356 research outputs found

    On Shape-Mediated Enrolment in Ear Biometrics

    No full text
    Ears are a new biometric with major advantage in that they appear to maintain their shape with increased age. Any automatic biometric system needs enrolment to extract the target area from the background. In ear biometrics the inputs are often human head profile images. Furthermore ear biometrics is concerned with the effects of partial occlusion mostly caused by hair and earrings. We propose an ear enrolment algorithm based on finding the elliptical shape of the ear using a Hough Transform (HT) accruing tolerance to noise and occlusion. Robustness is improved further by enforcing some prior knowledge. We assess our enrolment on two face profile datasets; as well as synthetic occlusion

    The image ray transform for structural feature detection

    No full text
    The use of analogies to physical phenomena is an exciting paradigm in computer vision that allows unorthodox approaches to feature extraction, creating new techniques with unique properties. A technique known as the "image ray transform" has been developed based upon an analogy to the propagation of light as rays. The transform analogises an image to a set of glass blocks with refractive index linked to pixel properties and then casts a large number of rays through the image. The course of these rays is accumulated into an output image. The technique can successfully extract tubular and circular features and we show successful circle detection, ear biometrics and retinal vessel extraction. The transform has also been extended through the use of multiple rays arranged as a beam to increase robustness to noise, and we show quantitative results for fully automatic ear recognition, achieving 95.2% rank one recognition across 63 subjects

    The image ray transform

    No full text
    Image feature extraction is a fundamental area of image processing and computer vision. There are many ways that techniques can be created that extract features and particularly novel techniques can be developed by taking influence from the physical world. This thesis presents the Image Ray Transform (IRT), a technique based upon an analogy to light, using the mechanisms that define how light travels through different media and analogy to optical fibres to extract structural features within an image. Through analogising the image as a transparent medium we can use refraction and reflection to cast many rays inside the image and guide them towards features, transforming the image in order to emphasise tubular and circular structures.The power of the transform for structural feature detection is shown empirically in a number of applications, especially through its ability to highlight curvilinear structures. The IRT is used to enhance the accuracy of circle detection through use as a preprocessor, highlighting circles to a greater extent than conventional edge detection methods. The transform is also shown to be well suited to enrolment for ear biometrics, providing a high detection and recognition rate with PCA, comparable to manual enrolment. Vascular features such as those found in medical images are also shown to be emphasised by the transform, and the IRT is used for detection of the vasculature in retinal fundus images.Extensions to the basic image ray transform allow higher level features to be detected. A method is shown for expressing rays in an invariant form to describe the structures of an object and hence the object itself with a bag-of-visual words model. These ray features provide a complementary description of objects to other patch-based descriptors and have been tested on a number of object categorisation databases. Finally a different analysis of rays is provided that can produce information on both bilateral (reflectional) and rotational symmetry within the image, allowing a deeper understanding of image structure. The IRT is a flexible technique, capable of detecting a range of high and low level image features, and open to further use and extension across a range of applications

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    HUMAN EAR CLASSIFICATION SCHEME BASED ON LOBULE CHAIN CODE AND HELIX DIMENSIONALITY

    Get PDF
    In this paper, a human ear classification approach which uses the ear image contour was proposed. Basically, the scheme has four classification groups which are based on only two concepts namely: Chain code (Lobed and Lobeless Ear) and Dimensionality of Helix (Big and Small Ear). Using the chain code feature vectors extracted from the ear contour after necessary pre-processing activities, the ear were classified based on the code pattern of the last twenty or fifteen codes which uses the rule of thumb classifier we built. Similarly, the second classification process implored the Helix dimensional features which were a product of the Angular Points and landmark space, using the Square of Sum Difference. Therefore, the experimental result showed about 94.80% and 92.20% accuracy respectively

    Evaluating Novel Mask-RCNN Architectures for Ear Mask Segmentation

    Full text link
    The human ear is generally universal, collectible, distinct, and permanent. Ear-based biometric recognition is a niche and recent approach that is being explored. For any ear-based biometric algorithm to perform well, ear detection and segmentation need to be accurately performed. While significant work has been done in existing literature for bounding boxes, a lack of approaches output a segmentation mask for ears. This paper trains and compares three newer models to the state-of-the-art MaskRCNN (ResNet 101 +FPN) model across four different datasets. The Average Precision (AP) scores reported show that the newer models outperform the state-of-the-art but no one model performs the best over multiple datasets.Comment: Accepted into ICCBS 202

    Ear Contour Detection and Modeling Using Statistical Shape Models

    Get PDF
    Ear detection is an actively growing area of research because of its applications in human head tracking and biometric recognition. In head tracking, it is used to augment face detectors and to perform pose estimation. In biometric systems, it is used both as an independent modality and in multi-modal biometric recognition. The ear shape is the preferred feature used to perform detection because of its unique structure in both 2D color images and 3D range images. Ear shape models have also been used in literature to perform ear detection, but at a cost of a loss in information about the exact ear structure. In this thesis, we seek to address these issues in existing methods by a combination of techniques including Viola Jones Haar Cascades, Active Shape Models (ASM) and Dijkstra\u27s shortest path algorithm to devise a shape model of the ear using geometric parameters and mark an accurate contour around the ear using only 2D color images. The Viola Jones Haar Cascades classifier is used to mark a rectangular region around the ear in a left side profile image. Then a set of key landmark points around the ear including the ear outer helix, the ear anti-helix and the ear center is extracted using the ASM. This set of landmarks is then fed into Dijkstra\u27s shortest path algorithm which traces out the strongest edge between adjacent landmarks, to extract the entire ear outer contour, while maintaining a high computational efficiency

    Shaped Wavelets for Curvilinear Structures for Ear Biometrics

    Full text link

    EAR RECOGNITION AND OCCLUSION

    Get PDF
    ABSTRACT Personal identification using 2D ear images still has many problems such as occlusion mostly caused by hair, earrings, and clothes. To avoid this problem, we propose to divide the ear image into non-overlapping equal divisions and identify persons through these non-occluded parts separately and then combine outputs of the classification of these parts in abstract, rank, and measurement level fusion. Experimental results show that the increasing of recognition rate through combining small parts of non-occluded divisions of ear image
    corecore