238 research outputs found

    Grouping Straight Line Segments in Real Images

    Get PDF
    In this paper, we discuss straight line extraction as a part of the image interpretation process. Favoring the use of line drawings as intermediate data for the extraction, we survey the current methods, which all achieve a polygonal approximation of lines, and show that they are not appropriate for the identification of straight elements in a scene. We propose a new approach which uses a scale invariant criterion and is based on the characterization of prime segments in a line, and develop an original method for obtaining these prime segments. Results show that we significantly improve the performance of straight line extraction. The methodology we have used here is applicable to a large class of segmentation problems

    Fast, Approximate Piecewise-Planar Modeling Based on Sparse Structure-from-Motion and Superpixels

    Get PDF
    BĂłdis-SzomorĂş A., Riemenschneider H., Van Gool L., ''Fast, approximate piecewise-planar modeling based on sparse structure-from-motion and superpixels'', 27th IEEE conference on computer vision and pattern recognition - CVPR 2014, pp. 469-476, June 23-28, 2014, Columbus, Ohio, USA.status: publishe

    Piecewise rigid curve deformation via a Finsler steepest descent

    Get PDF
    This paper introduces a novel steepest descent flow in Banach spaces. This extends previous works on generalized gradient descent, notably the work of Charpiat et al., to the setting of Finsler metrics. Such a generalized gradient allows one to take into account a prior on deformations (e.g., piecewise rigid) in order to favor some specific evolutions. We define a Finsler gradient descent method to minimize a functional defined on a Banach space and we prove a convergence theorem for such a method. In particular, we show that the use of non-Hilbertian norms on Banach spaces is useful to study non-convex optimization problems where the geometry of the space might play a crucial role to avoid poor local minima. We show some applications to the curve matching problem. In particular, we characterize piecewise rigid deformations on the space of curves and we study several models to perform piecewise rigid evolution of curves

    Adaptive restoration of speckled SAR images

    Full text link

    Directional Estimation for Robotic Beating Heart Surgery

    Get PDF
    In robotic beating heart surgery, a remote-controlled robot can be used to carry out the operation while automatically canceling out the heart motion. The surgeon controlling the robot is shown a stabilized view of the heart. First, we consider the use of directional statistics for estimation of the phase of the heartbeat. Second, we deal with reconstruction of a moving and deformable surface. Third, we address the question of obtaining a stabilized image of the heart

    Directional Estimation for Robotic Beating Heart Surgery

    Get PDF
    In robotic beating heart surgery, a remote-controlled robot can be used to carry out the operation while automatically canceling out the heart motion. The surgeon controlling the robot is shown a stabilized view of the heart. First, we consider the use of directional statistics for estimation of the phase of the heartbeat. Second, we deal with reconstruction of a moving and deformable surface. Third, we address the question of obtaining a stabilized image of the heart

    A multispeaker dataset of raw and reconstructed speech production real-time MRI video and 3D volumetric images

    Full text link
    Real-time magnetic resonance imaging (RT-MRI) of human speech production is enabling significant advances in speech science, linguistics, bio-inspired speech technology development, and clinical applications. Easy access to RT-MRI is however limited, and comprehensive datasets with broad access are needed to catalyze research across numerous domains. The imaging of the rapidly moving articulators and dynamic airway shaping during speech demands high spatio-temporal resolution and robust reconstruction methods. Further, while reconstructed images have been published, to-date there is no open dataset providing raw multi-coil RT-MRI data from an optimized speech production experimental setup. Such datasets could enable new and improved methods for dynamic image reconstruction, artifact correction, feature extraction, and direct extraction of linguistically-relevant biomarkers. The present dataset offers a unique corpus of 2D sagittal-view RT-MRI videos along with synchronized audio for 75 subjects performing linguistically motivated speech tasks, alongside the corresponding first-ever public domain raw RT-MRI data. The dataset also includes 3D volumetric vocal tract MRI during sustained speech sounds and high-resolution static anatomical T2-weighted upper airway MRI for each subject.Comment: 27 pages, 6 figures, 5 tables, submitted to Nature Scientific Dat

    Design and Implementation of a Motif-based Compression Algorithm for Biometric Signals

    Get PDF
    Wearable devices are becoming a natural and economic means to gather biometric data from users: this thesis is centered around lossy data compression techniques, whose aim is to minimize the amount of information that is to be stored on their onboard memory and subsequently transmitted over wireless interfaces. A new class of codebook based (CB) compression algorithms is proposed, designed to be energy efficient, online and amenable to any type of signal exhibiting recurrent patternsope

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Spectral Dimensionality Reduction

    Get PDF
    In this paper, we study and put under a common framework a number of non-linear dimensionality reduction methods, such as Locally Linear Embedding, Isomap, Laplacian Eigenmaps and kernel PCA, which are based on performing an eigen-decomposition (hence the name 'spectral'). That framework also includes classical methods such as PCA and metric multidimensional scaling (MDS). It also includes the data transformation step used in spectral clustering. We show that in all of these cases the learning algorithm estimates the principal eigenfunctions of an operator that depends on the unknown data density and on a kernel that is not necessarily positive semi-definite. This helps to generalize some of these algorithms so as to predict an embedding for out-of-sample examples without having to retrain the model. It also makes it more transparent what these algorithm are minimizing on the empirical data and gives a corresponding notion of generalization error. Dans cet article, nous étudions et développons un cadre unifié pour un certain nombre de méthodes non linéaires de réduction de dimensionalité, telles que LLE, Isomap, LE (Laplacian Eigenmap) et ACP à noyaux, qui font de la décomposition en valeurs propres (d'où le nom "spectral"). Ce cadre inclut également des méthodes classiques telles que l'ACP et l'échelonnage multidimensionnel métrique (MDS). Il inclut aussi l'étape de transformation de données utilisée dans l'agrégation spectrale. Nous montrons que, dans tous les cas, l'algorithme d'apprentissage estime les fonctions propres principales d'un opérateur qui dépend de la densité inconnue de données et d'un noyau qui n'est pas nécessairement positif semi-défini. Ce cadre aide à généraliser certains modèles pour prédire les coordonnées des exemples hors-échantillons sans avoir à réentraîner le modèle. Il aide également à rendre plus transparent ce que ces algorithmes minimisent sur les données empiriques et donne une notion correspondante d'erreur de généralisation.non-parametric models, non-linear dimensionality reduction, kernel models, modèles non paramétriques, réduction de dimensionalité non linéaire, modèles à noyau
    • …
    corecore