3.

In Figure 5.4, we also plot, for sake of comparison, the convergence profile
of preconditioned Minres with the classical preconditioner PIBB defined by
(4.18) in Chapter 4 and the least-squares commutator (LSC) preconditioner
(see Elman et al., 2005, Section 8.2.2) defined by

P−1
LSC :=

[
A−1 0

0 S−1
LSC

]
, (5.4)
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Figure 5.3 – Convergence profiles of Minres preconditioned with P1 and P2

for the Stokes problem of the KKT form.

Figure 5.4 – Convergence profiles of Minres (with and without precondition-
ing).
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where S−1
LSC = (BTB)−1(BTAB)(BTB)−1 in the unscaled version (which is one

of the preconditioning possibilities in ifiss). We point out some analogies of
the matrix S−1

γ introduced in (3.13) with the LSC preconditioner with respect
to the ingredients that specifically concern the constraint matrix B. Indeed, in
both cases the inverse of the Schur complement includes the inverse of BTB
at both ends, but the LSC preconditioner incorporates directly matrix BTAB
instead of the rank-k update that we have proposed to approximate the inverve
of the Schur complement.

Considering preconditioners P1, P2 and PLSC , Table 5.1 provides the num-
ber of iterations of preconditioned Minres. We can see that the preconditioner
P2, including spectral approximation of the inverse of the Schur complement,
is close to the number of iterations of PLSC , while P1, using an approximation
of the inverse of A, demands twice as many iterations.

P # iter. Minres
P1 137
P2 73
PLSC 67

Table 5.1 – Number of iterations of preconditioned Minres by P1, P2 and
PLSC .

Table 5.2 provides the true negative and positive intervals in which the
eigenvalues of AKKT , P−1

1 AKKT , P
−1
2 AKKT , P−1

IBBAKKT and P−1
LSCAKKT are

included. We can see that the ill-conditioning of P−1
IBBAKKT is caused by the

lower bound on the positive interval. We observe that the condition number of
P−1
LSCAKKT is larger than for P1 and P2. The lower bound of positive interval

of P−1
1 AKKT could explain that the number of iterations of P1 is larger than

for PLSC .

P Spec(P−1AKKT ) κ(P−1AKKT )

/ [−5.6 10−2,−2.8 10−11] ∪ [4.3 10−6, 2.8] 9.6 1010

P1 [−1.0,−0.6] ∪ [2.7 10−2, 2.6] 9.4 101

P2 [−4.4,−0.6] ∪ [1.0, 5.4] 9.4
PIBB [−3.3,−5.7] ∪ [3.0 10−5, 3.8] 1.3 105

PLSC [−2.3 102,−0.6] ∪ [1.0, 2.3 102] 3.8 102

Table 5.2 – True eigenvalues clustering and condition number of P−1
1 AKKT ,

P−1
2 AKKT , P−1

IBBAKKT and P−1
LSCAKKT .
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5.2 Preconditioned approach for the SQD sys-
tems

Now, we illustrate the behaviour of preconditioners P1 and P2 on the pre-
vious test example with a Q1-P0 discretization leading to the SQD system
(5.3). We also consider a Jacobi scaling of A and the spectrum of the re-
sulting preconditioned matrix is well clustered, with 216 eigenvalues less than
γ = λmax

100 ≈ 3 10−2, and with extreme eigenvalues of 2.2 10−6 and 3. The con-
dition number of A is 1.4 106. Figure 5.5 shows (on logarithmic scale) the
eigenvalues of this preconditioned matrix.

Figure 5.5 – Spectrum of the matrix A generated by Matlab with ifiss package
after Jacobi scaling.

In the same way, we provide, in Figure 5.6, the behaviour of Minres pre-
conditioned by P1 and P2. The convergence curves for P1 and P2 have been
obtained with a value of γ = λmax(A)/100 and the iterations are stopped when
the scaled residual in P−1-norm (with either P1 or P2) is less than 10−8. Simi-
larly to the KKT system, we can observe that P2 is better than P1, which may
be related as we have seen to the behaviour of the bounds on the eigenvalue
intervals given by Theorems 4.4 and 4.5.
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Figure 5.6 – Convergence profiles of Minres preconditioned with precondition-
ers P1 and P2 for the Stokes problem of the SQD form.
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Chapter 6
Interaction between the blocks in
KKT matrices

In the previous chapter, we presented two block diagonal preconditioners for
KKT systems of matrix

AKKT =

[
A B
BT 0

]
, (6.1)

which incorporate the ill-conditioned part of the matrix A through the approxi-
mation of the inverse of the Schur complement S = BTA−1B and of the inverse
of A. This proposed approach has the advantage of explicitly showing the spe-
cial link between the matrices A and B. To our knowledge, no study of the
interactions between A and B in (6.1) using the approximation of the inverse
of the Schur complement introduced in Chapter 3 has been proposed so far.
Yet the optimization and linear algebra communities using preconditioning for
KKT matrices have knowledge of the interaction between these two matrices.
Maybe is this due to numerical experimentations.

The purpose of this chapter is to highlight, from a theoretical point of view,
some aspects of the interaction between A and B when solving systems of the
form AKKTx = b, as in (1.3). Indeed, it is commonly observed that despite
their possible ill-conditioning, some recombination of A and B occurs that
sometimes degrades but can also improve the convergence of Krylov subspace
methods like Minres.

Section 6.1 gives a first insight on the interaction between A and B through
the Schur complement approximation and shows some configurations according
to which the influence of the small eigenvalues of A can have an effect on
the convergence of Minres. The next sections give some intuition on the
interaction between the matrices A and B through a toy example first, then for
varying constraint matrices. Section 6.3 refines the bounds on the eigenvalues
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of AKKT through new theoretical developments . Finally, the last section of the
chapter studies the possibility of reducing the low rank update in the inverse of
the approximation of the Schur complement (3.13) and we generalize the block
diagonal preconditioner P1 defined in Chapter 4 in this context.

6.1 Interaction between blocks in the Schur com-
plement approximation

We first clarify through the Schur complement approximation Sγ introduced
in Chapter 3, Section 3.2.1, the link between the matrices A and B. We thus
come back to the inverse of the approximation of the Schur complement (3.13)
given by

S−1
γ = α(BTB)−1/2

(
Im −Kγ

(
1

α
Λγ +KT

γ Kγ

)−1

KT
γ

)
(BTB)−1/2, (6.2)

where Kγ ∈ IRm×p is the operator defined in (3.14) by (BTB)−1/2BTUγ with
the constraint matrix B ∈ IRn×m and with Uγ ∈ IRn×p, which contains the
orthonormal set of the p eigenvectors associated to the eigenvalues in A below
a given threshold γ. As we have seen in Chapter 3, the singular values of Kγ

correspond to the cosines of the principal angles between the two subspaces
Im(B) and Im(Uγ), since B(BTB)−1/2 represents an orthonormal basis for
Im(B) (see, e.g., Golub and Van Loan, 2013, Section 6.4.3). The expression

1

α
Λγ +KT

γ Kγ

in (6.2) explicitly shows the interaction between A and B, with the combined
effects of both the smallest eigenvalues of A (through Λγ) and the cosines of
the principal angles between Im(B) and Im(Uγ) (through Kγ).

Let us now consider the matrix K ∈ IRm×n defined as

K = QTU = [QTUγ , Q
T Ũγ ] = [Kγ , K̃γ ], (6.3)

where

Q = B(BTB)−1/2 ∈ IRn×m (6.4)

satisfies QTQ = Im by definition, U = [Uγ , Ũγ ] is the orthogonal matrix of the
eigendecomposition (3.3) of A, Kγ is the operator used in (6.2) and we set K̃γ =

QT Ũγ . The columns of KT are orthonormal, implying that KγK
T
γ + K̃γK̃

T
γ =

Im. If we next complete the matrix KT by m − n orthonormal columns to
provide an orthogonal matrix of IRn×n, and if we apply the CS decomposition
as in Appendix A or Paige and Saunders (1981), Section 4, one can guarantee
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the existence of orthogonal matrices Vγ ∈ IRp×p, Ṽγ ∈ IR(n−p) × (n−p) and
W ∈ IRm×m such that

V Tγ K
T
γW = C = diag(c1, . . . , cr) ∈ IRp×m, r = min{p,m}, (6.5)

and

Ṽ Tγ K̃
T
γW = S = diag(s1, . . . , sq) ∈ IR(n−p)×m, q = min{n− p,m}, (6.6)

where

CTC + STS = Im. (6.7)

The singular values ci and si of KT
γ and K̃T

γ , respectively, are cosines and sines
satisfying (without loss of generality)

1 ≥ c1 ≥ . . . ≥ cr ≥ 0 and 0 ≤ s1 ≤ . . . ≤ sq ≤ 1.

Among these values, min{r, q} correspond to the cosines and sines of the princi-
pal angles between Im(B) and Im(Uγ), the other values being equal to either 0
or 1, depending on the dimensions p,m and n. The associated min{r, q} princi-
pal vectors (see Appendix A or Golub and Van Loan, 2013, Section 6.4.3) are de-
fined by the min{r, q} first columns of matrix UγVγ and matrix QW , in Im(Uγ)
and Im(B) respectively. Equation (6.5) now implies that KT

γ = VγCWT , and
from the expression (6.2) of S−1

γ we have that

S−1
γ = α(BTB)−1/2 P (BTB)−1/2,

where

P = Im −WCTV Tγ
(

1

α
Λγ + VγCCTV Tγ

)−1

VγCWT

= Im −WCT
(

1

α
V Tγ ΛγVγ + CCT

)−1

CWT .

At this point, several configurations can occur, depending on whether the
size p of the invariant subspace Uγ is smaller than the number m of constraint
equations or not, and/or whether some cosines are zero, meaning that there
exists some orthogonality between the principal vectors themselves. In this last
case or when p > m, the result is that some rows in the p × m rectangular
matrix C will be zero. At any rate, we can introduce a nonsingular diago-
nal matrix C† ∈ IRp×p, where the diagonal elements of C† correspond to c−1

i
whenever ci 6= 0 in the corresponding diagonal element in C, and 1 elsewhere.
We can also introduce the matrix J = C†C ∈ IRp×m, which will have the same
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structure as C with ones replacing the nonzero diagonal values in C. With these
notations, we can then write

P = Im −WCT C†
(

1

α
C†V Tγ ΛγVγC† + C†CCT C†

)−1

C†CWT

= Im −WJ T
(

1

α
C†V Tγ ΛγVγC† + JJ T

)−1

JWT , (6.8)

where the matrix JJ T in the internal inverse operator is a p × p diagonal
matrix with ones in places corresponding to the nonzero cosines in C, and zeros
elsewhere.

Consider now the most general case where p ≤ m and all cosines are nonzero,
so that there will be no zero rows in the matrix C,

C = diag(c1, . . . , cp) ∈ IRp×m

=

c1
. . .

cp
0 ,

with ci 6= 0, i = 1, . . . , p. This corresponds to the generic situation that one
may encounter, assuming that the eigenvalues in A are well clustered (after
the first level of preconditioning) so that p is small with respect to the number
of constraints, and no orthogonality occurs between Im(Uγ) and Im(B). In
this situation, JJ T reduces to the identity matrix Ip, and C† can be written
as C−1

γ where Cγ ∈ IRp×p is the diagonal part of C. Finally, let us denote by
Wγ = WJ T ∈ IRm×p the subset of the p first columns in W . The equation
(6.8) then reduces to

P = Im −Wγ

(
1

α
C−1
γ V Tγ ΛγVγC

−1
γ + Ip

)−1

WT
γ . (6.9)

We can observe that the term C−1
γ V Tγ ΛγVγC

−1
γ shows the relation between the

cosines and the small eigenvalues of A. It is the key part of our analysis of
interation through the Schur complement. Indeed, since Vγ is orthogonal, we
have

1

α
‖C−1

γ (V Tγ ΛγVγ)C−1
γ ‖2 ≤ 1

α

max{λi}pi=1

(min{ci}pi=1)2

≤ 1

α

γ

(min{ci}pi=1)2
.

From this inequality, we can see that the influence of the small eigenvalues in
Λγ (all those below γ) is inhibited in the inner inverse operator in (6.9) if

(min{ci}pi=1)2 � γ

α
, (6.10)
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because in this case 1
α‖C

−1
γ (V Tγ ΛγVγ)C−1

γ ‖2 � 1. Reasonable choices for γ (for
instance, γ = λmax(A)/100 and α = λmax(A)) lead to values of γ/α ≤ 10−2 so
that we can expect an influence of the small eigenvalues only when there exist
principal angles between Im(Uγ) and Im(B) whose cosines are less than 10−1.
In this situation indeed 1

αC
−1
γ (V Tγ ΛγVγ)C−1

γ influences the identity matrix Ip
in (6.9).

6.2 Illustrations
In the previous section, we highlighted the influence of the cosines values of
the principal angles between Im(B) and Im(Uγ) on the approximation of the
inverse of the Schur complement. In the situation where the small eigenvalues
of A can have an influence on the Schur complement, the preconditionner

P1 =

[
Aγ 0
0 Sγ

]
, (6.11)

introduced in Chapter 4, has a sizeable impact on the convergence of Minres
and we present some illustrations showing this effect in the next sections.

6.2.1 On a toy example
In this section, we use a toy example to show that these cosines values can
impact and spoil the convergence of Minres. To build the matrix AKKT , we
consider a diagonal matrix A of order n = 500 with diagonal entries in ]0, 1]
and such that

A =

[
A1 0
0 A2

]
,

with A1 = Λγ ∈ IRp×p where p = 5 and

Λγ = diag(λ1, λ2, λ3, λ4, λ5)

= diag(10−8, 10−6, 10−4, 10−2, 10−1),

and A2 ∈ IR(n−p)×(n−p), where n− p = 495, is a diagonal matrix with uniform
values from the interval [a, b] = [0.11, 1] and randomly generated by the Matlab
code

diag(a + (b-a).*rand(n-p,1)).

We impose that the columns of the matrix Uγ are the first p vectors {e1, e2, . . . , ep}
of the canonical basis of IRn. The matrix B ∈ IRn×m, where m = 200, is set to

B =

[
Cγ 0
B1Sγ B2

]
,
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where Cγ = diag{ cos θi }pi=1, Sγ = diag{ sin θi }pi=1, B1 ∈ IR(n−p)×p,
B2 ∈ IR(n−p)×(m−p), that are such that Q = [B1 B2] ∈ IR(n−p)×m satis-
fies QTQ = Im ensuring that B has orthonormal columns. Indeed, we have

BTB =

[
Cγ SγB

T
1

0 BT2

] [
Cγ 0
B1Sγ B2

]
=

[
C2
γ + SγB

T
1 B1Sγ 0

0 BT2 B2

]
=

[
Ip 0
0 Im−p

]
.

We then obtain

Kγ = (BTB)−1/2BTUγ

= BTUγ

=

[
Cγ SγB

T
1

0 BT2

] [
Ip
0

]
=

[
Cγ
0

]
,

which corresponds to the CS decomposition (6.5) of KT
γ with the matrices Vγ

andW equal to the identity matrix. The principal vectors in Im(Uγ) are equal
to UγVγ = Uγ and the rank-p update

1

α
C−1
γ (V Tγ ΛγVγ)C−1

γ + Ip

of S−1
γ in (6.9) is reduced to

1

α
C−1
γ ΛγC

−1
γ + Ip.

It implies a one-to-one match between eigenvectors versus principal vectors and
eigenvalues below γ versus cosines of the principal angles between Im(Uγ) and
Im(B). We consider three different configurations (a), (b) and (c) for

Cγ = diag{cos θi}5i=1,

with values of the cosines of the principal angles between Im(Uγ) and Im(B)
given in Table 6.1.
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(a) (b) (c)

cos θ1 0.3 0.3 10−6

cos θ2 0.3 10−3 10−5

cos θ3 0.3 0.3 10−4

cos θ4 0.3 0.3 10−3

cos θ5 0.3 0.3 0.3

Table 6.1 – Values of the cosines of the principal angles between Im(Uγ) and
Im(B) for three configurations.

Figure 6.1 – Convergence profiles (2-norm and P−1
1 -norm of relative residuals)

for different values of Cγ .
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Figure 6.1 illustrates and compares the impact of the values of the cosines of
the principal angles between Im(Uγ) and Im(B) on the behaviour of Minres
applied to our toy KKT matrix for the three cases. Furthermore, we show
the impact of the preconditioner P1. For comparison purposes, the iterations
are stopped when the scaled residual in 2-norm or P−1

1 is less than 10−8. For
particular values of the cosines, the phenomenon of plateau occurs. Indeed, we
come back to the relation 1

αC
−1
γ ΛγC

−1
γ + Ip, which implies that if the square

of the inverse of the cosines of some principal angles are equal to the corre-
sponding eigenvalues, the corresponding bad conditioning of A is showed up
in the Schur complement inverse. For instance, if we change the value of the
second cosine cos θ2 from 0.3 to 10−3 (corresponding to the square root of the
corresponding eigenvalue) between situations (a) and (b), the speed of conver-
gence of preconditioned Minres by P−1

1 is disrupted. One such phenomenon
of plateau in the convergence curve occurs in Figure 6.1, case (b). After this
phenomenon of plateau, the convergence behaviour is similar to the classical
one for Minres. Case (c) corresponds to a generalized case where four out of
the five values of the cosines reveal the corresponding bad conditioning of A
in the Schur complement inverse which leads to four phenomena of plateau in
Figure 6.1, case (c). In all situations, we have that the convergence of precon-
ditioned Minres by P−1

1 , which deals with the bad conditioning of A, is linear
and we observe that the number of iterations in all situations is constant.

6.2.2 Varying the constraint matrix
The analysis in this section tells us that if all the cosines of the principal angles
between Im(Uγ) and Im(B) are large enough, the convergence of Minres
preconditioned with the classical preconditioner (4.18),

PIBB =

[
In 0
0 BTB

]
,

should be fast, independently of any consideration with respect to the ill-
conditioning in A. To illustrate this case, we consider a KKT matrix with the
same matrix A as in Section 3.1, with a choice of γ = λmax(A)/100 ≈ 3.8 10−2

and α = 1.16. The dimension of the invariant subspace Im(Uγ) is p = 42. As
we have seen before, the influence of the small eigenvalues in Λγ is inhibited in
the inner inverse operator in (6.9) if

(min{ci}pi=1)2 � γ

α
,

or, equivalently,

min{ci}pi=1 �
√
γ

α
. (6.12)

We thus change the constraint matrix B to B̃ so as to get the cosines of the
principal angles between Im(Uγ) and Im(B̃) to be larger than 2

√
γ/α ' 0.362,
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which affects the ` = 22 smallest cosines in this example. By (6.4), we have
that

B = Q(BTB)1/2

= QW WT (BTB)1/2 (6.13)
= [QW`, QW−̀] WT (BTB)1/2

where Q ∈ IRn×m satisfies QTQ = Im, W ∈ IRm×m denotes an orthogo-
nal matrix introduced in the CS decomposition of KT given by (6.5)-(6.7),
W` ∈ IRm×` denotes the subset of columns in W associated to the selected
smallest cosines, andW−̀ denotes the submatrix inW made with the remaining
(m− `) columns not included in W`. We change B into

B̃ = [QW`Ω` + UγV`Φ`, QW−̀]WT (BTB)1/2, (6.14)

where the diagonal square matrices Ω` = diag(ωi)1≤i≤` and Φ` = diag(ϕi)1≤i≤`,
and where V` ∈ IRp×` denotes the submatrix made with the columns from Vγ
associated to the selected smallest cosines. Using the notations

Y = UγVγ ∈ Im(Uγ) and Z = QW ∈ Im(B),

we have that the p first columns of the matrix Y and Z are the p principal
vectors (see (6.5) and (6.6) with p ≤ m and p ≤ n−p implying that min{r, q} =
p). Observe that, the principal vectors QW` in (6.13) are modified in (6.14) as
a linear combination between the principal vectors QW` and UγV` associated to
the selected cosines. The choice of the diagonal entries ωi and ϕi, 1 ≤ i ≤ `, is
made so that B̃(BTB)−1/2 still corresponds to a set of m orthonormal vectors,
i.e.,

‖z̃i‖22 = 1,

or equivalently,

ω2
i + ϕ2

i + 2ωiϕici = 1, (6.15)

where z̃i = ωizi + ϕiyi with zi and yi are the ith columns of Y and Z, respec-
tively and ci = zTi yi. Furthermore, we impose that the cosines of the principal
angles between Im(Uγ) and Im(B̃) determined by

c̃i = z̃Ti yi,

or, equivalently,

c̃i = ωici + ϕi, (6.16)

are now driven to a specific predetermined value c̃i = 0.362, for i = 1, . . . , `.
By (6.16), we have
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ϕi = c̃i − ωici, (6.17)

and substituting in (6.15), we obtain

ω2
i + (c̃i − ωici)2 + 2ωi(c̃i − ωici)ci = 1, (6.18)

and thus

ω2
i + c̃i

2 − ω2
i c

2
i = 1, (6.19)

leading to

ωi =

√
1− c̃2i
1− c2i

and ϕi = c̃i − ωici , for i = 1, . . . , `.

Note that by (6.14), in this way,

(B̃T B̃)−1/2 =
((

(BTB)1/2W
)
X
(
WT (BTB)1/2

))−1/2

= (BTB)−1/2

where

X =

[
Ω`W

T
` Q

T + Φ`V
T
` U

T
γ

WT
−̀Q

T

] [
QW`Ω` + UγV`Φ` QW−̀

]
=

[ (
Ω`W

T
` Q

T + Φ`V
T
` U

T
γ

)
(QW`Ω` + UγV`Φ`) Ω`W

T
` W−̀+ Φ`V

T
` U

T
γ QW−̀

WT
−̀W`Ω` +WT

−̀Q
TUγV`Φ` WT

−̀W−̀

]
= Im,

and that B̃ incorporates the same ill-conditioning as the one of matrix B.
Table 6.2 gives the ` = 22 smallest cosines ci and the corresponding values

for ωi and ϕi to drive all these cosines to the fixed value c̃i = 0.362. We can
observe that the scalar values ϕi are small with respect to that of ωi, and
that the perturbation added to B is relatively small since QW` in (6.13) has
been replaced by QW`Ω` + UγV`Φ` in (6.14). Nevertheless, this is enough to
set up Minres in good conditions for linear convergence with a preconditioner
taking care of the bad conditioning in the constraints only. Figure 6.2 shows
the convergence profiles of Minres preconditioned with PIBB as well as with
P1 in (6.11) (no convergence without preconditioning). We can observe that
the use of the spectral information incorporated in P1 does not drastically
improve the situation in this case. The interference (or recombination) between
A and B has almost no impact in this situation with large enough cosines.
This illustrates the analysis and comments made above, which also extends
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ci ωi ϕi c̃i

4.98 10−3 9.32 10−1 3.58 10−1 3.62 10−1

6.88 10−3 9.32 10−1 3.56 10−1 3.62 10−1

8.21 10−3 9.32 10−1 3.55 10−1 3.62 10−1

1.23 10−2 9.32 10−1 3.51 10−1 3.62 10−1

1.72 10−2 9.32 10−1 3.46 10−1 3.62 10−1

2.39 10−2 9.32 10−1 3.40 10−1 3.62 10−1

3.03 10−2 9.32 10−1 3.34 10−1 3.62 10−1

4.00 10−2 9.33 10−1 3.25 10−1 3.62 10−1

4.32 10−2 9.33 10−1 3.22 10−1 3.62 10−1

4.62 10−2 9.33 10−1 3.19 10−1 3.62 10−1

5.51 10−2 9.33 10−1 3.11 10−1 3.62 10−1

6.05 10−2 9.34 10−1 3.06 10−1 3.62 10−1

7.20 10−2 9.34 10−1 2.95 10−1 3.62 10−1

7.83 10−2 9.35 10−1 2.89 10−1 3.62 10−1

8.86 10−2 9.36 10−1 2.80 10−1 3.62 10−1

1.46 10−1 9.42 10−1 2.25 10−1 3.62 10−1

1.49 10−1 9.43 10−1 2.22 10−1 3.62 10−1

1.69 10−1 9.46 10−1 2.03 10−1 3.62 10−1

2.02 10−1 9.52 10−1 1.71 10−1 3.62 10−1

2.83 10−1 9.72 10−1 8.77 10−2 3.62 10−1

3.22 10−1 9.85 10−1 4.52 10−2 3.62 10−1

3.33 10−1 9.88 10−1 3.32 10−2 3.62 10−1

Table 6.2 – Values of the ` = 22 cosines of the principal angles between Im(Uγ)
and Im(B), and corresponding coefficients ωi and ϕi for the linear combination
of the associated principal vectors to achieve the target cosine value c̃i.

the results in Rusten and Winther (1992) when σi = 1, i = 1 . . . ,m and
λ1 � 0 that clearly imply that the convergence of Minres must be fast when
the (1, 1) block is well-conditioned and the constraint matrix is for instance
orthogonalized (as done with PIBB).

Considering preconditioners P1 and PIBB, Table 6.3 provides the number of
iterations of preconditioned Minres on AKKTx = b with, in AKKT , B or B̃ as
described above. We can see that the preconditioner P1 significantly decreases
the number of iterations with respect to PIBB when we consider B with cosines
of principal angles between Im(Uγ) and Im(B) less than 2

√
γ/α .
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Figure 6.2 – Convergence profiles of preconditioned Minres (with PIBB and
P1) in the case of large enough principal angles cosines.

P # iter. Minres # iter. Minres
for system with B for system with B̃

P1 62 65
PIBB 483 128

Table 6.3 – Number of iterations of preconditioned Minres on the system of
matrix AKKT with B or B̃.

6.3 Refined eigenvalue bounds for KKT matrices
Consider the KKT matrix,

AKKT =

[
A Q
QT 0

]
, (6.20)

with QTQ = Im (corresponding to a constraint matrix B whose columns are
orthonormal) and assume that a first level of preconditioning has been applied
so that the largest eigenvalue of A is equal to one. Using the fundamental
result from Rusten and Winther (1992), see Theorem 2.5 in Chapter 2, the
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eigenvalues of AKKT are bounded within the intervals[
λmin(A)−

√
λ2

min(A) + 4

2
,

1−
√

5

2

] ⋃ [
λmin(A),

1 +
√

5

2

]
, (6.21)

since λmax(A) = 1 and the singular values of Q are equal to 1 as well. The left
interval in (6.21), associated to the negative eigenvalues in AKKT , is basically
well bounded and isolated away from zero, as opposed to the right interval
(the one associated to the positive eigenvalues in AKKT ) which is well bounded
towards infinity but not isolated away from zero. The smallest eigenvalue
λmin(A) could possibly tend to zero.

In this section, we aim at refining the lower bound λmin(A) of the right
interval in (6.21) through a theoretical analysis in terms of cosines of principal
angles between Im(Uγ) and Im(Q). Doing so, we expect to identify situations
where this lower bound is guaranteed bounded away from zero. In Section 6.3.1,
we first deduce some general spectral relations and we focus on the eigenvalues
of the matrix in (6.20) smaller than γ/2 in Section 6.3.2. Finally, based on
these spectral relations, we successively define two constrained optimization
problems that will lead to the desired result of refining the positive lower bound
of (6.21). The norm considered in this section is the 2-norm ‖ · ‖2 and we use
in the following, the short notation ‖ · ‖.

6.3.1 General spectral relations
We rewrite the matrix (6.20) into two successively similar matrices. We first
consider the eigendecomposition (3.3) of the matrix A

A = UΛUT ,

where the diagonal matrix Λ ∈ IRn×n contains the eigenvalues {λi}ni=1 of A
and the orthonormal matrix U ∈ IRn×n contains the associated orthonormal
eigenvectors. We first observe that

[
A Q
QT 0

]
=

[
UΛUT Q
QT 0

]
=

[
U 0
0 I

] [
Λ UTQ

QTU 0

] [
UT 0
0 I

]
. (6.22)

We next split the spectrum of A in two parts (similarly to Section 3.1), with
Λγ ∈ IRp×p, the diagonal matrix containing the p eigenvalues 0 < λ1 ≤ . . . ≤ λp
less or equal than a given positive number γ ∈ [λmin(A), 1], and with Λ̃γ ∈
IR(n−p)×(n−p) the diagonal matrix containing all the other (n− p) eigenvalues
λp+1 ≤ . . . ≤ λn. The matrix U = [Uγ , Ũγ ] ∈ IRn×n is orthogonal, where
the columns of the rectangular matrices Uγ ∈ IRn×p and Ũγ ∈ IRn×(n−p) are
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the orthonormal sets of eigenvectors corresponding to Λγ and Λ̃γ , respectively.
U = [Uγ , Ũγ ] ∈ IRn×n. Based on the CS decomposition of KT introduced in
Section 6.1, (6.5), (6.6) and the relation (6.7) implies without loss of generality
that, if p < m and m < n− p, then r = p and q = m, so that

C =
[
C 0

]
∈ IRp×m and S =

 S 0
0 Im−p
0 0

 ∈ IR(n−p)×m (6.23)

with C ∈ IRp×p and S ∈ IRp×p. Extracting Kγ and K̃γ from (6.5) and (6.6)
yields

Kγ = WCTV Tγ and K̃γ = WST Ṽ Tγ . (6.24)

Coming back to the matrix in (6.22), using the expressions (6.24) and re-
membering that K = [Kγ , K̃γ ] by (6.3), we rewrite this matrix in terms of
cosines and sines, as

 Λγ 0 VγCWT

0 Λ̃γ ṼγSWT

WCTV Tγ WST Ṽ Tγ 0

 .
We next obtain

V Tγ 0 0

0 Ṽ Tγ 0
0 0 WT

 Λγ 0 VγCWT

0 Λ̃γ ṼγSWT

WCTV Tγ WST Ṽ Tγ 0

Vγ 0 0

0 Ṽγ 0
0 0 W

 =

Mγ 0 C
0 M̃γ S
CT ST 0


(6.25)

where

Mγ = V Tγ ΛγVγ and M̃γ = Ṽ Tγ Λ̃γ Ṽγ , (6.26)

by the orthonormality of the columns of Vγ , Ṽγ and W . Replacing (6.23) in
(6.25), then yields the matrix


Mγ 0 C 0

M̃γ

S 0
0 0 I

0 0
C S 0 0 0 0
0 0 I 0 0 0

 . (6.27)
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Let ν ∈ IR denote an eigenvalue of this matrix, with
[
x1 x2 y1 y2

]T where
x1 ∈ IRp, x2 ∈ IRn−p, y1 ∈ IRp and y2 ∈ IRm−p, the associated eigenvector,
from


Mγ 0 C 0

M̃γ

S 0
0 0 I

0 0
C S 0 0 0 0
0 0 I 0 0 0



x1

x2

y1

y2

 = ν


x1

x2

y1

y2

 , (6.28)

that

Mγx1 + Cy1 = νx1, (6.29)

M̃γx2 +

Sy1

y2

0

 = νx2, (6.30)

Cx1 +
[
S 0 0

]
x2 = νy1, (6.31)

and [
0 I 0

]
x2 = νy2. (6.32)

Let ρ1 and ρ2 ∈ IR be positive quantities satisfying

ρ1 ∈ [λ1, λp] and ρ2 ∈ [λp+1, 1], (6.33)
xT1 Mγx1 = ρ1‖x1‖2, (6.34)

and

xT2 M̃γx2 = ρ2‖x2‖2. (6.35)

Note that if both x1 6= 0 and x2 6= 0, then ρ1 and ρ2 are Rayleigh quotients and
satisfy ρ1 ∈ [λ1, λp] and ρ2 ∈ [λp+1, 1] by (6.26), respectively, implying (6.33).
Otherwise, if x1 = 0 or x2 = 0 or both, it is always possible to find positive
quantities ρ1 and ρ2 satisfying (6.33), (6.34) and (6.35).
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The following lemma gives some spectral relations, which will be useful in
the next sections.

Lemma 6.1 Let ν ∈ IR be an eigenvalue of the matrix (6.27) associated
to the eigenvector x =

[
x1 x2 y1 y2

]T with x1 ∈ IRp, x2 ∈ IRn−p,
y1 ∈ IRp and y2 ∈ IRm−p. Then x satisfies the following relations

ν2‖x1‖2 = νρ1‖x1‖2 + xT1 C
2x1 + xT1

[
CS 0 0

]
x2,

ν2‖x2‖2 = νρ2‖x2‖2 + xT1
[
CS 0 0

]
x2 + xT2

S2 0 0
0 I 0
0 0 0

x2,

ν2‖y1‖2 = xT1 C
2x1 + 2xT1

[
CS 0 0

]
x2 + xT2

S2 0 0
0 0 0
0 0 0

x2,

ν2‖y2‖2 = xT2

0 0 0
0 I 0
0 0 0

x2,

(6.36)

(6.37)

(6.38)

(6.39)

where ρ1 and ρ2 satisfy (6.33), (6.34) and (6.35).

Proof. Multiplying (6.29) by νxT1 and using (6.34), we have

ν2‖x1‖2 = νxT1 Mγx1 + νxT1 Cy1

= νρ1‖x1‖2 + νxT1 Cy1. (6.40)

Multiplying now (6.31) by xT1 C, we obtain

νxT1 Cy1 = xT1 C
2x1 + xT1

[
CS 0 0

]
x2,

which together with (6.40) implies (6.36). Similiarly, multiplying (6.30) by νxT2
and using (6.35), we obtain

ν2‖x2‖2 = νxT2 M̃γx2 + νxT2

S0
0

 y1 + νxT2

0
I
0

 y2

= νρ2‖x2‖2 + νxT2

S0
0

 y1 + νxT2

0
I
0

 y2.
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Using (6.31) and (6.32) for νy1 and νy2, we derive

ν2‖x2‖2 = νρ2‖x2‖2 + xT2

S0
0

(Cx1 +
[
S 0 0

]
x2

)
+ xT2

0
I
0

 [0 I 0
]
x2,

implying (6.37). Finally, (6.38) and (6.39) immediately follow from (6.31) and
(6.32), respectively. 2

6.3.2 Spectral relations for small positive eigenvalues
As we have seen in (6.21), the lower bound of the interval associated to the pos-
itive eigenvalues in AKKT given in (6.20) is not necessarily isolated away from
zero. In this section, we thus focus our analysis on the eigenvalues of AKKT
smaller than γ and we deduce, from Theorem 6.1, spectral relations associated
to these eigenvalues. Let us assume that the eigenvalue problem (6.28) has an
eigenvalue denoted by ν̄ > 0 such that ν̄ < γ/2 with the corresponding eigen-
vector x̄ :=

[
x̄1 x̄2 ȳ1 ȳ2

]T . Lemma 6.2 shows that the vectors x̄1 ∈ IRn

and x̄2 ∈ IRn−p are nonzero due to the existence of such an eigenvalue ν̄.

Lemma 6.2 Assume that the matrix (6.27) has an eigenvalue ν̄ satisfying
0 < ν̄ < γ/2, with the associated eigenvector x̄ =

[
x̄1 x̄2 ȳ1 ȳ2

]T
where x̄1 ∈ IRp, x̄2 ∈ IRn−p, ȳ1 ∈ IRp and ȳ2 ∈ IRm−p. Let also C and
S ∈ IRp×p given by (6.23) satisfy cmin := mini=1:p{ci} > 0. Then, the
vectors x̄1 and x̄2 are nonzero.

Proof. Let first show that x̄1 is nonzero. Summing (6.36) and (6.37), we
have that

ν̄2(‖x̄1‖2 + ‖x̄2‖2) = ν̄(ρ̄1‖x̄1‖2 + ρ̄2‖x̄2‖2) + x̄T1 C
2x̄1

+ 2x̄T1
[
CS 0 0

]
x̄2 + x̄T2

S2 0 0
0 I 0
0 0 0

 x̄2,
with ρ̄1 ∈ [λ1, λp], ρ̄2 ∈ [λp+1, 1] and satisfying

x̄T1 Mγ x̄1 = ρ̄1‖x̄1‖2 and x̄T2 M̃γ x̄2 = ρ̄2‖x̄2‖2.
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Combining with (6.38) and (6.39), we then have

ν̄2(‖x̄1‖2 + ‖x̄2‖2)− ν̄(ρ̄1‖x̄1‖2 + ρ̄2‖x̄2‖2) = ν̄2(‖ȳ1‖2 + ‖ȳ2‖2). (6.41)

Observe that ‖x̄1‖2 +‖x̄2‖2 6= 0, since otherwise we would have that x̄1 = x̄2 =
0 and, by (6.38) and (6.39), that ȳ1 = ȳ2 = 0, since ν̄ > 0, implying a zero
eigenvector x̄. From (6.41), we can then deduce, since ν̄ > 0, that

ν̄ =
ρ̄1‖x̄1‖2 + ρ̄2‖x̄2‖2

‖x̄1‖2 + ‖x̄2‖2
+ ν̄
‖ȳ1‖2 + ‖ȳ2‖2

‖x̄1‖2 + ‖x̄2‖2

≥ ρ̄1‖x̄1‖2 + ρ̄2‖x̄2‖2

‖x̄1‖2 + ‖x̄2‖2
= ρ̄1(1− θ) + ρ̄2θ,

where

θ =
‖x̄2‖2

‖x̄1‖2 + ‖x̄2‖2
∈ [0, 1].

Assume that θ ≥ 1/2. It then implies, by definition of θ, that ‖x̄2‖2 ≥ ‖x̄1‖2,
which in turn leads to

ν̄ = ρ̄1(1− θ) + ρ̄2θ ∈
[
ρ̄1 + ρ̄2

2
, ρ̄2

]
, (6.42)

since ρ̄1 < ρ̄2 by (6.33). One thus has, by (6.42), that

ν̄ ≥ ρ̄1 + ρ̄2

2
≥ ρ̄2

2
≥ γ/2,

since ρ̄2 ≥ λp+1 > γ by (6.33), which contradicts the assumption that ν̄ < γ/2.
Hence one has that

‖x̄2‖2 < ‖x̄1‖2, (6.43)

implying that x̄1 6= 0.
Let now consider x̄2. Assume that x̄2 = 0, by (6.30) and (6.31), we have,

on one hand,

Sȳ1 = 0, (6.44)
Cx̄1 = ν̄ȳ1. (6.45)

On the other hand, one has that

Cx̄1 = x̄1. (6.46)



6.3. Refined eigenvalue bounds for KKT matrices 109

Indeed, first observe that by the assumption cmin := mini=1:p{ci} > 0, one
has that ci > 0 for all i = 1, . . . , p. If ci = 1, then obviously (6.46) holds
for index i. If ci 6= 1, implying that si 6= 0 by (6.7) then the corresponding
component in ȳ1 is equal to zero, by (6.44), and so does the corresponding
component in x̄1, by (6.45), so that again (6.46) is satisfied for this index i.
Observing that C2x̄1 = x̄1 by (6.46) and x̄T1 CS = ν̄ȳT1 S = 0 by (6.45) followed
by (6.44), we can rewrite (6.36) as

−ν̄2‖x̄1‖2 + ν̄ρ̄1‖x̄1‖2 + ‖x̄1‖2 = 0,

or, equivalently since x̄1 6= 0,

−ν̄2 + ν̄ρ̄1 + 1 = 0.

The positive root of this last equation in ν̄ gives

ν̄ =
ρ̄1 +

√
ρ̄2

1 + 4

2
> 1,

i.e., ν̄ > λmax(A) = 1, which leads to a contradiction. Hence, x̄2 6= 0. 2

We now can define the following quantities associated to 0 < ν̄ < γ/2,
where x̄1 and x̄2 are nonzero vectors, as guaranteed by Lemma 6.2.

ω̄ =
‖x̄1‖2

‖x̄2‖2
, (6.47)

with ω̄ > 1 by (6.43),

ρ̄1 =
x̄T1 Mγ x̄1

‖x̄1‖2
∈ [λ1, λp], (6.48)

and

ρ̄2 =
x̄T2 M̃γ x̄2

‖x̄2‖2
∈ [λp+1, 1]. (6.49)

Let us also define

ᾱ =
x̄T1 C

2x̄1

‖x̄1‖2
, (6.50)

satisfying 0 < c2min ≤ ᾱ ≤ 1,

β̄ =

x̄T2

S2 0 0
0 I 0
0 0 0

 x̄2

‖x̄2‖2
∈ [0, 1], (6.51)



110 Interaction between the blocks in KKT matrices

and

τ̄ =
x̄T1
[
CS 0 0

]
x̄2

‖x̄1‖2
. (6.52)

In the next theorem, we apply the relations introduced in Lemma 6.1 to x̄
and ν̄ in order to derive new relations in terms of ω̄, ρ̄1, ρ̄2, ᾱ, β̄ and τ̄ .

Theorem 6.3 Assume that the matrix (6.27) has an eigenvalue ν̄ satisfy-
ing 0 < ν̄ < γ/2, with the associated eigenvector x̄ =

[
x̄1 x̄2 ȳ1 ȳ2

]T
with x̄1 ∈ IRp, x̄2 ∈ IRn−p, ȳ1 ∈ IRp and ȳ2 ∈ IRm−p. Let ω̄, ρ̄1, ρ̄2, ᾱ,
β̄ and τ̄ be given by (6.47) to (6.52), respectively and cmin > 0. We then
have

−ν̄2 + ν̄ρ̄1 + ᾱ+ τ̄ = 0, (6.53)
−ν̄2 + ν̄ρ̄2 + τ̄ ω̄ + β̄ = 0, (6.54)
τ̄ > −ᾱ, (6.55)
τ̄ ω̄ < −β̄, (6.56)
τ̄2ω̄ ≤ ᾱβ̄. (6.57)

Proof. We first prove (6.53) and (6.54). Dividing (6.36) and (6.37) by
‖x̄1‖2 and ‖x̄2‖2, respectively, where x̄1 6= 0 and x̄2 6= 0 by Lemma 6.2,

ν̄2 = ν̄ρ̄1 +
x̄T1 C

2x̄1

‖x̄1‖2
+
x̄T1
[
CS 0 0

]
x̄2

‖x̄1‖2

ν̄2 = ν̄ρ̄2 +
x̄T1
[
CS 0 0

]
x̄2

‖x̄2‖2
+

x̄T2

S2 0 0
0 I 0
0 0 0

 x̄2

‖x̄2‖2
.

Using (6.47), (6.50), (6.51) and (6.52), we obtain the desired equalities.
We next prove (6.55). Adding (6.38) to (6.39), it implies

0 ≤ ν̄2(‖ȳ1‖2 + ‖ȳ2‖2) = x̄1C
2x̄1 + 2x̄T1

[
CS 0 0

]
x̄2 + x̄T2

S2 0 0
0 I 0
0 0 0

 x̄2,

(6.58)

which leads, by (6.47), (6.50), (6.51) and (6.52), that
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(ᾱ+ τ̄)‖x̄1‖2 + (τ̄ ω̄ + β̄)‖x̄2‖2 ≥ 0. (6.59)

Observing that (6.37) can be written as (τ̄ ω̄+ β̄)‖x̄2‖2 = ν̄(ν̄− ρ̄2)‖x̄2‖2, (6.59)
becomes

(ᾱ+ τ̄)‖x̄1‖2 + ν̄(ν̄ − ρ̄2)‖x̄2‖2 ≥ 0,

or, equivalently, by (6.47),

(ᾱ+ τ̄)ω̄ ≥ ν̄(ρ̄2 − ν̄).

As 0 < ν̄ < γ/2 < ρ̄2 and ω̄ > 0, we deduce that ᾱ + τ̄ > 0, which proves
(6.55).

We prove (6.56) by contradiction. Assume that τ̄ ω̄ ≥ −β̄, then by (6.54),
one has that

ν̄2 − ν̄ρ̄2 = ν̄(ν̄ − ρ̄2) ≥ 0,

which implies, since ν̄ > 0, that ν̄ ≥ ρ̄2 ≥ γ/2 and contradicts the assumption
ν̄ < γ/2.

We finally prove (6.57). Multiplying (6.31) by x̄T1 C implies

x̄T1 C
2x̄1 + x̄T1 C

[
S 0 0

]
x̄2 = (ᾱ+ τ̄)‖x̄1‖2 = ν̄x̄T1 Cȳ1.

Combining this last equality with (6.55) and the Cauchy-Schwarz inequality,
we obtain

0 < (ᾱ+ τ̄)‖x̄1‖2 = ν̄x̄T1 Cȳ1

≤ ν̄‖Cx̄1‖‖ȳ1‖
= ν̄

√
ᾱ‖x̄1‖‖ȳ1‖, (6.60)

where the last equality derives from the definition of ᾱ in (6.50). We can rewrite
(6.58) as

ν̄2(‖ȳ1‖2 + ‖ȳ2‖2) = (ᾱ+ 2τ̄)‖x̄1‖2 + β̄‖x̄2‖2. (6.61)
Squaring both sides of (6.60) implies

(ᾱ+ τ̄)2‖x̄1‖2 ≤ ν̄2ᾱ‖ȳ1‖2

≤ ν̄2ᾱ(‖ȳ1‖2 + ‖ȳ2‖2).

Combining now this last inequality with (6.61) and dividing by ‖x̄2‖2 gives

(ᾱ+ τ̄)2ω̄ ≤ (ᾱ2 + 2ᾱτ̄)ω̄ + ᾱβ̄,

which, after simplification, yields the desired result (6.57). 2
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6.3.3 Refining the positive lower bound
In the previous section, we have assumed the existence of an eigenvalue ν̄ of
AKKT given by (6.20) satisfying 0 < ν̄ < γ/2 and shown, under the assumption
that cmin = mini=1:p{ci} > 0, that ν̄ and its associated eigenvector x̄ satisfy
the relations (6.53)-(6.57). In order to refine the positive lower bound in (6.21)
as given by Rusten and Winther (1992), we proceed in two steps, building two
optimization problems successively, whose optimal solution will provide the
desired refined positive lower bound.

To build the feasible domain of the first of these two optimization problems,
we relax the relations (6.53)-(6.57) by relaxing the quantities ν̄, τ̄ and ω̄ in these
relations, which now become the variables ν, τ and ω verifying

ρ̄1 ≤ ν ≤
ρ̄2

2
and 1 ≤ ω ≤ ωmax, (6.62)

where ωmax is an upper bound satisfying ωmax ≥ ω̄. The constraints of this
optimization problem, let call it P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax), can thus be written as

C(P ) ≡



− ν2 + νρ̄1 + ᾱ+ τ = 0,

− ν2 + νρ̄2 + β̄ + τω = 0,

ρ̄1 ≤ ν ≤
ρ̄2

2
,

1 ≤ ω ≤ ωmax,

τ ≥ −ᾱ,
τω ≤ −β̄,
τ2ω ≤ ᾱβ̄.

(6.63a)

(6.63b)

(6.63c)

(6.63d)
(6.63e)
(6.63f)

(6.63g)

We then minimize ν over the set (ν, τ, ω) satisfying these constraints, i.e., we
consider the following optimization problem

P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax) = min
(ν,τ,ω)∈C(P )

ν. (6.64)

Note that C(P ) is nonempty, since (ν̄, τ̄ , ω̄) ∈ C(P ), and that ν no more repre-
sents an eigenvalue of the matrix AKKT in this problem. Instead the optimal
value ν0 of (6.64), whose existence is guaranteed by the compactness of the
feasible set C(P ) (see, e.g., the Weierstrass Theorem in Hiriart-Urruty, 1996),
gives a lower bound on ν̄ (since (ν̄, τ̄ , ω̄) ∈ C(P )). Observe that τ in (6.64)
satisfies τ ≤ 0 by (6.63f), since ω ≥ 1 and β̄ ∈ [0, 1], by (6.51). Finally, we have
the necessary condition

cmin < 1, (6.65)

since otherwise ci = 1 ∀i = 1, . . . , p and thus si = 0 ∀i = 1, . . . , p by (6.7)
implying that ᾱ = 1 and τ̄ = 0 by (6.50) and (6.52), respectively. Equation
(6.54) becomes −ν̄2 + ν̄ρ̄2 + β̄ = 0 which implies that the positive solution

satisfies ν̄ =
ρ2+
√
ρ22+4β̄

2 ≥ ρ̄2 since β̄ ≥ 0, which contradicts (6.62).
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Before studying problem (6.64), we establish a bound on the positive solu-
tion ν of equations (6.63a) and (6.63b) that will prove to be useful.

Lemma 6.4 Assume that ᾱ > 0, β̄ ≥ 0, ω ≥ 1 and τ ≤ 0. Then the
system of equations (6.63a) and (6.63b) in ν has a unique positive solution
satisfying

ν ≥ ωρ̄1 + ρ̄2 +
√

∆̃

2(ω + 1)
, (6.66)

where ∆̃ = (ωρ̄1 + ρ̄2)2 + 4(ω + 1)
(√

ᾱω −
√
β̄
)2

.

Proof. Multiplying (6.63a) by ω and adding it to (6.63b), we get the
equation

(ω + 1)ν2 − (ωρ̄1 + ρ̄2)ν −
(
ω(ᾱ+ 2τ) + β̄

)
= 0, (6.67)

whose roots are given by

ν1,2 =
ωρ̄1 + ρ̄2 ±

√
∆

2(ω + 1)
,

where ∆ = (ωρ̄1 + ρ̄2)2 + 4(ω + 1)(ωᾱ + 2ωτ + β̄). By (6.63g) together with
ω > 0, we have that

τ2ω2 ≤ ᾱβ̄ω,
or, equivalently, since τ ≤ 0, ᾱ > 0 and β̄ ≥ 0,

τω ≥ −
√
ᾱβ̄ω.

This inequality implies that

ωᾱ+ 2ωτ + β̄ ≥ ωᾱ− 2

√
ᾱβ̄ω + β̄

=

(√
ᾱω −

√
β̄

)2

≥ 0,

so that, on one hand, ∆ ≥ (ωρ̄1 + ρ̄2)
2 for ω ≥ 1, yielding ν1 ≤ 0. On the other

hand, it implies that ∆ ≥ ∆̃, so that the unique positive solution of (6.63a)
and (6.63b) is ν2 and satisfies (6.66). 2

Our study of an optimal solution of the optimization problem (6.64) starts
by identifying the constraints which are potentially active at optimality.
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Theorem 6.5 Consider problem P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax) defined in (6.64)
where ωmax ≥ ω̄ and ω̄, ρ̄1, ρ̄2, ᾱ and β̄ are given by (6.47)-(6.51). Then the
constraints in (6.64) possibly active at a global solution are,

ω ≤ ωmax

τ2ω ≤ ᾱβ̄.

Proof.

1. First let us prove that the lower bound in constraint (6.63d) (ω = 1) is
not active. By Lemma 6.4 when ω = 1, we have that

ν ≥
ρ̄1 + ρ̄2 +

√
(ρ̄1 + ρ̄2)2 + 8(

√
ᾱ+

√
β̄)2

4
≥ (ρ̄1 + ρ̄2)

2
>
ρ̄2

2
,

since ρ̄1 > 0. This is incompatible with (6.63c).

2. Let us prove that the constraint (6.63e) is not active. Assuming that
τ = −ᾱ, we have by (6.63a) and (6.63b),

−ν2 − νρ̄1 = 0, (6.68)
−ν2 + νρ̄2 + β̄ − ᾱω = 0. (6.69)

Equation (6.68) implies that either ν = 0 or ν = ρ̄1. Since ν ≥ ρ̄1 > 0
by (6.63c), we have that the unique solution of (6.68) is ν = ρ̄1, and it
follows that (6.69) becomes

−(ρ̄1)2 + ρ̄1ρ̄2 + β̄ − ᾱω = 0,

or, equivalently,

ᾱω = ρ̄1(ρ̄2 − ρ̄1) + β̄. (6.70)

Multiplying (6.70) by ᾱ, we obtain

ᾱ2ω = τ2ω = ᾱ(ρ̄1(ρ̄2 − ρ̄1) + β̄).

Since ᾱ > 0, ρ̄1 > 0 and ρ̄2 − ρ̄1 > 0, one deduces that τ2ω > ᾱβ̄, which
contradicts (6.63g).
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3. Now, we prove that (6.63f) is not active. By contradiction, let assume
that τω+ β̄ = 0. By (6.63b), we have that −ν2 +νρ̄2 = 0, or equivalently,
ν = 0 or ν = ρ̄2, which is impossible by (6.63c).

4. It remains to prove that both bounds of (6.63c) are inactive at a global
solution. First ν = ρ̄1 implies by (6.63a) that (6.63e) is active, which is
impossible by the second step of the proof. If ν = ρ̄2/2, then it is not
a global solution since ν̄ < γ/2 < ρ̄2/2 = ν provides a lower objective
function value and (ν̄, τ̄ , ω̄) ∈ C(P )).

2

Assuming that ω = ωmax (i.e., the upper bound of (6.63d) is active) at a
global solution of problem P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax) given by (6.64), we now derive
a lower bound on the optimal value of problem (6.64), hence yielding a first
potentially refined positive lower bound on the positive eigenvalues of AKKT .

Theorem 6.6 Consider problem P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax) defined in (6.64)
where ωmax ≥ ω̄ and ω̄, ρ̄1, ρ̄2, ᾱ and β̄ are given by (6.47)-(6.51). If
ω = ωmax at a global solution then

ν0 ≥
1

2

(
ρ̄1 +

√
ρ̄2

1 + 4c2min

)
. (6.71)

Proof. By Lemma 6.4 with ω = ωmax, we have

ν0 ≥
1

2

(
ωmaxρ̄1 + ρ̄2 +

√
∆̃

ωmax + 1

)
, (6.72)

where ∆̃ = (ωmaxρ̄1 + ρ̄2)2 + 4(ωmax + 1)
(√

ᾱωmax −
√
β̄
)2

. Defining the
quantities

ρ̃ =
ωmaxρ̄1 + ρ̄2

ωmax + 1

and

α̃ =

√ᾱ√ ωmax

ωmax + 1
−

√
β̄

ωmax + 1

 ,

we can rewrite (6.72) as

ν0 ≥
1

2

(
ρ̃+

√
ρ̃2 + 4α̃2

)
.



116 Interaction between the blocks in KKT matrices

Observing that ωmax can be taken as large as we want, provided ωmax ≥ ω̄,
and that

lim
ωmax→∞

ρ̃ = ρ̄1 and lim
ωmax→∞

α̃ =
√
ᾱ,

one can conclude, using the bound α ≥ c2min, that

ν0 ≥
1

2

(
ρ̄1 +

√
ρ̄2

1 + 4c2min

)
.

2

We next assume that ω < ωmax and apply the first-order necessary optimal-
ity conditions given by F. John Theorem 1.5 in Chapter 1 to problem (6.64):
there exist t, u, v, p ∈ IR not all equal to zero such that p ≥ 0,

1
0
0

 t−
−2ν + ρ̄1

1
0

u−
−2ν + ρ̄2

ω
τ

 v −
 0
−2τω
−τ2

 p =

0
0
0

 , (6.73)

and

p(ᾱβ̄ − τ2ω) = 0. (6.74)

Note first that τ 6= 0. Indeed, otherwize β̄ ≤ 0 by (6.63f), implying that β̄ = 0
since β̄ ∈ [0, 1], which in turn would give, by (6.63b),

−ν2 + νρ̄2 = ν(ρ̄2 − ν) = 0,

so that ν = 0 or ν = ρ̄2, in contradiction with (6.63c). We next obtain that
p 6= 0 since otherwise τv = 0 by the third equality in (6.73), and thus v = 0
which in turn implies u = 0 by the second equality in (6.73) followed by t = 0
by the first equality in (6.73). This is incompatible with the assumption that
t, u, v and p can not be all equal to zero. The complementarity condition (6.74)
then ensures that the constraint (6.63g) is active, i.e., τ2ω = ᾱβ̄, so that, since
τ < 0 by (6.63e) and ω 6= 0 by (6.63d), we can set

τ = −
√
ᾱβ̄

ω
.

Let us now denote by τ0 and ω0 the associated quantities to ν0, a global

solution of problem P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax). We then deduce that τ0 = −
√

ᾱβ̄
ω0
.

By setting

δ0 =

√
ᾱω0

β̄
,
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we can rewrite (6.63a) and (6.63b), observing that τ0 = − ᾱ
δ0

= −δ0β̄
ω0

,

−ν2
0 + ν0ρ̄1 + ᾱ

(
1 +

τ0
ᾱ

)
= −ν2

0 + ν0ρ̄1 + ᾱ

(
1− 1

δ0

)
= 0, (6.75)

−ν2
0 + ν0ρ̄2 + β̄

(
1 +

τ0ω0

β̄

)
= −ν2

0 + ν0ρ̄2 + β̄ (1− δ0) = 0. (6.76)

We also have by (6.63e) (which is inactive at a solution), that

τ0 = − ᾱ
δ0
> −ᾱ,

so that δ0 > 1.
In order to proceed in our search for a refined positive lower bound in (6.21),

we now build a second constrained optimization problem in the same spirit, i.e.,
with the aim to derive a lower bound on ν0 (and thus on ν̄ since ν0 ≤ ν̄). To
that, we relax the quantities ν0, δ0, ᾱ and β̄ and consider the optimization
problem

P̃ (ρ̄1, ρ̄2) ≡ min
(ν,δ,α,β)∈C(P̃ )

ν (6.77)

where the feasible set C(P̃ ) is defined by

C(P̃ ) ≡



− ν2 + νρ̄1 + α

(
1− 1

δ

)
= 0,

− ν2 + νρ̄2 + β (1− δ) = 0,

ρ̄1 ≤ ν ≤
ρ̄2

2
,

1 ≤ δ ≤ δmax,

c2min ≤ α ≤ 1,

0 ≤ β ≤ 1,

(6.78a)

(6.78b)

(6.78c)

(6.78d)

(6.78e)
(6.78f)

where δmax is an upper bound satisfying δmax ≥ δ0 > 1 and where cmin < 1
(from the necessary condition (6.65)). Note that C(P̃ ) is nonempty since
(ν0, δ0, ᾱ, β̄) ∈ C(P̃ ) by (6.75), (6.76), (6.63c) satisfied by ν0, (6.50) and (6.51).
Again, the compactness of the feasible set C(P̃ ) guarantees the existence of an
optimal value νinf for problem P̃ (ρ̄1, ρ̄2) with νinf ≤ ν0.

The next theorem identifies the constraints of P̃ (ρ̄1, ρ̄2) which are poten-
tially active at optimality.
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Theorem 6.7 Consider problem P̃ (ρ̄1, ρ̄2) defined in (6.77) where
δmax ≥ δ0, and ρ̄1 and ρ̄2 are given by (6.48) and (6.49), respectively.
Then, the constraints in (6.77) possibly active at a global solution are,

δ ≤ δmax

c2min ≤ α ≤ 1

β ≤ 1

Proof.

1. Let first show that the lower bound in (6.78d) (δ = 1) is not active at
optimality. Indeed, if δ = 1, we get by (6.78b),

−ν2 + νρ̄2 = ν (ρ̄2 − ν) = 0,

so that ν = 0 or ν = ρ̄2, in contradiction with (6.78c).

2. Using the same argument, we have that the lower bound in (6.78f) (β = 0)
is not active.

3. It remains to prove that both bounds of (6.78c) are inactive at a global
solution. First ν = ρ̄1 implies by (6.78a) that α(1 − 1

δ ) = 0, which is
impossible since α 6= 0 and δ 6= 1. If ν = ρ̄2

2 , then it is not a global
solution since ν0 ≤ ν̄ < γ

2 < ρ̄2
2 = ν provides a lower objective function

value and (ν0, δ0, ᾱ, β̄ ∈ C(P̃ )).

2

Similarly to the way we have proceeded for problem (6.64), we first consider
the case where δ = δmax (i.e., the upper bound of (6.78d) is active) at a global
solution of problem P̃ (ρ̄1, ρ̄2). As shown in the next theorem, we retrieve the
same lower bound on the positive eigenvalues of AKKT as given in Theorem 6.6.

Theorem 6.8 Consider problem P̃ (ρ̄1, ρ̄2) defined in (6.77) where
δmax ≥ δ0, and ρ̄1 and ρ̄2 are given by (6.48) and (6.49), respectively.
If δ = δmax at a global solution then

νinf ≥
1

2

(
ρ̄1 +

√
ρ̄1 + 4c2min

)
.
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Proof. By (6.78a) with δ = δmax, we obtain

−ν2 + νρ̄1 + α

(
1− 1

δmax

)
= 0

whose roots are given by

νinf =
1

2

(
ρ̄1 ±

√
ρ̄2

1 + 4α

(
1− 1

δmax

))
,

where ρ̄2
1 + 4α

(
1− 1

δmax

)
> 0 as α > 0 and δmax ≥ δ0 > 1. Excluding the

negative root, one has that

ν =
1

2

(
ρ̄1 +

√
ρ̄2

1 + 4α

(
1− 1

δmax

))
> ρ̄1.

Observing that δmax in problem P̃ (ρ̄1, ρ̄2) can be taken as large as we want,
provided δmax ≥ δ0, and that

lim
δmax→∞

1

2

(
ρ̄1 +

√
ρ̄2

1 + 4α

(
1− 1

δmax

))
=

1

2

(
ρ̄1 +

√
ρ̄2

1 + 4α

)
,

one can conclude, using the bound α ≥ c2min, that

νinf ≥
1

2

(
ρ̄1 +

√
ρ̄2

1 + 4c2min

)
.

2

We next, and finally, consider the case where δ < δmax. Using again F. John
Theorem 1.5 (see Chapter 1), we have that there exist t, u, v, p, q, r ∈ IR not
all equal to zero such that p ≥ 0, q ≥ 0, r ≥ 0,


1
0
0
0

 t−

−2ν + ρ̄1

α
δ2

1− 1
δ

0

u−

−2ν + ρ̄2
−β
0

1− δ

 v −


0
0
1
0

 p−


0
0
−1
0

 q +


0
0
0
−1

 r =


0
0
0
0

 .
(6.79)

and

p(c2min − α) = 0, (6.80)
q(α− 1) = 0, (6.81)
r(β − 1) = 0, (6.82)
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If r = 0, then v = 0 by the last equality in (6.79) since δ > 1, and consequently
u = 0 by the second equality in (6.79) and since α/δ2 6= 0. The first and third
equalities of (6.79) then imply t = 0 and p = q, respectively. Since t, u, v, p,
q, r cannot be all equal to zero, then one must have p = q 6= 0, which implies,
by the complementarity conditions (6.80) and (6.81), that α = 1 = c2min, which
is impossible. Assume now that r > 0. Then β = 1 by (6.82), and the last
equality in (6.79) yields (1 − δ)v = r. This, together with r > 0 and δ > 1,
implies that v < 0. The second equality in (6.79) then gives

− α
δ2
u+ v = 0,

implying that u < 0 since α > 0. By the third equality in (6.79), we get

−
(

1− 1

δ

)
u− p+ q = 0,

that is, p − q > 0 since δ > 1. As (6.80) and (6.81) with c2min < 1 imply that
either p or q must be zero, the only possibility is to have q = 0 and p > 0 (since
otherwise p = 0 and q < 0, in contradiction with the sign condition q ≥ 0 on
the multiplier q). We thus have α = c2min by (6.80).

Rewriting P̃ (ρ̄1, ρ̄2) with β = 1 and α = c2min, we get

min
(ν,δ)

ν

s.t.


−ν2 + νρ̄1 + c2min(1− 1

δ ) = 0,
−ν2 + νρ̄2 + (1− δ) = 0,

ρ̄1 ≤ ν ≤ ρ̄2
2 ,

1 ≤ δ ≤ δmax,

(6.83)

from which we can deduce another last lower bound on the positive eigenvalues
of AKKT .

Theorem 6.9 Consider problem P̃ (ρ̄1, ρ̄2) defined in (6.83) where δmax ≥
δ0, and ρ̄1 and ρ̄2 are given by (6.48) and (6.49), respectively. Then the
optimal value satisfies

νinf ≥
ρ̄1 + 4

5c
2
minρ̄2

1 + 4
5c

2
min

.

Proof. Multiplying the first equation in (6.83) by δ, the second by c2min

and summing, we have

−ν2(δ + c2min) + ν(ρ̄1δ + ρ̄2c
2
min) = 0,
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this last equation has a single feasible solution that we can express as a function
δ,

ν(δ) =
ρ̄1δ + ρ̄2c

2
min

δ + c2min

.

Observing that

ν′(δ) =
ρ̄1(δ + c2min)− (ρ̄1δ + ρ̄2c

2
min)

(δ + c2min)2

=
(ρ̄1 − ρ̄2)c2min

(δ + c2min)2
< 0,

since ρ̄1 < ρ̄2, we have that ν(δ) is a strictly decreasing function. On the other
hand, the second equation in (6.83) requires, to have a solution, that

ρ̄2
2 + 4(1− δ) ≥ 0,

that is, the largest possible value for δ at optimality is ρ̄22+4
4 . We can thus

conclude, since ρ̄2 ≤ 1 by (6.49), that

νinf = ν

(
ρ̄2

2 + 4

4

)
≥ ν(5/4) =

ρ̄1 + 4
5c

2
minρ̄2

1 + 4
5c

2
min

. (6.84)

2

Gathering the results from Theorem 6.6, 6.8 and 6.9, we can now formulate
our final result

Theorem 6.10 Assume that the matrix (6.27) has an eigenvalue ν̄ sat-
isfying 0 < ν̄ < γ/2 and let C ∈ IRp×p given by (6.23) be such that
0 < cmin = mini=1:p{ci}. Then the eigenvalues of AKKT are bounded
within[

λmin(A)−
√
λ2

min(A) + 4

2
,

1−
√

5

2

] ⋃ [
binf ,

1 +
√

5

2

]
, (6.85)

where binf = min
(

1
2

(
ρ̄1 +

√
ρ̄2

1 + 4c2min

)
,
ρ̄1+ 4

5 c
2
minρ̄2

1+ 4
5 c

2
min

)
.

Note first that
ρ̄1 + 4

5c
2
minρ̄2

1 + 4
5c

2
min

> ρ̄1.

Indeed, we have that
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ρ̄1 + 4
5c

2
minρ̄2

1 + 4
5c

2
min

− ρ̄1 =
ρ̄1 + 4

5c
2
minρ̄2 − ρ̄1

(
1 + 4

5c
2
min

)
1 + 4

5c
2
min

=
4
5c

2
min (ρ̄2 − ρ̄1)

1 + 4
5c

2
min

> 0,

since ρ̄1 < ρ̄2 and cmin > 0. Furthermore, we observe that

1

2

(
ρ̄1 +

√
ρ̄2

1 + 4c2min

)
> ρ̄1,

since cmin > 0. We conclude that binf > ρ̄1 ≥ λmin(A) implying that the
lower bound of the right interval in (6.21) is refined. We can also observe
that when cmin → 0, we have that binf → ρ̄1 with ρ̄1 ≥ λmin(A), which is
consistent with the result given in Rusten and Winther (1992). For instance,
we set λmin(A) = 10−8 and λp+1 = γ with γ = λmax(A)/10 = 10−1 since
we have assumed that a first level of preconditioning has been applied so that
λmax(A) = 1. We choose ρ̄1 = 10−8 and ρ̄2 = 10−1 and in Figure 6.3, we
illustrate the behaviour of functions

b1(cmin) :=
1

2

(
10−8 +

√
10−16 + 4c2min

)
,

and

b2(cmin) :=
10−8 + 4

5c
2
min10−1

1 + 4
5c

2
min

,

such that
binf = min (b1(cmin), b2(cmin))

for cmin ∈ [0, 1]. We observe that b2(cmin) is below b1(cmin) for all values of cmin.
By Rusten and Winther (1992), the lower bound on the positive eigenvalues
of AKKT is given by λmin(A) = 10−8 and we can see in Figure 6.3 that if
cmin = 10−1, the lower bound becomes 7.9 10−4.

6.4 Reduced spectral information
The natural idea that arises from these considerations in previous Sections is to
incorporate into the approximation of the Schur complement inverse (6.9) not
all the invariant subspace Im(Uγ), but only those principal vectors associated
to cosines of the principal angles less than τ

√
γ/α (with a value of τ within

[0.5, 2], for instance) as studied in inequality (6.12). This may enable us to
reduce substantially the size of the low rank update

1

α
C−1
γ V Tγ ΛγVγC

−1
γ + Ip
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Figure 6.3 – b1(cmin) and b2(cmin) for cmin ∈ [0, 1].

in S−1
γ while keeping the value of γ large enough to improve even further the

speed of convergence in Minres.
Let us denote by `� p the number of cosines less than the above threshold,

and by V` ∈ IRp×` the submatrix made with the columns from Vγ associated
to the corresponding cosines. In the same way, denoted by W` ∈ IRm×` the
corresponding subset of columns in Wγ , and by C` ∈ IR`×` the reduction of Cγ
to the selected cosines. With these selected principal angles and vectors, we
suggest considering the following reduced Schur complement preconditioner

S−1
` = α(BTB)−1/2

(
Im −W`

(
1

α
C−1
` V T` ΛγV`C

−1
` + I`

)−1

WT
`

)
(BTB)−1/2.

(6.86)

In the next section, we introduce and illustrate a spectral preconditioner which
uses reduced spectral information.
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6.4.1 The spectral preconditioner with reduced spectral
information

Among the two alternatives presented in Chapter 4 for preconditioning, we
consider the cheapest one, built from (4.4) viz.

P−1
` =

[
A−1
` 0
0 S−1

`

]
,

where
A−1
` = Y`(Y

T
` AY`)

−1
Y T` +

1

α
In

and

S−1
` = α(BTB)−1/2

(
Im −K`

(
1

α
Y T` AY` +KT

` K`

)−1

KT
`

)
(BTB)−1/2,

(6.87)

which is equivalent to (6.86) in the case where p ≤ m and all cosines are nonzero.
As the matrix Y` ∈ IRp×` does not necessarily contain the orthonormal set of
the p eigenvectors associated to the eigenvalues in A below γ, the rank-` update
in (6.87) is written as

1

α
Y T` AY` +KT

` K`.

We now illustrate the benefits of this last proposition on the previous test
example. With a choice of γ = λmax(A)/100 ≈ 3.8 10−2 and α = 1.16 (see
Section 3.1), the dimension of the invariant subspace Im(Uγ) is p = 42. The
number of cosines of the principal angles (between Im(Uγ) and Im(B)) less
than 2

√
γ/α is reduced to ` = 22. Let us define Y` = UγV`, that represents the

selected principal vectors in Im(Uγ), and K` = (BTB)−1/2BTY`.
Figure 6.4 shows the convergence profile of Minres preconditioned with P`,
built from the 22 selected smallest cosines. We can see that linear convergence
is well established, as before, despite the reduction by about half of the size of
the low rank update in the expression of P1. The scaled residual in P−1

` -norm is
reduced to 10−8 after 88 iterations, while the reduction of the scaled residual in
P−1

1 -norm to 10−8 that was obtained after 58 iterations (as shown in Figure 4.2,
for γ = λmax(A)/100). For sake of comparison, we also show in Figure 6.4 the
convergence profile of Minres preconditioned with P1 built up with the 22
smallest eigenvalues in A. We can see that the information carried out by the
22 selected principal angles is stronger, with respect to preconditioning issues,
than the information carried out by an invariant subspace of the same size
associated to the 22 smallest eigenvalues.

As we have mentioned before, (6.87) is equivalent to (6.86) only in the case
where p ≤ m and all cosines are nonzero, and we would like to comment on
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Figure 6.4 – P` versus P1. The convergence profiles for the 22 smallest cosines
and eigenvalues respectively.

the particular case where there exist rows in the rectangular matrix C that are
zero. This can occur when p > m and/or when there exists some orthogonality
between Im(Uγ) and Im(B). In this case, equation (6.9) is not valid any more,
since JJ T incorporates zeros onto the diagonal and does not reduce to matrix
Ip, and many different situations can occur for the interactions between the
zeros or the ones in JJ T and the p× p matrix C†V Tγ ΛγVγC†. However, in the
subcase where p ≤ m but some of the cosines are zero, looking at the more
condensed formulation of S−1

` in (6.87), it is still possible to incorporate into
matrix Y` those principal vectors associated to these particular zero cosines,
and expect the preconditioner to raise the same properties. The only missing
clue is to understand whether these vectors are of real importance or not.

6.4.2 Reduced spectral information for various cut-off val-
ues

We remind that the cosines of the angles between Im(Uγ) and Im(B) do de-
pend on the choice of the cut-off parameter γ too, since different values for γ
change the dimension of Im(Uγ), and consequently the distribution of these
cosines. Theorems 4.1 and 4.3 actually provide bounds on the macroscopic in-
teractions between A and B. Depending on the problem, there is a compromise
to reach between the quantity of information embedded in P1 or P2, and the
potential reduction in the rate of convergence of preconditioned Minres. The
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cosine selection more intimately targets the microscopic interactions within the
given subspaces. This is a second feature, that might be considered on top of
the first one, in order to still be able to reasonably target large values of γ
(to ensure nice asymptotic rates of convergence), while keeping the quantity of
information to incorporate relatively small. Indeed, if one agrees with the fact
that, in general, the distribution of these cosines is more or less well spread,
then we might be left with few of them with regard to the size of the problem.
The trade-off in the computational cost of all this, as well as the practical ways
to extract the appropriate information, will surely depend on the application
itself, and is devoted to further specific application oriented investigations. The
main purpose in the discussion above is only to highlight the true components
arising from the interactions between A and B, and to investigate how best to
incorporate these into a low rank update with valuable preconditioning effects.

Now, in Figure 6.5, we analyse the behaviour of Minres using the precon-
ditioners P1 and P` for various values of ` and p to reach a scaled residual in
P−1-norm below 10−8 with P being either P` built from the ` smallest cosines,
` varying from 1 to 42, or P1 built from the p smallest eigenvalues, p also
varying from 1 to 42. We first note that the number of iterations decreases
with the value of `. Indeed, the preconditioner P` or P1 is more efficient when
we take into account a large quantity of information (the principal vectors for
P` or eigenvectors for P1, respectively). In Figure 6.5, the gap between the
convergence curves of P` and P1 decreases with the large values of ` and p
respectively, and finally the curves are similar for ` = p = 42.

In Figure 6.6, we show the number of Minres iterations needed to reach
a scaled residual in P−1-norm below 10−8, P being either P` built from the
` smallest cosines, ` varying from 1 to 42, or P1 built from the p smallest
eigenvalues, p also varying from 1 to 42. We can see that the reduction in the
number of iterations with increasing values of the cosines is faster than the
one obtained with increasing eigenvalues. Additionally, we can see that this
reduction roughly stabilizes after the first 25 smallest cosines, corresponding to
the threshold value τ

√
γ/α from the analysis above.
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Figure 6.5 – P` versus P1. Each subplot shows the convergence profiles for the
` smallest cosines and p eigenvalues respectively. The value of ` and p with
` = p is, from left to right: 1, 7, 12, 17, 22, 32, 37, 42.

Figure 6.6 – P` versus P1. Figure compares the number of Minres iterations
needed to reach 10−8 in both cases, with increasing numbers of cosines and
eigenvalues respectively.



Chapter 7
Practicalities

As we have seen in the previous chapters, spectral preconditioners are based on
the approximation of the inverse of (1, 1) block A and we have assumed that
a first level of preconditioning P0 in (4.19), has been applied to the symmetric
positive definite matrix A so that the spectrum of A is clustered, with relatively
few very small eigenvalues. We have also initially assumed that we know these
sets of small eigenvalues and associated eigenvectors of A. In this work, we
come back to these two assumptions and we analyse some practical aspects on
how to reach this assumptions. This chapter is divided into parts.

The first part of this chapter is based on how to combine a first level of
preconditioning and the preconditioner developed in Giraud et al. (2006) and
Golub et al. (2007), which combined with a Krylov method, enables to con-
struct a Krylov basis of small dimension and very rich with respect to the
eigeninformation linked to the smallest eigenvalues. This approach uses the
general framework of Chebychev polynomials and Chebyshev filtering that we
recall in Section 7.1.1. We then introduce the Chebychev polynomial precon-
ditioner as in Giraud et al. (2006) and we illustrate in Section 7.1.2 the impact
of Chebychev filtering on the spectrum of a matrix. In the next section, we
derive our contribution on how one can condense these two preconditioners into
a simple formulation, which can be used in practice.

In the second part, we focus on practical implementation of the approxi-
mation of the inverse of A presented in Chapter 3 and used in Chapter 4 to
introduce spectral preconditioners. Indeed, we consider the SLRU approach
(3.4) where we set,

A−1
γ = UγΛ−1

γ UTγ +
1

α
In . (7.1)

with Λγ ∈ IRp×p the diagonal matrix containing the p eigenvalues less than
γ ∈ [λmin(A), λmax(A)]. The columns of the rectangular matrix Uγ ∈ IRn×p

are the orthonormal sets of eigenvectors corresponding to Λγ . In Section 7.2.1,

129
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we analyse from a theoretical point of view, the effect of these two levels of
preconditioning (based on the condensed formulation developed in the first
part of this chapter) on the spectrum of the preconditioned matrix. Finally,
we see how one may derive in practice a good approximation of (7.1).

7.1 Extracting spectral information
This part recalls the general concepts of Chebyshev polynomials and introduce
the Chebychev filtering, which will be used in Section 7.1.2 to extract prior
spectral information from the matrix A eventually preconditioned with a first
level of preconditioning so as to cluster better the spectrum. The general
framework of Chebyshev polynomials as proposed in the work Golub et al.
(2007), is introduced with more details in the following sections.

7.1.1 General framework of Chebychev polynomial filter-
ing

For any nonnegative integer m, we have defined the Chebyshev polynomials of
degree m in w by the following two-term recurrence relation (Hageman and
Young, 1981). {

T0(w) = 1 T1(w) = w
Tm+1(w) = 2wTm(w)− Tm−1(w) m ≥ 1,

(7.2)

or equivalently, we have that Tm(w) may be expressed by

Tm(w) = cos(m arccos(w)) when w ∈ [−1, 1].

We have illustrated the first five Chebyshev polynomials in Figure 7.1 on the
domain [−1, 1]. We consider a polynomial function of degree m defined by

Hm(w) =
Tm(w)

Tm(d)
,

where d > 1 and we have the optimal properties of Chebyshev polynomials
(see, e.g., Hageman and Young, 1981, Theorem 4.2.1),

max
w∈[−1,1]

|Hm(w)| = 1

Tm(d)
.

For any polynomial Qm(w) of degree m or less such that Qm(d) = 1, if

max
w∈[−1,1]

|Qm(w)| ≤ max
w∈[−1,1]

|Hm(w)|,

then we have Qm(w) = Hm(w). We have that Hm(w) is the unique solution of

min
Qm

max
w∈[−1,1]

|Qm(w)|.
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Figure 7.1 – We illustrate the first five Chebyshev polynomials with the x-axis
between −1 and 1.

by Theorem 4.8 given by Saad (2011). We now define a linear transformation,
which transforms the interval [γ, λmax(A)] into [−1, 1] :

wγ : IR → IR
λ 7→ wγ(λ) = (λmax(A) + γ − 2λ)/(λmax(A)− γ)

(7.3)

and we note dγ = wγ(0) = λmax(A)+γ
λmax(A)−γ > 1. In Golub et al. (2007), the authors

introduced the filtering polynomial Fm(λ) defined by

Fm(λ) =
Tm(wγ(λ))

Tm(dγ)
, (7.4)

which has minimum upper bound value on the interval [γ, λmax(A)] by the
previous optimal properties. Let γ, λmax(A) and ε� 1, we can fix the degree
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m of Tm such that 1/|Tm(dγ)| < ε, which implies that

max
λ∈[γ,λmax]

|Fm(λ)| = max
λ∈[γ,λmax]

∣∣∣∣Tm(wγ(λ))

Tm(dγ)

∣∣∣∣
=

1

|Tm(dγ)|
max

λ∈[γ,λmax]

∣∣∣∣Tm(wγ(λ))

∣∣∣∣
< ε max

λ∈[γ,λmax]

∣∣∣∣Tm(wγ(λ))

∣∣∣∣.
By a property of Chebyshev polynomials (see, e.g., Saad, 2011, p.109), the
maximum of the Chebyshev polynomial Tm in [−1, 1] is 1 and we then have

max
λ∈[γ,λmax]

|Fm(λ)| < ε. (7.5)

We now consider a vector w ∈ IRn and we analyse the effect of the filtering
polynomial on this vector. To see that, we construct a filtered vector as

wf = Fm(A)w = UγFm(Λγ)UTγ w + ŨγFm(Λ̃γ)ŨTγ w, (7.6)

where Λ̃γ ∈ IR(n−p)×(n−p) the diagonal matrix containing the n−p eigenvalues
greater than γ ∈ [λmin(A), λmax(A)], and the columns of the rectangular matrix
Ũγ ∈ IRn×(n−p) are the orthonormal sets of eigenvectors corresponding to Λ̃γ .
We pre-multiply the filtered vector (7.6) by ŨTγ and we take the 2-norm. Using
the Cauchy-Schwartz inequality, we obtain

‖ŨTγ wf‖2 ≤ ‖Fm(Λ̃γ)‖2‖ŨTγ w‖2.

and by the vector norm properties (see, e.g., Golub and Van Loan, 1996, Section
2.2.2) and (7.5), we have

‖ŨTγ wf‖2 ≤
√
n− p ‖Fm(Λ̃γ)‖∞‖ŨTγ w‖2

<
√
n− p ε ‖ŨTγ w‖2.

with ‖Fm(Λ̃γ)‖∞ = maxλ∈[γ,λmax] |Fm(λ)|. This equation explains that the
components of wf with respect to the invariant subspace Ũγ are reduced of
factor

√
n− p ε.

In Figure 7.2, we illustrate the different behaviours of Chebyshev filtering
F16 on [λmin(A), γ] and [γ, λmax(A)] respectively. Fixing the degree at m = 16,
we obtain ε equal to 10−4 on [γ, λmax(A)]. The left figure shows that in the
interval [λmin(A), γ], the Chebyshev filtering is constant to 1 and decreases
rapidly to zero when λ is close to γ. Whereas in the interval [γ, λmax(A)],
the Chebychev filtering in right figure is equi-oscillating around zero and the
relation (7.5) implies that the amplitude of oscillations is equal to ε.
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Figure 7.2 – On left, the Chebyshev filtering F16 on [λmin(A), γ] and at right,
the Chebyshev filtering F16 on [γ, λmax(A)].

7.1.2 Chebyshev polynomial preconditioner
The application of the Chebyshev filter as a preconditioner consists in solving
approximatively a symmetric and positive definite linear system Ax = b with
the preconditioner defined by

P−1
F := Qm−1(A) = A−1(In −Fm(A)), (7.7)

where Qm−1(A) is a matrix polynomial of degree less than or equal to m − 1
(see, e.g., Hageman and Young, 1981, p.7). This preconditioner helps the
CG method to generate a low dimensional Krylov basis that is very rich with
respect to the smallest eigenvalues and associated eigenvectors. This spectral
information can be used to build spectral approximations of the inverse of
A and of the Schur complement introduced in Section 3.1 and Section 3.2
respectively. This approach is developed in details in Golub et al. (2007) and
we only introduce a simple example to show the interest.

We consider a symmetric positive definite matrix of order n = 300 randomly
generated by the Matlab function sprandsym. The spectrum of the matrix has
10 eigenvalues less than λmax(A)

100 . The Lanczos algorithm (see Algorithm 2,
Section 2.1) combined with the preconditionner P−1

F in (7.7), plays the role
of spectral filter and gives a basis of Krylov subspace V , which is a good
approximation of eigenvectors of A associated to the few small eigenvalues of
A. As indicated in Figure 7.3 (left-hand plot), the values computed by V TAV
plotting in blue are a good approximation of eigenvalues of A less than γ. The
right-hand plot represents the ‖Avi−λivi‖|λi| for each vector vi in V and shows the
accuracy of each vector.
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Figure 7.3 – Chebychev-based Krylov method.

7.1.3 Combining a first level preconditioner with Cheby-
shev polynomial preconditioner

Now, we explicitly develop our theoretical contribution on the application of
the preconditioner P−1

F in (7.7), combined with a first level of preconditioning
on the linear system denoted now

A0x = b,

where A0 is symmetric and positive definite. As in Section 4.5, we consider a
symmetric positive definite matrix M given in a factorized form, M = RTR
with R ∈ IRn×n. Let us first rewrite the preconditioned system

M−1A0x = M−1b

in a symmetrized manner as

A1y = c, (7.8)

where A1 = R−TA0 R
−1, y = R x and c = R−T b. We draw attention on

the fact that we use a different notation for the initial system with first level
preconditioner, compared to Section 4.5. The goal of which is to simplify and
improve the clarity of this Section.

In the following theorem, we derive a general formulation that combines the
two levels of preconditioning into one.
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Theorem 7.1 Let the linear system A0 x = b and a symmetric positive
definite preconditioner M for A0, given in a factorized form RTR with
R ∈ IRn×n. Let the Chebyshev filter preconditioner P−1

F1
defined in

(7.7) as Qm−1(A1) with A1 = R−TA0 R
−1 and the preconditioned system

A1y = c with y = R x and c = R−T b. Then the combination of the two
levels of preconditioning

P−1
F1
A1y = P−1

F1
c (7.9)

is equivalent to
P−1
F0
A0x = P−1

F0
b,

where P−1
F0

= Qm−1(M−1A0)M
−1.

Note that the subscript i in the preconditioner PFi makes reference to the lin-
ear system with the matrix Ai.

Proof. The preconditioner P−1
F1

associated to the system A1y = c is a
matrix polynomial Qm−1(A1) of the degree (m− 1) defined as

Qm−1(A1) = α0In + α1A1 + . . .+ αm−1A
m−1
1 ,

where {αi}m−1
i=0 is a set of numbers (see, e.g., Hageman and Young, 1981, p. 7).

We note that,

Ak1 = (R−TA0R
−1)(R−TA0R

−1) . . . (R−TA0R
−1), (7.10)

and premultiplying (7.10) by RR−1, we get

Ak1 = RR−1(R−TA0R
−1)(R−TA0R

−1) . . . (R−TA0R
−1)

= R(M−1A0)
kR−1,

which implies that the preconditioner P−1
F1

can be expressed as

RQm−1(M−1A0)R
−1.

We replace this expression in (7.9) and by simplifying, we obtain

P−1
F1
A1y = P−1

F1
c ⇔ RQm−1(M−1A0)R−1A1 y = RQm−1(M−1A0)R−1c

⇔ Qm−1(M−1A0)R−1R−TA0R
−1Rx = Qm−1(M−1A0)R−1R−T b

⇔ Qm−1(M−1A0)M−1A0x = Qm−1(M−1A0)M−1b.
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The two levels of preconditioning can be expressed by the formulation

P−1
F0

= Qm−1(M−1A0)M
−1.

2

Since we have a symmetric positive definite linear system, the conjugate gra-
dient algorithm introduced in Section 2.1.2, is an algorithm of choice to solve
it and can be used with the preconditioner in symmetric form

P−1
F0

= R−1Qm−1(R−TA0R
−1)R−T . (7.11)

This preconditioner is symmetric and positive definite as shown by the following
result.

Theorem 7.2 The preconditioner R−1Qm−1(R−TA0R
−1)R−T is symmet-

ric and positive definite.

Proof. We have that Qm−1(R−TA0R
−1) is defined as a sum of symmetric

matrices In, R−TA0R
−1, (R−TA0R

−1)2, . . . , (R−TA0R
−1)(m−1), which implies

that the preconditioner is symmetric. From relation (7.7), we obtain

λQm−1(λ) = 1−Fm(λ), (7.12)

for all eigenvalues λ of R−TA0R
−1. By (7.12) and (7.5), we have that λQm−1(λ)

belongs to [1−ε, 1+ε] for all eigenvalues in [γ, λmax(A1)] (withA1 = R−TA0R
−1).

Since by construction, Fm(λ) ∈ [ε, 1[ for λ ∈]0, γ], we get λQ(λ) ∈]0, 1−ε] (since
λQ(λ) = 1 − Fm(λ)) (see Figure 7.2). In short, for all λ ∈ [0, λmax(A)], we
have Qm−1(λ) > 0 and we have that Qm−1(R−TA0R

−1) is a positive definite
matrix which implies by Meyer (2000), p.559, that for every nonzero x ∈ IRn,

xTQm−1(R−TA0R
−1)x > 0.

Substituting x by R−T z, we obtain

xTQm−1(R−TA0R
−1)x > 0 ⇔ (R−T z)TQm−1(R−TA0R

−1)R−T z > 0

⇔ zT (R−1Qm−1(R−TA0R
−1)R−T )z > 0

with nonzero z ∈ IRn. We can deduce that the preconditioner is positive
definite. 2
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7.2 Practical implementation of approximation
of the inverse of the (1,1) block

As we have seen in Section 7.1.3, a first level preconditioner M and the second
level preconditioner, which is the Chebyshev filter preconditioner can be com-
bined into one denoted by P−1

F0
. In this section, we propose an approximation

of the operator A−1
γ based on (7.1), which is associated to the preconditioned

system

P−1
F0
A0x = P−1

F0
b. (7.13)

with

P−1
F0

= R−1Qm−1(R−TA0R
−1)R−T (7.14)

and we denote by A0 the initial matrix A. Note that the symmetric posi-
tive definite matrix Qm−1(R−TA0R

−1) = Qm−1(A1) with the notation A1 :=
R−TA0R

−1, can be factorized in a square root form,

Qm−1(A1) = S2
r , (7.15)

with a symmetric matrix Sr ∈ IRn×n implying in (7.14), the following factor-
ization

P−1
F0

= R−1S2
rR
−T

= N−1N−T

where N = S−1
r R ∈ IRn×n. Denoting the preconditioned matrix by

A2 := N−TA0N
−1,

one obtains the following relation between A2 and A1,

A2 = SrR
−TA0R

−1Sr

= SrA1Sr. (7.16)

By (7.15), the matrix Sr has the same eigenvectors as those of A1. Since Sr
is symmetric, the matrix Sr is diagonalizable in the same orthonormal basis of
eigenvectors as this of A1. We then have that Sr and A1 are said to commute
(see Lancaster and Tismenetsky, 1985, Proposition 2) and we obtain by (7.15)

A2 = S2
rA1

= Qm−1(A1)A1. (7.17)

In Section 7.2.1, based on relation (7.17), we analyse the link between the
eigenvalues of A1 and the eigenvalues of A2, which will be used in Section 7.2.2,
to propose and analyse an good approximation of the operator A−1

γ .



138 Practicalities

7.2.1 Eigenvalue distribution of matrix with two levels of
preconditioning

For clarification, the notations that we will use for the following analysis are
given in Table 7.1 (we recall that N = S−1

r R). The first column holds the
notation of the diagonal matrices with various levels of preconditioning. The
notations used for the eigenvectors and the eigenvalues for each matrix are
defined in the second and third columns, respectively. The columns of matrices
in the second column are the orthogonal set of eigenvectors corresponding to
the diagonal matrices in third column containing the eigenvalues.

matrix eigenvectors eigenvalues

A0 U Λ = diag{λi}ni=1

A1 = R−TA0R
−1 V Θ = diag{θi}ni=1

A2 = N−TA0N
−1 = S2

rA1 W ∆ = diag{δi}ni=1

Table 7.1 – Table of notations

With (7.16), the next theorem gives the relation between the eigenvalues of the
two preconditioned matrices A1 and A2.

Theorem 7.3 Let Θ ∈ IRn×n the diagonal matrix containing the n eigen-
values of A1 and the columns of the matrix V ∈ IRn×n form the orthogonal
set of the eigenvectors corresponding to Θ. Then the diagonal matrix con-
taining the n eigenvalues of A2 is defined as

∆ = Qm−1(Θ)Θ,

and the associated eigenvectors denoted by the columns of W can be given
by the eigenvectors of A1.

Proof. By (7.17), the eigendecomposition of A1 and the orthogonality of
V , we have that

A2 = Qm−1(A1)A1

= Qm−1(VΘV T )VΘV T

= V (Qm−1(Θ)Θ)V T .

2

Note that all the eigenvectors of A1 are necessary eigenvectors of A2, while
the opposite is not always true. Indeed, we consider two eigenvalues θi and θj
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of A1 and vi and vj the corresponding eigenvectors respectively. We consider
the case where Qm−1(θi)θi = Qm−1(θj)θj and for instance, 1√

2
(vi + vj) is an

eigenvector of A2 but not for A1. Indeed, we have

A1

(
1√
2

(vi + vj)

)
=

1√
2

(A1vi +A1vj)

=
1√
2

(θivi + θjvj)

6= θ
1√
2

(vi + vj) ,

where θ ∈ IR.

7.2.2 Approximation of the inverse of the (1,1) block
Let us consider the following expression

Ã−1
γ =

1

α
M−1 + Pk(PTk A0Pk)−1PTk , (7.18)

where the columns of the matrix Pk ∈ IRn×k form the set of A0-conjugate
directions computed in the conjugate gradient algorithm preconditioned (see
Section 2.2) by P−1

F0
= N−1N−T to solve the linear system A0x = b. By

Proposition 6.7 in Saad (2011) when the Krylov subspace is invariant, we can
express the basis which are the columns of Pk, as a linear combination of a
subset of k eigenvectors Vk ∈ IRn×k (since by Theorem 7.3, the eigenvectors
of A1 are equal to the eigenvectors of A2) of the symmetrically preconditioned
system A2 such that

Pk = N−1Vkβk, (7.19)

where βk ∈ IRk×k is an invertible matrix. Similarly to the eigendecomposition
of the matrix A in (3.3), we split the spectrum of A1 in two parts, with Θγ ∈
IRp×p the diagonal matrix containing the p eigenvalues less than a given positive
number γ ∈ [θmin(A1), θmax(A1)], and with Θ̃γ ∈ IR(n−p)×(n−p) the diagonal
matrix containing all the other (n−p) eigenvalues. The columns of Vγ ∈ IRn×p

and Ṽγ ∈ IRn×(n−p) are the orthonormal sets of eigenvectors corresponding to
Θγ and Θ̃γ respectively. We have the following spectral relations

A1Vγ = VγΘγ and A1Ṽγ = ṼγΘ̃γ , (7.20)

and by Theorem 7.3, we deduce

A2Vγ = Vγ∆γ and A2Ṽγ = Ṽγ∆̃γ (7.21)
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with ∆γ = Qm−1(Θγ)Θγ and ∆̃γ = Qm−1(Θ̃γ)Θ̃γ .
Assuming that the initial residual is not orthogonal to the eigenvectors of

A2 corresponding to the eigenvalues ∆γ and considering that happy breakdown
has occured within the Lanczos process, we know that the Krylov subspace is
an invariant subspace and that the set of eigenvectors Vk in (7.19) incorporates
necessarily all of Vγ , so that

Vk =
[
Vγ , Ṽγγp

]
with γp ∈ IR(n−p)×(k−p). By (7.19) we have

Pk = N−1
[
Vγ , Ṽγγp

]
βk. (7.22)

Substituting (7.22) for Pk in (7.18) with P = Pk, we can see that

PTk A0Pk = βTk

[
V Tγ
γTp Ṽ

T
γ

]
N−TA0N

−1
[
Vγ Ṽγγp

]
βk

= βTk

[
V Tγ
γTp Ṽ

T
γ

]
A2

[
Vγ Ṽγγp

]
βk,

since A2 = N−TA0N
−1. We have that V Tγ A2Ṽγ = V Tγ Ṽγ∆̃γ = 0 by (7.21),

implying that

PTk A0Pk = βTk

[
V Tγ A2Vγ 0

0 γTp Ṽ
T
γ A2Ṽγγp

]
βk. (7.23)

Observe that the matrix PTk A0Pk is block diagonal such that the inverse of
PTk A0Pk is also block diagonal including the inverse of each block. We get the
rewritting of (7.18) with two terms after elimination of the invertible k × k
matrix βk, such that

Ã−1
γ =

1

α
M−1 +N−1Vγ

(
V Tγ A2Vγ

)−1
V Tγ N

−T

+N−1Ṽγγp

(
γTp Ṽ

T
γ A2Ṽγγp

)−1

γTp Ṽ
T
γ N

−T .

Using spectral relations (7.21), we obtain

Ã−1
γ =

1

α
M−1 +N−1Vγ∆−1

γ V Tγ N
−T (7.24)

+N−1Ṽγγp

(
γTp ∆̃γγp

)−1

γTp Ṽ
T
γ N

−T .
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The following result establishes a first expression of the preconditioned matrix
Ã−1
γ A0 and explicitly shows the effect of the preconditioner Ã−1

γ on A0.

Theorem 7.4 Let the matrix A0 ∈ IRn×n and the preconditioner Ã−1
γ

defined by (7.24). Then we obtain, with the notations introduced above,

Ã−1
γ A0 = R−1

(
1

α
A1 + VγΘ−1

γ V Tγ A1 + SrṼγγp

(
γTp ∆̃γγp

)−1

γTp Ṽ
T
γ S

T
r A1

)
R.

Proof. By N = S−1
r R and M = RTR, we first write (7.24) as

Ã−1
γ =

1

α
R−1R−T + R−1SrVγ∆−1

γ V Tγ S
T
r R
−T

+ R−1SrṼγγp

(
γTp ∆̃γγp

)−1

γTp Ṽ
T
γ S

T
r R
−T .

If we apply the operator Ã−1
γ on A0, we have the following formulation

Ã−1
γ A0 =

1

α
R−1R−TA0 + R−1SrVγ∆−1

γ V Tγ S
T
r R
−TA0

+ R−1SrṼγγp

(
γTp ∆̃γγp

)−1

γTp Ṽ
T
γ S

T
r R
−TA0

or, equivalently,

Ã−1
γ A0 = R−1

(
1

α
R−TAR−1 + SrVγ∆−1

γ V Tγ S
T
r R
−TAR−1

+ SrṼγγp

(
γTp ∆̃γγp

)−1

γTp Ṽ
T
γ S

T
r R
−TAR−1

)
R.

Using A1 = R−TA0R
−1, we obtain

Ã−1
γ A0 = (7.25)

R−1

(
1

α
A1 + SrVγ∆−1

γ V Tγ S
T
r A1 + SrṼγγp

(
γTp ∆̃γγp

)−1

γTp Ṽ
T
γ S

T
r A1

)
R.

Considering the eigendecomposition of A1, i.e., A1 = VγΘγV
T
γ + ṼγΘ̃γ Ṽ

T
γ and

by (7.15) with Qm−1(A1) symmetric positive definite, we obtain
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SrVγ = (Qm−1(A1))
1/2Vγ

=
(
Qm−1

(
VγΘγV

T
γ + ṼγΘ̃γ Ṽ

T
γ

))1/2

Vγ

= Vγ(Qm−1(Θγ))1/2,

and by Theorem 7.3,

SrVγ = VγΘ−1/2
γ ∆1/2

γ . (7.26)

Replacing (7.26) in the second therm in (7.25), we obtain

SrVγ∆−1
γ V Tγ S

T
r A1 = VγΘ−1/2

γ ∆1/2
γ ∆−1

γ ∆1/2
γ Θ−1/2

γ V Tγ A1

= VγΘ−1/2
γ Θ−1/2

γ V Tγ A1.

and we conclude the proof. 2

By the similarity transformation R, this theorem tells us that the eigenvalues
of Ã−1

γ A0 are similar to the eigenvalues of

1

α
A1 + VγΘ−1

γ V Tγ A1 + SrṼγγp

(
γTp ∆̃γγp

)−1

γTp Ṽ
T
γ S

T
r A1, (7.27)

where the first two terms in (7.27) represent the effect of the spectral precon-
ditioner

1

α
In + VγΘ−1

γ V Tγ

on A1. This preconditioner is known as the SLRU approach (see Giraud et
al., 2006) associated with spectral information of A1 defined as in (7.1). The
following theorem rewrites the previous expression of Ã−1

γ A0, so as to ease the
last part of the analysis.

Theorem 7.5 Let the matrix A0 ∈ IRn×n and the preconditioner Ã−1
γ

defined by (7.24). Then we obtain

Ã−1
γ A0 = R−1

(
1

α
A1 + VγV

T
γ +

(
ṼγΘ̃−1/2

γ

)
Y
(

Θ̃1/2
γ Ṽ Tγ

))
R,

where Y =

(
∆̃

1/2
γ γp

(
γTp ∆̃γγp

)−1

γTp ∆̃
1/2
γ

)
.
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Proof. By (7.20), the first part 1
αA1 + VγΘ−1

γ V Tγ A1 in (7.27) is equal to
1
αA1 + VγΘ−1

γ ΘγV
T
γ = 1

αA1 + VγV
T
γ . Similarly to equation (7.26), we have

SrṼγ = ṼγΘ̃
−1/2
γ ∆̃

1/2
γ such that we obtain the formulation

A−1
γ A0 =

R−1

(
1

α
A1 + VγV

T
γ + ṼγΘ̃−1/2

γ ∆̃1/2
γ γp

(
γTp ∆̃γγp

)−1

γTp ∆̃1/2
γ Θ̃−1/2

γ Ṽ Tγ A1

)
R,

or equivalently, using (7.20),

A−1
γ A0 = R−1

(
1

α
A1 + VγV

T
γ + ṼγΘ̃−1/2

γ

(
∆̃1/2
γ γp

(
γTp ∆̃γγp

)−1

γTp ∆̃1/2
γ

)
Θ̃1/2
γ Ṽ Tγ

)
R.

2

The second formulation of Ã−1
γ A0 shows explicitly the effect of the spectral

preconditioner applied to A0. By the first and the second terms of Ã−1
γ A0, the

smallest eigenvalues of A1 belonging to [0, γ] are transformed into ( 1
αθi + 1),

which meets the expectation as we have seen in Section 3.1. In the meantime,
the largest eigenvalues of A1 belonging to [γ, θmax(A1)] are approximately equal
to 1

αθi plus a bounded corrective third term involved by a similarity transfor-
mation the eigenvalues of

Y = ∆̃1/2
γ γp

(
γTp ∆̃γγp

)−1

γTp ∆̃1/2
γ .

The matrix Y is positive semidefinite since Y corresponds to the orthogonal
projection (i.e. Y = Y 2 and Y = Y T ) implying that the eigenvalues of Y
are equal to 0 or 1. By these considerations, we have that the eigenvalues of
A−1
γ A0 are isolated away from zero. Finally, this third term is active only on

the invariant subspace linked to the largest eigenvalues of A1, (in the interval
[γ, θmax(A1)]), because of the products with Ṽγ and Ṽ Tγ on both sides. The
internal part is similar to the orthogonal projector Y , the similitude being
given by the square root of Θ̃γ , and therefore this third term may only shift
marginally the largest eigenvalues towards +∞, and at maxima by a factor of√

(γ/θmax(A1)).
Now, in practice, we may expect that before "happy breakdown" is actually

reached, the Krylov subspace Pk obtained in the chebyshev-preconditioned CG
will already be rich enough to incorporate all of those eigenvectors in Vγ , and
that therefore the resulting preconditionner that we shall get will have spectral
properties close to what we have analysed above. This is what we shall illustrate
now on a pratical example. We consider the previous test example (see Section
3.1) with γ = λmax(A0)/100. The eigenvalues of A−1

γ A0 and Ã−1
γ A0 belong to[

4.287297471632787 10−2, 3.281045885810809
]
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and [
4.287297471748417 10−2, 3.281045885815332

]
respectively and the relative error between eigenvalues of A−1

γ A0 and Ã−1
γ A0 is

equal to 8.14 10−11. In Figure 7.4, we illustrate the effect of preconditioner Ã−1
γ

on the eigenvalues of A0. The top figure illustrates the eigenvalue distribution
of A0 such that the eigenvalues λi less than γ are represented with a green
star and by Theorem 7.5 are transformed to λi

α + 1 with α = 1.16 represented
respectively at the bottom figure.

Figure 7.4 – On top, the eigenvalues distribution of A−1
γ A0 and at the bottom,

the eigenvalues distribution of Ã−1
γ A0.

Figure 7.5 compares the number of Minres iteration needed to reach 10−8

in both cases, for P1 defined with exact spectral information and P̃1 defined as

P̃1 =

[
Ãγ 0

0 S̃γ

]
where S̃γ = BT Ã−1

γ B with Ã−1
γ as given in (7.18). We can see that the number

of iterations with the preconditioner P̃1 is equal to 68, while that in the case
where the preconditioner is P1, reaches 69.
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Figure 7.5 – Convergence profiles of preconditioned Minres with precondition-
ers P1 and P̃1.
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Conclusions and Perspectives

This work focusses on block diagonal preconditioning for KKT systems and
SQD systems to ensure fast convergence of Krylov iterative solvers such as
Minres. We have introduced two preconditioners that approximate the "ideal"
preconditioner proposed by Murphy et al. (2000) for KKT systems and by
Gould and Simoncini (2009) for SQD systems, that are able to reduce the
spectrum of the preconditioned saddle-point matrix.

The two alternatives of block diagonal preconditioners that we propose are
based on good approximations of the invariant subspace associated with the ill-
conditioned part of the (1, 1) block A, which can then be exploited to construct
efficient approximations for the Schur complement. Our first purpose is to
analyse the benefits of such an approach for preconditioning Krylov solvers,
and the theoretical analysis given in the various theorems actually shows that
convergence of preconditioned Minres can be accelerated.

The two specific block diagonal preconditioners actually incorporate a low
rank update of the Schur complement itself, that can be superimposed on top
of a first level preconditioning that reduces as much as possible the dimension
of the invariant subspace containing the ill-conditioned part of the resulting
(1, 1) block. We have shown that, when a first level of preconditioning is used
with our preconditioners for the KKT systems, an effective new version of our
preconditioners can be applied on the initial system.

The theoretical results and practical considerations contained in this work
show that the proposed technique is a good complement to a first level of
preconditioning whenever this is not sufficient to obtain fast convergence for
Minres. The efficiency, as well as the practical feasibility of our precondition-
ers, will for sure depend on the application itself. The ideal conditions would
be to have the benefits of a first level of preconditioning that manages to re-
duce the ill-conditioning within the constraint equations and tightly clusters
the spectrum in the (1, 1) block as well.

An important part of our analysis gives some insights on the interaction
between the (1, 1) block A and the constraints (1, 2) block, showing in which
circumstances the bad conditioning contained in A effectively spoils the con-
vergence of Minres. We have also refined the bounds given by Rusten and
Winther (1992) on the eigenvalues of a KKT matrix and investigated how best

147
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to incorporate the appropriate spectral information with valuable precondition-
ing effects on saddle-point systems.

One of our perspectives is to complete the spectral approach on A with a
similar approach to address the bad conditioning of B. Moreover, we could also
analyse the cost and the amortization of our technique for the solution of several
saddle-point systems involving the same matrix and multiple right-hand sides.
Another perspective is to study and compare SQD systems arising in interior-
point methods. Preliminary results show that the preconditioners with efficient
implementation could be competitive compared to constraint preconditioners.
Another interesting point that is still open for future work is the extension of
our study to more general cases with less restrictive assumptions on the blocks
of the saddle-point matrices.
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Appendix A
Tools of linear algebra
A.1 The singular value decomposition
The singular value decomposition (SVD) of the matrix A is given by the next
theorem.

Theorem A.1 If A ∈ IRm×n, then there exist orthogonal matrices

U = [u1, . . . , um] ∈ IRm×m and V = [v1, . . . , vn] ∈ IRn×n

such that

UTAV = Σ = diag(σ1, . . . , σp) ∈ IRm×n, p = min{m,n},

where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0

Proof. See, e.g., (Golub and Van Loan, 2013, p.76) 2

The singular values of the matrix A and the left and right singular vectors of
A are defined by the following result.

Corollary A.2 If UTAV = Σ is the SVD of A ∈ IRm×n (m ≥ n), then

Avi = σiui and ATui = σivi for i = 1, . . . , n.

Proof. See, e.g., (Golub and Van Loan, 2013, p.77) 2
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We can deduce from this corollary that

ATAvi = σ2
i vi and ATAui = σ2

i ui for i = 1, . . . , n.

Indeed, the singular values of A are the positive square roots of the eigenvalues
of AAT or ATA.

Corollary A.3 If A ∈ IRm×n, then ‖A‖2 = σ1.

Proof. See, e.g., (Golub and Van Loan, 2013, p.77) 2

A.2 The principal angles and the associated prin-
cipal vectors

Let F and G be subspaces in IRn whose dimensions satisfy

p = dim(F) ≥ dim(G) = q ≥ 1.

The principal angles {θk}qk=1 between these two subspaces and the associated
principal vectors {fk}qk=1 and {gk}qk=1 are defined recursively by

cos(θk) = fTk gk = max
f∈F,‖f‖2=1

fT [f1,...,fk−1]=0

max
g∈G,‖g‖2=1

gT [g1,...,gk−1]=0

fT g,

where 0 ≤ θ1 ≤ . . . ≤ θq ≤ π
2 .

A singular value decomposition for computing cosines of principal angles
between the subspaces F and G can be formulated as follows. Let the columns
of matrices QF ∈ IRn×p and QG ∈ IRn×q form orthonormal bases for the
subspaces F and G, respectively. The thin SVD of QTFQG is

UTQTFQGV = diag(σ1, . . . , σq),

where σ1 ≥ σ2 ≥ . . . ≥ σq ≥ 0, U ∈ IRp×q and V ∈ IRq×q both have orthonor-
mal columns. Then principal angles can be computed as

σk = cos(θk), k = 1, . . . , q,

where 0 ≤ θ1 ≤ . . . ≤ θq ≤ π
2 , while the vectors {fk}qk=1 and {gk}qk=1 are the

associated principal vectors computed by

fk = (QFU)(:, k), gk = (QGV )(:, k), k = 1, . . . , q.
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A.3 The Sherman-Morrison-Woodbury formula
The following formula is defined as the Sherman-Morrison formula and gives a
convenient expression for the inverse of the matrix (A+UV T ) where A ∈ IRn×n

invertible, U and V ∈ IRn×k,

(A+ UV T )−1 = A−1 −A−1U(In + V TA−1U)−1V TA−1.

This expression shows how to compute the inverse of a rank-k correction UV T
to a matrix A in a rank-k correction of the inverse. Note that A + UV T is
invertible if and only if In + V TA−1U is invertible.

A.4 The cosine decomposition

Theorem A.4 Let P a unitary matrix of dimension m+ p = k + q, then there
exist unitary matrices U , V , W , Z of dimensions m, p, k, q respectively, so that(

U? 0
0 V ?

)
P

(
W 0
0 Z

)
=




I 0?s r

C S s
0c I m− r − s

0s I p− k + r
S −C s

I 0?c k − r − s
r s k − r − s p− k + r s m− r − s

C = diag (αr+1, . . . , αr+s) , 1 > αr+1 > . . . > αr+s > 0,

S = diag (βr+1, . . . , βr+s) , 0 < βr+1 6 . . . 6 βr+s < 1,

C2 + S2 = I.

Proof. See, e.g., (Paige and Saunders, 1981, p.403) 2
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Appendix B
Proof of Theorems

B.1 Proof of Theorem 3.1 of Chapter 3
First note that the matrices S and Sγ are symmetric and positive definite,
hence nonsingular, by definition of A and Aγ respectively, and by the full
column rank property of B ∈ IRn×m (see, e.g., Golub and Van Loan, 2013,
Section 4.2.1). The eigenvalue problem S−1

γ Sx = λx is then equivalent to the
generalized eigenvalue problem:

Sx = λSγx, (B.1)

that is, λ(S−1
γ S) = λ(S, Sγ) = {νi}mi=1.

The first part of the proof transforms problem (B.1) into two successively
equivalent generalized eigenvalue problems. We define the matrices

S(a) = (BTB)−1/2S(BTB)−1/2 = QTA−1Q (B.2)

and
S(a)
γ = (BTB)−1/2Sγ(BTB)−1/2 = QTA−1

γ Q, (B.3)

where Q = B(BTB)−1/2 ∈ IRn×m. The first equality of each equation and
the nonsingularity of (BTB)−1/2 guarantee that λ(S, Sγ) = λ(S(a), S

(a)
γ ) =

{νi}mi=1. To exploit the second equality of each equation, consider the matrix
K ∈ IRm×n defined as

K = QTU = [QTUγ , Q
T Ũγ ] = [Kγ , K̃γ ], (B.4)

where Q satisfies QTQ = Im by definition, U = [Uγ , Ũγ ] is the orthogonal
matrix of the eigendecomposition (3.3), Kγ is the operator used in (3.13) and
we set K̃γ = QT Ũγ . The columns of KT are orthonormal, implying that
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KγK
T
γ +K̃γK̃

T
γ = Im. If we now complete the matrixKT bym−n orthonormal

columns to provide an orthogonal matrix of IRn×n, and if we apply the CS
decomposition as in Appendix A or Paige and Saunders (1981), Section 4,
one can guarantee the existence of orthogonal matrices Vγ ∈ IRp×p, Ṽγ ∈
IR(n−p)×(n−p) and W ∈ IRm×m such that

V Tγ K
T
γW = C = diag(c1, . . . , cr) ∈ IRp×m, r = min{p,m}, (B.5)

and

Ṽ Tγ K̃
T
γW = S = diag(s1, . . . , sq) ∈ IR(n−p)×m, q = min{n− p,m}, (B.6)

where CTC + STS = Im. The singular values ci and si of KT
γ and K̃T

γ respec-
tively, are cosines and sines satisfying (without loss of generality)

1 ≥ c1 ≥ . . . ≥ cr ≥ 0 and 0 ≤ s1 ≤ . . . ≤ sq ≤ 1. (B.7)

In principle, the min{r, q} of these values correspond to the cosines and sines of
the principal angles between Im(B) and Im(Uγ), the other values being equal
to either 0 or 1, depending on the dimensions p,m and n. Extracting Kγ and
K̃γ from (B.5) and (B.6) yields

Kγ = WCTV Tγ and K̃γ = WST Ṽ Tγ . (B.8)

We now come back to the second equalities of equations (B.2) and (B.3) and
use the expressions (3.3) and (3.4) to derive expressions for A−1 and A−1

γ

respectively. One obtains, by (B.4) and (B.8),

S(a) = KUT (UγΛ−1
γ UTγ + ŨγΛ̃−1

γ ŨTγ )UKT

= (KγU
T
γ + K̃γŨ

T
γ )(UγΛ−1

γ UTγ + ŨγΛ̃−1
γ ŨTγ )(UγK

T
γ + ŨγK̃

T
γ )

= KγΛ−1
γ KT

γ + K̃γΛ̃−1
γ K̃T

γ

= WS(b)WT , (B.9)

where
S(b) = CTV Tγ Λ−1

γ VγC + ST Ṽ Tγ Λ̃−1
γ ṼγS, (B.10)

and, similarly,

S(a)
γ = KUT (UγΛ−1

γ UTγ +
1

α
In)UKT

= (KγU
T
γ + K̃γŨ

T
γ )(UγΛ−1

γ UTγ +
1

α
In)(UγK

T
γ + ŨγK̃

T
γ )

= Kγ(Λ−1
γ +

1

α
Ip)K

T
γ +

1

α
K̃γK̃

T
γ

= WS(b)
γ WT , (B.11)
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where

S(b)
γ = CTV Tγ

(
Λ−1
γ +

1

α
Ip

)
VγC +

1

α
STS. (B.12)

The last equalities of (B.9) and (B.11) together with the nonsingularity of W
then guarantee that λ(S(a), S

(a)
γ ) = λ(S(b), S

(b)
γ ) = {νi}mi=1.

For the second part of the proof, consider, for a non-zero vector x ∈ IRm,
the generalized Rayleigh quotient

ν(x) =
xTS(b)x

xTS
(b)
γ x

. (B.13)

We show that ν(x) belongs to the interval defined in (3.15), hence implying the
desired result. First observe that

λ(Λ−1
γ ) ∈

[
1

γ
,

1

λmin(A)

]
and λ(Λ̃−1

γ ) ∈
[

1

λmax(A)
,

1

γ

]
, (B.14)

by definition of Λγ and Λ̃γ . By (B.10) and (B.12), we can write

ν(x) =
xTCTV Tγ Λ−1

γ VγCx+ xTST Ṽ Tγ Λ̃−1
γ ṼγSx

xTCTV Tγ
(
Λ−1
γ + 1

αIp
)
VγCx+ 1

αx
TSTSx

,

yielding the following equalities

ν(x) =
xTCTV Tγ (αΛ−1

γ )VγCx
xTCTV Tγ (αΛ−1

γ + Ip)VγCx+ xTSTSx

+
xTST Ṽ Tγ (αΛ̃−1

γ )ṼγSx
xTCTV Tγ (αΛ−1

γ + Ip)VγCx+ xTSTSx
(B.15)

and

1

ν(x)
=

xTCTV Tγ (αΛ−1
γ + Ip)VγCx

xTCTV Tγ (αΛ−1
γ )VγCx+ xTST Ṽ Tγ (αΛ̃−1

γ )ṼγSx

+
xTSTSx

xTCTV Tγ (αΛ−1
γ )VγCx+ xTST Ṽ Tγ (αΛ̃−1

γ )ṼγSx
. (B.16)

Consider first the case where both Cx and Sx are non-zero vectors. Since α > 0,
the matrices V Tγ (αΛ−1

γ )Vγ and Ṽ Tγ (αΛ̃−1
γ )Ṽγ are positive definite and each term

of the numerator and the denominator in (B.15) and in (B.16) is positive. One
can thus write

ν(x) ≤
xTCTV Tγ (αΛ−1

γ )VγCx
xTCTV Tγ (αΛ−1

γ + Ip)VγCx
+

xTST Ṽ Tγ (αΛ̃−1
γ )ṼγSx

xTSTSx

≤ 1 +
α

γ
, (B.17)
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using the second part of (B.14) and the fact that xTSTSx = xTST Ṽ Tγ ṼγSx.
In the same way, we can write

1

ν(x)
≤

xTCTV Tγ (αΛ−1
γ )VγCx

xTCTV Tγ (αΛ−1
γ )VγCx

+
xTCTV Tγ VγCx

xTCTV Tγ (αΛ−1
γ )VγCx

+
xTSTSx

xTST Ṽ Tγ (αΛ̃−1
γ )ṼγSx

≤ 1 +
γ

α
+
λmax(A)

α
, (B.18)

where we use both parts of (B.14) and the fact that xTSTSx = xTST Ṽ Tγ ṼγSx.
The bounds (B.17) and (B.18) imply the desired result for this first case. Now,
from CTC + STS = Im, one cannot have both Cx = 0 and Sx = 0 at the same
time for a non-zero x ∈ IRm. Considering these particular cases separately, we
can deduce from (B.14), (B.15) and (B.16) when Cx = 0,

ν(x) =
xTST Ṽ Tγ (αΛ̃−1

γ )ṼγSx
xTSTSx

≤ α

γ

≤ 1 +
α

γ

and

1

ν(x)
=

xTSTSx
xTST Ṽ Tγ (αΛ̃−1

γ )ṼγSx

≤ λmax(A)

α

≤ 1 +
γ

α
+
λmax(A)

α
.

Similarly, when Sx = 0, we deduce from (B.15) and (B.16),

ν(x) =
xTCTV Tγ (αΛ−1

γ )VγCx
xTCTV Tγ (αΛ−1

γ + Ip)VγCx
≤ 1

≤ 1 +
α

γ
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and

1

ν(x)
=

xTCTV Tγ (αΛ−1
γ + Ip)VγCx

xTCTV Tγ (αΛ−1
γ )VγCx

≤ 1 +
γ

α

≤ 1 +
γ

α
+
λmax(A)

α
.

In both cases, the bounds in (B.17) and (B.18) are still valid, which ends the
proof.

2

B.2 Proof of Theorem 3.4 of Chapter 3
First note that the matrices S and Sγ are symmetric and positive definite,
hence nonsingular, by the definition of A and Aγ , respectively, and by the full
column rank property of B ∈ IRn×m (see, e.g., Golub and Van Loan, 2013,
Section 4.2.1). The eigenvalue problem S−1

γ Sx = λx is then equivalent to the
generalized eigenvalue problem:

Sx = λSγx, (B.19)

that is, λ(S−1
γ S) = λ(S, Sγ) = {νi}mi=1.

The first part of the proof transforms problem (B.19) into two successively
generalized eigenvalue problems. We define the matrices

S(a) = (BTB)−1/2S(BTB)−1/2 = QTA−1Q+ (BTB)−1/2C(BTB)−1/2

(B.20)
and

S(a)
γ = (BTB)−1/2Sγ(BTB)−1/2 = QTA−1

γ Q+ (BTB)−1/2C(BTB)−1/2,

(B.21)
where Q = B(BTB)−1/2 ∈ IRn×m. Observe that the terms QTA−1Q and
QTA−1

γ Q in (B.20) and (B.21) are similar to (B.2) and (B.3) respectively, im-
plying that we can thus follow the similar steps in the proof of Theorem 3.1.
Indeed, defining

K = QTU = [QTUγ , Q
T Ũγ ] = [Kγ , K̃γ ], (B.22)

where Q satisfies QTQ = Im and using the CS Decomposition as in Appendix
A or Paige and Saunders (1981), Section 4, we obtain

Kγ = WCTV Tγ and K̃γ = WST Ṽ Tγ . (B.23)
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Similarly to (B.9) and (B.11), we now come back to the second equalities of
equations (B.20) and (B.21) and use the expressions (3.3) and (3.4) to derive
expressions for A−1 and A−1

γ , respectively. One obtains, by (B.22) and (B.23),

S(a) = WS(b)WT + (BTB)−1/2C(BTB)−1/2, (B.24)

where
S(b) = CTV Tγ Λ−1

γ VγC + ST Ṽ Tγ Λ̃−1
γ ṼγS, (B.25)

and, similarly,

S(a)
γ = WS(b)

γ WT + (BTB)−1/2C(BTB)−1/2, (B.26)

where

S(b)
γ = CTV Tγ

(
Λ−1
γ +

1

α
Ip

)
VγC +

1

α
STS. (B.27)

For the second part of the proof, consider, for a non-zero vector x ∈ IRm,
the generalized Rayleigh quotient

ν(x) =
xTS(a)x

xTS
(a)
γ x

(B.28)

or, equivalently by (B.24) and (B.26),

ν(x) =
xTWS(b)WTx+ xT (BTB)−1/2C(BTB)−1/2x

xTWS
(b)
γ WTx+ xT (BTB)−1/2C(BTB)−1/2x

.

Setting y = WTx and z = (BTB)−1/2x as non-zero vectors, we have

ν(x) =
yTS(b)y + zTCz

yTS
(b)
γ y + zTCz

. (B.29)

We will show that ν(x) belongs to the interval defined in (3.26), hence implying
the desired result. First observe that

λ(Λ−1
γ ) ∈

[
1

γ
,

1

λmin(A)

]
and λ(Λ̃−1

γ ) ∈
[

1

λmax(A)
,

1

γ

]
, (B.30)

by definition of Λγ and Λ̃γ . By (B.25) and (B.27), we can write

ν(x) =
yTCTV Tγ Λ−1

γ VγCy + yTST Ṽ Tγ Λ̃−1
γ ṼγSy + zTCz

yTCTV Tγ
(
Λ−1
γ + 1

αIp
)
VγCy + 1

αy
TSTSy + zTCz

,

yielding the following equalities

ν(x) =
yT CTV Tγ (αΛ−1

γ )VγCy
yT CTV Tγ (αΛ−1

γ + Ip)VγCy + yTSTSy + zTαCz

+
yTST Ṽ Tγ (αΛ̃−1

γ )ṼγSy
yT CTV Tγ (αΛ−1

γ + Ip)VγCy + yTSTSy + zTαCz

+
zTαCz

yT CTV Tγ (αΛ−1
γ + Ip)VγCy + yTSTSy + zTαCz

(B.31)
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and

1

ν(x)
=

yT CTV Tγ (αΛ−1
γ + Ip)VγCy

yT CTV Tγ (αΛ−1
γ )VγCy + yTST Ṽ Tγ (αΛ̃−1

γ )ṼγSy + zTαCz

+
yTSTSy

yT CTV Tγ (αΛ−1
γ )VγCy + yTST Ṽ Tγ (αΛ̃−1

γ )ṼγSy + zTαCz

+
zTαCz

yT CTV Tγ (αΛ−1
γ )VγCy + yTST Ṽ Tγ (αΛ̃−1

γ )ṼγSy + zTαCz
. (B.32)

Consider first the case where both Cy and Sy are non-zero vectors. Since
α > 0, the matrices V Tγ (αΛ−1

γ )Vγ , Ṽ Tγ (αΛ̃−1
γ )Ṽγ and C are positive definite

and each term of the numerator and the denominator in (B.31) and in (B.32)
is positive. One can thus write

ν(x) ≤
yTCTV Tγ (αΛ−1

γ )VγCy
yTCTV Tγ (αΛ−1

γ + Ip)VγCy
+

yTST Ṽ Tγ (αΛ̃−1
γ )ṼγSy

yTSTSy
+
zTαCz

zTαCz

≤ 1 +
α

γ
+ 1, (B.33)

using the second part of (B.30) and the fact that yTSTSy = yTST Ṽ Tγ ṼγSy.
In the same way, we can write

1

ν(x)
≤

yTCTV Tγ (αΛ−1
γ )VγCy

yTCTV Tγ (αΛ−1
γ )VγCy

+
yTCTV Tγ VγCy

yTCTV Tγ (αΛ−1
γ )VγCy

+
yTSTSy

yTST Ṽ Tγ (αΛ̃−1
γ )ṼγSy

+
zTαCz

zTαCz

≤ 1 +
γ

α
+
λmax(A)

α
+ 1, (B.34)

where we use both parts of (B.30) and the fact that yTSTSy = yTST Ṽ Tγ ṼγSy.
The bounds (B.33) and (B.34) imply the desired result for this first case. Now,
from CTC + STS = Im, one cannot have both Cy = 0 and Sy = 0 at the same
time for a non-zero x ∈ IRm. Considering these particular cases separately, we
can deduce from (B.30), (B.31) and (B.32) when Cy = 0

ν(x) =
yTST Ṽ Tγ (αΛ̃−1

γ )ṼγSy
yTSTSy + zTαCz

+
zTαCz

yTSTSy + zTαCz

≤ α

γ
+ 1

≤ 1 +
α

γ
+ 1,

and
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1

ν(x)
=

yTSTSy
yTST Ṽ Tγ (αΛ̃−1

γ )ṼγSy + zTαCz
+

zTαCz

yTST Ṽ Tγ (αΛ̃−1
γ )ṼγSy + zTαCz

≤ λmax(A)

α
+ 1.

≤ 1 +
γ

α
+
λmax(A)

α
+ 1.

Similarly, when Sy = 0, we decuce from (B.31) and (B.32),

ν(x) =
yTCTV Tγ (αΛ−1

γ )VγCy
yTCTV Tγ (αΛ−1

γ + Ip)VγCy + zTαCz

+
zTαCz

yTCTV Tγ (αΛ−1
γ + Ip)VγCy + zTαCz

≤ 1 + 1

≤ 1 +
α

γ
+ 1,

and

1

ν(x)
=

yTCTV Tγ (αΛ−1
γ + Ip)VγCy

yTCTV Tγ (αΛ−1
γ )VγCy + zTαCz

+
zTαCz

yTCTV Tγ (αΛ−1
γ )VγCy + zTαCz

≤ 1 +
γ

α
+ 1

≤ 1 +
γ

α
+
λmax(A)

α
+ 1.

In both cases, the bounds in (B.33) and (B.34) are still valid, which ends the
proof. 2



Abbreviations and main notations

A Square and symmetric matrix
(
∈ IRn×n

)
1

n Size of the matrix A 1
B Rectangular matrix with full column rank

(
∈ IRn×m, n ≤ m

)
1

C Square matrix
(
∈ IRm×m

)
1

m Size of the matrix C 1
A Saddle-point matrix

(
∈ IR(n+m)×(n+m)

)
1

KKT Karush-Kuhn-Tucker 1
SQD Symmetric quasi-definite 1
AKKT Symmetrix matrix of the Karush-Kuhn-Tucker form(

∈ IR(n+m)×(n+m)
) 1

ASQD Symmetric quasi-definite matrix
(
∈ IR(n+m)×(n+m)

)
2

∇f(x) Gradient of function f at point x 3
∇2f(x) Hessian of function f at point x 3
J(x) Jacobian matrix of the constraints at point x 6
JE(x) Jacobian matrix of the equality constraints at point x 6
JI(x) Jacobian matrix of the inequality constraints at point x 6
LICQ Linear independency constraint qualification 6
SQP Sequential quadratic programming 9
CG Conjugate gradient 25
Minres Minimal residuals 27
PCG Preconditioned conjugate gradient 30
S Schur complement

(
∈ IRm×m

)
33

P Exact block diagonal preconditioner
(
∈ IR(n+m)×(n+m)

)
33

P̃ Approximation of exact block diagonal preconditioner(
∈ IR(n+m)×(n+m)

) 35

Ã Approximation of matrix A
(
∈ IRn×n

)
35

S̃ Approximation of schur complement
(
∈ IRm×m

)
35

167



168 Abbreviations and main notations

PGGV Golub-Greif-Varah preconditioner
(
∈ IR(n+m)×(n+m)

)
35

Pc Constraint preconditioner
(
∈ IR(n+m)×(n+m)

)
44

Λγ Diagonal matrix containing the p eigenvalues less than γ(
∈ IRp×p

) 46

γ Positive number ∈ [λmin(A), λmax(A)]
(
∈ IR+

)
46

λmin(A) The largest eigenvalue of A 46
λmax(A) The smallest eigenvalue of A 46
Λ̃γ Diagonal matrix containing the n− p eigenvalues more than γ(

∈ IR(n−p)×(n−p)
) 46

Uγ Rectangular matrix such that the columns are the orthonormal
sets of eigenvectors corresponding to Λγ

(
∈ IRn×p

) 46

Ũγ Rectangular matrix such that the columns are the orthonormal
sets of eigenvectors corresponding to Λ̃γ

(
∈ IRn×(n−p)

) 46

α Estimate of the average of the eigenvalues in Λ̃γ
(
∈ IR+

)
46

SLRU Spectral low rank update 46
A−1
γ SLRU approximation of the inverse of matrix A

(
∈ IRn×n

)
46

LMP Limited-memory preconditioner 48
Sγ Approximation of the Schur complement S

(
∈ IRm×m

)
50

S−1
γ Approximation of the inverse of the Schur complement S(

∈ IRm×m
) 50

LSC Least-squares commutator 83
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