1,987 research outputs found

    Global Solutions of Viscous Transonic Flows in Kerr Geometry I: Weak Viscosity Limit

    Get PDF
    We present fully general relativistic equations governing viscous transonic flows in vertical equilibrium in Kerr geometry. We find the complete set of global solutions (both for Optically thick and optically thin flows) in the weak viscosity limit. We show that for a large region of parameter space, centrifugal pressure supported standing shocks can form in accretion and winds very close to the black hole horizon, both for co-rotating and contra-rotating flows. We compute the nature of the shear tensor for complete transonic solutions and discuss the consequences of its reversal properties.Comment: Latex 10 pages, special macro psfig.tex are include

    Hysteresis effects and diagnostics of the shock formation in low angular momentum axisymmetric accretion in the Kerr metric

    Full text link
    The secular evolution of the purely general relativistic low angular momentum accretion flow around a spinning black hole is shown to exhibit hysteresis effects. This confirms that a stationary shock is an integral part of such an accretion disc in the Kerr metric. The equations describing the space gradient of the dynamical flow velocity of the accreting matter have been shown to be equivalent to a first order autonomous dynamical systems. Fixed point analysis ensures that such flow must be multi-transonic for certain astrophysically relevant initial boundary conditions. Contrary to the existing consensus in the literature, the critical points and the sonic points are proved not to be isomorphic in general. Homoclinic orbits for the flow flow possessing multiple critical points select the critical point with the higher entropy accretion rate, confirming that the entropy accretion rate is the degeneracy removing agent in the system. However, heteroclinic orbits are also observed for some special situation, where both the saddle type critical points of the flow configuration possesses identical entropy accretion rate. Topologies with heteroclinic orbits are thus the only allowed non removable degenerate solutions for accretion flow with multiple critical points, and are shown to be structurally unstable. Depending on suitable initial boundary conditions, a homoclinic trajectory can be combined with a standard non homoclinic orbit through an energy preserving Rankine-Hugoniot type of stationary shock. An effective Lyapunov index has been proposed to analytically confirm why certain class of transonic flow can not accommodate shock solutions even if it produces multiple critical points. (Abridged)Comment: mn2e.cls format. 24 pages. 4 figure

    A study of nozzle and ejector flow problems by the method of integral relations

    Get PDF
    The application of the method of integral relations to nozzle and ejector flow problems was examined. For nozzle flow problems, the general formulation is that the approaching flow may be rotational. Particular attention was given to the phenomenon of choking under nonuniform flow conditions. Numerical integration of the governing ordinary differential equations was also investigated. This scheme of analysis was also applied to study the interacting flow field within an ejector system

    Properties of Interstellar Turbulence from Gradients of Linear Radio Polarization Maps

    Full text link
    Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (∣∇P∣|\nabla \textbf{P}|) from the ISM for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal simulations of MHD turbulence. We compared the observational data with results of synthetic observations obtained with the simulations of 3D turbulence. Visually, in both data sets, a complex network of filamentary structures is seen. Our analysis shows that the filaments in the gradient can be produced by shocks as well as random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former dominates for supersonic turbulence. In order to quantitatively characterize these differences we use the topology tool known as a genus curve as well as the moments of the image distribution. We find that higher values for the moments correspond to cases of ∣∇P∣|\nabla \textbf{P}| with larger Mach numbers, but the strength of the dependency is connected to the telescope angular resolution. In regards to the topology, the supersonic filaments observed in ∣∇P∣|\nabla \textbf{P}| have a positive genus shift, which indicates a "swisscheese" like topology, while the subsonic cases show a negative genus, indicating a "clump" like topology. In the case of the genus, the dependency on the telescope resolution is not as strong. The SGPS test region data has a distribution and morphology that matches subsonic to transsonic type turbulence, which independently confirms what is now expected for the WIM.Comment: Submitted to Ap
    • …
    corecore